WorldWideScience

Sample records for additive hazards model

  1. A ¤flexible additive multiplicative hazard model

    DEFF Research Database (Denmark)

    Martinussen, T.; Scheike, T. H.

    2002-01-01

    Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect......Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect...

  2. Further Results on Dynamic Additive Hazard Rate Model

    Directory of Open Access Journals (Sweden)

    Zhengcheng Zhang

    2014-01-01

    Full Text Available In the past, the proportional and additive hazard rate models have been investigated in the works. Nanda and Das (2011 introduced and studied the dynamic proportional (reversed hazard rate model. In this paper we study the dynamic additive hazard rate model, and investigate its aging properties for different aging classes. The closure of the model under some stochastic orders has also been investigated. Some examples are also given to illustrate different aging properties and stochastic comparisons of the model.

  3. The additive hazards model with high-dimensional regressors

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study...... model. A standard PLS algorithm can also be constructed, but it turns out that the resulting predictor can only be related to the original covariates via time-dependent coefficients. The methods are applied to a breast cancer data set with gene expression recordings and to the well known primary biliary...

  4. Analyzing Right-Censored Length-Biased Data with Additive Hazards Model

    Institute of Scientific and Technical Information of China (English)

    Mu ZHAO; Cun-jie LIN; Yong ZHOU

    2017-01-01

    Length-biased data are often encountered in observational studies,when the survival times are left-truncated and right-censored and the truncation times follow a uniform distribution.In this article,we propose to analyze such data with the additive hazards model,which specifies that the hazard function is the sum of an arbitrary baseline hazard function and a regression function of covariates.We develop estimating equation approaches to estimate the regression parameters.The resultant estimators are shown to be consistent and asymptotically normal.Some simulation studies and a real data example are used to evaluate the finite sample properties of the proposed estimators.

  5. Estimation of direct effects for survival data by using the Aalen additive hazards model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Vansteelandt, Stijn; Gerster, Mette

    2011-01-01

    We extend the definition of the controlled direct effect of a point exposure on a survival outcome, other than through some given, time-fixed intermediate variable, to the additive hazard scale. We propose two-stage estimators for this effect when the exposure is dichotomous and randomly assigned...... Aalen's additive regression for the event time, given exposure, intermediate variable and confounders. The second stage involves applying Aalen's additive model, given the exposure alone, to a modified stochastic process (i.e. a modification of the observed counting process based on the first...

  6. On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments

    DEFF Research Database (Denmark)

    Vansteelandt, S.; Martinussen, Torben; Tchetgen, E. J Tchetgen

    2014-01-01

    We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least-squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard...... that, in view of its robustness against model misspecification, Aalen least-squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and the primary reasons to consider baseline covariate adjustment in such settings could be interest in subgroup......'s dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We furthermore show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the estimator of the effect of a randomized treatment. We conclude...

  7. Regression analysis of informative current status data with the additive hazards model.

    Science.gov (United States)

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  8. An estimating equation for parametric shared frailty models with marginal additive hazards

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Martinussen, Torben

    2004-01-01

    Multivariate failure time data arise when data consist of clusters in which the failure times may be dependent. A popular approach to such data is the marginal proportional hazards model with estimation under the working independence assumption. In some contexts, however, it may be more reasonable...

  9. Statistical inference for the additive hazards model under outcome-dependent sampling.

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo

    2015-09-01

    Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.

  10. Education and risk of coronary heart disease: Assessment of mediation by behavioural risk factors using the additive hazards model

    DEFF Research Database (Denmark)

    Nordahl, H; Rod, NH; Frederiksen, BL

    2013-01-01

    seven Danish cohort studies were linked to registry data on education and incidence of CHD. Mediation by smoking, low physical activity, and body mass index (BMI) on the association between education and CHD were estimated by applying newly proposed methods for mediation based on the additive hazards...... % CI: 12, 22) for women and 37 (95 % CI: 28, 46) for men could be ascribed to the pathway through smoking. Further, 39 (95 % CI: 30, 49) cases for women and 94 (95 % CI: 79, 110) cases for men could be ascribed to the pathway through BMI. The effects of low physical activity were negligible. Using...... contemporary methods, the additive hazards model, for mediation we indicated the absolute numbers of CHD cases prevented when modifying smoking and BMI. This study confirms previous claims based on the Cox proportional hazards model that behavioral risk factors partially mediates the effect of education on CHD...

  11. Model Additional Protocol

    International Nuclear Information System (INIS)

    Rockwood, Laura

    2001-01-01

    Since the end of the cold war a series of events has changed the circumstances and requirements of the safeguards system. The discovery of a clandestine nuclear weapons program in Iraq, the continuing difficulty in verifying the initial report of Democratic People's Republic of Korea upon entry into force of their safeguards agreement, and the decision of the South African Government to give up its nuclear weapons program and join the Treaty on the Non-Proliferation of Nuclear Weapons have all played a role in an ambitious effort by IAEA Member States and the Secretariat to strengthen the safeguards system. A major milestone in this effort was reached in May 1997 when the IAEA Board of Governors approved a Model Protocol Additional to Safeguards Agreements. The Model Additional Protocol was negotiated over a period of less than a year by an open-ended committee of the Board involving some 70 Member States and two regional inspectorates. The IAEA is now in the process of negotiating additional protocols, State by State, and implementing them. These additional protocols will provide the IAEA with rights of access to information about all activities related to the use of nuclear material in States with comprehensive safeguards agreements and greatly expanded physical access for IAEA inspectors to confirm or verify this information. In conjunction with this, the IAEA is working on the integration of these measures with those provided for in comprehensive safeguards agreements, with a view to maximizing the effectiveness and efficiency, within available resources, the implementation of safeguards. Details concerning the Model Additional Protocol are given. (author)

  12. The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data

    International Nuclear Information System (INIS)

    Bebbington, Mark; Lai, Chin-Diew; Wellington, Morgan; Zitikis, Ričardas

    2012-01-01

    Although failure data are usually treated as being continuous, they may have been collected in a discrete manner, or in fact be discrete in nature. Reliability models with bathtub-shaped hazard rate are fundamental to the concepts of burn-in and maintenance, but how well do they incorporate discrete data? We explore discrete versions of the additive Weibull distribution, which has the twin virtues of mathematical tractability and the ability to produce bathtub-shaped hazard rate functions. We derive conditions on the parameters for the hazard rate function to be increasing, decreasing, or bathtub shaped. While discrete versions may have the same shaped hazard rate for the same parameter values, we find that when fitted to data the fitted hazard rate shapes can vary between versions. Our results are illustrated using several real-life data sets, and the implications of using continuous models for discrete data discussed.

  13. Modeling lahar behavior and hazards

    Science.gov (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  14. Comparative Distributions of Hazard Modeling Analysis

    Directory of Open Access Journals (Sweden)

    Rana Abdul Wajid

    2006-07-01

    Full Text Available In this paper we present the comparison among the distributions used in hazard analysis. Simulation technique has been used to study the behavior of hazard distribution modules. The fundamentals of Hazard issues are discussed using failure criteria. We present the flexibility of the hazard modeling distribution that approaches to different distributions.

  15. Modeling and Hazard Analysis Using STPA

    Science.gov (United States)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis

  16. Potential hazards due to food additives in oral hygiene products.

    Science.gov (United States)

    Tuncer Budanur, Damla; Yas, Murat Cengizhan; Sepet, Elif

    2016-01-01

    Food additives used to preserve flavor or to enhance the taste and appearance of foods are also available in oral hygiene products. The aim of this review is to provide information concerning food additives in oral hygiene products and their adverse effects. A great many of food additives in oral hygiene products are potential allergens and they may lead to allergic reactions such as urticaria, contact dermatitis, rhinitis, and angioedema. Dental practitioners, as well as health care providers, must be aware of the possibility of allergic reactions due to food additives in oral hygiene products. Proper dosage levels, delivery vehicles, frequency, potential benefits, and adverse effects of oral health products should be explained completely to the patients. There is a necessity to raise the awareness among dental professionals on this subject and to develop a data gathering system for possible adverse reactions.

  17. POTENTIAL HAZARDS DUE TO FOOD ADDITIVES IN ORAL HYGIENE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Damla TUNCER-BUDANUR

    2016-04-01

    Full Text Available Food additives used to preserve flavor or to enhance the taste and appearance of foods are also available in oral hygiene products. The aim of this review is to provide information concerning food additives in oral hygiene products and their adverse effects. A great many of food additives in oral hygiene products are potential allergens and they may lead to allergic reactions such as urticaria, contact dermatitis, rhinitis, and angioedema. Dental practitioners, as well as health care providers, must be aware of the possibility of allergic reactions due to food additives in oral hygiene products. Proper dosage levels, delivery vehicles, frequency, potential benefits, and adverse effects of oral health products should be explained completely to the patients. There is a necessity to raise the awareness among dental professionals on this subject and to develop a data gathering system for possible adverse reactions.

  18. Hazard Warning: model misuse ahead

    DEFF Research Database (Denmark)

    Dickey-Collas, M.; Payne, Mark; Trenkel, V.

    2014-01-01

    The use of modelling approaches in marine science, and in particular fisheries science, is explored. We highlight that the choice of model used for an analysis should account for the question being posed or the context of the management problem. We examine a model-classification scheme based...... first step in assessing the utility of a model in the context of knowledge for decision-making in management...

  19. A conflict model for the international hazardous waste disposal dispute

    International Nuclear Information System (INIS)

    Hu Kaixian; Hipel, Keith W.; Fang, Liping

    2009-01-01

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  20. A conflict model for the international hazardous waste disposal dispute.

    Science.gov (United States)

    Hu, Kaixian; Hipel, Keith W; Fang, Liping

    2009-12-15

    A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.

  1. Proportional hazards models of infrastructure system recovery

    International Nuclear Information System (INIS)

    Barker, Kash; Baroud, Hiba

    2014-01-01

    As emphasis is being placed on a system's ability to withstand and to recover from a disruptive event, collectively referred to as dynamic resilience, there exists a need to quantify a system's ability to bounce back after a disruptive event. This work applies a statistical technique from biostatistics, the proportional hazards model, to describe (i) the instantaneous rate of recovery of an infrastructure system and (ii) the likelihood that recovery occurs prior to a given point in time. A major benefit of the proportional hazards model is its ability to describe a recovery event as a function of time as well as covariates describing the infrastructure system or disruptive event, among others, which can also vary with time. The proportional hazards approach is illustrated with a publicly available electric power outage data set

  2. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  3. Geospatial subsidence hazard modelling at Sterkfontein Caves ...

    African Journals Online (AJOL)

    The geo-hazard subsidence model includes historic subsidence occurrances, terrain (water flow) and water accumulation. Water accumulating on the surface will percolate and reduce the strength of the soil mass, possibly inducing subsidence. Areas for further geotechnical investigation are identified, demonstrating that a ...

  4. Hazard identification based on plant functional modelling

    International Nuclear Information System (INIS)

    Rasmussen, B.; Whetton, C.

    1993-10-01

    A major objective of the present work is to provide means for representing a process plant as a socio-technical system, so as to allow hazard identification at a high level. The method includes technical, human and organisational aspects and is intended to be used for plant level hazard identification so as to identify critical areas and the need for further analysis using existing methods. The first part of the method is the preparation of a plant functional model where a set of plant functions link together hardware, software, operations, work organisation and other safety related aspects of the plant. The basic principle of the functional modelling is that any aspect of the plant can be represented by an object (in the sense that this term is used in computer science) based upon an Intent (or goal); associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. The Methods and Constraints can themselves be treated as objects and decomposed into lower-level Intents (hence the procedure is known as functional decomposition) so giving rise to a hierarchical, object-oriented structure. The plant level hazard identification is carried out on the plant functional model using the Concept Hazard Analysis method. In this, the user will be supported by checklists and keywords and the analysis is structured by pre-defined worksheets. The preparation of the plant functional model and the performance of the hazard identification can be carried out manually or with computer support. (au) (4 tabs., 10 ills., 7 refs.)

  5. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  6. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  7. Quantitative occupational risk model: Single hazard

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Aneziris, O.N.; Bellamy, L.J.; Ale, B.J.M.; Oh, J.

    2017-01-01

    A model for the quantification of occupational risk of a worker exposed to a single hazard is presented. The model connects the working conditions and worker behaviour to the probability of an accident resulting into one of three types of consequence: recoverable injury, permanent injury and death. Working conditions and safety barriers in place to reduce the likelihood of an accident are included. Logical connections are modelled through an influence diagram. Quantification of the model is based on two sources of information: a) number of accidents observed over a period of time and b) assessment of exposure data of activities and working conditions over the same period of time and the same working population. Effectiveness of risk reducing measures affecting the working conditions, worker behaviour and/or safety barriers can be quantified through the effect of these measures on occupational risk. - Highlights: • Quantification of occupational risk from a single hazard. • Influence diagram connects working conditions, worker behaviour and safety barriers. • Necessary data include the number of accidents and the total exposure of worker • Effectiveness of risk reducing measures is quantified through the impact on the risk • An example illustrates the methodology.

  8. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    Science.gov (United States)

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  9. Covariate selection for the semiparametric additive risk model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...

  10. Report 6: Guidance document. Man-made hazards and Accidental Aircraft Crash hazards modelling and implementation in extended PSA

    International Nuclear Information System (INIS)

    Kahia, S.; Brinkman, H.; Bareith, A.; Siklossy, T.; Vinot, T.; Mateescu, T.; Espargilliere, J.; Burgazzi, L.; Ivanov, I.; Bogdanov, D.; Groudev, P.; Ostapchuk, S.; Zhabin, O.; Stojka, T.; Alzbutas, R.; Kumar, M.; Nitoi, M.; Farcasiu, M.; Borysiewicz, M.; Kowal, K.; Potempski, S.

    2016-01-01

    The goal of this report is to provide guidance on practices to model man-made hazards (mainly external fires and explosions) and accidental aircraft crash hazards and implement them in extended Level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the first ASAMPSA-E End Users Workshop (May 2014, Uppsala, Sweden). The objective of WP22 is to provide the solutions for purposes of different parts of man-made hazards Level 1 PSA fulfilment. This guidance is focusing on man-made hazards, namely: external fires and explosions, and accidental aircraft crash hazards. Guidance developed refers to existing guidance whenever possible. The initial part of guidance (WP21 part) reflects current practices to assess the frequencies for each type of hazards or combination of hazards (including correlated hazards) as initiating event for PSAs. The sources and quality of hazard data, the elements of hazard assessment methodologies and relevant examples are discussed. Classification and criteria to properly assess hazard combinations as well as examples and methods for assessment of these combinations are included in this guidance. In appendixes additional material is presented with the examples of practical approaches to aircraft crash and man-made hazard. The following issues are addressed: 1) Hazard assessment methodologies, including issues related to hazard combinations. 2) Modelling equipment of safety related SSC, 3) HRA, 4) Emergency response, 5) Multi-unit issues. Recommendations and also limitations, gaps identified in the existing methodologies and a list of open issues are included. At all stages of this guidance and especially from an industrial end-user perspective, one must keep in mind that the development of man-made hazards probabilistic analysis must be conditioned to the ability to ultimately obtain a representative risk

  11. Bibliography - Existing Guidance for External Hazard Modelling

    International Nuclear Information System (INIS)

    Decker, Kurt

    2015-01-01

    The bibliography of deliverable D21.1 includes existing international and national guidance documents and standards on external hazard assessment together with a selection of recent scientific papers, which are regarded to provide useful information on the state of the art of external event modelling. The literature database is subdivided into International Standards, National Standards, and Science Papers. The deliverable is treated as a 'living document' which is regularly updated as necessary during the lifetime of ASAMPSA-E. The current content of the database is about 140 papers. Most of the articles are available as full-text versions in PDF format. The deliverable is available as an EndNote X4 database and as text files. The database includes the following information: Reference, Key words, Abstract (if available), PDF file of the original paper (if available), Notes (comments by the ASAMPSA-E consortium if available) The database is stored at the ASAMPSA-E FTP server hosted by IRSN. PDF files of original papers are accessible through the EndNote software

  12. Incident Duration Modeling Using Flexible Parametric Hazard-Based Models

    Directory of Open Access Journals (Sweden)

    Ruimin Li

    2014-01-01

    Full Text Available Assessing and prioritizing the duration time and effects of traffic incidents on major roads present significant challenges for road network managers. This study examines the effect of numerous factors associated with various types of incidents on their duration and proposes an incident duration prediction model. Several parametric accelerated failure time hazard-based models were examined, including Weibull, log-logistic, log-normal, and generalized gamma, as well as all models with gamma heterogeneity and flexible parametric hazard-based models with freedom ranging from one to ten, by analyzing a traffic incident dataset obtained from the Incident Reporting and Dispatching System in Beijing in 2008. Results show that different factors significantly affect different incident time phases, whose best distributions were diverse. Given the best hazard-based models of each incident time phase, the prediction result can be reasonable for most incidents. The results of this study can aid traffic incident management agencies not only in implementing strategies that would reduce incident duration, and thus reduce congestion, secondary incidents, and the associated human and economic losses, but also in effectively predicting incident duration time.

  13. Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1993-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150 degrees C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150 degrees C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150 degrees C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs

  14. A Model for Generating Multi-hazard Scenarios

    Science.gov (United States)

    Lo Jacomo, A.; Han, D.; Champneys, A.

    2017-12-01

    Communities in mountain areas are often subject to risk from multiple hazards, such as earthquakes, landslides, and floods. Each hazard has its own different rate of onset, duration, and return period. Multiple hazards tend to complicate the combined risk due to their interactions. Prioritising interventions for minimising risk in this context is challenging. We developed a probabilistic multi-hazard model to help inform decision making in multi-hazard areas. The model is applied to a case study region in the Sichuan province in China, using information from satellite imagery and in-situ data. The model is not intended as a predictive model, but rather as a tool which takes stakeholder input and can be used to explore plausible hazard scenarios over time. By using a Monte Carlo framework and varrying uncertain parameters for each of the hazards, the model can be used to explore the effect of different mitigation interventions aimed at reducing the disaster risk within an uncertain hazard context.

  15. High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Omid Hamidi

    2014-01-01

    Full Text Available Microarray technology results in high-dimensional and low-sample size data sets. Therefore, fitting sparse models is substantial because only a small number of influential genes can reliably be identified. A number of variable selection approaches have been proposed for high-dimensional time-to-event data based on Cox proportional hazards where censoring is present. The present study applied three sparse variable selection techniques of Lasso, smoothly clipped absolute deviation and the smooth integration of counting, and absolute deviation for gene expression survival time data using the additive risk model which is adopted when the absolute effects of multiple predictors on the hazard function are of interest. The performances of used techniques were evaluated by time dependent ROC curve and bootstrap .632+ prediction error curves. The selected genes by all methods were highly significant (P<0.001. The Lasso showed maximum median of area under ROC curve over time (0.95 and smoothly clipped absolute deviation showed the lowest prediction error (0.105. It was observed that the selected genes by all methods improved the prediction of purely clinical model indicating the valuable information containing in the microarray features. So it was concluded that used approaches can satisfactorily predict survival based on selected gene expression measurements.

  16. Functional form diagnostics for Cox's proportional hazards model.

    Science.gov (United States)

    León, Larry F; Tsai, Chih-Ling

    2004-03-01

    We propose a new type of residual and an easily computed functional form test for the Cox proportional hazards model. The proposed test is a modification of the omnibus test for testing the overall fit of a parametric regression model, developed by Stute, González Manteiga, and Presedo Quindimil (1998, Journal of the American Statistical Association93, 141-149), and is based on what we call censoring consistent residuals. In addition, we develop residual plots that can be used to identify the correct functional forms of covariates. We compare our test with the functional form test of Lin, Wei, and Ying (1993, Biometrika80, 557-572) in a simulation study. The practical application of the proposed residuals and functional form test is illustrated using both a simulated data set and a real data set.

  17. The 2014 update to the National Seismic Hazard Model in California

    Science.gov (United States)

    Powers, Peter; Field, Edward H.

    2015-01-01

    The 2014 update to the U. S. Geological Survey National Seismic Hazard Model in California introduces a new earthquake rate model and new ground motion models (GMMs) that give rise to numerous changes to seismic hazard throughout the state. The updated earthquake rate model is the third version of the Uniform California Earthquake Rupture Forecast (UCERF3), wherein the rates of all ruptures are determined via a self-consistent inverse methodology. This approach accommodates multifault ruptures and reduces the overprediction of moderate earthquake rates exhibited by the previous model (UCERF2). UCERF3 introduces new faults, changes to slip or moment rates on existing faults, and adaptively smoothed gridded seismicity source models, all of which contribute to significant changes in hazard. New GMMs increase ground motion near large strike-slip faults and reduce hazard over dip-slip faults. The addition of very large strike-slip ruptures and decreased reverse fault rupture rates in UCERF3 further enhances these effects.

  18. Modeling emergency evacuation for major hazard industrial sites

    International Nuclear Information System (INIS)

    Georgiadou, Paraskevi S.; Papazoglou, Ioannis A.; Kiranoudis, Chris T.; Markatos, Nikolaos C.

    2007-01-01

    A model providing the temporal and spatial distribution of the population under evacuation around a major hazard facility is developed. A discrete state stochastic Markov process simulates the movement of the evacuees. The area around the hazardous facility is divided into nodes connected among themselves with links representing the road system of the area. Transition from node-to-node is simulated as a random process where the probability of transition depends on the dynamically changed states of the destination and origin nodes and on the link between them. Solution of the Markov process provides the expected distribution of the evacuees in the nodes of the area as a function of time. A Monte Carlo solution of the model provides in addition a sample of actual trajectories of the evacuees. This information coupled with an accident analysis which provides the spatial and temporal distribution of the extreme phenomenon following an accident, determines a sample of the actual doses received by the evacuees. Both the average dose and the actual distribution of doses are then used as measures in evaluating alternative emergency response strategies. It is shown that in some cases the estimation of the health consequences by the average dose might be either too conservative or too non-conservative relative to the one corresponding to the distribution of the received dose and hence not a suitable measure to evaluate alternative evacuation strategies

  19. An analysis of candidates for addition to the Clean Air Act list of hazardous air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sonya Lunder; Tracey J. Woodruff; Daniel A. Axelrad [University of California, Berkeley, CA (United States). School of Public Health

    2004-02-01

    There are 188 air toxics listed as hazardous air pollutants (HAPs) in the Clean Air Act (CAA), based on their potential to adversely impact public health. This paper presents several analyses performed to screen potential candidates for addition to the HAPs list. We analyzed 1086 HAPs and potential HAPs, including chemicals regulated by the state of California or with emissions reported to the Toxics Release Inventory (TRI). HAPs and potential HAPs were ranked by their emissions to air, and by toxicity-weighted (tox-wtd) emissions for cancer and noncancer, using emissions information from the TRI and toxicity information from state and federal agencies. Separate consideration was given for persistent, bioaccumulative toxins (PBTs), reproductive or developmental toxins, and chemicals under evaluation for regulation as toxic air contaminants in California. Forty-four pollutants were identified as candidate HAPs based on three ranking analyses and whether they were a PBT or a reproductive or developmental toxin. Of these, nine qualified in two or three different rankings (ammonia (NH{sub 3}), copper (Cu), Cu compounds, nitric acid (HNO{sub 3}), N-methyl-2-pyrrolidone, sulfuric acid (H{sub 2}SO{sub 4}), vanadium (V) compounds, zinc (Zn), and Zn compounds). This analysis suggests further evaluation of several pollutants for possible addition to the CAA list of HAPs. 28 refs., 2 figs., 11 tabs.

  20. Quantitative physical models of volcanic phenomena for hazards assessment of critical infrastructures

    Science.gov (United States)

    Costa, Antonio

    2016-04-01

    Volcanic hazards may have destructive effects on economy, transport, and natural environments at both local and regional scale. Hazardous phenomena include pyroclastic density currents, tephra fall, gas emissions, lava flows, debris flows and avalanches, and lahars. Volcanic hazards assessment is based on available information to characterize potential volcanic sources in the region of interest and to determine whether specific volcanic phenomena might reach a given site. Volcanic hazards assessment is focussed on estimating the distances that volcanic phenomena could travel from potential sources and their intensity at the considered site. Epistemic and aleatory uncertainties strongly affect the resulting hazards assessment. Within the context of critical infrastructures, volcanic eruptions are rare natural events that can create severe hazards. In addition to being rare events, evidence of many past volcanic eruptions is poorly preserved in the geologic record. The models used for describing the impact of volcanic phenomena generally represent a range of model complexities, from simplified physics based conceptual models to highly coupled thermo fluid dynamical approaches. Modelling approaches represent a hierarchy of complexity, which reflects increasing requirements for well characterized data in order to produce a broader range of output information. In selecting models for the hazard analysis related to a specific phenomenon, questions that need to be answered by the models must be carefully considered. Independently of the model, the final hazards assessment strongly depends on input derived from detailed volcanological investigations, such as mapping and stratigraphic correlations. For each phenomenon, an overview of currently available approaches for the evaluation of future hazards will be presented with the aim to provide a foundation for future work in developing an international consensus on volcanic hazards assessment methods.

  1. VHub - Cyberinfrastructure for volcano eruption and hazards modeling and simulation

    Science.gov (United States)

    Valentine, G. A.; Jones, M. D.; Bursik, M. I.; Calder, E. S.; Gallo, S. M.; Connor, C.; Carn, S. A.; Rose, W. I.; Moore-Russo, D. A.; Renschler, C. S.; Pitman, B.; Sheridan, M. F.

    2009-12-01

    Volcanic risk is increasing as populations grow in active volcanic regions, and as national economies become increasingly intertwined. In addition to their significance to risk, volcanic eruption processes form a class of multiphase fluid dynamics with rich physics on many length and time scales. Risk significance, physics complexity, and the coupling of models to complex dynamic spatial datasets all demand the development of advanced computational techniques and interdisciplinary approaches to understand and forecast eruption dynamics. Innovative cyberinfrastructure is needed to enable global collaboration and novel scientific creativity, while simultaneously enabling computational thinking in real-world risk mitigation decisions - an environment where quality control, documentation, and traceability are key factors. Supported by NSF, we are developing a virtual organization, referred to as VHub, to address this need. Overarching goals of the VHub project are: Dissemination. Make advanced modeling and simulation capabilities and key data sets readily available to researchers, students, and practitioners around the world. Collaboration. Provide a mechanism for participants not only to be users but also co-developers of modeling capabilities, and contributors of experimental and observational data sets for use in modeling and simulation, in a collaborative environment that reaches far beyond local work groups. Comparison. Facilitate comparison between different models in order to provide the practitioners with guidance for choosing the "right" model, depending upon the intended use, and provide a platform for multi-model analysis of specific problems and incorporation into probabilistic assessments. Application. Greatly accelerate access and application of a wide range of modeling tools and related data sets to agencies around the world that are charged with hazard planning, mitigation, and response. Education. Provide resources that will promote the training of the

  2. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Science.gov (United States)

    Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom

    2017-06-01

    We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  3. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    Directory of Open Access Journals (Sweden)

    Mark Stirling

    2017-06-01

    Full Text Available We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration, and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g., short-term forecasting. The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  4. An optimization model for transportation of hazardous materials

    International Nuclear Information System (INIS)

    Seyed-Hosseini, M.; Kheirkhah, A. S.

    2005-01-01

    In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model

  5. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  6. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    Science.gov (United States)

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  7. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  8. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  9. Generalized Additive Models for Nowcasting Cloud Shading

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Paulescu, M.; Badescu, V.

    2014-01-01

    Roč. 101, March (2014), s. 272-282 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : sunshine number * nowcasting * generalized additive model * Markov chain Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014

  10. Agent-based Modeling with MATSim for Hazards Evacuation Planning

    Science.gov (United States)

    Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.

    2015-12-01

    Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.

  11. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  12. Developments in consequence modelling of accidental releases of hazardous materials

    NARCIS (Netherlands)

    Boot, H.

    2012-01-01

    The modelling of consequences of releases of hazardous materials in the Netherlands has mainly been based on the “Yellow Book”. Although there is no updated version of this official publication, new insights have been developed during the last decades. This article will give an overview of new

  13. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  14. Additive action model for mixed irradiation

    International Nuclear Information System (INIS)

    Lam, G.K.Y.

    1984-01-01

    Recent experimental results indicate that a mixture of high and low LET radiation may have some beneficial features (such as lower OER but with skin sparing) for clinical use, and interest has been renewed in the study of mixtures of high and low LET radiation. Several standard radiation inactivation models can readily accommodate interaction between two mixed radiations, however, this is usually handled by postulating extra free parameters, which can only be determined by fitting to experimental data. A model without any free parameter is proposed to explain the biological effect of mixed radiations, based on the following two assumptions: (a) The combined biological action due to two radiations is additive, assuming no repair has taken place during the interval between the two irradiations; and (b) The initial physical damage induced by radiation develops into final biological effect (e.g. cell killing) over a relatively long period (hours) after irradiation. This model has been shown to provide satisfactory fit to the experiment results of previous studies

  15. Computational Process Modeling for Additive Manufacturing (OSU)

    Science.gov (United States)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  16. Analysis of time to event outcomes in randomized controlled trials by generalized additive models.

    Directory of Open Access Journals (Sweden)

    Christos Argyropoulos

    Full Text Available Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking.By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population.PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data.By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial results under proportional and

  17. A New Seismic Hazard Model for Mainland China

    Science.gov (United States)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  18. Modeling of Marine Natural Hazards in the Lesser Antilles

    Science.gov (United States)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    The Caribbean Sea countries are often affected by various marine natural hazards: hurricanes and cyclones, tsunamis and flooding. The historical data of marine natural hazards for the Lesser Antilles and specially, for Guadeloupe are presented briefly. Numerical simulation of several historical tsunamis in the Caribbean Sea (1755 Lisbon trans-Atlantic tsunami, 1867 Virgin Island earthquake tsunami, 2003 Montserrat volcano tsunami) are performed within the framework of the nonlinear-shallow theory. Numerical results demonstrate the importance of the real bathymetry variability with respect to the direction of propagation of tsunami wave and its characteristics. The prognostic tsunami wave height distribution along the Caribbean Coast is computed using various forms of seismic and hydrodynamics sources. These results are used to estimate the far-field potential for tsunami hazards at coastal locations in the Caribbean Sea. The nonlinear shallow-water theory is also applied to model storm surges induced by tropical cyclones, in particular, cyclones "Lilli" in 2002 and "Dean" in 2007. Obtained results are compared with observed data. The numerical models have been tested against known analytical solutions of the nonlinear shallow-water wave equations. Obtained results are described in details in [1-7]. References [1] N. Zahibo and E. Pelinovsky, Natural Hazards and Earth System Sciences, 1, 221 (2001). [2] N. Zahibo, E. Pelinovsky, A. Yalciner, A. Kurkin, A. Koselkov and A. Zaitsev, Oceanologica Acta, 26, 609 (2003). [3] N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov, Science Tsunami Hazards. 21, 202 (2003). [4] E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd, T. Talipova, A. Kozelkov and I. Nikolkina, Science of Tsunami Hazards, 22, 44 (2004). [5] N. Zahibo, E. Pelinovsky, E. Okal, A. Yalciner, C. Kharif, T. Talipova and A. Kozelkov, Science of Tsunami Hazards, 23, 25 (2005). [6] N. Zahibo, E. Pelinovsky, T. Talipova, A. Rabinovich, A. Kurkin and I

  19. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    Science.gov (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  20. Religiousness and hazardous alcohol use: a conditional indirect effects model.

    Science.gov (United States)

    Jankowski, Peter J; Hardy, Sam A; Zamboanga, Byron L; Ham, Lindsay S

    2013-08-01

    The current study examined a conditional indirect effects model of the association between religiousness and adolescents' hazardous alcohol use. In doing so, we responded to the need to include both mediators and moderators, and the need for theoretically informed models when examining religiousness and adolescents' alcohol use. The sample consisted of 383 adolescents, aged 15-18, who completed an online questionnaire. Results of structural equation modeling supported the proposed model. Religiousness was indirectly associated with hazardous alcohol use through both positive alcohol expectancy outcomes and negative alcohol expectancy valuations. Significant moderating effects for alcohol expectancy valuations on the association between alcohol expectancies and alcohol use were also found. The effects for alcohol expectancy valuations confirm valuations as a distinct construct to that of alcohol expectancy outcomes, and offer support for the protective role of internalized religiousness on adolescents' hazardous alcohol use as a function of expectancy valuations. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  1. Rockfall hazard analysis using LiDAR and spatial modeling

    Science.gov (United States)

    Lan, Hengxing; Martin, C. Derek; Zhou, Chenghu; Lim, Chang Ho

    2010-05-01

    Rockfalls have been significant geohazards along the Canadian Class 1 Railways (CN Rail and CP Rail) since their construction in the late 1800s. These rockfalls cause damage to infrastructure, interruption of business, and environmental impacts, and their occurrence varies both spatially and temporally. The proactive management of these rockfall hazards requires enabling technologies. This paper discusses a hazard assessment strategy for rockfalls along a section of a Canadian railway using LiDAR and spatial modeling. LiDAR provides accurate topographical information of the source area of rockfalls and along their paths. Spatial modeling was conducted using Rockfall Analyst, a three dimensional extension to GIS, to determine the characteristics of the rockfalls in terms of travel distance, velocity and energy. Historical rockfall records were used to calibrate the physical characteristics of the rockfall processes. The results based on a high-resolution digital elevation model from a LiDAR dataset were compared with those based on a coarse digital elevation model. A comprehensive methodology for rockfall hazard assessment is proposed which takes into account the characteristics of source areas, the physical processes of rockfalls and the spatial attribution of their frequency and energy.

  2. Defaultable Game Options in a Hazard Process Model

    Directory of Open Access Journals (Sweden)

    Tomasz R. Bielecki

    2009-01-01

    Full Text Available The valuation and hedging of defaultable game options is studied in a hazard process model of credit risk. A convenient pricing formula with respect to a reference filteration is derived. A connection of arbitrage prices with a suitable notion of hedging is obtained. The main result shows that the arbitrage prices are the minimal superhedging prices with sigma martingale cost under a risk neutral measure.

  3. Seismic source characterization for the 2014 update of the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Powers, Peter; Petersen, Mark D.; Boyd, Oliver; Chen, Rui; Field, Edward H.; Frankel, Arthur; Haller, Kathleen; Harmsen, Stephen; Mueller, Charles S.; Wheeler, Russell; Zeng, Yuehua

    2015-01-01

    We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.

  4. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  5. Bayes estimation of the general hazard rate model

    International Nuclear Information System (INIS)

    Sarhan, A.

    1999-01-01

    In reliability theory and life testing models, the life time distributions are often specified by choosing a relevant hazard rate function. Here a general hazard rate function h(t)=a+bt c-1 , where c, a, b are constants greater than zero, is considered. The parameter c is assumed to be known. The Bayes estimators of (a,b) based on the data of type II/item-censored testing without replacement are obtained. A large simulation study using Monte Carlo Method is done to compare the performance of Bayes with regression estimators of (a,b). The criterion for comparison is made based on the Bayes risk associated with the respective estimator. Also, the influence of the number of failed items on the accuracy of the estimators (Bayes and regression) is investigated. Estimations for the parameters (a,b) of the linearly increasing hazard rate model h(t)=a+bt, where a, b are greater than zero, can be obtained as the special case, letting c=2

  6. COMPARISON of FUZZY-BASED MODELS in LANDSLIDE HAZARD MAPPING

    Directory of Open Access Journals (Sweden)

    N. Mijani

    2017-09-01

    Full Text Available Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR and Quality Sum (QS. The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  7. Black plastics: Linear and circular economies, hazardous additives and marine pollution.

    Science.gov (United States)

    Turner, Andrew

    2018-05-17

    Black products constitute about 15% of the domestic plastic waste stream, of which the majority is single-use packaging and trays for food. This material is not, however, readily recycled owing to the low sensitivity of black pigments to near infrared radiation used in conventional plastic sorting facilities. Accordingly, there is mounting evidence that the demand for black plastics in consumer products is partly met by sourcing material from the plastic housings of end-of-life waste electronic and electrical equipment (WEEE). Inefficiently sorted WEEE plastic has the potential to introduce restricted and hazardous substances into the recyclate, including brominated flame retardants (BFRs), Sb, a flame retardant synergist, and the heavy metals, Cd, Cr, Hg and Pb. The current paper examines the life cycles of single-use black food packaging and black plastic WEEE in the context of current international regulations and directives and best practices for sorting, disposal and recycling. The discussion is supported by published and unpublished measurements of restricted substances (including Br as a proxy for BFRs) in food packaging, EEE plastic goods and non-EEE plastic products. Specifically, measurements confirm the linear economy of plastic food packaging and demonstrate a complex quasi-circular economy for WEEE plastic that results in significant and widespread contamination of black consumer goods ranging from thermos cups and cutlery to tool handles and grips, and from toys and games to spectacle frames and jewellery. The environmental impacts and human exposure routes arising from WEEE plastic recycling and contamination of consumer goods are described, including those associated with marine pollution. Regarding the latter, a compilation of elemental data on black plastic litter collected from beaches of southwest England reveals a similar chemical signature to that of contaminated consumer goods and blended plastic WEEE recyclate, exemplifying the pervasiveness

  8. An Additive-Multiplicative Cox-Aalen Regression Model

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...

  9. A decision model for the risk management of hazardous processes

    International Nuclear Information System (INIS)

    Holmberg, J.E.

    1997-03-01

    A decision model for risk management of hazardous processes as an optimisation problem of a point process is formulated in the study. In the approach, the decisions made by the management are divided into three categories: (1) planned process lifetime, (2) selection of the design and, (3) operational decisions. These three controlling methods play quite different roles in the practical risk management, which is also reflected in our approach. The optimisation of the process lifetime is related to the licensing problem of the process. It provides a boundary condition for a feasible utility function that is used as the actual objective function, i.e., maximizing the process lifetime utility. By design modifications, the management can affect the inherent accident hazard rate of the process. This is usually a discrete optimisation task. The study particularly concentrates upon the optimisation of the operational strategies given a certain design and licensing time. This is done by a dynamic risk model (marked point process model) representing the stochastic process of events observable or unobservable to the decision maker. An optimal long term control variable guiding the selection of operational alternatives in short term problems is studied. The optimisation problem is solved by the stochastic quasi-gradient procedure. The approach is illustrated by a case study. (23 refs.)

  10. Report 2: Guidance document on practices to model and implement external flooding hazards in extended PSA

    International Nuclear Information System (INIS)

    Rebour, V.; Georgescu, G.; Leteinturier, D.; Raimond, E.; La Rovere, S.; Bernadara, P.; Vasseur, D.; Brinkman, H.; Groudev, P.; Ivanov, I.; Turschmann, M.; Sperbeck, S.; Potempski, S.; Hirata, K.; Kumar, Manorma

    2016-01-01

    This report provides a review of existing practices to model and implement external flooding hazards in existing level 1 PSA. The objective is to identify good practices on the modelling of initiating events (internal and external hazards) with a perspective of development of extended PSA and implementation of external events modelling in extended L1 PSA, its limitations/difficulties as far as possible. The views presented in this report are based on the ASAMPSA-E partners' experience and available publications. The report includes discussions on the following issues: - how to structure a L1 PSA for external flooding events, - information needed from geosciences in terms of hazards modelling and to build relevant modelling for PSA, - how to define and model the impact of each flooding event on SSCs with distinction between the flooding protective structures and devices and the effect of protection failures on other SSCs, - how to identify and model the common cause failures in one reactor or between several reactors, - how to apply HRA methodology for external flooding events, - how to credit additional emergency response (post-Fukushima measures like mobile equipment), - how to address the specific issues of L2 PSA, - how to perform and present risk quantification. (authors)

  11. Opinion: The use of natural hazard modeling for decision making under uncertainty

    Science.gov (United States)

    David E. Calkin; Mike Mentis

    2015-01-01

    Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex...

  12. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  13. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1982-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation or ingestion of uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined

  14. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1990-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation of ingestion or uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined. 34 refs., 12 tabs., 9 figs

  15. A structure for models of hazardous materials with complex behavior

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1991-01-01

    Most atmospheric dispersion models used to assess the environmental consequences of accidental releases of hazardous chemicals do not have the capability to simulate the pertinent chemical and physical processes associated with the release of the material and its mixing with the atmosphere. The purpose of this paper is to present a materials sub-model with the flexibility to simulate the chemical and physical behaviour of a variety of materials released into the atmosphere. The model, which is based on thermodynamic equilibrium, incorporates the ideal gas law, temperature-dependent vapor pressure equations, temperature-dependent dissociation reactions, and reactions with atmospheric water vapor. The model equations, written in terms of pressure ratios and dimensionless parameters, are used to construct equilibrium diagrams with temperature and the mass fraction of the material in the mixture as coordinates. The model's versatility is demonstrated by its application to the release of UF 6 and N 2 O 4 , two materials with very different physical and chemical properties. (author)

  16. Preliminary deformation model for National Seismic Hazard map of Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z. [Geodesy Research Division, Faculty of Earth Science and Technology, Institute of Technology Bandung (Indonesia); Susilo,; Efendi, Joni [Agency for Geospatial Information (BIG) (Indonesia)

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  17. Optimization of maintenance policy using the proportional hazard model

    Energy Technology Data Exchange (ETDEWEB)

    Samrout, M. [Information Sciences and Technologies Institute, University of Technology of Troyes, 10000 Troyes (France)], E-mail: mohamad.el_samrout@utt.fr; Chatelet, E. [Information Sciences and Technologies Institute, University of Technology of Troyes, 10000 Troyes (France)], E-mail: chatelt@utt.fr; Kouta, R. [M3M Laboratory, University of Technology of Belfort Montbeliard (France); Chebbo, N. [Industrial Systems Laboratory, IUT, Lebanese University (Lebanon)

    2009-01-15

    The evolution of system reliability depends on its structure as well as on the evolution of its components reliability. The latter is a function of component age during a system's operating life. Component aging is strongly affected by maintenance activities performed on the system. In this work, we consider two categories of maintenance activities: corrective maintenance (CM) and preventive maintenance (PM). Maintenance actions are characterized by their ability to reduce this age. PM consists of actions applied on components while they are operating, whereas CM actions occur when the component breaks down. In this paper, we expound a new method to integrate the effect of CM while planning for the PM policy. The proportional hazard function was used as a modeling tool for that purpose. Interesting results were obtained when comparison between policies that take into consideration the CM effect and those that do not is established.

  18. Efficient pan-European river flood hazard modelling through a combination of statistical and physical models

    NARCIS (Netherlands)

    Paprotny, D.; Morales Napoles, O.; Jonkman, S.N.

    2017-01-01

    Flood hazard is currently being researched on continental and global scales, using models of increasing complexity. In this paper we investigate a different, simplified approach, which combines statistical and physical models in place of conventional rainfall-run-off models to carry out flood

  19. Numerical Modelling of Extreme Natural Hazards in the Russian Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav; Surkova, Galina

    2017-04-01

    Storm surges and extreme waves are severe natural sea hazards. Due to the almost complete lack of natural observations of these phenomena in the Russian seas (Caspian, Black, Azov, Baltic, White, Barents, Okhotsk, Kara), especially about their formation, development and destruction, they have been studied using numerical simulation. To calculate the parameters of wind waves for the seas listed above, except the Barents Sea, the spectral model SWAN was applied. For the Barents and Kara seas we used WAVEWATCH III model. Formation and development of storm surges were studied using ADCIRC model. The input data for models - bottom topography, wind, atmospheric pressure and ice cover. In modeling of surges in the White and Barents seas tidal level fluctuations were used. They have been calculated from 16 harmonic constant obtained from global atlas tides FES2004. Wind, atmospheric pressure and ice cover was taken from the NCEP/NCAR reanalysis for the period from 1948 to 2010, and NCEP/CFSR reanalysis for the period from 1979 to 2015. In modeling we used both regular and unstructured grid. The wave climate of the Caspian, Black, Azov, Baltic and White seas was obtained. Also the extreme wave height possible once in 100 years has been calculated. The statistics of storm surges for the White, Barents and Azov Seas were evaluated. The contribution of wind and atmospheric pressure in the formation of surges was estimated. The technique of climatic forecast frequency of storm synoptic situations was developed and applied for every sea. The research was carried out with financial support of the RFBR (grant 16-08-00829).

  20. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  1. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  2. Methodology Using MELCOR Code to Model Proposed Hazard Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Gavin Hawkley

    2010-07-01

    This study demonstrates a methodology for using the MELCOR code to model a proposed hazard scenario within a building containing radioactive powder, and the subsequent evaluation of a leak path factor (LPF) (or the amount of respirable material which that escapes a facility into the outside environment), implicit in the scenario. This LPF evaluation will analyzes the basis and applicability of an assumed standard multiplication of 0.5 × 0.5 (in which 0.5 represents the amount of material assumed to leave one area and enter another), for calculating an LPF value. The outside release is dependsent upon the ventilation/filtration system, both filtered and un-filtered, and from other pathways from the building, such as doorways (, both open and closed). This study is presents ed to show how the multiple leak path factorsLPFs from the interior building can be evaluated in a combinatory process in which a total leak path factorLPF is calculated, thus addressing the assumed multiplication, and allowing for the designation and assessment of a respirable source term (ST) for later consequence analysis, in which: the propagation of material released into the environmental atmosphere can be modeled and the dose received by a receptor placed downwind can be estimated and the distance adjusted to maintains such exposures as low as reasonably achievableALARA.. Also, this study will briefly addresses particle characteristics thatwhich affect atmospheric particle dispersion, and compares this dispersion with leak path factorLPF methodology.

  3. A new approach to hazardous materials transportation risk analysis: decision modeling to identify critical variables.

    Science.gov (United States)

    Clark, Renee M; Besterfield-Sacre, Mary E

    2009-03-01

    We take a novel approach to analyzing hazardous materials transportation risk in this research. Previous studies analyzed this risk from an operations research (OR) or quantitative risk assessment (QRA) perspective by minimizing or calculating risk along a transport route. Further, even though the majority of incidents occur when containers are unloaded, the research has not focused on transportation-related activities, including container loading and unloading. In this work, we developed a decision model of a hazardous materials release during unloading using actual data and an exploratory data modeling approach. Previous studies have had a theoretical perspective in terms of identifying and advancing the key variables related to this risk, and there has not been a focus on probability and statistics-based approaches for doing this. Our decision model empirically identifies the critical variables using an exploratory methodology for a large, highly categorical database involving latent class analysis (LCA), loglinear modeling, and Bayesian networking. Our model identified the most influential variables and countermeasures for two consequences of a hazmat incident, dollar loss and release quantity, and is one of the first models to do this. The most influential variables were found to be related to the failure of the container. In addition to analyzing hazmat risk, our methodology can be used to develop data-driven models for strategic decision making in other domains involving risk.

  4. Evaluation of MEDALUS model for desertification hazard zonation using GIS; study area: Iyzad Khast plain, Iran.

    Science.gov (United States)

    Farajzadeh, Manuchehr; Egbal, Mahbobeh Nik

    2007-08-15

    In this study, the MEDALUS model along with GIS mapping techniques are used to determine desertification hazards for a province of Iran to determine the desertification hazard. After creating a desertification database including 20 parameters, the first steps consisted of developing maps of four indices for the MEDALUS model including climate, soil, vegetation and land use were prepared. Since these parameters have mostly been presented for the Mediterranean region in the past, the next step included the addition of other indicators such as ground water and wind erosion. Then all of the layers weighted by environmental conditions present in the area were used (following the same MEDALUS framework) before a desertification map was prepared. The comparison of two maps based on the original and modified MEDALUS models indicates that the addition of more regionally-specific parameters into the model allows for a more accurate representation of desertification processes across the Iyzad Khast plain. The major factors affecting desertification in the area are climate, wind erosion and low land quality management, vegetation degradation and the salinization of soil and water resources.

  5. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    Science.gov (United States)

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  6. A mental models approach to exploring perceptions of hazardous processes

    International Nuclear Information System (INIS)

    Bostrom, A.H.H.

    1990-01-01

    Based on mental models theory, a decision-analytic methodology is developed to elicit and represent perceptions of hazardous processes. An application to indoor radon illustrates the methodology. Open-ended interviews were used to elicit non-experts' perceptions of indoor radon, with explicit prompts for knowledge about health effects, exposure processes, and mitigation. Subjects then sorted photographs into radon-related and unrelated piles, explaining their rationale aloud as they sorted. Subjects demonstrated a small body of correct but often unspecific knowledge about exposure and effects processes. Most did not mention radon-decay processes, and seemed to rely on general knowledge about gases, radioactivity, or pollution to make inferences about radon. Some held misconceptions about contamination and health effects resulting from exposure to radon. In two experiments, subjects reading brochures designed according to the author's guidelines outperformed subjects reading a brochure distributed by the EPA on a diagnostic test, and did at least as well on an independently designed quiz. In both experiments, subjects who read any one of the brochures had more complete and correct knowledge about indoor radon than subjects who did not, whose knowledge resembled the radon-interview subjects'

  7. Evaluating the hazard from Siding Spring dust: Models and predictions

    Science.gov (United States)

    Christou, A.

    2014-12-01

    Long-period comet C/2013 A1 (Siding Spring) will pass at a distance of ~140 thousand km (9e-4 AU) - about a third of a lunar distance - from the centre of Mars, closer to this planet than any known comet has come to the Earth since records began. Closest approach is expected to occur at 18:30 UT on the 19th October. This provides an opportunity for a ``free'' flyby of a different type of comet than those investigated by spacecraft so far, including comet 67P/Churyumov-Gerasimenko currently under scrutiny by the Rosetta spacecraft. At the same time, the passage of the comet through Martian space will create the opportunity to study the reaction of the planet's upper atmosphere to a known natural perturbation. The flip-side of the coin is the risk to Mars-orbiting assets, both existing (NASA's Mars Odyssey & Mars Reconnaissance Orbiter and ESA's Mars Express) and in transit (NASA's MAVEN and ISRO's Mangalyaan) by high-speed cometary dust potentially impacting spacecraft surfaces. Much work has already gone into assessing this hazard and devising mitigating measures in the precious little warning time given to characterise this object until Mars encounter. In this presentation, we will provide an overview of how the meteoroid stream and comet coma dust impact models evolved since the comet's discovery and discuss lessons learned should similar circumstances arise in the future.

  8. Modelling Inland Flood Events for Hazard Maps in Taiwan

    Science.gov (United States)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage

  9. An Additive-Multiplicative Restricted Mean Residual Life Model

    DEFF Research Database (Denmark)

    Mansourvar, Zahra; Martinussen, Torben; Scheike, Thomas H.

    2016-01-01

    mean residual life model to study the association between the restricted mean residual life function and potential regression covariates in the presence of right censoring. This model extends the proportional mean residual life model using an additive model as its covariate dependent baseline....... For the suggested model, some covariate effects are allowed to be time-varying. To estimate the model parameters, martingale estimating equations are developed, and the large sample properties of the resulting estimators are established. In addition, to assess the adequacy of the model, we investigate a goodness...

  10. Conceptual geoinformation model of natural hazards risk assessment

    Science.gov (United States)

    Kulygin, Valerii

    2016-04-01

    Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.

  11. Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Holcomb, C.; Louie, B.; Mullins, M.E.; Outcalt, S.L.; Rogers, T.N.; Watts, L.

    1998-01-01

    'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

  12. Use of agent-based modelling in emergency management under a range of flood hazards

    Directory of Open Access Journals (Sweden)

    Tagg Andrew

    2016-01-01

    Full Text Available The Life Safety Model (LSM was developed some 15 years ago, originally for dam break assessments and for informing reservoir evacuation and emergency plans. Alongside other technological developments, the model has evolved into a very useful agent-based tool, with many applications for a range of hazards and receptor behaviour. HR Wallingford became involved in its use in 2006, and is now responsible for its technical development and commercialisation. Over the past 10 years the model has been applied to a range of flood hazards, including coastal surge, river flood, dam failure and tsunami, and has been verified against historical events. Commercial software licences are being used in Canada, Italy, Malaysia and Australia. A core group of LSM users and analysts has been specifying and delivering a programme of model enhancements. These include improvements to traffic behaviour at intersections, new algorithms for sheltering in high-rise buildings, and the addition of monitoring points to allow detailed analysis of vehicle and pedestrian movement. Following user feedback, the ability of LSM to handle large model ‘worlds’ and hydrodynamic meshes has been improved. Recent developments include new documentation, performance enhancements, better logging of run-time events and bug fixes. This paper describes some of the recent developments and summarises some of the case study applications, including dam failure analysis in Japan and mass evacuation simulation in England.

  13. Process chain modeling and selection in an additive manufacturing context

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael

    2016-01-01

    This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....

  14. CyberShake: A Physics-Based Seismic Hazard Model for Southern California

    Science.gov (United States)

    Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; Okaya, D.; Small, P.; Vahi, K.

    2011-01-01

    CyberShake, as part of the Southern California Earthquake Center's (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200 km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i. e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2 s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and

  15. Modelling the costs of natural hazards in games

    Science.gov (United States)

    Bostenaru-Dan, M.

    2012-04-01

    City are looked for today, including a development at the University of Torino called SimTorino, which simulates the development of the city in the next 20 years. The connection to another games genre as video games, the board games, will be investigated, since there are games on construction and reconstruction of a cathedral and its tower and a bridge in an urban environment of the middle ages based on the two novels of Ken Follett, "Pillars of the Earth" and "World Without End" and also more recent games, such as "Urban Sprawl" or the Romanian game "Habitat", dealing with the man-made hazard of demolition. A review of these games will be provided based on first hand playing experience. In games like "World without End" or "Pillars of the Earth", just like in the recently popular games of Zynga on social networks, construction management is done through providing "building" an item out of stylised materials, such as "stone", "sand" or more specific ones as "nail". Such approach could be used also for retrofitting buildings for earthquakes, in the series of "upgrade", not just for extension as it is currently in games, and this is what our research is about. "World without End" includes a natural disaster not so analysed today but which was judged by the author as the worst of manhood: the Black Death. The Black Death has effects and costs as well, not only modelled through action cards, but also on the built environment, by buildings remaining empty. On the other hand, games such as "Habitat" rely on role playing, which has been recently recognised as a way to bring games theory to decision making through the so-called contribution of drama, a way to solve conflicts through balancing instead of weighting, and thus related to Analytic Hierarchy Process. The presentation aims to also give hints on how to design a game for the problem of earthquake retrofit, translating the aims of the actors in such a process into role playing. Games are also employed in teaching of urban

  16. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    OpenAIRE

    Custer, Rocco; Nishijima, Kazuyoshi

    2012-01-01

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is ...

  17. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    Science.gov (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  18. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  19. The 2018 and 2020 Updates of the U.S. National Seismic Hazard Models

    Science.gov (United States)

    Petersen, M. D.

    2017-12-01

    During 2018 the USGS will update the 2014 National Seismic Hazard Models by incorporating new seismicity models, ground motion models, site factors, fault inputs, and by improving weights to ground motion models using empirical and other data. We will update the earthquake catalog for the U.S. and introduce new rate models. Additional fault data will be used to improve rate estimates on active faults. New ground motion models (GMMs) and site factors for Vs30 have been released by the Pacific Earthquake Engineering Research Center (PEER) and we will consider these in assessing ground motions in craton and extended margin regions of the central and eastern U.S. The USGS will also include basin-depth terms for selected urban areas of the western United States to improve long-period shaking assessments using published depth estimates to 1.0 and 2.5 km/s shear wave velocities. We will produce hazard maps for input into the building codes that span a broad range of periods (0.1 to 5 s) and site classes (shear wave velocity from 2000 m/s to 200 m/s in the upper 30 m of the crust, Vs30). In the 2020 update we plan on including: a new national crustal model that defines basin depths required in the latest GMMs, new 3-D ground motion simulations for several urban areas, new magnitude-area equations, and new fault geodetic and geologic strain rate models. The USGS will also consider including new 3-D ground motion simulations for inclusion in these long-period maps. These new models are being evaluated and will be discussed at one or more regional and topical workshops held at the beginning of 2018.

  20. Additive Manufacturing and Business Models: Current Knowledge and Missing Perspectives

    Directory of Open Access Journals (Sweden)

    Christina Öberg

    2018-06-01

    Full Text Available Additive manufacturing, that is 3D printing technology, may change the way companies operate their businesses. This article adopts a business model perspective to create an understanding of what we know about these changes. It summarizes current knowledge on additive manufacturing within management and business research, and it discusses future research directions in relation to business models for additive manufacturing. Using the scientific database Web of Science, 116 journal articles were identified. The literature review reveals that most research concerns manufacturing optimization. A more holistic view of the changes that additive manufacturing may bring about for firms is needed, as is more research on changed value propositions, and customer/sales-related issues. The article contributes to previous research by systematically summarizing additive manufacturing research in the business and management literature, and by highlighting areas for further investigation related to the business models of individual firms.

  1. Taxonomic analysis of perceived risk: modeling individual and group perceptions within homogeneous hazard domains

    International Nuclear Information System (INIS)

    Kraus, N.N.; Slovic, P.

    1988-01-01

    Previous studies of risk perception have typically focused on the mean judgments of a group of people regarding the riskiness (or safety) of a diverse set of hazardous activities, substances, and technologies. This paper reports the results of two studies that take a different path. Study 1 investigated whether models within a single technological domain were similar to previous models based on group means and diverse hazards. Study 2 created a group taxonomy of perceived risk for only one technological domain, railroads, and examined whether the structure of that taxonomy corresponded with taxonomies derived from prior studies of diverse hazards. Results from Study 1 indicated that the importance of various risk characteristics in determining perceived risk differed across individuals and across hazards, but not so much as to invalidate the results of earlier studies based on group means and diverse hazards. In Study 2, the detailed analysis of railroad hazards produced a structure that had both important similarities to, and dissimilarities from, the structure obtained in prior research with diverse hazard domains. The data also indicated that railroad hazards are really quite diverse, with some approaching nuclear reactors in their perceived seriousness. These results suggest that information about the diversity of perceptions within a single domain of hazards could provide valuable input to risk-management decisions

  2. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study.

  3. Computer models used to support cleanup decision-making at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; DePhillips, M.P.; Meinhold, A.F.

    1992-07-01

    Massive efforts are underway to cleanup hazardous and radioactive waste sites located throughout the US To help determine cleanup priorities, computer models are being used to characterize the source, transport, fate and effects of hazardous chemicals and radioactive materials found at these sites. Although, the US Environmental Protection Agency (EPA), the US Department of Energy (DOE), and the US Nuclear Regulatory Commission (NRC) have provided preliminary guidance to promote the use of computer models for remediation purposes, no Agency has produced directed guidance on models that must be used in these efforts. To identify what models are actually being used to support decision-making at hazardous and radioactive waste sites, a project jointly funded by EPA, DOE and NRC was initiated. The purpose of this project was to: (1) Identify models being used for hazardous and radioactive waste site assessment purposes; and (2) describe and classify these models. This report presents the results of this study

  4. Comprehensive European dietary exposure model (CEDEM) for food additives.

    Science.gov (United States)

    Tennant, David R

    2016-05-01

    European methods for assessing dietary exposures to nutrients, additives and other substances in food are limited by the availability of detailed food consumption data for all member states. A proposed comprehensive European dietary exposure model (CEDEM) applies summary data published by the European Food Safety Authority (EFSA) in a deterministic model based on an algorithm from the EFSA intake method for food additives. The proposed approach can predict estimates of food additive exposure provided in previous EFSA scientific opinions that were based on the full European food consumption database.

  5. A double moral hazard model of organization design

    OpenAIRE

    Berkovitch, Elazar; Israel, Ronen; Spiegel, Yossi

    2007-01-01

    We develop a theory of organization design in which the firm's structure is chosen to mitigate moral hazard problems in the selection and the implementation of projects. For a given set of projects, the 'divisional structure' which gives each agent the full responsibility over a subset of projects is in general more efficient than the functional structure under which projects are implemented by teams of agents, each of whom specializes in one task. However, the ex post efficiency of the divis...

  6. Additive Intensity Regression Models in Corporate Default Analysis

    DEFF Research Database (Denmark)

    Lando, David; Medhat, Mamdouh; Nielsen, Mads Stenbo

    2013-01-01

    We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety of mo...

  7. Report 3: Guidance document on practices to model and implement Extreme Weather hazards in extended PSA

    International Nuclear Information System (INIS)

    Alzbutas, R.; Ostapchuk, S.; Borysiewicz, M.; Decker, K.; Kumar, Manorma; Haeggstroem, A.; Nitoi, M.; Groudev, P.; Parey, S.; Potempski, S.; Raimond, E.; Siklossy, T.

    2016-01-01

    The goal of this report is to provide guidance on practices to model Extreme Weather hazards and implement them in extended level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the End Users Workshop. This guidance is focusing on extreme weather hazards, namely: extreme wind, extreme temperature and snow pack. Other hazards, however, are considered in cases where they are correlated/ associated with the hazard under discussion. Guidance developed refers to existing guidance whenever possible. As it was recommended by end users this guidance covers questions of developing integrated and/or separated extreme weathers PSA models. (authors)

  8. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  9. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    hanging wall and directivity effects) within modern ground motion prediction equations, can have an influence on the seismic hazard at a site. Yet we also illustrate the conditions under which these effects may be partially tempered when considering the full uncertainty in rupture behaviour within the fault system. The third challenge is the development of efficient means for representing both aleatory and epistemic uncertainties from active fault models in PSHA. In implementing state-of-the-art seismic hazard models into OpenQuake, such as those recently undertaken in California and Japan, new modeling techniques are needed that redefine how we treat interdependence of ruptures within the model (such as mutual exclusivity), and the propagation of uncertainties emerging from geology. Finally, we illustrate how OpenQuake, and GEM's additional toolkits for model preparation, can be applied to address long-standing issues in active fault modeling in PSHA. These include constraining the seismogenic coupling of a fault and the partitioning of seismic moment between the active fault surfaces and the surrounding seismogenic crust. We illustrate some of the possible roles that geodesy can play in the process, but highlight where this may introduce new uncertainties and potential biases into the seismic hazard process, and how these can be addressed.

  10. Review of Shape Deviation Modeling for Additive Manufacturing

    OpenAIRE

    Zhu , Zuowei; Keimasi , Safa; ANWER , Nabil; Mathieu , Luc; Qiao , Lihong

    2016-01-01

    International audience; Additive Manufacturing (AM) is becoming a promising technology capable of building complex customized parts with internal geometries and graded material by stacking up thin individual layers. However, a comprehensive geometric model for Additive Manufacturing is not mature yet. Dimensional and form accuracy and surface finish are still a bottleneck for AM regarding quality control. In this paper, an up-to-date review is drawn on methods and approaches that have been de...

  11. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  12. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    Science.gov (United States)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  13. Projecting UK mortality using Bayesian generalised additive models

    OpenAIRE

    Hilton, Jason; Dodd, Erengul; Forster, Jonathan; Smith, Peter W.F.

    2018-01-01

    Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components...

  14. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  15. Modeling uranium transport in acidic contaminated groundwater with base addition

    International Nuclear Information System (INIS)

    Zhang Fan; Luo Wensui; Parker, Jack C.; Brooks, Scott C.; Watson, David B.; Jardine, Philip M.; Gu Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO 3 - , SO 4 2- , U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  16. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085 (China); Luo Wensui [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Parker, Jack C. [Institute for a Secure and Sustainable Environment, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  17. Generalised additive modelling approach to the fermentation process of glutamate.

    Science.gov (United States)

    Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping

    2011-03-01

    In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Snakes as hazards: modelling risk by chasing chimpanzees.

    Science.gov (United States)

    McGrew, William C

    2015-04-01

    Snakes are presumed to be hazards to primates, including humans, by the snake detection hypothesis (Isbell in J Hum Evol 51:1-35, 2006; Isbell, The fruit, the tree, and the serpent. Why we see so well, 2009). Quantitative, systematic data to test this idea are lacking for the behavioural ecology of living great apes and human foragers. An alternative proxy is snakes encountered by primatologists seeking, tracking, and observing wild chimpanzees. We present 4 years of such data from Mt. Assirik, Senegal. We encountered 14 species of snakes a total of 142 times. Almost two-thirds of encounters were with venomous snakes. Encounters occurred most often in forest and least often in grassland, and more often in the dry season. The hypothesis seems to be supported, if frequency of encounter reflects selective risk of morbidity or mortality.

  19. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA; GENTON, MARC G.

    2009-01-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided

  20. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  1. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  2. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  3. Genomic Model with Correlation Between Additive and Dominance Effects.

    Science.gov (United States)

    Xiang, Tao; Christensen, Ole Fredslund; Vitezica, Zulma Gladis; Legarra, Andres

    2018-05-09

    Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such correlation. Wellmann and Bennewitz showed two ways of considering directional relationships between additive and dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of individuals instead of loci in a mixed model and are not compatible with standard animal or plant breeding software. This comes from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a consequence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood (REML) algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by mixed model software and accuracy of prediction for genetic values is slightly improved if such correlations are used in GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant

  4. Modelling of additive manufacturing processes: a review and classification

    Science.gov (United States)

    Stavropoulos, Panagiotis; Foteinopoulos, Panagis

    2018-03-01

    Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.

  5. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository

    LI, YEHUA

    2009-09-01

    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.

  6. Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method

    Science.gov (United States)

    Nugraha, A. L.; Awaluddin, M.; Sasmito, B.

    2018-02-01

    One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.

  7. Modeling the bathtub shape hazard rate function in terms of reliability

    International Nuclear Information System (INIS)

    Wang, K.S.; Hsu, F.S.; Liu, P.P.

    2002-01-01

    In this paper, a general form of bathtub shape hazard rate function is proposed in terms of reliability. The degradation of system reliability comes from different failure mechanisms, in particular those related to (1) random failures, (2) cumulative damage, (3) man-machine interference, and (4) adaptation. The first item is referred to the modeling of unpredictable failures in a Poisson process, i.e. it is shown by a constant. Cumulative damage emphasizes the failures owing to strength deterioration and therefore the possibility of system sustaining the normal operation load decreases with time. It depends on the failure probability, 1-R. This representation denotes the memory characteristics of the second failure cause. Man-machine interference may lead to a positive effect in the failure rate due to learning and correction, or negative from the consequence of human inappropriate habit in system operations, etc. It is suggested that this item is correlated to the reliability, R, as well as the failure probability. Adaptation concerns with continuous adjusting between the mating subsystems. When a new system is set on duty, some hidden defects are explored and disappeared eventually. Therefore, the reliability decays combined with decreasing failure rate, which is expressed as a power of reliability. Each of these phenomena brings about the failures independently and is described by an additive term in the hazard rate function h(R), thus the overall failure behavior governed by a number of parameters is found by fitting the evidence data. The proposed model is meaningful in capturing the physical phenomena occurring during the system lifetime and provides for simpler and more effective parameter fitting than the usually adopted 'bathtub' procedures. Five examples of different type of failure mechanisms are taken in the validation of the proposed model. Satisfactory results are found from the comparisons

  8. Validation of transport models using additive flux minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y.; Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States); Hakim, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Kritz, A. H.; Rafiq, T. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2013-10-15

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile.

  9. Validation of transport models using additive flux minimization technique

    International Nuclear Information System (INIS)

    Pankin, A. Y.; Kruger, S. E.; Groebner, R. J.; Hakim, A.; Kritz, A. H.; Rafiq, T.

    2013-01-01

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile

  10. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].

    Science.gov (United States)

    Shi, Yan-Ting; Du, Qian; Gao, Jian-Min; Bian, Xin; Wang, Zhi-Pu; Dong, He-Ming; Han, Qiang; Cao, Yang

    2014-02-01

    In order to evaluate the hazard of PM2.5 emitted by various boilers, in this paper, segmentation of particulate matters with sizes of below 2. 5 microm was performed based on their formation mechanisms and hazard level to human beings and environment. Meanwhile, taking into account the mass concentration, number concentration, enrichment factor of Hg, and content of Hg element in different coal ashes, a comprehensive model aimed at evaluating hazard of PM2.5 emitted by coal-fired boilers was established in this paper. Finally, through utilizing filed experimental data of previous literatures, a case analysis of the evaluation model was conducted, and the concept of hazard reduction coefficient was proposed, which can be used to evaluate the performance of dust removers.

  11. Traffic Incident Clearance Time and Arrival Time Prediction Based on Hazard Models

    Directory of Open Access Journals (Sweden)

    Yang beibei Ji

    2014-01-01

    Full Text Available Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an effective input for travel time prediction. In this paper, the hazard based prediction models are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.

  12. Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv

    Directory of Open Access Journals (Sweden)

    Simon N. Wood

    2016-12-01

    Full Text Available The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, jagam, which takes a generalized additive model (GAM as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.

  13. Modeling the influence of limestone addition on cement hydration

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2015-03-01

    Full Text Available This paper addresses the influence of using Portland limestone cement “PLC” on cement hydration by characterization of its microstructure development. The European Standard EN 197-1:2011 and Egyptian specification ESS 4756-1/2009 permit the cement to contain up to 20% ground limestone. The computational tools assist in better understanding the influence of limestone additions on cement hydration and microstructure development to facilitate the acceptance of these more economical and ecological materials. μic model has been developed to enable the modeling of microstructural evolution of cementitious materials. In this research μic model is used to simulate both the influence of limestone as fine filler, providing additional surfaces for the nucleation and growth of hydration products. Limestone powder also reacts relatively slow with hydrating cement to form monocarboaluminate (AFmc phase, similar to the mono-sulfoaluminate (AFm phase formed in ordinary Portland cement. The model results reveal that limestone cement has accelerated cement hydration rate, previous experimental results and computer model “cemhyd3d” are used to validate this model.

  14. Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chang

    2017-01-01

    Full Text Available Given the probability distribution function relating to the recurrence interval and the occurrence time of the previous occurrence of a fault, a time-dependent model of a particular fault for seismic hazard assessment was developed that takes into account the active fault rupture cyclic characteristics during a particular lifetime up to the present time. The Gutenberg and Richter (1944 exponential frequency-magnitude relation uses to describe the earthquake recurrence rate for a regional source. It is a reference for developing a composite procedure modelled the occurrence rate for the large earthquake of a fault when the activity information is shortage. The time-dependent model was used to describe the fault characteristic behavior. The seismic hazards contribution from all sources, including both time-dependent and time-independent models, were then added together to obtain the annual total lifetime hazard curves. The effects of time-dependent and time-independent models of fault [e.g., Brownian passage time (BPT and Poisson, respectively] in hazard calculations are also discussed. The proposed fault model result shows that the seismic demands of near fault areas are lower than the current hazard estimation where the time-dependent model was used on those faults, particularly, the elapsed time since the last event of the faults (such as the Chelungpu fault are short.

  15. Teamwork tools and activities within the hazard component of the Global Earthquake Model

    Science.gov (United States)

    Pagani, M.; Weatherill, G.; Monelli, D.; Danciu, L.

    2013-05-01

    The Global Earthquake Model (GEM) is a public-private partnership aimed at supporting and fostering a global community of scientists and engineers working in the fields of seismic hazard and risk assessment. In the hazard sector, in particular, GEM recognizes the importance of local ownership and leadership in the creation of seismic hazard models. For this reason, over the last few years, GEM has been promoting different activities in the context of seismic hazard analysis ranging, for example, from regional projects targeted at the creation of updated seismic hazard studies to the development of a new open-source seismic hazard and risk calculation software called OpenQuake-engine (http://globalquakemodel.org). In this communication we'll provide a tour of the various activities completed, such as the new ISC-GEM Global Instrumental Catalogue, and of currently on-going initiatives like the creation of a suite of tools for the creation of PSHA input models. Discussion, comments and criticism by the colleagues in the audience will be highly appreciated.

  16. Ground motion models used in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.

    2015-01-01

    The National Seismic Hazard Maps (NSHMs) are an important component of seismic design regulations in the United States. This paper compares hazard using the new suite of ground motion models (GMMs) relative to hazard using the suite of GMMs applied in the previous version of the maps. The new source characterization models are used for both cases. A previous paper (Rezaeian et al. 2014) discussed the five NGA-West2 GMMs used for shallow crustal earthquakes in the Western United States (WUS), which are also summarized here. Our focus in this paper is on GMMs for earthquakes in stable continental regions in the Central and Eastern United States (CEUS), as well as subduction interface and deep intraslab earthquakes. We consider building code hazard levels for peak ground acceleration (PGA), 0.2-s, and 1.0-s spectral accelerations (SAs) on uniform firm-rock site conditions. The GMM modifications in the updated version of the maps created changes in hazard within 5% to 20% in WUS; decreases within 5% to 20% in CEUS; changes within 5% to 15% for subduction interface earthquakes; and changes involving decreases of up to 50% and increases of up to 30% for deep intraslab earthquakes for most U.S. sites. These modifications were combined with changes resulting from modifications in the source characterization models to obtain the new hazard maps.

  17. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    Science.gov (United States)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    . Optimized pit filling techniques use both cut and fill operations to minimize modifications of the original DEM. Satellite image interpretation and field surveying provide the baseline upon which to test the accuracy of each model simulation. By outlining areas that could potentially be inundated by debris flows, these efforts can be used to more accurately identify the places and assets immediately exposed to landslide hazards. We contextualize the results of the previous and ongoing efforts into how they may be incorporated into decision support systems. We also discuss if and how these analyses would have provided additional knowledge in the past, and identify specific recommendations as to how they could contribute to a more robust decision support system in the future.

  18. Three multimedia models used at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers

  19. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  20. Methodologies for the assessment of earthquake-triggered landslides hazard. A comparison of Logistic Regression and Artificial Neural Network models.

    Science.gov (United States)

    García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.

    2009-04-01

    location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone with an adjustment of 95.1 % for ANN model and 89.4% for LR model. In addition, we make a comparative analysis of both techniques using the Receiver Operating Characteristic (ROC) curve, a graphical plot of the sensitivity vs. (1 - specificity) for a binary classifier system in function of its discrimination threshold, and calculating the Area Under the ROC (AUROC) value for each model. Finally, the previous models are used for the developing a new probabilistic landslide hazard map for future events. They are obtained combining the expected triggering factor (calculated earthquake ground motion) for a return period of 475 years with the susceptibility map.

  1. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  2. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature...... disaggregation model that considers the uncertainty in the disaggregation, taking basis in the scaled Dirichlet distribution. The proposed probabilistic disaggregation model is applied to a portfolio of residential buildings in the Canton Bern, Switzerland, subject to flood risk. Thereby, the model is verified...... are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is generally imperfect, uncertainty arises in disaggregation. This paper therefore proposes a probabilistic...

  3. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  4. Modeling exposure to persistent chemicals in hazard and risk assessment.

    Science.gov (United States)

    Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank

    2009-10-01

    Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment. The goal of this publication is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include 1) benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk; 2) directly estimating the exposure of the environment, biota, and humans to provide information to complement measurements or where measurements are not available or are limited; 3) to identify the key processes and chemical or environmental parameters that determine the exposure, thereby allowing the effective prioritization of research or measurements to improve the risk profile; and 4) forecasting future time trends, including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and

  5. Modeling contractor and company employee behavior in high hazard operation

    NARCIS (Netherlands)

    Lin, P.H.; Hanea, D.; Ale, B.J.M.

    2013-01-01

    The recent blow-out and subsequent environmental disaster in the Gulf of Mexico have highlighted a number of serious problems in scientific thinking about safety. Risk models have generally concentrated on technical failures, which are easier to model and for which there are more concrete data.

  6. Modeling and Testing Landslide Hazard Using Decision Tree

    Directory of Open Access Journals (Sweden)

    Mutasem Sh. Alkhasawneh

    2014-01-01

    Full Text Available This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID, Exhaustive CHAID, Classification and Regression Tree (CRT, and Quick-Unbiased-Efficient Statistical Tree (QUEST. Twenty-one factors were extracted using digital elevation models (DEMs and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0% compared to CHAID (81.9%, CRT (75.6%, and QUEST (74.0% model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.

  7. Modeling Wildfire Hazard in the Western Hindu Kush-Himalayas

    Science.gov (United States)

    Bylow, D.

    2012-12-01

    Wildfire regimes are a leading driver of global environmental change affecting a diverse array of global ecosystems. Particulates and aerosols produced by wildfires are a primary source of air pollution making the early detection and monitoring of wildfires crucial. The objectives of this study were to model regional wildfire potential and identify environmental, topological, and sociological factors that contribute to the ignition of wildfire events in the Western Hindu Kush-Himalayas of South Asia. The environmental, topological, and sociological factors were used to model regional wildfire potential through multi-criteria evaluation using a method of weighted linear combination. Moderate Resolution Imaging Spectroradiometer (MODIS) and geographic information systems (GIS) data were integrated to analyze regional wildfires and construct the model. Model validation was performed using a holdout cross validation method. The study produced a significant model of wildfire potential in the Western Hindu Kush-Himalayas.; Western Hindu Kush-Himalayas ; Western Hindu Kush-Himalayas Wildfire Potential

  8. Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events

    Science.gov (United States)

    Dinitz, Laura B.; Taketa, Richard A.

    2013-01-01

    This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.

  9. Additive manufacturing for consumer-centric business models

    DEFF Research Database (Denmark)

    Bogers, Marcel; Hadar, Ronen; Bilberg, Arne

    2016-01-01

    Digital fabrication—including additive manufacturing (AM), rapid prototyping and 3D printing—has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model—describing the logic of creating...... and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from a manufacturer......-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer effectively takes over...

  10. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    Science.gov (United States)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    the outburst of landslide-dammed lakes) remains a challenge: • The knowledge about the onset of the process is often limited (bathymetry of the lakes, subsurface water, properties of dam (content of ice), type of dam breach, understanding of process chains and interactions). • The size of glacial lakes may change rapidly but continuously, and many lakes break out within a short time after their development. Continuous monitoring is therefore required to keep updated on the existing hazards. • Also the outburst of small glacial lakes may lead to significant debris floods or even debris flows if there is plenty of erodible material available. • The available modeling software packages are of limited suitability for lake outburst floods: e.g. software developed by the hydrological community is specialized to simulate (debris) floods with input hydrographs on moderately steep flow channels and with lower sediment loads. In contrast to this, programs for rapid mass movements are better suited on steeper slopes and sudden onset of the movement. The typical characteristics of GLOFs are in between and vary for different channel sections. In summary, the major bottlenecks remain in deriving realistic or worst case scenarios and predicting their magnitude and area of impact. This mainly concerns uncertainties in the dam break process, involved volumes, erosion rates, changing rheologies, and the limited capabilities of available software packages to simulate process interactions and transformations such as the development of a hyperconcentrated flow into a debris flow. In addition, many areas prone to lake outburst floods are located in developing countries with a limited scope of the threatened population for decision-making and limited resources for mitigation.

  11. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  12. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  13. Measures to assess the prognostic ability of the stratified Cox proportional hazards model

    DEFF Research Database (Denmark)

    (Tybjaerg-Hansen, A.) The Fibrinogen Studies Collaboration.The Copenhagen City Heart Study; Tybjærg-Hansen, Anne

    2009-01-01

    Many measures have been proposed to summarize the prognostic ability of the Cox proportional hazards (CPH) survival model, although none is universally accepted for general use. By contrast, little work has been done to summarize the prognostic ability of the stratified CPH model; such measures...

  14. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China.

    Science.gov (United States)

    Wang, Junjie; He, Jiangtao; Chen, Honghan

    2012-08-15

    Groundwater contamination risk assessment is an effective tool for groundwater management. Most existing risk assessment methods only consider the basic contamination process based upon evaluations of hazards and aquifer vulnerability. In view of groundwater exploitation potentiality, including the value of contamination-threatened groundwater could provide relatively objective and targeted results to aid in decision making. This study describes a groundwater contamination risk assessment method that integrates hazards, intrinsic vulnerability and groundwater value. The hazard harmfulness was evaluated by quantifying contaminant properties and infiltrating contaminant load, the intrinsic aquifer vulnerability was evaluated using a modified DRASTIC model and the groundwater value was evaluated based on groundwater quality and aquifer storage. Two groundwater contamination risk maps were produced by combining the above factors: a basic risk map and a value-weighted risk map. The basic risk map was produced by overlaying the hazard map and the intrinsic vulnerability map. The value-weighted risk map was produced by overlaying the basic risk map and the groundwater value map. Relevant validation was completed by contaminant distributions and site investigation. Using Beijing Plain, China, as an example, thematic maps of the three factors and the two risks were generated. The thematic maps suggested that landfills, gas stations and oil depots, and industrial areas were the most harmful potential contamination sources. The western and northern parts of the plain were the most vulnerable areas and had the highest groundwater value. Additionally, both the basic and value-weighted risk classes in the western and northern parts of the plain were the highest, indicating that these regions should deserve the priority of concern. Thematic maps should be updated regularly because of the dynamic characteristics of hazards. Subjectivity and validation means in assessing the

  15. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model.

    Science.gov (United States)

    Austin, Peter C

    2018-01-01

    The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.

  16. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    Science.gov (United States)

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0

  17. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest

    OpenAIRE

    Suh, Jangwon; Kim, Sung-Min; Yi, Huiuk; Choi, Yosoon

    2017-01-01

    In this study, current geographic information system (GIS)-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or t...

  18. Hazard Models From Periodic Dike Intrusions at Kı¯lauea Volcano, Hawai`i

    Science.gov (United States)

    Montgomery-Brown, E. K.; Miklius, A.

    2016-12-01

    The persistence and regular recurrence intervals of dike intrusions in the East Rift Zone (ERZ) of Kı¯lauea Volcano lead to the possibility of constructing a time-dependent intrusion hazard model. Dike intrusions are commonly observed in Kı¯lauea Volcano's ERZ and can occur repeatedly in regions that correlate with seismic segments (sections of rift seismicity with persistent definitive lateral boundaries) proposed by Wright and Klein (USGS PP1806, 2014). Five such ERZ intrusions have occurred since 1983 with inferred locations downrift of the bend in Kı¯lauea's ERZ, with the first (1983) being the start of the ongoing ERZ eruption. The ERZ intrusions occur on one of two segments that are spatially coincident with seismic segments: Makaopuhi (1993 and 2007) and Nāpau (1983, 1997, and 2011). During each intrusion, the amount of inferred dike opening was between 2 and 3 meters. The times between ERZ intrusions for same-segment pairs are all close to 14 years: 14.07 (1983-1997), 14.09 (1997-2011), and 13.95 (1993-2007) years, with the Nāpau segment becoming active about 3.5 years after the Makaopuhi segment in each case. Four additional upper ERZ intrusions are also considered here. Dikes in the upper ERZ have much smaller opening ( 10 cm), and have shorter recurrence intervals of 8 years with more variability. The amount of modeled dike opening during each of these events roughly corresponds to the amount of seaward south flank motion and deep rift opening accumulated in the time between events. Additionally, the recurrence interval of 14 years appears to be unaffected by the magma surge of 2003-2007, suggesting that flank motion, rather than magma supply, could be a controlling factor in the timing and periodicity of intrusions. Flank control over the timing of magma intrusions runs counter to the historical research suggesting that dike intrusions at Kı¯lauea are driven by magma overpressure. This relatively free sliding may have resulted from decreased

  19. Addition Table of Colours: Additive and Subtractive Mixtures Described Using a Single Reasoning Model

    Science.gov (United States)

    Mota, A. R.; Lopes dos Santos, J. M. B.

    2014-01-01

    Students' misconceptions concerning colour phenomena and the apparent complexity of the underlying concepts--due to the different domains of knowledge involved--make its teaching very difficult. We have developed and tested a teaching device, the addition table of colours (ATC), that encompasses additive and subtractive mixtures in a single…

  20. Estimation and variable selection for generalized additive partial linear models

    KAUST Repository

    Wang, Li

    2011-08-01

    We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.

  1. Bayesian nonparametric estimation of hazard rate in monotone Aalen model

    Czech Academy of Sciences Publication Activity Database

    Timková, Jana

    2014-01-01

    Roč. 50, č. 6 (2014), s. 849-868 ISSN 0023-5954 Institutional support: RVO:67985556 Keywords : Aalen model * Bayesian estimation * MCMC Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/timkova-0438210.pdf

  2. Hazard Response Modeling Uncertainty (A Quantitative Method). Volume 2. Evaluation of Commonly Used Hazardous Gas Dispersion Models

    Science.gov (United States)

    1993-03-01

    the HDA . The model will 89 explicitly account for initial dilution, aerosol evaporation, and entrainment for turbulent jets, which simplifies...D.N., Yohn, J.F., Koopman R.P. and Brown T.C., "Conduct of Anhydrous Hydrofluoric Acid Spill Experiments," Proc. Int. Cqnf. On Vapor Cloud Modeling

  3. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  4. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  5. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    Science.gov (United States)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated

  6. Eolian Modeling System: Predicting Windblown Dust Hazards in Battlefield Environments

    Science.gov (United States)

    2011-05-03

    trend (i.e., a straight line on log-log scales) given by R ∝ T–α, (1) where R is the accumulation rate, T is the time interval of accumulation, and α...Figure 5(A) for a representative set of model parameters. The straight line labeled by h represents a linear increase in epipedon thickness with time...Pelletier, Frequency-magnitude distribution of eolian transport and the geomorphically most-effective windstorm , submitted but not accepted to Geophysical

  7. The unconvincing product - Consumer versus expert hazard identification: A mental models study of novel foods

    DEFF Research Database (Denmark)

    Hagemann, Kit; Scholderer, Joachim

    and experts understanding of benefits and risks associated with three Novel foods (a potato, rice and functional food ingredients) using a relatively new methodology for the study of risk perception called Mental models. Mental models focus on the way people conceptualise hazardous processes and allows...... researchers to pit a normative analysis (expert mental models) against a descriptive analysis (consumer mental models). Expert models were elicited by means of a three-wave Delphi procedure from altogether 24 international experts and consumers models from in-dept interviews with Danish consumers. The results...... revealed that consumers´ and experts' mental models differed in connection to scope. Experts focused on the types of hazards for which risk assessments can be conducted under current legal frameworks whereas consumers were concerned about issues that lay outside the scope of current legislation. Experts...

  8. WATEQ3 geochemical model: thermodynamic data for several additional solids

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs

  9. Evaluation and hydrological modelization in the natural hazard prevention

    International Nuclear Information System (INIS)

    Pla Sentis, Ildefonso

    2011-01-01

    Soil degradation affects negatively his functions as a base to produce food, to regulate the hydrological cycle and the environmental quality. All over the world soil degradation is increasing partly due to lacks or deficiencies in the evaluations of the processes and causes of this degradation on each specific situation. The processes of soil physical degradation are manifested through several problems as compaction, runoff, hydric and Eolic erosion, landslides with collateral effects in situ and in the distance, often with disastrous consequences as foods, landslides, sedimentations, droughts, etc. These processes are frequently associated to unfavorable changes into the hydrologic processes responsible of the water balance and soil hydric regimes, mainly derived to soil use changes and different management practices and climatic changes. The evaluation of these processes using simple simulation models; under several scenarios of climatic change, soil properties and land use and management; would allow to predict the occurrence of this disastrous processes and consequently to select and apply the appropriate practices of soil conservation to eliminate or reduce their effects. This simulation models require, as base, detailed climatic information and hydrologic soil properties data. Despite of the existence of methodologies and commercial equipment (each time more sophisticated and precise) to measure the different physical and hydrological soil properties related with degradation processes, most of them are only applicable under really specific or laboratory conditions. Often indirect methodologies are used, based on relations or empiric indexes without an adequate validation, that often lead to expensive mistakes on the evaluation of soil degradation processes and their effects on natural disasters. It could be preferred simple field methodologies, direct and adaptable to different soil types and climates and to the sample size and the spatial variability of the

  10. Modelling human interactions in the assessment of man-made hazards

    International Nuclear Information System (INIS)

    Nitoi, M.; Farcasiu, M.; Apostol, M.

    2016-01-01

    The human reliability assessment tools are not currently capable to model adequately the human ability to adapt, to innovate and to manage under extreme situations. The paper presents the results obtained by ICN PSA team in the frame of FP7 Advanced Safety Assessment Methodologies: extended PSA (ASAMPSA_E) project regarding the investigation of conducting HRA in human-made hazards. The paper proposes to use a 4-steps methodology for the assessment of human interactions in the external events (Definition and modelling of human interactions; Quantification of human failure events; Recovery analysis; Review). The most relevant factors with respect to HRA for man-made hazards (response execution complexity; existence of procedures with respect to the scenario in question; time available for action; timing of cues; accessibility of equipment; harsh environmental conditions) are presented and discussed thoroughly. The challenges identified in relation to man-made hazards HRA are highlighted. (authors)

  11. Guidance document on practices to model and implement Earthquake hazards in extended PSA (final version). Volume 1

    International Nuclear Information System (INIS)

    Decker, K.; Hirata, K.; Groudev, P.

    2016-01-01

    The current report provides guidance for the assessment of seismo-tectonic hazards in level 1 and 2 PSA. The objective is to review existing guidance, identify methodological challenges, and to propose novel guidance on key issues. Guidance for the assessment of vibratory ground motion and fault capability comprises the following: - listings of data required for the hazard assessment and methods to estimate data quality and completeness; - in-depth discussion of key input parameters required for hazard models; - discussions on commonly applied hazard assessment methodologies; - references to recent advances of science and technology. Guidance on the assessment of correlated or coincident hazards comprises of chapters on: - screening of correlated hazards; - assessment of correlated hazards (natural and man-made); - assessment of coincident hazards. (authors)

  12. Building an Ensemble Seismic Hazard Model for the Magnitude Distribution by Using Alternative Bayesian Implementations

    Science.gov (United States)

    Taroni, M.; Selva, J.

    2017-12-01

    In this work we show how we built an ensemble seismic hazard model for the magnitude distribution for the TSUMAPS-NEAM EU project (http://www.tsumaps-neam.eu/). The considered source area includes the whole NEAM region (North East Atlantic, Mediterranean and connected seas). We build our models by using the catalogs (EMEC and ISC), their completeness and the regionalization provided by the project. We developed four alternative implementations of a Bayesian model, considering tapered or truncated Gutenberg-Richter distributions, and fixed or variable b-value. The frequency size distribution is based on the Weichert formulation. This allows for simultaneously assessing all the frequency-size distribution parameters (a-value, b-value, and corner magnitude), using multiple completeness periods for the different magnitudes. With respect to previous studies, we introduce the tapered Pareto distribution (in addition to the classical truncated Pareto), and we build a novel approach to quantify the prior distribution. For each alternative implementation, we set the prior distributions using the global seismic data grouped according to the different types of tectonic setting, and assigned them to the related regions. The estimation is based on the complete (not declustered) local catalog in each region. Using the complete catalog also allows us to consider foreshocks and aftershocks in the seismic rate computation: the Poissonicity of the tsunami events (and similarly the exceedances of the PGA) will be insured by the Le Cam's theorem. This Bayesian approach provides robust estimations also in the zones where few events are available, but also leaves us the possibility to explore the uncertainty associated with the estimation of the magnitude distribution parameters (e.g. with the classical Metropolis-Hastings Monte Carlo method). Finally we merge all the models with their uncertainty to create the ensemble model that represents our knowledge of the seismicity in the

  13. Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site

    Science.gov (United States)

    Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.

    2012-04-01

    The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological

  14. Geo-additive modelling of malaria in Burundi

    Directory of Open Access Journals (Sweden)

    Gebhardt Albrecht

    2011-08-01

    Full Text Available Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007. Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated and unstructured (uncorrelated components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified

  15. Flood hazard mapping of Palembang City by using 2D model

    Science.gov (United States)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  16. [Critical of the additive model of the randomized controlled trial].

    Science.gov (United States)

    Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine

    2008-01-01

    Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect.

  17. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest.

    Science.gov (United States)

    Suh, Jangwon; Kim, Sung-Min; Yi, Huiuk; Choi, Yosoon

    2017-11-27

    In this study, current geographic information system (GIS)-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further.

  18. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest

    Science.gov (United States)

    Kim, Sung-Min; Yi, Huiuk; Choi, Yosoon

    2017-01-01

    In this study, current geographic information system (GIS)-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further. PMID:29186922

  19. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2017-11-01

    Full Text Available In this study, current geographic information system (GIS-based methods and their application for the modeling and assessment of mining-induced hazards were reviewed. Various types of mining-induced hazard, including soil contamination, soil erosion, water pollution, and deforestation were considered in the discussion of the strength and role of GIS as a viable problem-solving tool in relation to mining-induced hazards. The various types of mining-induced hazard were classified into two or three subtopics according to the steps involved in the reclamation procedure, or elements of the hazard of interest. Because GIS is appropriated for the handling of geospatial data in relation to mining-induced hazards, the application and feasibility of exploiting GIS-based modeling and assessment of mining-induced hazards within the mining industry could be expanded further.

  20. Recent Progress in Understanding Natural-Hazards-Generated TEC Perturbations: Measurements and Modeling Results

    Science.gov (United States)

    Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.

    2015-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.

  1. Analyzing multivariate survival data using composite likelihood and flexible parametric modeling of the hazard functions

    DEFF Research Database (Denmark)

    Nielsen, Jan; Parner, Erik

    2010-01-01

    In this paper, we model multivariate time-to-event data by composite likelihood of pairwise frailty likelihoods and marginal hazards using natural cubic splines. Both right- and interval-censored data are considered. The suggested approach is applied on two types of family studies using the gamma...

  2. Independent screening for single-index hazard rate models with ultrahigh dimensional features

    DEFF Research Database (Denmark)

    Gorst-Rasmussen, Anders; Scheike, Thomas

    2013-01-01

    can be viewed as the natural survival equivalent of correlation screening. We state conditions under which the method admits the sure screening property within a class of single-index hazard rate models with ultrahigh dimensional features and describe the generally detrimental effect of censoring...

  3. ASCHFLOW - A dynamic landslide run-out model for medium scale hazard analysis

    Czech Academy of Sciences Publication Activity Database

    Quan Luna, B.; Blahůt, Jan; van Asch, T.W.J.; van Westen, C.J.; Kappes, M.

    2016-01-01

    Roč. 3, 12 December (2016), č. článku 29. E-ISSN 2197-8670 Institutional support: RVO:67985891 Keywords : landslides * run-out models * medium scale hazard analysis * quantitative risk assessment Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. An advanced model for spreading and evaporation of accidentally released hazardous liquids on land

    NARCIS (Netherlands)

    Trijssenaar-Buhre, I.J.M.; Sterkenburg, R.P.; Wijnant-Timmerman, S.I.

    2009-01-01

    Pool evaporation modelling is an important element in consequence assessment of accidentally released hazardous liquids. The evaporation rate determines the amount of toxic or flammable gas released into the atmosphere and is an important factor for the size of a pool fire. In this paper a

  5. An advanced model for spreading and evaporation of accidentally released hazardous liquids on land

    NARCIS (Netherlands)

    Trijssenaar-Buhre, I.J.M.; Wijnant-Timmerman, S.L.

    2008-01-01

    Pool evaporation modelling is an important element in consequence assessment of accidentally released hazardous liquids. The evaporation rate determines the amount of toxic or flammable gas released into the atmosphere and is an important factor for the size of a pool fire. In this paper a

  6. Level-Dependent Nonlinear Hearing Protector Model in the Auditory Hazard Assessment Algorithm for Humans

    Science.gov (United States)

    2015-04-01

    HPD model. In an article on measuring HPD attenuation, Berger (1986) points out that Real Ear Attenuation at Threshold (REAT) tests are...men. Audiology . 1991;30:345–356. Fedele P, Binseel M, Kalb J, Price GR. Using the auditory hazard assessment algorithm for humans (AHAAH) with

  7. Combining computational models for landslide hazard assessment of Guantánamo province, Cuba

    NARCIS (Netherlands)

    Castellanos Abella, E.A.

    2008-01-01

    As part of the Cuban system for landslide disaster management, a methodology was developed for regional scale landslide hazard assessment, which is a combination of different models. The method was applied in Guantánamo province at 1:100 000 scale. The analysis started with an extensive aerial

  8. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    Science.gov (United States)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  9. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  10. Building a risk-targeted regional seismic hazard model for South-East Asia

    Science.gov (United States)

    Woessner, J.; Nyst, M.; Seyhan, E.

    2015-12-01

    The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.

  11. Versatility of cooperative transcriptional activation: a thermodynamical modeling analysis for greater-than-additive and less-than-additive effects.

    Directory of Open Access Journals (Sweden)

    Till D Frank

    Full Text Available We derive a statistical model of transcriptional activation using equilibrium thermodynamics of chemical reactions. We examine to what extent this statistical model predicts synergy effects of cooperative activation of gene expression. We determine parameter domains in which greater-than-additive and less-than-additive effects are predicted for cooperative regulation by two activators. We show that the statistical approach can be used to identify different causes of synergistic greater-than-additive effects: nonlinearities of the thermostatistical transcriptional machinery and three-body interactions between RNA polymerase and two activators. In particular, our model-based analysis suggests that at low transcription factor concentrations cooperative activation cannot yield synergistic greater-than-additive effects, i.e., DNA transcription can only exhibit less-than-additive effects. Accordingly, transcriptional activity turns from synergistic greater-than-additive responses at relatively high transcription factor concentrations into less-than-additive responses at relatively low concentrations. In addition, two types of re-entrant phenomena are predicted. First, our analysis predicts that under particular circumstances transcriptional activity will feature a sequence of less-than-additive, greater-than-additive, and eventually less-than-additive effects when for fixed activator concentrations the regulatory impact of activators on the binding of RNA polymerase to the promoter increases from weak, to moderate, to strong. Second, for appropriate promoter conditions when activator concentrations are increased then the aforementioned re-entrant sequence of less-than-additive, greater-than-additive, and less-than-additive effects is predicted as well. Finally, our model-based analysis suggests that even for weak activators that individually induce only negligible increases in promoter activity, promoter activity can exhibit greater-than-additive

  12. Modelling short term individual exposure from airborne hazardous releases in urban environments

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Efthimiou, G.C.; Andronopoulos, S.

    2015-01-01

    Highlights: • The statistical behavior of the variability of individual exposure is described with a beta function. • The extreme value in the beta function is properly addressed by [5] correlation. • Two different datasets gave clear support to the proposed novel theory and its hypotheses. - Abstract: A key issue, in order to be able to cope with deliberate or accidental atmospheric releases of hazardous substances, is the ability to reliably predict the individual exposure downstream the source. In many situations, the release time and/or the health relevant exposure time is short compared to mean concentration time scales. In such a case, a significant scatter of exposure levels is expected due to the stochastic nature of turbulence. The problem becomes even more complex when dispersion occurs over urban environments. The present work is the first attempt to approximate on generic terms, the statistical behavior of the abovementioned variability with a beta distribution probability density function (beta-pdf) which has proved to be quite successful. The important issue of the extreme concentration value in beta-pdf seems to be properly addressed by the [5] correlation in which global values of its associated constants are proposed. Two substantially different datasets, the wind tunnel Michelstadt experiment and the field Mock Urban Setting Trial (MUST) experiment gave clear support to the proposed novel theory and its hypotheses. In addition, the present work can be considered as basis for further investigation and model refinements.

  13. Modelling short term individual exposure from airborne hazardous releases in urban environments

    Energy Technology Data Exchange (ETDEWEB)

    Bartzis, J.G., E-mail: bartzis@uowm.gr [University of Western Macedonia, Dept. of Mechanical Engineering, Sialvera & Bakola Str., 50100, Kozani (Greece); Efthimiou, G.C.; Andronopoulos, S. [Environmental Research Laboratory, INRASTES, NCSR Demokritos, Patriarchou Grigoriou & Neapoleos Str., 15310, Aghia Paraskevi (Greece)

    2015-12-30

    Highlights: • The statistical behavior of the variability of individual exposure is described with a beta function. • The extreme value in the beta function is properly addressed by [5] correlation. • Two different datasets gave clear support to the proposed novel theory and its hypotheses. - Abstract: A key issue, in order to be able to cope with deliberate or accidental atmospheric releases of hazardous substances, is the ability to reliably predict the individual exposure downstream the source. In many situations, the release time and/or the health relevant exposure time is short compared to mean concentration time scales. In such a case, a significant scatter of exposure levels is expected due to the stochastic nature of turbulence. The problem becomes even more complex when dispersion occurs over urban environments. The present work is the first attempt to approximate on generic terms, the statistical behavior of the abovementioned variability with a beta distribution probability density function (beta-pdf) which has proved to be quite successful. The important issue of the extreme concentration value in beta-pdf seems to be properly addressed by the [5] correlation in which global values of its associated constants are proposed. Two substantially different datasets, the wind tunnel Michelstadt experiment and the field Mock Urban Setting Trial (MUST) experiment gave clear support to the proposed novel theory and its hypotheses. In addition, the present work can be considered as basis for further investigation and model refinements.

  14. Tornado hazard model with the variation effects of tornado intensity along the path length

    International Nuclear Information System (INIS)

    Hirakuchi, Hiromaru; Nohara, Daisuke; Sugimoto, Soichiro; Eguchi, Yuzuru; Hattori, Yasuo

    2015-01-01

    Most of Japanese tornados have been reported near the coast line, where all of Japanese nuclear power plants are located. It is necessary for Japanese electric power companies to assess tornado risks on the plants according to a new regulation in 2013. The new regulatory guide exemplifies a tornado hazard model, which cannot consider the variation of tornado intensity along the path length and consequently produces conservative risk estimates. The guide also recommends the long narrow strip area along the coast line with the width of 5-10 km as a region of interest, although the model tends to estimate inadequate wind speeds due to the limit of application. The purpose of this study is to propose a new tornado hazard model which can be apply to the long narrow strip area. The new model can also consider the variation of tornado intensity along the path length and across the path width. (author)

  15. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  16. A Mathematical Model for the Industrial Hazardous Waste Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Omid Boyer

    2013-01-01

    Full Text Available Technology progress is a cause of industrial hazardous wastes increasing in the whole world . Management of hazardous waste is a significant issue due to the imposed risk on environment and human life. This risk can be a result of location of undesirable facilities and also routing hazardous waste. In this paper a biobjective mixed integer programing model for location-routing industrial hazardous waste with two objectives is developed. First objective is total cost minimization including transportation cost, operation cost, initial investment cost, and cost saving from selling recycled waste. Second objective is minimization of transportation risk. Risk of population exposure within bandwidth along route is used to measure transportation risk. This model can help decision makers to locate treatment, recycling, and disposal centers simultaneously and also to route waste between these facilities considering risk and cost criteria. The results of the solved problem prove conflict between two objectives. Hence, it is possible to decrease the cost value by marginally increasing the transportation risk value and vice versa. A weighted sum method is utilized to combine two objectives function into one objective function. To solve the problem GAMS software with CPLEX solver is used. The problem is applied in Markazi province in Iran.

  17. Time-aggregation effects on the baseline of continuous-time and discrete-time hazard models

    NARCIS (Netherlands)

    ter Hofstede, F.; Wedel, M.

    In this study we reinvestigate the effect of time-aggregation for discrete- and continuous-time hazard models. We reanalyze the results of a previous Monte Carlo study by ter Hofstede and Wedel (1998), in which the effects of time-aggregation on the parameter estimates of hazard models were

  18. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    OpenAIRE

    Eeuwijk, van, F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model. Genotype by environment interaction is then taken to be equivalent to non-additivity. This thesis criticizes the analysis of variance approach. Modelling genotype by environment interaction by non-addit...

  19. An Uncertain Wage Contract Model with Adverse Selection and Moral Hazard

    Directory of Open Access Journals (Sweden)

    Xiulan Wang

    2014-01-01

    it can be characterized as an uncertain variable. Moreover, the employee's effort is unobservable to the employer, and the employee can select her effort level to maximize her utility. Thus, an uncertain wage contract model with adverse selection and moral hazard is established to maximize the employer's expected profit. And the model analysis mainly focuses on the equivalent form of the proposed wage contract model and the optimal solution to this form. The optimal solution indicates that both the employee's effort level and the wage increase with the employee's ability. Lastly, a numerical example is given to illustrate the effectiveness of the proposed model.

  20. Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals

    DEFF Research Database (Denmark)

    Li, Jianing; Scheike, Thomas; Zhang, Mei Jie

    2015-01-01

    Recently, Fine and Gray (J Am Stat Assoc 94:496–509, 1999) proposed a semi-parametric proportional regression model for the subdistribution hazard function which has been used extensively for analyzing competing risks data. However, failure of model adequacy could lead to severe bias in parameter...... estimation, and only a limited contribution has been made to check the model assumptions. In this paper, we present a class of analytical methods and graphical approaches for checking the assumptions of Fine and Gray’s model. The proposed goodness-of-fit test procedures are based on the cumulative sums...

  1. Additional Research Needs to Support the GENII Biosphere Models

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arimescu, Carmen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-01

    In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models.

  2. Dynamic modelling of a forward osmosis-nanofiltration integrated process for treating hazardous wastewater.

    Science.gov (United States)

    Pal, Parimal; Das, Pallabi; Chakrabortty, Sankha; Thakura, Ritwik

    2016-11-01

    Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R 2  > 0.98), low relative error (osmosis loop at a reasonably high flux of 56-58 l per square meter per hour.

  3. Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies

    NARCIS (Netherlands)

    van der Net, Jeroen B.; Janssens, A. Cecile J. W.; Eijkemans, Marinus J. C.; Kastelein, John J. P.; Sijbrands, Eric J. G.; Steyerberg, Ewout W.

    2008-01-01

    Cross-sectional genetic association studies can be analyzed using Cox proportional hazards models with age as time scale, if age at onset of disease is known for the cases and age at data collection is known for the controls. We assessed to what degree and under what conditions Cox proportional

  4. Linear non-threshold (LNT) radiation hazards model and its evaluation

    International Nuclear Information System (INIS)

    Min Rui

    2011-01-01

    In order to introduce linear non-threshold (LNT) model used in study on the dose effect of radiation hazards and to evaluate its application, the analysis of comprehensive literatures was made. The results show that LNT model is more suitable to describe the biological effects in accuracy for high dose than that for low dose. Repairable-conditionally repairable model of cell radiation effects can be well taken into account on cell survival curve in the all conditions of high, medium and low absorbed dose range. There are still many uncertainties in assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent, and it is necessary to establish gender-specific voxel human model, taking gender differences into account. From above, the advantages and disadvantages of various models coexist. Before the setting of the new theory and new model, LNT model is still the most scientific attitude. (author)

  5. ''Hazardous'' terminology

    International Nuclear Information System (INIS)

    Powers, J.

    1991-01-01

    A number of terms (e.g., ''hazardous chemicals,'' ''hazardous materials,'' ''hazardous waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that apply, and the regulatory requirements for compliance under the applicable federal statutes. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and references for the precise terminology that should be used when referring to ''hazardous'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-004/0191) addresses ''toxic'' nomenclature

  6. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-02-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  7. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches

    International Nuclear Information System (INIS)

    Berge-Thierry, C.

    2007-05-01

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  8. Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?

    Science.gov (United States)

    Rey, Julien; Beauval, Céline; Douglas, John

    2018-05-01

    Probabilistic seismic hazard assessments are the basis of modern seismic design codes. To test fully a seismic hazard curve at the return periods of interest for engineering would require many thousands of years' worth of ground-motion recordings. Because strong-motion networks are often only a few decades old (e.g. in mainland France the first accelerometric network dates from the mid-1990s), data from such sensors can be used to test hazard estimates only at very short return periods. In this article, several hundreds of years of macroseismic intensity observations for mainland France are interpolated using a robust kriging-with-a-trend technique to establish the earthquake history of every French mainland municipality. At 24 selected cities representative of the French seismic context, the number of exceedances of intensities IV, V and VI is determined over time windows considered complete. After converting these intensities to peak ground accelerations using the global conversion equation of Caprio et al. (Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency, Bulletin of the Seismological Society of America 105:1476-1490, 2015), these exceedances are compared with those predicted by the European Seismic Hazard Model 2013 (ESHM13). In half of the cities, the number of observed exceedances for low intensities (IV and V) is within the range of predictions of ESHM13. In the other half of the cities, the number of observed exceedances is higher than the predictions of ESHM13. For intensity VI, the match is closer, but the comparison is less meaningful due to a scarcity of data. According to this study, the ESHM13 underestimates hazard in roughly half of France, even when taking into account the uncertainty in the conversion from intensity to acceleration. However, these results are valid only for the acceleration range tested in this study (0.01 to 0.09 g).

  9. Modeling hazardous mass flows Geoflows09: Mathematical and computational aspects of modeling hazardous geophysical mass flows; Seattle, Washington, 9–11 March 2009

    Science.gov (United States)

    Iverson, Richard M.; LeVeque, Randall J.

    2009-01-01

    A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.

  10. Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling

    Directory of Open Access Journals (Sweden)

    G. Delmonaco

    2003-01-01

    Full Text Available A deterministic distributed model has been developed for large-scale debris-flow hazard analysis in the basin of River Vezza (Tuscany Region – Italy. This area (51.6 km 2 was affected by over 250 landslides. These were classified as debris/earth flow mainly involving the metamorphic geological formations outcropping in the area, triggered by the pluviometric event of 19 June 1996. In the last decades landslide hazard and risk analysis have been favoured by the development of GIS techniques permitting the generalisation, synthesis and modelling of stability conditions on a large scale investigation (>1:10 000. In this work, the main results derived by the application of a geotechnical model coupled with a hydrological model for the assessment of debris flows hazard analysis, are reported. This analysis has been developed starting by the following steps: landslide inventory map derived by aerial photo interpretation, direct field survey, generation of a database and digital maps, elaboration of a DTM and derived themes (i.e. slope angle map, definition of a superficial soil thickness map, geotechnical soil characterisation through implementation of a backanalysis on test slopes, laboratory test analysis, inference of the influence of precipitation, for distinct return times, on ponding time and pore pressure generation, implementation of a slope stability model (infinite slope model and generalisation of the safety factor for estimated rainfall events with different return times. Such an approach has allowed the identification of potential source areas of debris flow triggering. This is used to detected precipitation events with estimated return time of 10, 50, 75 and 100 years. The model shows a dramatic decrease of safety conditions for the simulation when is related to a 75 years return time rainfall event. It corresponds to an estimated cumulated daily intensity of 280–330 mm. This value can be considered the hydrological triggering

  11. Generalized bi-additive modelling for categorical data

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); A.J. Koning (Alex)

    2004-01-01

    textabstractGeneralized linear modelling (GLM) is a versatile technique, which may be viewed as a generalization of well-known techniques such as least squares regression, analysis of variance, loglinear modelling, and logistic regression. In may applications, low-order interaction (such as

  12. A novel concurrent pictorial choice model of mood-induced relapse in hazardous drinkers.

    Science.gov (United States)

    Hardy, Lorna; Hogarth, Lee

    2017-12-01

    This study tested whether a novel concurrent pictorial choice procedure, inspired by animal self-administration models, is sensitive to the motivational effect of negative mood induction on alcohol-seeking in hazardous drinkers. Forty-eight hazardous drinkers (scoring ≥7 on the Alcohol Use Disorders Inventory) recruited from the community completed measures of alcohol dependence, depression, and drinking coping motives. Baseline alcohol-seeking was measured by percent choice to enlarge alcohol- versus food-related thumbnail images in two alternative forced-choice trials. Negative and positive mood was then induced in succession by means of self-referential affective statements and music, and percent alcohol choice was measured after each induction in the same way as baseline. Baseline alcohol choice correlated with alcohol dependence severity, r = .42, p = .003, drinking coping motives (in two questionnaires, r = .33, p = .02 and r = .46, p = .001), and depression symptoms, r = .31, p = .03. Alcohol choice was increased by negative mood over baseline (p choice was not related to gender, alcohol dependence, drinking to cope, or depression symptoms (ps ≥ .37). The concurrent pictorial choice measure is a sensitive index of the relative value of alcohol, and provides an accessible experimental model to study negative mood-induced relapse mechanisms in hazardous drinkers. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Stochastic modeling of a hazard detection and avoidance maneuver—The planetary landing case

    International Nuclear Information System (INIS)

    Witte, Lars

    2013-01-01

    Hazard Detection and Avoidance (HDA) functionalities, thus the ability to recognize and avoid potential hazardous terrain features, is regarded as an enabling technology for upcoming robotic planetary landing missions. In the forefront of any landing mission the landing site safety assessment is an important task in the systems and mission engineering process. To contribute to this task, this paper presents a mathematical framework to consider the HDA strategy and system constraints in this mission engineering aspect. Therefore the HDA maneuver is modeled as a stochastic decision process based on Markov chains to map an initial dispersion at an arrival gate to a new dispersion pattern affected by the divert decision-making and system constraints. The implications for an efficient numerical implementation are addressed. An example case study is given to demonstrate the implementation and use of the proposed scheme

  14. Recent developments in health risks modeling techniques applied to hazardous waste site assessment and remediation

    International Nuclear Information System (INIS)

    Mendez, W.M. Jr.

    1990-01-01

    Remediation of hazardous an mixed waste sites is often driven by assessments of human health risks posed by the exposures to hazardous substances released from these sites. The methods used to assess potential health risk involve, either implicitly or explicitly, models for pollutant releases, transport, human exposure and intake, and for characterizing health effects. Because knowledge about pollutant fate transport processes at most waste sites is quite limited, and data cost are quite high, most of the models currently used to assess risk, and endorsed by regulatory agencies, are quite simple. The models employ many simplifying assumptions about pollutant fate and distribution in the environment about human pollutant intake, and toxicologic responses to pollutant exposures. An important consequence of data scarcity and model simplification is that risk estimates are quite uncertain and estimates of the magnitude uncertainty associated with risk assessment has been very difficult. A number of methods have been developed to address the issue of uncertainty in risk assessments in a manner that realistically reflects uncertainty in model specification and data limitations. These methods include definition of multiple exposure scenarios, sensitivity analyses, and explicit probabilistic modeling of uncertainty. Recent developments in this area will be discussed, along with their possible impacts on remediation programs, and remaining obstacles to their wider use and acceptance by the scientific and regulatory communities

  15. Multiple Imputation of Predictor Variables Using Generalized Additive Models

    NARCIS (Netherlands)

    de Jong, Roel; van Buuren, Stef; Spiess, Martin

    2016-01-01

    The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The

  16. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  17. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  18. Primary circuit iodine model addition to IMPAIR-3

    Energy Technology Data Exchange (ETDEWEB)

    Osetek, D J; Louie, D L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S; Cripps, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.

  19. Mathematical Decision Models Applied for Qualifying and Planning Areas Considering Natural Hazards and Human Dealing

    Science.gov (United States)

    Anton, Jose M.; Grau, Juan B.; Tarquis, Ana M.; Sanchez, Elena; Andina, Diego

    2014-05-01

    The authors were involved in the use of some Mathematical Decision Models, MDM, to improve knowledge and planning about some large natural or administrative areas for which natural soils, climate, and agro and forest uses where main factors, but human resources and results were important, natural hazards being relevant. In one line they have contributed about qualification of lands of the Community of Madrid, CM, administrative area in centre of Spain containing at North a band of mountains, in centre part of Iberian plateau and river terraces, and also Madrid metropolis, from an official study of UPM for CM qualifying lands using a FAO model from requiring minimums of a whole set of Soil Science criteria. The authors set first from these criteria a complementary additive qualification, and tried later an intermediate qualification from both using fuzzy logic. The authors were also involved, together with colleagues from Argentina et al. that are in relation with local planners, for the consideration of regions and of election of management entities for them. At these general levels they have adopted multi-criteria MDM, used a weighted PROMETHEE, and also an ELECTRE-I with the same elicited weights for the criteria and data, and at side AHP using Expert Choice from parallel comparisons among similar criteria structured in two levels. The alternatives depend on the case study, and these areas with monsoon climates have natural hazards that are decisive for their election and qualification with an initial matrix used for ELECTRE and PROMETHEE. For the natural area of Arroyos Menores at South of Rio Cuarto town, with at North the subarea of La Colacha, the loess lands are rich but suffer now from water erosions forming regressive ditches that are spoiling them, and use of soils alternatives must consider Soil Conservation and Hydraulic Management actions. The use of soils may be in diverse non compatible ways, as autochthonous forest, high value forest, traditional

  20. Newton's constant from a minimal length: additional models

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2011-01-01

    We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.

  1. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    Science.gov (United States)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  2. Moment based model predictive control for systems with additive uncertainty

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Weiland, S.; Ludlage, J.H.A.

    2017-01-01

    In this paper, we present a model predictive control (MPC) strategy based on the moments of the state variables and the cost functional. The statistical properties of the state predictions are calculated through the open loop iteration of dynamics and used in the formulation of MPC cost function. We

  3. A transparent and data-driven global tectonic regionalization model for seismic hazard assessment

    Science.gov (United States)

    Chen, Yen-Shin; Weatherill, Graeme; Pagani, Marco; Cotton, Fabrice

    2018-05-01

    A key concept that is common to many assumptions inherent within seismic hazard assessment is that of tectonic similarity. This recognizes that certain regions of the globe may display similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous attempts at tectonic regionalization, particularly within a seismic hazard assessment context, have often been based on expert judgements; in most of these cases, the process for delineating tectonic regions is neither reproducible nor consistent from location to location. In this work, the regionalization process is implemented in a scheme that is reproducible, comprehensible from a geophysical rationale, and revisable when new relevant data are published. A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification of concepts that are approximate rather than precise. Using the proposed methodology, we obtain a transparent and data-driven global tectonic regionalization model for seismic hazard applications as well as the subjective probabilities (e.g. degree of being active/degree of being cratonic) that indicate the degree to which a site belongs in a tectonic category.

  4. Technical Work Plan for: Additional Multiscale Thermohydrologic Modeling

    International Nuclear Information System (INIS)

    B. Kirstein

    2006-01-01

    The primary objective of Revision 04 of the MSTHM report is to provide TSPA with revised repository-wide MSTHM analyses that incorporate updated percolation flux distributions, revised hydrologic properties, updated IEDs, and information pertaining to the emplacement of transport, aging, and disposal (TAD) canisters. The updated design information is primarily related to the incorporation of TAD canisters, but also includes updates related to superseded IEDs describing emplacement drift cross-sectional geometry and layout. The intended use of the results of Revision 04 of the MSTHM report, as described in this TWP, is to predict the evolution of TH conditions (temperature, relative humidity, liquid-phase saturation, and liquid-phase flux) at specified locations within emplacement drifts and in the adjoining near-field host rock along all emplacement drifts throughout the repository. This information directly supports the TSPA for the nominal and seismic scenarios. The revised repository-wide analyses are required to incorporate updated parameters and design information and to extend those analyses out to 1,000,000 years. Note that the previous MSTHM analyses reported in Revision 03 of Multiscale Thermohydrologic Model (BSC 2005 [DIRS 173944]) only extend out to 20,000 years. The updated parameters are the percolation flux distributions, including incorporation of post-10,000-year distributions, and updated calibrated hydrologic property values for the host-rock units. The applied calibrated hydrologic properties will be an updated version of those available in Calibrated Properties Model (BSC 2004 [DIRS 169857]). These updated properties will be documented in an Appendix of Revision 03 of UZ Flow Models and Submodels (BSC 2004 [DIRS 169861]). The updated calibrated properties are applied because they represent the latest available information. The reasonableness of applying the updated calibrated' properties to the prediction of near-fieldin-drift TH conditions

  5. Additive gamma frailty models with applications to competing risks in related individuals

    DEFF Research Database (Denmark)

    Eriksson, Frank; Scheike, Thomas

    2015-01-01

    Epidemiological studies of related individuals are often complicated by the fact that follow-up on the event type of interest is incomplete due to the occurrence of other events. We suggest a class of frailty models with cause-specific hazards for correlated competing events in related individual...

  6. Using remotely sensed data and stochastic models to simulate realistic flood hazard footprints across the continental US

    Science.gov (United States)

    Bates, P. D.; Quinn, N.; Sampson, C. C.; Smith, A.; Wing, O.; Neal, J. C.

    2017-12-01

    Remotely sensed data has transformed the field of large scale hydraulic modelling. New digital elevation, hydrography and river width data has allowed such models to be created for the first time, and remotely sensed observations of water height, slope and water extent has allowed them to be calibrated and tested. As a result, we are now able to conduct flood risk analyses at national, continental or even global scales. However, continental scale analyses have significant additional complexity compared to typical flood risk modelling approaches. Traditional flood risk assessment uses frequency curves to define the magnitude of extreme flows at gauging stations. The flow values for given design events, such as the 1 in 100 year return period flow, are then used to drive hydraulic models in order to produce maps of flood hazard. Such an approach works well for single gauge locations and local models because over relatively short river reaches (say 10-60km) one can assume that the return period of an event does not vary. At regional to national scales and across multiple river catchments this assumption breaks down, and for a given flood event the return period will be different at different gauging stations, a pattern known as the event `footprint'. Despite this, many national scale risk analyses still use `constant in space' return period hazard layers (e.g. the FEMA Special Flood Hazard Areas) in their calculations. Such an approach can estimate potential exposure, but will over-estimate risk and cannot determine likely flood losses over a whole region or country. We address this problem by using a stochastic model to simulate many realistic extreme event footprints based on observed gauged flows and the statistics of gauge to gauge correlations. We take the entire USGS gauge data catalogue for sites with > 45 years of record and use a conditional approach for multivariate extreme values to generate sets of flood events with realistic return period variation in

  7. Thermal modelling of extrusion based additive manufacturing of composite materials

    DEFF Research Database (Denmark)

    Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri

    One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... layer by layer, mould and customised tooling requirements from the conventional manufacturing are reduced or removed, which leads to increased customisation options and enables new part complexities without increasing the manufacturing cost. AM hence enables customised small volume productions...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing...

  8. Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro.

    Directory of Open Access Journals (Sweden)

    Niels Hadrup

    Full Text Available Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA, independent action (IA and generalized concentration addition (GCA models. First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels. Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects. This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed. Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects. A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot

  9. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    Science.gov (United States)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  10. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  11. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community

  12. Tsunami Hazard Preventing Based Land Use Planning Model Using GIS Techniques in Muang Krabi, Thailand

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2012-10-01

    Full Text Available The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region.

  13. Tsunami hazard preventing based land use planing model using GIS technique in Muang Krabi, Thailand

    International Nuclear Information System (INIS)

    Soormo, A.S.

    2012-01-01

    The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems) based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region. (author)

  14. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  15. Modeling of Cementitious Representative Volume Element with Additives

    Science.gov (United States)

    Shahzamanian, M. M.; Basirun, W. J.

    CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200μm at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.

  16. CalTOX, a multimedia total exposure model for hazardous-waste sites

    International Nuclear Information System (INIS)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population

  17. Validation of individual and aggregate global flood hazard models for two major floods in Africa.

    Science.gov (United States)

    Trigg, M.; Bernhofen, M.; Whyman, C.

    2017-12-01

    A recent intercomparison of global flood hazard models undertaken by the Global Flood Partnership shows that there is an urgent requirement to undertake more validation of the models against flood observations. As part of the intercomparison, the aggregated model dataset resulting from the project was provided as open access data. We compare the individual and aggregated flood extent output from the six global models and test these against two major floods in the African Continent within the last decade, namely severe flooding on the Niger River in Nigeria in 2012, and on the Zambezi River in Mozambique in 2007. We test if aggregating different number and combination of models increases model fit to the observations compared with the individual model outputs. We present results that illustrate some of the challenges of comparing imperfect models with imperfect observations and also that of defining the probability of a real event in order to test standard model output probabilities. Finally, we propose a collective set of open access validation flood events, with associated observational data and descriptions that provide a standard set of tests across different climates and hydraulic conditions.

  18. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM

    Directory of Open Access Journals (Sweden)

    Oprisiu Ioana

    2013-01-01

    Full Text Available Abstract The Online Chemical Modeling Environment (OCHEM, http://ochem.eu is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties. The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope and quantitative endpoints (density and bubble points using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.

  19. A "mental models" approach to the communication of subsurface hydrology and hazards

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain S.; Pahl, Sabine; Stokes, Alison

    2016-05-01

    Communicating information about geological and hydrological hazards relies on appropriately worded communications targeted at the needs of the audience. But what are these needs, and how does the geoscientist discern them? This paper adopts a psychological "mental models" approach to assess the public perception of the geological subsurface, presenting the results of attitudinal studies and surveys in three communities in the south-west of England. The findings reveal important preconceptions and misconceptions regarding the impact of hydrological systems and hazards on the geological subsurface, notably in terms of the persistent conceptualisation of underground rivers and the inferred relations between flooding and human activity. The study demonstrates how such mental models can provide geoscientists with empirical, detailed and generalised data of perceptions surrounding an issue, as well reveal unexpected outliers in perception that they may not have considered relevant, but which nevertheless may locally influence communication. Using this approach, geoscientists can develop information messages that more directly engage local concerns and create open engagement pathways based on dialogue, which in turn allow both geoscience "experts" and local "non-experts" to come together and understand each other more effectively.

  20. Household hazardous waste disposal to landfill: Using LandSim to model leachate migration

    International Nuclear Information System (INIS)

    Slack, Rebecca J.; Gronow, Jan R.; Hall, David H.; Voulvoulis, Nikolaos

    2007-01-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. - Aquatic pollutants linked to the disposal of household hazardous waste in municipal landfills have the potential to exist in soil and groundwater for many years

  1. Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation

    Science.gov (United States)

    Carreau, J.; Naveau, P.; Neppel, L.

    2017-05-01

    The French Mediterranean is subject to intense precipitation events occurring mostly in autumn. These can potentially cause flash floods, the main natural danger in the area. The distribution of these events follows specific spatial patterns, i.e., some sites are more likely to be affected than others. The peaks-over-threshold approach consists in modeling extremes, such as heavy precipitation, by the generalized Pareto (GP) distribution. The shape parameter of the GP controls the probability of extreme events and can be related to the hazard level of a given site. When interpolating across a region, the shape parameter should reproduce the observed spatial patterns of the probability of heavy precipitation. However, the shape parameter estimators have high uncertainty which might hide the underlying spatial variability. As a compromise, we choose to let the shape parameter vary in a moderate fashion. More precisely, we assume that the region of interest can be partitioned into subregions with constant hazard level. We formalize the model as a conditional mixture of GP distributions. We develop a two-step inference strategy based on probability weighted moments and put forward a cross-validation procedure to select the number of subregions. A synthetic data study reveals that the inference strategy is consistent and not very sensitive to the selected number of subregions. An application on daily precipitation data from the French Mediterranean shows that the conditional mixture of GPs outperforms two interpolation approaches (with constant or smoothly varying shape parameter).

  2. Comparison of additive (absolute) risk projection models and multiplicative (relative) risk projection models in estimating radiation-induced lifetime cancer risk

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kusama, Tomoko

    1990-01-01

    Lifetime cancer risk estimates depend on risk projection models. While the increasing lengths of follow-up observation periods of atomic bomb survivors in Hiroshima and Nagasaki bring about changes in cancer risk estimates, the validity of the two risk projection models, the additive risk projection model (AR) and multiplicative risk projection model (MR), comes into question. This paper compares the lifetime risk or loss of life-expectancy between the two projection models on the basis of BEIR-III report or recently published RERF report. With Japanese cancer statistics the estimates of MR were greater than those of AR, but a reversal of these results was seen when the cancer hazard function for India was used. When we investigated the validity of the two projection models using epidemiological human data and animal data, the results suggested that MR was superior to AR with respect to temporal change, but there was little evidence to support its validity. (author)

  3. ADVANCES IN RENEWAL DECISION-MAKING UTILISING THE PROPORTIONAL HAZARDS MODEL WITH VIBRATION COVARIATES

    Directory of Open Access Journals (Sweden)

    Pieter-Jan Vlok

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Increased competitiveness in the production world necessitates improved maintenance strategies to increase availabilities and drive down cost . The maintenance engineer is thus faced with the need to make more intelligent pre ventive renewal decisions . Two of the main techniques to achieve this is through Condition Monitoring (such as vibrat ion monitoring and oil anal ysis and Statistical Failure Analysis (typically using probabilistic techniques . The present paper discusses these techniques, their uses and weaknesses and then presents th e Proportional Hazard Model as an solution to most of these weaknesses. It then goes on to compare the results of the different techniques in monetary terms, using a South African case study. This comparison shows clearly that the Proportional Hazards Model is sup erior to the present t echniques and should be the preferred model for many actual maintenance situations.

    AFRIKAANSE OPSOMMING: Verhoogde vlakke van mededinging in die produksie omgewing noodsaak verbeterde instandhouding strategies om beskikbaarheid van toerusting te verhoog en koste te minimeer. Instandhoudingsingenieurs moet gevolglik meer intellegente voorkomende hernuwings besluite neem. Twee prominente tegnieke om hierdie doelwit te bereik is Toestandsmonitering (soos vibrasie monitering of olie analise en Statistiese Falingsanalise (gewoonlik m.b.v. probabilistiese metodes. In hierdie artikel beskou ons beide hierdie tegnieke, hulle gebruike en tekortkominge en stel dan die Proporsionele Gevaarkoers Model voor as 'n oplossing vir meeste van die tekortkominge. Die artikel vergelyk ook die verskillende tegnieke in geldelike terme deur gebruik te maak van 'n Suid-Afrikaanse gevalle studie. Hierdie vergelyking wys duidelik-uit dat die Proporsionele Gevaarkoers Model groter beloft e inhou as die huidige tegni eke en dat dit die voorkeur oplossing behoort te wees in baie werklike instandhoudings situasies.

  4. Socio-economic vulnerability to natural hazards - proposal for an indicator-based model

    Science.gov (United States)

    Eidsvig, U.; McLean, A.; Vangelsten, B. V.; Kalsnes, B.; Ciurean, R. L.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O. C.; Fotopoulou, S.; Pitilakis, K.; Baills, A.; Malet, J. P.

    2012-04-01

    Vulnerability assessment, with respect to natural hazards, is a complex process that must consider multiple dimensions of vulnerability, including both physical and social factors. Physical vulnerability refers to conditions of physical assets, and may be modeled by the intensity and magnitude of the hazard, the degree of physical protection provided by the natural and built environment, and the physical robustness of the exposed elements. Social vulnerability refers to the underlying factors leading to the inability of people, organizations, and societies to withstand impacts from the natural hazards. Social vulnerability models can be used in combination with physical vulnerability models to estimate both direct losses, i.e. losses that occur during and immediately after the impact, as well as indirect losses, i.e. long-term effects of the event. Direct impact of a landslide typically includes casualties and damages to buildings and infrastructure while indirect losses may e.g. include business closures or limitations in public services. The direct losses are often assessed using physical vulnerability indicators (e.g. construction material, height of buildings), while indirect losses are mainly assessed using social indicators (e.g. economical resources, demographic conditions). Within the EC-FP7 SafeLand research project, an indicator-based method was proposed to assess relative socio-economic vulnerability to landslides. The indicators represent the underlying factors which influence a community's ability to prepare for, deal with, and recover from the damage associated with landslides. The proposed model includes indicators representing demographic, economic and social characteristics as well as indicators representing the degree of preparedness and recovery capacity. Although the model focuses primarily on the indirect losses, it could easily be extended to include more physical indicators which account for the direct losses. Each indicator is individually

  5. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  6. Model-free approach to the estimation of radiation hazards. I. Theory

    International Nuclear Information System (INIS)

    Zaider, M.; Brenner, D.J.

    1986-01-01

    The experience of the Japanese atomic bomb survivors constitutes to date the major data base for evaluating the effects of low doses of ionizing radiation on human populations. Although numerous analyses have been performed and published concerning this experience, it is clear that no consensus has emerged as to the conclusions that may be drawn to assist in setting realistic radiation protection guidelines. In part this is an inherent consequences of the rather limited amount of data available. In this paper the authors address an equally important problem; namely, the use of arbitrary parametric risk models which have little theoretical foundation, yet almost totally determine the final conclusions drawn. They propose the use of a model-free approach to the estimation of radiation hazards

  7. FLOOD HAZARD MAP IN THE CITY OF BATNA (ALGERIA BY HYDRAULIC MODELING APPROCH

    Directory of Open Access Journals (Sweden)

    Guellouh SAMI

    2016-06-01

    Full Text Available In the light of the global climatic changes that appear to influence the frequency and the intensity of floods, and whose damages are still growing; understanding the hydrological processes, their spatiotemporal setting and their extreme shape, became a paramount concern to local communities in forecasting terms. The aim of this study is to map the floods hazard using a hydraulic modeling method. In fact, using the operating Geographic Information System (GIS, would allow us to perform a more detailed spatial analysis about the extent of the flooding risk, through the approval of the hydraulic modeling programs in different frequencies. Based on the results of this analysis, decision makers can implement a strategy of risk management related to rivers overflowing through the city of Batna.

  8. Proportional hazards model with varying coefficients for length-biased data.

    Science.gov (United States)

    Zhang, Feipeng; Chen, Xuerong; Zhou, Yong

    2014-01-01

    Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.

  9. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    Science.gov (United States)

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  10. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  11. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  12. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models.

    Science.gov (United States)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-11-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results

  13. Issues in testing the new national seismic hazard model for Italy

    Science.gov (United States)

    Stein, S.; Peresan, A.; Kossobokov, V. G.; Brooks, E. M.; Spencer, B. D.

    2016-12-01

    It is important to bear in mind that we know little about how earthquake hazard maps actually describe the shaking that will actually occur in the future, and have no agreed way of assessing how well a map performed in the past, and, thus, whether one map performs better than another. Moreover, we should not forget that different maps can be useful for different end users, who may have different cost-and-benefit strategies. Thus, regardless of the specific tests we chose to use, the adopted testing approach should have several key features: We should assess map performance using all the available instrumental, paleo seismology, and historical intensity data. Instrumental data alone span a period much too short to capture the largest earthquakes - and thus strongest shaking - expected from most faults. We should investigate what causes systematic misfit, if any, between the longest record we have - historical intensity data available for the Italian territory from 217 B.C. to 2002 A.D. - and a given hazard map. We should compare how seismic hazard maps developed over time. How do the most recent maps for Italy compare to earlier ones? It is important to understand local divergences that show how the models are developing to the most recent one. The temporal succession of maps is important: we have to learn from previous errors. We should use the many different tests that have been proposed. All are worth trying, because different metrics of performance show different aspects of how a hazard map performs and can be used. We should compare other maps to the ones we are testing. Maps can be made using a wide variety of assumptions, which will lead to different predicted shaking. It is possible that maps derived by other approaches may perform better. Although Italian current codes are based on probabilistic maps, it is important from both a scientific and societal perspective to look at all options including deterministic scenario based ones. Comparing what works

  14. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    Science.gov (United States)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  15. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    International Nuclear Information System (INIS)

    Li, Lu; Huang, Xianjia; Bi, Kun; Liu, Xiaoshuang

    2016-01-01

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  16. An enhanced fire hazard assessment model and validation experiments for vertical cable trays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Sate Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027 (China); Huang, Xianjia, E-mail: huangxianjia@gziit.ac.cn [Joint Laboratory of Fire Safety in Nuclear Power Plants, Institute of Industry Technology Guangzhou & Chinese Academy of Sciences, Guangzhou 511458 (China); Bi, Kun; Liu, Xiaoshuang [China Nuclear Power Design Co., Ltd., Shenzhen 518045 (China)

    2016-05-15

    Highlights: • An enhanced model was developed for vertical cable fire hazard assessment in NPP. • The validated experiments on vertical cable tray fires were conducted. • The capability of the model for cable tray with different cable spacing were tested. - Abstract: The model, referred to as FLASH-CAT (Flame Spread over Horizontal Cable Trays), was developed to estimate the heat release rate for vertical cable tray fire. The focus of this work is to investigate the application of an enhanced model to the single vertical cable tray fires with different cable spacing. The experiments on vertical cable tray fires with three typical cable spacing were conducted. The histories of mass loss rate and flame length were recorded during the cable fire. From the experimental results, it is found that the space between cable lines intensifies the cable combustion and accelerates the flame spread. The predictions by the enhanced model show good agreements with the experimental data. At the same time, it is shown that the enhanced model is capable of predicting the different behaviors of cable fires with different cable spacing by adjusting the flame spread speed only.

  17. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models.

    Science.gov (United States)

    Gelfand, Lois A; MacKinnon, David P; DeRubeis, Robert J; Baraldi, Amanda N

    2016-01-01

    Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome-underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  18. Integrating statistical and process-based models to produce probabilistic landslide hazard at regional scale

    Science.gov (United States)

    Strauch, R. L.; Istanbulluoglu, E.

    2017-12-01

    We develop a landslide hazard modeling approach that integrates a data-driven statistical model and a probabilistic process-based shallow landslide model for mapping probability of landslide initiation, transport, and deposition at regional scales. The empirical model integrates the influence of seven site attribute (SA) classes: elevation, slope, curvature, aspect, land use-land cover, lithology, and topographic wetness index, on over 1,600 observed landslides using a frequency ratio (FR) approach. A susceptibility index is calculated by adding FRs for each SA on a grid-cell basis. Using landslide observations we relate susceptibility index to an empirically-derived probability of landslide impact. This probability is combined with results from a physically-based model to produce an integrated probabilistic map. Slope was key in landslide initiation while deposition was linked to lithology and elevation. Vegetation transition from forest to alpine vegetation and barren land cover with lower root cohesion leads to higher frequency of initiation. Aspect effects are likely linked to differences in root cohesion and moisture controlled by solar insulation and snow. We demonstrate the model in the North Cascades of Washington, USA and identify locations of high and low probability of landslide impacts that can be used by land managers in their design, planning, and maintenance.

  19. Modeling fault rupture hazard for the proposed repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1992-01-01

    In this paper as part of the Electric Power Research Institute's High Level Waste program, the authors have developed a preliminary probabilistic model for assessing the hazard of fault rupture to the proposed high level waste repository at Yucca Mountain. The model is composed of two parts: the earthquake occurrence model that describes the three-dimensional geometry of earthquake sources and the earthquake recurrence characteristics for all sources in the site vicinity; and the rupture model that describes the probability of coseismic fault rupture of various lengths and amounts of displacement within the repository horizon 350 m below the surface. The latter uses empirical data from normal-faulting earthquakes to relate the rupture dimensions and fault displacement amounts to the magnitude of the earthquake. using a simulation procedure, we allow for earthquake occurrence on all of the earthquake sources in the site vicinity, model the location and displacement due to primary faults, and model the occurrence of secondary faulting in conjunction with primary faulting

  20. Trimming a hazard logic tree with a new model-order-reduction technique

    Science.gov (United States)

    Porter, Keith; Field, Edward; Milner, Kevin R

    2017-01-01

    The size of the logic tree within the Uniform California Earthquake Rupture Forecast Version 3, Time-Dependent (UCERF3-TD) model can challenge risk analyses of large portfolios. An insurer or catastrophe risk modeler concerned with losses to a California portfolio might have to evaluate a portfolio 57,600 times to estimate risk in light of the hazard possibility space. Which branches of the logic tree matter most, and which can one ignore? We employed two model-order-reduction techniques to simplify the model. We sought a subset of parameters that must vary, and the specific fixed values for the remaining parameters, to produce approximately the same loss distribution as the original model. The techniques are (1) a tornado-diagram approach we employed previously for UCERF2, and (2) an apparently novel probabilistic sensitivity approach that seems better suited to functions of nominal random variables. The new approach produces a reduced-order model with only 60 of the original 57,600 leaves. One can use the results to reduce computational effort in loss analyses by orders of magnitude.

  1. Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach

    Science.gov (United States)

    Tsai, Bi-Huei; Chang, Chih-Huei

    2009-08-01

    Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.

  2. The comparison of proportional hazards and accelerated failure time models in analyzing the first birth interval survival data

    Science.gov (United States)

    Faruk, Alfensi

    2018-03-01

    Survival analysis is a branch of statistics, which is focussed on the analysis of time- to-event data. In multivariate survival analysis, the proportional hazards (PH) is the most popular model in order to analyze the effects of several covariates on the survival time. However, the assumption of constant hazards in PH model is not always satisfied by the data. The violation of the PH assumption leads to the misinterpretation of the estimation results and decreasing the power of the related statistical tests. On the other hand, the accelerated failure time (AFT) models do not assume the constant hazards in the survival data as in PH model. The AFT models, moreover, can be used as the alternative to PH model if the constant hazards assumption is violated. The objective of this research was to compare the performance of PH model and the AFT models in analyzing the significant factors affecting the first birth interval (FBI) data in Indonesia. In this work, the discussion was limited to three AFT models which were based on Weibull, exponential, and log-normal distribution. The analysis by using graphical approach and a statistical test showed that the non-proportional hazards exist in the FBI data set. Based on the Akaike information criterion (AIC), the log-normal AFT model was the most appropriate model among the other considered models. Results of the best fitted model (log-normal AFT model) showed that the covariates such as women’s educational level, husband’s educational level, contraceptive knowledge, access to mass media, wealth index, and employment status were among factors affecting the FBI in Indonesia.

  3. The Hazard Analysis and Critical Control Points (HACCP) generic model for the production of Thai fermented pork sausage (Nham).

    Science.gov (United States)

    Paukatong, K V; Kunawasen, S

    2001-01-01

    Nham is a traditional Thai fermented pork sausage. The major ingredients of Nham are ground pork meat and shredded pork rind. Nham has been reported to be contaminated with Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Therefore, it is a potential cause of foodborne diseases for consumers. A Hazard Analysis and Critical Control Points (HACCP) generic model has been developed for the Nham process. Nham processing plants were observed and a generic flow diagram of Nham processes was constructed. Hazard analysis was then conducted. Other than microbial hazards, the pathogens previously found in Nham, sodium nitrite and metal were identified as chemical and physical hazards in this product, respectively. Four steps in the Nham process have been identified as critical control points. These steps are the weighing of the nitrite compound, stuffing, fermentation, and labeling. The chemical hazard of nitrite must be controlled during the weighing step. The critical limit of nitrite levels in the Nham mixture has been set at 100-200 ppm. This level is high enough to control Clostridium botulinum but does not cause chemical hazards to the consumer. The physical hazard from metal clips could be prevented by visual inspection of every Nham product during stuffing. The microbiological hazard in Nham could be reduced in the fermentation process. The critical limit of the pH of Nham was set at lower than 4.6. Since this product is not cooked during processing, finally, educating the consumer, by providing information on the label such as "safe if cooked before consumption", could be an alternative way to prevent the microbiological hazards of this product.

  4. Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps

    Science.gov (United States)

    Chen, Lixia; van Westen, Cees J.; Hussin, Haydar; Ciurean, Roxana L.; Turkington, Thea; Chavarro-Rincon, Diana; Shrestha, Dhruba P.

    2016-11-01

    Extreme rainfall events are the main triggering causes for hydro-meteorological hazards in mountainous areas, where development is often constrained by the limited space suitable for construction. In these areas, hazard and risk assessments are fundamental for risk mitigation, especially for preventive planning, risk communication and emergency preparedness. Multi-hazard risk assessment in mountainous areas at local and regional scales remain a major challenge because of lack of data related to past events and causal factors, and the interactions between different types of hazards. The lack of data leads to a high level of uncertainty in the application of quantitative methods for hazard and risk assessment. Therefore, a systematic approach is required to combine these quantitative methods with expert-based assumptions and decisions. In this study, a quantitative multi-hazard risk assessment was carried out in the Fella River valley, prone to debris flows and flood in the north-eastern Italian Alps. The main steps include data collection and development of inventory maps, definition of hazard scenarios, hazard assessment in terms of temporal and spatial probability calculation and intensity modelling, elements-at-risk mapping, estimation of asset values and the number of people, physical vulnerability assessment, the generation of risk curves and annual risk calculation. To compare the risk for each type of hazard, risk curves were generated for debris flows, river floods and flash floods. Uncertainties were expressed as minimum, average and maximum values of temporal and spatial probability, replacement costs of assets, population numbers, and physical vulnerability. These result in minimum, average and maximum risk curves. To validate this approach, a back analysis was conducted using the extreme hydro-meteorological event that occurred in August 2003 in the Fella River valley. The results show a good performance when compared to the historical damage reports.

  5. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  6. River Loire levees hazard studies – CARDigues’ model principles and utilization examples on Blois levees

    Directory of Open Access Journals (Sweden)

    Durand Eduard

    2016-01-01

    Full Text Available Along the river Loire, in order to have a homogenous method to do specific risk assessment studies, a new model named CARDigues (for Levee Breach Hazard Calculation was developed in a partnership with DREAL Centre-Val de Loire (owner of levees, Cerema and Irstea. This model enables to approach the probability of failure on every levee sections and to integrate and cross different “stability” parameters such topography and included structures, geology and material geotechnical characteristics, hydraulic loads… and observations of visual inspections or instrumentation results considered as disorders (seepage, burrowing animals, vegetation, pipes, etc.. This model and integrated tool CARDigues enables to check for each levee section, the probability of appearance and rupture of five breaching scenarios initiated by: overflowing, internal erosion, slope instability, external erosion and uplift. It has been recently updated and has been applied on several levee systems by different contractors. The article presents the CARDigues model principles and its recent developments (version V28.00 with examples on river Loire and how it is currently used for a relevant and global levee system diagnosis and assessment. Levee reinforcement or improvement management is also a perspective of applications for this model CARDigues.

  7. Novel Harmonic Regularization Approach for Variable Selection in Cox’s Proportional Hazards Model

    Directory of Open Access Journals (Sweden)

    Ge-Jin Chu

    2014-01-01

    Full Text Available Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq  (1/2hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL, the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.

  8. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea

    2016-01-01

    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  9. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  10. A set of integrated environmental transport and diffusion models for calculating hazardous releases

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1996-01-01

    A set of numerical transport and dispersion models is incorporated within a graphical interface shell to predict hazardous material released into the environment. The visual shell (EnviroView) consists of an object-oriented knowledge base, which is used for inventory control, site mapping and orientation, and monitoring of materials. Graphical displays of detailed sites, building locations, floor plans, and three-dimensional views within a room are available to the user using a point and click interface. In the event of a release to the environment, the user can choose from a selection of analytical, finite element, finite volume, and boundary element methods, which calculate atmospheric transport, groundwater transport, and dispersion within a building interior. The program runs on 486 personal computers under WINDOWS

  11. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    Science.gov (United States)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two

  12. Validation analysis of probabilistic models of dietary exposure to food additives.

    Science.gov (United States)

    Gilsenan, M B; Thompson, R L; Lambe, J; Gibney, M J

    2003-10-01

    The validity of a range of simple conceptual models designed specifically for the estimation of food additive intakes using probabilistic analysis was assessed. Modelled intake estimates that fell below traditional conservative point estimates of intake and above 'true' additive intakes (calculated from a reference database at brand level) were considered to be in a valid region. Models were developed for 10 food additives by combining food intake data, the probability of an additive being present in a food group and additive concentration data. Food intake and additive concentration data were entered as raw data or as a lognormal distribution, and the probability of an additive being present was entered based on the per cent brands or the per cent eating occasions within a food group that contained an additive. Since the three model components assumed two possible modes of input, the validity of eight (2(3)) model combinations was assessed. All model inputs were derived from the reference database. An iterative approach was employed in which the validity of individual model components was assessed first, followed by validation of full conceptual models. While the distribution of intake estimates from models fell below conservative intakes, which assume that the additive is present at maximum permitted levels (MPLs) in all foods in which it is permitted, intake estimates were not consistently above 'true' intakes. These analyses indicate the need for more complex models for the estimation of food additive intakes using probabilistic analysis. Such models should incorporate information on market share and/or brand loyalty.

  13. Modelling time course gene expression data with finite mixtures of linear additive models.

    Science.gov (United States)

    Grün, Bettina; Scharl, Theresa; Leisch, Friedrich

    2012-01-15

    A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time. The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).

  14. Analysis of risk indicators and issues associated with applications of screening model for hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Buck, J.W.; Strenge, D.L.; Droppo, J.G. Jr.

    1990-12-01

    Risk indicators, such as population risk, maximum individual risk, time of arrival of contamination, and maximum water concentrations, were analyzed to determine their effect on results from a screening model for hazardous and radioactive waste sites. The analysis of risk indicators is based on calculations resulting from exposure to air and waterborne contamination predicted with Multimedia Environmental Pollutant Assessment System (MEPAS) model. The different risk indicators were analyzed, based on constituent type and transport and exposure pathways. Three of the specific comparisons that were made are (1) population-based versus maximum individual-based risk indicators, (2) time of arrival of contamination, and (3) comparison of different threshold assumptions for noncarcinogenic impacts. Comparison of indicators for population- and maximum individual-based human health risk suggests that these two parameters are highly correlated, but for a given problem, one may be more important than the other. The results indicate that the arrival distribution for different levels of contamination reaching a receptor can also be helpful in decisions regarding the use of resources for remediating short- and long-term environmental problems. The addition of information from a linear model for noncarcinogenic impacts allows interpretation of results below the reference dose (RfD) levels that might help in decisions for certain applications. The analysis of risk indicators suggests that important information may be lost by the use of a single indicator to represent public health risk and that multiple indicators should be considered. 15 refs., 8 figs., 1 tab

  15. A comparative analysis of hazard models for predicting debris flows in Madison County, VA

    Science.gov (United States)

    Morrissey, Meghan M.; Wieczorek, Gerald F.; Morgan, Benjamin A.

    2001-01-01

    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a sixteen-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, Virginia. Field studies showed that the majority (70%) of these debris flows initiated with a thickness of 0.5 to 3.0 m in colluvium on slopes from 17 o to 41 o (Wieczorek et al., 2000). This paper evaluated and compared the approaches of SINMAP, LISA, and Iverson's (2000) transient response model for slope stability analysis by applying each model to the landslide data from Madison County. Of these three stability models, only Iverson's transient response model evaluated stability conditions as a function of time and depth. Iverson?s model would be the preferred method of the three models to evaluate landslide hazards on a regional scale in areas prone to rain-induced landslides as it considers both the transient and spatial response of pore pressure in its calculation of slope stability. The stability calculation used in SINMAP and LISA is similar and utilizes probability distribution functions for certain parameters. Unlike SINMAP that only considers soil cohesion, internal friction angle and rainfall-rate distributions, LISA allows the use of distributed data for all parameters, so it is the preferred model to evaluate slope stability over SINMAP. Results from all three models suggested similar soil and hydrologic properties for triggering the landslides that occurred during the 1995 storm in Madison County, Virginia. The colluvium probably had cohesion of less than 2KPa. The root-soil system is above the failure plane and consequently root strength and tree surcharge had negligible effect on slope stability. The result that the final location of the water table was near the ground surface is supported by the water budget analysis of the rainstorm conducted by Smith et al. (1996).

  16. A semiparametric hazard model of activity timing and sequencing decisions during visits to theme parks using experimental design data

    NARCIS (Netherlands)

    Kemperman, A.D.A.M.; Borgers, A.W.J.; Timmermans, H.J.P.

    2002-01-01

    In this study we introduce a semi parametric hazard-based duration model to predict the timing and sequence of theme park visitors' activity choice behavior. The model is estimated on the basis of observations of consumer choices in various hypothetical theme parks. These parks are constructed by

  17. Introducing Meta-models for a More Efficient Hazard Mitigation Strategy with Rockfall Protection Barriers

    Science.gov (United States)

    Toe, David; Mentani, Alessio; Govoni, Laura; Bourrier, Franck; Gottardi, Guido; Lambert, Stéphane

    2018-04-01

    The paper presents a new approach to assess the effecctiveness of rockfall protection barriers, accounting for the wide variety of impact conditions observed on natural sites. This approach makes use of meta-models, considering a widely used rockfall barrier type and was developed from on FE simulation results. Six input parameters relevant to the block impact conditions have been considered. Two meta-models were developed concerning the barrier capability either of stopping the block or in reducing its kinetic energy. The outcome of the parameters range on the meta-model accuracy has been also investigated. The results of the study reveal that the meta-models are effective in reproducing with accuracy the response of the barrier to any impact conditions, providing a formidable tool to support the design of these structures. Furthermore, allowing to accommodate the effects of the impact conditions on the prediction of the block-barrier interaction, the approach can be successfully used in combination with rockfall trajectory simulation tools to improve rockfall quantitative hazard assessment and optimise rockfall mitigation strategies.

  18. Three-dimensional displays for natural hazards analysis, using classified Landsat Thematic Mapper digital data and large-scale digital elevation models

    Science.gov (United States)

    Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.

    1991-01-01

    Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.

  19. Development of a Probabilistic Tornado Wind Hazard Model for the Continental United States Volume I: Main Report

    International Nuclear Information System (INIS)

    Boissonnade, A; Hossain, Q; Kimball, J

    2000-01-01

    Since the mid-l980's, assessment of the wind and tornado risks at the Department of Energy (DOE) high and moderate hazard facilities has been based on the straight wind/tornado hazard curves given in UCRL-53526 (Coats, 1985). These curves were developed using a methodology that utilized a model, developed by McDonald, for severe winds at sub-tornado wind speeds and a separate model, developed by Fujita, for tornado wind speeds. For DOE sites not covered in UCRL-53526, wind and tornado hazard assessments are based on the criteria outlined in DOE-STD-1023-95 (DOE, 1996), utilizing the methodology in UCRL-53526; Subsequent to the publication of UCRL53526, in a study sponsored by the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory developed tornado wind hazard curves for the contiguous United States, NUREG/CR-4461 (Ramsdell, 1986). Because of the different modeling assumptions and underlying data used to develop the tornado wind information, the wind speeds at specified exceedance levels, at a given location, based on the methodology in UCRL-53526, are different than those based on the methodology in NUREG/CR-4461. In 1997, Lawrence Livermore National Laboratory (LLNL) was funded by the DOE to review the current methodologies for characterizing tornado wind hazards and to develop a state-of-the-art wind/tornado characterization methodology based on probabilistic hazard assessment techniques and current historical wind data. This report describes the process of developing the methodology and the database of relevant tornado information needed to implement the methodology. It also presents the tornado wind hazard curves obtained from the application of the method to DOE sites throughout the contiguous United States

  20. 78 FR 12271 - Wireline Competition Bureau Seeks Additional Comment In Connect America Cost Model Virtual Workshop

    Science.gov (United States)

    2013-02-22

    ... Competition Bureau seeks public input on additional questions relating to modeling voice capability and Annual... the model. 4. The Bureau now seeks public input on additional questions relating to modeling voice... with fewer than 25 employees, pursuant to the Small Business Paperwork Relief Act of 2002, Public Law...

  1. [Application of occupational hazard risk index model in occupational health risk assessment in a decorative coating manufacturing enterprises].

    Science.gov (United States)

    He, P L; Zhao, C X; Dong, Q Y; Hao, S B; Xu, P; Zhang, J; Li, J G

    2018-01-20

    Objective: To evaluate the occupational health risk of decorative coating manufacturing enterprises and to explore the applicability of occupational hazard risk index model in the health risk assessment, so as to provide basis for the health management of enterprises. Methods: A decorative coating manufacturing enterprise in Hebei Province was chosen as research object, following the types of occupational hazards and contact patterns, the occupational hazard risk index model was used to evaluate occupational health risk factors of occupational hazards in the key positions of the decorative coating manufacturing enterprise, and measured with workplace test results and occupational health examination. Results: The positions of oily painters, water-borne painters, filling workers and packers who contacted noise were moderate harm. And positions of color workers who contacted chromic acid salts, oily painters who contacted butyl acetate were mild harm. Other positions were harmless. The abnormal rate of contacting noise in physical examination results was 6.25%, and the abnormality was not checked by other risk factors. Conclusion: The occupational hazard risk index model can be used in the occupational health risk assessment of decorative coating manufacturing enterprises, and noise was the key harzard among occupational harzards in this enterprise.

  2. GIS and RS-based modelling of potential natural hazard areas in Pehchevo municipality, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Milevski Ivica

    2013-01-01

    Full Text Available In this paper, one approach of Geographic Information System (GIS and Remote Sensing (RS assessment of potential natural hazard areas (excess erosion, landslides, flash floods and fires is presented. For that purpose Pehchevo Municipality in the easternmost part of the Republic of Macedonia is selected as a case study area because of high local impact of natural hazards on the environment, social-demographic situation and local economy. First of all, most relevant static factors for each type of natural hazard are selected (topography, land cover, anthropogenic objects and infrastructure. With GIS and satellite imagery, multi-layer calculation is performed based on available traditional equations, clustering or discreditation procedures. In such way suitable relatively “static” natural hazard maps (models are produced. Then, dynamic (mostly climate related factors are included in previous models resulting in appropriate scenarios correlated with different amounts of precipitation, temperature, wind direction etc. Finally, GIS based scenarios are evaluated and tested with field check or very fine resolution Google Earth imagery showing good accuracy. Further development of such GIS models in connection with automatic remote meteorological stations and dynamic satellite imagery (like MODIS will provide on-time warning for coming natural hazard avoiding potential damages or even causalities.

  3. An evaluation of three representative multimedia models used to support cleanup decision-making at hazardous, mixed, and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.

    1996-01-01

    The decision process involved in cleaning sites contaminated with hazardous, mixed, and radioactive materials is supported often by results obtained from computer models. These results provide limits within which a decision-maker can judge the importance of individual transport and fate processes, and the likely outcome of alternative cleanup strategies. The transport of hazardous materials may occur predominately through one particular pathway but, more often, actual or potential transport must be evaluated across several pathways and media. Multimedia models are designed to simulate the transport of contaminants from a source to a receptor through more than one environmental pathway. Three such multimedia models are reviewed here: MEPAS, MMSOILS, and PRESTO-EPA-CPG. The reviews are based on documentation provided with the software, on published reviews, on personal interviews with the model developers, and on model summaries extracted from computer databases and expert systems. The three models are reviewed within the context of specific media components: air, surface water, ground water, and food chain. Additional sections evaluate the way that these three models calculate human exposure and dose and how they report uncertainty. Special emphasis is placed on how each model handles radionuclide transport within specific media. For the purpose of simulating the transport, fate and effects of radioactive contaminants through more than one pathway, both MEPAS and PRESTO-EPA-CPG are adequate for screening studies; MMSOILS only handles nonradioactive substances and must be modified before it can be used in these same applications. Of the three models, MEPAS is the most versatile, especially if the user needs to model the transport, fate, and effects of hazardous and radioactive contaminants. 44 refs., 2 tabs

  4. Flood Hazard Mapping using Hydraulic Model and GIS: A Case Study in Mandalay City, Myanmar

    Directory of Open Access Journals (Sweden)

    Kyu Kyu Sein

    2016-01-01

    Full Text Available This paper presents the use of flood frequency analysis integrating with 1D Hydraulic model (HECRAS and Geographic Information System (GIS to prepare flood hazard maps of different return periods in Ayeyarwady River at Mandalay City in Myanmar. Gumbel’s distribution was used to calculate the flood peak of different return periods, namely, 10 years, 20 years, 50 years, and 100 years. The flood peak from frequency analysis were input into HEC-RAS model to find the corresponding flood level and extents in the study area. The model results were used in integrating with ArcGIS to generate flood plain maps. Flood depths and extents have been identified through flood plain maps. Analysis of 100 years return period flood plain map indicated that 157.88 km2 with the percentage of 17.54% is likely to be inundated. The predicted flood depth ranges varies from greater than 0 to 24 m in the flood plains and on the river. The range between 3 to 5 m were identified in the urban area of Chanayetharzan, Patheingyi, and Amarapua Townships. The highest inundated area was 85 km2 in the Amarapura Township.

  5. Identifying model pollutants to investigate biodegradation of hazardous XOCs in WWTPs

    Energy Technology Data Exchange (ETDEWEB)

    Press-Kristensen, Kaare; Ledin, Anna; Schmidt, Jens Ejbye; Henze, Mogens [Department of Environment and Resources, Technical University of Denmark Building 115, 2800 Lyngby (Denmark)

    2007-02-01

    Xenobiotic organic compounds (XOCs) in wastewater treatment plant (WWTP) effluents might cause toxic effects in ecosystems. Several investigations have emphasized biodegradation as an important removal mechanism to reduce pollution with XOCs from WWTP effluents. The aim of the study was to design a screening tool to identify and select hazardous model pollutants for the further investigation of biodegradation in WWTPs. The screening tool consists of three criteria: The XOC is present in WWTP effluents, the XOC constitutes an intolerable risk in drinking water or the environment, and the XOC is expected to be biodegradable in WWTPs. The screening tool was tested on bisphenol A (BPA), carbamazepine (CBZ), di(2ethylhexyl)-phthalate (DEHP), 17{beta}-estradiol (E2), estrone (E1), 17{alpha}-ethinyloetradiol (EE2), ibuprofen, naproxen, nonylphenol (NP), and octylphenol (OP). BPA, DEHP, E2, E1, EE2, and NP passed all criteria in the screening tool and were selected as model pollutants. OP did not pass the filter and was rejected as model pollutant. CBZ, ibuprofen, and naproxen were not finally evaluated due to insufficient data. (author)

  6. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  7. Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems

    Directory of Open Access Journals (Sweden)

    N. Diodato

    2004-01-01

    Full Text Available Damaging hydrogeomorphological events are defined as one or more simultaneous phenomena (e.g. accelerated erosions, landslides, flash floods and river floods, occurring in a spatially and temporal random way and triggered by rainfall with different intensity and extent. The storm rainfall values are highly dependent on weather condition and relief. However, the impact of rainstorms in Mediterranean mountain environments depend mainly on climatic fluctuations in the short and long term, especially in rainfall quantity. An algorithm for the characterisation of this impact, called Rainfall Hazard Index (RHI, is developed with a less expensive methodology. In RHI modelling, we assume that the river-torrential system has adapted to the natural hydrological regime, and a sudden fluctuation in this regime, especially those exceeding thresholds for an acceptable range of flexibility, may have disastrous consequences for the mountain environment. RHI integrate two rainfall variables based upon storm depth current and historical data, both of a fixed duration, and a one-dimensionless parameter representative of the degree ecosystem flexibility. The approach was applied to a test site in the Benevento river-torrential landscape, Campania (Southern Italy. So, a database including data from 27 events which have occurred during an 77-year period (1926-2002 was compared with Benevento-station RHI(24h, for a qualitative validation. Trends in RHIx for annual maximum storms of duration 1, 3 and 24h were also examined. Little change is observed at the 3- and 24-h duration of a storm, but a significant increase results in hazard of a short and intense storm (RHIx(1h, in agreement with a reduction in return period for extreme rainfall events.

  8. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models

    Science.gov (United States)

    Gelfand, Lois A.; MacKinnon, David P.; DeRubeis, Robert J.; Baraldi, Amanda N.

    2016-01-01

    Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome—underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results. PMID:27065906

  9. Mediation Analysis with Survival Outcomes: Accelerated Failure Time Versus Proportional Hazards Models

    Directory of Open Access Journals (Sweden)

    Lois A Gelfand

    2016-03-01

    Full Text Available Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH and fully parametric accelerated failure time (AFT approaches for illustration.Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively under varied data conditions, some including censoring. A simulated data set illustrates the findings.Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome – underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG.Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  10. Additive model for thermal comfort generated by matrix experiment using orthogonal array

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Reuy-Lung [Department of Occupational Safety and Health, China Medical University, 91 Huseh-shin Road, Taichung 404 (China); Lin, Tzu-Ping [Department of Leisure Planning, National Formosa University, 64 Wen-hua Road, Huwei, Yunlin 632 (China); Liang, Han-Hsi [Department of Architecture, National United University, No. 1, Lien Da, Kung-Ching Li, Miaoli 360 (China); Yang, Kuan-Hsiug; Yeh, Tsung-Chyn [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yet-Sen University, No. 91, Lien-hai Road, Kaohsiung (China)

    2009-08-15

    In addition to ensuring the thermal comfort of occupants, monitoring and controlling indoor thermal environments can reduce the energy consumed by air conditioning systems. This study develops an additive model for predicting thermal comfort with rapid and simple arithmetic calculations. The advantage of the additive model is its comprehensibility to administrators of air conditioning systems, who are unfamiliar with the PMV-PPD model but want to adjust an indoor environment to save energy without generating complaints of discomfort from occupants. In order to generate the additive model, a laboratory chamber experiment based on matrix experiment using orthogonal array, was performed. By applying the analysis of variance on observed thermal sensation votes and percentage of dissatisfaction, the factor effects of environmental variables that account for the additive model were determined. Additionally, the applicability of the PMV-PPD model in hot and humid climates is discussed in this study, based on experimental results. (author)

  11. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    Science.gov (United States)

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  12. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...

  13. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...

  14. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  15. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  16. Combining SLBL routine with landslide-generated tsunami model for a quick hazard assessment tool

    Science.gov (United States)

    Franz, Martin; Rudaz, Benjamin; Jaboyedoff, Michel; Podladchikov, Yury

    2016-04-01

    Regions with steep topography are potentially subject to landslide-induced tsunami, because of the proximity between lakes, rivers, sea shores and potential instabilities. The concentration of the population and infrastructures on the water body shores and downstream valleys could lead to catastrophic consequences. In order to assess comprehensively this phenomenon together with the induced risks, we have developed a tool which allows the construction of the landslide geometry, and which is able to simulate its propagation, the generation and the propagation of the wave and eventually the spread on the shores or the associated downstream flow. The tool is developed in the Matlab© environment, with a graphical user interface (GUI) to select the parameters in a user-friendly manner. The whole process is done in three steps implying different methods. Firstly, the geometry of the sliding mass is constructed using the Sloping Local Base Level (SLBL) concept. Secondly, the propagation of this volume is performed using a model based on viscous flow equations. Finally, the wave generation and its propagation are simulated using the shallow water equations stabilized by the Lax-Friedrichs scheme. The transition between wet and dry bed is performed by the combination of the two latter sets of equations. The intensity map is based on the criterion of flooding in Switzerland provided by the OFEG and results from the multiplication of the velocity and the depth obtained during the simulation. The tool can be used for hazard assessment in the case of well-known landslides, where the SLBL routine can be constrained and checked for realistic construction of the geometrical model. In less-known cases, various failure plane geometries can be automatically built between given range and thus a multi-scenario approach is used. In any case, less-known parameters such as the landslide velocity, its run-out distance, etc. can also be set to vary within given ranges, leading to multi

  17. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    International Nuclear Information System (INIS)

    Harper, Bryan; Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan; Tang, Kaizhi; Heredia-Langner, Alejandro; Lins, Roberto; Harper, Stacey

    2015-01-01

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure–toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure–activity relationships

  18. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Bryan [Oregon State University (United States); Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan [Pacific Northwest National Laboratory (United States); Tang, Kaizhi [Intelligent Automation, Inc. (United States); Heredia-Langner, Alejandro [Pacific Northwest National Laboratory (United States); Lins, Roberto [CPqAM, Oswaldo Cruz Foundation, FIOCRUZ-PE (Brazil); Harper, Stacey, E-mail: stacey.harper@oregonstate.edu [Oregon State University (United States)

    2015-06-15

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure–toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure–activity relationships.

  19. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  20. Ranking of several ground-motion models for seismic hazard analysis in Iran

    International Nuclear Information System (INIS)

    Ghasemi, H; Zare, M; Fukushima, Y

    2008-01-01

    In this study, six attenuation relationships are classified with respect to the ranking scheme proposed by Scherbaum et al (2004 Bull. Seismol. Soc. Am. 94 1–22). First, the strong motions recorded during the 2002 Avaj, 2003 Bam, 2004 Kojour and 2006 Silakhor earthquakes are consistently processed. Then the normalized residual sets are determined for each selected ground-motion model, considering the strong-motion records chosen. The main advantage of these records is that corresponding information about the causative fault plane has been well studied for the selected events. Such information is used to estimate several control parameters which are essential inputs for attenuation relations. The selected relations (Zare et al (1999 Soil Dyn. Earthq. Eng. 18 101–23); Fukushima et al (2003 J. Earthq. Eng. 7 573–98); Sinaeian (2006 PhD Thesis International Institute of Earthquake Engineering and Seismology, Tehran, Iran); Boore and Atkinson (2007 PEER, Report 2007/01); Campbell and Bozorgnia (2007 PEER, Report 2007/02); and Chiou and Youngs (2006 PEER Interim Report for USGS Review)) have been deemed suitable for predicting peak ground-motion amplitudes in the Iranian plateau. Several graphical techniques and goodness-of-fit measures are also applied for statistical distribution analysis of the normalized residual sets. Such analysis reveals ground-motion models, developed using Iranian strong-motion records as the most appropriate ones in the Iranian context. The results of the present study are applicable in seismic hazard assessment projects in Iran

  1. A Risk Assessment Model for Water Resources: releases of dangerous and hazardous substances.

    Science.gov (United States)

    Rebelo, Anabela; Ferra, Isabel; Gonçalves, Isolina; Marques, Albertina M

    2014-07-01

    Many dangerous and hazardous substances are used, transported and handled daily in diverse situations, from domestic use to industrial processing, and during those operations, spills or other anomalous situations may occur that can lead to contaminant releases followed by contamination of surface water or groundwater through direct or indirect pathways. When dealing with this problem, rapid, technically sound decisions are desirable, and the use of complex methods may not be able to deliver information quickly. This work describes a simple conceptual model established on multi-criteria based analysis involving a strategic appraisal for contamination risk assessment to support local authorities on rapid technical decisions. The model involves a screening for environmental risk sources, focussing on persistent, bioaccumulative and toxic (PBT) substances that may be discharged into water resources. It is a simple tool that can be used to follow-up actual accident scenarios in real time and to support daily activities, such as site-inspections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang; Zhou, Lan; Huang, Jianhua Z.

    2014-01-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based

  3. Additive Manufacturing Modeling and Simulation A Literature Review for Electron Beam Free Form Fabrication

    Science.gov (United States)

    Seufzer, William J.

    2014-01-01

    Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.

  4. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    Energy Technology Data Exchange (ETDEWEB)

    Musson, R. M. W. [British Geological Survey, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Sellami, S. [Swiss Seismological Service, ETH-Hoenggerberg, Zuerich (Switzerland); Bruestle, W. [Regierungspraesidium Freiburg, Abt. 9: Landesamt fuer Geologie, Rohstoffe und Bergbau, Ref. 98: Landeserdbebendienst, Freiburg im Breisgau (Germany)

    2009-05-15

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)

  5. Preparing a seismic hazard model for Switzerland: the view from PEGASOS Expert Group 3 (EG1c)

    International Nuclear Information System (INIS)

    Musson, R. M. W.; Sellami, S.; Bruestle, W.

    2009-01-01

    The seismic hazard model used in the PEGASOS project for assessing earth-quake hazard at four NPP sites was a composite of four sub-models, each produced by a team of three experts. In this paper, one of these models is described in detail by the authors. A criticism sometimes levelled at probabilistic seismic hazard studies is that the process by which seismic source zones are arrived at is obscure, subjective and inconsistent. Here, we attempt to recount the stages by which the model evolved, and the decisions made along the way. In particular, a macro-to-micro approach was used, in which three main stages can be described. The first was the characterisation of the overall kinematic model, the 'big picture' of regional seismo-genesis. Secondly, this was refined to a more detailed seismotectonic model. Lastly, this was used as the basis of individual sources, for which parameters can be assessed. Some basic questions had also to be answered about aspects of the approach to modelling to be used: for instance, is spatial smoothing an appropriate tool to apply? Should individual fault sources be modelled in an intra-plate environment? Also, the extent to which alternative modelling decisions should be expressed in a logic tree structure has to be considered. (author)

  6. A Monte Carlo study of time-aggregation in continuous-time and discrete-time parametric hazard models.

    NARCIS (Netherlands)

    Hofstede, ter F.; Wedel, M.

    1998-01-01

    This study investigates the effects of time aggregation in discrete and continuous-time hazard models. A Monte Carlo study is conducted in which data are generated according to various continuous and discrete-time processes, and aggregated into daily, weekly and monthly intervals. These data are

  7. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    NARCIS (Netherlands)

    Beks, M.L.; Haverlag, M.; Mullen, van der J.J.A.M.

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used

  8. STakeholder-Objective Risk Model (STORM): Determiningthe aggregated risk of multiple contaminant hazards in groundwater well catchments

    DEFF Research Database (Denmark)

    Enzenhoefer, R.; Binning, Philip John; Nowak, W.

    2015-01-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any......-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired...

  9. Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models

    Science.gov (United States)

    Krishna, Akhouri P.; Kumar, Santosh

    2013-10-01

    Landslide hazard assessments using computational models, such as artificial neural network (ANN) and frequency ratio (FR), were carried out covering one of the important mountain highways in the Central Himalaya of Indian Himalayan Region (IHR). Landslide influencing factors were either calculated or extracted from spatial databases including recent remote sensing data of LANDSAT TM, CARTOSAT digital elevation model (DEM) and Tropical Rainfall Measuring Mission (TRMM) satellite for rainfall data. ANN was implemented using the multi-layered feed forward architecture with different input, output and hidden layers. This model based on back propagation algorithm derived weights for all possible parameters of landslides and causative factors considered. The training sites for landslide prone and non-prone areas were identified and verified through details gathered from remote sensing and other sources. Frequency Ratio (FR) models are based on observed relationships between the distribution of landslides and each landslide related factor. FR model implementation proved useful for assessing the spatial relationships between landslide locations and factors contributing to its occurrence. Above computational models generated respective susceptibility maps of landslide hazard for the study area. This further allowed the simulation of landslide hazard maps on a medium scale using GIS platform and remote sensing data. Upon validation and accuracy checks, it was observed that both models produced good results with FR having some edge over ANN based mapping. Such statistical and functional models led to better understanding of relationships between the landslides and preparatory factors as well as ensuring lesser levels of subjectivity compared to qualitative approaches.

  10. Industry-specific risk models for numerical scoring of hazards and prioritization of safety measures

    International Nuclear Information System (INIS)

    Khali, Y.F.; Johnson, K.

    2004-01-01

    Risk analysis consists of five cornerstones that have to be viewed in an holistic manner by risk practitioners of any organization regardless of the industry type or nature of its critical infrastructures. The cornerstones are hazard identification, risk assessment and consequence analysis, determination of risk management actions required to reduce risks to acceptable levels, communication of risk insights among the stake-holders, and continuous monitoring and verification to ensure sustained attainment of tolerable risk levels. Our primary objectives in this research are two fold: first, we compare and contrast a wide spectrum of current industry-specific and application-dependent semi-quantitative risk models. Secondly, based on the insights to be gained from the first task, we propose a framework for a robust risk-based approach for conducting security vulnerability assessment (SVA). Risk practitioners of critical infrastructures, such as commercial nuclear power plants, water utilities, chemical plants, transmission and distribution substations... etc., could readily use this proposed approach to classify, evaluate, and prioritize risks to support allocation of resources required to ensure protection of public health and safety. (author)

  11. Examining School-Based Bullying Interventions Using Multilevel Discrete Time Hazard Modeling

    Science.gov (United States)

    Wagaman, M. Alex; Geiger, Jennifer Mullins; Bermudez-Parsai, Monica; Hedberg, E. C.

    2014-01-01

    Although schools have been trying to address bulling by utilizing different approaches that stop or reduce the incidence of bullying, little remains known about what specific intervention strategies are most successful in reducing bullying in the school setting. Using the social-ecological framework, this paper examines school-based disciplinary interventions often used to deliver consequences to deter the reoccurrence of bullying and aggressive behaviors among school-aged children. Data for this study are drawn from the School-Wide Information System (SWIS) with the final analytic sample consisting of 1,221 students in grades K – 12 who received an office disciplinary referral for bullying during the first semester. Using Kaplan-Meier Failure Functions and Multi-level discrete time hazard models, determinants of the probability of a student receiving a second referral over time were examined. Of the seven interventions tested, only Parent-Teacher Conference (AOR=0.65, pbullying and aggressive behaviors. By using a social-ecological framework, schools can develop strategies that deter the reoccurrence of bullying by identifying key factors that enhance a sense of connection between the students’ mesosystems as well as utilizing disciplinary strategies that take into consideration student’s microsystem roles. PMID:22878779

  12. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  13. An introduction to modeling longitudinal data with generalized additive models: applications to single-case designs.

    Science.gov (United States)

    Sullivan, Kristynn J; Shadish, William R; Steiner, Peter M

    2015-03-01

    Single-case designs (SCDs) are short time series that assess intervention effects by measuring units repeatedly over time in both the presence and absence of treatment. This article introduces a statistical technique for analyzing SCD data that has not been much used in psychological and educational research: generalized additive models (GAMs). In parametric regression, the researcher must choose a functional form to impose on the data, for example, that trend over time is linear. GAMs reverse this process by letting the data inform the choice of functional form. In this article we review the problem that trend poses in SCDs, discuss how current SCD analytic methods approach trend, describe GAMs as a possible solution, suggest a GAM model testing procedure for examining the presence of trend in SCDs, present a small simulation to show the statistical properties of GAMs, and illustrate the procedure on 3 examples of different lengths. Results suggest that GAMs may be very useful both as a form of sensitivity analysis for checking the plausibility of assumptions about trend and as a primary data analysis strategy for testing treatment effects. We conclude with a discussion of some problems with GAMs and some future directions for research on the application of GAMs to SCDs. (c) 2015 APA, all rights reserved).

  14. Considerations in comparing the U.S. Geological Survey one‐year induced‐seismicity hazard models with “Did You Feel It?” and instrumental data

    Science.gov (United States)

    White, Isabel; Liu, Taojun; Luco, Nicolas; Liel, Abbie

    2017-01-01

    The recent steep increase in seismicity rates in Oklahoma, southern Kansas, and other parts of the central United States led the U.S. Geological Survey (USGS) to develop, for the first time, a probabilistic seismic hazard forecast for one year (2016) that incorporates induced seismicity. In this study, we explore a process to ground‐truth the hazard model by comparing it with two databases of observations: modified Mercalli intensity (MMI) data from the “Did You Feel It?” (DYFI) system and peak ground acceleration (PGA) values from instrumental data. Because the 2016 hazard model was heavily based on earthquake catalogs from 2014 to 2015, this initial comparison utilized observations from these years. Annualized exceedance rates were calculated with the DYFI and instrumental data for direct comparison with the model. These comparisons required assessment of the options for converting hazard model results and instrumental data from PGA to MMI for comparison with the DYFI data. In addition, to account for known differences that affect the comparisons, the instrumental PGA and DYFI data were declustered, and the hazard model was adjusted for local site conditions. With these adjustments, examples at sites with the most data show reasonable agreement in the exceedance rates. However, the comparisons were complicated by the spatial and temporal completeness of the instrumental and DYFI observations. Furthermore, most of the DYFI responses are in the MMI II–IV range, whereas the hazard model is oriented toward forecasts at higher ground‐motion intensities, usually above about MMI IV. Nevertheless, the study demonstrates some of the issues that arise in making these comparisons, thereby informing future efforts to ground‐truth and improve hazard modeling for induced‐seismicity applications.

  15. Comparison of hypertabastic survival model with other unimodal hazard rate functions using a goodness-of-fit test.

    Science.gov (United States)

    Tahir, M Ramzan; Tran, Quang X; Nikulin, Mikhail S

    2017-05-30

    We studied the problem of testing a hypothesized distribution in survival regression models when the data is right censored and survival times are influenced by covariates. A modified chi-squared type test, known as Nikulin-Rao-Robson statistic, is applied for the comparison of accelerated failure time models. This statistic is used to test the goodness-of-fit for hypertabastic survival model and four other unimodal hazard rate functions. The results of simulation study showed that the hypertabastic distribution can be used as an alternative to log-logistic and log-normal distribution. In statistical modeling, because of its flexible shape of hazard functions, this distribution can also be used as a competitor of Birnbaum-Saunders and inverse Gaussian distributions. The results for the real data application are shown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Evaluation of model-predicted hazardous air pollutants (HAPs) near a mid-sized U.S. airport

    Science.gov (United States)

    Vennam, Lakshmi Pradeepa; Vizuete, William; Arunachalam, Saravanan

    2015-10-01

    Accurate modeling of aircraft-emitted pollutants in the vicinity of airports is essential to study the impact on local air quality and to answer policy and health-impact related issues. To quantify air quality impacts of airport-related hazardous air pollutants (HAPs), we carried out a fine-scale (4 × 4 km horizontal resolution) Community Multiscale Air Quality model (CMAQ) model simulation at the T.F. Green airport in Providence (PVD), Rhode Island. We considered temporally and spatially resolved aircraft emissions from the new Aviation Environmental Design Tool (AEDT). These model predictions were then evaluated with observations from a field campaign focused on assessing HAPs near the PVD airport. The annual normalized mean error (NME) was in the range of 36-70% normalized mean error for all HAPs except for acrolein (>70%). The addition of highly resolved aircraft emissions showed only marginally incremental improvements in performance (1-2% decrease in NME) of some HAPs (formaldehyde, xylene). When compared to a coarser 36 × 36 km grid resolution, the 4 × 4 km grid resolution did improve performance by up to 5-20% NME for formaldehyde and acetaldehyde. The change in power setting (from traditional International Civil Aviation Organization (ICAO) 7% to observation studies based 4%) doubled the aircraft idling emissions of HAPs, but led to only a 2% decrease in NME. Overall modeled aircraft-attributable contributions are in the range of 0.5-28% near a mid-sized airport grid-cell with maximum impacts seen only within 4-16 km from the airport grid-cell. Comparison of CMAQ predictions with HAP estimates from EPA's National Air Toxics Assessment (NATA) did show similar annual mean concentrations and equally poor performance. Current estimates of HAPs for PVD are a challenge for modeling systems and refinements in our ability to simulate aircraft emissions have made only incremental improvements. Even with unrealistic increases in HAPs aviation emissions the model

  17. WCSPH with Limiting Viscosity for Modeling Landslide Hazard at the Slopes of Artificial Reservoir

    Directory of Open Access Journals (Sweden)

    Sauro Manenti

    2018-04-01

    Full Text Available This work illustrated an application of the FOSS code SPHERA v.8.0 (RSE SpA, Milano, Italy to the simulation of landslide hazard at the slope of a water basin. SPHERA is based on the weakly compressible SPH method (WCSPH and holds a mixture model, consistent with the packing limit of the Kinetic Theory of Granular Flow (KTGF, which was previously tested for simulating two-phase free-surface rapid flows involving water-sediment interaction. In this study a limiting viscosity parameter was implemented in the previous formulation of the mixture model to limit the growth of the apparent viscosity, thus saving computational time while preserving the solution accuracy. This approach is consistent with the experimental behavior of high polymer solutions for which an almost constant value of viscosity may be approached at very low deformation rates near the transition zone of elastic–plastic regime. In this application, the limiting viscosity was used as a numerical parameter for optimization of the computation. Some preliminary tests were performed by simulating a 2D erosional dam break, proving that a proper selection of the limiting viscosity leads to a considerable drop of the computational time without altering significantly the numerical solution. SPHERA was then validated by simulating a 2D scale experiment reproducing the early phase of the Vajont landslide when a tsunami wave was generated that climbed the opposite mountain side with a maximum run-up of about 270 m. The obtained maximum run-up was very close to the experimental result. Influence of saturation of the landslide material below the still water level was also accounted, showing that the landslide dynamics can be better represented and the wave run-up can be properly estimated.

  18. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard

    Science.gov (United States)

    Alaeddine, H.; Serrhini, K.; Maizia, M.

    2015-03-01

    Managing the crisis caused by natural disasters, and especially by floods, requires the development of effective evacuation systems. An effective evacuation system must take into account certain constraints, including those related to traffic network, accessibility, human resources and material equipment (vehicles, collecting points, etc.). The main objective of this work is to provide assistance to technical services and rescue forces in terms of accessibility by offering itineraries relating to rescue and evacuation of people and property. We consider in this paper the evacuation of an urban area of medium size exposed to the hazard of flood. In case of inundation, most people will be evacuated using their own vehicles. Two evacuation types are addressed in this paper: (1) a preventive evacuation based on a flood forecasting system and (2) an evacuation during the disaster based on flooding scenarios. The two study sites on which the developed evacuation model is applied are the Tours valley (Fr, 37), which is protected by a set of dikes (preventive evacuation), and the Gien valley (Fr, 45), which benefits from a low rate of flooding (evacuation before and during the disaster). Our goal is to construct, for each of these two sites, a chronological evacuation plan, i.e., computing for each individual the departure date and the path to reach the assembly point (also called shelter) according to a priority list established for this purpose. The evacuation plan must avoid the congestion on the road network. Here we present a spatiotemporal optimization model (STOM) dedicated to the evacuation of the population exposed to natural disasters and more specifically to flood risk.

  19. Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): implications for hazard evaluation and mapping

    Science.gov (United States)

    Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.

    2007-05-01

    The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations

  20. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    Science.gov (United States)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy

  1. Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

    Science.gov (United States)

    2016-04-30

    FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament

  2. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale

    Directory of Open Access Journals (Sweden)

    P. Horton

    2013-04-01

    Full Text Available The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM. The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time

  3. GIS-modelling of the spatial variability of flash flood hazard in Abu Dabbab catchment, Red Sea Region, Egypt

    Directory of Open Access Journals (Sweden)

    Islam Abou El-Magd

    2010-06-01

    Full Text Available In the mountainous area of the Red Sea region in southeastern Egypt, the development of new mining activities or/and domestic infrastructures require reliable and accurate information about natural hazards particularly flash flood. This paper presents the assessment of flash flood hazards in the Abu Dabbab drainage basin. Remotely sensed data were used to delineate the alluvial active channels, which were integrated with morphometric parameters extracted from digital elevation models (DEM into geographical information systems (GIS to construct a hydrological model that provides estimates about the amount of surface runoff as well as the magnitude of flash floods. The peak discharge is randomly varied at different cross-sections along the main channel. Under consistent 10 mm rainfall event, the selected cross-section in middle of the main channel is prone to maximum water depth at 80 cm, which decreases to nearly 30 cm at the outlet due to transmission loss. The estimation of spatial variability of flow parameters within the catchment at different confluences of the constituting sub-catchments can be considered and used in planning for engineering foundations and linear infrastructures with the least flash flood hazard. Such information would, indeed, help decision makers and planning to minimize such hazards.

  4. Do Female Researchers Face a Glass Ceiling in France? A Hazard Model of Promotions

    OpenAIRE

    Sabatier, Mareva

    2010-01-01

    Abstract The present article examines whether French female researchers face a glass ceiling, an invisible barrier to promotion. Using an original database from the National Institute for Agricultural Research, we estimate duration models for promotions. The methodology used allowed us to take into account censored observations and unobserved heterogeneity. Our results show a significant gender effect that does not contradict the glass-ceiling hypothesis. In addition, factors that ...

  5. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  6. A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data

    DEFF Research Database (Denmark)

    He, Peng; Eriksson, Frank; Scheike, Thomas H.

    2016-01-01

    function by fitting the Cox model for the censoring distribution and using the predictive probability for each individual. Our simulation study shows that the covariate-adjusted weight estimator is basically unbiased when the censoring time depends on the covariates, and the covariate-adjusted weight......With competing risks data, one often needs to assess the treatment and covariate effects on the cumulative incidence function. Fine and Gray proposed a proportional hazards regression model for the subdistribution of a competing risk with the assumption that the censoring distribution...... and the covariates are independent. Covariate-dependent censoring sometimes occurs in medical studies. In this paper, we study the proportional hazards regression model for the subdistribution of a competing risk with proper adjustments for covariate-dependent censoring. We consider a covariate-adjusted weight...

  7. Assessment of erosion hazard after recurrence fires with the RUSLE 3D MODEL

    Science.gov (United States)

    Vecín-Arias, Daniel; Palencia, Covadonga; Fernández Raga, María

    2016-04-01

    The objective of this work is to calculate if there is more soil erosion after the recurrence of several forest fires on an area. To that end, it has been studied an area of 22 130 ha because has a high frequency of fires. This area is located in the northwest of the Iberian Peninsula. The assessment of erosion hazard was calculated in several times using Geographic Information Systems (GIS).The area have been divided into several plots according to the number of times they have been burnt in the past 15 years. Due to the complexity that has to make a detailed study of a so large field and that there are not information available anually, it is necessary to select the more interesting moments. In august 2012 it happened the most agressive and extensive fire of the area. So the study was focused on the erosion hazard for 2011 and 2014, because they are the date before and after from the fire of 2012 in which there are orthophotos available. RUSLE3D model (Revised Universal Soil Loss Equation) was used to calculate maps erosion losses. This model improves the traditional USLE (Wischmeier and D., 1965) because it studies the influence of the concavity / convexity (Renard et al., 1997), and improves the estimation of the slope factor LS (Renard et al., 1991). It is also one of the most commonly used models in literatura (Mitasova et al., 1996; Terranova et al., 2009). The tools used are free and accessible, using GIS "gvSIG" (http://www.gvsig.com/es) and the metadata were taken from Spatial Data Infrastructure of Spain webpage (IDEE, 2016). However the RUSLE model has many critics as some authors who suggest that only serves to carry out comparisons between areas, and not for the calculation of absolute soil loss data. These authors argue that in field measurements the actual recovered eroded soil can suppose about one-third of the values obtained with the model (Šúri et al., 2002). The study of the area shows that the error detected by the critics could come from

  8. Considering the Epistemic Uncertainties of the Variogram Model in Locating Additional Exploratory Drillholes

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-06-01

    Full Text Available To enhance the certainty of the grade block model, it is necessary to increase the number of exploratory drillholes and collect more data from the deposit. The inputs of the process of locating these additional drillholes include the variogram model parameters, locations of the samples taken from the initial drillholes, and the geological block model. The uncertainties of these inputs will lead to uncertainties in the optimal locations of additional drillholes. Meanwhile, the locations of the initial data are crisp, but the variogram model parameters and the geological model have uncertainties due to the limitation of the number of initial data. In this paper, effort has been made to consider the effects of variogram uncertainties on the optimal location of additional drillholes using the fuzzy kriging and solve the locating problem with the genetic algorithm (GA optimization method.A bauxite deposit case study has shown the efficiency of the proposed model.

  9. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    Science.gov (United States)

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This

  10. System Dynamics Model to develop resilience management strategies for lifelines exposed to natural hazards

    Science.gov (United States)

    Pagano, Alessandro; Pluchinotta, Irene; Giordano, Raffaele; Vurro, Michele

    2016-04-01

    Resilience has recently become a key concept, and a crucial paradigm in the analysis of the impacts of natural disasters, mainly concerning Lifeline Systems (LS). Indeed, the traditional risk management approaches require a precise knowledge of all potential hazards and a full understanding of the interconnections among different infrastructures, based on past events and trends analysis. Nevertheless, due to the inner complexity of LS, their interconnectedness and the dynamic context in which they operate (i.e. technology, economy and society), it is difficult to gain a complete comprehension of the processes influencing vulnerabilities and threats. Therefore, resilience thinking addresses the complexities of large integrated systems and the uncertainty of future threats, emphasizing the absorbing, adapting and responsive behavior of the system. Resilience thinking approaches are focused on the capability of the system to deal with the unforeseeable. The increasing awareness of the role played by LS, has led governmental agencies and institutions to develop resilience management strategies. Risk prone areas, such as cities, are highly dependent on infrastructures providing essential services that support societal functions, safety, economic prosperity and quality of life. Among the LS, drinking water supply is critical for supporting citizens during emergency and recovery, since a disruption could have a range of serious societal impacts. A very well-known method to assess LS resilience is the TOSE approach. The most interesting feature of this approach is the integration of four dimensions: Technical, Organizational, Social and Economic. Such issues are all concurrent to the resilience level of an infrastructural system, and should be therefore quantitatively assessed. Several researches underlined that the lack of integration among the different dimensions, composing the resilience concept, may contribute to a mismanagement of LS in case of natural disasters

  11. Assessment of Debris Flow Potential Hazardous Zones Using Numerical Models in the Mountain Foothills of Santiago, Chile

    Science.gov (United States)

    Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.

    2017-12-01

    Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.

  12. Degree of multicollinearity and variables involved in linear dependence in additive-dominant models

    Directory of Open Access Journals (Sweden)

    Juliana Petrini

    2012-12-01

    Full Text Available The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567, yearling weight (n=58,124, and scrotal circumference (n=20,371 of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.

  13. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    Science.gov (United States)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  14. Wind vs Water in Hurricanes: The Challenge of Multi-peril Hazard Modeling

    Science.gov (United States)

    Powell, M. D.

    2017-12-01

    operational solution to collect wind and water level measurements, and to conduct observation based modeling of wind and water impacts. My presentation will discuss some of the challenges to wind and water hazard monitoring and modeling.

  15. The chaos and control of a food chain model supplying additional food to top-predator

    International Nuclear Information System (INIS)

    Sahoo, Banshidhar; Poria, Swarup

    2014-01-01

    Highlights: • We propose a chaotic food chain model supplying additional food to top-predator. • Local and global stability conditions are derived in presence of additional food. • Chaos is controlled only by increasing quantity of additional food. • System enters into periodic region and depicts Hopf bifurcations supplying additional food. • This an application of non-chemical methods for controlling chaos. -- Abstract: The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the

  16. Flood Hazard Zonation by Combining Mod-Clark and HEC-RAS Models in Bustan Dam Basin, Golestan Province

    Directory of Open Access Journals (Sweden)

    Z. Parisay

    2014-12-01

    Full Text Available Flood is one of the devastating phenomena which every year incurs casualties and property damages. Flood zonation is an efficient technique for flood management. The main goal of this research is flood hazard and risk zonation along a 21 km reach of the Gorganrud river in Bustan dam watershed considering two conditions: present landuse condition and scenario planning. To this end a combination of a hydrologic model (the distributed HEC-HMS with the Mod-Clark transform option and a hydraulic model (HEC-RAS were used. The required inputs to run the Mod-Clarck module of HEC-HMS are gridded files of river basin, curve number and rainfall with the SHG coordinate system and DSS format. In this research the input files were prepared using the Watershed Modeling System (WMS at cell size of 200 m. Since the Mod-Clark method requires rainfall data as radar format (NEXRAD, the distributed rainfall mapseries with time intervals of 15 minutes prepared within the PCRaster GIS system were converted to the DSS format using the asc2dss package. also the curve number map was converted to the DSS format using HEC-GeoHMS. Then, these DSS files were substituted with rainfall and curve number maps within the WMS. After calibration and validation, model was run for return periods of 2, 5, 10, 25, 50, 100 and 200 years, in two conditions of current landuse and scenario planning. The simulated peak discharge data, geometric parameters of river and cross section (at 316 locations data prepared by the HEC-GeoRAS software and roughness coefficients data, were used by the HEC-RAS software to simulate the hydraulic behavior of the river and flood inundation area maps were produced using GIS. The results of the evaluation showed that in addition to the percent error in peak flow, less than 3.2%, the model has a good performance in peak flow simulation, but is not successful in volume estimation. The results of flood zones revealed that from the total area in floodplain with

  17. Research on Capacity Addition using Market Model with Transmission Congestion under Competitive Environment

    Science.gov (United States)

    Katsura, Yasufumi; Attaviriyanupap, Pathom; Kataoka, Yoshihiko

    In this research, the fundamental premises for deregulation of the electric power industry are reevaluated. The authors develop a simple model to represent wholesale electricity market with highly congested network. The model is developed by simplifying the power system and market in New York ISO based on available data of New York ISO in 2004 with some estimation. Based on the developed model and construction cost data from the past, the economic impact of transmission line addition on market participants and the impact of deregulation on power plant additions under market with transmission congestion are studied. Simulation results show that the market signals may fail to facilitate proper capacity additions and results in the undesirable over-construction and insufficient-construction cycle of capacity addition.

  18. Advancement of the methodology for automated integration of external hazards into level 1 PSA modeling. Technical report; Weiterentwicklung der Methodik zur automatisierten Integration uebergreifender Einwirkungen in PSA-Modelle der Stufe 1. Technischer Fachbericht

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Nadine; Herb, Joachim

    2017-03-15

    In the course of the research and development project RS1539 funded by the German Federal Ministry for Economics and Energy (BMWi) the methodology for the automated integration of hazards in Level 1 PSA models has been enhanced. Thereby, the analysis tool pyRiskRobot provides the methodological framework for mapping a generic spectrum of internal and external hazards onto complex PSA plant models. The reimplementation of the software tool via the programming language python extends the applicability and facilitates the handling of pyRiskRobot in comparison to the previous Ruby-based version RiskRobot. Moreover, the development of functions to perform the topological modelling of fault trees and the probabilistic specification of modified fault tree elements have been continued. Due to the reimplementation and further developments, the tool enables to systematically generate fault trees of varying complexity, to flexibly integrate fault trees in existing PSA models and to automatically duplicate interconnected topologies. Thus, pyRiskRobot allows the efficient and traceable realization of hazard specific, usually laborious modifications of PSA models. In addition, pyRiskRobot has been extended to serve as a functional interface between the data compilations comprising the potential influences of hazards on PSA relevant components and the data base of a PSA plant model. Based on this conceptual design, additional analyses of the data can be carried out prior to the integration within the PSA model topology. The reimplemented functionalities of pyRiskRobot have been validated with respect to reference applications, such as the modelling of an internal fire scenario, against the previous version RiskRobot. The existing method collection for the automated modification of fault tree topologies has been extended based on the requirements for further applications, among others the modelling of an external flooding scenario. The deduced hazard specific modelling approaches

  19. Incorporating additional tree and environmental variables in a lodgepole pine stem profile model

    Science.gov (United States)

    John C. Byrne

    1993-01-01

    A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...

  20. a study of the slope of cox proportional hazard and weibull models

    African Journals Online (AJOL)

    Adejumo & Ahmadu

    known and the hazard function is completely specified except for the values of the ... through the air when people who have an active TB infection, cough, sneeze ... The increase of. TB incidence is highest in Africa and Asia, areas with the highest ... further complicating treatment by increasing the length and cost of therapy.

  1. Spatial Modelling of Urban Physical Vulnerability to Explosion Hazards Using GIS and Fuzzy MCDA

    Directory of Open Access Journals (Sweden)

    Yasser Ebrahimian Ghajari

    2017-07-01

    Full Text Available Most of the world’s population is concentrated in accumulated spaces in the form of cities, making the concept of urban planning a significant issue for consideration by decision makers. Urban vulnerability is a major issue which arises in urban management, and is simply defined as how vulnerable various structures in a city are to different hazards. Reducing urban vulnerability and enhancing resilience are considered to be essential steps towards achieving urban sustainability. To date, a vast body of literature has focused on investigating urban systems’ vulnerabilities with regard to natural hazards. However, less attention has been paid to vulnerabilities resulting from man-made hazards. This study proposes to investigate the physical vulnerability of buildings in District 6 of Tehran, Iran, with respect to intentional explosion hazards. A total of 14 vulnerability criteria are identified according to the opinions of various experts, and standard maps for each of these criteria have been generated in a GIS environment. Ultimately, an ordered weighted averaging (OWA technique was applied to generate vulnerability maps for different risk conditions. The results of the present study indicate that only about 25 percent of buildings in the study area have a low level of vulnerability under moderate risk conditions. Sensitivity analysis further illustrates the robustness of the results obtained. Finally, the paper concludes by arguing that local authorities must focus more on risk-reduction techniques in order to reduce physical vulnerability and achieve urban sustainability.

  2. International conference and workshop on modeling and mitigating the consequences of accidental releases of hazardous materials

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This conference was held September 26--29, 1995 in New Orleans, Louisiana. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on the consequences of accidental releases of hazardous materials. Attention is focused on air dispersion of vapors. Individual papers have been processed separately for inclusion in the appropriate data bases

  3. Incorporating fine-scale drought information into an eastern US wildfire hazard model

    Science.gov (United States)

    Matthew P. Peters; Louis R. Iverson

    2017-01-01

    Wildfires in the eastern United States are generally caused by humans in locations where human development and natural vegetation intermingle, e.g. the wildland–urban interface (WUI). Knowing where wildfire hazards are elevated across the forested landscape may help land managers and property owners plan or allocate resources for potential wildfire threats. In an...

  4. Modelling risk in high hazard operations : Integrating technical, organisational and cultural factors

    NARCIS (Netherlands)

    Ale, B.J.M.; Hanea, D.M.; Sillem, S.; Lin, P.H.; Van Gulijk, C.; Hudson, P.T.W.

    2012-01-01

    Recent disasters in high hazard industries such as Oil and Gas Exploration (The Deepwater Horizon) and Petrochemical production (Texas City) have been found to have causes that range from direct technical failures through organizational shortcomings right up to weak regulation and inappropriate

  5. Assessing End-Of-Supply Risk of Spare Parts Using the Proportional Hazard Model

    NARCIS (Netherlands)

    X. Li (Xishu); R. Dekker (Rommert); C. Heij (Christiaan); M. Hekimoğlu (Mustafa)

    2016-01-01

    textabstractOperators of long field-life systems like airplanes are faced with hazards in the supply of spare parts. If the original manufacturers or suppliers of parts end their supply, this may have large impacts on operating costs of firms needing these parts. Existing end-of-supply evaluation

  6. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  7. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  8. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Hygor Evangelista; Pissarra, Teresa Cristina Tarlé [Departamento de Engenharia Rural, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal (Brazil); Farias do Valle Junior, Renato [Laboratório de Geoprocessamento, Instituto Federal do Triângulo Mineiro, Campus Uberaba, Uberaba (Brazil); Fernandes, Luis Filipe Sanches [Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001–801 Vila Real (Portugal); Pacheco, Fernando António Leal, E-mail: fpacheco@utad.pt [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001–801 Vila Real (Portugal)

    2017-05-15

    Road spills of hazardous substances are common in developing countries due to increasing industrialization and traffic accidents, and represent a serious threat to soils and water in catchments. There is abundant literature on equations describing the wash-off of pollutants from roads during a storm event and there are a number of watershed models incorporating those equations in storm water quality algorithms that route runoff and pollution yields through a drainage system towards the catchment outlet. However, methods describing catchment vulnerability to contamination by road spills based solely on biophysical parameters are scarce. These methods could be particularly attractive to managers because they can operate with a limited amount of easily collectable data, while still being able to provide important insights on the areas more prone to contamination within the studied watershed. The purpose of this paper was then to contribute with a new vulnerability model. To accomplish the goal, a selection of medium properties appearing in wash-off equations and routing algorithms were assembled and processed in a parametric framework based on multi criteria analysis to define the watershed vulnerability. However, parameters had to be adapted because wash-off equations and water quality models have been developed to operate primarily in the urban environment while the vulnerability model is meant to run in rural watersheds. The selected parameters were hillside slope, ground roughness (depending on land use), soil permeability (depending on soil type), distance to water courses and stream density. The vulnerability model is a spatially distributed algorithm that was prepared to run under the IDRISI Selva software, a GIS platform capable of handling spatial and alphanumeric data and execute the necessary terrain model, hydrographic and thematic analyses. For illustrative purposes, the vulnerability model was applied to the legally protected Environmental Protection

  9. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances

    International Nuclear Information System (INIS)

    Siqueira, Hygor Evangelista; Pissarra, Teresa Cristina Tarlé; Farias do Valle Junior, Renato; Fernandes, Luis Filipe Sanches; Pacheco, Fernando António Leal

    2017-01-01

    Road spills of hazardous substances are common in developing countries due to increasing industrialization and traffic accidents, and represent a serious threat to soils and water in catchments. There is abundant literature on equations describing the wash-off of pollutants from roads during a storm event and there are a number of watershed models incorporating those equations in storm water quality algorithms that route runoff and pollution yields through a drainage system towards the catchment outlet. However, methods describing catchment vulnerability to contamination by road spills based solely on biophysical parameters are scarce. These methods could be particularly attractive to managers because they can operate with a limited amount of easily collectable data, while still being able to provide important insights on the areas more prone to contamination within the studied watershed. The purpose of this paper was then to contribute with a new vulnerability model. To accomplish the goal, a selection of medium properties appearing in wash-off equations and routing algorithms were assembled and processed in a parametric framework based on multi criteria analysis to define the watershed vulnerability. However, parameters had to be adapted because wash-off equations and water quality models have been developed to operate primarily in the urban environment while the vulnerability model is meant to run in rural watersheds. The selected parameters were hillside slope, ground roughness (depending on land use), soil permeability (depending on soil type), distance to water courses and stream density. The vulnerability model is a spatially distributed algorithm that was prepared to run under the IDRISI Selva software, a GIS platform capable of handling spatial and alphanumeric data and execute the necessary terrain model, hydrographic and thematic analyses. For illustrative purposes, the vulnerability model was applied to the legally protected Environmental Protection

  10. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    Science.gov (United States)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  11. Introducing Geoscience Students to Numerical Modeling of Volcanic Hazards: The example of Tephra2 on VHub.org

    Directory of Open Access Journals (Sweden)

    Leah M. Courtland

    2012-07-01

    Full Text Available The Tephra2 numerical model for tephra fallout from explosive volcanic eruptions is specifically designed to enable students to probe ideas in model literacy, including code validation and verification, the role of simplifying assumptions, and the concepts of uncertainty and forecasting. This numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials. The VHub.org resource provides students with the ability to explore and execute sophisticated numerical models like Tephra2. We present a strategy for using this model to introduce university students to key concepts in the use and evaluation of Tephra2 for probabilistic forecasting of volcanic hazards. Through this critical examination students are encouraged to develop a deeper understanding of the applicability and limitations of hazard models. Although the model and applications are intended for use in both introductory and advanced geoscience courses, they could easily be adapted to work in other disciplines, such as astronomy, physics, computational methods, data analysis, or computer science.

  12. Between and beyond additivity and non-additivity : the statistical modelling of genotype by environment interaction in plant breeding

    NARCIS (Netherlands)

    Eeuwijk, van F.A.

    1996-01-01

    In plant breeding it is a common observation to see genotypes react differently to environmental changes. This phenomenon is called genotype by environment interaction. Many statistical approaches for analysing genotype by environment interaction rely heavily on the analysis of variance model.

  13. One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1976-09-01

    A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment

  14. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  15. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce

    Directory of Open Access Journals (Sweden)

    Natalya Pya

    2016-02-01

    Full Text Available Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM and shape constrained generalized additive models (SCAM for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand. The definition of constraints leads only to marginal or minor decline in the model statistics like AIC. An observed structured spatial trend in tree height is modelled via 2-dimensional surface

  16. A model used to derive hazardous waste concentration limits aiming at the reduction of toxic and hazardous wastes. Applications to illustrate the discharge of secondary categories types B and C

    International Nuclear Information System (INIS)

    Paris, P.

    1989-11-01

    This report describes a model which may be used to derive hazardous waste concentration limits in order to prevent ground water pollution from a landfill disposal. First the leachate concentration limits are determined taking into account the attenuation capacity of the landfill-site as a whole; waste concentrations are then derived by an elution model which assumes a constant ratio between liquid-solid concentrations. In the example two types of landfill have been considered and in each case concentration limits have been calculated for some hazardous substances and compared with the corresponding regulatory limits. (author)

  17. Modeling retrospective attribution of responsibility to hazard-managing institutions: an example involving a food contamination incident.

    Science.gov (United States)

    Johnson, Branden B; Hallman, William K; Cuite, Cara L

    2015-03-01

    Perceptions of institutions that manage hazards are important because they can affect how the public responds to hazard events. Antecedents of trust judgments have received far more attention than antecedents of attributions of responsibility for hazard events. We build upon a model of retrospective attribution of responsibility to individuals to examine these relationships regarding five classes of institutions that bear responsibility for food safety: producers (e.g., farmers), processors (e.g., packaging firms), watchdogs (e.g., government agencies), sellers (e.g., supermarkets), and preparers (e.g., restaurants). A nationally representative sample of 1,200 American adults completed an Internet-based survey in which a hypothetical scenario involving contamination of diverse foods with Salmonella served as the stimulus event. Perceived competence and good intentions of the institution moderately decreased attributions of responsibility. A stronger factor was whether an institution was deemed (potentially) aware of the contamination and free to act to prevent or mitigate it. Responsibility was rated higher the more aware and free the institution. This initial model for attributions of responsibility to impersonal institutions (as opposed to individual responsibility) merits further development. © 2014 Society for Risk Analysis.

  18. Evaluating a multi-criteria model for hazard assessment in urban design. The Porto Marghera case study

    International Nuclear Information System (INIS)

    Luria, Paolo; Aspinall, Peter A.

    2003-01-01

    The aim of this paper is to describe a new approach to major industrial hazard assessment, which has been recently studied by the authors in conjunction with the Italian Environmental Protection Agency ('ARPAV'). The real opportunity for developing a different approach arose from the need of the Italian EPA to provide the Venice Port Authority with an appropriate estimation of major industrial hazards in Porto Marghera, an industrial estate near Venice (Italy). However, the standard model, the quantitative risk analysis (QRA), only provided a list of individual quantitative risk values, related to single locations. The experimental model is based on a multi-criteria approach--the Analytic Hierarchy Process--which introduces the use of expert opinions, complementary skills and expertise from different disciplines in conjunction with quantitative traditional analysis. This permitted the generation of quantitative data on risk assessment from a series of qualitative assessments, on the present situation and on three other future scenarios, and use of this information as indirect quantitative measures, which could be aggregated for obtaining the global risk rate. This approach is in line with the main concepts proposed by the last European directive on Major Hazard Accidents, which recommends increasing the participation of operators, taking the other players into account and, moreover, paying more attention to the concepts of 'urban control', 'subjective risk' (risk perception) and intangible factors (factors not directly quantifiable)

  19. Structured Additive Regression Models: An R Interface to BayesX

    Directory of Open Access Journals (Sweden)

    Nikolaus Umlauf

    2015-02-01

    Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.

  20. The Herfa-Neurode hazardous waste repository in bedded salt as an operating model for safe mixed waste disposal

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1991-01-01

    For 18 years, The Herfa-Neurode underground repository has demonstrated the environmentally sound disposal of hazardous waste in a former potash mine. Its principal characteristics make it an excellent analogue to the Waste Isolation Pilot Plant (WIPP). The Environmental Protection Agency has ruled in its first conditional no-migration determination that is reasonably certain that no hazardous constituents of the mixed waste, destined for the WIPP during its test phase, will migrate from the site for up to ten years. Knowledge of and reference to the Herfa-Neurode operating model may substantially improve the no-migration variance petition for the WIPP's disposal phase and thereby expedite its approval. 2 refs., 1 fig., 1 tab

  1. LISREL Model Medical Solid Infectious Waste Hazardous Hospital Management In Medan City

    Science.gov (United States)

    Simarmata, Verawaty; Siahaan, Ungkap; Pandia, Setiaty; Mawengkang, Herman

    2018-01-01

    Hazardous and toxic waste resulting from activities at most hospitals contain various elements of medical solid waste ranging from heavy metals that have the nature of accumulative toxic which are harmful to human health. Medical waste in the form of gas, liquid or solid generally include the category or the nature of the hazard and toxicity waste. The operational in activities of the hospital aims to improve the health and well-being, but it also produces waste as an environmental pollutant waters, soil and gas. From the description of the background of the above in mind that the management of solid waste pollution control medical hospital, is one of the fundamental problems in the city of Medan and application supervision is the main business licensing and control alternatives in accordance with applicable regulations.

  2. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  3. Hazard assessment of the Gschliefgraben earth flow (Austria) based on monitoring data and evolution modelling

    Science.gov (United States)

    Poisel, R.; Preh, A.; Hofmann, R.; Schiffer, M.; Sausgruber, Th.

    2009-04-01

    A rock slide on to the clayey - silty - sandy - pebbly masses in the Gschliefgraben (Upper Austria province, Lake Traunsee) having occurred in 2006 as well as the humid autumn of 2007 triggered an earth flow comprising a volume up to 5 mill m³ and moving with a maximum displacement velocity of 5 m/day during the winter of 2007-2008. The possible damage was estimated up to 60 mill € due to possible destruction of houses and of a road to a settlement with heavy tourism. Exploratory drillings revealed that the moving mass consists of an alternate bedding of thicker, less permeable clayey - silty layers and thinner, more permeable silty - sandy - pebbly layers. The movement front ran ahead in the creek bed. Therefore it was assumed that water played an important role and the earth flow moved due to soaking of water into the ground from the area of the rock slide downslope. Inclinometer measurements showed that the uppermost, less permeable layer was sliding on a thin, more permeable layer. The movement process was analysed by numerical models (FLAC) and by conventional calculations in order to assess the hazard. The coupled flow and mechanical models showed that sections of the less permeable layer soaked with water were sliding on the thin, more permeable layer due to excessive watering out of the more permeable layer. These sections were thrust over the downward lying, less soaked areas, therefore having higher strength. The material thrust over the downward lying, less soaked areas together with the moving front of pore water pressures caused the downward material to fail and to be thrust over the downslope lying material in a distance of some 50 m. Thus a cyclic process was created without any indication of a sudden sliding of the complete less permeable layer. Nevertheless, the inhabitants of 15 houses had to be evacuated for safety reasons. They could return to their homes after displacement velocities had decreased. Displacement monitoring by GPS showed that

  4. Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Asare-Kyei

    2015-07-01

    Full Text Available Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI. Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.

  5. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Directory of Open Access Journals (Sweden)

    Gianpaolo Savio

    2018-01-01

    Full Text Available Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  6. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    Science.gov (United States)

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  7. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Science.gov (United States)

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  8. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    Science.gov (United States)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material

  9. Comparison of linear, skewed-linear, and proportional hazard models for the analysis of lambing interval in Ripollesa ewes.

    Science.gov (United States)

    Casellas, J; Bach, R

    2012-06-01

    Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.

  10. Estimation of additive and dominance variance for reproductive traits from different models in Duroc purebred

    Directory of Open Access Journals (Sweden)

    Talerngsak Angkuraseranee

    2010-05-01

    Full Text Available The additive and dominance genetic variances of 5,801 Duroc reproductive and growth records were estimated usingBULPF90 PC-PACK. Estimates were obtained for number born alive (NBA, birth weight (BW, number weaned (NW, andweaning weight (WW. Data were analyzed using two mixed model equations. The first model included fixed effects andrandom effects identifying inbreeding depression, additive gene effect and permanent environments effects. The secondmodel was similar to the first model, but included the dominance genotypic effect. Heritability estimates of NBA, BW, NWand WW from the two models were 0.1558/0.1716, 0.1616/0.1737, 0.0372/0.0874 and 0.1584/0.1516 respectively. Proportionsof dominance effect to total phenotypic variance from the dominance model were 0.1024, 0.1625, 0.0470, and 0.1536 for NBA,BW, NW and WW respectively. Dominance effects were found to have sizable influence on the litter size traits analyzed.Therefore, genetic evaluation with the dominance model (Model 2 is found more appropriate than the animal model (Model 1.

  11. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    Energy Technology Data Exchange (ETDEWEB)

    Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  12. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  13. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    Science.gov (United States)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  14. The regression-calibration method for fitting generalized linear models with additive measurement error

    OpenAIRE

    James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll

    2003-01-01

    This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...

  15. Dark Matter candidate in Inert Doublet Model with additional local gauge symmetry U (1)

    International Nuclear Information System (INIS)

    Gaitán, R.; De Oca, J.H. Montes; Garcés, E. A.; Cabral-Rosetti, L. G.

    2016-01-01

    We consider the Inert Doublet Model (IDM) with an additional local gauge symmetry U (1) and a complex singlet scalar to break the symmetry U (1). The continuous symmetry U (1) is introduced to control the CP-conserving interaction instead of some discrete symmetries as usually. We present the mass spectrum for neutral scalar and gauge bosons and the values of the charges under U (1) for which the model could have a candidate to dark matter. (paper)

  16. Landslide Hazard Assessment and Mapping in the Guil Catchment (Queyras, Southern French Alps): From Landslide Inventory to Susceptibility Modelling

    Science.gov (United States)

    Roulleau, Louise; Bétard, François; Carlier, Benoît; Lissak, Candide; Fort, Monique

    2016-04-01

    Landslides are common natural hazards in the Southern French Alps, where they may affect human lives and cause severe damages to infrastructures. As a part of the SAMCO research project dedicated to risk evaluation in mountain areas, this study focuses on the Guil river catchment (317 km2), Queyras, to assess landslide hazard poorly studied until now. In that area, landslides are mainly occasional, low amplitude phenomena, with limited direct impacts when compared to other hazards such as floods or snow avalanches. However, when interacting with floods during extreme rainfall events, landslides may have indirect consequences of greater importance because of strong hillslope-channel connectivity along the Guil River and its tributaries (i.e. positive feedbacks). This specific morphodynamic functioning reinforces the need to have a better understanding of landslide hazards and their spatial distribution at the catchment scale to prevent local population from disasters with multi-hazard origin. The aim of this study is to produce a landslide susceptibility mapping at 1:50 000 scale as a first step towards global estimation of landslide hazard and risk. The three main methodologies used for assessing landslide susceptibility are qualitative (i.e. expert opinion), deterministic (i.e. physics-based models) and statistical methods (i.e. probabilistic models). Due to the rapid development of geographical information systems (GIS) during the last two decades, statistical methods are today widely used because they offer a greater objectivity and reproducibility at large scales. Among them, multivariate analyses are considered as the most robust techniques, especially the logistic regression method commonly used in landslide susceptibility mapping. However, this method like others is strongly dependent on the accuracy of the input data to avoid significant errors in the final results. In particular, a complete and accurate landslide inventory is required before the modelling

  17. Come rain or shine: Multi-model Projections of Climate Hazards affecting Transportation in the South Central United States

    Science.gov (United States)

    Mullens, E.; Mcpherson, R. A.

    2016-12-01

    This work develops detailed trends in climate hazards affecting the Department of Transportation's Region 6, in the South Central U.S. Firstly, a survey was developed to gather information regarding weather and climate hazards in the region from the transportation community, identifying key phenomena and thresholds to evaluate. Statistically downscaled datasets were obtained from the Multivariate Adaptive Constructed Analogues (MACA) project, and the Asynchronous Regional Regression Model (ARRM), for a total of 21 model projections, two coupled model intercomparisons (CMIP3, and CMIP5), and four emissions pathways (A1Fi, B1, RCP8.5, RCP4.5). Specific hazards investigated include winter weather, freeze-thaw cycles, hot and cold extremes, and heavy precipitation. Projections for each of these variables were calculated for the region, utilizing spatial mapping, and time series analysis at the climate division level. The results indicate that cold-season phenomena such as winter weather, freeze-thaw, and cold extremes, decrease in intensity and frequency, particularly with the higher emissions pathways. Nonetheless, specific model and downscaling method yields variability in magnitudes, with the most notable decreasing trends late in the 21st century. Hot days show a pronounced increase, particularly with greater emissions, producing annual mean 100oF day frequencies by late 21st century analogous to the 2011 heatwave over the central Southern Plains. Heavy precipitation, evidenced by return period estimates and counts-over-thresholds, also show notable increasing trends, particularly between the recent past through mid-21st Century. Conversely, mean precipitation does not show significant trends and is regionally variable. Precipitation hazards (e.g., winter weather, extremes) diverge between downscaling methods and their associated model samples much more substantially than temperature, suggesting that the choice of global model and downscaled data is particularly

  18. Results of development and field tests of a radar-tracer system providing meteorological support to modeling hazardous technological releases

    International Nuclear Information System (INIS)

    Shershakov, V.M.; Zukov, G.P.; Kosykh, V.S.

    2003-01-01

    radiation monitoring laboratory and the LDU was on the bank of the cooling pond. The main characteristics of a cloud of substances are standard deviations in the spatial concentration distributions in the cloud along mutually perpendicular directions, which are representative spatial scales of the cloud in these directions. The squares of these values are relative variances of the cloud. These characteristics were the first to determine and are among the most important input parameters in different models assessing transport and dispersion of hazardous substances. Dispersion of a cloud of substances is influenced by turbulence and vertical shifts of the mean wind speed, with the patterns of dispersion being different depending an diffusion time (or distance to a source). The results of the conducted experiments have revealed an important advantage of the used radar complex in terms of support to predictions of possible contamination in case of release of hazardous materials. As the chaff cloud moves with the wind and is dispersed, it echoes the meteorological situation at a given time moment (vertical wind distribution and air temperature, turbulence level, boundary layer thickness, type of underlying surface) and any changes occurring in the conditions on its way. Based on obtained radar data, the radar complex is capable of assessing the dispersion parameters which can then be used in the mathematical transport and dispersion models. What's more, determination of these parameters does not require any meteorological measurements. In addition, using data about movement of the cloud centroid, the wind speed and direction is estimated at the release height by the radar complex itself. The conducted experiments have shown that the developed technology makes possible measuring key parameters of a cloud of substances at the height of dispersion and taking into account local features of the distribution of meteorological quantities occurring in the vicinity of a source. This

  19. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models

    Science.gov (United States)

    Yu, Guozhi; Hozé, Nathanaël; Rolff, Jens

    2016-01-01

    Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrobials. Here, we link these ad hoc combination terms to a mathematical model that represents the dynamics of antimicrobial molecules hitting targets on bacterial cells. In this multi-hit model, bacteria are killed when a certain number of targets are hit by antimicrobials. Using this bottom-up approach reveals that Bliss independence should be the model of choice if no interaction between antimicrobial molecules is expected. Loewe additivity, on the other hand, describes scenarios in which antimicrobials affect the same components of the cell, i.e. are not acting independently. While our approach idealizes the dynamics of antimicrobials, it provides a conceptual underpinning of the additivity terms. The choice of the additivity term is essential to determine synergy or antagonism of antimicrobials. This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160596

  20. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models.

    Science.gov (United States)

    Baeder, Desiree Y; Yu, Guozhi; Hozé, Nathanaël; Rolff, Jens; Regoes, Roland R

    2016-05-26

    Antimicrobial peptides (AMPs) and antibiotics reduce the net growth rate of bacterial populations they target. It is relevant to understand if effects of multiple antimicrobials are synergistic or antagonistic, in particular for AMP responses, because naturally occurring responses involve multiple AMPs. There are several competing proposals describing how multiple types of antimicrobials add up when applied in combination, such as Loewe additivity or Bliss independence. These additivity terms are defined ad hoc from abstract principles explaining the supposed interaction between the antimicrobials. Here, we link these ad hoc combination terms to a mathematical model that represents the dynamics of antimicrobial molecules hitting targets on bacterial cells. In this multi-hit model, bacteria are killed when a certain number of targets are hit by antimicrobials. Using this bottom-up approach reveals that Bliss independence should be the model of choice if no interaction between antimicrobial molecules is expected. Loewe additivity, on the other hand, describes scenarios in which antimicrobials affect the same components of the cell, i.e. are not acting independently. While our approach idealizes the dynamics of antimicrobials, it provides a conceptual underpinning of the additivity terms. The choice of the additivity term is essential to determine synergy or antagonism of antimicrobials.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  1. Estimating the phenology of elk brucellosis transmission with hierarchical models of cause-specific and baseline hazards

    Science.gov (United States)

    Cross, Paul C.; Maichak, Eric J.; Rogerson, Jared D.; Irvine, Kathryn M.; Jones, Jennifer D; Heisey, Dennis M.; Edwards, William H.; Scurlock, Brandon M.

    2015-01-01

    Understanding the seasonal timing of disease transmission can lead to more effective control strategies, but the seasonality of transmission is often unknown for pathogens transmitted directly. We inserted vaginal implant transmitters (VITs) in 575 elk (Cervus elaphus canadensis) from 2006 to 2014 to assess when reproductive failures (i.e., abortions or still births) occur, which is the primary transmission route of Brucella abortus, the causative agent of brucellosis in the Greater Yellowstone Ecosystem. Using a survival analysis framework, we developed a Bayesian hierarchical model that simultaneously estimated the total baseline hazard of a reproductive event as well as its 2 mutually exclusive parts (abortions or live births). Approximately, 16% (95% CI = 0.10, 0.23) of the pregnant seropositive elk had reproductive failures, whereas 2% (95% CI = 0.01, 0.04) of the seronegative elk had probable abortions. Reproductive failures could have occurred as early as 13 February and as late as 10 July, peaking from March through May. Model results suggest that less than 5% of likely abortions occurred after 6 June each year and abortions were approximately 5 times more likely in March, April, or May compared to February or June. In western Wyoming, supplemental feeding of elk begins in December and ends during the peak of elk abortions and brucellosis transmission (i.e., Mar and Apr). Years with more snow may enhance elk-to-elk transmission on supplemental feeding areas because elk are artificially aggregated for the majority of the transmission season. Elk-to-cattle transmission will depend on the transmission period relative to the end of the supplemental feeding season, elk seroprevalence, population size, and the amount of commingling. Our statistical approach allowed us to estimate the probability density function of different event types over time, which may be applicable to other cause-specific survival analyses. It is often challenging to assess the

  2. Vector generalized linear and additive models with an implementation in R

    CERN Document Server

    Yee, Thomas W

    2015-01-01

    This book presents a statistical framework that expands generalized linear models (GLMs) for regression modelling. The framework shared in this book allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole. This is possible through the approximately half-a-dozen major classes of statistical models included in the book and the software infrastructure component, which makes the models easily operable.    The book’s methodology and accompanying software (the extensive VGAM R package) are directed at these limitations, and this is the first time the methodology and software are covered comprehensively in one volume. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. The demands of practical data analysis, however, require a flexibility that GLMs do not have. Data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. This book ...

  3. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    Science.gov (United States)

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  4. Additive quark model and double scattering of pions and protons in deuterium

    International Nuclear Information System (INIS)

    Bialas, A.; Czyz, W.; Kisielewska, D.

    1981-01-01

    It is shown that the additive quark model is compatible with the data on double scattering of pions and protons in deuterium. The cross-section for interaction of the hadrons created in the first collision with the second nucleon of the target is determined to be 20-25 mb. (author)

  5. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    Science.gov (United States)

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  6. Declarations pursuant to the Articles 2 and 3 of the Model Additional Protocol

    International Nuclear Information System (INIS)

    Fernandez Moreno, Sonia

    2001-01-01

    Articles 2 and 3 of the Model Additional Protocol specify the content and the time limits of the information to be provided by the States into the framework of the Safeguard Agreements. To standardize the presentation of this information the IAEA has prepared guidelines for the preparation of the documents. A detailed explanation of the guidelines is given in the paper

  7. Modeling a Change in Flowrate through Detention or Additional Pavement on the Receiving Stream : Final Report

    Science.gov (United States)

    2017-11-01

    The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...

  8. Entropy-optimal weight constraint elicitation with additive multi-attribute utility models

    NARCIS (Netherlands)

    Valkenhoef , van Gert; Tervonen, Tommi

    2016-01-01

    We consider the elicitation of incomplete preference information for the additive utility model in terms of linear constraints on the weights. Eliciting incomplete preferences using holistic pair-wise judgments is convenient for the decision maker, but selecting the best pair-wise comparison is

  9. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques

    Science.gov (United States)

    Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo

    2017-11-01

    The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.

  10. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  11. Does the model of additive effect in placebo research still hold true? A narrative review

    Science.gov (United States)

    Berger, Bettina; Weger, Ulrich; Heusser, Peter

    2017-01-01

    Personalised and contextualised care has been turned into a major demand by people involved in healthcare suggesting to move toward person-centred medicine. The assessment of person-centred medicine can be most effectively achieved if treatments are investigated using ‘with versus without’ person-centredness or integrative study designs. However, this assumes that the components of an integrative or person-centred intervention have an additive relationship to produce the total effect. Beecher’s model of additivity assumes an additive relation between placebo and drug effects and is thus presenting an arithmetic summation. So far, no review has been carried out assessing the validity of the additive model, which is to be questioned and more closely investigated in this review. Initial searches for primary studies were undertaken in July 2016 using Pubmed and Google Scholar. In order to find matching publications of similar magnitude for the comparison part of this review, corresponding matches for all included reviews were sought. A total of 22 reviews and 3 clinical and experimental studies fulfilled the inclusion criteria. The results pointed to the following factors actively questioning the additive model: interactions of various effects, trial design, conditioning, context effects and factors, neurobiological factors, mechanism of action, statistical factors, intervention-specific factors (alcohol, caffeine), side-effects and type of intervention. All but one of the closely assessed publications was questioning the additive model. A closer examination of study design is necessary. An attempt in a more systematic approach geared towards solutions could be a suggestion for future research in this field. PMID:28321318

  12. Identification of natural hazards and classification of urban areas by TOPSIS model (case study: Bandar Abbas city, Iran

    Directory of Open Access Journals (Sweden)

    Rasool Mahdavi Najafabadi

    2016-01-01

    Full Text Available In this paper, among multi-criteria models for complex decision-making and multiple-attribute models for assigning the most preferable choice, the technique for order preference by similarity ideal solution (TOPSIS is implied. The main objective of this research is to identify potential natural hazards in Bandar Abbas city, Iran, using TOPSIS model, which is based on an analytical hierarchy process structure. A set of 12 relevant geomorphologic parameters, including earthquake frequency, distance from the earthquake epicentre, number of faults, flood, talus creep, landslide, land subsidence, tide, hurricane and tidal wave, dust storms with external source, wind erosion and sea level fluctuations are considered to quantify inputs of the model. The outputs of this study indicate that one region, among three assessed regions, has the maximum potential occurrence of natural hazards, while it has been urbanized at a greater rate compared to other regions. Furthermore, based on Delphi method, the earthquake frequency and the landslide are the most and the least dangerous phenomena, respectively.

  13. A spatial hazard model for cluster detection on continuous indicators of disease: application to somatic cell score.

    Science.gov (United States)

    Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques

    2007-01-01

    Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.

  14. User's manual of a computer code for seismic hazard evaluation for assessing the threat to a facility by fault model. SHEAT-FM

    International Nuclear Information System (INIS)

    Sugino, Hideharu; Onizawa, Kunio; Suzuki, Masahide

    2005-09-01

    To establish the reliability evaluation method for aged structural component, we developed a probabilistic seismic hazard evaluation code SHEAT-FM (Seismic Hazard Evaluation for Assessing the Threat to a facility site - Fault Model) using a seismic motion prediction method based on fault model. In order to improve the seismic hazard evaluation, this code takes the latest knowledge in the field of earthquake engineering into account. For example, the code involves a group delay time of observed records and an update process model of active fault. This report describes the user's guide of SHEAT-FM, including the outline of the seismic hazard evaluation, specification of input data, sample problem for a model site, system information and execution method. (author)

  15. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition...... rate of aluminum. Under the boiler conditions of the present work, the simulation results suggested that the desirable temperature for the ferric sulfate injection was around 950-900oC, whereas for ammonium sulfate the preferable injection temperature was below 800oC....

  16. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    International Nuclear Information System (INIS)

    Voglar, Grega E.; Lestan, Domen

    2011-01-01

    Highlights: → We assess the feasibility of using soil S/S for industrial land reclamation. → Retarders, accelerators, plasticizers were used in S/S cementitious formulation. → We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg -1 of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm -2 achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  17. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives

    Energy Technology Data Exchange (ETDEWEB)

    Voglar, Grega E. [RDA - Regional Development Agency Celje, Kidriceva ulica 25, 3000 Celje (Slovenia); Lestan, Domen, E-mail: domen.lestan@bf.uni-lj.si [Agronomy Department, Centre for Soil and Environmental Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2011-08-30

    Highlights: {yields} We assess the feasibility of using soil S/S for industrial land reclamation. {yields} Retarders, accelerators, plasticizers were used in S/S cementitious formulation. {yields} We proposed novel S/S efficiency model for multi-metal contaminated soils. - Abstract: In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085 mg kg{sup -1} of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12 N mm{sup -2} achieved after S/S with CAC + PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC + Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively.

  18. Formation and reduction of carcinogenic furan in various model systems containing food additives.

    Science.gov (United States)

    Kim, Jin-Sil; Her, Jae-Young; Lee, Kwang-Geun

    2015-12-15

    The aim of this study was to analyse and reduce furan in various model systems. Furan model systems consisting of monosaccharides (0.5M glucose and ribose), amino acids (0.5M alanine and serine) and/or 1.0M ascorbic acid were heated at 121°C for 25 min. The effects of food additives (each 0.1M) such as metal ions (iron sulphate, magnesium sulphate, zinc sulphate and calcium sulphate), antioxidants (BHT and BHA), and sodium sulphite on the formation of furan were measured. The level of furan formed in the model systems was 6.8-527.3 ng/ml. The level of furan in the model systems of glucose/serine and glucose/alanine increased 7-674% when food additives were added. In contrast, the level of furan decreased by 18-51% in the Maillard reaction model systems that included ribose and alanine/serine with food additives except zinc sulphate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing

    Science.gov (United States)

    Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.

    2018-01-01

    In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.

  20. A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing

    Science.gov (United States)

    Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.

    2018-05-01

    In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.

  1. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    Science.gov (United States)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  2. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  3. The potential application of European market research data in dietary exposure modelling of food additives.

    Science.gov (United States)

    Tennant, David Robin; Bruyninckx, Chris

    2018-03-01

    Consumer exposure assessments for food additives are incomplete without information about the proportions of foods in each authorised category that contain the additive. Such information has been difficult to obtain but the Mintel Global New Products Database (GNPD) provides information about product launches across Europe over the past 20 years. These data can be searched to identify products with specific additives listed on product labels and the numbers compared with total product launches for food and drink categories in the same database to determine the frequency of occurrence. There are uncertainties associated with the data but these can be managed by adopting a cautious and conservative approach. GNPD data can be mapped with authorised food categories and with food descriptions used in the EFSA Comprehensive European Food Consumption Surveys Database for exposure modelling. The data, when presented as percent occurrence, could be incorporated into the EFSA ANS Panel's 'brand-loyal/non-brand loyal exposure model in a quantitative way. Case studies of preservative, antioxidant, colour and sweetener additives showed that the impact of including occurrence data is greatest in the non-brand loyal scenario. Recommendations for future research include identifying occurrence data for alcoholic beverages, linking regulatory food codes, FoodEx and GNPD product descriptions, developing the use of occurrence data for carry-over foods and improving understanding of brand loyalty in consumer exposure models.

  4. Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach

    Science.gov (United States)

    Friedel, Michael J.

    2011-01-01

    Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios.

  5. Radiation hazards

    International Nuclear Information System (INIS)

    Rausch, L.

    1979-01-01

    On a scientific basis and with the aid of realistic examples, the author gives a popular introduction to an understanding and judgment of the public discussion over radiation hazards: Uses and hazards of X-ray examinations, biological radiation effects, civilisation risks in comparison, origins and explanation of radiation protection regulations. (orig.) [de

  6. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

    KAUST Repository

    Cheng, Guang

    2014-02-01

    We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2014 ISI/BS.

  7. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    Science.gov (United States)

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  8. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    Science.gov (United States)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  9. CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population.

  10. STakeholder-Objective Risk Model (STORM): Determining the aggregated risk of multiple contaminant hazards in groundwater well catchments

    Science.gov (United States)

    Enzenhoefer, R.; Binning, P. J.; Nowak, W.

    2015-09-01

    Risk is often defined as the product of probability, vulnerability and value. Drinking water supply from groundwater abstraction is often at risk due to multiple hazardous land use activities in the well catchment. Each hazard might or might not introduce contaminants into the subsurface at any point in time, which then affects the pumped quality upon transport through the aquifer. In such situations, estimating the overall risk is not trivial, and three key questions emerge: (1) How to aggregate the impacts from different contaminants and spill locations to an overall, cumulative impact on the value at risk? (2) How to properly account for the stochastic nature of spill events when converting the aggregated impact to a risk estimate? (3) How will the overall risk and subsequent decision making depend on stakeholder objectives, where stakeholder objectives refer to the values at risk, risk attitudes and risk metrics that can vary between stakeholders. In this study, we provide a STakeholder-Objective Risk Model (STORM) for assessing the total aggregated risk. Or concept is a quantitative, probabilistic and modular framework for simulation-based risk estimation. It rests on the source-pathway-receptor concept, mass-discharge-based aggregation of stochastically occuring spill events, accounts for uncertainties in the involved flow and transport models through Monte Carlo simulation, and can address different stakeholder objectives. We illustrate the application of STORM in a numerical test case inspired by a German drinking water catchment. As one may expect, the results depend strongly on the chosen stakeholder objectives, but they are equally sensitive to different approaches for risk aggregation across different hazards, contaminant types, and over time.

  11. Modelling and developing a decision-making process of hazard zone identification in ship power plants

    International Nuclear Information System (INIS)

    Podsiadlo, Antoni; Tarelko, Wieslaw

    2006-01-01

    The most dangerous places in ships are their power plants. Particularly, they are very unsafe for operators carried out various necessary operation and maintenance activities. For this reason, ship machinery should be designed to ensure the maximum safety for its operators. It is a very difficult task. Therefore, it could not be solved by means of conventional design methods, which are used for design of uncomplicated technical equipment. One of the possible ways of solving this problem is to provide appropriate tools, which allow us to take the operator's safety into account during a design process, especially at its early stages. A computer-aided system supporting design of safe ship power plants could be such a tool. This paper deals with developing process of a prototype of the computer-aided system for hazard zone identification in ship power plants

  12. Modelling and developing a decision-making process of hazard zone identification in ship power plants

    Energy Technology Data Exchange (ETDEWEB)

    Podsiadlo, Antoni [Department of Engineering Sciences, Gdynia Maritime University, ul. Morska 83, 81-225 Gdynia (Poland)]. E-mail: topo@am.gdynia.pl; Tarelko, Wieslaw [Department of Engineering Sciences, Gdynia Maritime University, ul. Morska 83, 81-225 Gdynia (Poland)]. E-mail: tar@am.gdynia.pl

    2006-04-15

    The most dangerous places in ships are their power plants. Particularly, they are very unsafe for operators carried out various necessary operation and maintenance activities. For this reason, ship machinery should be designed to ensure the maximum safety for its operators. It is a very difficult task. Therefore, it could not be solved by means of conventional design methods, which are used for design of uncomplicated technical equipment. One of the possible ways of solving this problem is to provide appropriate tools, which allow us to take the operator's safety into account during a design process, especially at its early stages. A computer-aided system supporting design of safe ship power plants could be such a tool. This paper deals with developing process of a prototype of the computer-aided system for hazard zone identification in ship power plants.

  13. CAirTOX, An inter-media transfer model for assessing indirect exposures to hazardous air contaminants

    International Nuclear Information System (INIS)

    McKone, T.E.

    1994-01-01

    Risk assessment is a quantitative evaluation of information on potential health hazards of environmental contaminants and the extent of human exposure to these contaminants. As applied to toxic chemical emissions to air, risk assessment involves four interrelated steps. These are (1) determination of source concentrations or emission characteristics, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization. These steps can be carried out with assistance from analytical models in order to estimate the potential risk associated with existing and future releases. CAirTOX has been developed as a spreadsheet model to assist in making these types of calculations. CAirTOX follows an approach that has been incorporated into the CalTOX model, which was developed for the California Department of Toxic Substances Control, With CAirTOX, we can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The capacity to explicitly address uncertainty has been incorporated into the model in two ways. First, the spreadsheet form of the model makes it compatible with Monte-Carlo add-on programs that are available for uncertainty analysis. Second, all model inputs are specified in terms of an arithmetic mean and coefficient of variation so that uncertainty analyses can be carried out

  14. Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

    DEFF Research Database (Denmark)

    Wu, Hao; Jespersen, Jacob Boll; Aho, Martti

    2013-01-01

    Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less...... harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory......-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation...

  15. ZVI Addition in Continuous Anaerobic Digestion Systems Dramatically Decreases P Recovery Potential: Dynamic Modelling

    DEFF Research Database (Denmark)

    Puyol, D.; Flores Alsina, Xavier; Segura, Y.

    2017-01-01

    The objective of this study is to show the preliminary results of a (dynamic) mathematical model describing the effects of zero valent iron (ZVI) addition during the anaerobic digestion of waste activated sludge from wastewater treatment systems. A modified version of the Anaerobic Digestion Model...... No. 1 (ADM1) upgraded with an improved physico-chemical description, ZVI corrosion, propionate uptake enhancement and multiple mineral precipitation is used as a modelling platform. The proposed approach is tested against two case studies which correspond to two lab scale anaerobic digesters (AD2, AD....... Simulations demonstrate that the model is capable to satisfactorily reproduce the dynamics of hydrolysis, acetogenesis, acidogenesis, nutrient release, pH and methanogenesis in the control anaerobic digester (AD1). This study also evidences the enhancement of methane production by the influence of ZVI...

  16. Predicting mastitis in dairy cows using neural networks and generalized additive models

    DEFF Research Database (Denmark)

    Anantharama Ankinakatte, Smitha; Norberg, Elise; Løvendahl, Peter

    2013-01-01

    The aim of this paper is to develop and compare methods for early detection of oncoming mastitis with automated recorded data. The data were collected at the Danish Cattle Research Center (Tjele, Denmark). As indicators of mastitis, electrical conductivity (EC), somatic cell scores (SCS), lactate...... that combines residual components into a score to improve the model. To develop and verify the model, the data are randomly divided into training and validation data sets. To predict the occurrence of mastitis, neural network models (NNs) and generalized additive models (GAMs) are developed using the training...... classification with all indicators, using individual residuals rather than factor scores. When SCS is excluded, GAMs shows better classification result when milk yield is also excluded. In conclusion, the study shows that NNs and GAMs are similar in their ability to detect mastitis, a sensitivity of almost 75...

  17. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine.

    Science.gov (United States)

    Brünler, Ronny; Aibibu, Dilbar; Wöltje, Michael; Anthofer, Anna-Maria; Cherif, Chokri

    2017-07-01

    Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identifying hazardous alcohol consumption during pregnancy: implementing a research-based model in real life.

    Science.gov (United States)

    Göransson, Mona; Magnusson, Asa; Heilig, Markus

    2006-01-01

    It has been repeatedly demonstrated that hazardous alcohol use during pregnancy is rarely detected in regular antenatal care, and that detection can be markedly improved using systematic screening. A major challenge is to translate research-based strategies into regular antenatal care. Here, we examined whether a screening strategy using the Alcohol Use Disorder Test (AUDIT) and time-line follow-back (TLFB) could be implemented under naturalistic conditions and within available resources; and whether it would improve detection to the extent previously shown in a research context. Regular midwives at a large antenatal care clinic were randomized to receive brief training and then implement AUDIT and TLFB ("intervention"); or to a waiting-list control group continuing to deliver regular care ("control"). In the intervention-condition, AUDIT was used to collect data about alcohol use during the year preceding pregnancy, and TLFB to assess actual consumption during the first trimester. Data were collected from new admissions over 6 months. Drop out was higher among patients of the intervention group than control midwives, 14% (23/162) versus 0% (0/153), and ppregnancy i.e. AUDIT score 6 or higher (17%, 23/139), and patients with ongoing consumption exceeding 70 g/week and/or binge consumption according to TLFB (17%, 24/139), to a significantly higher degree than regular antenatal screening (0/162). The AUDIT- and TLFB-positive populations overlapped partially, with 36/139 subjects screening positive with either of the instrument and 11/139 were positive for both. We confirm previous findings that alcohol use during pregnancy is more extensive in Sweden than has generally been realized. Systematic screening using AUDIT and TLFB detects hazardous use in a manner which regular antenatal care does not. This remains true under naturalistic conditions, following minimal training of regular antenatal care staff, and can be achieved with minimal resources. The proposed

  19. Marine natural hazards in coastal zone: observations, analysis and modelling (Plinius Medal Lecture)

    Science.gov (United States)

    Didenkulova, Ira

    2010-05-01

    Giant surface waves approaching the coast frequently cause extensive coastal flooding, destruction of coastal constructions and loss of lives. Such waves can be generated by various phenomena: strong storms and cyclones, underwater earthquakes, high-speed ferries, aerial and submarine landslides. The most famous examples of such events are the catastrophic tsunami in the Indian Ocean, which occurred on 26 December 2004 and hurricane Katrina (28 August 2005) in the Atlantic Ocean. The huge storm in the Baltic Sea on 9 January 2005, which produced unexpectedly long waves in many areas of the Baltic Sea and the influence of unusually high surge created by long waves from high-speed ferries, should also be mentioned as examples of regional marine natural hazards connected with extensive runup of certain types of waves. The processes of wave shoaling and runup for all these different marine natural hazards (tsunami, coastal freak waves, ship waves) are studied based on rigorous solutions of nonlinear shallow-water theory. The key and novel results presented here are: i) parameterization of basic formulas for extreme runup characteristics for bell-shape waves, showing that they weakly depend on the initial wave shape, which is usually unknown in real sea conditions; ii) runup analysis of periodic asymmetric waves with a steep front, as such waves are penetrating inland over large distances and with larger velocities than symmetric waves; iii) statistical analysis of irregular wave runup demonstrating that wave nonlinearity nearshore does not influence on the probability distribution of the velocity of the moving shoreline and its moments, and influences on the vertical displacement of the moving shoreline (runup). Wave runup on convex beaches and in narrow bays, which allow abnormal wave amplification is also discussed. Described analytical results are used for explanation of observed extreme runup of tsunami, freak (sneaker) waves and ship waves on different coasts

  20. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    Science.gov (United States)

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  1. Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.

    Science.gov (United States)

    Melcher, Michael; Scharl, Theresa; Luchner, Markus; Striedner, Gerald; Leisch, Friedrich

    2017-02-01

    The quality of biopharmaceuticals and patients' safety are of highest priority and there are tremendous efforts to replace empirical production process designs by knowledge-based approaches. Main challenge in this context is that real-time access to process variables related to product quality and quantity is severely limited. To date comprehensive on- and offline monitoring platforms are used to generate process data sets that allow for development of mechanistic and/or data driven models for real-time prediction of these important quantities. Ultimate goal is to implement model based feed-back control loops that facilitate online control of product quality. In this contribution, we explore structured additive regression (STAR) models in combination with boosting as a variable selection tool for modeling the cell dry mass, product concentration, and optical density on the basis of online available process variables and two-dimensional fluorescence spectroscopic data. STAR models are powerful extensions of linear models allowing for inclusion of smooth effects or interactions between predictors. Boosting constructs the final model in a stepwise manner and provides a variable importance measure via predictor selection frequencies. Our results show that the cell dry mass can be modeled with a relative error of about ±3%, the optical density with ±6%, the soluble protein with ±16%, and the insoluble product with an accuracy of ±12%. Biotechnol. Bioeng. 2017;114: 321-334. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives.

    Science.gov (United States)

    Voglar, Grega E; Leštan, Domen

    2011-08-30

    In a laboratory study, formulations of 15% (w/w) of ordinary Portland cement (OPC), calcium aluminate cement (CAC) and pozzolanic cement (PC) and additives: plasticizers cementol delta ekstra (PCDE) and cementol antikorodin (PCA), polypropylene fibers (PPF), polyoxyethylene-sorbitan monooleate (Tween 80) and aqueous acrylic polymer dispersion (Akrimal) were used for solidification/stabilization (S/S) of soils from an industrial brownfield contaminated with up to 157, 32,175, 44,074, 7614, 253 and 7085mg kg(-1) of Cd, Pb, Zn, Cu, Ni and As, respectively. Soils formed solid monoliths with all cementitious formulations tested, with a maximum mechanical strength of 12N mm(-2) achieved after S/S with CAC+PCA. To assess the S/S efficiency of the used formulations for multi-element contaminated soils, we propose an empirical model in which data on equilibrium leaching of toxic elements into deionized water and TCLP (toxicity characteristic leaching procedure) solution and the mass transfer of elements from soil monoliths were weighed against the relative potential hazard of the particular toxic element. Based on the model calculation, the most efficient S/S formulation was CAC+Akrimal, which reduced soil leachability of Cd, Pb, Zn, Cu, Ni and As into deionized water below the limit of quantification and into TCLP solution by up to 55, 185, 8750, 214, 4.7 and 1.2-times, respectively; and the mass transfer of elements from soil monoliths by up to 740, 746, 104,000, 4.7, 343 and 181-times, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    International Nuclear Information System (INIS)

    Beks, M L; Haverlag, M; Mullen, J J A M van der

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used to decide which species have to be taken into account and to fill lookup tables with the chemical composition at different combinations of elemental abundance, lamp pressure and temperature. The results from the model with dysprosium additives were compared with earlier results from the lamp containing sodium additives and a simulation of a pure mercury lamp. It was found that radial segregation creates the conditions required for axial segregation. Radial segregation occurs due to the unequal diffusion of atoms and molecules. Under the right conditions convection currents in the lamp can cause axial demixing. These conditions depend on the ratio of axial convection and radial diffusion as expressed by the Peclet number. At a Peclet number of unity axial segregation is most pronounced. At low Peclet numbers radial segregation is at its worst, while axial segregation is not present. At large Peclet numbers the discharge becomes homogeneously mixed. The degree of axial segregation at a Peclet number of unity depends on the temperature at which the additive under consideration fully dissociates. If the molecules dissociate very close to the walls no molecules are transported by the convective currents in the lamp, and hence axial segregation is limited. If they dissociate further away from the walls in the area where the downward convective currents are strongest, more axial segregation is observed

  4. The Additive Risk Model for Estimation of Effect of Haplotype Match in BMT Studies

    DEFF Research Database (Denmark)

    Scheike, Thomas; Martinussen, T; Zhang, MJ

    2011-01-01

    leads to a missing data problem. We show how Aalen's additive risk model can be applied in this setting with the benefit that the time-varying haplomatch effect can be easily studied. This problem has not been considered before, and the standard approach where one would use the expected-maximization (EM......) algorithm cannot be applied for this model because the likelihood is hard to evaluate without additional assumptions. We suggest an approach based on multivariate estimating equations that are solved using a recursive structure. This approach leads to an estimator where the large sample properties can...... be developed using product-integration theory. Small sample properties are investigated using simulations in a setting that mimics the motivating haplomatch problem....

  5. Model for Assembly Line Re-Balancing Considering Additional Capacity and Outsourcing to Face Demand Fluctuations

    Science.gov (United States)

    Samadhi, TMAA; Sumihartati, Atin

    2016-02-01

    The most critical stage in a garment industry is sewing process, because generally, it consists of a number of operations and a large number of sewing machines for each operation. Therefore, it requires a balancing method that can assign task to work station with balance workloads. Many studies on assembly line balancing assume a new assembly line, but in reality, due to demand fluctuation and demand increased a re-balancing is needed. To cope with those fluctuating demand changes, additional capacity can be carried out by investing in spare sewing machine and paying for sewing service through outsourcing. This study develops an assembly line balancing (ALB) model on existing line to cope with fluctuating demand change. Capacity redesign is decided if the fluctuation demand exceeds the available capacity through a combination of making investment on new machines and outsourcing while considering for minimizing the cost of idle capacity in the future. The objective of the model is to minimize the total cost of the line assembly that consists of operating costs, machine cost, adding capacity cost, losses cost due to idle capacity and outsourcing costs. The model develop is based on an integer programming model. The model is tested for a set of data of one year demand with the existing number of sewing machines of 41 units. The result shows that additional maximum capacity up to 76 units of machine required when there is an increase of 60% of the average demand, at the equal cost parameters..

  6. In-Situ monitoring and modeling of metal additive manufacturing powder bed fusion

    Science.gov (United States)

    Alldredge, Jacob; Slotwinski, John; Storck, Steven; Kim, Sam; Goldberg, Arnold; Montalbano, Timothy

    2018-04-01

    One of the major challenges in metal additive manufacturing is developing in-situ sensing and feedback control capabilities to eliminate build errors and allow qualified part creation without the need for costly and destructive external testing. Previously, many groups have focused on high fidelity numerical modeling and true temperature thermal imaging systems. These approaches require large computational resources or costly hardware that requires complex calibration and are difficult to integrate into commercial systems. In addition, due to the rapid change in the state of the material as well as its surface properties, getting true temperature is complicated and difficult. Here, we describe a different approach where we implement a low cost thermal imaging solution allowing for relative temperature measurements sufficient for detecting unwanted process variability. We match this with a faster than real time qualitative model that allows the process to be rapidly modeled during the build. The hope is to combine these two, allowing for the detection of anomalies in real time, enabling corrective action to potentially be taken, or parts to be stopped immediately after the error, saving material and time. Here we describe our sensor setup, its costs and abilities. We also show the ability to detect in real time unwanted process deviations. We also show that the output of our high speed model agrees qualitatively with experimental results. These results lay the groundwork for our vision of an integrated feedback and control scheme that combines low cost, easy to use sensors and fast modeling for process deviation monitoring.

  7. Implementasi Perbandingan Metode Simple Additive Weighting Dengan Weighted Sum Model Dalam Pemilihan Siswa Berprestasi

    OpenAIRE

    Siregar, M. Fajrul Falah

    2015-01-01

    Good Performance Student Selection Program of MIN Tanjung Sari aims to increase students interest in learning. The selection is based on determined criterion. To assist the selection process, then a decision support system is needed. The method used is Simple Additive Weighting and Weighted Sum Model. In this research the results of both methods performed will be tested with the three periods of good performance students data possessed by MIN Tanjung Sari Medan Selayang. This s...

  8. A QCD derivation of the additive quark model from two and three gluon exchanges

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The contributions to the Pomeron from two and three gluon exchanges are shown to give the correct combinatorial factors for the additive quark model relation between meson and baryon Pomeron couplings, even though two-quark and three-quark operators are involved. Similar results hold for the contributions to hadron masses from three-gluon vertices as well as one-gluon exchange. The color algebra reduces the multiquark couplings to a linear function of quark number. (author)

  9. Development of a QTL-environment-based predictive model for node addition rate in common bean.

    Science.gov (United States)

    Zhang, Li; Gezan, Salvador A; Eduardo Vallejos, C; Jones, James W; Boote, Kenneth J; Clavijo-Michelangeli, Jose A; Bhakta, Mehul; Osorno, Juan M; Rao, Idupulapati; Beebe, Stephen; Roman-Paoli, Elvin; Gonzalez, Abiezer; Beaver, James; Ricaurte, Jaumer; Colbert, Raphael; Correll, Melanie J

    2017-05-01

    This work reports the effects of the genetic makeup, the environment and the genotype by environment interactions for node addition rate in an RIL population of common bean. This information was used to build a predictive model for node addition rate. To select a plant genotype that will thrive in targeted environments it is critical to understand the genotype by environment interaction (GEI). In this study, multi-environment QTL analysis was used to characterize node addition rate (NAR, node day - 1 ) on the main stem of the common bean (Phaseolus vulgaris L). This analysis was carried out with field data of 171 recombinant inbred lines that were grown at five sites (Florida, Puerto Rico, 2 sites in Colombia, and North Dakota). Four QTLs (Nar1, Nar2, Nar3 and Nar4) were identified, one of which had significant QTL by environment interactions (QEI), that is, Nar2 with temperature. Temperature was identified as the main environmental factor affecting NAR while day length and solar radiation played a minor role. Integration of sites as covariates into a QTL mixed site-effect model, and further replacing the site component with explanatory environmental covariates (i.e., temperature, day length and solar radiation) yielded a model that explained 73% of the phenotypic variation for NAR with root mean square error of 16.25% of the mean. The QTL consistency and stability was examined through a tenfold cross validation with different sets of genotypes and these four QTLs were always detected with 50-90% probability. The final model was evaluated using leave-one-site-out method to assess the influence of site on node addition rate. These analyses provided a quantitative measure of the effects on NAR of common beans exerted by the genetic makeup, the environment and their interactions.

  10. Comparison of prosthetic models produced by traditional and additive manufacturing methods.

    Science.gov (United States)

    Park, Jin-Young; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Jae-Hong; Kim, Woong-Chul

    2015-08-01

    The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (α=.05). The mean marginal gaps and internal gaps showed significant differences according to tooth type (Pmanufacturing method (Pmanufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.

  11. Implementation of NGA-West2 ground motion models in the 2014 U.S. National Seismic Hazard Maps

    Science.gov (United States)

    Rezaeian, Sanaz; Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Harmsen, Stephen C.; Frankel, Arthur D.

    2014-01-01

    The U.S. National Seismic Hazard Maps (NSHMs) have been an important component of seismic design regulations in the United States for the past several decades. These maps present earthquake ground shaking intensities at specified probabilities of being exceeded over a 50-year time period. The previous version of the NSHMs was developed in 2008; during 2012 and 2013, scientists at the U.S. Geological Survey have been updating the maps based on their assessment of the “best available science,” resulting in the 2014 NSHMs. The update includes modifications to the seismic source models and the ground motion models (GMMs) for sites across the conterminous United States. This paper focuses on updates in the Western United States (WUS) due to the use of new GMMs for shallow crustal earthquakes in active tectonic regions developed by the Next Generation Attenuation (NGA-West2) project. Individual GMMs, their weighted combination, and their impact on the hazard maps relative to 2008 are discussed. In general, the combined effects of lower medians and increased standard deviations in the new GMMs have caused only small changes, within 5–20%, in the probabilistic ground motions for most sites across the WUS compared to the 2008 NSHMs.

  12. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.

    Science.gov (United States)

    Lin, Zhongbing; Schneider, André; Nguyen, Christophe; Sterckeman, Thibault

    2014-11-01

    Phytoextraction is a potential method for cleaning Cd-polluted soils. Ligand addition to soil is expected to enhance Cd phytoextraction. However, experimental results show that this addition has contradictory effects on plant Cd uptake. A mechanistic model simulating the reaction kinetics (adsorption on solid phase, complexation in solution), transport (convection, diffusion) and root absorption (symplastic, apoplastic) of Cd and its complexes in soil was developed. This was used to calculate plant Cd uptake with and without ligand addition in a great number of combinations of soil, ligand and plant characteristics, varying the parameters within defined domains. Ligand addition generally strongly reduced hydrated Cd (Cd(2+)) concentration in soil solution through Cd complexation. Dissociation of Cd complex ([Formula: see text]) could not compensate for this reduction, which greatly lowered Cd(2+) symplastic uptake by roots. The apoplastic uptake of [Formula: see text] was not sufficient to compensate for the decrease in symplastic uptake. This explained why in the majority of the cases, ligand addition resulted in the reduction of the simulated Cd phytoextraction. A few results showed an enhanced phytoextraction in very particular conditions (strong plant transpiration with high apoplastic Cd uptake capacity), but this enhancement was very limited, making chelant-enhanced phytoextraction poorly efficient for Cd.

  13. High-resolution marine flood modelling coupling overflow and overtopping processes: framing the hazard based on historical and statistical approaches

    Science.gov (United States)

    Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo

    2018-01-01

    A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard

  14. Seismic hazard studies in Egypt

    Directory of Open Access Journals (Sweden)

    Abuo El-Ela A. Mohamed

    2012-12-01

    Full Text Available The study of earthquake activity and seismic hazard assessment of Egypt is very important due to the great and rapid spreading of large investments in national projects, especially the nuclear power plant that will be held in the northern part of Egypt. Although Egypt is characterized by low seismicity, it has experienced occurring of damaging earthquake effect through its history. The seismotectonic sitting of Egypt suggests that large earthquakes are possible particularly along the Gulf of Aqaba–Dead Sea transform, the Subduction zone along the Hellenic and Cyprean Arcs, and the Northern Red Sea triple junction point. In addition some inland significant sources at Aswan, Dahshour, and Cairo-Suez District should be considered. The seismic hazard for Egypt is calculated utilizing a probabilistic approach (for a grid of 0.5° × 0.5° within a logic-tree framework. Alternative seismogenic models and ground motion scaling relationships are selected to account for the epistemic uncertainty. Seismic hazard values on rock were calculated to create contour maps for four ground motion spectral periods and for different return periods. In addition, the uniform hazard spectra for rock sites for different 25 periods, and the probabilistic hazard curves for Cairo, and Alexandria cities are graphed. The peak ground acceleration (PGA values were found close to the Gulf of Aqaba and it was about 220 gal for 475 year return period. While the lowest (PGA values were detected in the western part of the western desert and it is less than 25 gal.

  15. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  16. Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand

    Science.gov (United States)

    Leonard, Graham S.; Stewart, Carol; Wilson, Thomas M.; Procter, Jonathan N.; Scott, Bradley J.; Keys, Harry J.; Jolly, Gill E.; Wardman, Johnny B.; Cronin, Shane J.; McBride, Sara K.

    2014-10-01

    New Zealand's Tongariro National Park volcanoes produce hazardous eruptions every few years to decades. On 6 August 2012 the Te Maari vent of Tongariro Volcano erupted, producing a series of explosions and a fine ash of minor volume which was dispersed rapidly to the east. This manuscript presents a summary of the eruption impacts and the way these supported science communication during the crisis, particularly in terms of hazard map development. The most significant proximal impact was damage from pyroclastic surges and ballistics to the popular and economically-important Tongariro Alpine Crossing track. The only hazard to affect the medial impact zone was a few mms of ashfall with minor impacts. Field testing indicated that the Te Maari ash had extremely low resistivity when wetted, implying a very high potential to cause disruption to nationally-important power transmission networks via the mechanism of insulator flashover. This was not observed, presumably due to insufficient ash accumulation on insulators. Virtually no impacts from distal ashfall were reported. Post-event analysis of PM10 data demonstrates the additional value of regional air quality monitoring networks in quantifying population exposure to airborne respirable ash. While the eruption was minor, it generated a high level of public interest and a demand for information on volcanic hazards and impacts from emergency managers, the public, critical infrastructure managers, health officials, and the agriculture sector. Meeting this demand fully taxed available resources. We present here aspects of the New Zealand experience which may have wider applicability in moving towards improved integration of hazard impact information, mapping, and communication. These include wide use of a wiki technical clearinghouse and email listservs, a focus on multi-agency consistent messages, and a recently developed environment of collaboration and alignment of both research funding and technical science advice

  17. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  18. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods

    International Nuclear Information System (INIS)

    Klassen, Alexander; Scharowsky, Thorsten; Körner, Carolin

    2014-01-01

    Evaporation plays an important role in many technical applications including beam-based additive manufacturing processes, such as selective electron beam or selective laser melting (SEBM/SLM). In this paper, we describe an evaporation model which we employ within the framework of a two-dimensional free surface lattice Boltzmann method. With this method, we solve the hydrodynamics as well as thermodynamics of the molten material taking into account the mass and energy losses due to evaporation and the recoil pressure acting on the melt pool. Validation of the numerical model is performed by measuring maximum melt depths and evaporative losses in samples of pure titanium and Ti–6Al–4V molten by an electron beam. Finally, the model is applied to create processing maps for an SEBM process. The results predict that the penetration depth of the electron beam, which is a function of the acceleration voltage, has a significant influence on evaporation effects. (paper)

  19. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    International Nuclear Information System (INIS)

    Wang Qiong; He Zhi; Yao Chun-Mei

    2015-01-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. (paper)

  20. Determining the effects of patient casemix on length of hospital stay: a proportional hazards frailty model approach.

    Science.gov (United States)

    Lee, A H; Yau, K K

    2001-01-01

    To identify factors associated with hospital length of stay (LOS) and to model variations in LOS within Diagnosis Related Groups (DRGs). A proportional hazards frailty modelling approach is proposed that accounts for patient transfers and the inherent correlation of patients clustered within hospitals. The investigation is based on patient discharge data extracted for a group of obstetrical DRGs. Application of the frailty approach has highlighted several significant factors after adjustment for patient casemix and random hospital effects. In particular, patients admitted for childbirth with private medical insurance coverage have higher risk of prolonged hospitalization compared to public patients. The determination of pertinent factors provides important information to hospital management and clinicians in assessing the risk of prolonged hospitalization. The analysis also enables the comparison of inter-hospital variations across adjacent DRGs.

  1. Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO)

    Science.gov (United States)

    Saleh Ahmar, Ansari; Guritno, Suryo; Abdurakhman; Rahman, Abdul; Awi; Alimuddin; Minggi, Ilham; Arif Tiro, M.; Kasim Aidid, M.; Annas, Suwardi; Utami Sutiksno, Dian; Ahmar, Dewi S.; Ahmar, Kurniawan H.; Abqary Ahmar, A.; Zaki, Ahmad; Abdullah, Dahlan; Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Napitupulu, Darmawan; Simarmata, Janner; Kurniasih, Nuning; Andretti Abdillah, Leon; Pranolo, Andri; Haviluddin; Albra, Wahyudin; Arifin, A. Nurani M.

    2018-01-01

    The aim this study is discussed on the detection and correction of data containing the additive outlier (AO) on the model ARIMA (p, d, q). The process of detection and correction of data using an iterative procedure popularized by Box, Jenkins, and Reinsel (1994). By using this method we obtained an ARIMA models were fit to the data containing AO, this model is added to the original model of ARIMA coefficients obtained from the iteration process using regression methods. In the simulation data is obtained that the data contained AO initial models are ARIMA (2,0,0) with MSE = 36,780, after the detection and correction of data obtained by the iteration of the model ARIMA (2,0,0) with the coefficients obtained from the regression Zt = 0,106+0,204Z t-1+0,401Z t-2-329X 1(t)+115X 2(t)+35,9X 3(t) and MSE = 19,365. This shows that there is an improvement of forecasting error rate data.

  2. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Hazardous materials

    Science.gov (United States)

    ... substances that could harm human health or the environment. Hazardous means dangerous, so these materials must be ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  4. The impact of hazardous industrial facilities on housing prices: A comparison of parametric and semiparametric hedonic price models

    DEFF Research Database (Denmark)

    Grislain-Letrémy, Céline; Katossky, Arthur

    2014-01-01

    The willingness of households to pay for prevention against industrial risks can be revealed by real estate markets. By using very rich microdata, we study housing prices in the vicinity of hazardous industries near three important French cities. We show that the impact of hazardous plants...... to important biases in the estimated value of the impact of hazardous plants on housing values....

  5. Computer Models Used to Support Cleanup Decision Making at Hazardous and Radioactive Waste Sites

    Science.gov (United States)

    This report is a product of the Interagency Environmental Pathway Modeling Workgroup. This report will help bring a uniform approach to solving environmental modeling problems common to site remediation and restoration efforts.

  6. Site characterization and modeling to estimate movement of hazardous materials in groundwater

    International Nuclear Information System (INIS)

    Ditmars, J.D.

    1988-01-01

    A quantitative approach for evaluating the effectiveness of site characterization measurement activities is developed and illustrated with an example application to hypothetical measurement schemes at a potential geologic repository site for radioactive waste. The method is a general one and could also be applied at sites for underground disposal of hazardous chemicals. The approach presumes that measurements will be undertaken to support predictions of the performance of some aspect of a constructed facility or natural system. It requires a quantitative performance objective, such as groundwater travel time or contaminant concentration, against which to compare predictions of performance. The approach recognizes that such predictions are uncertain because the measurements upon which they are based are uncertain. The effectiveness of measurement activities is quantified by a confidence index, β, that reflects the number of standard deviations separating the best estimate of performance from the perdetermined performance objective. Measurements that reduce the uncertainty in predictions lead to increased values of β. The link between measurement and prediction uncertainties, required for the evaluation of β for a particular measurement scheme, identifies the measured quantities that significantly affect prediction uncertainty. The components of uncertainty in those key measurements are spatial variation, noise, estimation error, and measurement bias. 7 refs., 4 figs

  7. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  8. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  9. Benefits of dominance over additive models for the estimation of average effects in the presence of dominance

    NARCIS (Netherlands)

    Duenk, Pascal; Calus, Mario P.L.; Wientjes, Yvonne C.J.; Bijma, Piter

    2017-01-01

    In quantitative genetics, the average effect at a single locus can be estimated by an additive (A) model, or an additive plus dominance (AD) model. In the presence of dominance, the AD-model is expected to be more accurate, because the A-model falsely assumes that residuals are independent and

  10. Reduction of carcinogenic 4(5)-methylimidazole in a caramel model system: influence of food additives.

    Science.gov (United States)

    Seo, Seulgi; Ka, Mi-Hyun; Lee, Kwang-Geun

    2014-07-09

    The effect of various food additives on the formation of carcinogenic 4(5)-methylimidazole (4-MI) in a caramel model system was investigated. The relationship between the levels of 4-MI and various pyrazines was studied. When glucose and ammonium hydroxide were heated, the amount of 4-MI was 556 ± 1.3 μg/mL, which increased to 583 ± 2.6 μg/mL by the addition of 0.1 M of sodium sulfite. When various food additives, such as 0.1 M of iron sulfate, magnesium sulfate, zinc sulfate, tryptophan, and cysteine were added, the amount of 4-MI was reduced to 110 ± 0.7, 483 ± 2.0, 460 ± 2.0, 409 ± 4.4, and 397 ± 1.7 μg/mL, respectively. The greatest reduction, 80%, occurred with the addition of iron sulfate. Among the 12 pyrazines, 2-ethyl-6-methylpyrazine with 4-MI showed the highest correlation (r = -0.8239).

  11. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Performance of Models for Flash Flood Warning and Hazard Assessment: The 2015 Kali Gandaki Landslide Dam Breach in Nepal

    Directory of Open Access Journals (Sweden)

    Jeremy D. Bricker

    2017-02-01

    Full Text Available The 2015 magnitude 7.8 Gorkha earthquake and its aftershocks weakened mountain slopes in Nepal. Co- and postseismic landsliding and the formation of landslide-dammed lakes along steeply dissected valleys were widespread, among them a landslide that dammed the Kali Gandaki River. Overtopping of the landslide dam resulted in a flash flood downstream, though casualties were prevented because of timely evacuation of low-lying areas. We hindcast the flood using the BREACH physically based dam-break model for upstream hydrograph generation, and compared the resulting maximum flow rate with those resulting from various empirical formulas and a simplified hydrograph based on published observations. Subsequent modeling of downstream flood propagation was compromised by a coarse-resolution digital elevation model with several artifacts. Thus, we used a digital-elevation-model preprocessing technique that combined carving and smoothing to derive topographic data. We then applied the 1-dimensional HEC-RAS model for downstream flood routing, and compared it to the 2-dimensional Delft-FLOW model. Simulations were validated using rectified frames of a video recorded by a resident during the flood in the village of Beni, allowing estimation of maximum flow depth and speed. Results show that hydrological smoothing is necessary when using coarse topographic data (such as SRTM or ASTER, as using raw topography underestimates flow depth and speed and overestimates flood wave arrival lag time. Results also show that the 2-dimensional model produces more accurate results than the 1-dimensional model but the 1-dimensional model generates a more conservative result and can be run in a much shorter time. Therefore, a 2-dimensional model is recommended for hazard assessment and planning, whereas a 1-dimensional model would facilitate real-time warning declaration.

  13. Additive effect of mesenchymal stem cells and defibrotide in an arterial rat thrombosis model.

    Science.gov (United States)

    Dilli, Dilek; Kılıç, Emine; Yumuşak, Nihat; Beken, Serdar; Uçkan Çetinkaya, Duygu; Karabulut, Ramazan; Zenciroğlu, Ayşegu L

    2017-06-01

    In this study, we aimed to investigate the additive effect of mesenchymal stem cells (MSC) and defibrotide (DFT) in a rat model of femoral arterial thrombosis. Thirty Sprague Dawley rats were included. An arterial thrombosis model by ferric chloride (FeCl3) was developed in the left femoral artery. The rats were equally assigned to 5 groups: Group 1-Sham-operated (without arterial injury); Group 2-Phosphate buffered saline (PBS) injected; Group 3-MSC; Group 4-DFT; Group 5-MSC + DFT. All had two intraperitoneal injections of 0.5 ml: the 1st injection was 4 h after the procedure and the 2nd one 48 h after the 1st injection. The rats were sacrificed 7 days after the 2nd injection. Although the use of human bone marrow-derived (hBM) hBM-MSC or DFT alone enabled partial resolution of the thrombus, combining them resulted in near-complete resolution. Neovascularization was two-fold better in hBM-MSC + DFT treated rats (11.6 ± 2.4 channels) compared with the hBM-MSC (3.8 ± 2.7 channels) and DFT groups (5.5 ± 1.8 channels) (P < 0.0001 and P= 0.002, respectively). The combined use of hBM-MSC and DFT in a rat model of arterial thrombosis showed additive effect resulting in near-complete resolution of the thrombus.

  14. Delocalization model of regioselectivity and reactivity of free radicals in reactions of addition to olefins

    International Nuclear Information System (INIS)

    Volovik, S.V.; Dyadyusha, G.G.; Staninets, V.I.

    1987-01-01

    On the basis of the concept of polarity (philicity) of free radicals as proposed by the authors, within the framework of methods of qualitative surfaces of potential energy (linear combinations of configurations of fragments) and stabilization energy, an effective model has been developed for the regioselectivity and reactivity of radicals in processes of addition. A critical examination is made of certain key aspects of the change in regiochemistry and reactivity with changes in the electronic structure of the free radical and substrate. The dominant trends in regioselectivity and reactivity in processes of free-radical addition to olefins are controlled by electronic effects and can be predicted by analyzing interactions of diabatic potential energy surfaces or orbital interactions for a system consisting of a free radical and an unsaturated substrate

  15. Effect of Additional Incentives for Aviation Biofuels: Results from the Biomass Scenario Model

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-05

    The National Renewable Energy Laboratory supported the Department of Energy, Bioenergy Technologies Office, with analysis of alternative jet fuels in collaboration with the U.S. Department of Transportation, Federal Aviation Administration. Airlines for America requested additional exploratory scenarios within FAA analytic framework. Airlines for America requested additional analysis using the same analytic framework, the Biomass Scenario Model. The results were presented at a public working meeting of the California Air Resources Board on including alternative jet fuel in the Low Carbon Fuel Standard on March 17, 2017 (https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/lcfs_meetings.htm). This presentation clarifies and annotates the slides from the public working meeting, and provides a link to the full data set. NREL does not advocate for or against the policies analyzed in this study.

  16. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    Science.gov (United States)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average

  17. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  18. Introduction: Hazard mapping

    Science.gov (United States)

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  19. Development of a tornado wind speed hazard model for limited area (TOWLA) for nuclear power plants at a coastline

    International Nuclear Information System (INIS)

    Hirakuchi, Hiromaru; Nohara, Daisuke; Sugimoto, Soichiro; Eguchi, Yuzuru; Hattori, Yasuo

    2016-01-01

    It is necessary for Japanese electric power companies to assess tornado risks on the nuclear power plants according to a new regulation in 2013. The new regulatory guide recommends to select a long narrow strip area along a coast line with the width of 5 km to the seaward and landward sides as a target area of tornado risk assessment, because most of Japanese tornados have been reported near the coast line, where all of Japanese nuclear power plants are located. However, it is very difficult to evaluate a tornado hazard along a coast line, because there is no available information of F-scale and damage length/width on tornadic waterspouts. The purpose of this study is to propose a new tornado wind hazard model for limited area (TOWLA), which can be apply to a long narrow strip area along a coastline. In order to consider tornadic waterspouts moved inland, we evaluate the number of waterspouts entering/passing the targeting area, and add them to the total number of the tornado occurred in the area. A characteristic of the model is to use 'segment lengths' instead of damage lengths. The segment length is a part of the tornado foot print in the long narrow strip area. We show two methods for segment length computation. One is based on tornado records; latitude and longitude of tornado genesis and dissipation locations. The other is to compute the expected segment length based on the geometrical relationship among the damage length, area width, and directional characteristics of tornado movement. The new model can also consider the variation of tornado intensity along the path length and across the path width. (author)

  20. Real-time slicing algorithm for Stereolithography (STL) CAD model applied in additive manufacturing industry

    Science.gov (United States)

    Adnan, F. A.; Romlay, F. R. M.; Shafiq, M.

    2018-04-01

    Owing to the advent of the industrial revolution 4.0, the need for further evaluating processes applied in the additive manufacturing application particularly the computational process for slicing is non-trivial. This paper evaluates a real-time slicing algorithm for slicing an STL formatted computer-aided design (CAD). A line-plane intersection equation was applied to perform the slicing procedure at any given height. The application of this algorithm has found to provide a better computational time regardless the number of facet in the STL model. The performance of this algorithm is evaluated by comparing the results of the computational time for different geometry.

  1. From path models to commands during additive printing of large-scale architectural designs

    Science.gov (United States)

    Chepchurov, M. S.; Zhukov, E. M.; Yakovlev, E. A.; Matveykin, V. G.

    2018-05-01

    The article considers the problem of automation of the formation of large complex parts, products and structures, especially for unique or small-batch objects produced by a method of additive technology [1]. Results of scientific research in search for the optimal design of a robotic complex, its modes of operation (work), structure of its control helped to impose the technical requirements on the technological process for manufacturing and design installation of the robotic complex. Research on virtual models of the robotic complexes allowed defining the main directions of design improvements and the main goal (purpose) of testing of the the manufactured prototype: checking the positioning accuracy of the working part.

  2. Assessing the effect, on animal model, of mixture of food additives, on the water balance.

    Science.gov (United States)

    Friedrich, Mariola; Kuchlewska, Magdalena

    2013-01-01

    The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.

  3. "Bunched Black Swans" in Complex Geosystems: Cross-Disciplinary Approaches to the Additive and Multiplicative Modelling of Correlated Extreme Bursts

    Science.gov (United States)

    Watkins, N. W.; Rypdal, M.; Lovsletten, O.

    2012-12-01

    For all natural hazards, the question of when the next "extreme event" (c.f. Taleb's "black swans") is expected is of obvious importance. In the environmental sciences users often frame such questions in terms of average "return periods", e.g. "is an X meter rise in the Thames water level a 1-in-Y year event ?". Frequently, however, we also care about the emergence of correlation, and whether the probability of several big events occurring in close succession is truly independent, i.e. are the black swans "bunched". A "big event", or a "burst", defined by its integrated signal above a threshold, might be a single, very large, event, or, instead, could in fact be a correlated series of "smaller" (i.e. less wildly fluctuating) events. Several available stochastic approaches provide quantitative information about such bursts, including Extreme Value Theory (EVT); the theory of records; level sets; sojourn times; and models of space-time "avalanches" of activity in non-equilibrium systems. Some focus more on the probability of single large events. Others are more concerned with extended dwell times above a given spatiotemporal threshold: However, the state of the art is not yet fully integrated, and the above-mentioned approaches differ in fundamental aspects. EVT is perhaps the best known in the geosciences. It is concerned with the distribution obeyed by the extremes of datasets, e.g. the 100 values obtained by considering the largest daily temperature recorded in each of the years of a century. However, the pioneering work from the 1920s on which EVT originally built was based on independent identically distributed samples, and took no account of memory and correlation that characterise many natural hazard time series. Ignoring this would fundamentally limit our ability to forecast; so much subsequent activity has been devoted to extending EVT to encompass dependence. A second group of approaches, by contrast, has notions of time and thus possible non

  4. Observations and model calculations of an additional layer in the topside ionosphere above Fortaleza, Brazil

    Directory of Open Access Journals (Sweden)

    B. Jenkins

    1997-06-01

    Full Text Available Calculations using the Sheffield University plasmasphere ionosphere model have shown that under certain conditions an additional layer can form in the low latitude topside ionosphere. This layer (the F3 layer has subsequently been observed in ionograms recorded at Fortaleza in Brazil. It has not been observed in ionograms recorded at the neighbouring station São Luis. Model calculations have shown that the F3 layer is most likely to form in summer at Fortaleza due to a combination of the neutral wind and the E×B drift acting to raise the plasma. At the location of São Luis, almost on the geomagnetic equator, the neutral wind has a smaller vertical component so the F3 layer does not form.

  5. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  6. Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology.

    Science.gov (United States)

    Tarone, Aaron M; Foran, David R

    2008-07-01

    Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.

  7. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  8. U.S. Department of Energy Workers' mental models of radiation and chemical hazards in the workplace

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Blanchard, K.A.; Lundgren, R.E.; McMakin, A.H.; Mosley, M.T.; Strom, D.J.

    1994-05-01

    A pilot study was performed to test the mental models methodology regarding knowledge and perceptions of U.S. Department of Energy contractor radiation workers about ionizing radiation and hazardous chemicals. The mental models methodology establishes a target population's beliefs about risks and compares them with current scientific knowledge. The ultimate intent is to develop risk communication guidelines that address information gaps or misperceptions that could affect decisions and behavior. In this study, 15 radiation workers from the Hanford Site in Washington State were interviewed about radiation exposure processes and effects. Their beliefs were mapped onto a science model of the same topics to see where differences occurred. In general, workers' mental models covered many of the high-level parts of the science model but did not have the same level of detail. The following concepts appeared to be well understood by most interviewees: types, form, and properties of workplace radiation; administrative and physical controls to reduce radiation exposure risk; and the relationship of dose and effects. However, several concepts were rarely mentioned by most interviewees, indicating potential gaps in worker understanding. Most workers did not discuss the wide range of measures for neutralizing or decontaminating individuals following internal contamination. Few noted specific ways of measuring dose or factors that affect dose. Few mentioned the range of possible effects, including genetic effects, birth defects, or high dose effects. Variables that influence potential effects were rarely discussed. Workers rarely mentioned how basic radiation principles influenced the source, type, or mitigation of radiation risk in the workplace

  9. GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis.

    Science.gov (United States)

    Stricker, Georg; Engelhardt, Alexander; Schulz, Daniel; Schmid, Matthias; Tresch, Achim; Gagneur, Julien

    2017-08-01

    Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. Often, the quantities of interest are the differential occupancies relative to controls, between genetic backgrounds, treatments, or combinations thereof. Current methods for differential occupancy of ChIP-Seq data rely however on binning or sliding window techniques, for which the choice of the window and bin sizes are subjective. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are objectively estimated from the data by cross-validation, eliminating ad hoc binning and windowing needed by current approaches. GenoGAM provides base-level and region-level significance testing for full factorial designs. Application to a ChIP-Seq dataset in yeast showed increased sensitivity over existing differential occupancy methods while controlling for type I error rate. By analyzing a set of DNA methylation data and illustrating an extension to a peak caller, we further demonstrate the potential of GenoGAM as a generic statistical modeling tool for genome-wide assays. Software is available from Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/GenoGAM.html . gagneur@in.tum.de. Supplementary information is available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Estimation in the positive stable shared frailty Cox proportional hazards model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Pipper, Christian Bressen

    2005-01-01

    model in situations where the correlated survival data show a decreasing association with time. In this paper, we devise a likelihood based estimation procedure for the positive stable shared frailty Cox model, which is expected to obtain high efficiency. The proposed estimator is provided with large...

  11. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    International Nuclear Information System (INIS)

    BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.

    1999-01-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample

  12. “Skill of Generalized Additive Model to Detect PM2.5 Health ...

    Science.gov (United States)

    Summary. Measures of health outcomes are collinear with meteorology and air quality, making analysis of connections between human health and air quality difficult. The purpose of this analysis was to determine time scales and periods shared by the variables of interest (and by implication scales and periods that are not shared). Hospital admissions, meteorology (temperature and relative humidity), and air quality (PM2.5 and daily maximum ozone) for New York City during the period 2000-2006 were decomposed into temporal scales ranging from 2 days to greater than two years using a complex wavelet transform. Health effects were modeled as functions of the wavelet components of meteorology and air quality using the generalized additive model (GAM) framework. This simulation study showed that GAM is extremely successful at extracting and estimating a health effect embedded in a dataset. It also shows that, if the objective in mind is to estimate the health signal but not to fully explain this signal, a simple GAM model with a single confounder (calendar time) whose smooth representation includes a sufficient number of constraints is as good as a more complex model.Introduction. In the context of wavelet regression, confounding occurs when two or more independent variables interact with the dependent variable at the same frequency. Confounding also acts on a variety of time scales, changing the PM2.5 coefficient (magnitude and sign) and its significance ac

  13. Bioadhesive agents in addition to oral contrast media - evaluation in an animal model

    International Nuclear Information System (INIS)

    Conrad, R.; Schneider, G.; Textor, J.; Schild, H.H.; Fimmers, R.

    1998-01-01

    Purpose: To evaluate the additional effect of bioadhesives in combination with iotrolan and barium as oral contrast media in an animal model. Method: The bioadhesives Noveon, CMC, Tylose and Carbopol 934 were added to iotrolan and barium. The solutions were administered to rabbits by a feeding tube. The animals were investigated by computed tomography (CT) and radiography after 0,5, 4, 12, 24 and in part after 48 hours. Mucosal coating and contrast filling of the bowel were evaluated. Results: Addition of bioadhesives to oral contrast media effected long-term contrast in the small intestine and colon, but no improvement in continuous filling and coating of the gastrointestinal tract was detected. Mucosal coating was seen only in short regions of the caecum and small intestine. In CT the best results for coating were observed with tylose and CMC, in radiography additionally with carbopol and noveon. All contrast medium solutions were well tolerated. Conclusion: The evaluated contrast medium solutions with bioadhesives have shown long-term contrast but no improvement in coating in comparison to conventional oral contrast media. (orig.) [de

  14. Effect of water addition in a microwave assisted thermal cracking of biomass tar models

    International Nuclear Information System (INIS)

    Warsita, Aris; Al-attab, K.A.; Zainal, Z.A.

    2017-01-01

    Highlights: • Effective tar thermal treatment with water addition using microwave is proposed. • The reactor temperature of 1200 °C can be reached quickly at bed height 120 mm. • The optimum water to tar ratio W/T was 0.3 for tar models. • Temperature greatly effect tar removal at various W/T rates. - Abstract: Producer gas from biomass gasification is plagued by the presence of tar which causes pipe blockages. Thermal and catalytic treatments in a microwave reactor have been shown to be effective methods in removing tar from producer gas. A question arises as to the possibility of enhancing the removal mechanism by adding water into the reactor. Toluene and naphthalene were used as tar models in the present study with N_2 as the carrier gas followed by the use of simulated producer gas. Thermal treatment with various amount of water was added at temperatures in the range of 800–1200 °C. The tar removal efficiency obtained 95.83% at the optimum temperature of 1200 °C for naphthalene in for toluene 96.32% at 1050 °C at water to tar ratio (W/T) of 0.3. This study shows that the removal of tar by microwave irradiation with water addition is a significant and effective method in tar cracking.

  15. Combining neuroprotectants in a model of retinal degeneration: no additive benefit.

    Directory of Open Access Journals (Sweden)

    Fabiana Di Marco

    Full Text Available The central nervous system undergoing degeneration can be stabilized, and in some models can be restored to function, by neuroprotective treatments. Photobiomodulation (PBM and dietary saffron are distinctive as neuroprotectants in that they upregulate protective mechanisms, without causing measurable tissue damage. This study reports a first attempt to combine the actions of PBM and saffron. Our working hypothesis was that the actions of PBM and saffron in protecting retinal photoreceptors, in a rat light damage model, would be additive. Results confirmed the neuroprotective potential of each used separately, but gave no evidence that their effects are additive. Detailed analysis suggests that there is actually a negative interaction between PBM and saffron when given simultaneously, with a consequent reduction of the neuroprotection. Specific testing will be required to understand the mechanisms involved and to establish whether there is clinical potential in combining neuroprotectants, to improve the quality of life of people affected by retinal pathology, such as age-related macular degeneration, the major cause of blindness and visual impairment in older adults.

  16. Great paleoearthquakes of the central Himalaya and their implications for seismotectonic models and seismic hazard assessment

    Science.gov (United States)

    Yule, D.; Lave, J.; Kumar, S.; Wesnousky, S.

    2007-12-01

    Himalaya in over 500 years and that Mw 7.5-8.4 earthquakes are the 'moderate' earthquakes'. Further study to constrain the lateral extent and recurrence of the great paleoearthquakes of the central Himalaya is critical to answer important questions about the Himalaya earthquake cycle and the seismic hazard facing the rapidly urbanizing population of the region.

  17. Evaluation of protocol change in burn-care management using the Cox proportional hazards model with time-dependent covariates.

    Science.gov (United States)

    Ichida, J M; Wassell, J T; Keller, M D; Ayers, L W

    1993-02-01

    Survival analysis methods are valuable for detecting intervention effects because detailed information from patient records and sensitive outcome measures are used. The burn unit at a large university hospital replaced routine bathing with total body bathing using chlorhexidine gluconate for antimicrobial effect. A Cox proportional hazards model was used to analyse time from admission until either infection with Staphylococcus aureus or discharge for 155 patients, controlling for burn severity and two time-dependent covariates: days until first wound excision and days until first administration of prophylactic antibiotics. The risk of infection was 55 per cent higher in the historical control group, although not statistically significant. There was also some indication that early wound excision may be important as an infection-control measure for burn patients.

  18. When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy - Part 1: Model components for sources parameterization

    Science.gov (United States)

    Azzaro, Raffaele; Barberi, Graziella; D'Amico, Salvatore; Pace, Bruno; Peruzza, Laura; Tuvè, Tiziana

    2017-11-01

    The volcanic region of Mt. Etna (Sicily, Italy) represents a perfect lab for testing innovative approaches to seismic hazard assessment. This is largely due to the long record of historical and recent observations of seismic and tectonic phenomena, the high quality of various geophysical monitoring and particularly the rapid geodynamics clearly demonstrate some seismotectonic processes. We present here the model components and the procedures adopted for defining seismic sources to be used in a new generation of probabilistic seismic hazard assessment (PSHA), the first results and maps of which are presented in a companion paper, Peruzza et al. (2017). The sources include, with increasing complexity, seismic zones, individual faults and gridded point sources that are obtained by integrating geological field data with long and short earthquake datasets (the historical macroseismic catalogue, which covers about 3 centuries, and a high-quality instrumental location database for the last decades). The analysis of the frequency-magnitude distribution identifies two main fault systems within the volcanic complex featuring different seismic rates that are controlled essentially by volcano-tectonic processes. We discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults by using an historical approach and a purely geologic method. We derive a magnitude-size scaling relationship specifically for this volcanic area, which has been implemented into a recently developed software tool - FiSH (Pace et al., 2016) - that we use to calculate the characteristic magnitudes and the related mean recurrence times expected for each fault. Results suggest that for the Mt. Etna area, the traditional assumptions of uniform and Poissonian seismicity can be relaxed; a time-dependent fault-based modeling, joined with a 3-D imaging of volcano-tectonic sources depicted by the recent instrumental seismicity, can therefore be implemented in PSHA maps

  19. First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps

    Directory of Open Access Journals (Sweden)

    S. K. Allen

    2009-03-01

    Full Text Available Flood and mass movements originating from glacial environments are particularly devastating in populated mountain regions of the world, but in the remote Mount Cook region of New Zealand's Southern Alps minimal attention has been given to these processes. Glacial environments are characterized by high mass turnover and combined with changing climatic conditions, potential problems and process interactions can evolve rapidly. Remote sensing based terrain mapping, geographic information systems and flow path modelling are integrated here to explore the extent of ice avalanche, debris flow and lake flood hazard potential in the Mount Cook region. Numerous proglacial lakes have formed during recent decades, but well vegetated, low gradient outlet areas suggest catastrophic dam failure and flooding is unlikely. However, potential impacts from incoming mass movements of ice, debris or rock could lead to dam overtopping, particularly where lakes are forming directly beneath steep slopes. Physically based numerical modeling with RAMMS was introduced for local scale analyses of rock avalanche events, and was shown to be a useful tool for establishing accurate flow path dynamics and estimating potential event magnitudes. Potential debris flows originating from steep moraine and talus slopes can reach road and built infrastructure when worst-case runout distances are considered, while potential effects from ice avalanches are limited to walking tracks and alpine huts located in close proximity to initiation zones of steep ice. Further local scale studies of these processes are required, leading towards a full hazard assessment, and changing glacial conditions over coming decades will necessitate ongoing monitoring and reassessment of initiation zones and potential impacts.

  20. A Stochastic Model for the Landing Dispersion of Hazard Detection and Avoidance Capable Flight Systems

    Science.gov (United States)

    Witte, L.

    2014-06-01

    To support landing site assessments for HDA-capable flight systems and to facilitate trade studies between the potential HDA architectures versus the yielded probability of safe landing a stochastic landing dispersion model has been developed.