WorldWideScience

Sample records for adenine nucleotide translocator

  1. A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family.

    Science.gov (United States)

    Napoli, L; Bordoni, A; Zeviani, M; Hadjigeorgiou, G M; Sciacco, M; Tiranti, V; Terentiou, A; Moggio, M; Papadimitriou, A; Scarlato, G; Comi, G P

    2001-12-26

    Autosomal dominant progressive external ophthalmoplegia (adPEO) is caused by mutations in at least three different genes: ANT1 (chromosome 4q34-35), TWINKLE, and POLG. The ANT1 gene encodes the adenine nucleotide translocator-1 (ANT1). We identified a heterozygous T293C mutation of the ANT1 gene in a Greek family with adPEO. The resulting leucine to proline substitution likely modifies the secondary structure of the ANT1 protein. ANT1 gene mutations may account for adPEO in families with different ethnic backgrounds.

  2. Role of adenine nucleotide translocator 1 in mtDNA maintenance.

    Science.gov (United States)

    Kaukonen, J; Juselius, J K; Tiranti, V; Kyttälä, A; Zeviani, M; Comi, G P; Keränen, S; Peltonen, L; Suomalainen, A

    2000-08-04

    Autosomal dominant progressive external ophthalmoplegia is a rare human disease that shows a Mendelian inheritance pattern, but is characterized by large-scale mitochondrial DNA (mtDNA) deletions. We have identified two heterozygous missense mutations in the nuclear gene encoding the heart/skeletal muscle isoform of the adenine nucleotide translocator (ANT1) in five families and one sporadic patient. The familial mutation substitutes a proline for a highly conserved alanine at position 114 in the ANT1 protein. The analogous mutation in yeast caused a respiratory defect. These results indicate that ANT has a role in mtDNA maintenance and that a mitochondrial disease can be caused by a dominant mechanism.

  3. Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects - Implications for a mechanism linking obesity and type 2 diabetes

    NARCIS (Netherlands)

    Ciapaite, Jolita; Bakker, Stephan J. L.; Diamant, Michaela; van Eikenhorst, Gerco; Heine, Robert J.; Westerhoff, Hans V.; Krab, Klaas

    2006-01-01

    Inhibition of the mitochondrial adenine nucleotide translocator (ANT) by long-chain acyl-CoA esters has been proposed to contribute to cellular dysfunction in obesity and type 2 diabetes by increasing formation of reactive oxygen species and adenosine via effects on the coenzyme Q redox state, mitoc

  4. The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2

    Directory of Open Access Journals (Sweden)

    Kawaguchi Yasushi

    2008-10-01

    Full Text Available Abstract The herpes simplex virus 1 (HSV-1 UL7 gene is highly conserved among herpesviridae. Since the construction of recombinant HSV-1 with a mutation in the UL7 gene has not been reported, the involvement of HSV-1 UL7 in viral replication has been unclear. In this study, we succeeded in generating a UL7 null HSV-1 mutant virus, MT102, and characterized it. Our results were as follows. (i In Vero cells, MT102 was replication-competent, but formed smaller plaques and yielded 10- to 100-fold fewer progeny than the wild-type virus, depending on the multiplicity of infection. (ii Using mass spectrometry-based proteomics technology, we identified a cellular mitochondrial protein, adenine nucleotide translocator 2 (ANT2, as a UL7-interacting partner. (iii When ANT2 was transiently expressed in COS-7 cells infected with HSV-1, ANT2 was specifically co-precipitated with UL7. (iv Cell fractionation experiments with HSV-1-infected cells detected the UL7 protein in both the mitochondrial and cytosolic fractions, whereas ANT2 was detected only in the mitochondrial fraction. These results indicate the importance of HSV-1 UL7's involvement in viral replication and demonstrate that it interacts with ANT2 in infected cells. The potential biological significance of the interaction between UL7 and ANT2 is discussed.

  5. Hypothesis on skeletal muscle aging : mitochondrial adenine nucleotide translocator decreases reactive oxygen species production while preserving coupling efficiency

    Directory of Open Access Journals (Sweden)

    Philippe eDIOLEZ

    2015-12-01

    Full Text Available Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS. Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT appearing during aging that results in a decrease in membrane potential - and therefore ROS production – but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential of isolated mitochondria from skeletal muscles (gastrocnemius of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating - in vivo - conditions. Thus, for equivalent ATP turnover (cellular ATP demand, coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies.

  6. TGF-β1 induction of the adenine nucleotide translocator 1 in astrocytes occurs through Smads and Sp1 transcription factors

    Directory of Open Access Journals (Sweden)

    Wallace Douglas C

    2004-01-01

    Full Text Available Abstract Background The adenine nucleotide translocator 1 (Ant1 is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes. Results Transcription reporter analysis verified that TGF-β1 regulates transcription of the mouse Ant1 gene, but not the gene encoding the closely related Ant2 isoform. A 69 basepair TGF-β1 responsive element of the Ant1 promoter was also identified. Electrophoretic mobility shift assays demonstrated that astrocyte nuclear proteins bind to this response element and TGF-β1 treatment recruits additional nuclear protein binding to this element. Antibody supershift and promoter deletion analyses demonstrated that Sp1 consensus binding sites in the RE are important for TGF-β1 regulation of Ant1 in astrocytes. Additionally, we demonstrate that Smad 2, 3 and 4 transcription factors are expressed in injured cerebral cortex and in primary astrocyte cultures. TGF-β1 activated Smad transcription factors also contribute to Ant1 regulation since transcription reporter assays in the presence of dominant negative (DN-Smads 3 and 4 significantly reduced induction of Ant1 by TGF-β1. Conclusion The specific regulation of Ant1 by TGF-β1 in astrocytes involves a cooperative interaction of both Smad and Sp1 binding elements located immediately upstream of the transcriptional start site. The first report of expression of Smads 2, 3 and 4 in astrocytes provided here is consistent with a regulation of Ant1 gene expression by these transcription factors in reactive astrocytes. Given the similarity in TGF-β1 regulation of Ant1 with other genes that are thought to promote neuronal survival, this interaction may

  7. Radiation and thermal stabilities of adenine nucleotides.

    Science.gov (United States)

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  8. Adenine nucleotides of the stria vascularis.

    Science.gov (United States)

    Thalmann, I; Marcus, N Y; Thalmann, R

    1979-01-01

    The levels of the adenine nucleotides ATP, ADP, and AMP in the stria vascularis were measured under normal conditions, and following various durations of ischemia. The concentrations of these compounds were used for the calculation of the adenylate energy charge, the energy status and the phosphorylation state of the stria. Following 10 min of ischemia the adenylate energy charge had decreased three fold, the energy status seven fold and the phosphorylation state 14 fold. To study the potential for recovery of strial function following various brief and prolonged ischemic intervals, a method for the perfusion of the ear via the anterior inferior cerebellar artery was developed. For various reasons it was found advantageous to use "artifical blood" as perfusate, relying upon fluorocarbons as oxygen carriers. The endolymphatic potential was used as electrical indicator of strial function. Recovery of the endolymphatic potential following brief periods of ischemia was paralleled by a corresponding increase of the ATP levels and a drastic decrease of the AMP levels of the stria vascularis. Preliminary results on the effects of substrate-free perfusion are presented.

  9. Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively.

    Science.gov (United States)

    Shabalina, Irina G; Kramarova, Tatiana V; Nedergaard, Jan; Cannon, Barbara

    2006-11-01

    In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria.

  10. Adenine nucleotide concentrations in patients with erythrocyte autoantibodies.

    OpenAIRE

    Strong, V F; Sokol, R J; Rodgers, S A; Hewitt, S.

    1985-01-01

    Erythrocyte adenine nucleotide concentrations were measured in 154 patients with erythrocyte autoantibodies and 811 normal subjects using a luciferin-luciferase bioluminescent assay. The patients were initially divided into haemolysing and non-haemolysing groups. Red cell adenosine triphosphate (ATP) concentrations were significantly raised in the 96 patients with active haemolysis compared with the normal subjects and with the 58 patients in the non-haemolysing group. Although the patients c...

  11. Effects of hypobaric hypoxia on adenine nucleotide pools, adenine nucleotide transporter activity and protein expression in rat liver

    Institute of Scientific and Technical Information of China (English)

    Cong-Yang Li; Jun-Ze Liu; Li-Ping Wu; Bing Li; Li-Fen Chen

    2006-01-01

    AIM: To explore the effect of hypobaric hypoxia on mitochondrial energy metabolism in rat liver.METHODS: Adult male Wistar rats were exposed to a hypobaric chamber simulating 5000 m high altitude for 23 h every day for 0 (HO), 1 (H1), 5 (HS), 15 (H15) and 30 d (H30) respectively. Rats were sacrificed by decapitation and liver was removed. Liver mitochondria were isolated by differential centrifugation program. The size of adenine nucleotide pool (ATP, ADP, and AMP) in tissue and mitochondria was separated and measured by high performance liquid chromatography (HPLC). The adenine nucleotide transporter (ANT) activity was determined by isotopic technique. The ANT total protein level was determined by Western blot. RESULTS: Compared with HO group, intra-mitochondrial ATP content decreased in all hypoxia groups. However,the H5 group reached the lowest point (70.6%) (P< 0.01)when compared to the control group. Intra-mitochondrial ADP and AMP level showed similar change in all hypoxia groups and were significantly lower than that in HO group. In addition, extra-mitochondrial ATP and ADP content decreased significantly in all hypoxia groups.Furthermore, extra-mitochondrial AMP in groups H5, H15and H30 was significantly lower than that in HO group,whereas H1 group had no marked change compared to the control situation. The activity of ANT in hypoxia groups decreased significantly, which was the lowest in H5 group (55.7%) (P<0.01) when compared to HO group. ANT activity in H30 group was higher than in H15 group, but still lower than that in HO group. ANT protein level in H5, H15, H30 groups, compared with HO group decreased significantly, which in H5 group was the lowest, being 27.1% of that in HO group (P<0.01). ANT protein level in H30 group was higher than in H15 group,but still lower than in HO group.CONCLUSION: Hypobaric hypoxia decreases the mitochondrial ATP content in rat liver, while mitochondrial ATP level recovers during long-term hypoxia exposure.The lower

  12. Fluorescence spectroscopic study of the interaction of adenine and nucleotide with trichosanthin.

    Science.gov (United States)

    Hao, Q; Zhang, Y; Yang, H; Liu, G; Huang, Z; Liu, B; Yao, Q; Li, Q

    1995-07-01

    Trichosanthin (TCS) is an N-glycosidase that can attack the 28s rRNA of the ribosome at a highly conserved adenine residue. The interactions of adenine and its derivative nucleotides with TCS are reported. The fluorescence of Trp 192 of TCS is sensitive to the proximity of adenine, and produces a marked red shift indicative of trytophan in a more hydrophilic environment. By contrast AMP and ATP quench the maximal emission at 328nm. The binding of the adenine and ATP with TCS result in lower tryptophan accessibility to the quencher acrylamide, but higher tryptophan accessibility to the quencher iodide, while AMP caused higher tryptophan accessibility to acrylamide, and lower tryptophan accessibility to iodide. Also, the binding of nucleotides induces tryptophan heterogeneity in the protein. These findings lead us to propose that binding of nucleotides and adenine base cause different microenvironmental changes of the tryptophan residue, and Trp 192 may be involved in the active site of TCS.

  13. Two Adenine Nucleotide Translocase Paralogues Involved in Cell Proliferation and Spermatogenesis in the Silkworm Bombyx mori

    OpenAIRE

    Ryohei Sugahara; Akiya Jouraku; Takayo Nakakura; Takahiro Kusakabe; Takenori Yamamoto; Yasuo Shinohara; Hideto Miyoshi; Takahiro Shiotsuki

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for m...

  14. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  15. White spot syndrome virus VP12 interacts with adenine nucleotide translocase of Litopenaeus vannamei.

    Science.gov (United States)

    Ma, Fang-fang; Chou, Zhi-guang; Liu, Qing-hui; Guan, Guangkuo; Li, Chen; Huang, Jie

    2014-05-01

    White spot syndrome virus VP12 contains cell attachment motif RGD which is considered to be critical for host cell binding. Until now, the function of this protein remains undefined. In this study, we explored the interaction of VP12 with host cells. A new shrimp protein (adenine nucleotide translocase of Litopenaeus vannamei, LvANT) is selected by far-western overlay assay. Tissue distribution of adenine nucleotide translocase mRNA showed that it was commonly spread in all the tissues detected. Cellular localization of LvANT in shrimp hemocytes showed that it was primarily located in the cytoplasm of hemocytes and colocalized with mitochondria. ELISA and far-western blot assay confirmed that VP12 interacted with LvANT. In vivo neutralization assay showed that anti-LvANT antibody can significantly reduce the mortality of shrimp challenged by WSSV at 48h post-treatment. Our results collectively showed that VP12 is involved in host cell binding via interaction with adenine nucleotide translocase.

  16. Adenine nucleotide effect on intraocular pressure: Involvement of the parasympathetic nervous system.

    Science.gov (United States)

    Peral, Assumpta; Gallar, Juana; Pintor, Jesús

    2009-06-15

    Nucleotides are present in the aqueous humor possibly exerting physiological effects on intraocular pressure (IOP). To determine the effect of nucleotides such as ATP and its related derivatives on IOP, New Zealand white rabbits were used. IOP was measured in rabbits treated topically either with saline (control) or with a single dose (10 microg/microL) of adenine nucleotides (ATP, 2-meS-ATP, ATP-gamma-S, alpha,beta-meADP, alpha,beta-meATP and beta,gamma-meATP). Those nucleotides reducing IOP (alpha,beta-meATP and beta,gamma-meATP) were then tested in concentrations ranging from 1 to 100 microg/microL to obtain the IC(50) value. Several antagonists for the P2 and adenosine A1 receptors (all at 10 microg/microL) were assayed 30 min before the application of the hypotensive nucleotide beta,gamma-meATP. To see whether the nucleotide was acting directly on the structures involved in aqueous humor dynamics or on the autonomic nerves controlling IOP, animal denervation and sympathetic (yohimbine and ICI-118,551 at 10 microg/microL) and parasympathetic (atropine and hexametonium at 10 microg/microL) receptors' antagonists were used 30 min before the instillation of beta,gamma-meATP. alpha,beta-meATP and beta,gamma-meATP decreased IOP to 60% of control value (basal IOP=23.2+/-1.3 mmHg), with IC(50) of 1.59+/-0.21 microg/microLand 0.56+/-0.62 microg/microL, which corresponds to 3mM and 1mM respectively. Denervation completely abolished the effect of beta,gamma-meATP. Sympathetic antagonists did not modify the hypotensive effect of beta,gamma-meATP, but parasympathetic antagonists were able to abolish it. Among the series of adenine nucleotide tested, alpha,beta-meATP and beta,gamma-meATP presented hypotensive actions on IOP. beta,gamma-meATP seems to stimulate cholinergic terminals being its final effect the IOP reduction. Therefore, these two nucleotides are interesting pharmacological tools for those pathologies related with high intraocular pressure.

  17. A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration.

    Science.gov (United States)

    Konràd, Csaba; Kiss, Gergely; Töröcsik, Beata; Lábár, János L; Gerencser, Akos A; Mándi, Miklós; Adam-Vizi, Vera; Chinopoulos, Christos

    2011-03-01

    Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.

  18. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.

    Science.gov (United States)

    Yoshida, Keisuke; Hisabori, Toru

    2016-06-01

    Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.

  19. Human Adenine Nucleotide Translocase (ANT) Modulators Identified by High-Throughput Screening of Transgenic Yeast.

    Science.gov (United States)

    Zhang, Yujian; Tian, Defeng; Matsuyama, Hironori; Hamazaki, Takashi; Shiratsuchi, Takayuki; Terada, Naohiro; Hook, Derek J; Walters, Michael A; Georg, Gunda I; Hawkinson, Jon E

    2016-04-01

    Transport of ADP and ATP across mitochondria is one of the primary points of regulation to maintain cellular energy homeostasis. This process is mainly mediated by adenine nucleotide translocase (ANT) located on the mitochondrial inner membrane. There are four human ANT isoforms, each having a unique tissue-specific expression pattern and biological function, highlighting their potential as drug targets for diverse clinical indications, including male contraception and cancer. In this study, we present a novel yeast-based high-throughput screening (HTS) strategy to identify compounds inhibiting the function of ANT. Yeast strains generated by deletion of endogenous proteins with ANT activity followed by insertion of individual human ANT isoforms are sensitive to cell-permeable ANT inhibitors, which reduce proliferation. Screening hits identified in the yeast proliferation assay were characterized in ADP/ATP exchange assays employing recombinant ANT isoforms expressed in isolated yeast mitochondria and Lactococcus lactis as well as by oxygen consumption rate in mammalian cells. Using this approach, closantel and CD437 were identified as broad-spectrum ANT inhibitors, whereas leelamine was found to be a modulator of ANT function. This yeast "knock-out/knock-in" screening strategy is applicable to a broad range of essential molecular targets that are required for yeast survival. © 2016 Society for Laboratory Automation and Screening.

  20. Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels.

    Science.gov (United States)

    Chinopoulos, Christos; Konràd, Csaba; Kiss, Gergely; Metelkin, Eugeniy; Töröcsik, Beata; Zhang, Steven F; Starkov, Anatoly A

    2011-04-01

    Cyclophilin D was recently shown to bind to and decrease the activity of F(0)F(1)-ATP synthase in submitochondrial particles and permeabilized mitochondria [Giorgio V et al. (2009) J Biol Chem, 284, 33982-33988]. Cyclophilin D binding decreased both ATP synthesis and hydrolysis rates. In the present study, we reaffirm these findings by demonstrating that, in intact mouse liver mitochondria energized by ATP, the absence of cyclophilin D or the presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria, an increase in F(0)F(1)-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident in the form of slightly increased respiration rates during arsenolysis. However, the modulation of F(0)F(1)-ATP synthase by cyclophilin D did not increase the adenine nucleotide translocase (ANT)-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of an effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ∼ 2.2-fold lower flux control coefficient of the F(0)F(1)-ATP synthase than that of ANT, as deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that an ∼ 30% change in F(0)F(1)-ATP synthase activity in fully energized or fully de-energized mitochondria affects the ADP-ATP exchange rate mediated by the ANT in the range 1.38-1.7%. We conclude that, in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or the inhibition of its binding to F(0)F(1)-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels. © 2011 The Authors Journal compilation © 2011 FEBS.

  1. Ischemic preconditioning protects post-ischemic renal function in anesthetized dogs: role of adenosine and adenine nucleotides

    Institute of Scientific and Technical Information of China (English)

    Fan-zhu LI; Shoji KIMURA; Akira NISHIYAMA; Matlubur RAHMAN; Guo-xing ZHANG; Youichi ABE

    2005-01-01

    Aim: To investigate the effects of renal ischemic preconditioning (IPC) on both renal hemodynamics and the renal interstitial concentrations of adenosine and adenine nucleotides induced by ischemia-reperfusion injury.Methods: Renal hemodynamics responses to ischemia-reperfusion injury in mongrel dog models were determined with or without multiple brief renal ischemic preconditioning treatments, as well as the adenosine A1 receptor antagonist (KW-3902),respectively.The renal interstitial concentrations of adenosine and adenine nucleotides in response to ischemia-reperfusion injury, either following 1-3 cycles of IPC or not, were measured simultaneously using microdialysis sampling technology.Results: One 10-min IPC, adenosine A1 receptor antagonist (KW3902) also shortened the recovery time of renal blood flow (RBF) and urine flow (UF), as well as mean blood pressure (BP).Advanced renal IPC attenuated the increment of adenosine and adenine nucleotides, as well as recovery time during the 60-min reperfusion which followed the 60-min renal ischemia.All of these recovery times were dependent on the cycles of 10-min IPC.The renal interstitial concentrations of adenosine and adenine nucleotides increased and decreased during renal ischemia and reperfusion, respectively.Conclusion: A significant relativity in dog models exists between the cycles of 10-min renal IPC and the recovery time of BP, UF, and RBF during the 60-min renal reperfusion following 60-min renal ischemia, respectively.Renal IPC can protect against ischemiareperfusion injury and the predominant effect of endogenous adenosine induced by prolonged renal ischemia; renal adenosine A1 receptor activation during the renal ischemia-reperfusion injury is detrimental to renal function.

  2. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides

    Science.gov (United States)

    Jämsen, Joonas; Tuominen, Heidi; Salminen, Anu; Belogurov, Georgiy A.; Magretova, Natalia N.; Baykov, Alexander A.; Lahti, Reijo

    2007-01-01

    CBS (cystathionine β-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100–10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PPi-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively. PMID:17714078

  3. Adenine Nucleotide Translocase 4 Is Expressed Within Embryonic Ovaries and Dispensable During Oogenesis

    Science.gov (United States)

    Lim, Chae Ho; Brower, Jeffrey V.; Resnick, James L.; Oh, S. Paul

    2015-01-01

    Adenine nucleotide translocase (Ant) facilitates the exchange of adenosine triphosphate across the mitochondrial inner membrane and plays a critical role for bioenergetics in eukaryotes. Mice have 3 Ant paralogs, Ant1 (Slc25a4), Ant2 (Slc25a5), and Ant4 (Slc25a31), which are expressed in a tissue-dependent manner. We previously identified that Ant4 was expressed exclusively in testicular germ cells in adult mice and essential for spermatogenesis and subsequently male fertility. Further investigation into the process of spermatogenesis revealed that Ant4 was particularly highly expressed during meiotic prophase I and indispensable for normal progression of leptotene spermatocytes to the stages thereafter. In contrast, the expression and roles of Ant4 in female germ cells have not previously been elucidated. Here, we demonstrate that the Ant4 gene is expressed during embryonic ovarian development during which meiotic prophase I occurs. We confirmed embryonic ovary-specific Ant4 expression using a bacterial artificial chromosome transgene. In contrast to male, however, Ant4 null female mice were fertile although the litter size was slightly decreased. They showed apparently normal ovarian development which was morphologically indistinguishable from the control animals. These data indicate that Ant4 is a meiosis-specific gene expressed during both male and female gametogenesis however indispensable only during spermatogenesis and not oogenesis. The differential effects of Ant4 depletion within the processes of male and female gametogenesis may be explained by meiosis-specific inactivation of the X-linked Ant2 gene in male, a somatic paralog of the Ant4 gene. PMID:25031318

  4. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori.

    Science.gov (United States)

    Sugahara, Ryohei; Jouraku, Akiya; Nakakura, Takayo; Kusakabe, Takahiro; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto; Shiotsuki, Takahiro

    2015-01-01

    Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.

  5. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ryohei Sugahara

    Full Text Available Mitochondrial adenine nucleotide translocase (ANT specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4 and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4 is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1 and the testis-specific paralogue (BmANTI2. The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1, but not those of other insect species (or PxANTI2, restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.

  6. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.

    Science.gov (United States)

    Reynafarje, B; Lehninger, A L

    1978-10-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP(4-) (out) for ADP(3-) (in) + 0.5 phosphate(2-) (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated.

  7. Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Atlasi

    2011-01-01

    Full Text Available Objective (s Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury.Materials and MethodsFor this purpose, we used in vivo 4-vessel occlusion model of rat brain and porin purification method by hydroxyapatite column. After SDS gel electrophoresis and silver nitrate staining, Western blotting was done for porin, adenine nucleotide translocase and cyclophilin-D proteins.Results Porin was purified from mitochondrial mixture in ischemic brain and control groups. Investigation of interaction of adenine nucleotide transposes (ANT and cyclophilin-D with porin by Western blotting showed no proteins co-purified with porin from injured tissues.Conclusion The present study implies that there may not be interaction between porin, and ANT or cyclophilin-D, and if there is any, it is not maintained during the purification procedure.

  8. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite d

  9. Effects of acute gamma-irradiation on extracellular adenine nucleotide hydrolysis in developing rat brain

    Science.gov (United States)

    Stanojević, I.; Drakulić, D.; Veličković, N.; Milošević, M.; Petrović, S.; Horvat, A.

    2009-09-01

    Cell membrane is highly sensitive to irradiation which, acting directly or indirectly, may disturb functions of constitutive proteins including membrane enzymes. Plasma membrane surface-located enzyme chain of ecto-nucleotide triphospho diphosphohydrolases (NTPDases) and 5'-nucleotidase are involved in termination of cell purinergic signalization by hydrolyzing extracellular, excitatory adenosine triphosphate (ATP), as well as nucleotide di-, and mono-phosphate (ADP and AMP) to neuroprotective adenosine. Extracellular ATP, ADP, and AMP hydrolyzes were examined in purified synaptic plasma membranes after whole-body acute irradiation. All measurements were done 24 h after irradiation of developing (15-, 30-day-old) and adult (90-day-old) rats with low (50 cGy) and high (2 Gy) dose of gamma-rays. Both, high and low doses inhibited nucleotide hydrolyses in 15-day-old rats; in 30-day-old rats low dose of radiation inhibited ADP and AMP hydrolyses while high dose inhibited only ATP hydrolyse. In adult rats high dose induced no effects, while low dose stimulated nucleotides hydrolyses. According to obtained results it was concluded that ecto-nucleotidases of young rats are more sensitive to irradiation, since even low dose induces inhibition of ecto-nucleotidases activities. Ionizing radiation, by decreasing brain nucleotide hydrolyses in developing rats, induces accumulation of ATP and decreases production of adenosine in synaptic cleft which could be neurocytotoxic. On the contrary, in adult rats low dose of radiation stimulates NTPDase and 5'-nucleotidase activity and protective adenosine production which indicates protective and adaptive mechanisms developed in adult brain neuronal cells.

  10. Exercise effects on activities of Na(+),K(+)-ATPase, acetylcholinesterase and adenine nucleotides hydrolysis in ovariectomized rats.

    Science.gov (United States)

    Ben, Juliana; Soares, Flávia Mahatma Schneider; Cechetti, Fernanda; Vuaden, Fernanda Cenci; Bonan, Carla Denise; Netto, Carlos Alexandre; Wyse, Angela Terezinha de Souza

    2009-12-11

    Hormone deficiency following ovariectomy causes activation of Na(+),K(+)-ATPase and acetylcholinesterase (AChE) that has been related to cognitive deficits in experimental animals. Considering that physical exercise presents neuroprotector effects, we decide to investigate whether exercise training would affect enzyme activation in hippocampus and cerebral cortex, as well as adenosine nucleotide hydrolysis in synaptosomes from cerebral cortex of ovariectomized rats. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries), exercise, ovariectomized (Ovx) and Ovx plus exercise. Thirty days after surgery, animals were submitted to one month of exercise training, three times per week. After, rats were euthanized, blood serum was collected and hippocampus and cerebral cortex were dissected. Data demonstrated that exercise reversed the activation of Na(+),K(+)-ATPase and AChE activities both in hippocampus and cerebral cortex of ovariectomized rats. Ovariectomy decreased AMP hydrolysis in cerebral cortex and did not alter adenine nucleotides hydrolysis in blood serum. Exercise per se decreased ADP and AMP hydrolysis in cerebral cortex. On the other hand, AMP hydrolysis in blood serum was increased by exercise in ovariectomized adult rats. Present data support that physical exercise might have beneficial effects and constitute a therapeutic alternative to hormone replacement therapy for estrogen deprivation.

  11. Nitric oxide interacts with oxygen free radicals to evoke the release of adenosine and adenine nucleotides from rat hippocampal slices.

    Science.gov (United States)

    Broad, R M; Fallahi, N; Fredholm, B B

    2000-07-01

    The present study examined some possible mechanisms underlying the previously demonstrated release of adenosine by nitric oxide (NO) donors. Perfusion with the NO-donor S-nitroso-N-acetyl penicillamine (SNAP; 300 microM) led to a significant increase in the release of [3H]purines from both unstimulated and electrically stimulated hippocampal slices prelabeled with [3H]adenine. The NO-donor also evoked the release of endogenous ATP and ADP from unstimulated slices and, when combined with electrical stimulation, the release of ATP, AMP and adenosine. The SNAP-induced [3H]purine release was calcium-dependent, but not affected by the glutamate receptor antagonists MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]-cyclohepten-5,10-imine;100 nM) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; 10 microM). Zaprinast (5 microM), an inhibitor of the cyclic GMP-dependent phosphodiesterase and 8-Br-cyclic GMP (0.01-1 mM) failed to evoke the release of purines, whereas generation of oxygen free radicals by xanthine plus xanthine oxidase did evoke purine release. Coperfusion of SNAP with the free radical scavengers superoxide dismutase (SOD; 60 microg/ml) and catalase (50 microg/ml) reduced or eliminated the ability of the NO-donor to enhance [3H]purine release, but the poly (ADP-ribosyl) synthetase (PARS) inhibitor benzamide (500 microM) did not affect it. These data indicate that NO interacts with superoxide, likely forming peroxynitrite, which subsequently acts to release adenosine and adenine nucleotides from hippocampal tissue.

  12. Alterations of adenine nucleotide metabolism and function of blood platelets in patients with diabetes.

    Science.gov (United States)

    Michno, Anna; Bielarczyk, Hanna; Pawełczyk, Tadeusz; Jankowska-Kulawy, Agnieszka; Klimaszewska, Joanna; Szutowicz, Andrzej

    2007-02-01

    Increased activity of blood platelets contributes to vascular complications in patients with diabetes. The aim of this work was to investigate whether persisting hyperglycemia in diabetic patients generates excessive accumulation of ATP/ADP, which may underlie platelet hyperactivity. Platelet ATP and ADP levels, thiobarbituric acid-reactive species synthesis, and aggregation of platelets from patients with diabetes were 18-82% higher than in platelets from healthy participants. In patients with diabetes, platelet stimulation with thrombin caused about two times greater release of ATP and ADP than in the healthy group while decreasing intraplatelet nucleotide content to similar levels in both groups. This indicates that the increased content of adenylate nucleotides in the releasable pool in the platelets of diabetic patients does not affect their level in metabolic cytoplasmic/mitochondrial compartments. Significant correlations between platelet ATP levels and plasma fructosamine, as well as between platelet ATP/ADP and platelet activities, have been found in diabetic patients. In conclusion, chronic hyperglycemia-evoked elevations of ATP/ADP levels and release from blood platelets of patients with diabetes may be important factors underlying platelet hyperactivity in the course of the disease.

  13. Activities of adenine nucleotide and nucleoside degradation enzymes in platelets of rats infected by Trypanosoma evansi.

    Science.gov (United States)

    Oliveira, Camila B; Da Silva, Aleksandro S; Vargas, Lara B; Bitencourt, Paula E R; Souza, Viviane C G; Costa, Marcio M; Leal, Claudio A M; Moretto, Maria B; Leal, Daniela B R; Lopes, Sonia T A; Monteiro, Silvia G

    2011-05-31

    Nucleotide and nucleoside-degrading enzymes, such as nucleoside triphosphate diphosphohydrose (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are present in the surface membranes of platelets, involved in clotting disturbances of Trypanosoma evansi-infected animals. Thus, this study was aimed at evaluating the activities of these enzymes in platelets of rats experimentally infected with T. evansi. Animals were divided into four groups, according to the level of parasitemia. Blood samples were collected on days 3 (group A: at the beginning of parasitemia), 5 (group B: high parasitemia) and 15 (group C: chronic infection), post-infection. Group D (control group) was composed of non-infected animals for platelet count, separation and enzymatic assays. Animals from groups A and B showed marked thrombocytopenia, but platelet count was not affected in chronically infected rats. NTPDase, 5'-nucleotidase and ADA activities decreased (pplatelets from rats of groups A and B, when compared to the control group. In group C, only NTPDase and 5'-nucleoside activities decreased (pplatelet count and nucleotide/nucleoside hydrolysis were positive and statistically significant (pPlatelet aggregation was decreased in all infected groups, in comparison to the control group (pplatelets of T. evansi-infected animals might be related to thrombocytopenia, that by reducing the number of platelets, there was less release of ATP and ADP. Another possibility being suggested is that changes have occurred in the membrane of these cells, decreasing the expression of these enzymes in the cell membrane.

  14. Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase.

    Science.gov (United States)

    Moye, W S; Amuro, N; Rao, J K; Zalkin, H

    1985-07-15

    The yeast GDH1 gene encodes NADP-dependent glutamate dehydrogenase. This gene was isolated by complementation of an Escherichia coli glutamate auxotroph. NADP-dependent glutamate dehydrogenase was overproduced 6-10-fold in Saccharomyces cerevisiae bearing GDH1 on a multicopy plasmid. The nucleotide sequence of the 1362-base pair coding region and 5' and 3' flanking sequences were determined. Transcription start sites were located by S1 nuclease mapping. Regulation of GDH1 was not maintained when the gene was present on a multicopy plasmid. Protein secondary structure predictions identified a region with potential to form the dinucleotide-binding domain. The amino acid sequences of the yeast and Neurospora crassa enzymes are 63% conserved. Unlike the N. crassa gene, yeast GDH1 has no introns.

  15. The tumour metabolism inhibitors GSAO and PENAO react with cysteines 57 and 257 of mitochondrial adenine nucleotide translocase

    Directory of Open Access Journals (Sweden)

    Park Danielle

    2012-03-01

    Full Text Available Abstract Background GSAO (4-(N-(S-glutathionylacetylamino phenylarsonous acid and PENAO (4-(N-(S-penicillaminylacetylamino phenylarsonous acid are tumour metabolism inhibitors that target adenine nucleotide translocase (ANT of the inner-mitochondrial membrane. Both compounds are currently being trialled in patients with solid tumours. The trivalent arsenical moiety of GSAO and PENAO reacts with two matrix facing cysteine residues of ANT, inactivating the transporter. This leads to proliferation arrest and death of tumour and tumour-supporting cells. Results The two reactive ANT cysteine residues have been identified in this study by expressing cysteine mutants of human ANT1 in Saccharomyces cerevisiae and measuring interaction with the arsenical moiety of GSAO and PENAO. The arsenic atom of both compounds cross-links cysteine residues 57 and 257 of human ANT1. Conclusions The sulphur atoms of these two cysteines are 20 Å apart in the crystal structures of ANT and the optimal spacing of cysteine thiolates for reaction with As (III is 3-4 Å. This implies that a significant conformational change in ANT is required for the organoarsenicals to react with cysteines 57 and 257. This conformational change may relate to the selectivity of the compounds for proliferating cells.

  16. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  17. The influence of calcium antagonists on the adenine nucleotide metabolism in the guinea-pig working heart during ischaemia and reperfusion.

    Science.gov (United States)

    Hugtenburg, J G; Mathy, M J; de Haan, N; Beckeringh, J J; van Zwieten, P A

    1991-05-01

    With the aim of gaining more insight into the metabolism of adenine nucleotides in working normoxic guinea-pigs and in hearts subjected to 45 min of global ischaemia and subsequent reperfusion for 25 min, we evaluated the effect of nifedipine, verapamil, diltiazem, bepridil, CERM 11956, lidoflazine, mioflazine and dipyridamole on the adenine nucleotide catabolite levels in these hearts. The drugs were applied at the concentrations that reduced the aortic dP/dt of normoxic working hearts by 10% (EC10) and 30% (EC30). In globally ischaemic hearts there was a large accumulation of adenine nucleotide catabolites. Inosine proved to be the major catabolite. The drugs, with the exception of bepridil, CERM 11956 and dipyridamole (3 mumol/l), decreased the accumulation of catabolites. In hearts treated with mioflazine and dipyridamole the amount of adenosine increased. A deficit in the balance between adenine nucleotides and catabolites indicated that in globally ischaemic hearts there was a large accumulation of inosine monophosphate. Indeed, a substantial amount of inosine monophosphate was determined in untreated hearts, and hearts treated with nifedipine (EC30) and mioflazine (EC10). During the first 5 min of reperfusion a large quantity of catabolites, mainly inosine, was washed out. During 20 min of subsequent reperfusion in untreated hearts and in nifedipine and mioflazine-treated hearts the efflux of catabolites returned to normoxic values. Similar to the effect in ischaemic hearts, in early perfusate from lidoflazine, mioflazine and dipyridamole-treated hearts the adenosine/inosine ratio was increased.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2

    Science.gov (United States)

    Taniguchi, Tomoyuki; Goi, Wakana; Miki, Tsuneharu; Sakai, Toshiyuki

    2013-01-01

    Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human Apo2L/TRAIL has been under clinical trials, whereas various kinds of malignant tumors have resistance to Apo2L/TRAIL. We and others have shown that several anticancer agents and flavonoids overcome resistance to Apo2L/TRAIL by upregulating death receptor 5 (DR5) in malignant tumor cells. However, the mechanisms by which these compounds induce DR5 expression remain unknown. Here we show that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by upregulation of DR5. Apigenin and genistein, which are major flavonoids, enhanced Apo2L/TRAIL-induced apoptosis in cancer cells. Apigenin induced DR5 expression, but genistein did not. Using our method identifying the direct targets of flavonoids, we compared the binding proteins of apigenin with those of genistein. We discovered that ANT2 was a target of apigenin, but not genistein. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by upregulating DR5 expression at the post-transcriptional level. Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin upregulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. We propose that ANT2 inhibitors may contribute to Apo2L/TRAIL therapy. PMID:23431365

  19. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells.

    Science.gov (United States)

    Onetti, C G; Lara, J; García, E

    1996-05-01

    Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.

  20. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs

    Directory of Open Access Journals (Sweden)

    Ehrenberg Måns

    2005-06-01

    Full Text Available Abstract Background During the translation of mRNA into polypeptide, elongation factor G (EF-G catalyzes the translocation of peptidyl-tRNA from the A site to the P site of the ribosome. According to the 'classical' model, EF-G in the GTP-bound form promotes translocation, while hydrolysis of the bound GTP promotes dissociation of the factor from the post-translocation ribosome. According to a more recent model, EF-G operates like a 'motor protein' and drives translocation of the peptidyl-tRNA after GTP hydrolysis. In both the classical and motor protein models, GDP-to-GTP exchange is assumed to occur spontaneously on 'free' EF-G even in the absence of a guanine-nucleotide exchange factor (GEF. Results We have made a number of findings that challenge both models. First, free EF-G in the cell is likely to be in the GDP-bound form. Second, the ribosome acts as the GEF for EF-G. Third, after guanine-nucleotide exchange, EF-G in the GTP-bound form moves the tRNA2-mRNA complex to an intermediate translocation state in which the mRNA is partially translocated. Fourth, subsequent accommodation of the tRNA2-mRNA complex in the post-translocation state requires GTP hydrolysis. Conclusion These results, in conjunction with previously published cryo-electron microscopy reconstructions of the ribosome in various functional states, suggest a novel mechanism for translocation of tRNAs on the ribosome by EF-G. Our observations suggest that the ribosome is a universal guanosine-nucleotide exchange factor for EF-G as previously shown for the class-II peptide-release factor 3.

  1. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs

    Science.gov (United States)

    Zavialov, Andrey V; Hauryliuk, Vasili V; Ehrenberg, Måns

    2005-01-01

    Background During the translation of mRNA into polypeptide, elongation factor G (EF-G) catalyzes the translocation of peptidyl-tRNA from the A site to the P site of the ribosome. According to the 'classical' model, EF-G in the GTP-bound form promotes translocation, while hydrolysis of the bound GTP promotes dissociation of the factor from the post-translocation ribosome. According to a more recent model, EF-G operates like a 'motor protein' and drives translocation of the peptidyl-tRNA after GTP hydrolysis. In both the classical and motor protein models, GDP-to-GTP exchange is assumed to occur spontaneously on 'free' EF-G even in the absence of a guanine-nucleotide exchange factor (GEF). Results We have made a number of findings that challenge both models. First, free EF-G in the cell is likely to be in the GDP-bound form. Second, the ribosome acts as the GEF for EF-G. Third, after guanine-nucleotide exchange, EF-G in the GTP-bound form moves the tRNA2-mRNA complex to an intermediate translocation state in which the mRNA is partially translocated. Fourth, subsequent accommodation of the tRNA2-mRNA complex in the post-translocation state requires GTP hydrolysis. Conclusion These results, in conjunction with previously published cryo-electron microscopy reconstructions of the ribosome in various functional states, suggest a novel mechanism for translocation of tRNAs on the ribosome by EF-G. Our observations suggest that the ribosome is a universal guanosine-nucleotide exchange factor for EF-G as previously shown for the class-II peptide-release factor 3. PMID:15985150

  2. Regulation of Ca²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells.

    Science.gov (United States)

    Park, Hyung Seo; Betzenhauser, Matthew J; Zhang, Yu; Yule, David I

    2012-01-01

    Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ∼8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ∼500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.

  3. Data supporting the involvement of the adenine nucleotide translocase conformation in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria

    Directory of Open Access Journals (Sweden)

    Sergey M. Korotkov

    2016-06-01

    Full Text Available There we made available information about the effects of the adenine nucleotide translocase (ANT ‘c’ conformation fixers (phenylarsine oxide (PAO, tert-butylhydroperoxide (tBHP, and carboxyatractyloside as well as thiol reagent (4,4′-diisothiocyanostilbene-2,2′-disulfonate (DIDS on isolated rat liver mitochondria. We observed a decrease in A540 (mitochondrial swelling and respiratory control rates (RCRADP [state 3/state 4] and RCRDNP [2,4-dinitrophenol-uncoupled state/basal state or state 4], as well as an increase in Ca2+-induced safranin fluorescence (F485/590, arbitrary units, showed a dissipation in the inner membrane potential (ΔΨmito, in experiments with energized rat liver mitochondria, injected into the buffer containing 25–75 mM TlNO3, 125 mM KNO3, and 100 µM Ca2+. The fixers and DIDS, in comparison to Ca2+ alone, greatly increased A540 decline and the rate of Ca2+-induced ΔΨmito dissipation. These reagents also markedly decreased RCRADP and RCRDNP. The MPTP inhibitors (ADP, cyclosporin A, bongkrekic acid, and N-ethylmaleimide fixing the ANT in ‘m’ conformation significantly hindered the above-mentioned effects of the fixers and DIDS. A more complete scientific analysis of these findings may be obtained from the manuscript “To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria” (Korotkov et al., 2016 [1].

  4. To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    Science.gov (United States)

    Korotkov, Sergey M; Konovalova, Svetlana A; Brailovskaya, Irina V; Saris, Nils-Erik L

    2016-04-01

    The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quadracyclic adenine

    DEFF Research Database (Denmark)

    Dierckx, Anke; Miannay, Francois-Alexandre; Ben Gaied, Nouha

    2012-01-01

    Fluorescent-base analogues (FBAs) comprise a group of increasingly important molecules for the investigation of nucleic acid structure and dynamics as well as of interactions between nucleic acids and other molecules. Here, we report on the synthesis, detailed spectroscopic characterisation...... fluorescent adenine analogues for future detailed studies of nucleic acid-containing systems....... and base-pairing properties of a new environment-sensitive fluorescent adenine analogue, quadracyclic adenine (qA). After developing an efficient route of synthesis for the phosphoramidite of qA it was incorporated into DNA in high yield by using standard solid-phase synthesis procedures. In DNA qA serves...

  6. Role of the guanine nucleotide exchange factor in Akt2-mediated plasma membrane translocation of GLUT4 in insulin-stimulated skeletal muscle.

    Science.gov (United States)

    Takenaka, Nobuyuki; Yasuda, Naoto; Nihata, Yuma; Hosooka, Tetsuya; Noguchi, Tetsuya; Aiba, Atsu; Satoh, Takaya

    2014-11-01

    The small GTPase Rac1 plays a key role in insulin-promoted glucose uptake mediated by the GLUT4 glucose transporter in skeletal muscle. Our recent studies have demonstrated that the serine/threonine protein kinase Akt2 is critically involved in insulin-dependent Rac1 activation. The purpose of this study is to clarify the role of the guanine nucleotide exchange factor FLJ00068 in Akt2-mediated Rac1 activation and GLUT4 translocation in mouse skeletal muscle and cultured myocytes. Constitutively activated FLJ00068 induced GLUT4 translocation in a Rac1-dependent and Akt2-independent manner in L6 myocytes. On the other hand, knockdown of FLJ00068 significantly reduced constitutively activated Akt2-triggered GLUT4 translocation. Furthermore, Rac1 activation and GLUT4 translocation induced by constitutively activated phosphoinositide 3-kinase were inhibited by knockdown of FLJ00068. In mouse gastrocnemius muscle, constitutively activated FLJ00068 actually induced GLUT4 translocation to the sarcolemma. GLUT4 translocation by constitutively activated FLJ00068 was totally abolished in rac1 knockout mouse gastrocnemius muscle. Additionally, we were successful in detecting the activation of Rac1 following the expression of constitutively activated FLJ00068 in gastrocnemius muscle by immunofluorescence microscopy using an activation-specific probe. Collectively, these results strongly support the notion that FLJ00068 regulates Rac1 downstream of Akt2, leading to the stimulation of glucose uptake in skeletal muscle.

  7. Specificities and pH profiles of adenine and hypoxanthine-guanine-xanthine phosphoribosyltransferases (nucleotide synthases) of the thermoacidophile archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Jensen, Kristine Steen; Rasmussen, Mads Skytte

    2014-01-01

    Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine phosphoribosyltransfe......Two open reading frames in the genome of Sulfolobus solfataricus (SSO2341 and SSO2424) were cloned and expressed in E. coli. The protein products were purified and their enzymatic activity characterized. Although SSO2341 was annotated as a gene (gpT-1) encoding a 6-oxopurine...... phosphoribosyltransferase (PRTase), the protein product turned out to be a PRTase highly specific for adenine and we suggest that the reading frame should be renamed apT. The other reading frame SSO2424 (gpT-2) proved to be a true 6-oxopurine PRTase active with hypoxanthine, xanthine and guanine as substrates, and we...... suggest that the gene should be renamed gpT. Both enzymes exhibited unusual profiles of activity versus pH. The adenine PRTase showed the highest activity at pH 7.5-8.5, but had a distinct peak of activity also at pH 4.5. The 6-oxo PRTase showed maximal activity with hypoxanthine and guanine around pH 4...

  8. Specific and nonspecific metal ion-nucleotide interactions at aqueous/solid interfaces functionalized with adenine, thymine, guanine, and cytosine oligomers.

    Science.gov (United States)

    Holland, Joseph G; Malin, Jessica N; Jordan, David S; Morales, Esmeralda; Geiger, Franz M

    2011-03-02

    This article reports nonlinear optical measurements that quantify, for the first time directly and without labels, how many Mg(2+) cations are bound to DNA 21-mers covalently linked to fused silica/water interfaces maintained at pH 7 and 10 mM NaCl, and what the thermodynamics are of these interactions. The overall interaction of Mg(2+) with adenine, thymine, guanine, and cytosine is found to involve -10.0 ± 0.3, -11.2 ± 0.3, -14.0 ± 0.4, and -14.9 ± 0.4 kJ/mol, and nonspecific interactions with the phosphate and sugar backbone are found to contribute -21.0 ± 0.6 kJ/mol for each Mg(2+) ion bound. The specific and nonspecific contributions to the interaction energy of Mg(2+) with oligonucleotide single strands is found to be additive, which suggests that within the uncertainty of these surface-specific experiments, the Mg(2+) ions are evenly distributed over the oligomers and not isolated to the most strongly binding nucleobase. The nucleobases adenine and thymine are found to bind only three Mg(2+) ions per 21-mer oligonucleotide, while the bases cytosine and guanine are found to bind eleven Mg(2+) ions per 21-mer oligonucleotide.

  9. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  10. Adenine nucleotides inhibit proliferation of the human lung adenocarcinoma cell line LXF-289 by activation of nuclear factor kappaB1 and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Schäfer, Rainer; Hartig, Roland; Sedehizade, Fariba; Welte, Tobias; Reiser, Georg

    2006-08-01

    Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear

  11. The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas contains templated nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma.

    Science.gov (United States)

    Murga Penas, Eva Maria; Callet-Bauchu, Evelyne; Ye, Hongtao; Gazzo, Sophie; Berger, Françoise; Schilling, Georgia; Albert-Konetzny, Nadine; Vettorazzi, Eik; Salles, Gilles; Wlodarska, Iwona; Du, Ming-Qing; Bokemeyer, Carsten; Dierlamm, Judith

    2010-03-18

    The t(14;18)(q32;q21) involving the immunoglobulin heavy chain locus (IGH) and the MALT1 gene is a recurrent abnormality in mucosa-associated lymphoid tissue (MALT) lymphomas. However, the nucleotide sequence of only one t(14;18)-positive MALT lymphoma has been reported so far. We here report the molecular characterization of the IGH-MALT1 fusion products in 5 new cases of t(14;18)-positive MALT lymphomas. Similar to the IGH-associated translocations in follicular and mantle cell lymphomas, the IGH-MALT1 junctions in MALT lymphoma showed all features of a recombination signal sequence-guided V(D)J-mediated translocation at the IGH locus. Furthermore, analogous to follicular and mantle cell lymphoma, templated nucleotides (T-nucleotides) were identified at the t(14;18)/IGH-MALT1 breakpoint junctions. On chromosome 18, we identified a novel major breakpoint region in MALT1 upstream of its coding region. Moreover, the presence of duplications of MALT1 nucleotides in one case suggests an underlying staggered DNA-break process not consistent with V(D)J-mediated recombination. The molecular characteristics of the t(14;18)/IGH-MALT1 resemble those found in the t(14;18)/IGH-BCL2 in follicular lymphoma and t(11;14)/CCND1-IGH in mantle cell lymphoma, suggesting that these translocations could be generated by common pathomechanisms involving illegitimate V(D)J-mediated recombination on IGH as well as new synthesis of T-nucleotides and nonhomologous end joining (NHEJ) or alternative NHEJ repair pathways on the IGH-translocation partner.

  12. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression

    Directory of Open Access Journals (Sweden)

    Kim Chul-Woo

    2010-09-01

    Full Text Available Abstract Background Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL; apo2 ligand induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2 by short-hairpin RNA (shRNA induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5 and down-regulating the TRAIL decoy receptor 2 (DcR2. In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK, subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1. ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5

  13. Design and synthesis of ATP-based nucleotide analogues and profiling of nucleotide-binding proteins

    NARCIS (Netherlands)

    Wolters, Justina. C.; Roelfes, Gerard; Poolman, Bert

    2011-01-01

    Two nucleotide-based probes were designed and synthesized in order to enrich samples for specific classes of proteins by affinity-based protein profiling. We focused on the profiling of adenine nucleotide-binding proteins. Two properties were considered in the design of the probes: the bait needs to

  14. Design and synthesis of ATP-based nucleotide analogues and profiling of nucleotide-binding proteins

    NARCIS (Netherlands)

    Wolters, Justina. C.; Roelfes, Gerard; Poolman, Bert

    Two nucleotide-based probes were designed and synthesized in order to enrich samples for specific classes of proteins by affinity-based protein profiling. We focused on the profiling of adenine nucleotide-binding proteins. Two properties were considered in the design of the probes: the bait needs to

  15. Adenine N6-methylation in diverse fungi.

    Science.gov (United States)

    Seidl, Michael F

    2017-05-26

    A DNA modification-methylation of cytosines and adenines-has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant adenine methylation of transcriptionally active genes in early-diverging fungi that, together with recent other work, emphasizes the importance of adenine methylation in eukaryotes.

  16. adPEO mutations in ANT1 impair ADP-ATP translocation in muscle mitochondria.

    Science.gov (United States)

    Kawamata, Hibiki; Tiranti, Valeria; Magrané, Jordi; Chinopoulos, Christos; Manfredi, Giovanni

    2011-08-01

    Mutations in the heart and muscle isoform of adenine nucleotide translocator 1 (ANT1) are associated with autosomal-dominant progressive external opthalmoplegia (adPEO) clinically characterized by exercise intolerance, ptosis and muscle weakness. The pathogenic mechanisms underlying the mitochondrial myopathy caused by ANT1 mutations remain largely unknown. In yeast, expression of ANT1 carrying mutations corresponding to the human adPEO ones causes a wide range of mitochondrial abnormalities. However, functional studies of ANT1 mutations in mammalian cells are lacking, because they have been hindered by the fact that ANT1 expression leads to apoptotic cell death in commonly utilized replicating cell lines. Here, we successfully express functional ANT1 in differentiated mouse myotubes, which naturally contain high levels of ANT1, without causing cell death. We demonstrate, for the first time in these disease-relevant mammalian cells, that mutant human ANT1 causes dominant mitochondrial defects characterized by decreased ADP-ATP exchange function and abnormal translocator reversal potential. These abnormalities are not due to ANT1 loss of function, because knocking down Ant1 in myotubes causes functional changes different from ANT1 mutants. Under certain physiological conditions, mitochondria consume ATP to maintain membrane potential by reversing the ADP-ATP transport. The modified properties of mutant ANT1 can be responsible for disease pathogenesis in adPEO, because exchange reversal occurring at higher than normal membrane potential can cause excessive energy depletion and nucleotide imbalance in ANT1 mutant muscle cells.

  17. adPEO mutations in ANT1 impair ADP–ATP translocation in muscle mitochondria

    Science.gov (United States)

    Kawamata, Hibiki; Tiranti, Valeria; Magrané, Jordi; Chinopoulos, Christos; Manfredi, Giovanni

    2011-01-01

    Mutations in the heart and muscle isoform of adenine nucleotide translocator 1 (ANT1) are associated with autosomal-dominant progressive external opthalmoplegia (adPEO) clinically characterized by exercise intolerance, ptosis and muscle weakness. The pathogenic mechanisms underlying the mitochondrial myopathy caused by ANT1 mutations remain largely unknown. In yeast, expression of ANT1 carrying mutations corresponding to the human adPEO ones causes a wide range of mitochondrial abnormalities. However, functional studies of ANT1 mutations in mammalian cells are lacking, because they have been hindered by the fact that ANT1 expression leads to apoptotic cell death in commonly utilized replicating cell lines. Here, we successfully express functional ANT1 in differentiated mouse myotubes, which naturally contain high levels of ANT1, without causing cell death. We demonstrate, for the first time in these disease-relevant mammalian cells, that mutant human ANT1 causes dominant mitochondrial defects characterized by decreased ADP–ATP exchange function and abnormal translocator reversal potential. These abnormalities are not due to ANT1 loss of function, because knocking down Ant1 in myotubes causes functional changes different from ANT1 mutants. Under certain physiological conditions, mitochondria consume ATP to maintain membrane potential by reversing the ADP–ATP transport. The modified properties of mutant ANT1 can be responsible for disease pathogenesis in adPEO, because exchange reversal occurring at higher than normal membrane potential can cause excessive energy depletion and nucleotide imbalance in ANT1 mutant muscle cells. PMID:21586654

  18. Adenine N6-methylation in diverse fungi

    NARCIS (Netherlands)

    Seidl, Michael F.

    2017-01-01

    A DNA modification - methylation of cytosines and adenines - has important roles in diverse processes such as regulation of gene expression and genome stability, yet until recently adenine methylation had been considered to be only a hallmark of prokaryotes. A new study identifies abundant

  19. Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 27, describes the occurrence of Robertsonian translocations (RTs), which refer to the recombination of whole chromosome arms, in both monocentric and dicentric chromosomes. The nonrandom participation of acrocentric chromosomes in RTs is documented by various methods, including unbiased ascertainment and ascertainment through trisomy, infertility, unspecified mental retardation, and Prader-Willi syndrome. Causes of nonrandom participation of chromosomes in RTs is presented, as are the following topics: segregation in carriers of RTs and segregation in sperm cells of RT carriers, interchromosomal effects and conclusions. 48 refs., 3 figs., 2 tabs.

  20. Novel non-specific DNA adenine methyltransferases

    Science.gov (United States)

    Drozdz, Marek; Piekarowicz, Andrzej; Bujnicki, Janusz M.; Radlinska, Monika

    2012-01-01

    The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation. PMID:22102579

  1. RNA polymerase stalls in a post-translocated register and can hyper-translocate

    Science.gov (United States)

    Nedialkov, Yuri A.; Nudler, Evgeny; Burton, Zachary F.

    2012-01-01

    Exonuclease (Exo) III was used to probe translocation states of RNA polymerase (RNAP) ternary elongation complexes (TECs). Escherichia coli RNAP stalls primarily in a post-translocation register that makes relatively slow excursions to a hyper-translocated state or to a pre-translocated state. Tagetitoxin (TGT) strongly inhibits hyper-translocation and inhibits backtracking, so, as indicated by Exo III mapping, TGT appears to stabilize both the pre- and probably a partially post-translocation state of RNAP. Because the pre-translocated to post-translocated transition is slow at many template positions, these studies appear inconsistent with a model in which RNAP makes frequent and rapid (i.e., millisecond phase) oscillations between pre- and post-translocation states. Nine nucleotides (9-nt) and 10-nt TECs, and TECs with longer nascent RNAs, have distinct translocation properties consistent with a 9–10 nt RNA/DNA hybrid. RNAP mutant proteins in the bridge helix and trigger loop are identified that inhibit or stimulate forward and backward translocation. PMID:23132506

  2. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  3. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism....... The aim of this article is to provide knowledge of nucleotide metabolism and its regulation to facilitate interpretation of data arising from genetics, proteomics, and transcriptomics in connection with biotechnological processes and beyond....

  4. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism....... The aim of this article is to provide knowledge of nucleotide metabolism and its regulation to facilitate interpretation of data arising from genetics, proteomics, and transcriptomics in connection with biotechnological processes and beyond....

  5. The essential role of stacking adenines in a two-base-pair RNA kissing complex.

    Science.gov (United States)

    Stephenson, William; Asare-Okai, Papa Nii; Chen, Alan A; Keller, Sean; Santiago, Rachel; Tenenbaum, Scott A; Garcia, Angel E; Fabris, Daniele; Li, Pan T X

    2013-04-17

    In minimal RNA kissing complexes formed between hairpins with cognate GACG tetraloops, the two tertiary GC pairs are likely stabilized by the stacking of 5'-unpaired adenines at each end of the short helix. To test this hypothesis, we mutated the flanking adenines to various nucleosides and examined their effects on the kissing interaction. Electrospray ionization mass spectrometry was used to detect kissing dimers in a multiequilibria mixture, whereas optical tweezers were applied to monitor the (un)folding trajectories of single RNA molecules. The experimental findings were rationalized by molecular dynamics simulations. Together, the results showed that the stacked adenines are indispensable for the tertiary interaction. By shielding the tertiary base pairs from solvent and reducing their fraying, the stacked adenines made terminal pairs act more like interior base pairs. The purine double-ring of adenine was essential for effective stacking, whereas additional functional groups modulated the stabilizing effects through varying hydrophobic and electrostatic forces. Furthermore, formation of the kissing complex was dominated by base pairing, whereas its dissociation was significantly influenced by the flanking bases. Together, these findings indicate that unpaired flanking nucleotides play essential roles in the formation of otherwise unstable two-base-pair RNA tertiary interactions.

  6. Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide.

    Science.gov (United States)

    Li, Guifeng; Sichula, Vincent; Glusac, Ksenija D

    2008-08-28

    We present a study of excited-state behavior of reduced flavin cofactors using femtosecond optical transient absorption spectroscopy. The reduced flavin cofactors studied were in two protonation states: flavin-adenine dinucleotide (FADH2 and FADH-) and flavin-mononucleotide (FMNH2 and FMNH-). We find that FMNH- exhibits multiexponential decay dynamics due to the presence of two bent conformers of the isoalloxazine ring. FMNH2 exhibits an additional fast deactivation component that is assigned to an iminol tautomer. Reduced flavin cofactors also exhibit a long-lived component that is attributed to the semiquinone and the hydrated electron that are produced in photoinduced electron transfer to the solvent. The presence of adenine in FADH2 and FADH- further changes the excited-state dynamics due to intramolecular electron transfer from the isoalloxazine to the adenine moiety of cofactors. This electron transfer is more pronounced in FADH2 due to pi-stacking interactions between two moieties. We further studied cyclobutane thymine dimer (TT-dimer) repair via FADH- and FMNH- and found that the repair is much more efficient in the case of FADH-. These results suggest that the adenine moiety plays a significant role in the TT-dimer repair dynamics. Two possible explanations for the adenine mediation are presented: (i) a two-step electron transfer process, with the initial electron transfer occurring from flavin to adenine moiety of FADH-, followed by a second electron transfer from adenine to TT-dimer; (ii) the preconcentration of TT-dimer molecules around the flavin cofactor due to the hydrophobic nature of the adenine moiety.

  7. Differences in Electrostatic Potential Around DNA Fragments Containing Adenine and 8-oxo-Adenine. An Analysis Based on Regular Cylindrical Projection

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Miller, John H; Gutowski, Maciej S

    2007-07-01

    Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6-31G** basis sets. The “intact” DNA fragment contained adenine in the middle layer, while the “damaged” fragment had the adenine replaced with 8-oxo-adenine. The electrostatic potential around these DNA fragments was projected on a cylindrical surface around the double helix. The two-dimensional maps of EP of the intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-adenine (8oA). It was found that distortions of a phosphate group neighboring 8oA and displacements of the accompanying countercation are clearly reflected in the EP maps. Helpful discussions Michel Dupuis are gratefully acknowledged. Authors wish to thank Marcel Swart for directing us to a compilation of van der Waals radii. This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G. and M.H.), (ii) the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG03-02ER63470 (JHM), (iii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-6 (MG), (iv) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic Computer Center in Gdansk (TASK) and at the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national

  8. The catalase activity of diiron adenine deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  9. Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2'-Amino-α-l-LNA Adenine Monomers

    DEFF Research Database (Denmark)

    Andersen, Nicolai K; Anderson, Brooke A; Wengel, Jesper

    2013-01-01

    The development of conformationally restricted nucleotide building blocks continues to attract considerable interest because of their successful use within antisense, antigene, and other gene-targeting strategies. Locked nucleic acid (LNA) and its diastereomer α-l-LNA are two interesting examples...... (ONs) modified with 2'-amino-α-l-LNA adenine monomers W-Z. The synthesis of the target phosphoramidites 1-4 is initiated from pentafuranose 5, which upon Vorbrüggen glycosylation, O2'-deacylation, O2'-activation and C2'-azide introduction yields nucleoside 8. A one-pot tandem Staudinger...

  10. Gas-phase spectroscopy of protonated adenine, adenosine 5′-monophosphate and monohydrated ions

    DEFF Research Database (Denmark)

    Pedersen, S.O.; Støchkel, K.; Byskov, C.S.

    2013-01-01

    Microsolvation of chromophore ions commonly has large effects on their electronic structure and as a result on their optical absorption spectra. Here spectroscopy of protonated adenine (AdeH+) and its complex with one water molecule isolated in vacuo was done using a home-built mass spectrometer...... in combination with a tuneable pulsed laser system. Experiments also included the protonated adenosine 5′-monophosphate nucleotide (AMPH+). In the case of bare AdeH+ ions, one-photon absorption leads to four dominant fragment ions corresponding to ammonium and ions formed after loss of either NH3, HCN, or NH2CN...

  11. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  12. Spectroscopic assessment of argon gas discharge induced radiolysis of aqueous adenine and thymine

    Energy Technology Data Exchange (ETDEWEB)

    Su Xi [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Huang Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China); Dang Bingrong [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Wang Xiangqin; Yu Zengliang [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Shushanhu Road 350, Hefei 230031 (China)

    2011-12-15

    Ionizing radiation influences life profoundly for it can modify genetic materials. It is a long-standing task to investigate the interaction between energetic particles and DNA together with its components such as nucleotides, nucleosides and bases so as to predict and assess the potential biological effects. In this study, argon gas discharge was employed to produce energetic ions and electrons. The gas discharge caused the radiolysis of aqueous bases and the involved reactions were analyzed by means of spectroscopic tools including UV-vis absorption, fluorescence and Fourier transformation infrared (FTIR) spectroscopy, also assisted by liquid chromatography/mass spectrometry (LC/MS). It was found that the discharge resulted in the adenine-derived lesions such as 4,6-diamino-5-formamidopyrimidine, 8-OH-Ade and 2-OH-Ade in the radiolysis of aqueous adenine, as well as the thymine-derived lesions such as thymine glycol, 5-hydroxy-6-hydrothymine and/or 6-hydroxy-5-hydrothymine, 5-hydroxymethyluracil and 5-formyluracil in the radiolysis of aqueous thymine. The study of radio-sensitivity showed that adenine was more resistant to the discharge. The mechanisms of the involved reactions were studied in detail, confirming that the hydroxyl radical played a dominant role. - Highlights: > Effective new way to study radiolysis of bases via a home-made argon discharge apparatus. > Quantitative analysis of base radiolysis employing spectroscopic tools combined with HPLC/MS. > Discovery of different radiolysis effect compared with other forms of ionizing radiations.

  13. Influence of Magnetic Microparticles Isolation on Adenine Homonucleotides Structure

    Directory of Open Access Journals (Sweden)

    Monika Kremplova

    2014-02-01

    Full Text Available The electroactivity of purine and pyrimidine bases is the most important property of nucleic acids that is very useful for determining oligonucleotides using square wave voltammetry. This study was focused on the electrochemical behavior of adenine-containing oligonucleotides before and after their isolation using paramagnetic particles. Two peaks were detected—peak A related to the reduction of adenine base and another peak B involved in the interactions between individual adenine strands and contributes to the formation of various spatial structures. The influence of the number of adenine bases in the strand in the isolation process using paramagnetic particles was investigated too.

  14. Strandwise translocation of a DNA glycosylase on undamaged DNA

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yan; Nam, Kwangho; Spong, Marie C.; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L. (Harvard)

    2012-05-14

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.

  15. Dynamics of forced biopolymer translocation

    CERN Document Server

    Lehtola, V V; Kaski, K; 10.1209/0295-5075/85/58006

    2009-01-01

    We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.

  16. What is adenine doing in photolyase?

    Science.gov (United States)

    Acocella, Angela; Jones, Garth A; Zerbetto, Francesco

    2010-03-25

    The short answer to the title question is that it acts as an electrostatic bouncer that shoves the charge flow from flavin toward the DNA lesion that photolyase repairs. This explanation is provided by an explicit time-dependent quantum mechanical approach, which is used to investigate the electron transfer process that triggers the repair mechanism. The transfer occurs from the flavin photolyase cofactor to the cyclobutane ring of DNA, previously formed by light-induced cycloaddition of adjacent pyrimidine bases. The electron wave function dynamics accurately accounts for the previously proposed mechanism of transfer via the terminal methyl group of the flavin moiety present in the catalytic electron-donor cofactor, FADH(-), which also contains adenine. This latter moiety, which has often been assumed to be present mainly for structural reasons, instantaneously modifies the interaction between acceptor and donor by a variation of the electrostatic interactions so that the presence of its local atomic charges is necessary to trigger the transfer. In principle, knowledge of the details of the electron transfer dynamics and of the important role of polarization effects can be exploited to improve the efficiency of the repair mechanism in artificial systems.

  17. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    Science.gov (United States)

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR.

  18. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.

    Science.gov (United States)

    Brueckner, Florian; Cramer, Patrick

    2008-08-01

    To study how RNA polymerase II translocates after nucleotide incorporation, we prepared elongation complex crystals in which pre- and post-translocation states interconvert. Crystal soaking with the inhibitor alpha-amanitin locked the elongation complex in a new state, which was refined at 3.4-A resolution and identified as a possible translocation intermediate. The DNA base entering the active site occupies a 'pretemplating' position above the central bridge helix, which is shifted and occludes the templating position. A leucine residue in the trigger loop forms a wedge at the shifted bridge helix, but moves by 13 A to close the active site during nucleotide incorporation. Our results support a Brownian ratchet mechanism that involves swinging of the trigger loop between open, wedged and closed positions, and suggest that alpha-amanitin impairs nucleotide incorporation and translocation by trapping the trigger loop and bridge helix.

  19. Problem-elephant translocation: translocating the problem and the elephant?

    Directory of Open Access Journals (Sweden)

    Prithiviraj Fernando

    Full Text Available Human-elephant conflict (HEC threatens the survival of endangered Asian elephants (Elephas maximus. Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  20. Problem-elephant translocation: translocating the problem and the elephant?

    Science.gov (United States)

    Fernando, Prithiviraj; Leimgruber, Peter; Prasad, Tharaka; Pastorini, Jennifer

    2012-01-01

    Human-elephant conflict (HEC) threatens the survival of endangered Asian elephants (Elephas maximus). Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  1. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    Science.gov (United States)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  2. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two chromoso...

  3. Dynamics of Excess-Electron Transfer through Alternating Adenine:Thymine Sequences in DNA.

    Science.gov (United States)

    Lin, Shih-Hsun; Fujitsuka, Mamoru; Majima, Tetsuro

    2015-11-02

    This paper presents the results of an investigation into the sequence-dependent excess-electron transfer (EET) dynamics in DNA, which plays an important role in DNA damage/repair. There are many published studies on EET in consecutive adenine:thymine (A:T) sequences (Tn), but those in alternating A:T sequences (ATn) remain limited. Here, two series of functionalized DNA oligomers, Tn and ATn, were synthesized with a strongly electron-donating photosensitizer, a trimer of ethylenedioxythiophene (3 E), and an electron acceptor, diphenylacetylene (DPA). Laser flash photolysis experiments showed that the EET rate constant of AT3 is two times lower than that of T3 due to the lack of π-stacking of Ts in AT3. Thus, it was indicated that excess-electron hopping is affected by the interaction between LUMOs of nucleotides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Absence of Ca2+-induced mitochondrial permeability transition but presence of bongkrekate-sensitive nucleotide exchange in C. crangon and P. serratus.

    Directory of Open Access Journals (Sweden)

    Csaba Konrad

    Full Text Available Mitochondria from the embryos of brine shrimp (Artemia franciscana do not undergo Ca(2+-induced permeability transition in the presence of a profound Ca(2+ uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca(2+-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon and common prawn (Palaemon serratus exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca(2+-induced permeability transition. Ca(2+ uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca(2+-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca(2+-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena.

  5. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures.

    Science.gov (United States)

    Cedzich, Anna; Stransky, Harald; Schulz, Burkhard; Frommer, Wolf B

    2008-12-01

    Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.

  6. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1

    OpenAIRE

    Sargent, R. Geoffrey; Rolig, Rhonda L.; Kilburn, April E.; Adair, Gerald M.; Wilson, John H.; Nairn, Rodney S.

    1997-01-01

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogeno...

  7. Mammalian mismatches in nucleotide metabolism: implications for xenotransplantation.

    Science.gov (United States)

    Khalpey, Zain; Yuen, Ada H Y; Lavitrano, Marialuisa; McGregor, Christopher G A; Kalsi, Kameljit K; Yacoub, Magdi H; Smolenski, Ryszard T

    2007-10-01

    Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors.Ecto-5'-nucleotidase (E5'N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.

  8. DIETARY ADENINE ALLEVIATES FATTY LIVER INDUCED BY OROTIC ACID

    Directory of Open Access Journals (Sweden)

    Yohanes Buang

    2010-12-01

    Full Text Available The effects of dietary adenine in fatty liver induced by orotic acid (OA were studied. Rats were paired-fed 1% OA-supplemented diets with/or without 0.25% adenine or a diet without OA for 10 days. Serum lipid profiles were measured using enzyme assay kits. Lipids of liver tissues were extracted and liver lipid contents were determined. A peach of liver was prepared to determine the activities of fatty acid synthase (FAS and fatty acid β-oxidation. The results showed that liver TG content of OA-fed rats increased markedly in comparison to basal group.  However, the addition of adenine to the diet reversed promotion of liver TG content to basal level. It was also found that FAS activities decreased. Furthermore, these diets reversed the inhibition of fatty acid β-oxidation to basal level and induced the serum lipid levels secretion. Therefore, the alleviation of fatty liver in OA-treated rats given dietary adenine is associated with the inhibition of FAS activities accompanied with the promotion of mitochondrial fatty acid β-oxidation and the promotion of serum lipid secretion from the hepatic tissue into the bloodstream.

  9. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  10. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  11. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  12. Balanced translocations in mental retardation.

    Science.gov (United States)

    Vandeweyer, Geert; Kooy, R Frank

    2009-07-01

    Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA's and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.

  13. Twin-Arginine Protein Translocation

    NARCIS (Netherlands)

    Goosens, Vivianne J; van Dijl, Jan Maarten

    2016-01-01

    Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which a

  14. DNA damage induced by the environmental carcinogen butadiene: identification of a diepoxybutane-adenine adduct and its detection by 32P-postlabelling.

    Science.gov (United States)

    Leuratti, C; Jones, N J; Marafante, E; Kostiainen, R; Peltonen, K; Waters, R

    1994-09-01

    To date only a few studies have been undertaken on DNA adducts formed by epoxybutene (EB) and diepoxybutane (DEB), the two active metabolites of 1,3-butadiene. Our interests have focused on further investigating DNA alkylation by the two epoxides, especially in relation to the development of a method for human biomonitoring. Here, following the reaction of deoxyadenosine monophosphate and poly(dA-dT)(dA-dT) with DEB and subsequent HPLC, we have identified an adenine adduct. MS analyses indicate the structure of an adenine adducted by DEB at the N6 position. A HPLC/32P-postlabelling method was developed for its measurement in DNA samples and the adduct was detected in calf thymus DNA and DNA from Chinese hamster ovary cells exposed to DEB. The 100% labelling efficiency during postlabelling, the amount of the adduct and its elution before the normal nucleotides during HPLC suggest it could be a suitable indicator of BUT exposure.

  15. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    Science.gov (United States)

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-04

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study on the oxidation form of adenine in phosphate buffer solution.

    Science.gov (United States)

    Song, Yuan-Zhi; Zhou, Jian-Feng; Zhu, Feng-Xia; Ye, Yong; Xie, Ji-Min

    2010-07-01

    The oxidation of adenine in phosphate buffer solution is investigated using square-wave voltammetry and in situ UV spectroelectrochemistry. The geometry of adenine and the derivatives optimized at DFTB3LYP-6-31G (d, p)-PCM level is in agreement with the crystal structure, and the imitated UV spectra of adenine and the product at electrode are consistent with the in situ UV spectra. The relationship between the electrochemical property and the molecular structure is also discussed. The experimental and theoretical results show that the adenine oxidation origins from the neutral adenine.

  17. B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks

    Science.gov (United States)

    Szekeres, Zs; Bogár, F.; Ladik, J.

    DFT crystal orbital (band structure) calculations have been performed for the nucleotide base stacks of cytosine, thymine, adenine, and guanine arranged in DNA B geometry. The band structures obtained with PBE, BLYP, and B3LYP functionals are presented and compared to other related experimental and theoretical results. The influence of the quality of the basis set on the fundamental gap values was also investigated using Clementi's double ζ, 6-31G and 6-31G* basis sets.

  18. Main: Nucleotide Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available -acting regulatory DNA elements Database kome_place_search_result.zip kome_place_search_result ... ...Nucleotide Analysis PLACE search result Result of signal search against PLACE : cis

  19. Main: Nucleotide Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Nucleotide Analysis Japonica genome blast search result Result of blastn search against japon...ica genome sequence kome_japonica_genome_blast_search_result.zip kome_japonica_genome_blast_search_result ...

  20. Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition.

    Science.gov (United States)

    Venkatesan, S; Gershowitz, A; Moss, B

    1982-11-01

    The proximal part of the 10,000-base pair (bp) inverted terminal repetition of vaccinia virus DNA encodes at least three early mRNAs. A 2,236-bp segment of the repetition was sequenced to characterize two of the genes. This task was facilitated by constructing a series of recombinants containing overlapping deletions; oligonucleotide linkers with synthetic restriction sites provided points for radioactive labeling before sequencing by the chemical degradation method of Maxam and Gilbert (Methods Enzymol. 65:499-560, 1980). The ends of the transcripts were mapped by hybridizing labeled DNA fragments to early viral RNA and resolving nuclease S1-protected fragments in sequencing gels, by sequencing cDNA clones, and from the lengths of the RNAs. The nucleotide sequences for at least 60 bp upstream of both transcriptional initiation sites are more than 80% adenine . thymine rich and contain long runs of adenines and thymines with some homology to procaryotic and eucaryotic consensus sequences. The gene transcribed in the rightward direction encodes an RNA of approximately 530 nucleotides with a single open reading frame of 420 nucleotides. Preceding the first AUG, there is a heptanucleotide that can hybridize to the 3' end of 18S rRNA with only one mismatch. The derived amino acid sequence of the protein indicated a molecular weight of 15,500. The gene transcribed in the leftward direction encodes an RNA 1,000 to 1,100 nucleotides long with an open reading frame of 996 nucleotides and a leader sequence of only 5 to 6 nucleotides. The derived amino acid sequence of this protein indicated a molecular weight of 38,500. The 3' ends of the two transcripts were located within 100 bp of each other. Although there are adenine . thymine-rich clusters near the putative transcriptional termination sites, specific AATAAA polyadenylic acid signal sequences are absent.

  1. Excited State Pathways Leading to Formation of Adenine Dimers.

    Science.gov (United States)

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-02

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine).

  2. Genomic Comparison of Translocating and Non-Translocating Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Nathan L Bachmann

    Full Text Available Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro and in vivo experiments have identified the existence of a novel pathotype of translocating E. coli (TEC that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and the blood stream in both humans and animal models. In this study the genomes of four TEC strains isolated from the mesenteric lymph nodes of a fatal case of hospitalised patient (HMLN-1, blood of pigs after experimental shock (PC-1 and after non-lethal haemorrhage in rats (KIC-1 and KIC-2 were sequenced in order to identify the genes associated with their adhesion and/or translocation. To facilitate the comparison, the genomes of a non-adhering, non-translocating E. coli (46-4 and adhering but non-translocating E. coli (73-89 were also sequenced and compared. Whole genome comparison revealed that three (HMLN-1, PC-1 and KIC-2 of the four TEC strains carried a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain HMLN-1 also carried the invasion ibeA gene, which was absent in the animal TEC strains and is likely to be associated with host-specific translocation. Phylogenetic analysis revealed that the four TEC strains were distributed amongst three distinct E. coli phylogroups, which was supported by the presence of phylogroup specific fimbriae gene clusters. The genomic comparison has identified potential genes that can be targeted with knock-out experiments to further characterise the mechanisms of E. coli translocation.

  3. The family of N9-adenine: New entry for adenine-benzamide conjugates linked via versatile spacers

    Indian Academy of Sciences (India)

    Prabhpreet Singh

    2014-01-01

    We have prepared 4-nitrobenzamide-adenine conjugates (8, 13 and 14) linked with versatile spacer such as triethylene glycol (TEG), aminocaproic acid and ethyl chains which were eventually reduced to obtain the corresponding 4-aminobenzamide-adenine conjugates (1-3) in good yields. These conjugates bear a nucleobase for DNA recognition or self-assembly through base-pair complementarity, a biocompatible linker for interfacing with biological system, and a p-aminobenzamide moiety for pharmacological applications. The use of hydrophilic or lipophilic linkers may tune the dispersibility of these conjugates in different solvents, as well as impart different properties. In the preliminary experiments the versatility and application of these linkers has been tested for functionalization of SWCNTs.

  4. Yeast pol4 promotes tel1-regulated chromosomal translocations.

    Directory of Open Access Journals (Sweden)

    Jose F Ruiz

    Full Text Available DNA double-strand breaks (DSBs are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo. The repair of these breaks in trans could result in reciprocal chromosomal translocations that were dependent on classical Ku-dependent NHEJ. End-joining events leading to translocations were mainly based on the formation of short base pairing between 3'-overhanging DNA ends coupled to gap-filling DNA synthesis. A major proportion of these events were specifically dependent on yeast DNA polymerase Pol4 activity. In addition, we have discovered that Pol4-Thr(540 amino acid residue can be phosphorylated by Tel1/ATM kinase, which could modulate Pol4 activity during NHEJ. Our data suggest that the role of Tel1 in preventing break-induced chromosomal translocations can, to some extent, be due to its stimulating effect on gap-filling activity of Pol4 to repair DSBs in cis. Overall, this work provides further insight to the molecular mechanisms of DSB repair by NHEJ and presents a new perspective to the understanding of how chromosomal translocations are formed in eukaryotic cells.

  5. Unassisted translocation of large polypeptide domains across phospholipid bilayers.

    Science.gov (United States)

    Brambillasca, Silvia; Yabal, Monica; Makarow, Marja; Borgese, Nica

    2006-12-01

    Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.

  6. Nucleotides upstream of the Kozak sequence strongly influence gene expression in the yeast S. cerevisiae.

    Science.gov (United States)

    Li, Jing; Liang, Qiang; Song, Wenjiang; Marchisio, Mario Andrea

    2017-01-01

    In the yeast Saccharomyces cerevisiae, as in every eukaryotic organism, the mRNA 5(')-untranslated region (UTR) is important for translation initiation. However, the patterns and mechanisms that determine the efficiency with which ribozomes bind mRNA, the elongation of ribosomes through the 5(')-UTR, and the formation of a stable translation initiation complex are not clear. Genes that are highly expressed in S. cerevisiae seem to prefer a 5(')-UTR rich in adenine and poor in guanine, particularly in the Kozak sequence, which occupies roughly the first six nucleotides upstream of the START codon. We measured the fluorescence produced by 58 synthetic versions of the S. cerevisiae minimal CYC1 promoter (pCYC1min), each containing a different 5(')-UTR. First, we replaced with adenine the last 15 nucleotides of the original pCYC1min 5(')-UTR-a theoretically optimal configuration for high gene expression. Next, we carried out single and multiple point mutations on it. Protein synthesis was highly affected by both single and multiple point mutations upstream of the Kozak sequence. RNAfold simulations revealed that significant changes in the mRNA secondary structures occur by mutating more than three adenines into guanines between positions -15 and -9. Furthermore, the effect of point mutations turned out to be strongly context-dependent, indicating that adenines placed just upstream of the START codon do not per se guarantee an increase in gene expression, as previously suggested. New synthetic eukaryotic promoters, which differ for their translation initiation rate, can be built by acting on the nucleotides upstream of the Kozak sequence. Translation efficiency could, potentially, be influenced by another portion of the 5(')-UTR further upstream of the START codon. A deeper understanding of the role of the 5(')-UTR in gene expression would improve criteria for choosing and using promoters inside yeast synthetic gene circuits.

  7. The experimental and theoretical gas phase acidities of adenine, guanine, cytosine, uracil, thymine and halouracils

    Science.gov (United States)

    Chen, Edward C. M.; Herder, Charles; Chen, Edward S.

    2006-10-01

    The gas phase acidities GPA (Δ H (298) for deprotonation) of the most stable tautomers of adenine, guanine, cytosine, uracil and thymine are evaluated. New GPA are obtained from electron impact spectra and acid dissociation constants measured in dimethylsulfoxide for A, U and 5-FU. The average experimental GPA are: [N1 sbnd H] C 340(2); T 333(2); U 333(2); 5-FU 329(4); [N9 sbnd H] A 333(1); G 332(4); all in kcal/mol. Only cytosine is a weaker acid than HCl in the gas phase. The most acidic hydrogens in the nucleotides are replaced by the sugar in DNA and RNA. The experimental N3 sbnd H GPA are G 334(4); U 347(2), T 347(4), while the predicted N3 sbnd H 5-FU GPA is 343 kcal/mol. The NH sbnd H GPA are: C 346(4); A 352(2); G 336(4) (all in kcal/mol). These are supported by semi-empirical multiconfiguration configuration interaction calculations. The predicted C8 sbnd H acidities of G and A and the C6 sbnd H of T are about the same, 360(2) kcal/mol. The remaining CH acidities are 370-380 kcal/mol. The 5-halouracils are predicted to be more acidic than HCl.

  8. TALEN-Induced Translocations in Human Cells.

    Science.gov (United States)

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  9. Single Nucleotide Polymorphism

    DEFF Research Database (Denmark)

    Børsting, Claus; Pereira, Vania; Andersen, Jeppe Dyrberg

    2014-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent DNA sequence variations in the genome. They have been studied extensively in the last decade with various purposes in mind. In this chapter, we will discuss the advantages and disadvantages of using SNPs for human identification and bri...

  10. Examination of tyrosine/adenine stacking interactions in protein complexes.

    Science.gov (United States)

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  11. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    Science.gov (United States)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  12. Characterization of nucleotide misincorporation patterns in the iceman's mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Cristina Olivieri

    Full Text Available BACKGROUND: The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation ("miscoding lesions" has been the object of extensive investigations. METHODOLOGY/PRINCIPAL FINDINGS: To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp mitochondrial (mt DNA sequences obtained from the 5,350-5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Otzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85% of the observed nucleotide misincorporations in ancient sequences. CONCLUSIONS/SIGNIFICANCE: This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine-->thymine/guanine-->adenine

  13. Sensitive and selective detection of adenine using fluorescent ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meerabai Devi, L; Negi, Devendra P S, E-mail: dpsnegi@nehu.ac.in [Department of Chemistry, North-Eastern Hill University, Permanent Campus, Shillong 793022 (India)

    2011-06-17

    We have used fluorescent ZnS nanoparticles as a probe for the determination of adenine. A typical 2 x 10{sup -7} M concentration of adenine quenches 39.3% of the ZnS fluorescence. The decrease in ZnS fluorescence as a function of adenine concentration was found to be linear in the concentration range 5 x 10{sup -9}-2 x 10{sup -7} M. The limit of detection (LOD) of adenine by this method is 3 nM. Among the DNA bases, only adenine quenched the fluorescence of ZnS nanoparticles in the submicromolar concentration range, thus adding selectivity to the method. The amino group of adenine was important in determining the quenching efficiency. Steady-state fluorescence experiments suggest that one molecule of adenine is sufficient to quench the emission arising from a cluster of ZnS consisting of about 20 molecules. Time-resolved fluorescence measurements indicate that the adenine molecules block the sites on the surface of ZnS responsible for emission with the longest lifetime component. This method may be applied for the determination of adenine in biological samples since the measurements have been carried out at pH 7.

  14. Nucleotide-sugar transporters: structure, function and roles in vivo

    Directory of Open Access Journals (Sweden)

    Handford M.

    2006-01-01

    Full Text Available The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs. These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.

  15. PA0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    Goble, A.M.; Swaminathan, S.; Zhang, Z.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2011-08-02

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  16. Pa0148 from Pseudomonas aeruginosa Catalyzes the Deamination of Adenine

    Energy Technology Data Exchange (ETDEWEB)

    A Goble; Z Zhang; J Sauder; S Burley; S Swaminathan; F Raushel

    2011-12-31

    Four proteins from NCBI cog1816, previously annotated as adenosine deaminases, have been subjected to structural and functional characterization. Pa0148 (Pseudomonas aeruginosa PAO1), AAur1117 (Arthrobacter aurescens TC1), Sgx9403e, and Sgx9403g have been purified and their substrate profiles determined. Adenosine is not a substrate for any of these enzymes. All of these proteins will deaminate adenine to produce hypoxanthine with k{sub cat}/K{sub m} values that exceed 10{sup 5} M{sup -1} s{sup -1}. These enzymes will also accept 6-chloropurine, 6-methoxypurine, N-6-methyladenine, and 2,6-diaminopurine as alternate substrates. X-ray structures of Pa0148 and AAur1117 have been determined and reveal nearly identical distorted ({beta}/{alpha}){sub 8} barrels with a single zinc ion that is characteristic of members of the amidohydrolase superfamily. Structures of Pa0148 with adenine, 6-chloropurine, and hypoxanthine were also determined, thereby permitting identification of the residues responsible for coordinating the substrate and product.

  17. Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa

    2011-01-01

    We compared the influence of different adenine and guanine nucleotides on the free fatty acid-induced uncoupling protein (UCP) activity in non-phosphorylating Acanthamoeba castellanii mitochondria when the membranous ubiquinone (Q) redox state was varied. The purine nucleotides exhibit an inhibitory effect in the following descending order: GTP>ATP>GDP>ADP≫GMP>AMP. The efficiency of guanine and adenine nucleotides to inhibit UCP-sustained uncoupling in A. castellanii mitochondria depends on the Q redox state. Inhibition by purine nucleotides can be increased with decreasing Q reduction level (thereby ubiquinol, QH₂ concentration) even with nucleoside monophosphates that are very weak inhibitors at the initial respiration. On the other hand, the inhibition can be alleviated with increasing Q reduction level (thereby QH₂ concentration). The most important finding was that ubiquinol (QH₂) but not oxidised Q functions as a negative regulator of UCP inhibition by purine nucleotides. For a given concentration of QH₂, the linoleic acid-induced GTP-inhibited H(+) leak was the same for two types of A. castellanii mitochondria that differ in the endogenous Q content. When availability of the inhibitor (GTP) or the negative inhibition modulator (QH₂) was changed, a competitive influence on the UCP activity was observed. QH₂ decreases the affinity of UCP for GTP and, vice versa, GTP decreases the affinity of UCP for QH₂. These results describe the kinetic mechanism of regulation of UCP affinity for purine nucleotides by endogenous QH₂ in the mitochondria of a unicellular eukaryote.

  18. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  19. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets

    NARCIS (Netherlands)

    S. Smolarek; A.M. Rijs; W.J. Buma; M. Drabbels

    2010-01-01

    High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains

  20. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.;

    2012-01-01

    strands of adenine reveal sign of exciton coupling between stacked bases from blueshifted absorption bands (~3 nm) relative to that of the dAMP mononucleotide (one adenine base). The bands are blueshifted by about 10 nm compared to those of solvated strands, which is a shift similar...

  1. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Borst, M.; Niphuis, H.; Balzarini, J.; Neu, H.; Schellekens, H.; Clercq, H. de; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice.

  2. Flavin nucleotides in human lens: regional distribution in brunescent cataracts.

    Science.gov (United States)

    Bhat, K S; Nayak, S

    1998-12-01

    The biochemical mechanism(s) underlying brunescent cataracts remain unclear. Oxidative stress due to reactive oxygen species may have a role in the pigmentation process in eye lens. We have analysed human cataractous lenses for flavins by high-performance liquid chromatography (HPLC), since flavins are light sensitive and act as endogenous sensitizers generating reactive oxygen species in the eye. The most significant observation in this study is that higher levels of flavin nucleotides occur in brown lens compared to yellow lens. The concentration of flavin nucleotides (flavin monouncleotide, FMN + flavin adenine dinucleotide, FAD) was highest in the nuclear region of the lens followed by the cortical and capsule-epithelial regions. However, the ratio of FAD/FMN was lowest in the nuclear region of the lens followed by other regions. On the other hand, riboflavin was not detected in any of the lens (cataractous) regions. These results suggest that the observed increase in flavin nucleotides in the ocular tissue could contribute towards deepening of lens pigmentation.

  3. Cytochrome b nucleotide sequence variation among the Atlantic Alcidae.

    Science.gov (United States)

    Friesen, V L; Montevecchi, W A; Davidson, W S

    1993-01-01

    Analysis of cytochrome b nucleotide sequences of the six extant species of Atlantic alcids and a gull revealed an excess of adenines and cytosines and a deficit of guanines at silent sites on the coding strand. Phylogenetic analyses grouped the sequences of the common (Uria aalge) and Brünnich's (U. lomvia) guillemots, followed by the razorbill (Alca torda) and little auk (Alle alle). The black guillemot (Cepphus grylle) sequence formed a sister taxon, and the puffin (Fratercula arctica) fell outside the other alcids. Phylogenetic comparisons of substitutions indicated that mutabilities of bases did not differ, but that C was much more likely to be incorporated than was G. Imbalances in base composition appear to result from a strand bias in replication errors, which may result from selection on secondary RNA structure and/or the energetics of codon-anticodon interactions.

  4. Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: spectroscopic and molecular docking investigations.

    Science.gov (United States)

    Rajendiran, N; Thulasidhasan, J

    2015-06-05

    Interaction between sulfanilamide (SAM) and sulfamethoxazole (SMO) with BSA and DNA base (adenine) was investigated by UV-visible, fluorescence, cyclic voltammetry and molecular docking studies. Stern-Volmer fluorescence quenching constant (Ka) suggests SMO is more quenched with BSA/adenine than that of SAM. The distance r between donor (BSA/adenine) and acceptor (SAM and SMO) was obtained according to fluorescence resonance energy transfer (FRET). The results showed that hydrophobic forces, electrostatic interactions, and hydrogen bonds played vital roles in the SAM and SMO with BSA/adenine binding interaction. During the interaction, sulfa drugs could insert into the hydrophobic pocket, where the non-radioactive energy transfer from BSA/adenine to sulfa drugs occurred with high possibility. Cyclic voltammetry results suggested that when the drug concentration is increased, the anodic electrode potential deceased. The docking method indicates aniline group is interacted with the BSA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Study of the Molecular Recognition of Nucleotides and Bases by a Novel Calixarene Derivative Containing Uracil

    Institute of Scientific and Technical Information of China (English)

    SHI,Hui-Jie; SHI,Xian-Fa; YAO,Tian-Ming; JI,Liang-Nian

    2008-01-01

    A calix[4]arene derivative containing uracil, 5-(uracil-N1-acetamido)-25,26,27,28-tetrahy droxycalix[4]-arene (UC), was designed and synthesized. The interaction with nucleotides and bases has also been studied by ESI-MS and π-A isotherms. The results of ESI-MS showed that UC could recognize adenine and adenosine from other nucleotides and bases. In addition, π-A isotherms at the air-water interface indicated that there was interaction between UC and the species in the subphase, and the respective complexes were formed in the monolayer. The mean molecular area at zero surface pressure increased with the sizes of the nucleotides and bases in the subphase in the order: water<adenine<adenosine<ATP·Na2.

  6. Statistical analysis of nucleotide runs in coding and noncoding DNA sequences.

    Science.gov (United States)

    Sprizhitsky YuA; Nechipurenko YuD; Alexandrov, A A; Volkenstein, M V

    1988-10-01

    A statistical analysis of the occurrence of particular nucleotide runs in DNA sequences of different species has been carried out. There are considerable differences of run distributions in DNA sequences of procaryotes, invertebrates and vertebrates. There is an abundance of short runs (1-2 nucleotides long) in the coding sequences and there is a deficiency of such runs in the noncoding regions. However, some interesting exceptions from this rule exist for the run distribution of adenine in procaryotes and for the arrangement of purine-pyrimidine runs in eucaryotes. The similarity in the distributions of such runs in the coding and noncoding regions may be due to some structural features of the DNA molecule as a whole. Runs of guanine (or cytosine) of three to six nucleotides occur predominantly in noncoding DNA regions in eucaryotes, especially in vertebrates.

  7. IRE1α nucleotide sequence cleavage specificity in the unfolded protein response.

    Science.gov (United States)

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2017-01-01

    Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.

  8. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats.

    Science.gov (United States)

    Diwan, Vishal; Small, David; Kauter, Kate; Gobe, Glenda C; Brown, Lindsay

    2014-12-01

    Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) and associated cardiovascular disease. To induce kidney damage in male and female Wistar rats (n = 12/group), a 0.25% adenine diet for 16 wk was used. Kidney function (blood urea nitrogen, plasma creatinine, proteinuria) and structure (glomerular damage, tubulointerstitial atrophy, fibrosis, inflammation); cardiovascular function (blood pressure, ventricular stiffness, vascular responses, echocardiography) and structure (cardiac fibrosis); plasma testosterone and estrogen concentrations; and protein expression for oxidative stress [heme oxygenase-1, inflammation (TNF-α), fibrosis (transforming growth factor-β), ERK1/2, and estrogen receptor-α (ER-α)] were compared in males and females. Adenine-fed females had less decline in kidney function than adenine-fed males, although kidney atrophy, inflammation, and fibrosis were similar. Plasma estrogen concentrations increased and plasma testosterone concentrations decreased in adenine-fed males, with smaller changes in females. CKD-associated molecular changes in kidneys were more pronounced in males than females except for expression of ER-α in the kidney, which was completely suppressed in adenine-fed males but unchanged in adenine-fed females. Both genders showed increased blood pressure, ventricular stiffness, and cardiac fibrosis with the adenine diet. Cardiovascular changes with adenine were similar in males and females, except males developed concentric, and females eccentric cardiac hypertrophy. In hearts from adenine-fed male and female rats, expression of ER-α and activation of the ERK1/2 pathway were increased, in part explaining changes in cardiac hypertrophy. In summary, adenine-induced kidney damage may be increased in males due to the suppression of ER-α.

  9. Translocation of single-wall carbon nanotubes through solid-state nanopores.

    Science.gov (United States)

    Hall, Adam R; Keegstra, Johannes M; Duch, Matthew C; Hersam, Mark C; Dekker, Cees

    2011-06-08

    We report the translocation of individual single-wall carbon nanotubes (SWNTs) through solid-state nanopores. Single-strand DNA oligomers are used to both disperse the SWNTs in aqueous solution and to provide them with a net charge, allowing them to be driven through the nanopores by an applied electric field. The resulting temporary interruptions in the measured nanopore conductance provide quantitative information on the diameter and length of the translocated nanotubes at a single-molecule level. Furthermore, we demonstrate that the technique can be utilized to monitor bundling of SWNT in solution by using complementary nucleotides to induce tube-tube agglomeration.

  10. Degradation Products of Adenine Nucleotide in Rainbow Trout (Oncorhynchus mykiss) Stored in Ice and in Modified Atmosphere Packaging

    OpenAIRE

    ÖZOĞUL, Yeşim; Özoğul, Fatih

    2002-01-01

    The breakdown products of adenosine triphosphate (ATP) were separated using a rapid HPLC method. The K-value, Ki-value and H-value were also determined as a means of evaluating the quality of rainbow trout held in ice and modified atmosphere packaging comparing with sensory and microbiological analysis in terms of fresh fish quality. Results from the present research indicated that modified atmosphere did not extend the shelf life of trout but inhibited microbial growth compared to ice storag...

  11. File list: Oth.Lar.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.50.Adenine_N6-methylation.AllCell.bed ...

  12. File list: Oth.Emb.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.20.Adenine_N6-methylation.AllCell.bed ...

  13. File list: Oth.Adl.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.50.Adenine_N6-methylation.AllCell.bed ...

  14. File list: Oth.Emb.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.05.Adenine_N6-methylation.AllCell.bed ...

  15. File list: Oth.ALL.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.50.Adenine_N6-methylation.AllCell.bed ...

  16. File list: Oth.Unc.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.05.Adenine_N6-methylation.AllCell.bed ...

  17. File list: Oth.Adl.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.05.Adenine_N6-methylation.AllCell.bed ...

  18. File list: Oth.Adl.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.10.Adenine_N6-methylation.AllCell.bed ...

  19. File list: Oth.Unc.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.20.Adenine_N6-methylation.AllCell.bed ...

  20. File list: Oth.Emb.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.50.Adenine_N6-methylation.AllCell.bed ...

  1. File list: Oth.Emb.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Embryo http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.10.Adenine_N6-methylation.AllCell.bed ...

  2. File list: Oth.Lar.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.20.Adenine_N6-methylation.AllCell.bed ...

  3. File list: Oth.Unc.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.10.Adenine_N6-methylation.AllCell.bed ...

  4. File list: Oth.Unc.50.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.50.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Unclassified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Unc.50.Adenine_N6-methylation.AllCell.bed ...

  5. File list: Oth.Lar.05.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.05.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.05.Adenine_N6-methylation.AllCell.bed ...

  6. File list: Oth.ALL.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.20.Adenine_N6-methylation.AllCell.bed ...

  7. File list: Oth.Adl.20.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Adult http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Adl.20.Adenine_N6-methylation.AllCell.bed ...

  8. File list: Oth.Lar.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lar.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n Larvae http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Lar.10.Adenine_N6-methylation.AllCell.bed ...

  9. File list: Oth.ALL.10.Adenine_N6-methylation.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.Adenine_N6-methylation.AllCell ce10 TFs and others Adenine N6-methylatio...n All cell types http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.10.Adenine_N6-methylation.AllCell.bed ...

  10. DNA Translocation through Graphene Nanopores

    CERN Document Server

    Schneider, Grégory F; Calado, Victor E; Pandraud, Grégory; Zandbergen, Henny W; Vandersypen, Lieven M K; Dekker, Cees

    2010-01-01

    Nanopores -- nanosized holes that can transport ions and molecules -- are very promising devices for genomic screening, in particular DNA sequencing. Both solid-state and biological pores suffer from the drawback, however, that the channel constituting the pore is long, viz. 10-100 times the distance between two bases in a DNA molecule (0.5 nm for single-stranded DNA). Here, we demonstrate that it is possible to realize and use ultrathin nanopores fabricated in graphene monolayers for single-molecule DNA translocation. The pores are obtained by placing a graphene flake over a microsize hole in a silicon nitride membrane and drilling a nanosize hole in the graphene using an electron beam. As individual DNA molecules translocate through the pore, characteristic temporary conductance changes are observed in the ionic current through the nanopore, setting the stage for future genomic screening.

  11. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  12. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation.

    Science.gov (United States)

    Mancini, Erika J; Kainov, Denis E; Grimes, Jonathan M; Tuma, Roman; Bamford, Dennis H; Stuart, David I

    2004-09-17

    Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including apo, substrate analog bound, and product bound. Substrate and product binding have been observed as both binary complexes and ternary complexes with divalent cations. These structures reveal large movements of the putative RNA binding loop, which are coupled with nucleotide binding and hydrolysis, indicating how ATP hydrolysis drives RNA translocation through cooperative conformational changes. Two distinct conformations of bound nucleotide triphosphate suggest how hydrolysis is activated by RNA binding. This provides a model for chemomechanical coupling for a prototype of the large family of hexameric helicases and oligonucleotide translocating enzymes.

  13. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues).

    Science.gov (United States)

    Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M

    1991-01-01

    A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.

  14. Myocardial lipids and nucleotides of rats fed olive oil or rapeseed oil.

    Science.gov (United States)

    Beare-Rogers, J L; Gordon, E

    1976-04-01

    After 1 week, the level of myocardial fatty acids was 4 times greater in young rats fed high erucic rapeseed oil than in those fed oliver oil. The proportion of erucic acid was 5.6% in the mitochondrial fraction, 15.1% in the microsomal fraction, and 34.8% in the floating fat fraction. This incorporation of erucic acid into triglycerides of the floating fat was evidence of esterification. The changes in the mitochondrial lipids did not alter the content of adenine nucleotides of the myocardium nor its apparent capacity to oxidize substrates.

  15. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.

    Science.gov (United States)

    Hromas, Robert; Williamson, Elizabeth; Lee, Suk-Hee; Nickoloff, Jac

    2016-01-01

    Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.

  16. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    Science.gov (United States)

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  17. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  18. Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine

    OpenAIRE

    Horzinek, M.C.; Egberink, H F; Borst, M.; Niphuis, H; Balzarini, J; Neu, H.; Schellekens, H.; De Clercq, H; Koolen, M.J.M.

    1990-01-01

    The acyclic purine nucleoside analogue 9-(2-phosphonomethoxyethyl)adenine [PMEA; formerly referred to as 9-(2-phosphonylmethoxyethyl)adenine] is a potent and selective inhibitor of human immunodeficiency virus replication in vitro and of Moloney murine sarcoma virus-induced tumor formation in mice. In the latter system PMEA has stronger antiretroviral potency and selectivity than 3'-azido-3'-thymidine (AZT). We have now investigated the effect of the drug in cats infected with the feline immu...

  19. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  20. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  1. Determination of the base composition of deoxyribonucleic acid by measurement of the adenine/guanine ratio

    Science.gov (United States)

    Kirk, J. T. O.

    1967-01-01

    A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0·03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0·03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12·09 for adenine at 262mμ, and 10·77 for guanine at 248mμ, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0·011; this corresponds to a standard deviation in guanine+cytosine content of 0·2% guanine+cytosine. PMID:5626094

  2. Determination of the base composition of deoxyribonucleic acid by measurement of the adenine-granine ratio.

    Science.gov (United States)

    Kirk, J T

    1967-11-01

    A method is described for determination of the base composition (as guanine+cytosine or adenine+thymine content) of DNA by accurate measurement of the adenine/guanine ratio. The DNA is hydrolysed with 0.03n-hydrochloric acid for 40min. to release the purines. The hydrolysate is subjected to ion-exchange chromatography on Zeo-Karb 225. Apurinic acids are eluted with 0.03n-hydrochloric acid and then guanine and adenine are eluted separately with 2n-hydrochloric acid. Guanine and adenine are each collected as a single fraction, and the amount of base in each case is determined by measuring the volume and the extinction at suitable wavelengths. For use in the calculations, millimolar extinction coefficients in 2n-hydrochloric acid of 12.09 for adenine at 262mmu, and 10.77 for guanine at 248mmu, were determined with authentic samples of bases. The method gives extremely reproducible results: from 12 determinations with calf thymus DNA the adenine/guanine molar ratio had a standard deviation of 0.011; this corresponds to a standard deviation in guanine+cytosine content of 0.2% guanine+cytosine.

  3. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.

  4. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  5. Sequence-dependent folding landscapes of adenine riboswitch aptamers

    Science.gov (United States)

    Lin, Jong-Chin; Hyeon, Changbong; Thirumalai, D.

    Prediction of the functions of riboswitches requires a quantitative description of the folding landscape so that the barriers and time scales for the conformational change in the switching region in the aptamer can be estimated. Using a combination of all atom molecular dynamics and coarse-grained model simulations we studied the response of adenine (A) binding add and pbuE A-riboswitches to mechanical force. The two riboswitches contain a structurally similar three-way junction formed by three paired helices, P1, P2, and P3, but carry out different functions. Using pulling simulations, with structures generated in MD simulations, we show that after P1 rips the dominant unfolding pathway in add A-riboswitch is the rupture of P2 followed by unraveling of P3. In the pbuE A-riboswitch, after P1 unfolds P3 ruptures ahead of P2. The order of unfolding of the helices, which is in accord with single molecule pulling experiments, is determined by the relative stabilities of the individual helices. Our results show that the stability of isolated helices determines the order of assembly and response to force in these non-coding regions. We use the simulated free energy profile for pbuE A-riboswitch to estimate the time scale for allosteric switching, which shows that this riboswitch is under kinetic control lending additional support to the conclusion based on single molecule pulling experiments. A consequence of the stability hypothesis is that a single point mutation (U28C) in the P2 helix of the add A-riboswitch, which increases the stability of P2, would make the folding landscapes of the two riboswitches similar. This prediction can be tested in single molecule pulling experiments.

  6. OTOTOXIC MODEL OF OXALIPLATIN AND PROTECTION FROM NICOTINAMIDE ADENINE DINUCLEOTIDE

    Institute of Scientific and Technical Information of China (English)

    DING Dalian; JIANG Haiyan; FU Yong; LI Yongqi; Richard Salvi; Shinichi Someya; Masaru Tanokura

    2013-01-01

    Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 µM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 µM). Oxailiplatin-induced cochlear lesions initial-ly increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demon-strated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 µM or 50 µM respectively as controls or combined with 20 mM NAD+. Treatment with 10 µM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 µM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 µM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apop-totic characteristics of cell fragmentations. However, 50 µM oxaliplatin plus 20 mM NAD+treatment great-ly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+provides signifi-cant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.

  7. Dependence of the E.coli promoter strength and physical parameters upon the nucleotide sequence

    Institute of Scientific and Technical Information of China (English)

    BEREZHNOY Andrey Y.; SHCKORBATOV Yuriy G.

    2005-01-01

    The energy of interaction between complementary nucleotides in promoter sequences ofE. coli was calculated and visualized. The graphic method for presentation of energy properties of promoter sequences was elaborated on. Data obtained indicated that energy distribution through the length of promoter sequence results in picture with minima at -35, -8 and +7 regions corresponding to areas with elevated AT (adenine-thymine) content. The most important difference from the random sequences area is related to -8. Four promoter groups and their energy properties were revealed. The promoters with minimal and maximal energy of interaction between complementary nucleotides have low strengths, the strongest promoters correspond to promoter clusters characterized by intermediate energy values.

  8. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  9. High information throughput analysis of nucleotides and their isotopically enriched isotopologues by direct-infusion FTICR-MS.

    Science.gov (United States)

    Lorkiewicz, Pawel; Higashi, Richard M; Lane, Andrew N; Fan, Teresa W-M

    2012-01-01

    Fourier transform-ion cyclotron resonance-mass spectrometry (FTICR-MS) is capable of acquiring unmatched quality of isotopologue data for stable isotope resolved metabolomics (SIRM). This capability drives the need for a continuous ion introduction for obtaining optimal isotope ratios. Here we report the simultaneous analysis of mono and dinucleotides from crude polar extracts by FTICR-MS by adapting an ion-pairing sample preparation method for LC-MS analysis. This involves a rapid cleanup of extracted nucleotides on pipet tips containing a C(18) stationary phase, which enabled global analysis of nucleotides and their (13)C isotopologues at nanomolar concentrations by direct infusion nanoelectrospray FTICR-MS with 5 minutes of data acquisition. The resolution and mass accuracy enabled computer-assisted unambiguous assignment of most nucleotide species, including all phosphorylated forms of the adenine, guanine, uracil and cytosine nucleotides, NAD(+), NADH, NADP(+), NADPH, cyclic nucleotides, several UDP-hexoses, and all their (13)C isotopologues. The method was applied to a SIRM study on human lung adenocarcinoma A549 cells grown in [U-(13)C] glucose with or without the anti-cancer agent methylseleninic acid. At m/z resolving power of 400,000, (13)C-isotopologues of nucleotides were fully resolved from all other elemental isotopologues, thus allowing their (13)C fractional enrichment to be accurately determined. The method achieves both high sample and high information throughput analysis of nucleotides for metabolic pathway reconstruction in SIRM investigations.

  10. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.

    Directory of Open Access Journals (Sweden)

    Olga Rechkoblit

    2006-01-01

    Full Text Available 7,8-dihydro-8-oxoguanine (oxoG, the predominant lesion formed following oxidative damage of DNA by reactive oxygen species, is processed differently by replicative and bypass polymerases. Our kinetic primer extension studies demonstrate that the bypass polymerase Dpo4 preferentially inserts C opposite oxoG, and also preferentially extends from the oxoG*C base pair, thus achieving error-free bypass of this lesion. We have determined the crystal structures of preinsertion binary, insertion ternary, and postinsertion binary complexes of oxoG-modified template-primer DNA and Dpo4. These structures provide insights into the translocation mechanics of the bypass polymerase during a complete cycle of nucleotide incorporation. Specifically, during noncovalent dCTP insertion opposite oxoG (or G, the little-finger domain-DNA phosphate contacts translocate by one nucleotide step, while the thumb domain-DNA phosphate contacts remain fixed. By contrast, during the nucleotidyl transfer reaction that covalently incorporates C opposite oxoG, the thumb-domain-phosphate contacts are translocated by one nucleotide step, while the little-finger contacts with phosphate groups remain fixed. These stepwise conformational transitions accompanying nucleoside triphosphate binding and covalent nucleobase incorporation during a full replication cycle of Dpo4-catalyzed bypass of the oxoG lesion are distinct from the translocation events in replicative polymerases.

  11. [Nucleotide receptors and renal function].

    Science.gov (United States)

    Jankowski, Maciej

    2014-01-01

    Kidney plays a key role in homeostasis of human body. It has heterogenic structure and is characterized by complicated vascular beds and numbers of sympathetic nerves endings. Nucleotides receptors are involved in the regulation of blood flow, a fundamental process for renal function. Plasma is filtrated in renal glomerulus and activity of nucleotides receptors located on cells of glomerular filter modifies the physi- cochemical properties of filter and affects the filtration process. Electrolytes, water and low molecular weight molecules are reabsorbed from tubular fluid or secreted into fluid in proximal and distal tubules. Glomerular filtration rate and activity of tubular processes are regulated via nucleotides receptors by glomerulotubularbalance and tubuloglomerular feedback. Nucleotides receptors are involved in systemic regulation of blood pressure and carbohydrate metabolism.

  12. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle.

    Science.gov (United States)

    Joseph, Benesh; Jeschke, Gunnar; Goetz, Birke A; Locher, Kaspar P; Bordignon, Enrica

    2011-11-25

    ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate substrates across cell membranes. The alternating access of their transmembrane domains to opposite sides of the membrane powered by the closure and reopening of the nucleotide binding domains is proposed to drive the translocation events. Despite clear structural similarities, evidence for considerable mechanistic diversity starts to accumulate within the importers subfamily. We present here a detailed study of the gating mechanism of a type II ABC importer, the BtuCD-F vitamin B(12) importer from Escherichia coli, elucidated by EPR spectroscopy. Distance changes at key positions in the translocation gates in the nucleotide-free, ATP- and ADP-bound conformations of the transporter were measured in detergent micelles and liposomes. The translocation gates of the BtuCD-F complex undergo conformational changes in line with a "two-state" alternating access model. We provide the first direct evidence that binding of ATP drives the gates to an inward-facing conformation, in contrast to type I importers specific for maltose, molybdate, or methionine. Following ATP hydrolysis, the translocation gates restore to an apo-like conformation. In the presence of ATP, an excess of vitamin B(12) promotes the reopening of the gates toward the periplasm and the dislodgment of BtuF from the transporter. The EPR data allow a productive translocation cycle of the vitamin B(12) transporter to be modeled.

  13. Cessation of respiration after far-ultraviolet irradiation of Escherichia coli B/r: loss of unaltered pyridine nucleotides to the medium

    Energy Technology Data Exchange (ETDEWEB)

    Schenley, R.L. (Oak Ridge National Lab., TN); Swenson, P.A.; Joshi, J.G.

    1979-09-01

    Cessation of respiration of Escherichia coli B/r cells is initiated 30 min after irradiation at 254 nm and is linked to cell death. Pyridine nucleotides begin to disappear with the onset of respiratory failure and are almost completely absent from the cells by 90 min after irradiation. We studied the fate of these respiratory cofactors in a niacin-requiring mutant (RSI) grown on minimal medium containing (7-/sup 14/C)nicotinic acid. By 90 min after irradiation (52 J/m/sup 2/) nearly all of the acid-soluble radioactive counts appeared in the medium. Paper chromatographic studies and a spectrophotometric assay indicated that the material was nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate. The loss of nicotinamide adenine dinucleotide was not balanced by synthesis, despite the presence of appropriate active biosynthetic enzymes for at least 90 min after uv irradiation. Analysis of the amino acid and nucleotide pool of the cells showed that there was some loss of most of these small molecules; the levels of a few were almost completely depleted. We conclude that the pyridine nucleotides are lost from the cell to the medium and that the loss cannot be attributed to extensive general membrane damage.

  14. Habitat drives dispersal and survival of translocated juvenile desert tortoises

    Science.gov (United States)

    Nafus, Melia G.; Esque, Todd; Averill-Murray, Roy C.; Nussear, Kenneth E.; Swaisgood, Ronald R.

    2017-01-01

    1.In spite of growing reliance on translocations in wildlife conservation, translocation efficacy remains inconsistent. One factor that can contribute to failed translocations is releasing animals into poor quality or otherwise inadequate habitat.

  15. Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Marie E., E-mail: frasm@ucalgary.ca [Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4 (Canada); Cherney, Maia M. [Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton AB T6G 2H7 (Canada); Marcato, Paola [Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB T6G 2H7 (Canada); Mulvey, George L.; Armstrong, Glen D. [Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1 (Canada); James, Michael N. G. [Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton AB T6G 2H7 (Canada); Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4 (Canada)

    2006-07-01

    Crystals of Stx2 were grown in the presence of adenosine and adenine. In both cases, the resulting electron density showed only adenine bound at the active site of the A subunit, proving that the holotoxin is an active N-glycosidase. Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active as an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to ∼1.8 Å and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.

  16. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  17. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Noori, Abolhassan

    2008-12-01

    An electrochemical sensor for guanine and adenine using cyclodextrin-modified poly(N-acetylaniline) (PNAANI) on a carbon paste electrode has been developed. The oxidation mechanism of guanine and adenine on the surface of the electrode was investigated by cyclic voltammetry. It was found that the electrode processes are irreversible, pH dependent, and involve several reaction products. The electron transfer process occurs in consecutive steps with the formation of a strongly adsorbed intermediate on the electrode surface. Also, a new method for estimating the apparent formation constants of guanine and adenine with the immobilized cyclodextrins, through the change of surface coverage of studied analytes has been reported. Both guanine and adenine showed linear concentrations in the range of 0.1-10 microM by using differential pulse voltammetry, with an experimental limit of detection down to 0.05 microM. Linear concentration ranges of 2-150 microM for guanine and 6-104 microM for adenine have been found when cyclic voltammetry was used for determination of both analytes.

  18. Intramolecular interactions in aminoacyl nucleotides: Implications regarding the origin of genetic coding and protein synthesis

    Science.gov (United States)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Watkins, C. L.; Hall, L. M.

    1986-01-01

    Cellular organisms store information as sequences of nucleotides in double stranded DNA. This information is useless unless it can be converted into the active molecular species, protein. This is done in contemporary creatures first by transcription of one strand to give a complementary strand of mRNA. The sequence of nucleotides is then translated into a specific sequence of amino acids in a protein. Translation is made possible by a genetic coding system in which a sequence of three nucleotides codes for a specific amino acid. The origin and evolution of any chemical system can be understood through elucidation of the properties of the chemical entities which make up the system. There is an underlying logic to the coding system revealed by a correlation of the hydrophobicities of amino acids and their anticodonic nucleotides (i.e., the complement of the codon). Its importance lies in the fact that every amino acid going into protein synthesis must first be activated. This is universally accomplished with ATP. Past studies have concentrated on the chemistry of the adenylates, but more recently we have found, through the use of NMR, that we can observe intramolecular interactions even at low concentrations, between amino acid side chains and nucleotide base rings in these adenylates. The use of this type of compound thus affords a novel way of elucidating the manner in which amino acids and nucleotides interact with each other. In aqueous solution, when a hydrophobic amino acid is attached to the most hydrophobic nucleotide, AMP, a hydrophobic interaction takes place between the amino acid side chain and the adenine ring. The studies to be reported concern these hydrophobic interactions.

  19. Excited-state lifetime of adenine near the first electronic band origin.

    Science.gov (United States)

    Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun

    2010-10-21

    The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500cm(-1). The excited-state lifetime of adenine is ∼2ps around the 0-0 band of the (1)L(b) ππ(∗) state (36 105cm(-1)). The lifetime drops to ∼1ps when adenine is excited to the (1)L(a) ππ(∗) state with the pump energy at 36 800cm(-1) and above. The excited-state lifetimes of (1)L(a) and (1)L(b) ππ(∗) states are differentiated in accordance with previous frequency-resolved and computational studies.

  20. QSAR analysis for ADA upon interaction with a series of adenine derivatives as inhibitors.

    Science.gov (United States)

    Moosavi-Movahedi, A A; Safarian, S; Hakimelahi, G H; Ataei, G; Ajloo, D; Panjehpour, S; Riahi, S; Mousavi, M F; Mardanyan, S; Soltani, N; Khalafi-Nezhad, A; Sharghi, H; Moghadamnia, H; Saboury, A A

    2004-01-01

    The kinetic parameters of adenosine deaminase such as Km and Ki were determined in the absence and presence of adenine derivatives (R1-R24) in sodium phosphate buffer (50 mM; pH 7.5) solution at 27 degrees C. These kinetic parameters were used for QSAR analysis. As such, we found some theoretical descriptors to which the binding affinity of adenosine deaminase (ADA) towards several adenine nucleosides as inhibitors is correlated. QSAR analysis has revealed that binding affinity of the adenine nucleosides upon interaction with ADA depends on the molecular volume, dipole moment of the molecule, electric charge around the N1 atom, and the highest of positive charge for the related molecules.

  1. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2 is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine, whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.

  2. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.

    Science.gov (United States)

    Kandeel, Mahmoud; Al-Taher, Abdullah; Nakashima, Remi; Sakaguchi, Tomoya; Kandeel, Ali; Nagaya, Yuki; Kitamura, Yoshiaki; Kitade, Yukio

    2014-01-01

    Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.

  3. Efficacy of the acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) against feline immunodeficiency virus.

    Science.gov (United States)

    Hartmann, K; Kuffer, M; Balzarini, J; Naesens, L; Goldberg, M; Erfle, V; Goebel, F D; De Clercq, E; Jindrich, J; Holy, A; Bischofberger, N; Kraft, W

    1998-02-01

    The acyclic nucleoside phosphonates (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine (FPMPA) and 9-(2-phosphonylmethoxyethyl)adenine (PMEA) were evaluated for their efficacy and side effects in a double-blind placebo-controlled trial using naturally occurring feline immunodeficiency virus (FIV)-infected cats. This natural retrovirus animal model is considered highly relevant for the pathogenesis and chemotherapy of HIV in humans. Both PMEA and FPMPA proved effective in ameliorating the clinical symptoms of FIV-infected cats, as measured by several clinical parameters including the incidence and severity of stomatitis, Karnofsky's score, immunologic parameters such as relative and absolute CD4+ lymphocyte counts, and virologic parameters including proviral DNA levels in peripheral blood mononuclear cells (PBMC) of drug-treated animals. In contrast with PMEA, FPMPA showed no hematologic side effects at a dose that was 2.5-fold higher than PMEA.

  4. DNA nanopore translocation in glutamate solutions

    NARCIS (Netherlands)

    Plesa, C.; Van Loo, N.; Dekker, C.

    2015-01-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate

  5. Dudleya Variegata Translocation - San Diego [ds654

    Data.gov (United States)

    California Department of Resources — At Mission Trails Regional Park, a translocation project of Dudleya variegata was conducted in efforts to save the population from a private property undergoing...

  6. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains.

    Science.gov (United States)

    Jämsen, J; Baykov, A A; Lahti, R

    2012-02-01

    We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327-333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP(n)A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2'(3')-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.

  7. RIMSULFURON UPTAKE, TRANSLOCATION, METABOLISM AND

    Directory of Open Access Journals (Sweden)

    Fuentes Cilia L.

    2003-08-01

    Full Text Available

    Research was conducted to determine the role in selectivity

    of uptake, translocation, metabolism and ALS (acetolactate

    synthase activity of rimsulfuron in two maize (

    Zea mays

    L. hybrids (‘Cargill 2127’, tolerant, and ‘Pioneer 3897’,

    sensitive grown at temperatures of 14°C and 21°C. Forty

    eight hours after treatment (HAT, uptake of rimsulfuron

    was 40% and 67% in ‘Pioneer 3897’, and 26% and 43%

    in ‘Cargill 2127’ at 14°C and 21°C, respectively. Neither

    total translocation nor allocation of rimsulfuron in various

    organs differed greatly between the hybrids. Translocation

    of

     

    14C-rimsulfuron was greater at 21°C (53% than at 14°C

    (23%, 48 HAT. In ‘Pioneer 3897’ over 65% and 30% of

  8. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without ad...

  9. Synthesis of 9-[1-(1 -hydroxyethyl)-3-(phosphonomethoxy)propyl]adenine and prodrug as possible antiviral agents.

    Science.gov (United States)

    Ghosh, Ajit; El-Kattan, Yahya; Wu, Minwan; Lin, Tsu-Hsing; Vadlakonda, Satish; Kotian, Pravin L; Babu, Yarlagadda S; Chand, Pooran

    2005-01-01

    The appropriately protected C-1'-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.

  10. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Science.gov (United States)

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  11. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    Directory of Open Access Journals (Sweden)

    Fluharty Eric

    2003-09-01

    Full Text Available Abstract Background Phospholipase D (PLD is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor.

  12. Different effects of guanine nucleotides (GDP and GTP on protein-mediated mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Andrzej M Woyda-Ploszczyca

    Full Text Available In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs, the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration-state 3 (phosphorylating respiration transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers, carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  13. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP.

  14. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  15. Structural Analysis of a Stereochemical Modification of Flavin Adenine Dinucleotide in Alcohol Oxidase from Methylotrophic Yeasts

    NARCIS (Netherlands)

    Kellogg, Richard M.; Kruizinga, Wim; Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Wim

    1992-01-01

    Alcohol oxidase (MOX), a major peroxisomal protein of methanol-utilizing yeasts, contains two different forms of flavin adenine dinucleotide, one of which is identical with natural FAD whereas the other (mFAD) is a stereochemical modification of the natural coenzyme. This modification occurs spontan

  16. Modification of flavin adenine dinucleotide in alcohol oxidase of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Willem

    1991-01-01

    Alcohol oxidase, a major peroxisomal protein of methanol-utilizing yeasts, may possess two different forms of flavin adenine dinucleotide, classical FAD and so-called modified FAD (mFAD). Conversion of FAD into mFAD was observed both in purified preparations of the enzyme and in cells grown in batch

  17. The effect of activated charcoal on adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, Badreldin H; Alza'abi, Mohamed; Ramkumar, Aishwarya; Al-Lawati, Intisar; Waly, Mostafa I; Beegam, Sumaya; Nemmar, Abderrahim; Brand, Susanne; Schupp, Nicole

    2014-03-01

    Activated charcoal (AC) is a sorbent that has been shown to remove urinary toxins like urea and indoxyl sulfate. Here, the influence of AC on kidney function of rats with experimental chronic renal failure (CRF) is investigated. CRF was induced in rats by feeding adenine (0.75%) for four weeks. As an intervention, AC was added to the feed at concentrations of 10%, 15% or 20%. Adenine treatment impaired kidney function: it lowered creatinine clearance and increased plasma concentrations of creatinine, urea, neutrophil gelatinase-associated lipocalin and vanin-1. Furthermore, it raised plasma concentrations of the uremic toxins indoxyl sulfate, phosphate and uric acid. Renal morphology was severely damaged and histopathological markers of inflammation and fibrosis were especially increased. In renal homogenates, antioxidant indices, including superoxide dismutase and catalase activity, total antioxidant capacity and reduced glutathione were adversely affected. Most of these changes were significantly ameliorated by dietary administration of AC at a concentration of 20%, while effects induced by lower doses of dietary AC on adenine nephrotoxicity were not statistically significant. The results suggest that charcoal is a useful sorbent agent in dietary adenine-induced CRF in rats and that its usability as a nephroprotective agent in human kidney disease should be studied.

  18. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  19. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  20. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  1. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats

    Science.gov (United States)

    Van, Tan Vu; Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Shiota, Asuka; Tanaka, Terumi; Tanimura, Ayako; Harada, Nagakatsu; Nakaya, Yutaka; Yamamoto, Hironori; Miyamoto, Ken-ichi; Takeda, Eiji

    2012-01-01

    Hyperphosphatemia causes endothelial dysfunction as well as vascular calcification. Management of serum phosphate level by dietary phosphate restriction or phosphate binders is considered to be beneficial to prevent chronic kidney disease patients from cardiovascular disease, but it has been unclear whether keeping lower serum phosphate level can ameliorate endothelial dysfunction. In this study we investigated whether low-phosphate diet can ameliorate endothelial dysfunction in adenine-induced kidney disease rats, one of useful animal model of chronic kidney disease. Administration of 0.75% adenine-containing diet for 21 days induced renal failure with hyperphosphatemia, and impaired acetylcholine-dependent vasodilation of thoracic aortic ring in rats. Then adenine-induced kidney disease rats were treated with either control diet (1% phosphate) or low-phosphate diet (0.2% phosphate) for 16 days. Low-phosphate diet ameliorated not only hyperphosphatemia but also the impaired vasodilation of aorta. In addition, the activatory phosphorylation of endothelial nitric oxide synthase at serine 1177 and Akt at serine 473 in the aorta were inhibited by in adenine-induced kidney disease rats. The inhibited phosphorylations were improved by the low-phosphate diet treatment. Thus, dietary phosphate restriction can improve aortic endothelial dysfunction in chronic kidney disease with hyperphosphatemia by increase in the activatory phosphorylations of endothelial nitric oxide synthase and Akt. PMID:22798709

  2. SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces.

    Science.gov (United States)

    Pagliai, Marco; Caporali, Stefano; Muniz-Miranda, Maurizio; Pratesi, Giovanni; Schettino, Vincenzo

    2012-01-19

    The adsorption of adenine on silver and gold surfaces has been investigated combining density functional theory calculations with surface-enhanced Raman scattering and angle-resolved X-ray photoelectron spectroscopy measurements, obtaining useful insight into the orientation and interaction of the nucleobase with the metal surfaces.

  3. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  4. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...

  5. Structural Analysis of a Stereochemical Modification of Flavin Adenine Dinucleotide in Alcohol Oxidase from Methylotrophic Yeasts

    NARCIS (Netherlands)

    Kellogg, Richard M.; Kruizinga, Wim; Bystrykh, Leonid V.; Dijkhuizen, Lubbert; Harder, Wim

    1992-01-01

    Alcohol oxidase (MOX), a major peroxisomal protein of methanol-utilizing yeasts, contains two different forms of flavin adenine dinucleotide, one of which is identical with natural FAD whereas the other (mFAD) is a stereochemical modification of the natural coenzyme. This modification occurs spontan

  6. Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts.

    Science.gov (United States)

    Armstrong, Souzan; Pereverzev, Alexey; Dixon, S Jeffrey; Sims, Stephen M

    2009-01-01

    Nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 nucleotide receptors in many cell types. Osteoclasts express P2X7 receptors (encoded by P2rx7) - Ca(2+)-permeable channels that are activated by high concentrations of extracellular ATP. Genetic disruption of P2rx7 leads to increased resorption and reduced skeletal response to mechanical stimuli. To investigate whether P2X7 receptors couple to activation of protein kinase C (PKC), RAW 264.7 cells were differentiated into multinucleated osteoclast-like cells and live-cell confocal imaging was used to localize enhanced green fluorescent protein (EGFP)-tagged PKC. Benzoylbenzoyl-ATP (BzATP; a P2X7 agonist) induced transient translocation of PKCalpha to the basolateral membrane. UTP or ATP (10 microM), which activate P2 receptors other than P2X7, failed to induce translocation. Moreover, BzATP failed to induce PKC translocation in osteoclasts derived from the bone marrow of P2rx7(-/-) mice, demonstrating specificity for P2X7. BzATP induced a transient rise of cytosolic Ca(2+), and removal of extracellular Ca(2+) abolished the translocation of PKCalpha that was induced by BzATP (but not by phorbol ester). We examined the isoform specificity of this response, and observed translocation of the Ca(2+)-dependent isoforms PKCalpha and PKCbetaI, but not the Ca(2+)-independent isoform PKCdelta. Thus, activation of P2X7 receptors specifically induces Ca(2+)-dependent translocation of PKC to the basolateral membrane domain of osteoclasts, an aspect of spatiotemporal signaling not previously recognized.

  7. Stochastic resonance during a polymer translocation process.

    Science.gov (United States)

    Mondal, Debasish; Muthukumar, M

    2016-04-14

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  8. Translocation pathways for inhaled asbestos fibers

    Directory of Open Access Journals (Sweden)

    Mantegazza F

    2008-01-01

    Full Text Available Abstract We discuss the translocation of inhaled asbestos fibers based on pulmonary and pleuro-pulmonary interstitial fluid dynamics. Fibers can pass the alveolar barrier and reach the lung interstitium via the paracellular route down a mass water flow due to combined osmotic (active Na+ absorption and hydraulic (interstitial pressure is subatmospheric pressure gradient. Fibers can be dragged from the lung interstitium by pulmonary lymph flow (primary translocation wherefrom they can reach the blood stream and subsequently distribute to the whole body (secondary translocation. Primary translocation across the visceral pleura and towards pulmonary capillaries may also occur if the asbestos-induced lung inflammation increases pulmonary interstitial pressure so as to reverse the trans-mesothelial and trans-endothelial pressure gradients. Secondary translocation to the pleural space may occur via the physiological route of pleural fluid formation across the parietal pleura; fibers accumulation in parietal pleura stomata (black spots reflects the role of parietal lymphatics in draining pleural fluid. Asbestos fibers are found in all organs of subjects either occupationally exposed or not exposed to asbestos. Fibers concentration correlates with specific conditions of interstitial fluid dynamics, in line with the notion that in all organs microvascular filtration occurs from capillaries to the extravascular spaces. Concentration is high in the kidney (reflecting high perfusion pressure and flow and in the liver (reflecting high microvascular permeability while it is relatively low in the brain (due to low permeability of blood-brain barrier. Ultrafine fibers (length

  9. Liver Cirrhosis and Intestinal Bacterial Translocation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Intestinal barrier dysfunction, facilitating translocation of bacteria and bacterial products, plays an important role in the pathophysiology of liver cirrhosis and its complications. Intestinal defense system including microbial barrier, immunologic barrier, mechanical barrier, chemical barrier, plays an important role in the maintenance of intestinal function. Under normal circumstances, the intestinal barrier can prevent intestinal bacteria through the intestinal wall from spreading to the body. Severe infection, trauma, shock, cirrhosis, malnutrition, immune suppression conditions, intestinal bacteria and endotoxin translocation, can lead to multiple organ dysfunction. The intestinal microlfora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microlfora may lead to microbial translocation, deifned as the passage of viable microorganisms or bacterial products from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. In patients with cirrhosis, primary and intestinal lfora imbalance, intestinal bacterial overgrowth, intestinal mucosal barrier dysfunction, endotoxemia is associated with weakened immunity.

  10. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  11. Rank Modulation for Translocation Error Correction

    CERN Document Server

    Farnoud, Farzad; Milenkovic, Olgica

    2012-01-01

    We consider rank modulation codes for flash memories that allow for handling arbitrary charge drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \\emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include tight bounds on the capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of structured codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations and permutation arrays.

  12. DNA nanopore translocation in glutamate solutions

    Science.gov (United States)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  13. Arxula adeninivorans recombinant adenine deaminase and its application in the production of food with low purine content.

    Science.gov (United States)

    Jankowska, D A; Faulwasser, K; Trautwein-Schult, A; Cordes, A; Hoferichter, P; Klein, C; Bode, R; Baronian, K; Kunze, G

    2013-11-01

    Construction of a transgenic Arxula adeninivorans strain that produces a high concentration of adenine deaminase and investigation into the application of the enzyme in the production of food with low purine content. The A. adeninivorans AADA gene, encoding adenine deaminase, was expressed in this yeast under the control of the strong inducible nitrite reductase promoter using the Xplor(®) 2 transformation/expression platform. The recombinant enzyme was biochemically characterized and was found to have a pH range of 5.5-7.5 and temperature range of 34-46 °C with medium thermostability. A beef broth was treated with the purified enzyme resulting in the concentration of adenine decreasing from 70.4 to 0.4 mg l(-1). It was shown that the production of adenine deaminase by A. adeninivorans can be increased and that the recombinant adenine deaminase can be used to lower the adenine content in the food. Adenine deaminase is one component of an enzymatic system that can reduce the production of uric acid from food constituents. This study gives details on the expression, characterization and application of the enzyme and thus provides evidence that supports the further development of the system. © 2013 The Society for Applied Microbiology.

  14. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  15. Polymer translocation through a nanopore: DPD study.

    Science.gov (United States)

    Yang, Kan; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-04-04

    Translocation of a polymer chain through a narrow pore is explored using 3D explicit solvent dissipative particle dynamics simulation. We study the dependence of the translocation dynamics and translocation time τ on the chain length N, driving force magnitude E, and solvent quality. Two types of driving forces are considered: uniform hydrostatic force, which is applied equally to the chain and solvent particles, and uniform electrostatic force, which is applied selectively to the charged particles in the chain and oppositely charged counterions in the solvent. We concluded that the scaling correlations τ ~ E(-ξ) and τ ~ N(β) are valid only for coil-like chains. For globular chains, the exponents ξ and β could not be identified with a reasonable accuracy. While the found value of ξ agrees with published experimental results and does not depend on the driving force type, the exponent β depends on the driving force and solvent quality. This is explained by nonequilibrium effects, as in the systems considered, the time of translocation is comparable with the time of chain relaxation. These effects, manifested in the changes of chain conformation in the process of translocation, were analyzed on the basis of the variation of the gyration radii of cis and trans segments of the chain in normal and lateral directions. A prominent chain expansion was observed for coils and was insignificant for globules. This work demonstrates the feasibility of the 3D dissipative particle dynamics modeling of translocation phenomena and accounting for the electrostatic interactions with explicit counterions, as well as for the solvent quality, in a computationally efficient manner.

  16. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  17. Structure and function of nucleotide sugar transporters: Current progress

    Directory of Open Access Journals (Sweden)

    Barbara Hadley

    2014-06-01

    Full Text Available The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST. Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST. In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.

  18. Allosteric interactions of DNA and nucleotides with S. cerevisiae RSC.

    Science.gov (United States)

    Malik, Shuja Shafi; Rich, Evan; Viswanathan, Ramya; Cairns, Bradley R; Fischer, Christopher J

    2011-09-20

    RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ∼100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.

  19. The influence of pH on the structure of adenine monolayers adsorbed at Au(110)/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bowfield, A.; Smith, C.I.; Mansley, C.P.; Weightman, P. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, L69 7ZE (United Kingdom)

    2010-08-15

    The pH of the solution is shown to significantly effect the reflection anisotropy spectroscopy (RAS) profiles of adenine adsorbed at Au(110)/electrolyte interfaces. At pH 12.8 the net adsorption is very weak due the formation of negative adenine ions in solution. The sensitivity of the RAS profiles to the pH of the solution is probably due to a change in the geometry of the adsorbed molecules caused by a disruption of the base stacking configuration that is adopted when adenine is adsorbed from solutions at pH 7.1. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    Science.gov (United States)

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

  1. Tissue Nitrogen and Fructan Translocation in Bread Wheat

    Institute of Scientific and Technical Information of China (English)

    HOU You-liang; L.O'Brien; ZHONG Gai-rong

    2002-01-01

    Translocation of previously accumulated nitrogen and carbohydrates from vegetative tissue of the wheat plant is a major assimilate source for grain filling. This study was conducted to examine genotype differences in nitrogen and fructan translocation and their relationships to grain yield and protein content. Effects indicated that significant genotype differences existed for nitrogen accumulation at anthesis and fructan at milk stage and their translocation. Two high protein genotypes, Cunningham and PST90-19, accumulated more nitrogen before anthesis and had greater nitrogen translocation, but lower post-anthesis nitrogen uptake,than two low protein genotypes, SUN109A and TM56. Among plant parts, leaves were the major storage for tissue nitrogen and provided the overwhelming proportion of the total nitrogen translocation, whereas for fructan accumulation and translocation it was the stems. The two high protein genotypes had a higher percentage of their grain nitrogen derived from nitrogen translocation, while for the two low protein ones, it was from postanthesis nitrogen uptake and assimilation. Increasing nitrogen application increased nitrogen accumulation and translocation, but decreased fructan accumulation and translocation. High grain protein content was associated with high nitrogen translocation from leaves, stems and the total plant, while high grain yield was related to high fructan translocation from stems and the total plant. Fructan translocation was negatively correlated to grain protein content. Nitrogen and fructan translocation were not correlated with each other.

  2. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  3. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside.

    Science.gov (United States)

    Wei, Xiao-Kun; Ding, Qing-Bao; Zhang, Lu; Guo, Yong-Li; Ou, Lin; Wang, Chang-Lu

    2008-07-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  4. Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside

    Institute of Scientific and Technical Information of China (English)

    Xiao-kun WEI; Qing-bao DING; Lu ZHANG; Yong-li GUO; Lin OU; Chang-lu WANG

    2008-01-01

    Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5'-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells ofEnterobacter aerogenes DCJO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.

  5. European Nucleotide Archive in 2016

    Science.gov (United States)

    Toribio, Ana Luisa; Alako, Blaise; Amid, Clara; Cerdeño-Tarrága, Ana; Clarke, Laura; Cleland, Iain; Fairley, Susan; Gibson, Richard; Goodgame, Neil; ten Hoopen, Petra; Jayathilaka, Suran; Kay, Simon; Leinonen, Rasko; Liu, Xin; Martínez-Villacorta, Josué; Pakseresht, Nima; Rajan, Jeena; Reddy, Kethi; Rosello, Marc; Silvester, Nicole; Smirnov, Dmitriy; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2017-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) offers a rich platform for data sharing, publishing and archiving and a globally comprehensive data set for onward use by the scientific community. With a broad scope spanning raw sequencing reads, genome assemblies and functional annotation, the resource provides extensive data submission, search and download facilities across web and programmatic interfaces. Here, we outline ENA content and major access modalities, highlight major developments in 2016 and outline a number of examples of data reuse from ENA. PMID:27899630

  6. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    Science.gov (United States)

    2014-11-24

    DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes Eliot F. Gomez1, Vishak Venkatraman1, James G. Grote2 & Andrew J. Steckl1...45433-7707 USA. We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic...polymer has been a frequent natural material integrated in electronic devices. DNA has been used in organic light - emitting diodes (OLEDs)4,5,7–14

  7. Coulombic amino group-metal bonding: adsorption of adenine on Cu110.

    Science.gov (United States)

    Preuss, M; Schmidt, W G; Bechstedt, F

    2005-06-17

    The interaction between molecular amino groups and metal surfaces is analyzed from first-principles calculations using the adsorption of adenine on Cu110 as a model case. The amino group nitrogens are found to adsorb on top of the surface copper atoms. However, the bonding clearly cannot be explained in terms of covalent interactions. Instead, we find it to be largely determined by mutual polarization and Coulomb interaction between substrate and adsorbate.

  8. A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Mohammad T. [Department of Chemistry, Islamic Azad University, Azadshahr Branch, Azadshahr, Golestan (Iran, Islamic Republic of); Taghartapeh, Mohammad Ramezani [Young Researchers and Elite Club, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of); Lemeski, E. Tazikeh [Department of Chemistry, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of); Soltani, Alireza, E-mail: alireza.soltani46@yahoo.com [Young Researchers and Elite Club, Islamic Azad University, Gorgan Branch, Gorgan (Iran, Islamic Republic of)

    2014-07-01

    Density-functional theory calculations are used to investigate the interaction of Al{sub 12}N{sub 12} and B{sub 12}N{sub 12} clusters with the adenine (A), uracil (U), and cytosine (C) molecules. The current calculations demonstrate that these hybrid adsorbent materials are able to adsorb the adenine, uracil, and cytosine molecules through exothermic processes. Our theoretical results reveal improvement in the adsorption of adenine, uracil, and cytosine on Al{sub 12}N{sub 12} and B{sub 12}N{sub 12}. It is observed that B{sub 12}N{sub 12} is highly sensitive to adenine, uracil, and cytosine compared with Al{sub 12}N{sub 12} to serve as a biochemical sensor.

  9. Bladder calculus resulting from an intravesical translocation of ...

    African Journals Online (AJOL)

    Bladder calculus resulting from an intravesical translocation of intrauterine ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... translocation and secondary calculus formation is a very rare complication.

  10. Selective self-assembly of adenine-silver nanoparticles forms rings resembling the size of cells

    Science.gov (United States)

    Choi, Sungmoon; Park, Soonyoung; Yang, Seon-Ah; Jeong, Yujin; Yu, Junhua

    2015-01-01

    Self-assembly has played critical roles in the construction of functional nanomaterials. However, the structure of the macroscale multicomponent materials built by the self-assembly of nanoscale building blocks is hard to predict due to multiple intermolecular interactions of great complexity. Evaporation of solvents is usually an important approach to induce kinetically stable assemblies of building blocks with a large-scale specific arrangement. During such a deweting process, we tried to monitor the possible interactions between silver nanoparticles and nucleobases at a larger scale by epifluorescence microscopy, thanks to the doping of silver nanoparticles with luminescent silver nanodots. ssDNA oligomer-stabilized silver nanoparticles and adenine self-assemble to form ring-like compartments similar to the size of modern cells. However, the silver ions only dismantle the self-assembly of adenine. The rings are thermodynamically stable as the drying process only enrich the nanoparticles-nucleobase mixture to a concentration that activates the self-assembly. The permeable membrane-like edge of the ring is composed of adenine filaments glued together by silver nanoparticles. Interestingly, chemicals are partially confined and accumulated inside the ring, suggesting that this might be used as a microreactor to speed up chemical reactions during a dewetting process. PMID:26643504

  11. Nucleotide Metabolism and DNA Replication.

    Science.gov (United States)

    Warner, Digby F; Evans, Joanna C; Mizrahi, Valerie

    2014-10-01

    The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.

  12. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand.

    Science.gov (United States)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-02-24

    A novel adenine (Ad) fluorescence probe (Eu(III)-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the Eu(III)-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the Eu(III)-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the Eu(III)-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using Eu(III)-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of Eu(III)-dtpa-bis(guanine) at 570nm as a function of adenine (Ad) concentration in the range of 0.00-5.00×10(-5)molL(-1) was observed. The detection limit is about 4.70×10(-7)molL(-1).

  13. Medium optimization for leaf numbers and shoot multiplication of lidah buaya (Aloe vera by BAP and adenine supplement

    Directory of Open Access Journals (Sweden)

    LAELA SARI

    2005-07-01

    Full Text Available Aloe vera of the Aloeaceae is originated from Canary Island (West Africa. This plant is commonly know in Indonesia and cultivated in large fields or in the house yard for many purposes, such as ornamental and medicine plant. The industries using it as the principle raw material has became more important due to the significant benefits of this plant. This study is purposed to obtain the medium optimization for leaf numbers and shoot multiplication of Aloe vera by BAP and adenine supplement. The shoot of Aloe vera was taken from green house of Biotechnology-LIPI. Shoots sterilized by clorox (sodium hypochlorite solution 35% and 20% for 30 and 15 min. until get aseptic shoot (in vitro plants. The shoot isolated from in vitro plant into MS (Murashige and Skoog medium in different concentration of BAP and adenine. The research used factorial Completely Randomized Design with two factors (BAP concentration: 0; 0.5; 1; 1.5; 2 mg/L and adenine concentration 0; 10; 20 mg/L with 5 replicates. The results obtained have showed that addition 20 mg/L adenine to MS raise the numbers of leaf. The shoot multiplication has been augmented by addition of BAP 1 mg/L and adenine 20 mg/L. The results showed that BAP has a positive role in increasing shoot multiplication rate and that adenine has a synergic effect when added together with BAP.

  14. Characterization of new G protein-coupled adenine receptors in mouse and hamster.

    Science.gov (United States)

    Thimm, Dominik; Knospe, Melanie; Abdelrahman, Aliaa; Moutinho, Miguel; Alsdorf, Bernt B A; von Kügelgen, Ivar; Schiedel, Anke C; Müller, Christa E

    2013-09-01

    The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation "P0-receptors" has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [(3)H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure-activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.

  15. Prolonged Pulmonary Exposure to Diesel Exhaust Particles Exacerbates Renal Oxidative Stress, Inflammation and DNA Damage in Mice with Adenine-Induced Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-05-01

    Full Text Available Background/Aims: Epidemiological evidence indicates that patients with chronic kidney diseases have increased susceptibility to adverse outcomes related to long-term exposure to particulate air pollution. However, mechanisms underlying these effects are not fully understood. Methods: Presently, we assessed the effect of prolonged exposure to diesel exhaust particles (DEP on chronic renal failure induced by adenine (0.25% w/w in feed for 4 weeks, which is known to involve inflammation and oxidative stress. DEP (0.5m/kg was intratracheally (i.t. instilled every 4th day for 4 weeks (7 i.t. instillation. Four days following the last exposure to either DEP or saline (control, various renal endpoints were measured. Results: While body weight was decreased, kidney weight increased in DEP+adenine versus saline+adenine or DEP. Water intake, urine volume, relative kidney weight were significantly increased in adenine+DEP versus DEP and adenine+saline versus saline. Plasma creatinine and urea increased and creatinine clearance decreased in adenine+DEP versus DEP and adenine+saline versus saline. Tumor necrosis factor α, lipid peroxidation and reactive oxygen species were significantly increased in adenine+DEP compared with either DEP or adenine+saline. The antioxidant calase was significantly decreased in adenine+DEP compared with either adenine+saline or DEP. Notably, renal DNA damage was significantly potentiated in adenine+DEP compared with either adenine+saline or DEP. Similarly, systolic blood pressure was increased in adenine+DEP versus adenine+saline or DEP, and in DEP versus saline. Histological evaluation revealed more collagen deposition, higher number of necrotic cell counts and dilated tubules, cast formation and collapsing glomeruli in adenine+DEP versus adenine+saline or DEP. Conclusion: Prolonged pulmonary exposure to diesel exhaust particles worsen renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic

  16. Quantized biopolymer translocation through nanopores: departure from simple scaling

    CERN Document Server

    Melchionna, Simone; Fyta, Maria; Kaxiras, Efthimios; Succi, Sauro

    2009-01-01

    We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely, the translocation proceeds through multi-folded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the average folding number, which results in a deviation from the single-exponent power-law characterizing single-file translocation through narrow pores. The mechanism of folding quantization allows polymers above a threshold length (approximately $1,000$ persistence lengths for double-stranded DNA) to exhibit cooperative behavior and as a result to translocate noticeably faster.

  17. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    Science.gov (United States)

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  18. Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues.

    Science.gov (United States)

    Natsumeda, Y; Prajda, N; Donohue, J P; Glover, J L; Weber, G

    1984-06-01

    The enzymic capacities of the de novo and the salvage pathways for purine nucleotide synthesis were compared in rat in normal, differentiating, and regenerating liver, and in three hepatomas of widely different growth rates. The activities of the key de novo and salvage enzymes were also determined in mouse lung and Lewis lung carcinoma, in human kidney and liver, and in renal cell carcinoma and hepatocellular carcinomas. A precise and reproducible assay was worked out for measuring the activities of adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) in crude liver and hepatoma systems. Kinetic studies on the salvage enzymes were carried out in the crude 100,000 X g supernatant fluid from normal liver and rapidly growing hepatoma 3924A. In both tissue extracts, Michaelis-Menten kinetics was observed for adenine phosphoribosyltransferase and HGPRT. The reciprocal plots for 5-phosphoribosyl-1-pyrophosphate (PRPP) of liver and hepatoma enzymes gave apparent KmS of 2 microM for adenine phosphoribosyltransferase and 4 microM for HGPRT, showing two orders of magnitude higher affinities for PRPP than that of the rate-limiting enzyme of de novo purine synthesis, amidophosphoribosyltransferase (EC 2.4.2.14) (Km = 400 to 900 microM). The apparent Km values for adenine of liver and hepatoma adenine phosphoribosyltransferase were 0.6 to 0.9 microM, respectively. For both liver and hepatoma HGPRT, the reciprocal plots for hypoxanthine and guanine yielded the same Km of 3 microM. The specific activities of purine phosphoribosyltransferases were markedly higher than that of amidophosphoribosyltransferase in rat thymus, spleen, testis, bone marrow, colon, liver, kidney cortex, lung, heart, brain, and skeletal muscle, but were lower in the small intestine. In hepatomas and regenerating and differentiating liver, the activities of the salvage enzymes were 2.1- to 32-fold higher than that of

  19. Genes and translocations involved in POF.

    Science.gov (United States)

    Schlessinger, David; Herrera, Luisa; Crisponi, Laura; Mumm, Steven; Percesepe, Antonio; Pellegrini, Massimo; Pilia, Giuseppe; Forabosco, Antonino

    2002-08-15

    Changes at a single autosomal locus and many X-linked loci have been implicated in women with gonadal dysgenesis [premature ovarian failure (POF) with deficits in ovarian follicles]. For the chromosome 3 locus, a forkhead transcription factor gene (FOXL2) has been identified, in which lesions result in decreased follicles by haploinsufficiency. In contrast, sporadic X; autosomal translocations are distributed at many points on the X, but concentrate in a critical region on Xq. The association of the breakpoints with genes involved in ovarian function is thus far weak (in four analyzed cases) and has not been related to pathology in other POF patients. While many more translocations can be analyzed in detail as the human genome sequence is refined, it remains possible that translocations like X monosomy (Turner syndrome) lead to POF not by interrupting specific genes important in ovarian development, but by causing aberrations in pairing or X-inactivation during folliculogenesis. It is noted that the critical region has unusual features, neighboring the X-inactivation center and including an 18 Mb region of very low recombination. These suggest that chromosome dynamics in the region may be sensitive to structural changes, and when modified by translocations might provoke apoptosis at meiotic checkpoints. Choices among models for the etiology of POF should be feasible based on studies of ovarian follicle development and attrition in mouse models. Studies would prominently include gene expression profiling of developmental-specific pathways in nascent ovaries with controlled levels of Foxl2 and interacting proteins, or with defined changes in the X chromosome.

  20. Stepwise nucleosome translocation by RSC remodeling complexes.

    Science.gov (United States)

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  1. Unforced polymer translocation compared to the forced case.

    Science.gov (United States)

    Lehtola, V V; Linna, R P; Kaski, K

    2010-03-01

    We present results for unforced polymer translocation from simulations using Langevin dynamics in two dimensions (2D) to four dimensions and stochastic rotation dynamics supporting hydrodynamic modes in three dimensions (3D). We compare our results to forced translocation and a simplified model where the polymer escapes from an infinite pore. The simple model shows that the scaling behavior of unforced translocation is independent of the dimension of the side to which the polymer is translocating. We find that, unlike its forced counterpart, unforced translocation dynamics is insensitive to pore design. Hydrodynamics is seen to markedly speed up the unforced translocation process but not to affect the scaling relations. Average mean-squared displacement shows scaling with average transition time in unforced but not in forced translocation. The waiting-time distribution in unforced translocation follows closely Poissonian distribution. Our measured transfer probabilities align well with those obtained from an equilibrium theory in 3D, but somewhat worse in 2D, where a polymer's relaxation toward equilibrium with respect to its translocation time is slower. Consequently, in stark contrast to forced translocation, unforced translocation is seen to remain close to equilibrium and shows clear universality.

  2. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    Science.gov (United States)

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  4. Analysis of difference spectra of protonated DNA: determination of degree of protonation of nitrogen bases and the fractions of disordered nucleotide pairs.

    Science.gov (United States)

    Smol'janinova, T I; Zhidkov, V A; Sokolov, G V

    1982-01-01

    The titration curves of nitrogen bases and fractions of disordered nucleotide pairs are obtained during DNA protonation. It is shown that purine bases are the first sites of the DNA double helix protonation. The cytosine protonation is due to proton-induced conformational transition within GC pairs with the sequence proton transfer from (N-7) of guanine to (N-3) of cytosine. Within DNA with unwound regions the bases are protonated in the following order: cytosine, adenine, guanine. It is shown that GC pairs are the primary centres in which the unwinding of protonated DNAs occurs. PMID:7079177

  5. Financial costs of large carnivore translocations--accounting for conservation.

    Directory of Open Access Journals (Sweden)

    Florian J Weise

    Full Text Available Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars. Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23, and $2,108 per leopard (n = 6. One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%, followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4% of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown with a strong species bias. Four leopards (66.7% were successfully translocated but only eight of the 20 cheetahs (40.0% with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  6. Financial costs of large carnivore translocations--accounting for conservation.

    Science.gov (United States)

    Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J

    2014-01-01

    Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  7. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  8. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-02-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  9. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  10. Dynamic simulation and metabolome analysis of long-term erythrocyte storage in adenine-guanosine solution.

    Directory of Open Access Journals (Sweden)

    Taiko Nishino

    Full Text Available Although intraerythrocytic ATP and 2,3-bisphophoglycerate (2,3-BPG are known as direct indicators of the viability of preserved red blood cells and the efficiency of post-transfusion oxygen delivery, no current blood storage method in practical use has succeeded in maintaining both these metabolites at high levels for long periods. In this study, we constructed a mathematical kinetic model of comprehensive metabolism in red blood cells stored in a recently developed blood storage solution containing adenine and guanosine, which can maintain both ATP and 2,3-BPG. The predicted dynamics of metabolic intermediates in glycolysis, the pentose phosphate pathway, and purine salvage pathway were consistent with time-series metabolome data measured with capillary electrophoresis time-of-flight mass spectrometry over 5 weeks of storage. From the analysis of the simulation model, the metabolic roles and fates of the 2 major additives were illustrated: (1 adenine could enlarge the adenylate pool, which maintains constant ATP levels throughout the storage period and leads to production of metabolic waste, including hypoxanthine; (2 adenine also induces the consumption of ribose phosphates, which results in 2,3-BPG reduction, while (3 guanosine is converted to ribose phosphates, which can boost the activity of upper glycolysis and result in the efficient production of ATP and 2,3-BPG. This is the first attempt to clarify the underlying metabolic mechanism for maintaining levels of both ATP and 2,3-BPG in stored red blood cells with in silico analysis, as well as to analyze the trade-off and the interlock phenomena between the benefits and possible side effects of the storage-solution additives.

  11. Fragmentation of the adenine and guanine molecules induced by electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Minaev, B. F., E-mail: bfmin@rambler.ru, E-mail: boris@theochem.kth.se [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine); Tomsk State University, 634050 Tomsk (Russian Federation); Shafranyosh, M. I.; Svida, Yu. Yu; Sukhoviya, M. I.; Shafranyosh, I. I. [Uzhgorod National University, 88000 Uzhgorod (Ukraine); Baryshnikov, G. V.; Minaeva, V. A. [Bohdan Khmelnitsky National University, 18031 Cherkasy (Ukraine)

    2014-05-07

    Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10{sup −15} and 3.2 × 10{sup −15} cm{sup 2}, respectively. The total cross section for formation of the negative ions is 6.1 × 10{sup −18} and 7.6 × 10{sup −18} cm{sup 2} at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.

  12. In vitro propagation of Calla lily: adenine sulphate and 6-benzilaminopurine

    Directory of Open Access Journals (Sweden)

    Márcia De Nazaré Oliveira Ribeiro

    2014-09-01

    Full Text Available Calla lily [Zantedeschia aethiopica (L. Spreng.] belonging to the Araceae family is appreciated as cut flower and in com­position of gardens. However, the conventional propagation of this plants shows a poor productive. Thus, tissue culture besides allowing fast clonal propagation also provides healthy and uniforms plants. The aim was study the influence of the differents concentrations of 6-benzilaminopurine (BAP and adenine sulphate (AS on in vitro multiplication of Calla lily. The explants were maintained in MS medium added with BAP (0.0, 8.9, 17.8 and 26.7 μM and adenine sulphate (0, 54, 108 and 162 μM. The plants were transferred to growth room and maintained at 25±1ºC and photoperiod of 16 hours for 60 days, under luminous intensity of 35 μmol m-2 s-1, for a period of 60 days. The experimental design was entirely randomized with four repetitions of three seedlings each, resulting in twelve plants per treatment, each tube with one plant. The statistics analysis showed interactive effects for quantify of BAP and AS for leaves number and fresh mass of the aerial parts. The highest number of leaves (4.8 and fresh mass of aerial parts (0.73 g was obtained with 26.7 μM of BAP combined with 108 μM of AS, highest number of shoots (2.6 was obtained with 22,19 μM of BAP and highest lengh of sprouts (5.0 cm was observed in the absence of BAP. The addition of BAP increased the number of shoots per explant. The use of adenine sulphate in combination with BAP had a positive effect for the accumulation of fresh weight and number of leaves in vitro culture.

  13. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  14. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    Science.gov (United States)

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  15. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.; Robertson, D.E.; Ahmad, M. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1995-08-18

    The Arabidopsis thaliana HY4 gene encodes CRY1, a 75-kilodalton flavoprotein mediating blue light-dependent regulation of seedling development. CRY1 is demonstrated here to noncovalently bind stoichiometric amounts of flavin adenine dinucleotide (FAD). The redox properties of FAD bound by CRY1 include an unexpected stability of the neutral radical flavosemiquinone (FADH{center_dot}). The absorption properties of this flavosemiquinone provide a likely explanation for the additional sensitivity exhibited by CRY1-mediated responses in the green region of the visible spectrum. Despite the sequence homology to microbial DNA photolyases, CRY1 was found to have no detectable photolyase activity. 27 refs., 4 figs.

  16. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Graham, Rondell P; Barr Fritcher, Emily G; Pestova, Ekaterina; Schulz, John; Sitailo, Leonid A; Vasmatzis, George; Murphy, Stephen J; McWilliams, Robert R; Hart, Steven N; Halling, Kevin C; Roberts, Lewis R; Gores, Gregory J; Couch, Fergus J; Zhang, Lizhi; Borad, Mitesh J; Kipp, Benjamin R

    2014-08-01

    Patients with cholangiocarcinoma often present with locally advanced or metastatic disease. There is a need for effective therapeutic strategies for advanced stage cholangiocarcinoma. Recently, FGFR2 translocations have been identified as a potential target for tyrosine kinase inhibitor therapies. This study evaluated 152 cholangiocarcinomas and 4 intraductal papillary biliary neoplasms of the bile duct for presence of FGFR2 translocations by fluorescence in situ hybridization and characterized the clinicopathologic features of cases with FGFR2 translocations. Thirteen (10 women, 3 men; 8%) of 156 biliary tumors harbored FGFR2 translocations, including 12 intrahepatic cholangiocarcinomas (12/96; 13%) and 1 intraductal papillary neoplasm of the bile duct. Histologically, cholangiocarcinomas with FGFR2 translocations displayed prominent intraductal growth (62%) or anastomosing tubular glands with desmoplasia (38%). Immunohistochemically, the tumors with FGFR2 translocations frequently showed weak and patchy expression of CK19 (77%). Markers of the stem cell phenotype in cholangiocarcinoma, HepPar1 and CK20, were negative in all cases. The median cancer-specific survival for patients whose tumors harbored FGFR2 translocations was 123 months compared to 37 months for cases without FGFR2 translocations (P = .039). This study also assessed 100 cholangiocarcinomas for ERBB2 amplification and ROS1 translocations. Of the cases tested, 3% and 1% were positive for ERBB2 amplification and ROS1 translocation, respectively. These results confirm that FGFR2, ERRB2, and ROS1 alterations are potential therapeutic targets for intrahepatic cholangiocarcinoma.

  17. Measurement of background translocation frequencies in individuals with clones

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.J.

    1996-08-01

    In the leukemia case the unseparated B and T lymphocytes had a high translocation frequency even after 0.0014, respectively. After purging all clones from the data, the translocation frequencies for Bio 8 and Bio 23 were 0.00750.0014 and 0.0073 metaphases were scored for chromosomal aberrations,, specifically reciprocal translocations, using fluorescence in situ hybridization (FISH). Metaphase spreads were used from two healthy, unexposed individuals (not exposed to radiation, chemotherapy or radiotherapy) and one early B- precursor acute lymphocytic leukemia (ALL) patient (metaphase spreads from both separated T lymphocytes and unseparated B and T lymphocytes were scored). All three individuals had an abnormally high translocation frequency. The high translocation frequencies resulted from clonal expansion of specific translocated chromosomes. I show in this thesis that by purging (discounting or removing) clones from the data of unexposed individuals, one can obtain true background translocation frequencies. In two cases, Bio 8 and Bio 23, the measured translocation frequency for chromosomes 1, 2 and 4 was 0.0124 purging all of the clones from the data. This high translocation frequency may be due to a low frequency of some clones and may not be recognized. The separated T lymphocytes had a higher translocation frequency than expected.

  18. Formation of complex and unstable chromosomal translocations in yeast.

    Directory of Open Access Journals (Sweden)

    Kristina H Schmidt

    Full Text Available Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic

  19. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    Science.gov (United States)

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  20. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    Science.gov (United States)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  1. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Jean-François Lemay

    2011-01-01

    Full Text Available Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic. While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.

  2. Simultaneous Determination of Adenine and Guanine Using Cadmium Selenide Quantum Dots-Graphene Oxide Nanocomposite Modified Electrode.

    Science.gov (United States)

    Kalaivani, Arumugam; Narayanan, Sangilimuthu Sriman

    2015-06-01

    A novel electrochemical sensor was fabricated by immobilizing Cadmium Selenide Quantum Dots (CdSe QDs)-Graphene Oxide (GO) nanocomposite on a paraffin wax impregnated graphite electrode (PIGE) and was used for the simultaneous determination of adenine and guanine. The CdSe QDs-GO nanocomposite was prepared by ultrasonication and was characterized with spectroscopic and microscopic techniques. The nanocomposite modified electrode was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic activity towards the oxidative determination of adenine and guanine with a good peak separation of 0.31 V. This may be due to the high surface area and fast electron transfer kinetics of the nanocomposite. The modified electrode exhibited wide linear ranges from 0.167 μM to 245 μM for Guanine and 0.083 μM to 291 μM for Adenine with detection limits of 0.055 μM Guanine and 0.028 μM of Adenine (S/N = 3) respectively. Further, the modified electrode was used for the quantitative determination of adenine and guanine in herring sperm DNA with satisfactory results. The modified electrode showed acceptable selectivity, reproducibility and stability under optimal conditions.

  3. CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yan [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Huang Qinan [Department of Chemistry, Wannan Medical College, Wuhu 241002 (China); Li Maoguo [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Huang Xingjiu [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Fang Bin, E-mail: binfang_47@yahoo.com.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China); Wang Lun, E-mail: wanglun@mail.ahnu.edu.cn [College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241000 (China)

    2011-10-01

    Sub-10 nm CeO{sub 2} nanoparticles decorated multi-walled carbon nanotubes has been constructed for electrochemial determination of guanine and adenine. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nanoparticles CeO{sub 2}/MWCNTs. Electrochemical impedance spectroscopy (EIS) was used to characterize the electrode modifying process. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The detection limit (S/N = 3) for adenine and guanine was found to be 20 and 10 nM, respectively. The obtained sensitivity toward guanine and adenine was 1.26 and 1.13 {mu}A/{mu}M in the linear concentration range 5-50 {mu}M and 5-35 {mu}M, respectively. These results demonstrate that the carbon nanotubes could provide huge locations and facilitate the adsorptive accumulation of the guanine and adenine, and the CeO{sub 2} nanoparticles are promising substrates for the development of high-performance electrocatalysts for biosensing.

  4. Sublingual nucleotides and immune response to exercise

    Directory of Open Access Journals (Sweden)

    Ostojic Sergej M

    2012-07-01

    Full Text Available Abstract Evidence exists regarding the potential role of exogenous nucleotides as regulators of the immune function in physically active humans, yet the potential use of nucleotides has been hindered by their low bioavailability after oral administration. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of sublingual nucleotides (50 mg/day on salivary and serum immunity indicators as compared to placebo, both administered to healthy males aged 20 to 25 years for 14 days. Sublingual administration of nucleotides for 14 days increased serum immunoglobulin A, natural killer cells count and cytotoxic activity, and offset the post-exercise drop of salivary immunoglobulins and lactoferrin (P  0.05. It seems that sublingual administration of nucleotides for two weeks considerably affected immune function in healthy males.

  5. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP).

    Science.gov (United States)

    Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc

    2014-08-01

    Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems.

  6. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    Science.gov (United States)

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-02-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV‑vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization.

  7. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus.

    Science.gov (United States)

    Jeon, Taeck J

    2008-10-01

    The expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae. The sams1 gene of xD amoebae was inactivated at the transcriptional level. Analysis of DNA showed that adenine residues in L. jeonii sams were also methylated, implying that L. jeonii bacteria belong to a Dam methylase-positive strain. In addition, both SAM and Met appeared to act as negative regulators for the expression of sams1 whereas the expression of sams2 was not affected in amoebae.

  8. Flavin adenine dinucleotide content of quinone reductase 2: analysis and optimization for structure-function studies.

    Science.gov (United States)

    Leung, Kevin Ka Ki; Litchfield, David W; Shilton, Brian H

    2012-01-01

    Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.

  9. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110 Surfaces

    Directory of Open Access Journals (Sweden)

    Lanxia Cheng

    2016-12-01

    Full Text Available Understanding the adsorption properties of DNA bases on metal surfaces is fundamental for the rational control of surface functionalization leading to the realisation of biocompatible devices for biosensing applications, such as monitoring of particular parameters within bio-organic environments and drug delivery. In this study, the effects of deposition rate and substrate temperature on the adsorption behavior of adenine on Cu(110 surfaces have been investigated using scanning tunneling microscopy (STM and density functional theory (DFT modeling, with a focus on the characterization of the morphology of the adsorbed layers. STM results revealed the formation of one-dimensional linear chains and ladder-like chains parallel to the [110] direction, when dosing at a low deposition rate at room temperature, followed by annealing to 490 K. Two mirror related, well-ordered chiral domains oriented at ±55° with respect to the [110] direction are formed upon deposition on a substrate kept at 490 K. The molecular structures observed via STM are rationalized and qualitatively described on the basis of the DFT modeling. The observation of a variety of ad-layer structures influenced by deposition rate and substrate temperature indicates that dynamic processes and hydrogen bonding play an important role in the self-assembly of adenine on the Cu(110 surface.

  10. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.

    Science.gov (United States)

    Pankiewicz, Krzysztof W; Watanabe, Kyoichi A; Lesiak-Watanabe, Krystyna; Goldstein, Barry M; Jayaram, Hiremagalur N

    2002-04-01

    Oncolytic C-nucleosides, tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) and benzamide riboside (3-beta-D-ribofuranosylbenzamide) are converted in cell into active metabolites thiazole-4-carboxamide- and benzamide adenine dinucleotide, TAD and BAD, respectively. TAD and BAD as NAD analogues were found to bind at the nicotinamide adenine dinucleotide (cofactor NAD) site of inosine monophosphate dehydrogenase (IMPDH), an important target in cancer treatment. The synthesis and evaluation of anticancer activity of a number of C-nucleosides related to tiazofurin and nicotinamide riboside then followed and are reviewed herein. Interestingly, pyridine C-nucleosides (such as C-nicotinamide riboside) are not metabolized into the corresponding NAD analogues in cell. Their conversion by chemical methods is described. As dinucleotides these compounds show inhibition of IMPDH in low micromolar level. Also, the synthesis of BAD in metabolically stable bis(phosphonate) form is discussed indicating the usefulness of such preformed inhibitors in drug development. Among tiazofurin analogues, Franchetti and Grifantini found, that the replacement of the sulfur by oxygen (as in oxazafurin) but not the removal of nitrogen (tiophenfurin) of the thiazole ring resulted in inactive compounds. The anti cancer activity of their synthetic dinucleotide analogues indicate that inactive compounds are not only poorly metabolized in cell but also are weak inhibitors of IMPDH as dinucleotides.

  11. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X L; Bentley, W E [Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742 (United States); Buckhout-White, S; Rubloff, G W, E-mail: rubloff@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2011-09-15

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  12. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    Science.gov (United States)

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-07-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (ɛΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  13. Adenine-functionalized Spongy Graphene for Green and High-Performance Supercapacitors

    Science.gov (United States)

    El-Gendy, Dalia M.; Ghany, Nabil A. Abdel; El Sherbini, E. E. Foad; Allam, Nageh K.

    2017-01-01

    A simple method is demonstrated to prepare spongy adenine-functionalized graphene (SFG) as interconnected, porous 3-dimensional (3D) network crinkly sheets. Such 3D network structure provides better contact at the electrode/electrolyte interface and facilitates the charge transfer kinetics. The fabricated SFG was characterized by X-ray diffraction (XRD), FTIR, scanning electron microscopy (FESEM), Raman spectroscopy, thermogravimetric analysis (TGA), UV−vis absorption spectroscopy, and transmission electron microscopy (TEM). The synthesized materials have been evaluated as supercapacitor materials in 0.5 M H2SO4 using cyclic voltammetry (CV) at different potential scan rates, and galvanostatic charge/discharge tests at different current densities. The SFG electrodes showed a maximum specific capacitance of 333 F/g at scan rate of 1 mV/s and exhibited excellent cycling retention of 102% after 1000 cycles at 200 mV/s. The energy density was 64.42 Wh/kg with a power density of 599.8 W/kg at 1.0 A/g. Those figures of merit are much higher than those reported for graphene-based materials tested under similar conditions. The observed high performance can be related to the synergistic effects of the spongy structure and the adenine functionalization. PMID:28216668

  14. Thymine- and Adenine-Functionalized Polystyrene Form Self-Assembled Structures through Multiple Complementary Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Yu-Shian Wu

    2014-06-01

    Full Text Available In this study, we investigated the self-assembly of two homopolymers of the same molecular weight, but containing complementary nucleobases. After employing nitroxide-mediated radical polymerization to synthesize poly(vinylbenzyl chloride, we converted the polymer into poly(vinylbenzyl azide through a reaction with NaN3 and then performed click chemistry with propargyl thymine and propargyl adenine to yield the homopolymers, poly(vinylbenzyl triazolylmethyl methylthymine (PVBT and poly(vinylbenzyl triazolylmethyl methyladenine (PVBA, respectively. This PVBT/PVBA blend system exhibited a single glass transition temperature over the entire range of compositions, indicative of a miscible phase arising from the formation of multiple strong complementary hydrogen bonds between the thymine and adenine groups of PVBT and PVBA, respectively; Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy confirmed the presence of these noncovalent interactions. In addition, dynamic rheology, dynamic light scattering and transmission electron microscopy provided evidence for the formation of supramolecular network structures in these binary PVBT/PVBA blend systems.

  15. Microwave-assisted stereospecific synthesis of novel tetrahydropyran adenine isonucleosides and crystal structures determination

    Science.gov (United States)

    Silva, Fábio P. L.; Cirqueira, Marilia L.; Martins, Felipe T.; Vasconcellos, Mário L. A. A.

    2013-11-01

    We describe in this article stereospecific syntheses for new isonucleosides analogs of adenine 5-7 from tosyl derivatives 2-4 accessing by microwave irradiations (50-80%). The adenine reacts entirely at the N(9) position. Compounds 2-4 were prepared in two steps from the corresponding alcohols 1, 8 and 9 (81-92%). These tetrahydropyrans alcohols 1, 8 and 9 are achiral (Meso compounds) and were prepared in two steps with complete control of 2,4,6-cis relative configuration by Prins cyclization reaction (60-63%) preceded by the Barbier reaction between allyl bromide with benzaldehyde, 4-fluorobenzaldehyde and 2-naphthaldehyde respectively under Lewis acid conditions (96-98%). The configurations and preferential conformations of 5-7 were determined by crystal structure of 6. These novel isonucleosides 5-7 present in silico potentiality to act as GPCR ligand, kinase inhibitor and enzyme inhibitor, evaluated by Molinspiration program, consistent with the expected antiviral and anticancer bioactivities.

  16. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  17. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  18. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    Science.gov (United States)

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  19. Another reptile translocation to a national park

    Directory of Open Access Journals (Sweden)

    W.R. Branch

    1990-10-01

    Full Text Available On 4 May 1988 a sub-adult (50 mm snout-vent length, 42 mm tail Jones' girdled lizard Cordylus tropidosternum jonesi was collected in a pile of wood being off-loaded at the new restcamp in the Karoo National Park, Beaufort West. The wood had been transported by lorry from the Kruger National Park. The specimen is deposited in the herpetological collection of the Port Elizabeth Museum (PEM R 4584. Jones' girdled lizard is a small, arboreal cordylid that shelters under tree bark and in hollow logs. It is common and widely-distributed in the Kruger National Park (Pienaar, Haacke & Jacobsen 1983, The Reptiles of the Kruger National Park, 3rd edition. Pretoria: National Parks Board and adjacent lowveld, being replaced in northern Zimbabwe and East Africa by the nominate race. Hewitt & Power (1913, Transactions of the Royal Society of South Africa 3: 147-176, 1913 reported a similar translocation of the species to Kimberley in association with timber brought to the diamond mining camps. One of us noted recently the ease and danger of the unwitting spread of commensal reptile species into conservation areas (Branch 1978, Koedoe 30: 165, and this is confirmed by this additional example. We recommend that should similar shipments of wood be considered essential, then they be fumigated to prevent the translocation of other alien organisms that may potentially have more dangerous consequences.

  20. Microbial Translocation in Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Marilia Rita Pinzone

    2012-01-01

    Full Text Available The intestinal microflora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microflora may lead to microbial translocation, defined as the passage of viable microorganisms or bacterial products (i.e., LPS, lipopeptides from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. The most recent evidence suggests that microbial translocation (MT may occur not only in cirrhosis, but also in the early stage of several liver diseases, including alcoholic hepatopathy and nonalcoholic fatty liver disease. Different mechanisms, such as small intestinal bacterial overgrowth, increased permeability of intestinal mucosa, and impaired immunity, may favor MT. Furthermore, MT has been implicated in the pathogenesis of the complications of cirrhosis, which are a significant cause of morbidity and mortality in cirrhotic subjects. Therapeutic strategies aiming at modulating the gut microflora and reducing MT have focused on antibiotic-based options, such as selective intestinal decontamination, and nonantibiotic-based options, such as prokinetics and probiotics. In particular, probiotics may represent an attractive strategy, even though the promising results of experimental models and limited clinical studies need to be confirmed in larger randomized trials.

  1. Longing Itineraries: Building the Translocal Community

    Directory of Open Access Journals (Sweden)

    Gustavo López Angel

    2017-06-01

    Full Text Available Migration has reshaped social practices, the sense of belonging has been rethought, and the membership is renegotiated and contended; this is why strategies for their sustainability have been generated. The translocal community operates through multilocated relationships that reveal the ways in which migrants are adapting to the new demands of the community. We emphasize the emotional impulse of nostalgia as one of the vehicles of sustainability for the community. The community is redefined and understood in a set of socio-cultural relationships its members generate, and where the locality is not central, but the connection. A new dimension of the social community space is not just the community gathered in a specific place, but also that agreements, commitments, and acknowledgments are exhibited and settled in the cyberspace; this cyberspace gives cohesion and brings a dynamic element to preserve the community, despite the fact that it is even less concrete than the spatial notion of territory. Facebook, YouTube and a blog are the web platforms of the virtual space where "neighbors, compatriots and citizens" (categories of ascription from the migration get together, where there is a reproduction of social practices (even the most ancient and fundamental ones, to give a new dimension to a translocal, multilocated and ciberlocated community.

  2. Nucleotides and inorganic phosphates as potential antioxidants.

    Science.gov (United States)

    Richter, Yael; Fischer, Bilha

    2006-11-01

    Highly reactive OH radicals, formed in an iron-ion catalyzed Fenton reaction, are implicated in many pathological conditions. The quest for Fenton reaction inhibitors, either radical scavenger or metal-ion chelator antioxidants, spans the previous decades. Purine nucleotides were previously studied as natural modulators of the Fenton reaction; however, the modulatory role of purine nucleotides remained in dispute. Here, we have resolved this long-standing dispute and demonstrated a concentration-dependent biphasic modulation of the Fenton reaction by nucleotides. By electron spin resonance measurements with 0.1 mM Fe(II), we observed an increase of *OH production at low purine nucleotide concentrations (up to 0.15 mM), while at higher nucleotide concentrations, an exponential decay of *OH concentration was observed. We found that the phosphate moiety, not the nucleoside, determines the pro/antioxidant properties of a nucleotide, suggesting a chelation-based modulation. Furthermore, the biphasic modulation mode is probably due to diverse nucleotide-Fe(II) complexes formed in a concentration-dependent manner. At ATP concentrations much greater than Fe(II) concentrations, multiligand chelates are formed which inhibit the Fenton reaction owing to a full Fe(II) coordination sphere. In addition to natural nucleotides, we investigated a series of base- or phosphate-modified nucleotides, dinucleotides, and inorganic phosphates, as potential biocompatible antioxidants. Ap5A, inorganic thiophosphate and ATP-gamma-S proved highly potent antioxidants with IC50 values of 40, 30, and 10 microM, respectively. ATP-gamma-S proved 100 and 20 times more active than ATP and the potent antioxidant Trolox, respectively. In the presence of 30 microM ATP-gamma-S no *OH was detected after 5 min in the Fenton reaction mixture. The most potent antioxidants identified inhibit the Fenton reaction by forming full coordination sphere chelates.

  3. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is little doubt that chromosomal translocations can contribute to cancer, there is an active "chicken and the egg" discussion about the role translocations and other chromosomal abnormalities play—do they actually cause cancer or merely occur because of other changes within the cancer cell.  

  4. Translocation as a species conservation tool: Status and strategy

    Science.gov (United States)

    Griffith, B.; Scott, J.M.; Carpenter, J.W.; Reed, C.

    1989-01-01

    Surveys of recent (1973 to 1986) intentional releases of native birds and mammals to the wild in Australia, Canada, Hawaii, New Zealand, and the United States, were conducted to document current activities, identify factors associated with success, and suggest guidelines for enhancing future work. Nearly 700 translocations were conducted each year. Native game species constituted percent of translocations and were more successful (86 percent) than were translocations of threatened, endangered, or sensitive species (46 percent). Knowledge of habitat quality, location of release area within the species range, number of animals released, program length, and reproductive traits, allowed currect classification of 81 percent of observed translocations as successful or not.

  5. Obstacle Effects on One-Dimensional Translocation of ATPase

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang

    2002-01-01

    We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  6. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    Science.gov (United States)

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia

    2012-10-01

    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  7. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    Science.gov (United States)

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  8. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    Science.gov (United States)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  9. A critical role of the small GTPase Rac1 in Akt2-mediated GLUT4 translocation in mouse skeletal muscle.

    Science.gov (United States)

    Takenaka, Nobuyuki; Izawa, Rumi; Wu, Junyuan; Kitagawa, Kaho; Nihata, Yuma; Hosooka, Tetsuya; Noguchi, Tetsuya; Ogawa, Wataru; Aiba, Atsu; Satoh, Takaya

    2014-03-01

    Insulin promotes glucose uptake in skeletal muscle by inducing the translocation of the glucose transporter GLUT4 to the plasma membrane. The serine/threonine kinase Akt2 has been implicated as a key regulator of this insulin action. However, the mechanisms whereby Akt2 regulates multiple steps of GLUT4 translocation remain incompletely understood. Recently, the small GTPase Rac1 has been identified as a skeletal muscle-specific regulator of insulin-stimulated glucose uptake. Here, we show that Rac1 is a critical downstream component of the Akt2 pathway in mouse skeletal muscle as well as cultured myocytes. GLUT4 translocation induced by constitutively activated Akt2 was totally dependent on the expression of Rac1 in L6 myocytes. Moreover, we observed the activation of Rac1 when constitutively activated Akt2 was ectopically expressed. Constitutively activated Akt2-triggered Rac1 activation was diminished by knockdown of FLJ00068, a guanine nucleotide exchange factor for Rac1. Knockdown of Akt2, on the other hand, markedly reduced Rac1 activation by a constitutively activated mutant of phosphoinositide 3-kinase. In mouse skeletal muscle, constitutively activated mutants of Akt2 and phosphoinositide 3-kinase, when ectopically expressed, induced GLUT4 translocation. Muscle-specific rac1 knockout markedly diminished Akt2- or phosphoinositide 3-kinase-induced GLUT4 translocation, highlighting a crucial role of Rac1 downstream of Akt2. Taken together, these results strongly suggest a novel regulatory link between Akt2 and Rac1 in insulin-dependent signal transduction leading to glucose uptake in skeletal muscle.

  10. On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Mikkelsen, Kurt V; Kongsted, Jacob

    2010-01-01

    The (15)N NMR spectrum of adenine in aqueous solution has been modeled using high-level combined density functional theory/molecular mechanics techniques coupled to a dynamical averaging scheme. The explicit consideration of the three lowest-energy tautomers of adenine-H9, H7 and H3-allows...

  11. Nucleotide excision repair in the test tube.

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas); J.H.J. Hoeijmakers (Jan)

    1995-01-01

    textabstractThe eukaryotic nucleotide excision-repair pathway has been reconstituted in vitro, an achievement that should hasten the full enzymological characterization of this highly complex DNA-repair pathway.

  12. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF)3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF)3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  13. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  14. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    Science.gov (United States)

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  15. Hydroxyl radical reactions with adenine: reactant complexes, transition states, and product complexes.

    Science.gov (United States)

    Cheng, Qianyi; Gu, Jiande; Compaan, Katherine R; Schaefer, Henry F

    2010-10-18

    In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm

  16. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine

    Directory of Open Access Journals (Sweden)

    Biris AR

    2013-04-01

    Full Text Available Alexandru R Biris,1 Stela Pruneanu,1 Florina Pogacean,1 Mihaela D Lazar,1 Gheorghe Borodi,1 Stefania Ardelean,1 Enkeleda Dervishi,2 Fumiya Watanabe,2 Alexandru S Biris2 1National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania; 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA Abstract: This work describes the synthesis of few-layer graphene sheets embedded with various amounts of gold nanoparticles (Gr-Au-x over an Aux/MgO catalytic system (where x = 1, 2, or 3 wt%. The sheet-like morphology of the Gr-Au-x nanostructures was confirmed by transmission electron microscopy and high resolution transmission electron microscopy, which also demonstrated that the number of layers within the sheets varied from two to seven. The sample with the highest percentage of gold nanoparticles embedded within the graphitic layers (Gr-Au-3 showed the highest degree of crystallinity. This distinct feature, along with the large number of edge-planes seen in high resolution transmission electron microscopic images, has a crucial effect on the electrocatalytic properties of this material. The reaction yields (40%–50% and the final purity (96%–98% of the Gr-Au-x composites were obtained by thermogravimetric analysis. The Gr-Au-x composites were used to modify platinum substrates and subsequently to detect adenine, one of the DNA bases. For the bare electrode, no oxidation signal was recorded. In contrast, all of the modified electrodes showed a strong electrocatalytic effect, and a clear peak for adenine oxidation was recorded at approximately +1.05 V. The highest increase in the electrochemical signal was obtained using a platinum/Gr-Au-3-modified electrode. In addition, this modified electrode had an exchange current density (I0, obtained from the Tafel plot one order of magnitude higher than that of the bare platinum electrode, which also confirmed that

  17. Effects of nucleotides and nucleosides on coagulation

    DEFF Research Database (Denmark)

    Bune, Laurids; Thaning, Pia; Johansson, Pär I;

    2010-01-01

    Nucleotides, including ADP, ATP and uridine triphosphate (UTP), are discharged profusely in the circulation during many pathological conditions including sepsis. Sepsis can cause hypotension and systemic activation of the coagulation and fibrinolytic systems in humans, which may cause disseminated...... intravascular coagulation. We investigated whether nucleotide-induced cardiovascular collapse as provoked by systemic infusion of adenosine, ADP, ATP, UTP and nitric oxide affected the haemostatic system as assessed by whole blood thromboelastography (TEG) analysis. Ten pigs received a randomized infusion...

  18. Pb distribution and translocation in Jiaozhou Bay

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The trends of distribution, translocation and seasonal change of heavy metal Pb were studied based on the surface and bottom water sampling in Jiaozhou Bay in 1979, and compared with those in 1990's. The results showed that the source of Pb in the bay was from wastewater and sewage in the east of Jiaozhou Bay from ocean vessels. Pb concentration was higher in spring and lower in summer and autumn, and remained stable through sedimentation in the bottom layer. The overall water quality was good in 1970's. Compared with the environmental monitoring data of 1995-1999, Pb pollution had become serious. Therefore, more efforts should be made to protect the bay from Pb pollution.

  19. Translocation of uridine diphosphate N-acetylgalactosamine into vesicles derived from rat liver golgi apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Abeijon, C.; Hirschberg, C.B.

    1986-05-01

    N-acetylgalactosamine is the first sugar attached to the peptide backbone of many O-linked glycoproteins. A precursor in the biosynthesis of these macromolecules is UDP-GalNAc, which is synthesized in the cytosol. The mechanism by which this sugar nucleotide becomes available to the specific transferases in the lumen of the Golgi apparatus (GA) is not known. Incubation of sealed, right side out vesicles derived from rat liver GA with UDP-(/sup 3/H)GalNAc resulted in a 100-fold accumulation of soluble radioactive species within these vesicles compared to the incubation medium. Translocation of UDP-GalNAc into the lumen of GA vesicles was temperature dependent and saturable with an apparent Km of 4 ..mu..M. The specific translocation rate of UDP-GalNAc into vesicles from the GA was 5 to 10-fold higher than into vesicles derived from the rough endoplasmic reticulum (RER). The specific activity of N-acetylgalactosaminyltransferase (using apomucin as an exogenous acceptor) was 50-fold higher in membranes derived from the GA than those derived from the RER. These results strongly suggest that in rat liver the addition of GalNAc to the peptide backbone occurs in the lumen of the GA.

  20. Pyridine Nucleotide Cycling and Control of Intracellular Redox State in Relation to Poly (ADP-Ribose) Polymerase Activity and Nuclear Localization of Glutathione during Exponential Growth of Arabidopsis Cells in Culture

    Institute of Scientific and Technical Information of China (English)

    Till K.Pellny; Vittoria Locato; Pedro Diaz Vivancos; Jelena Markovic; Laura De Gara; Federico V.Pallardó; Christine H.Foyer

    2009-01-01

    Pyridine nucleotides,ascorbate and glutathione are major redox metabolites in plant cells,with specific roles in cellular redox homeostasis and the regulation of the cell cycle.However,the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized.The present analysis of the abundance of ascorbate,glutathione,and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools.Ascorbate was most abundant early in the growth cycle,but glutathione was low at this point.The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased.The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information.Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed.Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide,ox-idized form (NAD)-plus-nicotinamide adenine dinucleotide,reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate,oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate,reduced form (NADPH) pool sizes,and NAPD/NADPH ratios were much less affected.The ascorbate,glutathi-one,and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended.We concludethat there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is main-rained by interplay

  1. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    Science.gov (United States)

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  2. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer;

    is a Fluorescent In Situ Hybridization, which is laborious and involves use of expensive reagents [1]. Here we present a label free technique for detection of chromosome translocations. As a proof of concept detection of chromosome translocation between chromosome 3 (Chr3) and chromosome 9 (Chr9) was chosen....

  3. Intestinal translocation of Streptococcus suis type 2 EF+ in pigs

    NARCIS (Netherlands)

    Swildens, B.; Stockhofe-Zurwieden, N.; Meulen, van der J.; Wisselink, H.J.; Nielen, M.; Niewold, T.A.

    2004-01-01

    Sepsis with subsequent multisystem organ failure after translocation of bacteria from the gut is a serious risk associated with stress situations. We showed that intestinal bacterial translocation could be one of the pathways for pathogenic Streptococcus suis infections in the pig. In 24 piglets wei

  4. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum – H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H. villosa 6VS/6AL translocation line were irradiated by 60CO-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translo-cation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by backcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome struc-tural changes, especially for interstitial translocations.

  5. Adenine phosphoribosyltransferase deficiency: an underdiagnosed cause of lithiasis and renal failure.

    Science.gov (United States)

    Marra, Giuseppina; Vercelloni, Paolo Gilles; Edefonti, Alberto; Manzoni, Gianantonio; Pavesi, Maria Angela; Fogazzi, Giovanni Battista; Garigali, Giuseppe; Mockel, Lionel; Picot, Irene Ceballos

    2012-01-01

    We describe an infant affected by adenine phosphoribosyltransferase (APRT) deficiency diagnosed at 18 months of age with a de novo mutation that has not been previously reported. APRT deficiency is a rare defect of uric acid catabolism that leads to the accumulation of 2,8 dihydroxyadenine (2,8-DHA), a highly insoluble substance excreted by the kidneys that may precipitate in urine and form stones. The child suffered from renal colic due to a stone found in the peno-scrotal junction of the bulbar urethra. Stone spectrophotometric analysis allowed us to diagnose the disease and start kidney-saving therapy in order to avoid irreversible chronic kidney damage. APRT deficiency should always be considered in the differential diagnosis of pediatric urolithiasis.

  6. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    Science.gov (United States)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  7. Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC.

    Science.gov (United States)

    García del Moral, Pilar; Arín, María Jesús; Resines, José Antonio; Díez, María Teresa

    2005-11-05

    An ion-pair reversed-phase high-performance liquid chromatography with gradient elution and UV detection was used to measure adenine (A) and guanine (G) in lyophilized bacterial pellets from ruminants using allopurinol as internal standard. The separation was performed on a Symmetry C18 column and the detection was monitored at 280 nm. Calibration curves were found to be linear in the concentration range from 5 to 50 mg/l with correlation coefficients (r2)>0.999. Mean recoveries of A and G standards added to bacterial samples were 102.2 and 98.2, respectively. The method proposed yielded sharp, well-resolved peaks within 25 min and was successfully applied for the determination of A and G in bacterial pellets.

  8. Animal models of pediatric chronic kidney disease. Is adenine intake an appropriate model?

    Directory of Open Access Journals (Sweden)

    Débora Claramunt

    2015-11-01

    Full Text Available Pediatric chronic kidney disease (CKD has peculiar features. In particular, growth impairment is a major clinical manifestation of CKD that debuts in pediatric age because it presents in a large proportion of infants and children with CKD and has a profound impact on the self-esteem and social integration of the stunted patients. Several factors associated with CKD may lead to growth retardation by interfering with the normal physiology of growth plate, the organ where longitudinal growth rate takes place. The study of growth plate is hardly possible in humans and justifies the use of animal models. Young rats made uremic by 5/6 nephrectomy have been widely used as a model to investigate growth retardation in CKD. This article examines the characteristics of this model and analyzes the utilization of CKD induced by high adenine diet as an alternative research protocol.

  9. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations

    Science.gov (United States)

    Manara, Richard M. A.; Tomasio, Susana; Khalid, Syma

    2015-01-01

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is “exonuclease sequencing”, in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  10. The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations.

    Science.gov (United States)

    Manara, Richard M A; Tomasio, Susana; Khalid, Syma

    2015-01-27

    Nanopore technology for DNA sequencing is constantly being refined and improved. In strand sequencing a single strand of DNA is fed through a nanopore and subsequent fluctuations in the current are measured. A major hurdle is that the DNA is translocated through the pore at a rate that is too fast for the current measurement systems. An alternative approach is "exonuclease sequencing", in which an exonuclease is attached to the nanopore that is able to process the strand, cleaving off one base at a time. The bases then flow through the nanopore and the current is measured. This method has the advantage of potentially solving the translocation rate problem, as the speed is controlled by the exonuclease. Here we consider the practical details of exonuclease attachment to the protein alpha hemolysin. We employ molecular dynamics simulations to determine the ideal (a) distance from alpha-hemolysin, and (b) the orientation of the monophosphate nucleotides upon release from the exonuclease such that they will enter the protein. Our results indicate an almost linear decrease in the probability of entry into the protein with increasing distance of nucleotide release. The nucleotide orientation is less significant for entry into the protein.

  11. Substrate specificity and stereospecificity of nicotinamide adenine dinucleotide-linked alcohol dehydrogenases from methanol-grown yeasts.

    OpenAIRE

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Marczak, I

    1981-01-01

    Nicotine adenine dinucleotide-linked primary alcohol dehydrogenase and a newly discovered secondary alcohol dehydrogenase coexist in most strains of methanol-grown yeasts. Alcohol dehydrogenases from methanol-grown yeasts oxidize (--)-2-butanol preferentially over its (+) enantiomorph. This is substantially different from alcohol dehydrogenases from bakers' yeast and horse liver.

  12. Simultaneous determination of adenine,uridine and adenosine in cordyceps sinensis and its substitutes by LC/ESI-MS

    Institute of Scientific and Technical Information of China (English)

    黄兰芳; 吴名剑; 孙贤军; 郭方遒; 梁逸曾; 李晓如

    2004-01-01

    A simple, sensitive and reproducible high performance liquid chromatography-mass spectrometry coupled with electrospray ionization method for simultaneous separation and determination of adenine, adenosine and uridine was developed. The analytical column is a 2.0 mm× 150 mm Shimadzu VP-ODS column and volume fraction of the mobile phase is 86.5 %water, 12.0%methanol and 1.5%formic acid. 2-chloroadenosine was used as internal standard. Selective ion monitoring mode and selective ion monitoring ions at ratio of mass to electric charge of 136 for adenine, 268 for adenosine and 267 for uridine were chosen for quantitative analysis of the three active components. The results show that the regression equations and linear range are Y=0. 062X+0. 005 and 2.0 - 140.0μg · mL 1for adenine, Y=0. 049X+0. 004 and 4. 0 - 115.0 μg · mL-1 for uridine, Y=0. 154X+0. 014 and 1.0 - 125.0 μg · mL 1 for adenosine. The limits of detection are 0.6 μg · mL 1 for adenine, 1.0μg · mL-1 for uri dine and 0.2 μg · mL 1 for adenosine.The recoveries of the three constituents are from 96.6% to 103.2%.

  13. Adenine adsorption on Au(1 1 1) and Au(1 0 0) electrodes: Characterisation, surface reconstruction effects and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Cesar [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain); Prieto, Francisco [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain); Rueda, Manuela [Department of Physical Chemistry, University of Sevilla, c/ Prof. Garcia Gonzalez n 2, Sevilla 41012 (Spain)]. E-mail: marueda@us.es; Feliu, Juan [Department of Physical Chemistry, University of Alicante, Apart 99, Alicante E-03080 (Spain); Aldaz, Antonio [Department of Physical Chemistry, University of Alicante, Apart 99, Alicante E-03080 (Spain)

    2007-02-15

    Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO{sub 4} and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the E {sub pzc} values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction. The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.

  14. Reduced Graphene Oxide/α-Cyclodextrin-Based Electrochemical Sensor: Characterization and Simultaneous Detection of Adenine, Guanine and Thymine

    Directory of Open Access Journals (Sweden)

    Erhan ZOR

    2016-12-01

    Full Text Available Graphene, the rising star of carbon nanomaterials, is a single layer of sp2-bonded carbon atoms patterned in a 2D honeycomb network. Thanks to its unique features, graphene has attracted enormous attention and it has arisen various applications in the fields of optical and electrochemical sensors. In the present work, reduced graphene oxide/alpha cyclodextrin (rGO/α-CD is proposed as a nanocomposite for individual and simultaneous detection of adenine, guanine and thymine. rGO/α-CD has been characterized by FT-IR, Raman spectroscopy, AFM, HR-TEM and SEM techniques. Cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques were utilized for detection of adenine, guanine and thymine. The limit of detection (LOD values for adenine, guanine and thymine were calculated to be 145.5, 38.9 and 52.9 nmol L-1, respectively. The results show that the developed sensor can be utilized for the determination of adenine, guanine and thymine in human serum, indicating its promising application in the analysis of real samples.

  15. 3-Methyl-2-butenal: an enzymatic degradation product of the cytokinin, N-6-(delta-2 isopentenyl)adenine.

    Science.gov (United States)

    Brownlee, B G; Hall, R H; Whitty, C D

    1975-01-01

    An enzyme preparation from immature corn kernels catalyzed cleavage of N-6-(delta-2-isopentenyl)adenine to give the aldehyde, 3-methyl-2-butenal, as the major side-chain derived product. This product, in the form of the semicarbazone, was identical with an authentic product by several criteria: chromatographic behavior, mass and ultraviolet spectra.

  16. Effects of Low-Molecular-Weight-Chitosan on the Adenine- Induced Chronic Renal Failure Ratsin vitro andin vivo

    Institute of Scientific and Technical Information of China (English)

    ZHI Xuan; HAN Baoqin; SUI Xianxian; HU Rui; LIU Wanshun

    2015-01-01

    Theeffects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigatedin vivoand in vitro. Chitosan were hydrolyzed using chitosanase at pH 6–7 and 37℃ for 24h to obtain LMWC.In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For theinvivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the controlgroup, indicating that the rat chronic renal failure model worked successfully. The re-sults after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100mgkg−1d−1.

  17. Surface-enhanced Raman spectroscopy (SERS) for identifying traces of adenine in different mineral and rock samples

    Science.gov (United States)

    Lafuente, B.; Navarro, R.; Sansano, A.; Rull, F.

    2012-09-01

    The aim of this study is to analyze the potentials of SERS as a technique for in-situ identification of life traces in Mars surface explorations using the Raman instrument (RLS), payload of the ESA Mars mission Exomars. This preliminary study focused on detection of adenine on a variety of rocks soils samples using macro-SERS detection.

  18. Flavin adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Evers, Melchior E.; Titorenko, Vladimir; Harder, Wim; Klei, Ida van der; Veenhuis, Marten

    1996-01-01

    We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a parti

  19. Kinetics and thermodynamics of the reaction between the •OH radical and adenine – a theoretical investigation

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2015-01-01

    The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the •OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the wB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First the comp......The accessibility of all possible reaction paths for the reaction between the nucleobase adenine and the •OH radical is investigated through quantum chemical calculations of barrier heights and rate constants at the wB97X-D/6-311++G(2df,2pd) level with Eckart tunneling corrections. First...... the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimised with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X and wB97X-D), in combination...... and with the Wigner, Bell and Eckart corrections. Compared to CCSD(T)//BHandHLYP/aug-cc-pVTZ reference results, the wB97XD/6-311++G(2df,2pd) method combined with Eckart tunneling corrections provides a sensible compromise between accuracy and time. Using this method all sub-reactions of the reaction between adenine...

  20. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways

    Directory of Open Access Journals (Sweden)

    Chakrabarti G

    2015-03-01

    Full Text Available Gaurab Chakrabarti,1,2,4 David E Gerber,3,4 David A Boothman1,2,4 1Department of Pharmacology, 2Department of Radiation Oncology, 3Division of Hematology and Oncology, 4Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress. It is equally important to select NADPH-biogenic pathways that are expendable or not utilized in normal tissue to avoid unwanted toxicity. Here, we address recent literature that demonstrates specific tumor-selective NADPH-biogenesis pathways that can be exploited using agents that target specific cancer cell pathways normally not utilized in normal cells. Defining NADPH-biogenesis profiles of specific cancer-types should enable novel strategies to exploit these therapeutic windows for increased efficacy against recalcitrant neoplastic disease, such as pancreatic cancers. Accomplishing the goal of using ROS as a weapon against cancer cells will also require agents, such as NQO1 bioactivatable drugs, that selectively induce elevated ROS levels in cancer cells, while normal cells are protected. Keywords: reactive oxygen species (ROS, NQO1-bioactivatable drugs, nicotinamide adenine dinucleotide phosphate (NADPH, glutathione (GSH, biogenic pathways, antioxidant

  1. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation.

    Science.gov (United States)

    López-Garrido, Javier; Casadesús, Josep

    2010-03-01

    DNA adenine methylase (Dam(-)) mutants of Salmonella enterica are attenuated in the mouse model and present multiple virulence-related defects. Impaired interaction of Salmonella Dam(-) mutants with the intestinal epithelium has been tentatively correlated with reduced secretion of pathogenicity island 1 (SPI-1) effectors. In this study, we show that S. enterica Dam(-) mutants contain lowered levels of the SPI-1 transcriptional regulators HilA, HilC, HilD, and InvF. Epistasis analysis indicates that Dam-dependent regulation of SPI-1 requires HilD, while HilA, HilC, and InvF are dispensable. A transcriptional hilDlac fusion is expressed at similar levels in Dam(+) and Dam(-) hosts. However, lower levels of hilD mRNA are found in a Dam(-) background, thus providing unsuspected evidence that Dam methylation might exert post-transcriptional regulation of hilD expression. This hypothesis is supported by the following lines of evidence: (i) lowered levels of hilD mRNA are found in Salmonella Dam(-) mutants when hilD is transcribed from a heterologous promoter; (ii) increased hilD mRNA turnover is observed in Dam(-) mutants; (iii) lack of the Hfq RNA chaperone enhances hilD mRNA instability in Dam(-) mutants; and (iv) lack of the RNA degradosome components polynucleotide phosphorylase and ribonuclease E suppresses hilD mRNA instability in a Dam(-) background. Our report of Dam-dependent control of hilD mRNA stability suggests that DNA adenine methylation plays hitherto unknown roles in post-transcriptional control of gene expression.

  2. Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine

    Science.gov (United States)

    Yun, Yu; Gao, Tao; Li, Yue; Gao, Zhiyi; Duan, Jinlian; Yin, Hua

    2016-01-01

    The main aim of the study was to prove the compensative effect of intestine for renal function. Rat kidney was impaired by intragastrically administrating adenine (400 mg per day for 5 days). Intestinal tract was harvested and equally divided into 20 segments except cecum. Kidneys were harvested and histologically examined with hematoxylin-eosin staining kits. Uric acid, urea (BUN), and creatinine in serum were determined with assay kits, and BUN and creatinine in every intestinal segment were also determined. The results showed that adenine was able to increase uric acid level in serum from 20.98 ± 6.98 μg/mL to 40.77 ± 7.52 μg/mL and cause renal function damage with BUN (from 3.87 ± 0.62 mM to 12.33 ± 3.27 mM) and creatinine (from 51.48 ± 6.98 μM to 118.25 ± 28.63 μM) increasing in serum and with abnormally micromorphological changes in kidney. The amount of BUN and creatinine distributed in intestinal tract was positively correlated with those in blood. In impaired renal function rats, the amount of BUN (from 4.26 ± 0.21 μMole to 10.72 ± 0.55 μMole) and creatinine (from 681.4 ± 23.3 nMole to 928.7 ± 21.3 nMole) distributed in intestinal tract significantly increased. All the results proved that intestinal tract had excretory function compensative for renal function. PMID:27975080

  3. Multistep Current Signal in Protein Translocation through Graphene Nanopores

    KAUST Repository

    Bonome, Emma Letizia

    2015-05-07

    © 2015 American Chemical Society. In nanopore sensing experiments, the properties of molecules are probed by the variation of ionic currents flowing through the nanopore. In this context, the electronic properties and the single-layer thickness of graphene constitute a major advantage for molecule characterization. Here we analyze the translocation pathway of the thioredoxin protein across a graphene nanopore, and the related ionic currents, by integrating two nonequilibrium molecular dynamics methods with a bioinformatic structural analysis. To obtain a qualitative picture of the translocation process and to identify salient features we performed unsupervised structural clustering on translocation conformations. This allowed us to identify some specific and robust translocation intermediates, characterized by significantly different ionic current flows. We found that the ion current strictly anticorrelates with the amount of pore occupancy by thioredoxin residues, providing a putative explanation of the multilevel current scenario observed in recently published translocation experiments.

  4. Chaperone-assisted translocation of flexible polymers in three dimensions

    CERN Document Server

    Suhonen, P M

    2016-01-01

    Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain $\\beta \\approx 1.26$ for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be ...

  5. Translocations of amphibians: Proven management method or experimental technique

    Science.gov (United States)

    Seigel, Richard A.; Dodd, C. Kenneth

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  6. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available BACKGROUND: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. METHODOLOGY/PRINCIPAL FINDINGS: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. CONCLUSIONS/SIGNIFICANCE: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a

  7. Lack of hepcidin ameliorates anemia and improves growth in an adenine-induced mouse model of chronic kidney disease.

    Science.gov (United States)

    Akchurin, Oleh; Sureshbabu, Angara; Doty, Steve B; Zhu, Yuan-Shan; Patino, Edwin; Cunningham-Rundles, Susanna; Choi, Mary E; Boskey, Adele; Rivella, Stefano

    2016-11-01

    Growth delay is common in children with chronic kidney disease (CKD), often associated with poor quality of life. The role of anemia in uremic growth delay is poorly understood. Here we describe an induction of uremic growth retardation by a 0.2% adenine diet in wild-type (WT) and hepcidin gene (Hamp) knockout (KO) mice, compared with their respective littermates fed a regular diet. Experiments were started at weaning (3 wk). After 8 wk, blood was collected and mice were euthanized. Adenine-fed WT mice developed CKD (blood urea nitrogen 82.8 ± 11.6 mg/dl and creatinine 0.57 ± 0.07 mg/dl) and were 2.1 cm shorter compared with WT controls. WT adenine-fed mice were anemic and had low serum iron, elevated Hamp, and elevated IL6 and TNF-α. WT adenine-fed mice had advanced mineral bone disease (serum phosphorus 16.9 ± 3.1 mg/dl and FGF23 204.0 ± 115.0 ng/ml) with loss of cortical and trabecular bone volume seen on microcomputed tomography. Hamp disruption rescued the anemia phenotype resulting in improved growth rate in mice with CKD, thus providing direct experimental evidence of the relationship between Hamp pathway and growth impairment in CKD. Hamp disruption ameliorated CKD-induced growth hormone-insulin-like growth factor 1 axis derangements and growth plate alterations. Disruption of Hamp did not mitigate the development of uremia, inflammation, and mineral and bone disease in this model. Taken together, these results indicate that an adenine diet can be successfully used to study growth in mice with CKD. Hepcidin appears to be related to pathways of growth retardation in CKD suggesting that investigation of hepcidin-lowering therapies in juvenile CKD is warranted.

  8. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  9. Bacterial Translocation and Change in Intestinal Permeability in Patients after Abdominal Surgery

    Institute of Scientific and Technical Information of China (English)

    Zhi QIAO; Zhanliang LI; Jiye LI; Lianrong LU; Yi LV; Junyou LI

    2009-01-01

    sely related with bacterial translocation. Intestinal bacterial translocation (most commonly E. coli) might occur at early stage (2 h) after ab-dominal surgery. Postoperative SIRS and infection might bear a close relationship with bacterial translocation.

  10. The Type ISP Restriction-Modification enzymes LlaBIII and LlaGI use a translocation-collision mechanism to cleave non-specific DNA distant from their recognition sites.

    Science.gov (United States)

    Šišáková, Eva; van Aelst, Kara; Diffin, Fiona M; Szczelkun, Mark D

    2013-01-01

    The Type ISP Restriction-Modification (RM) enzyme LlaBIII is encoded on plasmid pJW566 and can protect Lactococcus lactis strains against bacteriophage infections in milk fermentations. It is a single polypeptide RM enzyme comprising Mrr endonuclease, DNA helicase, adenine methyltransferase and target-recognition domains. LlaBIII shares >95% amino acid sequence homology across its first three protein domains with the Type ISP enzyme LlaGI. Here, we determine the recognition sequence of LlaBIII (5'-TnAGCC-3', where the adenine complementary to the underlined base is methylated), and characterize its enzyme activities. LlaBIII shares key enzymatic features with LlaGI; namely, adenosine triphosphate-dependent DNA translocation (∼309 bp/s at 25°C) and a requirement for DNA cleavage of two recognition sites in an inverted head-to-head repeat. However, LlaBIII requires K(+) ions to prevent non-specific DNA cleavage, conditions which affect the translocation and cleavage properties of LlaGI. By identifying the locations of the non-specific dsDNA breaks introduced by LlaGI or LlaBIII under different buffer conditions, we validate that the Type ISP RM enzymes use a common translocation-collision mechanism to trigger endonuclease activity. In their favoured in vitro buffer, both LlaGI and LlaBIII produce a normal distribution of random cleavage loci centred midway between the sites. In contrast, LlaGI in K(+) ions produces a far more distributive cleavage profile.

  11. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    CHEN ShengWei; CHEN PeiDu; WANG XiuE

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an Important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum - H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H, villosa 6VS/6AL trsnslocation line were irradiated by 60Co-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translocation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by bsckcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome structural changes, especially for interstitial translocations.

  12. Nuclear translocation of β-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

    Science.gov (United States)

    Herencia, Carmen; Martínez-Moreno, Julio M; Herrera, Concepción; Corrales, Fernando; Santiago-Mora, Raquel; Espejo, Isabel; Barco, Monserrat; Almadén, Yolanda; de la Mata, Manuel; Rodríguez-Ariza, Antonio; Muñoz-Castañeda, Juan R

    2012-01-01

    Wnt/β-catenin pathway controls biochemical processes related to cell differentiation. In committed cells the alteration of this pathway has been associated with tumors as hepatocellular carcinoma or hepatoblastoma. The present study evaluated the role of Wnt/β-catenin activation during human mesenchymal stem cells differentiation into hepatocytes. The differentiation to hepatocytes was achieved by the addition of two different conditioned media. In one of them, β-catenin nuclear translocation, up-regulation of genes related to the Wnt/β-catenin pathway, such as Lrp5 and Fzd3, as well as the oncogenes c-myc and p53 were observed. While in the other protocol there was a Wnt/β-catenin inactivation. Hepatocytes with nuclear translocation of β-catenin also had abnormal cellular proliferation, and expressed membrane proteins involved in hepatocellular carcinoma, metastatic behavior and cancer stem cells. Further, these cells had also increased auto-renewal capability as shown in spheroids formation assay. Comparison of both differentiation protocols by 2D-DIGE proteomic analysis revealed differential expression of 11 proteins with altered expression in hepatocellular carcinoma. Cathepsin B and D, adenine phosphoribosyltransferase, triosephosphate isomerase, inorganic pyrophosphatase, peptidyl-prolyl cis-trans isomerase A or lactate dehydrogenase β-chain were up-regulated only with the protocol associated with Wnt signaling activation while other proteins involved in tumor suppression, such as transgelin or tropomyosin β-chain were down-regulated in this protocol. In conclusion, our results suggest that activation of the Wnt/β-catenin pathway during human mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype.

  13. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress.

    Science.gov (United States)

    Im, Jong Hee; Lee, Hyoungseok; Kim, Jitae; Kim, Ho Bang; An, Chung Sun

    2012-09-01

    Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.

  14. Genetic outcomes from the translocations of the critically endangered woylie

    Institute of Scientific and Technical Information of China (English)

    Carlo PACIONI; Adrian F.WAYNE; Peter B.S.SPENCER

    2013-01-01

    Translocations are an important conservation strategy for many species.However simply observing demographic growth of a translocated population is not sufficient to infer species recovery.Adequate genetic representation of the source population(s) and their long-term viability should also be considered.The woylie Bettongiapenicillata ogilbyi has been subject to more formal translocations for conservation than any other marsupial that,up until recently,has resulted in one of the most successful species recoveries in Australia.We used mitochondrial and nuclear DNA markers to assess the genetic outcomes of translocated woylie populations.These populations have lost genetic variability,differentiated from their source population and the supplementation program on two island populations appears to have failed.We discuss the conservation implications that our results have for managing threatened species,outline some general recommendations for the management of present and future translocations and discuss the appropriate sampling design for the establishment of new populations or captive breeding programs that may mitigate the genetic ‘erosion' seen in our study species.This research provides some practical outcomes and a pmgrnatic understanding of translocation biology.The findings are directly applicable to other translocation programs.

  15. Kinetic mechanism of DNA translocation by the RSC molecular motor.

    Science.gov (United States)

    Eastlund, Allen; Malik, Shuja Shafi; Fischer, Christopher J

    2013-04-15

    ATP-dependent nucleosome repositioning by chromatin remodeling enzymes requires the translocation of these enzymes along the nucleosomal DNA. Using a fluorescence stopped-flow assay we monitored DNA translocation by a minimal RSC motor and through global analysis of these time courses we have determined that this motor has a macroscopic translocation rate of 2.9 bp/s with a step size of 1.24 bp. From the complementary quantitative analysis of the associated time courses of ATP consumption during DNA translocation we have determined that this motor has an efficiency of 3.0 ATP/bp, which is slightly less that the efficiency observed for several genetically related DNA helicases and which likely results from random pausing by the motor during translocation. Nevertheless, this motor is able to exert enough force during translocation to displace streptavidin from biotinylated DNA. Taken together these results are the necessary first step for quantifying both the role of DNA translocation in nucleosome repositioning by RSC and the efficiency at which RSC couples ATP binding and hydrolysis to nucleosome repositioning.

  16. Translocation of gut flora and its role in sepsis

    Directory of Open Access Journals (Sweden)

    C Vaishnavi

    2013-01-01

    Full Text Available Bacterial translocation is the invasion of indigenous intestinal bacteria through the gut mucosa to normally sterile tissues and the internal organs. Sometimes instead of bacteria, inflammatory compounds are responsible for clinical symptoms as in systemic inflammatory response syndrome (SIRS. The difference between sepsis and SIRS is that pathogenic bacteria are isolated from patients with sepsis but not with those of SIRS. Bacterial translocation occurs more frequently in patients with intestinal obstruction and in immunocompromised patients and is the cause of subsequent sepsis. Factors that can trigger bacterial translocation from the gut are host immune deficiencies and immunosuppression, disturbances in normal ecological balance of gut, mucosal barrier permeability, obstructive jaundice, stress, etc. Bacterial translocation occurs through the transcellular and the paracellular pathways and can be measured both directly by culture of mesenteric lymph nodes and indirectly by using labeled bacteria, peripheral blood culture, detection of microbial DNA or endotoxin and urinary excretion of non-metabolisable sugars. Bacterial translocation may be a normal phenomenon occurring on frequent basis in healthy individuals without any deleterious consequences. But when the immune system is challenged extensively, it breaks down and results in septic complications at different sites away from the main focus. The factors released from the gut and carried in the mesenteric lymphatics but not in the portal blood are enough to cause multi-organ failure. Thus, bacterial translocation may be a promoter of sepsis but not the initiator. This paper reviews literature on the translocation of gut flora and its role in causing sepsis.

  17. Does translocation influence physiological stress in the desert tortoise?

    Science.gov (United States)

    Drake, K.K.; Nussear, K.E.; Esque, T.C.; Barber, A.M.; Vittum, K.M.; Medica, P.A.; Tracy, C.R.; Hunter, K.W.

    2012-01-01

    Wildlife translocation is increasingly used to mitigate disturbances to animals or habitat due to human activities, yet little is known about the extent to which translocating animals causes stress. To understand the relationship between physiological stress and translocation, we conducted a multiyear study (2007–2009) using a population of desert tortoises (Gopherus agassizii) near Fort Irwin, California. Blood samples were collected from adult tortoises in three treatment groups (resident, translocated and control) for 1 year prior to and 2 years after translocation. Samples were analyzed by radioimmunoassay for plasma total corticosterone (CORT), a glucocorticoid hormone commonly associated with stress responses in reptiles. CORT values were analyzed in relation to potential covariates (animal sex, date, behavior, treatment, handling time, air temperature, home-range size, precipitation and annual plant production) among seasons and years. CORT values in males were higher than in females, and values for both varied monthly throughout the activity season and among years. Year and sex were strong predictors of CORT, and translocation explained little in terms of CORT. Based on these results, we conclude that translocation does not elicit a physiological stress response in desert tortoises.

  18. The International Nucleotide Sequence Database Collaboration

    Science.gov (United States)

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Takagi, Toshihisa; Sequence Database Collaboration, International Nucleotide

    2016-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org) comprises three global partners committed to capturing, preserving and providing comprehensive public-domain nucleotide sequence information. The INSDC establishes standards, formats and protocols for data and metadata to make it easier for individuals and organisations to submit their nucleotide data reliably to public archives. This work enables the continuous, global exchange of information about living things. Here we present an update of the INSDC in 2015, including data growth and diversification, new standards and requirements by publishers for authors to submit their data to the public archives. The INSDC serves as a model for data sharing in the life sciences. PMID:26657633

  19. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  20. Translocation of threatened plants as a conservation measure in China.

    Science.gov (United States)

    Liu, Hong; Ren, Hai; Liu, Qiang; Wen, XiangYing; Maunder, Michael; Gao, JiangYun

    2015-12-01

    We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely

  1. Effects of nucleotides and nucleosides on coagulation

    DEFF Research Database (Denmark)

    Bune, Laurids; Thaning, Pia; Johansson, Pär I;

    2010-01-01

    intravascular coagulation. We investigated whether nucleotide-induced cardiovascular collapse as provoked by systemic infusion of adenosine, ADP, ATP, UTP and nitric oxide affected the haemostatic system as assessed by whole blood thromboelastography (TEG) analysis. Ten pigs received a randomized infusion......Nucleotides, including ADP, ATP and uridine triphosphate (UTP), are discharged profusely in the circulation during many pathological conditions including sepsis. Sepsis can cause hypotension and systemic activation of the coagulation and fibrinolytic systems in humans, which may cause disseminated.......7 ng/ml; P blood was evaluated by TEG. Circulating ADP induces hypocoagulation without signs of increased fibrinolysis as evaluated by TEG. The potential...

  2. [Mechanisms of bacteria translocation in generalized chronic parodontitis].

    Science.gov (United States)

    Bukharin, O V; Usviatsov, B Ia; Doroshina, N B; Kushkinbaeva, D R; Khlopko, Iu A

    2011-01-01

    Peculiarities of behavior reactions of bacteria-symbionts created conditions for the selection of translocators-strains. In microsymbiocenosis of parodontal pockets, from which translocation of bacteria into the blood was observed, the number of signals from intermicrobial communication, inhibiting the expression of the factors of colonization, virulence and persistence, was decreasing. Meanwhile, the number of signals on the increase of the expression of the factors given was increased. In 75% of cases strains-translocators were leaders; they gave more often signals on the inhibition of the growth of other strains-symbionts.

  3. Bacterial translocation - impact on the adipocyte compartment.

    Science.gov (United States)

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2014-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn's disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called "creeping fat." The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.

  4. Energy-dependent intracellular translocation of proparathormone.

    Science.gov (United States)

    Chu, L L; MacGregor, R R; Cohn, D V

    1977-01-01

    We previously suggested that after synthesis, proparathormone is transferred from rough endoplasmic reticulum to the Golgi region where its conversion to parathormone occurs. We have attempted to define more closely this transfer process. In the first type of study, bovine parathyroid slices were incubated with [3H]leucine for 10 min and then radioisotope labeling was restricted by addition of a large excess of nonradioactive leucine. Under these conditions, more than 90% of the initially labeled proparathormone was converted to parathormone in 40 min. Lowered temperature in the chase period markedly inhibited the conversion. Several chemical agents were employed individually in the chase period to examine their effect on the conversion process. Antimycin A, dinitrophenol, oligomycin, and anaerobiosis (N2) inhibited the conversion, whereas sodium flouride and cycloheximide had no effect. In the second type of study, parathyroid slices were incubated with [3H]leucine for the entire incubation period. Lowered temperature and inhibitors of energy metabolism and microtubular function all lengthened the interval (lag) between the initial synthesis of [3H]parathormone. Cycloheximide, Tris, and chloroquine decreased the rates of protein synthesis and conversion, respectively, but none had any effect on the lag. We interpret the lag to represent the time of transit for proparathormone from rough endoplasmic reticulum to the Golgi region. We conclude that this transfer process is independent of the synthesis of the prohormone and its conversion to the hormone. Moreover, this translocation requires metabolic energy and appears to be mediated by microtubules.

  5. Efficacy of Adenine in the Treatment of Leukopenia and Neutropenia Associated with an Overdose of Antipsychotics or Discontinuation of Lithium Carbonate Administration: Three Case Studies

    Science.gov (United States)

    Tomita, Takashi; Goto, Hidekazu; Sumiya, Kenji; Yoshida, Tadashi; Tanaka, Katsuya; Kohda, Yukinao

    2016-01-01

    Because adenine is effective for managing cases of radiation-induced and drug-induced leukopenia, it may be effective in cases of antipsychotic-induced leukopenia and neutropenia. Here, we report our experience with patients with leukopenia and neutropenia caused by an antipsychotic overdose or discontinuation of lithium carbonate, in whom adenine administration ameliorated the white blood cell and neutrophil counts. The progress of patients suggests that adenine is effective in cases of leukopenia and neutropenia associated with lithium carbonate discontinuation and an antipsychotic overdose. PMID:27776394

  6. De Novo microdeletion on an inherited Robertsonian translocation chromosome: A cause for dysmorphism in the apparently balanced translocation carrier

    Energy Technology Data Exchange (ETDEWEB)

    Bonthron, D.T.; Smith, S.J.L.; Fantes, J.; Gosden, C.M.

    1993-09-01

    Robertsonian translocations are usually ascertained through abnormal children, making proposed phenotypic effects of apparently balanced translocations difficult to study in an unbiased way. From molecular genetic studies, though, some apparently balanced rearrangments are now known to be associated with phenotypic abnormalities resulting from uniparental disomy. Molecular explanations for other cases in which abnormality is seen in a balanced translocation carrier are being sought. In the present paper, an infant is described who has retarded growth, developmental delay, gross muscular hypotonia, slender habitus, frontal bossing, micrognathia, hooked nose, abundant wispy hair, and blue sclerae. Cytogenetically, she appeared to be a carrier of a balanced, paternally derived 14;21 Robertsonian translocation. Analysis of DNA polymorphisms showed that she had no paternal allele at the D14S13 locus (14q32). Study of additional DNA markers within 14q32 revealed that her previously undescribed phenotype results from an interstitial microdeletion within 14q32. Fluorescent in situ hybridization was used to show that this microdeletion had occurred de novo on the Robertsonian translocation chromosome. These observations may reactivate old suspicions of a causal association between Robertsonian translocations and de novo rearrangements in offspring; a systematic search for similar subcytogentic rearrangements in other families, in which there are phenotypically abnormal children with apparently balanced translocations, may be fruitful. The clinical and molecular genetic data presented also define a new contiguous gene syndrome due to interstitial 14q32 deletion. 42 refs., 4 figs., 1 tab.

  7. [Sublicons containing amino acids and nucleotides].

    Science.gov (United States)

    Kaĭmakov, E A

    1979-01-01

    Sublicons have been obtained. Sublicons are threadlike structures appearing during sublimation of frozen solutions of small concentrations, containing racemate mixture of amino acids and nucleotides. It is suggested that close location of chains and their zonal distribution by the section of helix spire forming sublicon wall, should provide the formation of stereohomogenous and complementary successions of biomonomers of different clases.

  8. TRANSLOCATION OF BACTERIA AND ENDOTOXIN IN ORGAN DONORS

    NARCIS (Netherlands)

    van Goor, Harry; Rosman, C; Kooi, K; Wubbels, GH; Bleichrodt, RP

    1994-01-01

    Objective: To determine if bacterial translocation and endotoxin absorption occur in organ donors with an anatomically intact gastrointestinal tract. Design: Case series. Setting: Intensive care units in general and university hospitals. Patients: Twenty-one (multiple) organ donors. Intervention: No

  9. Influence of Methylobacterium on iron translocation in plants.

    Science.gov (United States)

    Bishop, Yvonne M; Barton, Larry L; Johnson, Gordon V

    2011-06-01

    Iron metabolism in plants is essential to maintain optimal growth and iron nutrition is dependent on uptake of iron from the environment and movement of iron in the plant tissues. We have examined the translocation of iron in plant leaves following foliar application of FeEDTA to Vicia faba and Zea mays. Using radiolabeled iron, we observed that iron translocation is stimulated by products of Methylobacterium mesophylicum and by the cytokinin, kinetin. When cytokinins were applied to leaves along with (55)FeEDTA, the rate of iron translocation was greater than in controls without cytokinin addition. Since recent studies indicate that M. mesophylicum is widely distributed in the environment as a pyllospheric bacterium, this organism may have an important role in enhancing translocation of nutrients in plant leaves.

  10. DNA translocations through solid-state plasmonic nanopores.

    Science.gov (United States)

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  11. DNA-graphene interactions during translocation through nanogaps

    Science.gov (United States)

    Patel, Hiral N.; Carroll, Ian; Lopez, Rodolfo; Sankararaman, Sandeep; Etienne, Charles; Kodigala, Subba Ramaiah; Paul, Mark R.

    2017-01-01

    We study how double-stranded DNA translocates through graphene nanogaps. Nanogaps are fabricated with a novel capillary-force induced graphene nanogap formation technique. DNA translocation signatures for nanogaps are qualitatively different from those obtained with circular nanopores, owing to the distinct shape of the gaps discussed here. Translocation time and conductance values vary by ∼ 100%, which we suggest are caused by local gap width variations. We also observe exponentially relaxing current traces. We suggest that slow relaxation of the graphene membrane following DNA translocation may be responsible. We conclude that DNA-graphene interactions are important, and need to be considered for graphene-nanogap based devices. This work further opens up new avenues for direct read of single molecule activitities, and possibly sequencing. PMID:28158244

  12. Fragility in the 14q21q translocation region

    Directory of Open Access Journals (Sweden)

    Stacy R. Denison

    2002-01-01

    Full Text Available Aphidicolin (APC-induced chromosomal breakage was analyzed for women representing three generations of a single family and carrying a Robertsonian translocation rob(14q21q. Fluorescence in situ hybridization (FISH analysis confirmed the dicentric constitution of the derived chromosome and indicated the absence of beta-satellite signal at the translocation region. Per-individual analysis of metaphases from APC-treated peripheral blood lymphocyte cultures identified significantly nonrandom chromosomal breakage at the translocation region in all three individuals examined. The APC-inducible fragility at the 14q21q translocation region suggests that this rearrangement was the result of chromosomal mutation at fragile site(s in the progenitor chromosomes, or that this fragility was the result of the fusion of nonfragile progenitor chromosomes.

  13. Survival of mountain quail translocated from two distinct source populations

    Science.gov (United States)

    Troy, Ronald J.; Coates, Peter S.; Connelly, John W.; Gillette, Gifford; Delehanty, David J.

    2013-01-01

    Translocation of mountain quail (Oreortyx pictus) to restore viable populations to their former range has become a common practice. Because differences in post-release vital rates between animals from multiple source populations has not been well studied, wildlife and land managers may arbitrarily choose the source population or base the source population on immediate availability when planning translocation projects. Similarly, an understanding of the optimal proportion of individuals from different age and sex classes for translocation would benefit translocation planning. During 2006 and 2007, we captured and translocated 125 mountain quail from 2 ecologically distinct areas: 38 from southern California and 87 from southwestern Oregon. We released mountain quail in the Bennett Hills of south-central Idaho. We radio-marked and monitored a subsample of 58 quail and used them for a 2-part survival analysis. Cumulative survival probability was 0.23 ± 0.05 (SE) at 150 days post-release. We first examined an a priori hypothesis (model) that survival varied between the 2 distinct source populations. We found that source population did not explain variation in survival. This result suggests that wildlife managers have flexibility in selecting source populations for mountain quail translocation efforts. In a post hoc examination, we pooled the quail across source populations and evaluated differences in survival probabilities between sex and age classes. The most parsimonious model indicated that adult male survival was substantially less than survival rates of other mountain quail age and sex classes (i.e., interaction between sex and age). This result suggests that translocation success could benefit by translocating yearling males rather than adult males, perhaps because adult male breeding behavior results in vulnerability to predators

  14. Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.

    Science.gov (United States)

    Liu, Yifan; Yobas, Levent

    2016-04-26

    Here, we present an experimental demonstration of slowing DNA translocation across a nanochannel by modulating the channel surface charge through an externally applied gate bias. The experiments were performed on a nanofluidic field-effect transistor, which is a monolithic integrated platform featuring a 50 nm-diameter in-plane alumina nanocapillary whose entire length is surrounded by a gate electrode. The field-effect transistor behavior was validated on the gating of ionic conductance and protein transport. The gating of DNA translocation was subsequently studied by measuring discrete current dips associated with single λ-DNA translocation events under a source-to-drain bias of 1 V. The translocation speeds under various gate bias conditions were extracted by fitting event histograms of the measured translocation time to the first passage time distributions obtained from a simple 1D biased diffusion model. A positive gate bias was observed to slow the translocation of single λ-DNA chains markedly; the translocation speed was reduced by an order of magnitude from 18.4 mm/s obtained under a floating gate down to 1.33 mm/s under a positive gate bias of 9 V. Therefore, a dynamic and flexible regulation of the DNA translocation speed, which is vital for single-molecule sequencing, can be achieved on this device by simply tuning the gate bias. The device is realized in a conventional semiconductor microfabrication process without the requirement of advanced lithography, and can be potentially further developed into a compact electronic single-molecule sequencer.

  15. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Di Li

    2017-07-01

    Full Text Available A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR, transmission electron microscopy (TEM, and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G and adenine (A. The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA.

  16. Electrochemical study in both classical cell and microreactors of flavin adenine dinucleotide as a redox mediator for NADH regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tzedakis, Theodore, E-mail: tzedakis@chimie.ups-tlse.f [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France); Cheikhou, Kane [Ecole Superieure Polytechnique de Dakar BP: 16263 Dakar-Fann (Senegal); Jerome, Roche; Karine, Groenen Serrano; Olivier, Reynes [Laboratoire de Genie Chimique, UMR 5503, Universite Paul Sabatier, 31062 Toulouse cedex 04 (France)

    2010-02-28

    The electrochemical reduction of flavin adenine dinucleotide (FAD) is studied in a classical electrochemical cell as well as in two types of microreactors: the first one is a one-channel reactor and the other one, a multichannel filter-press reactor. The ultimate goal is to use the reduced form of flavin (FADH{sub 2}), in the presence of formate dehydrogenase (FDH), in order to continuously regenerate the reduced form of nicotinamide adenine dinucleotide (NADH) for chiral syntheses. Various voltammetric and adsorption measurements were carried out for a better understanding of the redox behavior of the FAD as well as its adsorption on gold. Diffusivity and kinetic electrochemical parameters of FAD were determined.

  17. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    Science.gov (United States)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  18. The contribution of adenines in the catalytic core of 10-23 DNAzyme improved by the 6-amino group modifications.

    Science.gov (United States)

    Zhu, Junfei; Li, Zhiwen; Wang, Qi; Liu, Yang; He, Junlin

    2016-09-15

    In the catalytic core of 10-23 DNAzyme, its five adenine residues are moderate conservative, but with highly conserved functional groups like 6-amino group and 7-nitrogen atom. It is this critical conservation that these two groups could be modified for better contribution. With 2'-deoxyadenosine analogues, several functional groups were introduced at the 6-amino group of the five adenine residues. 3-Aminopropyl substituent at 6-amino group of A15 resulted in a five-fold increase of kobs. More efficient DNAzymes are expected by delicate design of the linkage and the external functional groups for this 6-amino group of A15. With this modification approach, other functional groups or residues could be optimized for 10-23 DNAzyme.

  19. Temperate Myxococcus xanthus phage Mx8 encodes a DNA adenine methylase, Mox.

    Science.gov (United States)

    Magrini, V; Salmi, D; Thomas, D; Herbert, S K; Hartzell, P L; Youderian, P

    1997-07-01

    Temperate bacteriophage Mx8 of Myxococcus xanthus encapsidates terminally repetitious DNA, packaged as circular permutations of its 49-kbp genome. During both lytic and lysogenic development, Mx8 expresses a nonessential DNA methylase, Mox, which modifies adenine residues in occurrences of XhoI and PstI recognition sites, CTCGAG and CTGCAG, respectively, on both phage DNA and the host chromosome. The mox gene is necessary for methylase activity in vivo, because an amber mutation in the mox gene abolishes activity. The mox gene is the only phage gene required for methylase activity in vivo, because ectopic expression of mox as part of the M. xanthus mglBA operon results in partial methylation of the host chromosome. The predicted amino acid sequence of Mox is related most closely to that of the methylase involved in the cell cycle control of Caulobacter crescentus. We speculate that Mox acts to protect Mx8 phage DNA against restriction upon infection of a subset of natural M. xanthus hosts. One natural isolate of M. xanthus, the lysogenic source of related phage Mx81, produces a restriction endonuclease with the cleavage specificity of endonuclease BstBI.

  20. Alteration of the Intestinal Environment by Lubiprostone Is Associated with Amelioration of Adenine-Induced CKD.

    Science.gov (United States)

    Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki

    2015-08-01

    The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment.

  1. Laser pulse trains for controlling excited state dynamics of adenine in water.

    Science.gov (United States)

    Petersen, Jens; Wohlgemuth, Matthias; Sellner, Bernhard; Bonačić-Koutecký, Vlasta; Lischka, Hans; Mitrić, Roland

    2012-04-14

    We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.

  2. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.

    Science.gov (United States)

    Nakama, Mitsuo; Murakami, Yuhko; Tanaka, Hiroshi; Nakata, Satoru

    2012-03-01

    Skin pigmentation is caused by various physical and chemical factors. It might also be influenced by changes in the physiological function of skin with aging. Nicotinamide adenine dinucleotide (NADH) dehydrogenase is an enzyme related to the mitochondrial electron transport system and plays a key role in cellular energy production. It has been reported that the functional decrease in this system causes Parkinson's disease. Another study reports that the amount of NADH dehydrogenase in heart and skeletal muscle decreases with aging. A similar decrease in the skin would probably affect its physiological function. However, no reports have examined the age-related change in levels of NADH dehydrogenase in human skin. In this study, we investigated this change and its effect on skin pigmentation using cultured human epidermal keratinocytes. The mRNA expression of NDUFA1, NDUFB7, and NDUFS2, subunits of NADH dehydrogenase, and its activity were significantly decreased in late passage keratinocytes compared to early passage cells. Conversely, the mRNA expression of melanocyte-stimulating cytokines, interleukin-1 alpha and endothelin 1, was increased in late passage cells. On the other hand, the inhibition of NADH dehydrogenase upregulated the mRNA expression of melanocyte-stimulating cytokines. Moreover, the level of NDUFB7 mRNA was lower in pigmented than in nonpigmented regions of skin in vivo. These results suggest the decrease in NADH dehydrogenase with aging to be involved in skin pigmentation.

  3. Nicotinamide adenine dinucleotide: An essential factor in preserving hearing in cisplatin-induced ototoxicity.

    Science.gov (United States)

    Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Pandit, Arpana; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Song, Jeho; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2015-08-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Studies of yeast cell oxygenation and energetics by laser fluorometry of reduced nicotinamide adenine dinucleotide

    Science.gov (United States)

    Pan, Fu-shih; Chen, Stephen; Mintzer, Robert A.; Chen, Chin-Tu; Schumacker, Paul

    1991-03-01

    It is of fundamental importance for biological scientists to assess cellular energetics. Under aerobic conditions, the tricarboxylic acid cycle (TCA cycle) is coupled with the mitochondrial electron cascade pathway to provide the cell with energy. The nicotinamide adenine dinucleotide-conjugated pair (NAD and NADH) is the coenzyme in numerous important biomedical reactions which include several important dehydrogenase reactions in the TCA cycle. Based on Le Chatelier's principle, NADH will accumulate when this energy production mechanism is impaired. The relative amounts of NAD and NADH in a cell are defined as the redox state of the cell (Williamson et.al. 1967) which provides a valuable index of cellular energetics. The sum of the amounts of NAD and NADH in a cell may be assumed to be constant during a finite time; therefore, a reliable means of measuring the NADH concentration would provide us with a useful indicator of tissue viability. Traditionally, the quantities of NADH and NAD may be measured by chemical assay methods. We can avoid these tediois analyses by exploiting the significant difference between the ultraviolet absorption spectra of this redox pair. However, because of the opacity of biological samples and the interference of other biochemicals that also absorb ultraviolet radiation, measurement of NADH and NAD+ concentrations in vivo by absorption spectroscopy is not feasible.

  5. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle.

    Directory of Open Access Journals (Sweden)

    Gaëlle Demarre

    2010-05-01

    Full Text Available DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.

  6. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  7. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    Science.gov (United States)

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  8. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.

    Science.gov (United States)

    Amouzadeh Tabrizi, Mahmoud; Jalilzadeh Azar, Somayeh; Nadali Varkani, Javad

    2014-09-01

    In this paper, we report a green and eco-friendly approach to synthesize reduced graphene oxide (rGO) via a mild hydrothermal process using malt as a reduced agent. The proposed method is based on the reduction of graphene oxide (GO) in malt solution by making use of the reducing capability of phenolic compounds contained in malt solution. The obtained rGO was characterized by atomic force microscopy (AFM), ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction spectroscopy (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy analysis revealed that the charge transfer resistance of rGO modified glassy carbon (GC) electrode was much lower than that of the GC electrode. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) on rGO modified GC electrode was investigated by cyclic voltammetry and amperometry. Electrochemical experiments indicated that rGO/GC electrode exhibited excellent electrocatalytic activity toward the NADH, which can be attributed to excellent electrical conductivity and high specific surface area of the rGO composite. The resulting biosensor showed highly sensitive amperometric response to NADH with a low detection limit (0.33μM). Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cross sections for low-energy electron scattering from adenine in the condensed phase.

    Science.gov (United States)

    Panajotović, Radmila; Michaud, Marc; Sanche, Léon

    2007-01-07

    Measurements of the vibrational and electronic excitation of a sub-monolayer up to a monolayer film of adenine were performed with a high resolution electron energy-loss (HREEL) spectrometer. The integral cross sections (over the half-space angle) for excitation of the normal vibrational modes of the ground electronic state and electronically excited states are calculated from the measured reflectivity EEL spectra. Most cross sections for vibrational excitation are of the order of 10(-17) cm(2), the largest being the out-of-plane wagging of the amino-group and the six-member ring deformations. A wide resonance feature appears in the incident energy dependence of the vibrational cross sections at 3-5 eV, while a weak shoulder is present in this dependence for combined ring deformations and bending of hydrogen atoms. For the five excited electronic states, at 4.7, 5.0, 5.5, 6.1 and 6.6 eV, the cross sections are of the order of 10(-18) cm(2), except in the case of the state at the energy of 6.1 eV, for which it is two to three times higher.

  10. Interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode surface.

    Science.gov (United States)

    Wei, Haizhen; Omanovic, Sasha

    2008-08-01

    The interaction of flavin adenine dinucleotide (FAD) with a glassy carbon electrode (GCE) surface was investigated in terms of the FAD adsorption thermodynamics and kinetics, the subsequent electroreduction mechanism, and the corresponding electron-transfer rate. The kinetics of FAD electroreduction at the GCE was found to be an adsorption-controlled process. A set of electroreduction kinetic parameters was calculated: the true number of electrons involved in the FAD reduction, n=1.76, the apparent transfer coefficient, alpha(app)=0.41, and the apparent heterogeneous electron-transfer rate constant, k(app)=1.4 s(-1). The deviation of the number of exchanged electrons from the theoretical value for the complete reduction of FAD to FADH(2) (n=2) indicates that a small portion of FAD goes to a semiquinone state during the redox process. The FAD adsorption was well described by the Langmuir adsorption isotherm. The large negative apparent Gibbs energy of adsorption (DeltaG(ads)=-39.7 +/-0.4 kJ mol(-1)) indicated a highly spontaneous and strong adsorption of FAD on the GCE. The energetics of the adsorption process was found to be independent of the electrode surface charge in the electrochemical double-layer region. The kinetics of FAD adsorption was modeled using a pseudo-first-order kinetic model.

  11. Thermal stabilization of formaldehyde dehydrogenase by encapsulation in liposomes with nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Yoshimoto, Makoto; Yamashita, Takayuki; Kinoshita, Satoshi

    2011-07-10

    The thermal stability of formaldehyde dehydrogenase (FaDH) from Pseudomonas sp. was examined and controlled by encapsulation in liposomes with β-reduced nicotinamide adenine dinucleotide (NADH). The activity of 4.8 μg/mL free FaDH at pH 8.5 in catalyzing the oxidation of 50mM formaldehyde was highly dependent on temperature so that the activity at 60 °C was 27 times larger than that at 25 °C. Thermal stability of the FaDH activity was examined with and without liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Rapid deactivation of free FaDH was observed at 60 °C because of its dissociation into two subunits. The rate of dissociative deactivation of POPC liposome-encapsulated FaDH was smaller than that of the free enzyme. The liposomal FaDH was however progressively deactivated for the incubation period of 60 min eventually leading to complete loss of its activity. The free FaDH and NADH molecules were revealed to form the thermostable binary complex. The thermal stability of POPC liposome-encapsulated FaDH and NADH system was significantly higher than the liposomal enzyme without cofactor. The above results clearly show that NADH is a key molecule that controls the activity and stability of FaDH in liposomes at high temperatures.

  12. Surface modification of graphene nanopores for protein translocation

    Science.gov (United States)

    Shan, Y. P.; Tiwari, P. B.; Krishnakumar, P.; Vlassiouk, I.; Li, W.Z.; Wang, X.W.; Darici, Y.; Lindsay, S.M.; Wang, H. D.; Smirnov, S.; He, J.

    2014-01-01

    Studies of DNA translocation through graphene nanopores have revealed their potential for DNA sequencing. Here we report a study of protein translocation through chemically modified graphene nanopores. A transmission electron microscope (TEM) was used to cut nanopores with diameters between 5-20 nm in multilayer graphene prepared by chemical vapor deposition (CVD). After oxygen plasma treatment, the dependence of the measured ionic current on salt concentration and pH was consistent with a small surface charge induced by the formation of carboxyl groups. While translocation of gold nanoparticles (10 nm) was readily detected through such treated pores of a larger diameter, translocation of protein ferritin was not observed either for oxygen plasma treated pores, or for pores modified with mercaptohexadecanoic acid. Ferritin translocation events were reliably observed after the pores were modified with the phospholipid-PEG (DPPE-PEG750) amphiphile. The ion current signature of translocation events was complex, suggesting that a series of interactions between the protein and pore occur during the process. PMID:24231385

  13. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize

    Institute of Scientific and Technical Information of China (English)

    Moming Zhao; Shuzhen Zhang; Sen Wang; Honglin Huang

    2012-01-01

    Uptake,translocation and debromination of three polybrominated diphenyl ethers(PBDEs),BDE-28,-47 and-99,in maize were studied in a hydroponic experiment.Roots took up most of the PBDEs in the culture solutions and more highly brominated PBDEs had a stronger uptake capability.PBDEs were detected in the stems and leaves of maize after exposure but rarely detected in the blank control plants.Furthermore,PBDE concentrations decreased from roots to stems and then to leaves,and a very clear decreasing gradient was found in segments upwards along the stem.These altogether provide substantiating evidence for the acropetal translocation of PBDEs in maize.More highly brominated PBDEs were translocated with more difficulty.Radial translocation of PBDEs from nodes to sheath inside maize was also observed.Both acropetal and radial translocations were enhanced at higher transpiration rates,suggesting that PBDE transport was probably driven by the transpiration stream.Debromination of PBDEs occurred in all parts of the maize,and debromination patterns of different parent PBDEs and in different parts of a plant were similar but with some differences.This study for the first time provides direct evidence for the acropetal translocation of PBDEs within plants,elucidates the process of PBDE transport and clarifies the debromination products of PBDEs in maize.

  14. Atomic structure of anthrax protective antigen pore elucidates toxin translocation.

    Science.gov (United States)

    Jiang, Jiansen; Pentelute, Bradley L; Collier, R John; Zhou, Z Hong

    2015-05-28

    Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.

  15. Cellular localization of adenine receptors in the rat kidney and their functional significance in the inner medullary collecting duct.

    Science.gov (United States)

    Kishore, Bellamkonda K; Zhang, Yue; Gevorgyan, Haykanush; Kohan, Donald E; Schiedel, Anke C; Müller, Christa E; Peti-Peterdi, János

    2013-11-01

    The Gi-coupled adenine receptor (AdeR) binds adenine with high affinity and potentially reduces cellular cAMP levels. Since cAMP is an important second messenger in the renal transport of water and solutes, we localized AdeR in the rat kidney. Real-time RT-PCR showed higher relative expression of AdeR mRNA in the cortex and outer medulla compared with the inner medulla. Immunoblots using a peptide-derived and affinity-purified rabbit polyclonal antibody specific for an 18-amino acid COOH-terminal sequence of rat AdeR, which we generated, detected two bands between ∼30 and 40 kDa (molecular mass of native protein: 37 kDa) in the cortex, outer medulla, and inner medulla. These bands were ablated by preadsorption of the antibody with the immunizing peptide. Immunofluorescence labeling showed expression of AdeR protein in all regions of the kidney. Immunoperoxidase revealed strong labeling of AdeR protein in the cortical vasculature, including the glomerular arterioles, and less intense labeling in the cells of the collecting duct system. Confocal immunofluorescence imaging colocalized AdeR with aquaporin-2 protein to the apical plasma membrane in the collecting duct. Functionally, adenine (10 μM) significantly decreased (P < 0.01) 1-deamino-8-d-arginine vasopressin (10 nM)-induced cAMP production in ex vivo preparations of inner medullary collecting ducts, which was reversed by PSB-08162 (20 μM, P < 0.01), a selective antagonist of AdeR. Thus, we demonstrated the expression of AdeR in the renal vasculature and collecting ducts and its functional relevance. This study may open a new avenue for the exploration of autocrine/paracrine regulation of renal vascular and tubular functions by the nucleobase adenine in health and disease.

  16. IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study

    Science.gov (United States)

    Brovarets', O. O.; Hovorun, D. M.

    2011-11-01

    Using theoretical study on the B3LYP/6-311++G(d,p) level of theory, we have compared vibrational spectra of 2-aminopurine (as neutral or protonated at N1 atom species) with adenine and H-bonded complexes of 2-aminopurine (as neutral or protoned at N1 atom species) · cytosine or 2-aminopurine · thymine with adenine · cytosine and adenine · thymine base pairs. The nature of the base pairing between adenine, 2-aminopurine, 2-aminopurine+ and cytosine or thymine have been investigated by means of quantum-mechanical calculations. We have investigated the effect of the hydrogen bond formation on the vibrational spectra of the investigated base pairs. The main differences in the vibrational spectra as for bases so for base pairs have been observed in the high-frequency region.

  17. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    Science.gov (United States)

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  18. Click Addition of a DNA Thread to the N-Termini of Peptides for Their Translocation through Solid-State Nanopores.

    Science.gov (United States)

    Biswas, Sudipta; Song, Weisi; Borges, Chad; Lindsay, Stuart; Zhang, Peiming

    2015-10-27

    Foremost among the challenges facing single molecule sequencing of proteins by nanopores is the lack of a universal method for driving proteins or peptides into nanopores. In contrast to nucleic acids, the backbones of which are uniformly negatively charged nucleotides, proteins carry positive, negative and neutral side chains that are randomly distributed. Recombinant proteins carrying a negatively charged oligonucleotide or polypeptide at the C-termini can be translocated through a α-hemolysin (α-HL) nanopore, but the required genetic engineering limits the generality of these approaches. In this present study, we have developed a chemical approach for addition of a charged oligomer to peptides so that they can be translocated through nanopores. As an example, an oligonucleotide PolyT20 was tethered to peptides through first selectively functionalizing their N-termini with azide followed by a click reaction. The data show that the peptide-PolyT20 conjugates translocated through nanopores, whereas the unmodified peptides did not. Surprisingly, the conjugates with their peptides tethered at the 5'-end of PolyT20 passed the nanopores more rapidly than the PolyT20 alone. The PolyT20 also yielded a wider distribution of blockade currents. The same broad distribution was found for a conjugate with its peptide tethered at the 3'-end of PolyT20, suggesting that the larger blockades (and longer translocation times) are associated with events in which the 5'-end of the PolyT20 enters the pore first.

  19. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  20. Electrochemical biosensor based on silver nanoparticles-polydopamine-graphene nanocomposite for sensitive determination of adenine and guanine.

    Science.gov (United States)

    Huang, Ke-Jing; Wang, Lan; Wang, Hai-Bo; Gan, Tian; Wu, Ying-Ying; Li, Jing; Liu, Yan-Ming

    2013-09-30

    A multifunctional Ag nanoparticles (AgNPs)-polydopamine (Pdop)@graphene (Gr) composite was prepared by a simple and mild procedure. Gr was easily coated with Pdop at room temperature and then AgNPs was deposited by mildly stirring. The nanocomposite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Guanine and adenine as model moleculars were employed to study their electrochemical responses at the Ag-Pdop@Gr composite modified electrode, which showed more favorable electron transfer kinetics than Gr modified glassy carbon and AgNPs modified glassy carbon electrodes. The Ag-Pdop@Gr modified electrode exhibited linear ranges of 0.04-50 μM and 0.02-40 μM with detection limits of 4.0 nM and 2.0 nM for guanine and adenine, respectively. The developed method was applied for simultaneous determination of trace-level adenine and guanine in fish sperm. The results demonstrated that the AgNPs-Pdop@Gr nanocomposite was a promising substrate for the development of high-performance electrocatalysts for biosensing. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Science.gov (United States)

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  2. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine.

    Science.gov (United States)

    Arvand, Majid; Ghodsi, Navid; Zanjanchi, Mohammad Ali

    2016-03-15

    The current techniques for determining adenine have several shortcomings such as high cost, high time consumption, tedious pretreatment steps and the requirements for highly skilled personnel often restrict their use in routine analytical practice. This paper describes the development and utilization of a new nanocomposite consisting of titanium dioxide nanofibers (TNFs) and graphene oxide nanosheets (GONs) for screen printed carbon electrode (SPCE) modification. The synthesized GONs and TNFs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The modified electrode (TNFs/GONs/SPCE) was used for electrochemical characterization of adenine. The TNFs/GONs/SPCE exhibited an increase in peak current and the electron transfer kinetics and decrease in the overpotential for the oxidation reaction of adenine. Using differential pulse voltammetry (DPV), the prepared sensor showed good sensitivity for determining adenine in two ranges from 0.1-1 and 1-10 μM, with a detection limit (DL) of 1.71 nM. Electrochemical studies suggested that the TNFs/GONs/SPCE provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of adenine, which was indicated by the improvement of anodic peak current and a decrease in anodic peak potential. The amount of adenine in pBudCE4.1 plasmid was determined via the proposed sensor and the result was in good compatibility with the sequence data of pBudCE4.1 plasmid.

  3. Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim, E-mail: abbaspour@chem.susc.ac.i [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of); Ghaffarinejad, Ali [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of)

    2010-01-01

    In this study, microwave irradiation was used for the fast preparation (min) of a sol-gel-derived carbon nanotube ceramic electrode (MW-CNCE). For confirmation of the preparation of the ceramic by MW irradiation, Fourier transform infrared, X-ray diffraction spectra and scanning electron microscopy images of the produced ceramic were compared with those of conventional ceramic (which is produced by drying the ceramic in air for 48 h). The electrochemical behavior of MW-CNCE in nicotinamide adenine dinucleotide, L-cysteine, adenine and guanine was compared with that of a conventional sol-gel-derived carbon nanotube ceramic electrode (CNCE). In all systems, similar peak potentials and lower background currents were obtained with respect to CNCE. Finally, the MW-CNCE was used for the simultaneous determination of adenine and guanine using differential pulse voltammetry. The linear ranges of 0.1-10 and 0.1-20 muM were obtained for adenine and guanine, respectively. These results are comparable with some modified electrodes that have recently been reported for the determination of adenine and guanine, with the advantage that the proposed electrode did not contain modifier. In addition, the proposed electrode was successfully used for the oxidation of adenine and guanine in DNA, and the detection limit for this measurement was 0.05 mug mL{sup -1} DNA.

  4. Nucleotide sequence of papaya mosaic virus RNA.

    Science.gov (United States)

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  5. Identification of chromosomal translocation hotspots via scan statistics

    Science.gov (United States)

    Silva, Israel T.; Rosales, Rafael A.; Holanda, Adriano J.; Nussenzweig, Michel C.; Jankovic, Mila

    2014-01-01

    Motivation: The detection of genomic regions unusually rich in a given pattern is an important undertaking in the analysis of next-generation sequencing data. Recent studies of chromosomal translocations in activated B lymphocytes have identified regions that are frequently translocated to c-myc oncogene. A quantitative method for the identification of translocation hotspots was crucial to this study. Here we improve this analysis by using a simple probabilistic model and the framework provided by scan statistics to define the number and location of translocation breakpoint hotspots. A key feature of our method is that it provides a global chromosome-wide nominal control level to clustering, as opposed to previous methods based on local criteria. While being motivated by a specific application, the detection of unusual clusters is a widespread problem in bioinformatics. We expect our method to be useful in the analysis of data from other experimental approaches such as of ChIP-seq and 4C-seq. Results: The analysis of translocations from B lymphocytes with the method described here reveals the presence of longer hotspots when compared with those defined previously. Further, we show that the hotspot size changes substantially in the absence of DNA repair protein 53BP1. When 53BP1 deficiency is combined with overexpression of activation-induced cytidine deaminase, the hotspot length increases even further. These changes are not detected by previous methods that use local significance criteria for clustering. Our method is also able to identify several exclusive translocation hotspots located in genes of known tumor supressors. Availability and implementation: The detection of translocation hotspots is done with hot_scan, a program implemented in R and Perl. Source code and documentation are freely available for download at https://github.com/itojal/hot_scan. Contact: isilva@rockefeller.edu Supplementary information: Supplementary data are available at Bioinformatics

  6. The effects of translocations on recombination frequency in Caenorhabditis elegans.

    Science.gov (United States)

    McKim, K S; Howell, A M; Rose, A M

    1988-12-01

    In the nematode Caenorhabditis elegans, recombination suppression in translocation heterozygotes is severe and extensive. We have examined the meiotic properties of two translocations involving chromosome I, szT1(I;X) and hT1(I;V). No recombination was observed in either of these translocation heterozygotes along the left (let-362-unc-13) 17 map units of chromosome I. Using half-translocations as free duplications, we mapped the breakpoints of szT1 and hT1. The boundaries of crossover suppression coincided with the physical breakpoints. We propose that DNA sequences at the right end of chromosome I facilitate pairing and recombination. We use the data from translocations of other chromosomes to map the location of pairing sites on four other chromosomes. hT1 and szT1 differed markedly in their effect on recombination adjacent to the crossover suppressed region. hT1 had no effect on recombination in the adjacent interval. In contrast, the 0.8 map unit interval immediately adjacent to the szT1(I;X) breakpoint on chromosome I increased to 2.5 map units in translocation heterozygotes. This increase occurs in a chromosomal interval which can be expanded by treatment with radiation. These results are consistent with the suggestion that the szT1(I) breakpoint is in a region of DNA in which meiotic recombination is suppressed relative to the genomic average. We propose that DNA sequences disrupted by the szT1 translocation are responsible for determining the frequency of meiotic recombination in the vicinity of the breakpoint.

  7. Nucleotide Manipulatives to Illustrate the Central Dogma

    Directory of Open Access Journals (Sweden)

    Sonja B. Yung

    2015-08-01

    Full Text Available The central dogma is a core concept that is critical for introductory biology and microbiology students to master. However, students often struggle to conceptualize the processes involved, and fail to move beyond simply memorizing the basic facts. To encourage critical thinking, we have designed a set of magnetic nucleotide manipulatives that allow students to model DNA structure, along with the processes of replication, transcription, and translation.

  8. Nondriven Polymer Translocation Through a Nanopore:Scaling for Translocation Time with Chain Length

    Institute of Scientific and Technical Information of China (English)

    LI Hui; ZHANG Jing; LIU Hong; SUN Chia-chung

    2011-01-01

    We investigated the dynamics of the passage for a polymer chain through a nanopore in the absence of any external driving force with Weeks-Chandler-Andersen potential in two-dimensional simulations,in particular,focused our attention on the scaling law of the mean translocation time.We found that the effect of hydrodynamic interactions is the major factor in determining the scaling exponents with increasing pore size.The scaling close to N1+2v was observed when the hydrodynamic interactions were screened in the cases of small pore sizes,while the scaling close to N3v was obtained when the hydrodynamic interactions were present in the cases of large pore sizes.

  9. Visualization of cyclic nucleotide dynamics in neurons

    Directory of Open Access Journals (Sweden)

    Kirill eGorshkov

    2014-12-01

    Full Text Available The second messengers cAMP and cGMP transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.

  10. Nucleotide-Dependent Bioautocatalytic Timer Reaction.

    Science.gov (United States)

    Chen, Ting-Ru; Hsu, Ching-Fong; Chen, Chih-Lin; Witek, Henryk A; Urban, Pawel L

    2016-09-16

    We describe a biochemical timer composed of three biocatalytic reactions involving three types of adenylate nucleotides: adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). The timer is triggered by a small amount of ATP or ADP. An abrupt increase in the ATP concentration (following numerous amplification cycles) leads to a sudden increase of luminescence from the reaction mixture. The time point when the luminescence appears is found to be a function of the initial concentration of the triggering nucleotide (5.0 × 10(-8)-1.0 × 10(-6) M), even in the presence of a complex biological matrix. The mechanism of the observed dependence of the time of luminescence increase on the concentration has been confirmed with simple kinetic models. Due to the biocompatibility of the proposed trienzymatic reaction scheme (sensitivity to common nucleotides and occurrence in a neutral pH aqueous environment), the scheme can be used in bioengineered systems that require modulation of the response time (light emission) by concentration.

  11. Multiphasic interactions between nucleotides and target proteins

    CERN Document Server

    Nissen, Per

    2016-01-01

    The nucleotides guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) bind to target proteins to promote bacterial survival (Corrigan et al. 2016). Thus, the binding of the nucleotides to RsgA, a GTPase, inhibits the hydrolysis of GTP. The dose response, taken to be curvilinear with respect to the logarithm of the inhibitor concentration, is instead much better (P<0.001 when the 6 experiments are combined) represented as multiphasic, with high to exceedingly high absolute r values for the straight lines, and with transitions in the form of non-contiguities (jumps). Profiles for the binding of radiolabeled nucleotides to HprT and Gmk, GTP synthesis enzymes, were, similarly, taken to be curvilinear with respect to the logarithm of the protein concentration. However, the profiles are again much better represented as multiphasic than as curvilinear (the P values range from 0.047 to <0.001 for each of the 8 experiments for binding of ppGpp and pppGpp to HprT). The binding of GTP to HprT and ...

  12. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  13. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade.

    Science.gov (United States)

    Zhao, Yan; Guan, Yun-Feng; Zhou, Xiao-Ming; Li, Guo-Qiang; Li, Zhi-Yong; Zhou, Can-Can; Wang, Pei; Miao, Chao-Yu

    2015-07-01

    Nicotinamide adenine dinucleotide (NAD) is a ubiquitous fundamental metabolite. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for mammalian NAD salvage synthesis and has been shown to protect against acute ischemic stroke. In this study, we investigated the role of Nampt-NAD cascade in brain regeneration after ischemic stroke. Nampt transgenic (Nampt-Tg) mice and H247A mutant enzymatic-dead Nampt transgenic (ΔNampt-Tg) mice were subjected with experimental cerebral ischemia by middle cerebral artery occlusion. Activation of neural stem cells, neurogenesis, and neurological function recovery were measured. Besides, nicotinamide mononucleotide and NAD, two chemical enzymatic product of Nampt, were administrated in vivo and in vitro. Compared with wild-type mice, Nampt-Tg mice showed enhanced number of neural stem cells, improved neural functional recovery, increased survival rate, and accelerated body weight gain after middle cerebral artery occlusion, which were not observed in ΔNampt-Tg mice. A delayed nicotinamide mononucleotide administration for 7 days with the first dose at 12 hours post middle cerebral artery occlusion did not protect acute brain infarction and neuronal deficit; however, it still improved postischemic regenerative neurogenesis. Nicotinamide mononucleotide and NAD(+) promoted proliferation and differentiation of neural stem cells in vitro. Knockdown of NAD-dependent deacetylase sirtuin 1 (SIRT1) and SIRT2 inhibited the progrowth action of Nampt-NAD axis, whereas knockdown of SIRT1, SIRT2, and SIRT6 compromised the prodifferentiation effect of Nampt-NAD axis. Our data demonstrate that the Nampt-NAD cascade may act as a centralizing switch in postischemic regeneration through controlling different sirtuins and therefore represent a promising therapeutic target for long-term recovery of ischemic stroke. © 2015 American Heart Association, Inc.

  14. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.

    Science.gov (United States)

    Allnér, Olof; Nilsson, Lennart; Villa, Alessandra

    2013-07-01

    Riboswitches are mRNA-based molecules capable of controlling the expression of genes. They undergo conformational changes upon ligand binding, and as a result, they inhibit or promote the expression of the associated gene. The close connection between structural rearrangement and function makes a detailed knowledge of the molecular interactions an important step to understand the riboswitch mechanism and efficiency. We have performed all-atom molecular dynamics simulations of the adenine-sensing add A-riboswitch to study the breaking of the kissing loop, one key tertiary element in the aptamer structure. We investigated the aptamer domain of the add A-riboswitch in complex with its cognate ligand and in the absence of the ligand. The opening of the hairpins was simulated using umbrella sampling using the distance between two loops as the reaction coordinate. A two-step process was observed in all the simulated systems. First, a general loss of stacking and hydrogen bond interactions is seen. The last interactions that break are the two base pairs G37-C61 and G38-C60, but the break does not affect the energy profile, indicating their pivotal role in the tertiary structure formation but not in the structure stabilization. The junction area is partially organized before the kissing loop formation and residue A24 anchors together the loop helices. Moreover, when the distance between the loops is increased, one of the hairpins showed more flexibility by changing its orientation in the structure, while the other conserved its coaxial arrangement with the rest of the structure.

  15. Kissing loop interaction in adenine riboswitch: insights from umbrella sampling simulations.

    Science.gov (United States)

    Di Palma, Francesco; Bottaro, Sandro; Bussi, Giovanni

    2015-01-01

    Riboswitches are cis-acting regulatory RNA elements prevalently located in the leader sequences of bacterial mRNA. An adenine sensing riboswitch cis-regulates adeninosine deaminase gene (add) in Vibrio vulnificus. The structural mechanism regulating its conformational changes upon ligand binding mostly remains to be elucidated. In this open framework it has been suggested that the ligand stabilizes the interaction of the distal "kissing loop" complex. Using accurate full-atom molecular dynamics with explicit solvent in combination with enhanced sampling techniques and advanced analysis methods it could be possible to provide a more detailed perspective on the formation of these tertiary contacts. In this work, we used umbrella sampling simulations to study the thermodynamics of the kissing loop complex in the presence and in the absence of the cognate ligand. We enforced the breaking/formation of the loop-loop interaction restraining the distance between the two loops. We also assessed the convergence of the results by using two alternative initialization protocols. A structural analysis was performed using a novel approach to analyze base contacts. Contacts between the two loops were progressively lost when larger inter-loop distances were enforced. Inter-loop Watson-Crick contacts survived at larger separation when compared with non-canonical pairing and stacking interactions. Intra-loop stacking contacts remained formed upon loop undocking. Our simulations qualitatively indicated that the ligand could stabilize the kissing loop complex. We also compared with previously published simulation studies. Kissing complex stabilization given by the ligand was compatible with available experimental data. However, the dependence of its value on the initialization protocol of the umbrella sampling simulations posed some questions on the quantitative interpretation of the results and called for better converged enhanced sampling simulations.

  16. MYC translocation partner gene determines survival of patients with large B-cell lymphoma with MYC- or double-hit MYC/BCL2 translocations

    DEFF Research Database (Denmark)

    Pedersen, Mette Ø; Gang, Anne O; Poulsen, Tim S;

    2014-01-01

    In large B-cell lymphoma (LBCL) MYC- and MYC/BCL2 double-hit (DH) translocations have been associated with inferior survival. We hypothesised that the negative prognostic impact of MYC translocation was determined by an immunoglobulin MYC translocation partner gene (IG-MYC), as opposed to a non-i...

  17. Familial congenital bilateral vocal fold paralysis: a novel gene translocation.

    Science.gov (United States)

    Hsu, Amy K; Rosow, David E; Wallerstein, Robert J; April, Max M

    2015-03-01

    True vocal fold (TVF) paralysis is a common cause of neonatal stridor and airway obstruction, though bilateral TVF paralysis is seen less frequently. Rare cases of familial congenital TVF paralysis have been described with implied genetic origin, but few genetic abnormalities have been discovered to date. The purpose of this study is to describe a novel chromosomal translocation responsible for congenital bilateral TVF immobility. The charts of three patients were retrospectively reviewed: a 35 year-old woman and her two children. The mother had bilateral TVF paralysis at birth requiring tracheotomy. Her oldest child had a similar presentation at birth and also required tracheotomy, while the younger child had laryngomalacia without TVF paralysis. Standard karyotype analysis was done using samples from all three patients and the parents of the mother, to assess whether a chromosomal abnormality was responsible. Karyotype analysis revealed the same balanced translocation between chromosomes 5 and 14, t(5;14) (p15.3, q11.2) in the mother and her two daughters. No other genetic abnormalities were identified. Neither maternal grandparent had the translocation, which appeared to be a spontaneous mutation in the mother with autosomal dominant inheritance and variable penetrance. A novel chromosomal translocation was identified that appears to be responsible for familial congenital bilateral TVF paralysis. While there are other reports of genetic abnormalities responsible for this condition, we believe this is the first describing this particular translocation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. A somatic origin of homologous Robertsonian translocations and isochromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A. (Univ. of Zurich (Switzerland)); Basaran, S.; Yueksel-Apak, M. (Univ. of Istanbul (Turkey)); Neri, G. (Universita Cattolica, Rome (Italy)); Serville, F. (Hopital d' Enfants Pellegrin, Bordeaux (France)); Balicek, P.; Haluza, R. (Univ. Hospital of Hradeck Kralove, Hradec Kralove (Czech Republic)); Farah, L.M.S. (Escuola Paulista de Medicina, Sao Paulo (Brazil)) (and others)

    1994-02-01

    One t(14q 14q), three t(15q 15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange. 75 refs., 1 fig., 4 tabs.

  19. Obstructed Bile Duct as a Trigger for Microbe's Translocation?

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To assess the potential mechanisms of bacterial translocation in a murine model of obstructive jaundice. Methods: Adult rats were randomized to be operated on for ligation or sham-ligation of the common bile duct. Bacterial translocation to the mesenteric lymph nodes (MLNs), liver, spleen, portal blood and systemic circulation and bacterial population levels in the ceca were quantitated after 7 and 14 days. The terminal ilea were histologically examined by light and transmission electron microscopy. Results: Bacterial translocation to the MNLs was seen in both 7 (10/17) and 14 (11/18) day ligated animals, but not found in their corresponding controls (both 0/8). No significant difference in the cecal bacterial population levels was found between the ligated groups and their corresponding control groups, also between the two subgroups that were set up within each ligated group according to the presence or absence of bacteria in the MLNs. In the ligated rats, light microscopy demonstrated subepithelial edema in association with infiltration of flammatory cells and, transmission electron microscopy showed that the enterocytes were injured with abnormal microvilli, swollen mitochondria, unclear endoplasmic reticulum and cytoplasm with bubble degeneration. However, the ilea from the controls appeared normal. Conclusions: Obstructive jaundice promotes bacterial translocation in rats. The gut mucosal damage rather than the intestinal bacterial overgrowth may play a crucial role in bacterial translocation.

  20. Factors Affecting Polymer Translocation Through a Nanopore in a Membrane

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Teng Lu; Hao-jun Liang

    2008-01-01

    Monte Carlo simulations were used to study the translocation of a flexible polymer through a pore in a membrane, assuming an attractive interaction between the monomers and the membrane on the trans side of the membrane and no interaction on the cis side. For the case T<Tc (the temperature corresponding to the minimum in the translocation time τ), the value of τ decreases with increasing temperature, whereas for T>Tc, τ increases with increasing temperature. The translocation time depends on the absorbed energy uo in a nontrivial way. The value of τ increases initially upon increasing uo before it begins to decrease. The variation of the translocation time with respect to the solvent quality was also studied. It showed that there is a transition, as the solvent quality improves from "poor" to "good": when εAB<εc (the interaction energy corresponding to the minimum in τ), τ decreases with increasing the value of εAB; when εAB>εc, τ increases with increasing εAB. When the chain length was changed, it was found that when the absorbed energy uo was greater than uc, τ was proportional to N1.602; for uo<uc, τ∝N2.248. As the solvent quality improved from "poor" to "good," the translocation probability increased initially before becoming stable.

  1. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  2. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.

    Science.gov (United States)

    Vozdova, Miluse; Ruiz-Herrera, Aurora; Fernandez, Jonathan; Cernohorska, Halina; Frohlich, Jan; Sebestova, Hana; Kubickova, Svatava; Rubes, Jiri

    2016-09-01

    The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation.

  3. Nonabsorbable Antibiotics Reduce Bacterial and Endotoxin Translocation in Hepatectomised Rats

    Directory of Open Access Journals (Sweden)

    S. K. Kakkos

    1997-01-01

    Full Text Available There is increasing evidence that septic complications, occurring after major hepatectomies, may be caused by gram negative bacteria, translocating from the gut. We investigated in rats, the effect of extended hepatectomy on the structure and morphology of the intestinal mucosa as well as on the translocation of intestinal bacteria and endotoxins. We also examined the effect of nonabsorbable antibiotics on reducing the intestinal flora and consequently the phenomenon of translocation by administering neomycin sulphate and cefazoline. Hepatectomy was found to increase translocation, while administration of nonabsorbable antibiotics decreased it significantly. In addition, hepatectomy increased the aerobic cecal bacterial population, which normalised in the group receiving antibiotics. Among the histological parameters evaluated, villus height demonstrated a significant reduction after hepatectomy, while the number of villi per cm and the number of mitoses per crypt, remained unchanged. Our results indicate that administration of nonabsorbable antibiotics presents a positive effect on bacterial and endotoxin translocation after extended hepatectomy, and this may be related to reduction of colonic bacterial load as an intraluminal effect of antibiotics.

  4. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    Science.gov (United States)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  5. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    Science.gov (United States)

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  6. High-speed detection of DNA translocation in nanopipettes.

    Science.gov (United States)

    Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-04-14

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.

  7. Multiscale modeling of biopolymer translocation through a nanopore

    CERN Document Server

    Fyta, M G; Kaxiras, E; Succi, S; Fyta, Maria; Melchionna, Simone; Kaxiras, Efthimios; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Langevin molecular dynamics (MD) with a mesoscopic lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. Both dynamical and statistical aspects of the translocation process were investigated, by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimental results are available.

  8. Prenatal diagnosis of an autosomal translocation with regular trisomy 21.

    Science.gov (United States)

    Tunca, Yusuf; Deveci, M Salih; Koc, Altug; Kaya, Halide; Alanbay, Ibrahim; Coksuer, Hakan; Dede, Murat

    2013-06-01

    The coincidence of trisomy 21 and a structural rearrangement is very rare, and even it has not been reported as a prenatal diagnosis yet. In this article, we present an autosomal translocation carrier fetus with trisomy 21: 47,XX,+21, t(3;8)(p21;q24). Although the coincidence of reciprocal translocation and trisomy may be seen in reciprocal translocation carrier families, de novo cases are extremely rare. The presented case is diagnosed by amniocentesis, which was performed because of abnormal fetal ultrasonographic findings and increased trisomy 21 risk at maternal serum screening test. The postmortem pathologic examination of the fetus revealed that the findings of hypertelorism and right lung with two lobes are interesting novel findings of our cases associated with the breakpoints 3p21 and 8q24.

  9. Translocation techniques used to establish pen farmed Alaskan reindeer

    Directory of Open Access Journals (Sweden)

    R. A. Dieterich

    1990-09-01

    Full Text Available Small herds of reindeer (Rangifer tarandus frequently have been needed to be established in fenced holding pens for research or commercial reasons in Alaska and other areas. Native ranges of reindeer in Alaska were not on road systems, and the diet of the native reindeer had to be changed when they were translocated to small pens. Economics of transportation and feeding played an important role in the feasibility of translocation. Gathering and holding of reindeer for shipment, transport methods, adjustment of free-ranging reindeer to confinement, and a new diet were primary considerations to insure survival. Minimal psychologic stress of short duration, thermoregulation, and physical comfort were extremely important in carrying out a successful translocation. Receiving facilities, feed, and personnel were equally important. A minimum of one month was required to adjust reindeer to confinement and diet change.

  10. Enhancing nuclear translocation: perspectives in inhaled corticosteroid therapy.

    Science.gov (United States)

    Hakim, Amir; Usmani, Omar S

    2015-01-01

    Corticosteroids are widely used in the treatment of asthma and chronic obstructive pulmonary disease (COPD). In contrast to their use in mild-to-moderate asthma, they are less efficacious in improving lung function and controlling the underlying inflammation in COPD. In most clinical trials, corticosteroids have shown little benefit in COPD, but have shown a greater clinical effect in combination with long-acting bronchodilators. Impaired corticosteroid activation of the glucocorticoid receptor (GR) has been reported in corticosteroid-insensitive individuals. Reversal of corticosteroid-insensitivity by enhancing GR nuclear translocation is a potential therapeutic target. Preclinical studies suggest members of the nuclear receptor superfamily may facilitate glucocorticoid receptor nuclear translocation. Unravelling the mechanisms that govern GR nuclear translocation may identify novel therapeutic targets for reversing corticosteroid-insensitivity.

  11. Mechanism for translocation of fluoroquinolones across lipid membranes

    DEFF Research Database (Denmark)

    Cramariuc, O.; Rog, T.; Javanainen, M.

    2012-01-01

    Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone...... antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins....... Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach...

  12. Translocation of polymers into crowded media with dynamic attractive nanoparticles.

    Science.gov (United States)

    Cao, Wei-Ping; Ren, Qing-Bao; Luo, Meng-Bo

    2015-07-01

    The translocation of polymers through a small pore into crowded media with dynamic attractive nanoparticles is simulated. Results show that the nanoparticles at the trans side can affect the translocation by influencing the free-energy landscape and the diffusion of polymers. Thus the translocation time τ is dependent on the polymer-nanoparticle attraction strength ɛ and the mobility of nanoparticles V. We observe a power-law relation of τ with V, but the exponent is dependent on ɛ and nanoparticle concentration. In addition, we find that the effect of attractive dynamic nanoparticles on the dynamics of polymers is dependent on the time scale. At a short time scale, subnormal diffusion is observed at strong attraction and the diffusion is slowed down by the dynamic nanoparticles. However, the diffusion of polymers is normal at a long time scale and the diffusion constant increases with the increase in V.

  13. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  14. Scintigraphic visualization of bacterial translocation in experimental strangulated intestinal obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Galeev, Yu.M.; Popov, M.V.; Salato, O.V. [Siberian Branch of Russian Academy of Medical Science, Research Centre of Reparative and Restorative Surgery, East Siberian Research Centre, 100 Yubileyniy, P.O. Box 23, Irkutsk (Russian Federation); Lishmanov, Yu.B. [Siberian Branch of Russian Academy of Medical Science, Research and Development Institute of Cardiology, Tomsk Research Centre, Tomsk (Russian Federation); Grigorev, E.G.; Aparcin, K.A. [Siberian Branch of Russian Academy of Medical Science, Research Centre of Reparative and Restorative Surgery, East Siberian Research Centre, 100 Yubileyniy, P.O. Box 23, Irkutsk (Russian Federation); Irkutsk State Medical University, Department of Hospital Surgery, Irkutsk (Russian Federation)

    2009-11-15

    The purpose of this study was to obtain scintigraphic images depicting translocation of {sup 99m}Tc-labelled Escherichia coli bacteria through the intestinal barrier and to quantify this process using methods of nuclear medicine. Thirty male Wistar rats (including 20 rats with modelled strangulated intestinal obstruction and 10 healthy rats) were used for bacterial scintigraphy. {sup 99m}Tc-labelled E. coli bacteria ({sup 99m}Ts-E. coli) with an activity of 7.4-11.1 MBq were administered into a section of the small intestine. Scintigraphic visualization of bacterial translocation into organs and tissues of laboratory animals was recorded in dynamic (240 min) and static (15 min) modes. The number of labelled bacteria, which migrated through the intestinal barrier, was quantified by calculating the translocation index (TI). Control indicated no translocation of {sup 99m}Ts-E. coli administered into the intestine through the parietes of the small intestine's distal part in healthy animals. Animals with strangulated obstruction demonstrated different migration strength and routes of labelled bacteria from strangulated and superior to strangulation sections of the small intestine. {sup 99m}Ts-E. coli migrated from the strangulated loop into the peritoneal cavity later causing systemic bacteraemia through peritoneal resorption. The section of the small intestine, which was superior to the strangulation, demonstrated migration of labelled bacteria first into the portal and then into the systemic circulation. The strangulated section of the small intestine was the main source of bacteria dissemination since the number of labelled bacteria, which migrated from this section significantly, exceeded that of the area superior to the strangulation section of the small intestine (p = 0.0003). Bacterial scintigraphy demonstrated the possibility of visualizing migration routes of labelled bacteria and quantifying their translocation through the intestinal barrier. This

  15. Mode of ATM-dependent suppression of chromosome translocation.

    Science.gov (United States)

    Yamauchi, Motohiro; Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi

    2011-12-09

    It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  16. Spontaneous modification of the oxoglutarate translocator in vivo.

    Science.gov (United States)

    Duyckaerts, C; Sluse-Goffart, C M; Sluse, F E; Gosselin-Rey, C; Liébecq, C

    1984-07-16

    In studying the oxoglutarate translocator of rat-heart mitochondria over many years, we have observed an unexpected decrease in its efficiency. It has been divided by 2.48 +/- 0.07, (S.E.M.) for the exchange of external oxoglutarate for internal malate at 2 degrees C when the internal-malate concentration is 4 mM and is accompanied by an increase in its concentration (multiplied by 1.61 +/- 0.02, S.E.M.). The affinity of the external sites of the translocator for the external oxoglutarate is unchanged as well as the binding and kinetic cooperativities of the external oxoglutarate. This shows that the external side of the translocator has not been modified and suggests that its central part has not been modified either. The apparent Michaelis constant of the internal malate is increased (multiplied by 1.74 +/- 0.23, S.E.M.) suggesting that the translocator has been modified on its matricial side. Some control experiments show that a change in the diet of the rats, despite its effect on the fatty-acid content of the mitoplasts, is probably not responsible for the observed modification. As it is nevertheless very likely that changes of the oxoglutarate translocator have occurred in vivo, it is proposed that the observed modification has a genetic origin. The existence of two antagonist changes which are not directly related suggests that one of them is a response of the organism against the other; thus the oxoglutarate translocator may play a regulatory rôle in certain physiological conditions.

  17. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Torsten B. [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States); Li, Amy; Liu, Yuen-Joyce [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Gagnon, Etienne [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Institut de Recherche en Immunologie et Cancerologie, Departement de Microbiologie et Immunologie, Universite de Montreal, Montreal, Canada H3T1J4 (Canada); Kobayashi, Koichi S., E-mail: Koichi_Kobayashi@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215 (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215 (United States)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  18. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  19. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Zhen; LUO Meng-Bo

    2008-01-01

    The translocation of polymer chain through a small pore from a high concentration side (cis side) to a low concentration side (trans side) is simulated by using Monte Carlo technique. The effect of the polymer-pore interaction on the translocation is studied. We find a special interaction at which the decay of the number of polymer chain, N, at the cis side obeys Fick's law, i.e. N decreases exponentially with time. The behaviour is analogous to the diffusion of hard sphere.

  20. Dbl family guanine nucleotide exchange factors.

    Science.gov (United States)

    Zheng, Y

    2001-12-01

    The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP-GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.

  1. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER. © 2012 by the authors; licensee MDPI, Basel...

  2. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate.

    Science.gov (United States)

    Li, Quansong; Giussani, Angelo; Segarra-Martí, Javier; Nenov, Artur; Rivalta, Ivan; Voityuk, Alexander A; Mukamel, Shaul; Roca-Sanjuán, Daniel; Garavelli, Marco; Blancafort, Lluís

    2016-05-23

    The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.

  3. In Vitro Selection Using Modified or Unnatural Nucleotides

    Science.gov (United States)

    Stovall, Gwendolyn M.; Bedenbaugh, Robert S.; Singh, Shruti; Meyer, Adam J.; Hatala, Paul J.; Ellington, Andrew D.; Hall, Bradley

    2014-01-01

    Incorporation of modified nucleotides into in vitro RNA or DNA selections offer many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions. PMID:25606981

  4. Robertsonian Translocations: An Overview of 872 Robertsonian Translocations Identified in a Diagnostic Laboratory in China

    Science.gov (United States)

    Chen, Fan; Jiang, Shuai; Su, Hui; Liang, Jianfen; Deng, Chunhua; Hu, Chaohui; Yu, Shihui

    2015-01-01

    Robertsonian translocations (ROBs) have an estimated incidence rate of 1/1000 births, making this type of rearrangement the most common structural chromosomal abnormalities seen in the general population. In this study, we reports 872 cases of ROBs from 205,001 specimens karyotyped postnatally in a single accredited laboratory in China, including 583 balanced ROBs, 264 unbalanced ROBs, 9 mosaic ROBs, and 18 complex ROBs. Ninety-three percent of the balanced ROBs observed were adults with infertility, miscarriage, or offspring(s) with known chromosomal abnormalities. Significant excess of females were found to be carriers of balanced ROBs with an adjusted male/female ratio of 0.77. Ninety-eight percent of the unbalanced ROBs observed were children with variable referral reasons. Almost all of the unbalanced ROBs involved chromosome 21 except a single ROB with [46,XX,der(13;14),+13] identified in a newborn girl with multiple congenital anomalies. Multiple novel ROB karyotypes were reported in this report. This study represents the largest collections of ROBs in Chinese population. PMID:25932913

  5. Robertsonian translocations: an overview of 872 Robertsonian translocations identified in a diagnostic laboratory in China.

    Directory of Open Access Journals (Sweden)

    Wei-Wei Zhao

    Full Text Available Robertsonian translocations (ROBs have an estimated incidence rate of 1/1000 births, making this type of rearrangement the most common structural chromosomal abnormalities seen in the general population. In this study, we reports 872 cases of ROBs from 205,001 specimens karyotyped postnatally in a single accredited laboratory in China, including 583 balanced ROBs, 264 unbalanced ROBs, 9 mosaic ROBs, and 18 complex ROBs. Ninety-three percent of the balanced ROBs observed were adults with infertility, miscarriage, or offspring(s with known chromosomal abnormalities. Significant excess of females were found to be carriers of balanced ROBs with an adjusted male/female ratio of 0.77. Ninety-eight percent of the unbalanced ROBs observed were children with variable referral reasons. Almost all of the unbalanced ROBs involved chromosome 21 except a single ROB with [46,XX,der(13;14,+13] identified in a newborn girl with multiple congenital anomalies. Multiple novel ROB karyotypes were reported in this report. This study represents the largest collections of ROBs in Chinese population.

  6. Identification of PPAP2B as a novel recurrent translocation partner gene of HMGA2 in lipomas.

    Science.gov (United States)

    Bianchini, Laurence; Birtwisle, Loïc; Saâda, Esma; Bazin, Audrey; Long, Elodie; Roussel, Jean-François; Michiels, Jean-François; Forest, Fabien; Dani, Christian; Myklebost, Ola; Birtwisle-Peyrottes, Isabelle; Pedeutour, Florence

    2013-06-01

    Most lipomas are characterized by translocations involving the HMGA2 gene in 12q14.3. These rearrangements lead to the fusion of HMGA2 with an ectopic sequence from the translocation chromosome partner. Only five fusion partners of HMGA2 have been identified in lipomas so far. The identification of novel fusion partners of HMGA2 is important not only for diagnosis in soft tissue tumors but also because these genes might have an oncogenic role in other tumors. We observed that t(1;12)(p32;q14) was the second most frequent translocation in our series of lipomas after t(3;12)(q28;q14.3). We detected overexpression of HMGA2 mRNA and protein in all t(1;12)(p32;q14) lipomas. We used a fluorescence in situ hybridization-based positional cloning strategy to characterize the 1p32 breakpoint. In 11 cases, we identified PPAP2B, a member of the lipid phosphate phosphatases family as the 1p32 target gene. Reverse transcription-polymerase chain reaction analysis followed by nucleotide sequencing of the fusion transcript indicated that HMGA2 3' untranslated region (3'UTR) fused with exon 6 of PPAP2B in one case. In other t(1;12) cases, the breakpoint was extragenic, located in the 3'region flanking PPAP2B 3'UTR. Moreover, in one case showing a t(1;6)(p32;p21) we observed a rearrangement of PPAP2B and HMGA1, which suggests that HMGA1 might also be a fusion partner for PPAP2B. Our results also revealed that adipocytic differentiation of human mesenchymal stem cells derived from adipose tissue was associated with a significant decrease in PPAP2B mRNA expression suggesting that PPAP2B might play a role in adipogenesis.

  7. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset

    Science.gov (United States)

    Costa, Frederico R.C.; Françozo, Marcela C.S.; de Oliveira, Gabriela G.; Ignacio, Aline; Castoldi, Angela; Zamboni, Dario S.; Ramos, Simone G.; Câmara, Niels O.; de Zoete, Marcel R.; Palm, Noah W.; Flavell, Richard A.; Silva, João S.

    2016-01-01

    Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic β cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease. PMID:27325889

  8. Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies.

    Science.gov (United States)

    Baú, João Paulo T; Carneiro, Cristine E A; de Souza Junior, Ivan G; de Souza, Cláudio M D; da Costa, Antonio C S; di Mauro, Eduardo; Zaia, Cássia T B V; Coronas, Joaquin; Casado, Clara; de Santana, Henrique; Zaia, Dimas A M

    2012-02-01

    The interactions of adenine and thymine with and adsorption on zeolites were studied using different techniques. There were two main findings. First, as shown by X-ray diffractometry, thymine increased the decomposition of the zeolites (Y, ZSM-5) while adenine prevented it. Second, zeolite Y adsorbed almost the same amount of adenine and thymine, thus both nucleic acid bases could be protected from hydrolysis and UV radiation and could be available for molecular evolution. The X-ray diffractometry and SEM showed that artificial seawater almost dissolved zeolite A. The adsorption of adenine on ZSM-5 zeolite was higher than that of thymine (Student-Newman-Keuls test-SNK pzeolite, when compared to other zeolites (SNK pzeolites was not statistically different (SNK p>0.05). The adsorption of adenine and thymine on zeolites did not depend on pore size or Si/Al ratio and it was not explained only by electrostatic forces; rather van der Waals interactions should also be considered.

  9. [Identification of single nucleotide polymorphisms in centenarians].

    Science.gov (United States)

    Gambini, Juan; Gimeno-Mallench, Lucía; Inglés, Marta; Olaso, Gloria; Abdelaziz, Kheira Mohamed; Avellana, Juan Antonio; Belenguer, Ángel; Cruz, Raquel; Mas-Bargues, Cristina; Borras, Consuelo; Viña, José

    2016-01-01

    Longevity is determined by genetic and external factors, such as nutritional, environmental, social, etc. Nevertheless, when living conditions are optimal, longevity is determined by genetic variations between individuals. In a same population, with relative genotypic homogeneity, subtle changes in the DNA sequence affecting a single nucleotide can be observed. These changes, called single nucleotide polymorphisms (SNP) are present in 1-5% of the population. A total of 92 subjects were recruited, including 28 centenarians and 64 controls, in order to find SNP that maybe implicated in the extreme longevity, as in the centenarians. Blood samples were collected to isolate and amplify the DNA in order to perform the analysis of SPN by Axiom™ Genotyping of Affymetrix technology. Statistical analyses were performed using the Plink program and libraries SNPassoc and skatMeta. Our results show 12 mutations with a p<.001, where 5 of these (DACH1, LOC91948, BTB16, NFIL3 y HDAC4) have regulatory functions of the expressions of others genes. Therefore, these results suggest that the genetic variation between centenarians and controls occurs in five genes that are involved in the regulation of gene expression to adapt to environmental changes better than controls. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  10. Estimation of evolutionary distances between nucleotide sequences.

    Science.gov (United States)

    Zharkikh, A

    1994-09-01

    A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414-422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269-285, 1984) method is superior to others.

  11. Detection of unbalanced chromosome segregations in preimplantation genetic diagnosis of translocations by short comparative genomic hibridization.

    Science.gov (United States)

    Rius, Mariona; Obradors, Albert; Daina, Gemma; Ramos, Laia; Pujol, Aïda; Martínez-Passarell, Olga; Marquès, Laura; Oliver-Bonet, Maria; Benet, Jordi; Navarro, Joaquima

    2011-07-01

    To apply a comprehensive chromosomal screening through short comparative genomic hybridization (CGH) in the preimplantation genetic diagnosis (PGD) of translocations. Clinical research study. A PGD laboratory and two IVF clinics. Three Robertsonian translocation carriers, two reciprocal translocation carriers, and a double-translocation carrier. After using the short-CGH approach in the reanalysis of two unbalanced embryos, discarded from a PGD for a reciprocal translocation carrier, the same method was applied in the PGD of day-3 embryos of translocation carriers. Ability of short CGH to detect partial chromosomal abnormalities in unbalanced embryos, translocation segregation proportions, and proportion of embryos carrying chromosomal abnormalities not related to the translocations. The short-CGH technique detected errors resulting from the meiotic segregation of the chromosomes involved in the translocations and other abnormalities affecting the remaining chromosomes. Alternate segregation was detected most frequently among Robertsonian translocation cases, whereas unbalanced chromosome segregations were found predominantly in reciprocal ones. Aneuploidy and structural chromosome errors were found more frequently in Robertsonian than in reciprocal translocation carriers. Application of short-CGH PGD achieved pregnancy in two cases. Short CGH is a reliable approach for PGD of translocations, as it is capable of detecting partial chromosome errors caused by unbalanced segregations simultaneously to the screening of all chromosomes, and it may improve the results after PGD for translocation carriers. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Extensive mitochondrial genome rearrangements between Cerithioidea and Hypsogastropoda (Mollusca; Caenogastropoda) as determined from the partial nucleotide sequences of the mitochondrial DNA of Cerithidea djadjariensis and Batillaria cumingi.

    Science.gov (United States)

    Kojima, Shigeaki

    2010-06-01

    Partial nucleotide sequences ( approximately 8000 bp) of the mitochondrial DNA of two cerithioidean gastropod species-Cerithidea djadjariensis and Batillaria cumingi-were determined. The order of mitochondrial genes (eight protein genes, two ribosomal RNA genes, and nine transfer RNA genes) was identical between these two species. and remarkably different from the previously reported order in other gastropods. The results indicate that the genome structure of the common ancestor of Cerithioidea and its sister group, Hypsogastropoda, is almost identical to that of the common ancestor of Gastropoda; moreover, independent mitochondrial genome rearrangements were identified between the lineages of Cerithioidea and Hypsogastropoda. The rearrangements within Cerithioidea can be explained by the inversion of a single tRNA gene, two translocations of a single tRNA gene, and three translocations of a genome fragment containing a tRNA gene and protein-coding gene(s).

  13. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  14. Translocation of Polymer Chains Through a Channel with Complex Geometries

    Institute of Scientific and Technical Information of China (English)

    Zhi-yong Yang; Lin-xi Zhang; Jun Cheng

    2008-01-01

    The elastic behavior of a single chain transporting through complex channel which can be seen as the combination of three different channels (left channel, middle channel, and right channel, respectively) is investigated using the new pruned-enriched Rosenbluth method with importance sampling. The elastic force during the translocation process is calculated. At the entrance into the middle channel, there is the first plateau in the curve of the elastic force f (f0) versus x, here x represents the position of the first monomer along the x-axis direction. When the first monomer moves to a certain position, a second plateau is observed with the elastic force f<0, which represents spontaneous translocation. The free energy difference between the subchain in the right channel and the subchain in the left channel may drive the trauslocation. The influence of chain length and width of the left and right channels on the translocation process are also investigated. From the simulation results, more detailed explanations for the reason why the component translocation time is not the same for different channels can be presented.

  15. Macular pigment and fixation after macular translocation surgery

    NARCIS (Netherlands)

    Reinhard, Jens; Kanis, Martijn J.; Berendschot, Tos T. J. M.; Schoen, Christiane; Gelisken, Faik; Trauzettel-Klosinski, Susanne; Bartz-Schmidt, Karl U.; Zrenner, Eberhart

    2010-01-01

    Background After full macular translocation (MT) surgery with 3608 retinotomy, the fovea is rarely identifiable. Our aim was to verify the position of the fovea, to determine how patients fixate after MT and to examine distribution and optical density of macular pigment ( MP). Methods 9 patients aft

  16. SecA supports a constant rate of preprotein translocation

    NARCIS (Netherlands)

    Tomkiewicz, D; Nouwen, N; van Leeuwen, R; Tans, S; Driessen, AJM

    2006-01-01

    In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydroly

  17. Centrifugally driven microfluidic disc for detection of chromosomal translocations

    DEFF Research Database (Denmark)

    Brøgger, Anna Line; Kwasny, Dorota; Bosco, Filippo G.

    2012-01-01

    and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control...

  18. Genetic counseling in carriers of reciprocal translocations involving two autosomes

    Directory of Open Access Journals (Sweden)

    Bahareh Pourjafari

    2012-01-01

    Couples in which one partner is the carrier of such balanced translocation have increased risks of infertility, recurrent abortion, and delivery of chromosomally abnormal offspring. Genetic counseling of such couples, therefore, presents a unique challenge and should be considered in dealing with such families.

  19. Three cases of mosaicism for balanced reciprocal translocations

    NARCIS (Netherlands)

    Leegte, B; Sikkema-Raddatz, B; Hordijk, R; Bouman, K; van Essen, T; Castedo, S; de Jong, B

    1998-01-01

    Mosaicism for a balanced reciprocal translocation (BRTM) is rare. As far as we know only 26 cases of BRTM, demonstrated in lymphocyte cultures, have been described, five of which had an abnormal phenotype. Prenatally three confirmed cases with a normal phenotypic outcome have been described. Here we

  20. Concentration Polarization in Translocation of DNA through Nanopores and Nanochannels

    NARCIS (Netherlands)

    Das, Siddhartha; Dubsky, Pavel; Berg, van den Albert; Eijkel, J.C.T.

    2012-01-01

    In this Letter we provide a theory to show that high-field electrokinetic translocation of DNA through nanopores or nanochannels causes large transient variations of the ionic concentrations in front and at the back of the DNA due to concentration polarization (CP). The CP causes strong local conduc

  1. Ionizing Radiation Induces HMGB1 Cytoplasmic Translocation and Extracellular Release

    Institute of Scientific and Technical Information of China (English)

    Lili Wang; Li He; Guoqiang Bao; Xin He; Saijun Fan; Haichao Wang

    2016-01-01

    Objective A nucleosomal protein,HMGBI,can be secreted by activated immune cells or passively released by dying cells,thereby amplifying rigorous inflammatory responses.In this study we aimed to test the possibility that radiation similarly induces cytoplasmic HMGB1 translocation and release.Methods Human skin fibroblast (GM0639) and bronchial epithelial (16HBE) cells and rats were exposed to X-ray radiation,and HMGB1 translocation and release were then assessed by immunocytochemistry and immunoassay,respectively.Results At a wide dose range(4.0-12.0 Gy),X-ray radiation induced a dramatic cytoplasmic HMGB1 translocation,and triggered a time-and dose-dependent HMGB1 release both in vitro and in vivo.The radiation-mediated HMGB1 release was also associated with noticeable chromosomal DNA damage and loss of cell viability.Conclusions Radiation induces HMGB1 cytoplasmic translocation and extracellular release through active secretion and passive leakage processes.

  2. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes

    NARCIS (Netherlands)

    Palmen, Ronald; Driessen, Arnold J.M.; Hellingwerf, K

    1994-01-01

    Bacteria are extremely versatile in the sense that they have gained the ability to transport all three major classes of biopolymers through their cell envelope: proteins, nucleic acids, and polysaccharides. These macromolecules are translocated across membranes in a large number of cellular processe

  3. Driven translocation of a polymer: Fluctuations at work

    NARCIS (Netherlands)

    Dubbeldam, J.L.A.; Rostiashvii, V.G.; Milchev, A.; Vilgis, T.A.

    2013-01-01

    The impact of thermal fluctuations on the translocation dynamics of a polymer chain driven through a narrow pore has been investigated theoretically and by means of extensive molecular dynamics (MD) simulation. The theoretical consideration is based on the so-called velocity Langevin (V-Langevin) eq

  4. 40 CFR 798.5460 - Rodent heritable translocation assays.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Rodent heritable translocation assays. 798.5460 Section 798.5460 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...) Species. The mouse is the species generally used, and is recommended. (ii) Age. Healthy sexually...

  5. Rasp21 sequences opposite the nucleotide binding pocket are required for GRF-mediated nucleotide release

    DEFF Research Database (Denmark)

    Leonardsen, L; DeClue, J E; Lybaek, H;

    1996-01-01

    , the sensitivity of H-Ras to GRF was abolished when residues 130-139 were replaced by proline-aspartic acid-glutamine, whereas substitution of the entire loop 8 (residues 123-130 replaced by leucine-isoleucine-arginine) had no effect on the stimulation of guanine nucleotide release by GRF. Substrate activity...

  6. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.

    Science.gov (United States)

    Lorenz, Robin; Moon, Eui-Whan; Kim, Jeong Joo; Schmidt, Sven H; Sankaran, Banumathi; Pavlidis, Ioannis V; Kim, Choel; Herberg, Friedrich W

    2017-07-06

    Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. MiT family translocation renal cell carcinoma.

    Science.gov (United States)

    Argani, Pedram

    2015-03-01

    The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dietary nitrite improves insulin signaling through GLUT4 translocation.

    Science.gov (United States)

    Jiang, Hong; Torregrossa, Ashley C; Potts, Amy; Pierini, Dan; Aranke, Mayank; Garg, Harsha K; Bryan, Nathan S

    2014-02-01

    Diabetes mellitus type 2 is a syndrome of disordered metabolism with inappropriate hyperglycemia owing to a reduction in the biological effectiveness of insulin. Type 2 diabetes is associated with an impaired nitric oxide (NO) pathway that probably serves as the key link between metabolic disorders and cardiovascular disease. Insulin-mediated translocation of GLUT4 involves the PI3K/Akt kinase signal cascade that results in activation of endothelial NO synthase (eNOS). eNOS is dysfunctional during diabetes. We hypothesize that loss of eNOS-derived NO terminates the signaling cascade and therefore cannot activate GLUT4 translocation and that dietary nitrite may repair this pathway. In this study, we administered 50mg/L sodium nitrite to db/db diabetic mice for 4 weeks. After 4 weeks treatment, the db/db mice experienced less weight gain, improved fasting glucose levels, and reduced insulin levels. Cell culture experiments using CHO-HIRc-myc-GLUT4eGFP cell lines stably expressing insulin receptor and myc-GLUT4eGFP protein, as well as L6 skeletal muscle cells stably expressing rat GLUT4 with a Myc epitope (L6-GLUT4myc), showed that NO, nitrite, and GSNO stimulate GLUT4 translocation independent of insulin, which is inhibited by NEM. Collectively our data suggest that nitrite improves insulin signaling through restoration of NO-dependent nitrosation of GLUT4 signaling translocation. These data suggest that NO-mediated nitrosation of GLUT4 by nitrite or other nitrosating agents is necessary and sufficient for GLUT4 translocation in target tissue. Description of this pathway may justify a high-nitrate/nitrite diet along with the glycemic index to provide a safe and nutritional regimen for the management and treatment of diabetes.

  9. Biosecurity for Translocations: Cirl Bunting (Emberiza cirlus), Fisher's Estuarine Moth (Gortyna borelii lunata), Short-Haired Bumblebee (Bombus subterraneus) and Pool Frog (Pelophylax lessonae) Translocations as Case Studies.

    Science.gov (United States)

    Vaughan-Higgins, R J; Masters, N; Sainsbury, A W

    2016-08-04

    Exposure to parasites in conservation translocations increases the risks to recipient and translocated populations from disease, and therefore there has been interest in implementing biosecurity methods. Using four case examples we described how biosecurity was applied in practical translocation scenarios prior to and during a translocation and also post-release. We implemented biosecurity, including quarantine barriers, at specific points in the translocation pathway where hazards, identified by the disease risk analysis, had the potential to induce disease. Evidence that biosecurity protected translocated and recipient populations, included an absence of mortality associated with high-risk non-native parasites, a reduction in mortality associated with endemic parasites, the absence of high-risk pathogenic parasites, or associated diseases, at the destination; and the apparent absence of diseases in closely related species at the destination site. The biosecurity protocols did not alter the level or duration of translocated species confinement and therefore probably did not act as a stressor. There is a monetary cost involved in biosecurity but the epidemiological evidence suggests that conservation translocation managers should carefully consider its use. Breakdowns in quarantine have occurred in human hospitals despite considerable investment and training for health professionals, and we therefore judge that there is a need for training in the objectives and maintenance of quarantine barriers in conservation translocations. Biosecurity protocols for conservation translocations should be continually updated in response to findings from disease risk analysis and post-release disease surveillance and we recommend further studies to evaluate their effectiveness.

  10. Control of dinucleoside polyphosphates by the FHIT-homologous HNT2 gene, adenine biosynthesis and heat shock in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Bieganowski Pawel

    2002-05-01

    Full Text Available Abstract Background The FHIT gene is lost early in the development of many tumors. Fhit possesses intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression. Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds ApppA well, it was hypothesized that Fhit-substrate complexes are the active, signaling form of Fhit. Which substrates are most important for Fhit signaling remain unknown. Results Here we demonstrate that dinucleoside polyphosphate levels increase 500-fold to hundreds of micromolar in strains devoid of the Saccharomyces cerevisiae homolog of Fhit, Hnt2. Accumulation of dinucleoside polyphosphates is reversed by re-expression of Hnt2 and is active site-dependent. Dinucleoside polyphosphate levels depend on an intact adenine biosynthetic pathway and time in liquid culture, and are induced by heat shock to greater than 0.1 millimolar even in Hnt2+ cells. Conclusions The data indicate that Hnt2 hydrolyzes both ApppN and AppppN in vivo and that, in heat-shocked, adenine prototrophic yeast strains, dinucleoside polyphosphates accumulate to levels in which they may saturate Hnt2.

  11. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  12. Targeted disruption of the mouse adenine phosphoribosyltransferase (aprt) gene and the production of APRT-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Engle, S.J.; Chen, J.; Tischfield, J.A. [Indiana Univ., School of Medicine, Indianapolis, IN (United States)] [and others

    1994-09-01

    Adenine phosphoribosyltransferase (APRT: EC 2.4.2.7), a ubiquitously expressed purine salvage enzyme, catalyzes the synthesis of AMP and inorganic pyrophosphate from existing adenine and 5-phosphoribosyl-1-pyrophosphate. Deficiency of this enzyme in humans results in the accumulation of 2,8-dihydroxyadenine leading to crystalluria and nephrolithiasis. In order to facilitate our study of this rare, autosomal recessive disorder, we applied the advances in gene targeting technology and mouse embryonic stem (ES) cell culture to the production of APRT-deficient mice. A positive-negative targeting strategy was used. The tageting vector contain 5.6 kb of the mouse APRT gene, a neomycin resistance gene in exon 3 as a positive selection marker, and a HSV thymidine kinase gene at the 3{prime} end of the homology as a negative selection marker. The vector was introduced into D3 ES cells by electroporation and the cells were selected for G418 and ganciclovir (GANC) resistance. G418-GANC resistant clones were screened by Southern blot. One of several correctly targeted clones was expanded and used for blastocyst microinjection to produce chimeric mice. Chimeric animals were bred and agouti progeny heterozygous for the targeted allele were obtained. Heterozygous animals have been bred to produce APRT-deficient animals. Matings are currently underway to determine the phenotype of APRT/HPRT-deficient animals.

  13. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    Directory of Open Access Journals (Sweden)

    Allison E James

    Full Text Available DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam. To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  14. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    Science.gov (United States)

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  15. A Nicotinamide Adenine Dinucleotide Dispersed Multi-walled Carbon Nanotubes Electrode for Direct and Selective Electrochemical Detection of Uric Acid.

    Science.gov (United States)

    Chen, Yan; Li, Yiwei; Ma, Yaohong; Meng, Qingjun; Yan, Yan; Shi, Jianguo

    2015-01-01

    A nanocomposite platform built with multi-walled carbon nanotubes (MWCNTs) and nicotinamide adenine dinucleotide (NAD(+)) via a noncovalent interaction between the large π systems in NAD(+) molecules and MWCNTs on a glassy carbon substrate was successfully developed for the sensitive and selective detection of uric acid (UA) in the presence of ascorbic acid (AA), dopamine (DA). NAD(+) has an adenine subunit and a nicotinamide subunit, which enabled interaction with the purine subunit of UA through a strong π-π interaction to enhance the specificity of UA. Compared with a bare glassy carbon electrode (GCE) and MWCNTs/GCE, the MWCNTs-NAD(+)/GCE showed a low background current and a remarkable enhancement of the oxidation peak current of UA. Using differential pulse voltammetry (DPV), a high sensitivity for the determination of UA was explored for the MWCNTs-NAD(+) modified electrode. A linear relationship between the DPV peak current of UA and its concentration could be obtained in the range of 0.05 - 10 μM with the detection limit as low as 10 nM (S/N = 3). This present strategy provides a novel and promising platform for the detection of UA in human urine and serum samples.

  16. Atlas of alien and translocated indigenous aquatic animals in southern Africa

    CSIR Research Space (South Africa)

    De Moor, IJ

    1988-01-01

    Full Text Available This report serves as an introduction to the problem of alien and translocated aquatic animals in southern Africa is given followed by checklists of the different species which have been introduced into or translocated within the subcontinent...

  17. Microbial Translocation in HIV Infection is Associated with Dyslipidemia, Insulin Resistance, and Risk of Myocardial Infarction

    DEFF Research Database (Denmark)

    Pedersen, Karin Kaereby; Pedersen, Maria; Trøseid, Marius;

    2013-01-01

    Microbial translocation has been suggested to be a driver of immune activation and inflammation. We hypothesized that microbial translocation may be related to dyslipidemia, insulin resistance, and the risk of coronary heart disease in HIV-infected individuals....

  18. In-vitro photo-translocation of antiretroviral drug delivery into TZMbl cells

    CSIR Research Space (South Africa)

    Malabi, Rudzani

    2017-01-01

    Full Text Available (115 fs). Optimisation of drug translocation parameters were done by performing trypan blue translocation studies. Cellular responses were determined via cell viability (Adenosine Triphosphate activity) and cell cytotoxicity (Lactate Dehydrogenase...

  19. High-throughput screening for small-molecule inhibitors of LARG-stimulated RhoA nucleotide binding via a novel fluorescence polarization assay.

    Science.gov (United States)

    Evelyn, Chris R; Ferng, Timothy; Rojas, Rafael J; Larsen, Martha J; Sondek, John; Neubig, Richard R

    2009-02-01

    Guanine nucleotide exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein-coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytoskeletal changes, motility, growth, survival, and gene transcription. The leukemia-associated RhoGEF (LARG) is a member of the regulators of G-protein signaling homology domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide-binding assay using BODIPY-Texas Red-GTPgammaS (BODIPY-TR-GTPgammaS), the authors performed a 10,000-compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a nonfluorescent radioactive guanine nucleotide-binding assay measuring LARG-stimulated [( 35)S] GTPgammaS binding to RhoA, thus ruling out nonspecific fluorescent effects. All 5 compounds selectively inhibited LARG-stimulated RhoA [( 35)S] GTPgammaS binding but had little to no effect on RhoA or Galpha( o) [(35)S] GTPgammaS binding. Therefore, these 5 compounds should serve as promising starting points for the development of small-molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide-binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications.

  20. Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.

    Science.gov (United States)

    Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V

    2012-09-01

    The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.

  1. Evaluation of the flanking nucleotide sequences of sarcomeric hypertrophic cardiomyopathy substitution mutations.

    Science.gov (United States)

    Meurs, Kathryn M; Mealey, Katrina L

    2008-07-03

    Hypertrophic cardiomyopathy (HCM) is a familial myocardial disease with a prevalence of 1 in 500. More than 400 causative mutations have been identified in 13 sarcomeric and myofilament related genes, 350 of these are substitution mutations within eight sarcomeric genes. Within a population, examples of recurring identical disease causing mutations that appear to have arisen independently have been noted as well as those that appear to have been inherited from a common ancestor. The large number of novel HCM mutations could suggest a mechanism of increased mutability within the sarcomeric genes. The objective of this study was to evaluate the most commonly reported HCM genes, beta myosin heavy chain (MYH7), myosin binding protein C, troponin I, troponin T, cardiac regulatory myosin light chain, cardiac essential myosin light chain, alpha tropomyosin and cardiac alpha-actin for sequence patterns surrounding the substitution mutations that may suggest a mechanism of increased mutability. The mutations as well as the 10 flanking nucleotides were evaluated for frequency of di-, tri- and tetranucleotides containing the mutation as well as for the presence of certain tri- and tetranculeotide motifs. The most common substitutions were guanine (G) to adenine (A) and cytosine (C) to thymidine (T). The CG dinucleotide had a significantly higher relative mutability than any other dinucleotide (pmutation was calculated; none were at a statistically higher frequency than the others. The large number of G to A and C to T mutations as well as the relative mutability of CG may suggest that deamination of methylated CpG is an important mechanism for mutation development in at least some of these cardiac genes.

  2. DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps.

    OpenAIRE

    1987-01-01

    In vitro translocation of periplasmic and outer membrane proteins into inverted plasma membrane vesicles from Escherichia coli was completely prevented by the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). DCCD was inhibitory to both co- and post-translational translocations, suggesting an involvement of the H+-translocating F1F0-ATPase in either mode of transport. This was verified by (i) the dependence of efficient co-translational translocation upon a low salt, i.e. F1-containin...

  3. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  4. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2.

    Directory of Open Access Journals (Sweden)

    Hwang-Phill Kim

    Full Text Available BACKGROUND: Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI has been shown to exert a synergistic antitumor effect when combined with fluoropyrimidine. This synergy may be attributable to the downregulation of thymidylate synthase (TS, which is frequently overexpressed in fluoropyrimidine-resistant cancer cells. However, the molecular mechanism underlying the downregulation of TS has yet to be clearly elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we demonstrate that lapatinib, a dual TKI of EGFR and HER2 downregulates TS via inhibition of the nuclear translocation of EGFR and HER2. From our cDNA microarray experiments, we determined that a variety of nucleotide synthesis-related genes, including TS, were downregulated with lapatinib, and this was apparent in HER2-amplified cells. Targeted and pharmacologic inhibition assays confirmed that the dual inhibition of EGFR and HER2 is required for the more effective reduction of TS as compared to what was observed with gefitinib or trasutuzumab alone. Additionally, we determined that co-transfected EGFR and HER2 activate the TS gene promoter more profoundly than do either EGFR or HER2 alone. The translocation of EGFR and HER2 into the nucleus and the subsequent activation of the TS promoter were inhibited by lapatinib. CONCLUSIONS AND SIGNIFICANCE: These results demonstrate that lapatinib inhibits the nuclear translocation of EGFR and HER2 and downregulates TS, thus sensitizing cancer cells to fluoropyrimidine.

  5. [Nucleotide receptors--structure and function, history and perspectives].

    Science.gov (United States)

    Barańska, Jolanta

    2014-01-01

    First nucleotide receptors were discovered by Geoffrey Burnstock in 70ties of the last century, as a purinoreceptors activated by ATP. It was further found that they may be activated both by purine and pyrimidine nucleotides and their name was changed to nucleotide receptors. They are divided into two fsamilies: P1, activated by adenosine and P2, activated by nucleotides which are further divided into P2X and P2Y subfamilies. P2X are ionotropic receptors activated by ATP, P2Y (as the P1) are metabotropic receptors coupled with protein G. P2Y receptors are activated by ATP, ADP, UTP, UDP and UDP-sugar derivatives. This review describes early history of extracellular nucleotide signaling studies and presents current knowledge of the particular nucleotide receptors subtypes. The article also describes the structure and functional roles of these receptors and speculates about future research and therapeutic directions in this field.

  6. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  7. Genetic counseling for a prenatal diagnosis of structural chromosomal abnormality with high-resolution analysis using a single nucleotide polymorphism microarray

    Directory of Open Access Journals (Sweden)

    Akiko Takashima

    2016-08-01

    Full Text Available A 41-year old pregnant woman underwent amniocentesis to conduct a conventional karyotyping analysis; the analysis reported an abnormal karyotype: 46,XY,add(9(p24. Chromosomal microarray analysis (CMA is utilized in prenatal diagnoses. A single nucleotide polymorphism microarray revealed a male fetus with balanced chromosomal translocations on 9p and balanced chromosomal rearrangements, but another chromosomal abnormality was detected. The fetus had microduplication. The child was born as a phenotypically normal male. CMA is a simple and informative procedure for prenatal genetic diagnosis. CMA is the detection of chromosomal variants of unknown clinical significance; therefore, genetic counseling is important during prenatal genetic testing.

  8. Functioning of oxidative phosphorylation in liver mitochondria of high-fat diet fed rats

    NARCIS (Netherlands)

    Ciapaite, Jolita; Bakker, Stephan J. L.; Van Eikenhorst, Gerco; Wagner, Marijke J.; Teerlink, Tom; Schalkwijk, Casper G.; Fodor, Mariann; Ouwens, D. Margriet; Diamant, Michaela; Heine, Robert J.; Westerhoff, Hans V.; Krab, Klaas

    We proposed that inhibition of mitochondrial adenine nucleotide translocator (ANT) by long chain acyl-CoA (LCAC) underlies the mechanism associating obesity and type 2 diabetes. Here we test that after long-term exposure to a higb-fat diet (HFD): (i) there is no adaptation of the mitochondrial

  9. Congenital hypertrophic cardiomyopathy, cataract, mitochondrial myopathy and defective oxidative phosphorylation in two siblings with Sengers-like syndrome.

    NARCIS (Netherlands)

    Morava, E.; Sengers, R.C.A.; Laak, H.J. ter; Heuvel, L.P.W.J. van den; Janssen, A.; Trijbels, J.M.F.; Cruysberg, H.; Boelen, C.; Smeitink, J.A.M.

    2004-01-01

    We describe two siblings with a Sengers-like syndrome, who presented with congenital hypertrophic cardiomyopathy, infantile cataract, mitochondrial myopathy, lactic acidosis and normal mental development. A mitochondrial adenine nucleotide translocator 1 (ANT1) defect was detected since the ANT1 pro

  10. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P.V.; Vignais, P.M.; Defaye, G.; Lauquin, G.; Doussiere, J.; Chabert, J.; Brandolin, G.

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  11. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    Science.gov (United States)

    Jin, Neng-zhi; Liu, Zi-xian; Qiu, Wen-yuan

    2009-02-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, ..., TT) in 12 human chromosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  12. Fluoride ion promoted deprotection and transesterification in nucleotide triesters.

    Science.gov (United States)

    Ogilvie, K K; Beaucage, S L

    1979-10-10

    Tetrabutylammonium fluoride will remove phenyl, trichloroethyl and cyanoethyl groups from nucleotides. In addition to the desired nucleotide products other results including chain cleavage, phosphofluoridates and cyanoethylated thymidine units may be obtained depending on the conditions used. Fluoride ion has been used to successfully exchange phenyl and trichloroethyl groups for methyl, ethyl and butyl groups in nucleotide triesters. This represents a rapid high yield route to a variety of phosphate esters. The synthesis of a novel nucleotide analogue in which two chains are bridged through their phosphates is described.

  13. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals.

    Science.gov (United States)

    Denisov, Stepan; Bazykin, Georgii; Favorov, Alexander; Mironov, Andrey; Gelfand, Mikhail

    2015-01-01

    Splice sites (SSs)--short nucleotide sequences flanking introns--are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints.

  14. The Social Construction of Guangzhou as a Translocal Trading Place

    Directory of Open Access Journals (Sweden)

    Angelo Gilles

    2015-01-01

    Full Text Available Guangzhou has become a key destination for sub-Saharan African traders. These traders have established multilocal forms of business organisation and, in so doing, have developed diverse practices to overcome geographical, political and cultural boundaries. This paper focuses on these practices, looking at the ways in which the movements, relations and interactions within these organisational formations are produced, transformed and lived. A close ethnographic examination was made of the livelihoods of 33 African traders from 13 sub-Saharan African countries. Through the concept of trans-locality, the organisational formations of these Africans are conceptualised as links between different places on a larger geographical scale; these links then meet on a local scale in the specific place of Guangzhou. Following a relational understanding of spatial constructions in social science, these links are conceptualised as one of the main drivers for the social construction and transformation of the city as a trans-local trading place.

  15. Balanced reciprocal translocation 5,18: a case report

    Directory of Open Access Journals (Sweden)

    Shahram Savad

    2014-05-01

    Conclusion: A balanced reciprocal translocation carrier is phenotypically normal, but during meiosis І, carrier chromosomes cant pair normally and form quadrivalant instead of bivalant that depend on type of their segregation (alternate, adjacent 1, adjacent 2,3:1,4:0, produce gametes that are chromosomally unbalanced which can result in early fetus abortion. Considering the number of abnormal gametes, the most effective way to help couples with this problem seems to be PGD 24sure, since it can identify reciprocal and Robertsonian translocation and allows concurrent screening of all chromosomes for aneuploidy. Another technique that can be compared with PGD 24sure is fluorescence in situ hybridization (FISH, but it has several technical limitations such as it is expensive and complexity, in addition it has only few probes (for chromosomes 21, 13, 18, X, Y so sometimes necessary to create patient specific protocols.

  16. Gut flora and bacterial translocation in chronic liver disease

    Institute of Scientific and Technical Information of China (English)

    John Almeida; Sumedha Galhenage; Jennifer Yu; Jelica Kurtovic; Stephen M Riordan

    2006-01-01

    Increasing evidence suggests that derangement of gut flora is of substantial clinical relevance to patients with cirrhosis. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen, in particular, predispose to an increased potential for bacterial infection in this group. Recent studies suggest that, in addition to their role in the pathogenesis of overt infective episodes and the clinical consequences of sepsis, gut flora contributes to the pro-inflammatory state of cirrhosis even in the absence of overt infection.Furthermore, manipulation of gut flora to augment the intestinal content of lactic acid-type bacteria at the expense of other gut flora species with more pathogenic potential may favourably influence liver function in cirrhotic patients. Here we review current concepts of the various inter-relationships between gut flora, bacterial translocation, bacterial infection, pro-inflammatory cytokine production and liver function in this group.

  17. Cyclic nucleotide specific phosphodiesterases of Leishmania major

    Directory of Open Access Journals (Sweden)

    Linder Markus

    2006-03-01

    Full Text Available Abstract Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range

  18. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.

    Science.gov (United States)

    Sargent, R G; Rolig, R L; Kilburn, A E; Adair, G M; Wilson, J H; Nairn, R S

    1997-11-25

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.

  19. Identity of Distributions of Direct Uphill and Downhill Translocation Times for Particles Traversing Membrane Channels

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Hummer, Gerhard; Bezrukov, Sergey M.

    2006-07-01

    We study the distribution of direct translocation times for particles passing through membrane channels connecting two reservoirs. The direct translocation time is a conditional first-passage time defined as the residence time of the particle in the channel while passing to the other side of the membrane directly, i.e., without returning to the reservoir from which it entered. We show that the distributions of direct translocation times are identical for translocation in both directions, independent of any asymmetry in the potential across the channel and, hence, the translocation probabilities.

  20. Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure.

    Science.gov (United States)

    DeGroot, Danica E; Denison, Michael S

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent.

  1. Single Nucleotide Polymorphisms (SNPs in Exon 6 of Lecithin Cholesterol Acyltransferase (LCAT Gene in Indonesian Local Sheep

    Directory of Open Access Journals (Sweden)

    Hidayati

    2014-08-01

    Full Text Available Lecithin cholesterol acyltransferase (LCAT is a soluble enzyme that converts cholesterol and lecithin to cholesteryl esters and lysolecithins on the surface of high density lipoprotein and plays an important role in lipoprotein metabolism. The research was aimed to explore single nucleotide polymorphisms of LCAT gene in Indonesian local sheep. A total of 118 genomic DNA of Indonesian local sheep were used in this research, consisted of Sumatera Thin Tail (43 heads, Garut (19 heads, Javanese Thin Tail (17 heads, Javanese Fat Tail (6 heads, Rote Island (7 heads, Kissar (7 heads, Sumbawa (10 heads, and Lembah Palu (9 heads. Polymerase chain reaction was used to amplify genomic DNA for exon 6 (250 bp and direct sequencing method was used to identify polymorphism sequences. The sequences were analyzed with BioEdit and MEGA 5.2 software. The BLAST sequence was obtained from Gene Bank GQ 150556.1. The results showed three novel SNPs, i.e. c.742C>T, c.770 T>A and c.882C>T. Substitution of cytosine to thymine c.742 is a synonymous mutation; thymine to adenine c.770 and cytosine to thymine c.882 are non-synonymous mutations. Polymorphisms of LCAT gene exon 6 was found in Sumatera Thin Tail, Javanese Thin Tail, Javanese Fat Tail, Garut, Lembah Palu, and Rote Island.

  2. Subcellular distribution and translocation of radionuclides in plants

    Energy Technology Data Exchange (ETDEWEB)

    Gouthu, S.; Weginwar, R.; Arie, Tsutomu; Ambe, Shizuko; Ozaki, Takuo; Enomoto, Shuichi; Ambe, Fumitoshi; Yamaguchi, Isamu

    1999-09-01

    The subcellular distribution of radionuclides in Glycine max Merr. (soybean) and Cucumis sativus L. (cucumber) and translocation of plant absorbed radionuclides with growth in soybean were studied. More than 60% of cellular incorporated Rb{sup {minus}83}, Sr{sup {minus}85}, Mn{sup {minus}54}, Nb{sup {minus}95}, and Se{sup {minus}75} remained in the supernatant fraction; 55% and 20% of Cr{sup {minus}51} was bound to soybean and cucumber cell wall fractions, respectively; 70% or more of Be{sup {minus}7}, Y{sup {minus}88}, and Fe{sup {minus}59} was fixed in the chloroplast fraction; and approx. 10% of Sc{sup {minus}46}, Fe{sup {minus}59}, V{sup {minus}48}, and As were fixed in the mitochondrial fraction. Translocation of nuclides within the soybean plant at different stages of growth has been determined. Vanadium, Y{sup {minus}88}, Be{sup {minus}7}, Se{sup {minus}75}, Nb{sup {minus}95}, Sc{sup {minus}46}, Cr{sup {minus}51}, and Zr{sup {minus}88} were predominantly accumulated in the root. Although the total percentage of plant uptake of Sc{sup {minus}46}, Zr{sup {minus}88}, Nb{sup {minus}95}, Sc{sup {minus}46}, and Cr{sup {minus}51} was high, because of low mobility and translocation to shoot, their accumulation in the fruit fraction was negligible. The translocation of mobile nuclides in plants was demonstrated clearly by Rb{sup {minus}83}, Zn{sup {minus}65}, and Fe{sup {minus}59}. Data on the nuclide fraction mobilized from vegetative parts into edible parts was used to assess the percentage of accumulated radionuclides in plants that may reach humans through beans.

  3. "Translocal Express" juba täna! / Rael Artel

    Index Scriptorium Estoniae

    Artel, Rael, 1980-

    2009-01-01

    27. märtsil algab Kumu Kunstimuuseumis "Public Preparation'i" ("Avalik ettevalmistus") sarja rahvusvaheline seminar "Translocal Express. Golden Age" ("Translokaalne ekspress. Kuldaeg"), kus on kõne all ajalookirjutamise ja kollektiivse mälu roll praegu domineerivas natsionalistlikus diskursuses ja selle käsitlemine kaasaegses kunstis. Seminaril on lähtutud eelkõige kunstnike Martin Krenni (Viin) ja Kristina Normani teoste tutvustamisest

  4. The pathological effect of bacterial translocation to the Henssge Nomogram

    OpenAIRE

    Ivanka, Ján

    2012-01-01

    This article presents the results of measurements of the influence of pathological bacterial translocation on the intestinal wall of the area, measured per recta, and its influence on the course of a Henssge Nomogram. The gram-positive /negative bacteria which influence temperature measurements and the subsequent regressive non-stationary temperature data of biological objects when establishing the moment of death are described in a lucid, synoptic form. Based upon forensic praxis, profession...

  5. "Translocal Express" juba täna! / Rael Artel

    Index Scriptorium Estoniae

    Artel, Rael, 1980-

    2009-01-01

    27. märtsil algab Kumu Kunstimuuseumis "Public Preparation'i" ("Avalik ettevalmistus") sarja rahvusvaheline seminar "Translocal Express. Golden Age" ("Translokaalne ekspress. Kuldaeg"), kus on kõne all ajalookirjutamise ja kollektiivse mälu roll praegu domineerivas natsionalistlikus diskursuses ja selle käsitlemine kaasaegses kunstis. Seminaril on lähtutud eelkõige kunstnike Martin Krenni (Viin) ja Kristina Normani teoste tutvustamisest

  6. Particles translocate from the vagina to the oviducts and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, A.P.; Hall, A.S.; Weller, R.E.; Lepel, E.A.; Schirmer, R.E.

    1985-03-01

    To investigate whether particles deposited in the vagina translocate to the oviducts, 0.3 ml of a 4% bone black suspension was deposited in the posterior vaginal fornix of each of five cynomolgus monkeys (Macaca fascicularis) during their mid-menstrual cycle. Simultaneously, each animal received 10 units of oxytocin by intramuscular injection. The oviducts of three animals were removed 1 hr after administration of the bone black, while those of the remaining two animals were removed 72 hr after dosing. The removed oviducts were flushed with Hank's solution and then with collagenase solution. The solutions were collected in clean vials and filtered. The filters were examined for bone black particles by light microscopy, as were filters through which solution blanks (negative controls) had been passed. Particles resembling bone black were found on all filters. There were no appreciable differences in the number or shape of these particles between the solution-blank filters and the oviduct-flush filters. The particles on both the solution-blank filters and on the oviduct-flush filters probably originated from environmental contamination by ubiquitous carbon particles. While these results suggested that no translocation took place, translocation could not be ruled out with certainty in the absence of quantitative analyses. A more definitive pilot study was then conducted with two dosed monkeys and one control, using talc labelled by neutron activation to circumvent the problem of environmental contamination. Gamma-Ray analysis of tissue and peritoneal lavage samples for the radionuclides /sup 46/Sc, /sup 59/Fe and /sup 60/Co indicated that no measurable quantities (i.e. greater than 0.5 micrograms) of talc translocated from the deposition site in the vagina to the uterine cavity and beyond.

  7. Studying DNA translocation in nanocapillaries using single molecule fluorescence

    CERN Document Server

    Thacker, Vivek V; Hernández-Ainsa, Silvia; Bell, Nicholas A W; Keyser, Ulrich F; 10.1063/1.4768929

    2013-01-01

    We demonstrate simultaneous measurements of DNA translocation into glass nanopores using ionic current detection and fluorescent imaging. We verify the correspondence between the passage of a single DNA molecule through the nanopore and the accompanying characteristic ionic current blockage. By tracking the motion of individual DNA molecules in the nanocapillary perpendicular to the optical axis and using a model, we can extract an effective mobility constant for DNA in our geometry under high electric fields.

  8. Molecular Dynamics Simulations of DNA Translocation through a biological Nanopore

    OpenAIRE

    Barder, Simen Eidsmo

    2012-01-01

    Experimental and simulation studies of nucleic acid transport through nanosized channels, both biological and synthetic, has become a rapidly growing research area over the last decade. While the utilization of the alpha-hemolysin channel as a sequencing device is soon to be realized, other biological nanochannels may hold advantages that are yet unknown. Motivated by this, the first reported molecular dynamics simulations of DNA translocation through a connexon 26 channel were accomplished, ...

  9. Spatial behaviour and survival of translocated wild brown hares

    Directory of Open Access Journals (Sweden)

    Fischer, C.

    2012-01-01

    Full Text Available The fragility of many populations of brown hares in Western Europe is a concern for managers, hunters and naturalists. We took advantage of a locally high density population to use wild individuals to restock areas where the species had disappeared or was close to disappearing. The aim of the project was to assess the evolution of the spatial behaviour after release using radio–tracking. Over 150 wild brown hares were translocated, one third of which were fitted with radio collars. In addition, fifteen individuals were radio–tagged and released back into the source population as a control. Most individuals settled in less than two months and their seasonal home range, once settled, was similar to that observed in the source population. Mean duration of tracking was not significantly different between the two groups. Moreover, two years after the last translocation, tagged individuals can still be observed, but most hares present are not tagged, which indicates natural reproduction of the released individuals. The translocation of wild individuals thus appears to give encouraging results.

  10. Growth hormone reduces mortality and bacterial translocation in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-de-Segura, I.A.; Miguel, E. de [`La Paz` Hospital, Madrid (Spain). Dept. of Experimental Surgery; Prieto, I. [`La Paz` Hospital, Madrid (Spain). Dept. of General and Digestive Surgery; Grande, A.G. [`La Paz` Hospital, Madrid (Spain). Dept. of Oncology Radiotherapy; Garcia, P.; Mendez, J. [`La Paz` Hospital, Madrid (Spain). Dept. of Clinical Biochemistry; Guerra, A. [`La Paz` Hospital, Madrid (Spain). Dept. of Microbiology

    1998-09-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p<0.05). Bacterial translocation was also reduced by hGH (p<0.05). Treating irradiated rats with hGH prevented body weight loss (p<0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p<0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss. (orig.)

  11. Patch-clamp detection of macromolecular translocation along nuclear pores

    Directory of Open Access Journals (Sweden)

    Bustamante J.O.

    1998-01-01

    Full Text Available The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

  12. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    Science.gov (United States)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  13. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  14. Detection of Kinase Translocation Using Microfluidic Electroporative Flow Cytometry

    Science.gov (United States)

    Lu, Chang; Wang, Jun; Bao, Ning; Paris, Leela; Wang, Hsiang-Yu; Geahlen, Robert

    2008-03-01

    Translocation of a protein between different subcellular compartments is a common event during signal transduction in living cells. Detection of these events has been largely carried out based on imaging of a low number of cells and subcellular fractionation/Western blotting. These conventional techniques either lack the high throughput desired for probing an entire cell population or provide only the average behaviors of cell populations without information from single cells. Here we demonstrate a new tool, referred to as microfluidic electroporative flow cytometry, to detect the translocation of an EGFP-tagged tyrosine kinase, Syk, to the plasma membrane in B cells at the level of the cell population. We combine electroporation with flow cytometry and observe the release of intracellular kinase out of the cells during electroporation. We found that the release of the kinase was strongly influenced by its subcellular localization. Cells stimulated through the antigen receptor have a fraction of the kinase at the plasma membrane and retain more kinase after electroporation than do cells without stimulation and translocation. This tool will have utility for kinase-related drug discovery and tumor diagnosis and staging.

  15. Black bears in Arkansas: Characteristics of a successful translocation

    Science.gov (United States)

    Smith, Kimberly G.; Clark, Joseph D.

    1994-01-01

    In 1958, the Arkansas Game and Fish Commission began translocating black bears (Ursus americanus) from Minnesota to the Interior Highlands (Ozark and Ouachita mountains) of Arkansas where bears had been extirpated early in this century. This project continued for 11 years with little public imput, during which time an estimated 254 bears were released. We estimate there are now >2,500 bears in the Interior Highlands of Arkansas, Missouri, and Oklahoma, making it one of the most successful translocations of a Carnivora. Factors that contributed to the success include use of wild-captured animals, elimination of major factors associated with extirpation, release into prime habitats within the former range, multiple release sites, release of 20–40 animals/year for eight years, and release of mostly males prior to release of mostly females. Studies on two allopatric populations demonstrate that they are now diverging in some demographic characteristics, including litter size, cub survivorship, and adult sex-ratio. Translocation of black bears to the Interior Highlands is successful in terms of numbers of animals, but it will not be truly successful until people accept black bears as part of the regional fauna. To that end, those associated with management and research of bears in Arkansas are now focussing on public education and control of nuisance bears.

  16. Growth factor deprivation induces cytosolic translocation of SIRT1

    Science.gov (United States)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  17. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates

    Science.gov (United States)

    Braselmann, Esther; Chaney, Julie L.; Champion, Matthew M.

    2016-01-01

    The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress. PMID:27626276

  18. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates.

    Science.gov (United States)

    Braselmann, Esther; Chaney, Julie L; Champion, Matthew M; Clark, Patricia L

    2016-01-01

    The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.

  19. Markers of immunity and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian

    2015-01-01

    Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious complicati......Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious...... to be correlated to portal hypertension, a clinically relevant haemodynamic alteration, and appeared to be associated with increased mortality. To assess the consequences of BT on immunity, we developed an assay for the detection of bacterial DNA (bDNA), a novel marker of BT. Using the assay in the second study......, in 38 patients with ascites, we found no association between bDNA and immunity, in contrast to some previous findings. In the final paper, exploring one possible translocation route, we hypothesized a difference in bDNA levels between the blood from the veins draining the gut on one hand and the liver...

  20. Dieldrin uptake and translocation in plants growing in hydroponic medium.

    Science.gov (United States)

    Murano, Hirotatsu; Otani, Takashi; Seike, Nobuyasu; Sakai, Mizuki

    2010-01-01

    It has been known that the Cucurbitaceae family takes up a large amount of persistent organic pollutants from soils and that the translocation of those compounds in cucurbits is higher than those in non-cucurbits. To understand the persistent organic pollutant uptake mechanisms of plant species, we compared the dieldrin absorption and transportation potentials of several plants in hydroponic medium. Sorghum (Sorghum vulgare Moench), sunflower (Helianthus annuus L.), soybean (Glycine max), komatsuna (Brassica rapa var. peruviridis), white-flowered gourd (Lagenaria siceraria var. hispida), cucumber (Cucumis sativus L.), and zucchini (Cucurbita pepo L.) were grown in a dieldrin-added hydroponic medium for 10 d, and then the amount of dieldrin in their shoots and roots was measured. All of the roots contained dieldrin, whereas only the cucurbits (white-flowered gourd, cucumber, and zucchini) contained considerable amounts of dieldrin in their shoots. The dieldrin uptake to the roots depended on the concentration of the n-hexane soluble components in the roots, regardless of whether the dieldrin in the roots was translocated to shoots or not. The dieldrin uptake from the solution to the roots was thought to be due to a passive response, such as adsorption on the roots. The translocation of dieldrin from the roots to the shoots was probably through the xylems. The amounts of dieldrin in the shoots per transpiration rates were higher for cucurbits than for non-cucurbits. It seems likely that cucurbits have uptake mechanisms for hydrophobic organic chemicals.