WorldWideScience

Sample records for additional sex combs

  1. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}.

    Science.gov (United States)

    Park, Ui-Hyun; Yoon, Seung Kew; Park, Taesun; Kim, Eun-Joo; Um, Soo-Jong

    2011-01-14

    Our previous studies have suggested that the mammalian additional sex comb-like 1 protein functions as a coactivator or repressor of retinoic acid receptors in a cell-specific manner. Here, we investigated the roles of additional sex comb-like 1 proteins in regulating peroxisome proliferator-activated receptors (PPARs). In pulldown assays in vitro and in immunoprecipitation assays in vivo, ASXL1 and its paralog, ASXL2, interacted with PPARα and PPARγ. In 3T3-L1 preadipocyte cells, overexpression of ASXL1 inhibited the induction of PPARγ activity by rosiglitazone, as shown by transcription assays, and completely suppressed adipogenesis, as shown by Oil Red O staining. In contrast, overexpression of ASXL2 greatly enhanced rosiglitazone-induced PPARγ activity and enhanced adipogenesis. Deletion of the heterochromatin protein 1 (HP1)-binding domain from ASXL1 caused the mutant protein to enhance adipogenesis similarly to ASXL2, indicating that HP1 binding is required for the adipogenesis-suppressing activity of ASXL1. Adipocyte differentiation was associated with a gradual decrease in ASXL1 expression but did not affect ASXL2 expression. Knockdown of ASXL1 and ASXL2 had reciprocal effects on adipogenesis. In chromatin immunoprecipitation assays in 3T3-L1 cells, ASXL1 occupied the promoter of the PPARγ target gene aP2 together with HP1α and Lys-9-methylated histone H3, whereas ASXL2 occupied the aP2 promoter together with histone-lysine N-methyltransferase MLL1 and Lys-9-acetylated and Lys-4-methylated H3 histones. Finally, microarray analysis demonstrated that ASXL1 represses, whereas ASXL2 increases, the expression of adipogenic genes, most of which are PPARγ targets. These results suggest that members of the additional sex comb-like family provide complex regulation of adipogenesis via differential modulation of PPARγ activity.

  2. Male- and female-specific variants of doublesex gene products have different roles to play towards regulation of Sex combs reduced expression and sex comb morphogenesis in Drosophila

    Indian Academy of Sciences (India)

    Thangjam Ranjita Devi; B V Shyamala

    2013-09-01

    Sexually dimorphic characters have two-fold complexities in pattern formation as they have to get input fromboth somatic sex determination as well as the positional determining regulators. Sex comb development in Drosophila requires functions of the somatic sex-determining gene doublesex and the homeotic gene Sex combs reduced. Attempts have not been made to decipher the role of dsx in imparting sexually dimorphic expression of SCR and the differential function of sex-specific variants of dsx products in sex comb development. Our results in this study indicate that male-like pattern of SCR expression is independent of dsx function, and dsxF must be responsible for bringing about dimorphism in SCR expression, whereas dsxM function is required with Scr for the morphogenesis of sex comb.

  3. Analysis of the Sequence and Phenotype of Drosophila Sex combs reduced Alleles Reveals Potential Functions of Conserved Protein Motifs of the Sex combs reduced Protein

    OpenAIRE

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2009-01-01

    The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr2, Scr4, Scr11, Scr13, Scr13A, and Scr16) and one was an intragenic deletion (Scr17). Five hypomorphic alleles were missense mutations (Scr1, Scr3, Scr5, Scr6, and Scr8) and one was a small protein deletion (Scr15). Protein sequence changes were ...

  4. Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern.

    Science.gov (United States)

    Rogers, B T; Peterson, M D; Kaufman, T C

    1997-01-01

    The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.

  5. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    OpenAIRE

    Aidan J Peterson; Mallin, Daniel R.; Francis, Nicole J.; Ketel, Carrie S.; Stamm, Joyce; Voeller, Rochus K.; Kingston, Robert E.; Jeffrey A Simon

    2004-01-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH int...

  6. Variation and evolution of male sex combs in Drosophila: nature of selection response and theories of genetic variation for sexual traits.

    Science.gov (United States)

    Ahuja, Abha; Singh, Rama S

    2008-05-01

    We investigated the genetic architecture of variation in male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila. Twenty-four generations of divergent artificial selection for sex comb bristle number in a heterogeneous population of Drosophila melanogaster resulted in a significant response that was more pronounced in the direction of low bristle numbers. We observed a strong positive correlated response to selection in the corresponding female transverse bristle row. The correlated response in male abdominal and sternopleural bristle numbers, on the other hand, did not follow the same pattern as sex comb bristle number differences between selection lines. Relaxation-of-selection experiments along with mate choice and fecundity assays using the selection lines developed demonstrated the action of stabilizing selection on sex comb bristle number. Our results show (1) substantial genetic variation underlying sex comb bristle number variation; (2) a weak relationship between the sex comb and developmentally related, non-sex bristle systems; and (3) that sexual selection may be a driving force in sex comb evolution, indicating the potential of sex combs to diversify rapidly during population differentiation and speciation. We discuss the implications of these results for theories of genetic variation in display and nondisplay male sex traits.

  7. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    Science.gov (United States)

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A

    2004-07-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.

  8. Cloning of the homeotic Sex combs reduced gene in Drosophila and in situ localization of its transcripts.

    Science.gov (United States)

    Kuroiwa, A; Kloter, U; Baumgartner, P; Gehring, W J

    1985-12-30

    We have extended our ;chromosomal walk' in the Antennapedia-complex (ANT-C) by isolating overlapping DNA sequences spanning the chromosomal segment between Antennapedia (Antp) and Deformed (Dfd). The transcription units, homeoboxes and M-repeats were mapped within this region. Four transcription units Antp, fushi tarazu (ftz), Sex combs reduced (Scr) and Dfd contain both a homeobox and an M repeat, whereas at least two additional transcription units, x and z, were found to lack these elements. The Scr locus was identified by deletion mapping. It consists of at least two exonic regions separated by a large intron. The homeobox is located in the 3' exon and is 82% homologous to the one in Antp. Scr encodes a major 3.9-kb RNA. A corresponding cDNA clone was used as a probe for in situ hybridization to sections of various embryonic stages. At gastrula stages Scr transcripts accumulate in the posterior head and the anterior thoracic region of the germ band. At later stages a strong accumulation of transcripts is observed in the suboesophageal and the prothoracic ganglion of the ventral nervous system.

  9. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila.

    Science.gov (United States)

    Kang, Hyuckjoon; McElroy, Kyle A; Jung, Youngsook Lucy; Alekseyenko, Artyom A; Zee, Barry M; Park, Peter J; Kuroda, Mitzi I

    2015-06-01

    The Polycomb group (PcG) proteins are key regulators of development in Drosophila and are strongly implicated in human health and disease. How PcG complexes form repressive chromatin domains remains unclear. Using cross-linked affinity purifications of BioTAP-Polycomb (Pc) or BioTAP-Enhancer of zeste [E(z)], we captured all PcG-repressive complex 1 (PRC1) or PRC2 core components and Sex comb on midleg (Scm) as the only protein strongly enriched with both complexes. Although previously not linked to PRC2, we confirmed direct binding of Scm and PRC2 using recombinant protein expression and colocalization of Scm with PRC1, PRC2, and H3K27me3 in embryos and cultured cells using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing). Furthermore, we found that RNAi knockdown of Scm and overexpression of the dominant-negative Scm-SAM (sterile α motif) domain both affected the binding pattern of E(z) on polytene chromosomes. Aberrant localization of the Scm-SAM domain in long contiguous regions on polytene chromosomes revealed its independent ability to spread on chromatin, consistent with its previously described ability to oligomerize in vitro. Pull-downs of BioTAP-Scm captured PRC1 and PRC2 and additional repressive complexes, including PhoRC, LINT, and CtBP. We propose that Scm is a key mediator connecting PRC1, PRC2, and transcriptional silencing. Combined with previous structural and genetic analyses, our results strongly suggest that Scm coordinates PcG complexes and polymerizes to produce broad domains of PcG silencing.

  10. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  11. The large X-effect on secondary sexual characters and the genetics of variation in sex comb tooth number in Drosophila subobscura.

    Science.gov (United States)

    Mittleman, Briana E; Manzano-Winkler, Brenda; Hall, Julianne B; Korunes, Katharine L; Noor, Mohamed A F

    2017-01-01

    Genetic studies of secondary sexual traits provide insights into whether and how selection drove their divergence among populations, and these studies often focus on the fraction of variation attributable to genes on the X-chromosome. However, such studies may sometimes misinterpret the amount of variation attributable to the X-chromosome if using only simple reciprocal F1 crosses, or they may presume sexual selection has affected the observed phenotypic variation. We examined the genetics of a secondary sexual trait, male sex comb size, in Drosophila subobscura. This species bears unusually large sex combs for its species group, and therefore, this trait may be a good candidate for having been affected by natural or sexual selection. We observed significant heritable variation in number of teeth of the distal sex comb across strains. While reciprocal F1 crosses seemed to implicate a disproportionate X-chromosome effect, further examination in the F2 progeny showed that transgressive autosomal effects inflated the estimate of variation associated with the X-chromosome in the F1. Instead, the X-chromosome appears to confer the smallest contribution of all major chromosomes to the observed phenotypic variation. Further, we failed to detect effects on copulation latency or duration associated with the observed phenotypic variation. Overall, this study presents an examination of the genetics underlying segregating phenotypic variation within species and illustrates two common pitfalls associated with some past studies of the genetic basis of secondary sexual traits.

  12. Expression and properties of wild-type and mutant forms of the Drosophila sex comb on midleg (SCM) repressor protein.

    Science.gov (United States)

    Bornemann, D; Miller, E; Simon, J

    1998-10-01

    The Sex comb on midleg (Scm) gene encodes a transcriptional repressor of the Polycomb group (PcG). Here we show that SCM protein is nuclear and that its expression is widespread during fly development. SCM protein contains a C-terminal domain, termed the SPM domain, which mediates protein-protein interactions. The biochemical function of another domain consisting of two 100-amino-acid-long repeats, termed "mbt" repeats, is unknown. We have determined the molecular lesions of nine Scm mutant alleles, which identify functional requirements for specific domains. The Scm alleles were tested for genetic interactions with mutations in other PcG genes. Intriguingly, three hypomorphic Scm mutations, which map within an mbt repeat, interact with PcG mutations more strongly than do Scm null alleles. The strongest interactions produce partial synthetic lethality that affects doubly heterozygous females more severely than males. We show that mbt repeat alleles produce stable SCM proteins that associate with normal sites in polytene chromosomes. We also analyzed progeny from Scm mutant germline clones to compare the effects of an mbt repeat mutation during embryonic vs. pupal development. We suggest that the mbt repeat alleles produce altered SCM proteins that incorporate into and impair function of PcG protein complexes.

  13. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head.

    Science.gov (United States)

    Hughes, C L; Kaufman, T C

    2000-09-01

    Insects have evolved a large variety of specialized feeding strategies, with a corresponding variability in mouthpart morphology. We have, however, little understanding of the developmental mechanisms that underlie this diversity. Until recently it was difficult to perform any analysis of gene function outside of the genetic model insects Drosophila melanogaster and Tribolium castaneum. In this paper, we report the use of dsRNA-mediated interference (RNAi) to dissect gene function in the development of the milkweed bug Oncopeltus fasciatus, which has specialized suctorial mouthparts. The Hox genes Deformed (Dfd), proboscipedia (pb) and Sex combs reduced (Scr) have previously been shown to be expressed in the gnathal appendages of this species. Strikingly, the milkweed bug was found to have an unusual expression pattern of pb. Here, by analyzing single and combination RNAi depletions, we find that Dfd, pb and Scr are used in the milkweed bug to specify the identity of the mouthparts. The exact roles of the genes, however, are different from what is known in the two genetic model insects. The maxillary appendages in the bug are determined by the activities of the genes Dfd and Scr, rather than Dfd and pb as in the fly and beetle. The mandibular appendages are specified by Dfd, but their unique morphology in Oncopeltus suggests that Dfd's target genes are different. As in flies and beetles, the labium is specified by the combined activities of pb and Scr, but again, the function of pb appears to be different. Additionally, the regulatory control of pb by the other two genes seems to be different in the bug than in either of the other species. These novelties in Hox function, expression pattern and regulatory relationships may have been important for the evolution of the unique Hemipteran head.

  14. A genetic screen in Drosophila implicates Sex comb on midleg (Scm) in tissue overgrowth and mechanisms of Scm degradation by Wds.

    Science.gov (United States)

    Guo, Jiwei; Jin, Dan

    2015-05-01

    The sex comb on midleg (scm) gene encodes a transcriptional repressor and belongs to the Polycomb group (PcG) of genes, which regulates growth in Drosophila. Scm interacts with Polyhomeotic (a PcG protein) in vitro by recognizing its SPM domain. The homologous human protein, Sex comb on midleg-like 2 (Scml2), has been implicated in malignant brain tumors. Will die slowly (Wds) is another factor that regulates Drosophila development, and its homologous human protein, WD repeat domain 5(Wdr5), is part of the mixed lineage leukemia 1(MLL1) complex that promotes histone H3Lys4 methylation. Like Scml2, Wdr5 has been implicated in certain cancers; this protein plays an important role in leukemogenesis. In this study, we find that loss-of-function mutations in Scm result in non-autonomous tissue overgrowth in Drosophila, and determine that Scm is essential for ommatidium development and important for cell survival in Drosophila. Furthermore, our research suggests a relationship between Wds and Scm; Wds promotes Scm degradation through ubiquitination in vitro in Drosophila.

  15. Frequency comb swept lasers.

    Science.gov (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  16. Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene.

    Science.gov (United States)

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L; Ketel, Carrie S; Mallin, Daniel R; Simon, Jeffrey A

    2010-06-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.

  17. Phononic Frequency Comb via Intrinsic Three-Wave Mixing

    Science.gov (United States)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-01

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  18. Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx.

    Directory of Open Access Journals (Sweden)

    Kara Bischoff

    Full Text Available BACKGROUND: The coordinated action of genes that control patterning, cell fate determination, cell size, and cell adhesion is required for proper wing formation in Drosophila. Defects in any of these basic processes can lead to wing aberrations, including blisters. The xenicid mutation was originally identified in a screen designed to uncover regulators of adhesion between wing surfaces [1]. PRINCIPAL FINDINGS: Here, we demonstrate that expression of the betaPS integrin or the patterning protein Engrailed are not affected in developing wing imaginal discs in xenicid mutants. Instead, expression of the homeotic protein Ultrabithorax (Ubx is strongly increased in xenicid mutant cells. CONCLUSION: Our results suggest that upregulation of Ubx transforms cells from a wing blade fate to a haltere fate, and that the presence of haltere cells within the wing blade is the primary defect leading to the adult wing phenotypes observed.

  19. Modeling Frequency Comb Sources

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-06-01

    Full Text Available Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.

  20. Hyperfine phononic frequency comb

    CERN Document Server

    Ganesan, Adarsh; Seshia, Ashwin A

    2016-01-01

    Optical frequency combs [1-8] have resulted in significant advances in optical frequency metrology and found wide application to precise physical measurements [1-4, 9] and molecular fingerprinting [8]. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this letter, we report the first clear experimental evidence for a phononic frequency comb. In contrast to the Kerr nonlinearity [10] in optical frequency comb formation, the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an auto-parametrically excited sub-harmonic mode [16]. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define attributes to control the features [17-18] associated with comb formation in such a system. Further, the interplay between these nonlinear resonances and the well-known Duffing phenomenon [12-14] is also observed. The present...

  1. Hair breakage during combing. IV. Brushing and combing hair.

    Science.gov (United States)

    Robbins, Clarence; Kamath, Yash

    2007-01-01

    During combing of hair, longer fiber breaks (>2.5 cm) occur principally by impact loading of looped crossover hairs, while short segment breaks (bleaching hair, a longer comb stroke, increasing fiber curvature, wet combing versus dry combing, and brushing versus combing all provide for an increase in long segment breaks and this ratio, with the largest effect produced by brushing.

  2. Combing the Globe

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    China’s top comb maker aims to sell its high-end hand-crafted products to overseas customers while improving its brand image For some, woodcarving and small carpentry work are hobbies. But for Tan Chuanhua and his Carpenter Tan comb brand, the woodworking craft has become a deep-rooted moneymaker. The Chongqing-based handcraft wood comb maker raised HK$140 million ($18 mil-

  3. Universal Optical Frequency Comb

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L

    2010-01-01

    We demonstrate that whispering gallery mode resonators can be utilized to generate optical frequency combs based on four wave mixing process at virtually any frequency that lies in the transparency window of the resonator host material. We show theoretically how the morphology of the resonator can be engineered to produce a family of spectrally equidistant modes with anomalous group velocity dispersion appropriate for the comb generation. We present experimental results for a frequency comb centered at 794 nm to support our theoretical findings.

  4. Dynamics of comb-of-comb networks

    Science.gov (United States)

    Liu, Hongxiao; Lin, Yuan; Dolgushev, Maxim; Zhang, Zhongzhi

    2016-03-01

    The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as ds→2 . The ds leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.

  5. The effect of comb architecture on complex coacervation.

    Science.gov (United States)

    Johnston, Brandon M; Johnston, Cameron W; Letteri, Rachel A; Lytle, Tyler K; Sing, Charles E; Emrick, Todd; Perry, Sarah L

    2017-09-20

    Complex coacervation is a widely utilized technique for effecting phase separation, though predictive understanding of molecular-level details remains underdeveloped. Here, we couple coarse-grained Monte Carlo simulations with experimental efforts using a polypeptide-based model system to investigate how a comb-like architecture affects complex coacervation and coacervate stability. Specifically, the phase separation behavior of linear polycation-linear polyanion pairs was compared to that of comb polycation-linear polyanion and comb polycation-comb polyanion pairs. The comb architecture was found to mitigate cooperative interactions between oppositely charged polymers, as no discernible phase separation was observed for comb-comb pairs and complex coacervation of linear-linear pairs yielded stable coacervates at higher salt concentration than linear-comb pairs. This behavior was attributed to differences in counterion release by linear vs. comb polymers during polyeletrolyte complexation. Additionally, the comb polycation formed coacervates with both stereoregular poly(l-glutamate) and racemic poly(d,l-glutamate), whereas the linear polycation formed coacervates only with the racemic polyanion. In contrast, solid precipitates were obtained from mixtures of stereoregular poly(l-lysine) and poly(l-glutamate). Moreover, the formation of coacervates from cationic comb polymers incorporating up to ∼90% pendant zwitterionic groups demonstrated the potential for inclusion of comonomers to modulate the hydrophilicity and/or other properties of a coacervate-forming polymer. These results provide the first detailed investigation into the role of polymer architecture on complex coacervation using a chemically and architecturally well-defined model system, and highlight the need for additional research on this topic.

  6. Dynamics of comb-of-comb-network polymers in random layered flows

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  7. Dynamics of comb-of-comb-network polymers in random layered flows.

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.

  8. Integrated Photonic Comb Generation: Applications in Coherent Communication and Sensing

    Science.gov (United States)

    Parker, John S.

    Integrated photonics combines many optical components including lasers, modulators, waveguides, and detectors in close proximity via homogeneous (monolithic) or heterogeneous (using multiple materials) integration. This improves stability for interferometers and lasers, reduces the occurrence of unwanted reflections, and it avoids coupling losses between different components as they are on the same chip. Thus, less power is needed to compensate for these added losses, and less heat needs to be removed due to these power savings. In addition, integration allows the many components that comprise a system to be fabricated together, thereby reducing the cost per system and allowing rapid scaling in production throughput. Integrated optical combs have many applications including: metrology, THz frequency generation, arbitrary waveform generation, optical clocks, photonic analog-to-digital converters, sensing (imaging), spectroscopy, and data communication. A comb is a set of optical sources evenly spaced in frequency. Several methods of comb generation including mode-locking and optical parametric oscillation produce phase-matched optical outputs with a fixed phase relationship between the frequency lines. When the absolute frequency of a single comb line is stabilized along with the frequency spacing between comb lines, absolute phase and frequency precision can be achieved over the entire comb bandwidth. This functionality provides tremendous benefits to many applications such as coherent communication and optical sensing. The goals for this work were achieving a broad comb bandwidth and noise reduction, i.e., frequency and phase stability. Integrated mode-locked lasers on the InGaAsP/InP material platform were chosen, as they could be monolithically integrated with the wide range of highly functional and versatile photonic integrated circuits (PICs) previously demonstrated on this platform at UCSB. Gain flattening filters were implemented to increase the comb

  9. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  10. Dynamics of microresonator frequency comb generation: models and stability

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2016-06-01

    Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  11. Dissipative soliton comb

    CERN Document Server

    Podivilov, Evgeniy V; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Babin, Sergey A

    2016-01-01

    Dissipative solitons are stable localized coherent structures with linear frequency chirp generated in normal-dispersion mode-locked lasers. The soliton energy in fiber lasers is limited by the Raman effect, but implementation of intracavity feedback for the Stokes wave enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming a "dissipative soliton comb" in the frequency domain. We observed up to eight equidistant components in a 400-nm interval demonstrating compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications.

  12. Dual-comb MIXSEL

    Science.gov (United States)

    Link, S. M.; Zaugg, C. A.; Klenner, A.; Mangold, M.; Golling, M.; Tilma, B. W.; Keller, U.

    2015-03-01

    We present a single semiconductor disk laser simultaneously emitting two different gigahertz modelocked pulse trains. A birefringent crystal inside a modelocked integrated external-cavity surface-emitting laser (MIXSEL) separates the cavity beam into two spatially separated beams with perpendicular polarizations on the MIXSEL chip. This MIXSEL then generates two orthogonally polarized collinear modelocked pulse trains from one simple straight cavity. Superimposing the beams on a photo detector creates a microwave beat signal, representing a strikingly simple setup to down-convert the terahertz optical frequencies into the electronically accessible microwave regime. This makes the dual-comb MIXSEL scheme an ultra-compact and cost-efficient candidate for dual-comb spectroscopy applications.

  13. Laser Spectroscopy and Frequency Combs

    Science.gov (United States)

    Hänsch, Theodor W.; Picqué, Nathalie

    2013-12-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation.

  14. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  15. Optimal Sharpening of Compensated Comb Decimation Filters: Analysis and Design

    Directory of Open Access Journals (Sweden)

    David Ernesto Troncoso Romero

    2014-01-01

    Full Text Available Comb filters are a class of low-complexity filters especially useful for multistage decimation processes. However, the magnitude response of comb filters presents a droop in the passband region and low stopband attenuation, which is undesirable in many applications. In this work, it is shown that, for stringent magnitude specifications, sharpening compensated comb filters requires a lower-degree sharpening polynomial compared to sharpening comb filters without compensation, resulting in a solution with lower computational complexity. Using a simple three-addition compensator and an optimization-based derivation of sharpening polynomials, we introduce an effective low-complexity filtering scheme. Design examples are presented in order to show the performance improvement in terms of passband distortion and selectivity compared to other methods based on the traditional Kaiser-Hamming sharpening and the Chebyshev sharpening techniques recently introduced in the literature.

  16. Raman-assisted coherent, mid-infrared frequency combs in silicon microresonators

    CERN Document Server

    Griffith, Austin G; Okawachi, Yoshitomo; Cardenas, Jaime; Mohanty, Aseema; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    We demonstrate the first low-noise mid-IR frequency comb source using a silicon microresonator. Our observation of strong Raman scattering lines in the generated comb suggests that Raman and four-wave mixing interactions play a role in assisting the transition to the low-noise state. In addition, we characterize, the intracavity comb generation dynamics using an integrated PIN diode, which takes advantage of the inherent three-photon absorption process in silicon.

  17. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera development and longevity.

    Directory of Open Access Journals (Sweden)

    Judy Y Wu

    Full Text Available BACKGROUND: Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. METHODOLOGY/PRINCIPAL FINDINGS: Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment or in relatively uncontaminated brood comb (control. Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8 of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. CONCLUSIONS/SIGNIFICANCE: This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor

  18. Optical frequency combs generated mechanically

    CERN Document Server

    Sumetsky, M

    2016-01-01

    It is shown that a highly equidistant optical frequency comb can be generated by the parametric excitation of an optical bottle microresonator with nanoscale effective radius variation by its natural mechanical vibrations.

  19. Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling

    Science.gov (United States)

    Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel

    2017-06-01

    Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.

  20. Microresonator Frequency Comb Optical Clock

    Science.gov (United States)

    2014-07-22

    Number Microresonator frequency comb optical clock Block 13: Supplementary Note © 2014 . Published in Optica , Vol. Ed. 0 1, (1) (2014), (, (1). DoD...Oscillators. http://dx.doi.org/10.1364/ OPTICA .1.000010 1. INTRODUCTION Optical frequency combs enable extraordinary measurement precision and accuracy...1, No. 1 / July 2014 / Optica 10 deviation for 1 s averaging is completely dominated by the Rb reference, and the microcomb contribution is only ɚ

  1. Unilateral antler combs from Romuliana

    Directory of Open Access Journals (Sweden)

    Petković Sofija

    2006-01-01

    Full Text Available In the course of investigations at Romuliana nine antler three-partite combs with a single row of teeth were found in the Late Roman horizons dating from the late 4th - mid 5th century. They were found in Tower 19, in the Palace II sector and in the Thermae sector. The combs can be classified as two types: three-partite unilateral combs with semicircular handle (Petković comb type VII and three-partite unilateral combs with triangular handle decorated with horse protomes (Petković comb type VI. Two groups of these finds were distinguished after more detailed analysis; the earlier one including specimens originating from the Chernyahov-Sîntana de Mureº culture and later one including specimens made under "barbarian"influence and produced in Romuliana. These finds confirm the continuity of settlement at Romuliana in the Late Roman period, from the final quarter of the 4th until the end of the 5th century and open up the question of the character of the settlement.

  2. [Gender, medicine and consumer culture: the cultural history of comb in the Ming and Qing Dynasties].

    Science.gov (United States)

    Chen, Siyan

    2014-09-01

    In the Ming and Qing Dynasties, in addition to combing the hair, the comb also gradually played a role in people's daily life for disease treatment and keeping people's health. In short, during this period, the characteristic of comb reveal, as a whole, its reinforcing practicability and weakening of its ornamentality. During its application, people's behavioral activities endowed the comb with definite cultural connotation, which, thanks to the presence of gender and personality, became the symbol for expressing love between man and woman. By analogizing people's thought, since the comb could dredge something. Therefore, it can be used to cure diseases. Thus, it could be seen that, based on consumer's cultural description, the comb, tiny as it may be, did reflect the aesthetic ideas and interests and daily life-preservation habit of the literati due to the flourishing of book market in the Ming and Qing Dynasties.

  3. Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus.

    Science.gov (United States)

    Shinzato, Naoya; Muramatsu, Mizuho; Watanabe, Yoshio; Matsui, Toru

    2005-08-01

    The mechanism of the exclusive growth of Termitomyces in fungus combs with fungi-growing termites, O. formosanus was examined using laboratory scale fungus combs. In the combs without the termites, vigorous growth of unidentified fungi was observed although no significant change was found in the case of the combs with termites. In addition, these results were reproducible even when incubated in a separated dish, suggesting that the physicochemical conditions were not the reason for the growth. With the molecular based analysis for the microbial communities in the combs, monoculture of the Termitomyces in the combs with termites was confirmed while the bacterial communities were independent either with or without termites. Possible mechanism of the exclusive growth of Termitomyces, such as the selective grazing of pathogenic fungi or contribution of antifungal activity giving actinomycetes were also discussed.

  4. Scientific Opinion on Rooster Combs Extract

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-06-01

    Full Text Available Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to carry out the additional assessment for ‘Rooster Combs Extract’ (RCE as a food ingredient in the context of Regulation (EC No 258/97, taking into account the comments and objections of a scientific nature raised by Member States. Rooster combs extract results from a production process involving enzymatic hydrolysis of rooster combs and subsequent filtration, concentration and precipitation steps. The principle constituents of RCE are the glycosaminoglycans hyaluronic acid, chondroitin sulphate A and dermatan sulphate. The applicant intends to add RCE to a number of dairy products with a recommended maximum intake of 80 mg RCE per portion and per day. The target population is the general population, with the exception of pregnant women, children and people with adverse reactions to sodium hyaluronate and/or avian protein. In the high intake scenario for “consumers only”, the highest daily intake would occur in adults in Belgium (0.788 g. The highest intake scenario for “all subjects” was estimated for adolescents in Denmark (0.427 g/day. The Panel notes that no adverse effects were observed at the highest tested dose of 600 mg/kg bw per day in a 90-day oral toxicity study in rats. Considering the nature, the natural occurrence and previous consumption of RCE constituents, the Panel is of the opinion that the margin between the intended as well as the estimated maximum possible intake of RCE in relation to the highest dose administered to rats without adverse effects in a subchronic oral toxicity study is sufficient. The Panel concludes that the novel food ingredient, Rooster Comb Extract, is safe under the proposed uses and use levels.

  5. Frequency Comb Velocity Modulation Spectroscopy

    Science.gov (United States)

    Cossel, Kevin C.; Sinclair, Laura C.; Coffey, Tyler; Cornell, Eric; Ye, Jun

    2011-06-01

    We have developed a novel technique for rapid ion-sensitive spectroscopy over a broad spectral bandwidth by combining the high sensitivity of velocity modulation spectroscopy (VMS) with the parallel nature and high frequency accuracy of cavity-enhanced direct frequency comb spectroscopy. Prior to this research, no techniques have been capable of high sensitivity velocity modulation spectroscopy on every parallel detection channel over such a broad spectral range. We have demonstrated the power of this technique by measuring the A^2Π_u - X^2Σ_g^+ (4,2) band of N_2^+ at 830 nm with an absorption sensitivity of 1×10-6 for each of 1500 simultaneous measurement channels spanning 150 Cm-1. A densely sampled spectrum consisting of interleaved measurements to achieve 75 MHz spacing is acquired in under an hour. This technique is ideally suited for high resolution survey spectroscopy of molecular ions with applications including chemical physics, astrochemistry, and precision measurement. Currently, this system is being used to map the electronic transitions of HfF^+ for the JILA electron electric dipole moment (eEDM) experiment. The JILA eEDM experiment uses trapped molecular ions to significantly increase the coherence time of the measurement in addition to utilizing the strong electric field enhancement available from molecules. Previous theoretical work has shown that the metastable ^3Δ_1 state in HfF^+ and ThF^+ provides high sensitivity to the eEDM and good cancellation of systematic effects; however, the electronic level structure of these species have not previously been measured, and the theoretical uncertainties are hundreds to thousands of wavenumbers. This necessitates broad-bandwidth, high-resolution survey spectroscopy provided by frequency comb VMS in the 700-900 nm spectral window. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) A. E. Leanhardt, et. al. arXiv:1008.2997v2 E. Meyer, J. L. Bohn, and M. P. Deskevich

  6. Schizocordulia gen. nov. related to Aeschnosom Selys with description of the female and additional data on the male of Schizocordulia rustica (Selys comb. nov. (Odonata, Corduliidae Schizocordulia gen. nov. relacionado a Aeschnosoma Selys com descrição da fêmea e dados adicionais sobre o macho de Schizocordulia rustica (Selys comb. nov. (Odonata, Corduliidae

    Directory of Open Access Journals (Sweden)

    Angelo B.M. Machado

    2005-09-01

    Full Text Available The monotypical genus Schizocordulia is created for Schizocordulia rustica (Selys, 1871 comb. nov. known from a single male from Bahia, Brazil lacking the anal appendages. The female is described and the redescription of the male made by GEIJKES (1970 is completed by the description and illustration of the penis, the anal appendages and the pilose plate. The main characters separating the new genus from the closely related Aeschnosoma Selys, 1870 are the bifid male inferior appendage, the very long internal branch of the hamulus, the presence of a pilose plate on the male 7th abdominal segment, and the large and complex valvula vulvae of the female. The study was based on 33 males and 2 females, which allowed an evaluation of the intraspecific variations in Schizocordulia rustica.Cria-se o gênero monotípico Schizocordulia para Schizocordulia rustica (Selys, 1871 comb. nov. espécie conhecida de um único exemplar macho sem os apêndices anais. Descreve-se a fêmea e a redescrição do macho feita por GEIJKES (1970 é completada pela descrição e ilustração do pênis, da placa pilosa e dos apêndices anais. Os principais caracteres utilizados para separar Schizocordulia do gênero afim Aeschnosoma Selys, 1870 são o apêndice inferior do macho bífido, o ramo interno do hâmulo muito longo, a presença de uma placa pilosa no 7º segmento abdominal e a válvula da vulva da fêmea grande e complexa. Este estudo foi baseado em 33 machos e 2 fêmeas, o que permitiu uma avaliação das variações intraespecíficas em Schizocordulia rustica.

  7. Quantum Cascade Laser Frequency Combs

    Directory of Open Access Journals (Sweden)

    Faist Jérôme

    2016-06-01

    Full Text Available It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  8. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  9. Monolithically integrated absolute frequency comb laser system

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  10. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  11. Molecular Combing of DNA: Methods and Applications

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    First proposed in 1994, molecular combing of DNA is a technique that allows adsorption and alignment of DNA on the surface with no need for prior modification of the molecule. Since then, many variations of the original method have been devised and used in a wide range of applications from genomic...... of the main methods in molecular combing as well as its major applications in nanotechnology....... studies to nanoelectronics. While molecular combing has been applied in a variety of DNA-related studies, no comprehensive review has been published on different combing methods proposed so far. In this review, the underlying mechanisms of molecular combing of DNA are described followed by discussion...

  12. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  13. Ultrafast electrooptic dual-comb interferometry

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2015-01-01

    The femtosecond laser frequency comb has enabled the 21st century revolution in optical synthesis and metrology. A particularly compelling technique that relies on the broadband coherence of two laser frequency combs is dual-comb interferometry. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~ kHz. Here we demonstrate a novel dual-comb interferometer that is based on electrooptic frequency comb technology and measures consecutive complex spectra at a record-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance.

  14. Chileotrecha romero (Kraus, 1966) comb. nov. and Pseudocleobis patagonicus (Roewer, 1934) comb. nov. transferral from Mummuciidae to Ammotrechidae (Arachnida, Solifugae).

    Science.gov (United States)

    Botero-Trujillo, Ricardo; Iuri, Hernán A

    2015-07-27

    The solifuge species Mummucina romero Kraus, 1966, from Chile, and Mummucia patagonica Roewer, 1934, from Argentina, are here transferred from Mummuciidae Roewer, 1934 to Ammotrechidae Roewer, 1934. Chileotrecha romero (Kraus, 1966) comb. nov. and Pseudocleobis patagonicus (Roewer, 1934) comb. nov. are proposed. Comments on their morphology are made and previous distributional records are discussed. Pseudocleobis patagonicus is proposed as a nomen dubium. In addition, we confirm that female and immature specimens of the family Mummuciidae, just like males, can be reliably recognized based on features that had been suggested by Maury (1984).

  15. Broadband midinfrared frequency comb with tooth scanning

    Science.gov (United States)

    Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.

    2015-03-01

    Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.

  16. Quantum Cascade Laser Frequency Combs

    CERN Document Server

    Faist, Jérôme; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2015-01-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100 mW and frequency coverage of 100 cm$^{-1}$ in the mid-infrared. In the THz range, 10 mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the fir...

  17. Comparative reproduction of Varroa destructor in different types of Russian and Italian honey bee combs.

    Science.gov (United States)

    de Guzman, Lilia I; Rinderer, Thomas E; Frake, Amanda M

    2008-03-01

    Earlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type. Overall, the Russian honey bees had lower (2.44 +/- 0.18%) levels of varroa infestation than Italian honey bees (7.20 +/- 0.60%). This decreased infestation resulted in part from a reduced number of viable female offspring per foundress in the Russian (0.85 +/- 0.04 female) compared to the Italian (1.23 +/- 0.04 females) honey bee colonies. In addition, there was an effect by the comb built by the Russian honey bee colonies that reduced varroa reproduction. When comparing combs having Russian or Italian colony origins, Russian honey bee colonies had more non-reproducing foundress mites and fewer viable female offspring in Russian honey bee comb. This difference did not occur in Italian colonies. The age of comb in this study had mixed effects. Older comb produced similar responses for six of the seven varroa infestation parameters measured. In colonies of Italian honey bees, the older comb (2001 dark) had fewer (1.13 +/- 0.07 females) viable female offspring per foundress than were found in the 2002 new (1.21 +/- 0.06 females) and 1980s new (1.36 +/- 0.08 females) combs. This difference did not occur with Russian honey bee colonies where the number of viable female offspring was low in all three types of combs. This study suggests that honey bee type largely influences growth of varroa mite population in a colony.

  18. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  19. On-chip dual-comb based on quantum cascade laser frequency combs

    Energy Technology Data Exchange (ETDEWEB)

    Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.; Süess, M. J.; Beck, M.; Faist, J., E-mail: jfaist@phys.ethz.ch [Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich (Switzerland); Hugi, A. [IRsweep GmbH, CH-8093 Zürich (Switzerland)

    2015-12-21

    Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-comb systems.

  20. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter.

    Science.gov (United States)

    Brady, Carrie; Cleenwerck, Ilse; Venter, Stephanus; Coutinho, Teresa; De Vos, Paul

    2013-07-01

    The taxonomy of Enterobacter has a complicated history, with several species transferred to and from this genus. Classification of strains is difficult owing to its polyphyletic nature, based on 16S rRNA gene sequences. It has been previously acknowledged that Enterobacter contains species which should be transferred to other genera. In an attempt to resolve the taxonomy of Enterobacter, MLSA based on partial sequencing of protein-encoding genes (gyrB, rpoB, infB and atpD) was performed on the type strains and reference strains of Enterobacter, Cronobacter and Serratia species, as well as members of the closely related genera Citrobacter, Klebsiella, Kluyvera, Leclercia, Mangrovibacter, Raoultella and Yokenella. Phylogenetic analyses of the concatenated nucleotide sequences revealed that Enterobacter can be divided into five strongly supported MLSA groups, suggesting that the species should be reclassified into five different genera. Further support for this was provided by a concatenated amino acid tree, phenotypic characteristics and fatty acid profiles, enabling differentiation of the MLSA groups. Three novel genera are proposed: Lelliottia gen. nov., Pluralibacter gen. nov. and Kosakonia gen. nov. and the following new combinations: Lelliottia nimipressuralis comb. nov., Lelliottia amnigena comb. nov., Pluralibacter gergoviae comb. nov., Pluralibacter pyrinus comb. nov., Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov., Kosakonia arachidis comb. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov. Additionally, the novel epithet Cronobacter zurichensis nom. nov. is proposed for the reclassification of Enterobacter turicensis into the genus Cronobacter, as Cronobacter turicensis (Iversen et al., 2008) is already in use.

  1. Transient Regime of Kerr Frequency Comb Formation

    CERN Document Server

    Savchenkov, Anatoliy A; Liang, Wei; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    Temporal growth of an optical Kerr frequency comb generated in a microresonator is studied both experimentally and numerically. We find that the comb emerges from vacuum fluctuations of the electromagnetic field on timescales significantly exceeding the ringdown time of the resonator modes. The frequency harmonics of the comb spread starting from the optically pumped mode if the microresonator is characterized with anomalous group velocity dispersion. The harmonics have different growth rates resulting from sequential four-wave mixing process that explains intrinsic modelocking of the comb.

  2. Normal-dispersion microresonator Kerr frequency combs

    Directory of Open Access Journals (Sweden)

    Xue Xiaoxiao

    2016-06-01

    Full Text Available Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.

  3. Coherence properties of Kerr frequency combs

    CERN Document Server

    Erkintalo, Miro

    2014-01-01

    We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex-degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.

  4. Coherence properties of Kerr frequency combs.

    Science.gov (United States)

    Erkintalo, Miro; Coen, Stéphane

    2014-01-15

    We use numerical simulations based on an extended Lugiato-Lefever equation (LLE) to investigate the stability properties of Kerr frequency combs generated in microresonators. In particular, we show that an ensemble average calculated over sequences of output fields separated by a fixed number of resonator roundtrips allows the coherence of Kerr combs to be quantified in terms of the complex degree of first-order coherence. We identify different regimes of comb coherence, linked to the solutions of the LLE. Our approach provides a practical and unambiguous way of assessing the stability of Kerr combs that is directly connected to an accessible experimental quantity.

  5. Accurate frequency referencing for fieldable dual-comb spectroscopy

    CERN Document Server

    Truong, Gar-Wing; Cossel, Kevin C; Baumann, Esther; Klose, Andrew; Giorgetta, Fabrizio R; Swann, William C; Newbury, Nathan R; Coddington, Ian

    2016-01-01

    A fieldable dual-comb spectrometer is described based on a "bootstrapped" frequency referencing scheme in which short-term optical phase coherence between combs is attained by referencing each to a free-running diode laser, whilst high frequency resolution and long-term accuracy is derived from a stable quartz oscillator. This fieldable dual-comb spectrometer was used to measure spectra with full comb-tooth resolution spanning from 140 THz (2.14 um, 4670 cm^-1) to 184 THz (1.63 um, 6140 cm^-1) in the near infrared with a frequency sampling of 200 MHz (0.0067 cm^-1), ~ 120 kHz frequency resolution, and ~ 1 MHz frequency accuracy. High resolution spectra of water and carbon dioxide transitions at 1.77 um, 1.96 um and 2.06 um show that the molecular transmission acquired with this fieldable system did not deviate from those measured with a laboratory-based system (referenced to a maser and cavity-stabilized laser) to within 5.6x10^-4. Additionally, the fieldable system optimized for carbon dioxide quantification...

  6. Microresonator Soliton Dual-Comb Spectroscopy

    CERN Document Server

    Suh, Myoung-Gyun; Yang, Ki Youl; Yi, Xu; Vahala, Kerry

    2016-01-01

    Rapid characterization of optical and vibrational spectra with high resolution can identify species in cluttered environments and is important for assays and early alerts. In this regard, dual-comb spectroscopy has emerged as a powerful approach to acquire nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain and avoid bulky mechanical spectrometers. Recently, a miniature soliton-based comb has emerged that can potentially transfer the dual-comb method to a chip platform. Unlike earlier microcombs, these new devices achieve high-coherence, pulsed mode locking. They generate broad, reproducible spectral envelopes, which is essential for dual-comb spectroscopy. Here, dual-comb spectroscopy is demonstrated using these devices. This work shows the potential for integrated, high signal-to-noise spectroscopy with fast acquisition rates.

  7. Laser frequency combs for precision astronomical spectroscopy

    Science.gov (United States)

    Ycas, Gabriel George

    Laser frequency comb sources promise to enable precision astronomical spectroscopy at the 10-11 level, enabling observations aimed at locating potentially habitable planets. Frequency combs allow for the simultaneous generation of thousands of individual laser lines, each with optical frequency referenced to the SI second, and are capable of providing a bright, simple, and stable spectrum ideal for the calibration of grating-based astronomical spectrographs. In order for frequency combs and spectrographs to be used in tandem, key technical challenges must be addressed. Most critically, it is necessary to increase the mode-spacing of the frequency comb to more than 20 GHz while simultaneously retaining the stability and broad optical bandwidth of the comb. This thesis also offers an overview of modern astronomical spectroscopy, along with a thorough discussion of the technical details of mode-locked lasers and frequency comb design. This thesis begins by presenting a frequency comb system with mode-spacing of 25 GHz suitable for the near-infrared between 1500 and 1700 nm. Examples are shown from the successful calibration of the Penn State University Pathfinder astronomical spectrograph located at the Hobby-Eberly telescope using the frequency comb system. In the second half of the thesis, the erbium-fiber frequency comb is shown to generate highly coherent, ultrafast, and bright pulses at 1050 nm. The short duration and high peak power of these pulses enable coherent and continuous extension of the comb to visible wavelengths. Next, an accurate model of a nonlinear fiber optic amplifiers is developed and tested, then applied to optimize the selection of fiber lengths in the design of ultrafast nonlinear fiber-optic systems. Finally, a broad-bandwidth optical filter cavity for the generation of a 980--1110 nm suitable for calibration of next-generation spectrographs was designed and tested.

  8. Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Robert M. Griffin

    2016-12-01

    Full Text Available Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i typically show relatively less standing genetic variation than the autosomes, (ii exhibit more variation in males compared to females because of dosage compensation, and (iii potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (covariation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females, but no conclusive evidence for depletion of X-linked variation (measured through females. Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.

  9. Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster.

    Science.gov (United States)

    Griffin, Robert M; Schielzeth, Holger; Friberg, Urban

    2016-12-07

    Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.

  10. All Optical Stabilization of a Soliton Frequency Comb in a Crystalline Microresonator

    CERN Document Server

    Jost, J D; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-01-01

    Microresonator based optical frequency combs (MFC) have demonstrated promise in extending the capabilities of optical frequency combs. Here we demonstrate all optical stabilization of a low noise temporal soliton based MFC in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The offset frequency is controlled by stabilization of the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out of loop comparison and measure the overlapping Allan deviation. This all optical stabilization technique can prove useful as a low added noise actuator for self-referenced microresonator frequency combs.

  11. A bidirectional dual-comb ring laser for simple and robust dual-comb spectroscopy

    CERN Document Server

    Ideguchi, Takuro; Kobayashi, Yohei; Goda, Keisuke

    2015-01-01

    Fourier-transform spectroscopy is an indispensable tool for analyzing chemical samples in scientific research as well as chemical and pharmaceutical industries. Recently, its measurement speed, sensitivity, and precision have been shown to be significantly enhanced by using dual frequency combs. However, wide acceptance of this technique is hindered by its requirement for two frequency combs and active stabilization of the combs. Here we overcome this predicament with a Kerr-lens mode-locked bidirectional ring laser that generates two frequency combs with slightly different pulse repetition rates and a tunable yet highly stable rate difference. This peculiar lasing principle builds on a slight difference in optical cavity length between two counter-propagating lasing modes due to Kerr lensing. Since these combs are produced by the one and same laser cavity, their relative coherence stays passively stable without the need for active stabilization. To show its utility, we demonstrate broadband dual-comb spectro...

  12. Cantharellus gallaecicus (Blanco-Dios Olariaga, comb. & stat. nov (Cantharellaceae

    Directory of Open Access Journals (Sweden)

    Olariaga, Ibai

    2007-12-01

    Full Text Available Cantharellus gallaecicus comb. & stat. nov. is proposed, after the examination of its holotype and additional material. Based on the characters observed in all the studied material (i.e., thinwalled hyphae of the pileipelis, minute basidiomata with white to grey pileus, and surface that turns yellow when bruised it is considered that C. gallaecicus is more closely related to C. romagnesianus than to C. cibarius.Se propone Cantharellus gallaecicus comb. & stat. nov. tras revisar su holótipo y material adicional disponible. Dado que todo el material examinado posee hifas del pileipelis de pared delgada, basidiomas pequeños con píleo de blanco a gris, y superficie que vira a amarillo al roce, se considera que C. gallaecicus es una especie más estrechamente relacionada con C. romagnesianus que con C. cibarius.

  13. Combing gravitational hair in 2+1 dimensions

    CERN Document Server

    Donnelly, William; Mintun, Eric

    2015-01-01

    The gravitational Gauss law requires any addition of energy to be accompanied by the addition of gravitational flux. The possible configurations of this flux for a given source may be called gravitational hair, and several recent works discuss gravitational observables (`gravitational Wilson lines') which create this hair in highly-collimated `combed' configurations. We construct and analyze time-symmetric classical solutions of 2+1 Einstein-Hilbert gravity such as might be created by smeared versions of such operators. We focus on the AdS$_3$ case, where this hair is characterized by the profile of the boundary stress tensor; the desired solutions are those where the boundary stress tensor at initial time $t=0$ agrees precisely with its vacuum value outside an angular interval $[-\\alpha,\\alpha]$. At linear order in source strength the energy is independent of the combing parameter $\\alpha$, but non-linearities cause the full energy to diverge as $\\alpha \\to 0$. In general, solutions with combed gravitational...

  14. Additions to the family Miroviaceae (Coniferae) from the Lower Cretaceous of West Greenland and Germany: Mirovia groenlandica n. sp., Tritaenia crassa (Seward) comb, nov., and Tritaenia linkii Magdefrau et Rudolph emend.

    OpenAIRE

    N. Bose, Mahendra; Manum, Svein B.

    1991-01-01

    The genus Tritaenia with its type species T. linkii Magdefrau et Rudolph emend, from the Wealden of Germany has been referred to the family Miroviaceae Bose et Manum, comprising Mesozoic and mostly Arctic conifer foliage with ‘Sciadopitys-like’ stomatal distribution. Two other additions to the Miroviaceae, both from the Lower Cretaceous of West Greenland, arc Pityophyllum crassum Seward, now attributed to Tritaenia, and Mirovia groenlandica n. sp., described on leafy stems and detached leaves...

  15. Efficient Two-Comb Fourier Spectroscopy

    CERN Document Server

    Mandon, Julien; Picqué, Nathalie

    2008-01-01

    Molecular fingerprinting through absorption spectroscopy is a powerful analytical method. Wide spectral ranges are explored with Doppler-limited resolution. Fast data acquisition, accurate measurements of frequency, intensity, and line shape; time-resolved, selective spectra are achieved with excellent sensitivities. However, presently spectrometers are unable to provide all these features at once. Here we show that, based on frequency comb lasers, a spectrometer may overcome this difficulty. We have recorded two series of spectra with a 1.5 $\\mu$m Cr:YAG frequency comb. In the first series, we propose to use the comb structure to considerably improve the recording time and signal to noise ratio of Doppler-resolved spectra, (Fourier Transform (FT) of the beating signatures of two combs issued from the same initial laser). The second series demonstrates that under very simple experimental conditions, FT spectroscopists may record much more sensitive spectra than with the usual incoherent white light source. We...

  16. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    frequencies . This phenomenon appears in many systems spanning biology, chemistry, neuroscience, and physics [29,30]. Examples include power grid networks... Frequency Combs," Phys. Rev. Lett. 100, 013902 (2008). [91] F. Leo, et al., “Dispersive wave emission and supercontinuum generation in a silicon wire...AFRL-AFOSR-VA-TR-2015-0365 Silicon-Chip-Based Optical Frequency Combs Alexander Gaeta CORNELL UNIVERSITY Final Report 10/26/2015 DISTRIBUTION A

  17. Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand.

    Science.gov (United States)

    Taprab, Yaovapa; Johjima, Toru; Maeda, Yoshimasa; Moriya, Shigeharu; Trakulnaleamsai, Savitr; Noparatnaraporn, Napavarn; Ohkuma, Moriya; Kudo, Toshiaki

    2005-12-01

    Fungus-growing termites efficiently decompose plant litter through their symbiotic relationship with basidiomycete fungi of the genus Termitomyces. Here, we investigated phenol-oxidizing enzymes in symbiotic fungi and fungus combs (a substrate used to cultivate symbiotic fungi) from termites belonging to the genera Macrotermes, Odontotermes, and Microtermes in Thailand, because these enzymes are potentially involved in the degradation of phenolic compounds during fungus comb aging. Laccase activity was detected in all the fungus combs examined as well as in the culture supernatants of isolated symbiotic fungi. Conversely, no peroxidase activity was detected in any of the fungus combs or the symbiotic fungal cultures. The laccase cDNA fragments were amplified directly from RNA extracted from fungus combs of five termite species and a fungal isolate using degenerate primers targeting conserved copper binding domains of basidiomycete laccases, resulting in a total of 13 putative laccase cDNA sequences being identified. The full-length sequences of the laccase cDNA and the corresponding gene, lcc1-2, were identified from the fungus comb of Macrotermes gilvus and a Termitomyces strain isolated from the same fungus comb, respectively. Partial purification of laccase from the fungus comb showed that the lcc1-2 gene product was a dominant laccase in the fungus comb. These findings indicate that the symbiotic fungus secretes laccase to the fungus comb. In addition to laccase, we report novel genes that showed a significant similarity with fungal laccases, but the gene product lacked laccase activity. Interestingly, these genes were highly expressed in symbiotic fungi of all the termite hosts examined.

  18. George Combe and common sense.

    Science.gov (United States)

    Dyde, Sean

    2015-06-01

    This article examines the history of two fields of enquiry in late eighteenth- and early nineteenth-century Scotland: the rise and fall of the common sense school of philosophy and phrenology as presented in the works of George Combe. Although many previous historians have construed these histories as separate, indeed sometimes incommensurate, I propose that their paths were intertwined to a greater extent than has previously been given credit. The philosophy of common sense was a response to problems raised by Enlightenment thinkers, particularly David Hume, and spurred a theory of the mind and its mode of study. In order to succeed, or even to be considered a rival of these established understandings, phrenologists adapted their arguments for the sake of engaging in philosophical dispute. I argue that this debate contributed to the relative success of these groups: phrenology as a well-known historical subject, common sense now largely forgotten. Moreover, this history seeks to question the place of phrenology within the sciences of mind in nineteenth-century Britain.

  19. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    Science.gov (United States)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  20. Laboratory duplication of comb layering in the Rhum pluton. [igneous rocks with comb layered texture

    Science.gov (United States)

    Donaldson, C. H.

    1977-01-01

    A description is provided of the texture of harrisite comb layers, taking into account the results of crystallization experiments at controlled cooling rates, which have reproduced the textural change from 'cumulate' to comb-layered harrisite. Melted samples of harrisite were used in the dynamic crystallization experiments considered. The differentiation of a cooling rate run with respect to olivine grain size and shape is shown and three possible origins of hopper olivine in differentiated crystallization runs are considered. It is found that olivine nucleation occurred throughout cooling, except for the incubation period during early cooling. The elongate combed olivines in harrisite apparently grew as the magma locally supercooled to at least 30 C. It is suggested that the branching crystals in most comb layers, including comb-layered harrisite, probably grew along thermal gradients.

  1. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation.

    Directory of Open Access Journals (Sweden)

    Henrik Boije

    Full Text Available The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb, is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.

  2. Electrostatic comb drive for vertical actuation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  3. Broadband Mid-Infrared Comb-Resolved Fourier Transform Spectroscopy

    Science.gov (United States)

    Lee, Kevin; Mills, Andrew; Mohr, Christian; Jiang, Jie; Fermann, Martin; Maslowski, Piotr

    2014-06-01

    We report on a comb-resolved, broadband, direct-comb spectroscopy system in the mid-IR and its application to the detection of trace gases and molecular line shape analysis. By coupling an optical parametric oscillator (OPO), a 100 m multipass cell, and a high-resolution Fourier transform spectrometer (FTS), sensitive, comb-resolved broadband spectroscopy of dilute gases is possible. The OPO has radiation output at 3.1-3.7 and 4.5-5.5 μm. The laser repetition rate is scanned to arbitrary values with 1 Hz accuracy around 417 MHz. The comb-resolved spectrum is produced with an absolute frequency axis depending only on the RF reference (in this case a GPS disciplined oscillator), stable to 1 part in 10^9. The minimum detectable absorption is 1.6x10-6 wn Hz-1/2. The operating range of the experimental setup enables access to strong fundamental transitions of numerous molecular species for applications based on trace gas detection such as environmental monitoring, industrial gas calibration or medical application of human breath analysis. In addition to these capabilities, we show the application for careful line shape analysis of argon-broadened CO band spectra around 4.7 μm. Fits of the obtained spectra clearly illustrate the discrepancy between the measured spectra and the Voigt profile (VP), indicating the need to include effects such as Dicke narrowing and the speed-dependence of the collisional width and shift in the line shape model, as was shown in previous cw-laser studies. In contrast to cw-laser based experiments, in this case the entire spectrum (˜ 250 wn) covering the whole P and R branches can be measured in 16 s with 417 MHz resolution, decreasing the acquisition time by orders of magnitude. The parallel acquisition allows collection of multiple lines simultaneously, removing the correlation of possible temperature and pressure drifts. While cw-systems are capable of measuring spectra with higher precision, this demonstration opens the door for fast

  4. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator.

    Science.gov (United States)

    Hu, Xiaohong; Liu, Yuanshan; Xu, Xin; Feng, Ye; Zhang, Wenfu; Wang, Weiqiang; Song, Jiazheng; Wang, Yishan; Zhao, Wei

    2015-10-10

    Based on the normalized spatiotemporal Lugiato-Lefever equation, the evolutions of cosine-modulated stationary fields relating to the generation of single-free spectral range (FSR) or multi-FSR Kerr frequency combs in a microresonator with anomalous dispersion are studied numerically. The research results show that a single-FSR comb arises when a dissipative soliton pulse or multiple nonequidistant soliton pulses form in the cavity. Compared with the smooth and regular spectral structure of a single soliton pulse, the comb corresponding to the uneven distribution of multiple soliton pulses exhibits a complex and irregular profile. When the stable intracavity field consists of a "roll" Turing pattern or N(N>1) evenly distributed soliton pulses separated by 2π/N, multi-FSR combs can be generated. In the case of the "roll" Turing pattern solution, it is found that third-order dispersion could modify the comb mode spacing and decrease the intensity of high-order comb modes. For the situation of multiple soliton pulse generation, the simulation results indicate that both the number and locations of the soliton pulses can be actively controlled through the careful selection of modulation frequency. In addition, for the selected cosine-modulated initial field profile, only those modes with the mode numbers being equal to an integer multiple of N can be greatly amplified by the parametric gain during propagation in the microresonator. This process eventually leads to the formation of a N-FSR frequency comb.

  5. Frequency-agile dual-comb spectroscopy

    CERN Document Server

    Millot, Guy; Yan, Ming; Hovannysyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W; Picqué, Nathalie

    2015-01-01

    We propose a new approach to near-infrared molecular spectroscopy, harnessing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fiber of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 microseconds and 80-kHz refresh rate, at a tuning speed of 10 nm.s^(-1). The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fiber.

  6. Microresonator-based optical frequency combs.

    Science.gov (United States)

    Kippenberg, T J; Holzwarth, R; Diddams, S A

    2011-04-29

    The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.

  7. Direct frequency comb laser cooling and trapping

    CERN Document Server

    Jayich, A M; Campbell, W C

    2016-01-01

    Continuous wave (CW) lasers are the enabling technology for producing ultracold atoms and molecules through laser cooling and trapping. The resulting pristine samples of slow moving particles are the de facto starting point for both fundamental and applied science when a highly-controlled quantum system is required. Laser cooled atoms have recently led to major advances in quantum information, the search to understand dark energy, quantum chemistry, and quantum sensors. However, CW laser technology currently limits laser cooling and trapping to special types of elements that do not include highly abundant and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen. Here, we demonstrate that Doppler cooling and trapping by optical frequency combs may provide a route to trapped, ultracold atoms whose spectra are not amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon transition with an optical frequency comb, an efficient process to which every comb tooth coherently cont...

  8. Frequency comb generation in quadratic nonlinear media

    CERN Document Server

    Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio

    2014-01-01

    Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...

  9. Full stabilization of a microresonator-based optical frequency comb.

    Science.gov (United States)

    Del'Haye, P; Arcizet, O; Schliesser, A; Holzwarth, R; Kippenberg, T J

    2008-08-01

    We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are controlled via the power and the frequency of the pump laser, which constitutes one of the comb modes. Furthermore, generation of a microwave beat note at the comb's mode spacing frequency is demonstrated, enabling direct stabilization to a microwave frequency standard.

  10. The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: individual and sex differences from first to sixth grades.

    Science.gov (United States)

    Bailey, Drew H; Littlefield, Andrew; Geary, David C

    2012-09-01

    The ability to retrieve basic arithmetic facts from long-term memory contributes to individual and perhaps sex differences in mathematics achievement. The current study tracked the codevelopment of preference for using retrieval over other strategies to solve single-digit addition problems, independent of accuracy, and skilled use of retrieval (i.e., accuracy and reaction time [RT]) from first to sixth grades inclusive (N=311). Accurate retrieval in first grade was related to working memory capacity and intelligence, and it predicted a preference for retrieval in second grade. In later grades, the relation between skill and preference changed such that preference in one grade predicted accuracy and RT in the next grade as RT and accuracy continued to predict future gains in preference. In comparison with girls, boys had a consistent preference for retrieval over other strategies and had faster retrieval speeds, but the sex difference in retrieval accuracy varied across grades. Results indicate that ability influences early skilled retrieval, but both practice and skill influence each other in a feedback loop later in development and provide insights into the source of the sex difference in problem-solving approaches. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Frequency comb velocity-modulation spectroscopy.

    Science.gov (United States)

    Sinclair, Laura C; Cossel, Kevin C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-08-26

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity-modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF⁺ and achieved a fractional absorption sensitivity of 3×10⁻⁷ recorded over 1500 simultaneous channels spanning 150  cm⁻¹ around 800 nm with an absolute frequency accuracy of 30 MHz (0.001  cm⁻¹). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 min.

  12. Frequency Comb Velocity-Modulation Spectroscopy

    CERN Document Server

    Sinclair, Laura C; Coffey, Tyler; Ye, Jun; Cornell, Eric A

    2011-01-01

    We have demonstrated a new technique that provides massively parallel comb spectroscopy sensitive specifically to ions through the combination of cavity-enhanced direct frequency comb spectroscopy with velocity modulation spectroscopy. Using this novel system, we have measured electronic transitions of HfF+ and achieved a fractional absorption sensitivity of 3 x 10-7 recorded over 1500 simultaneous channels spanning 150 cm-1 around 800 nm with an absolute frequency accuracy of 30 MHz (0.001 cm-1). A fully sampled spectrum consisting of interleaved measurements is acquired in 30 minutes.

  13. Rotor-Router Aggregation on the Comb

    OpenAIRE

    Huss, Wilfried; Sava, Ecaterina

    2011-01-01

    We prove a shape theorem for rotor-router aggregation on the comb, for a specific initial rotor configuration and clockwise rotor sequence for all vertices. Furthermore, as an application of rotor-router walks, we describe the harmonic measure of the rotor-router aggregate and related shapes, which is useful in the study of other growth models on the comb. We also identify the shape for which the harmonic measure is uniform. This gives the first known example where the rotor-router cluster ha...

  14. Transmission comb of a distributed Bragg reflector induced by two surface dielectric gratings

    CERN Document Server

    Zhao, Xiaobo; Zhang, Yongyou

    2015-01-01

    With transfer matrix theory, we study the transmission of a distributed Bragg reflector (DBR) with two dielectric gratings on top and on the bottom. Owing to the diffraction of the two gratings, the transmission shows a comb-like spectrum which red shifts with increasing the grating period during the forbidden band of the DBR. The number density of the comb peaks increases with increasing the number of the DBR cells, while the ratio of the average full width at half maximum (FWHM) of the transmission peaks in the transmission comb to the corresponding average free spectral range, being about 0.04 and 0.02 for the TE and TM incident waves, is almost invariant. The average FWHM of the TM waves is about half of the TE waves, and both they could be narrower than 0.1 nm. In addition, the transmission comb peaks of the TE and TM waves can be fully separated during certain waveband. We further prove that the transmission comb is robust against the randomness of the heights of the DBR layers, even when a 15\\% randomn...

  15. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    Science.gov (United States)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  16. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  17. Coherence and incoherence in an optical comb.

    Science.gov (United States)

    Viktorov, Evgeny A; Habruseva, Tatiana; Hegarty, Stephen P; Huyet, Guillaume; Kelleher, Bryan

    2014-06-06

    We demonstrate a coexistence of coherent and incoherent modes in the optical comb generated by a passively mode-locked quantum dot laser. This is experimentally achieved by means of optical linewidth, radio frequency spectrum, and optical spectrum measurements and confirmed numerically by a delay-differential equation model showing excellent agreement with the experiment. We interpret the state as a chimera state.

  18. Laser Frequency Combs as Calibrators for Astronomy

    Science.gov (United States)

    Lo Curto, Gaspare

    2017-09-01

    "Laser Frequency Combs (LFCs) for Astronomy are very promising alternatives to Hollow Cathode Lamps (HCL) when it comes to accurate wavelength solutions and extreme precision. I will present a status report with particular reference to the HARPS LFC and to perspectives of LFCs at other ESO observatories: Paranal and Armazones."

  19. Comb-drive actuators for large displacements

    NARCIS (Netherlands)

    Legtenberg, Rob; Groeneveld, A.W.; Elwenspoek, M.

    1996-01-01

    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped - clamped beams and a folded flexure design is mod

  20. Time sequence photography of Roosters Comb

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a landscape snapshot to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same vantag...

  1. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  2. Universal scaling laws of Kerr frequency combs.

    Science.gov (United States)

    Coen, Stéphane; Erkintalo, Miro

    2013-06-01

    Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.

  3. Universal scaling laws of Kerr frequency combs

    CERN Document Server

    Coen, Stephane

    2013-01-01

    Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump-resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.

  4. Quantum cascade laser Kerr frequency comb

    CERN Document Server

    Lecaplain, Caroline; Lucas, Erwan; Jost, John D; Kippenberg, Tobias J

    2015-01-01

    The mid-infrared (mid-IR) regime (typically the wavelength regime of $\\lambda \\sim 2.5-20 \\ \\mathrm{\\mu m}$) is an important spectral range for spectroscopy as many molecules have their fundamental rotational-vibrational absorption in this band. Recently optical frequency combs based on optical microresonators ("Kerr" combs) at the onset of the mid-IR region have been generated using crystalline resonators and integrated planar silicon micro-resonators. Here we extend for the first time Kerr combs deep into the mid-IR i.e. the 'molecular fingerprint' region. This is achieved by combining an ultra high quality (Q) factor mid-IR microresonator based on crystalline $\\mathrm{MgF_{2}}$ with the quantum cascade laser (QCL) technology. Using a tapered chalgogenide (ChG) fiber and a QCL continuous wave pump laser, frequency combs at $\\lambda\\sim 4.4\\ \\mathrm{\\mu m}$ (i.e. 2270cm$^{-1}$) are generated, that span over 600nm (i.e. 300cm$^{-1}$) in bandwidth, with a mode spacing of 14.3GHz (0.5cm$^{-1}$), corresponding t...

  5. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  6. Maximum likelihood molecular clock comb: analytic solutions.

    Science.gov (United States)

    Chor, Benny; Khetan, Amit; Snir, Sagi

    2006-04-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).

  7. a Portable Dual Frequency Comb Spectrometer for Atmospheric Applications

    Science.gov (United States)

    Cossel, Kevin C.; Waxman, Eleanor; Truong, Gar-Wing; Giorgetta, Fabrizio; Swann, William C.; Coburn, Sean; Wright, Robert; Rieker, Greg B.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Dual frequency comb (DFC) spectroscopy is a new technique that combines broad spectral bandwidth, high spectral resolution, rapid data acquisition, and high sensitivity. In addition, unlike standard Fourier-transform spectroscopy, it has an almost ideal instrument lineshape function, does not require recalibration, and has no moving parts. These features make DFC spectroscopy well suited for accurate measurements of multiple species simultaneously. Because the frequency comb lasers can be well collimated, such a system can be used for long open-path measurements with path lengths ranging from hundreds of meters to several kilometers. This length scale bridges the gap between point measurements and satellite-based measurements and is ideal for providing information about local sources and quantifying emissions. Here we show a fully portable DFC spectrometer operating over a wide spectral region in the near-infrared (about 1.5-2.1 μm or 6670-4750 cm-1 sampled at 0.0067 cm-1) and across several different open-air paths up to a path length of 11.8 km. The current spectrometer fits in about a 500 L volume and has low power consumption. It provides simultaneous measurements of CO_2, CH_4, and water isotopes with a time resolution of seconds to minutes. This system has several potential applications for atmospheric measurements including continuous monitoring city-scale emissions and localizing methane leaks from oil and gas wells. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths, Optica, 1(5), 290-298 (2014).

  8. Modelocked mid-infrared frequency combs in a silicon microresonator

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    Mid-infrared (mid-IR) frequency combs have broad applications in molecular spectroscopy and chemical/biological sensing. Recently developed microresonator-based combs in this wavelength regime could enable portable and robust devices using a single-frequency pump field. Here, we report the first demonstration of a modelocked microresonator-based frequency comb in the mid-IR spanning 2.4 {\\mu}m to 4.3 {\\mu}m. We observe high pump-to-comb conversion efficiency, in which 40% of the pump power is converted to the output comb power. Utilizing an integrated PIN structure allows for tuning the silicon microresonator and controling modelocking and cavity soliton formation, simplifying the generation, monitoring and stabilization of mid-IR frequency combs via free-carrier detection and control. Our results significantly advance microresonator-based comb technology towards a portable and robust mid-IR spectroscopic device that operates at low pump powers.

  9. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing

    Science.gov (United States)

    Lee, Seung Hun; Kim, Daegyoum

    2017-08-01

    Unlike the smooth wings of common insects or birds, micro-scale insects such as the fairyfly have a distinctive wing geometry, comprising a frame with several bristles. Motivated by this peculiar wing geometry, we experimentally investigated the flow structure of a translating comb-like wing for a wide range of gap size, angle of attack, and Reynolds number, Re = O(10) - O(103), and the correlation of these parameters with aerodynamic performance. The flow structures of a smooth plate without a gap and a comb-like plate are significantly different at high Reynolds number, while little difference was observed at the low Reynolds number of O(10). At low Reynolds number, shear layers that were generated at the edges of the tooth of the comb-like plate strongly diffuse and eventually block a gap. This gap blockage increases the effective surface area of the plate and alters the formation of leading-edge and trailing-edge vortices. As a result, the comb-like plate generates larger aerodynamic force per unit area than the smooth plate. In addition to a quasi-steady phase after the comb-like plate travels several chords, we also studied a starting phase of the shear layer development when the comb-like plate begins to translate from rest. While a plate with small gap size can generate aerodynamic force at the starting phase as effectively as at the quasi-steady phase, the aerodynamic force drops noticeably for a plate with a large gap because the diffusion of the developing shear layers is not enough to block the gap.

  10. Patterns of comb row development in young and adult stages of the ctenophores Mnemiopsis leidyi and Pleurobrachia pileus.

    Science.gov (United States)

    Tamm, Sidney L

    2012-09-01

    ciliary coordination. In both cases, the body of a growing ctenophore is supplied with additional comb plates centripetally from opposite ends of the comb rows. Copyright © 2012 Wiley Periodicals, Inc.

  11. Charge optimized many body (COMB) potentials for Pt and Au

    Science.gov (United States)

    Antony, A. C.; Akhade, S. A.; Lu, Z.; Liang, T.; Janik, M. J.; Phillpot, S. R.; Sinnott, S. B.

    2017-06-01

    Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1} are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of 0.62+/- 0.16 eV for Pt and 1.44+/- 0.06 eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.

  12. Air Damping Analysis in Comb Microaccelerometer

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-04-01

    Full Text Available Air damping significantly influences the dynamical characteristics of MEMS accelerometers. Its effects at micro-scale level sharply depend on the structure layouts and size of MEMS devices. The damping phenomenon of comb microaccelerometers is investigated. The air between fixed plate electrodes and movable plate electrodes cannot flow freely and is compressed. The air damping, therefore, exhibits both viscous effects and stiffness effects. The former generates a drag force like that in macromechanical systems, and the damping force is proportional to the velocity of movable electrodes. The latter stiffens the rigidity of structure, and the stiffening level is related to the gap value of capacitors, internal pressure, and temperature. This paper focuses on the dependence of the squeeze film air damping on capacitor gaps. The simulation and experiments indicate that the squeeze film effect is sharply affected by the gap value when the structural dimensions decrease. And the influence of fabrication errors is considered in damping design in comb microaccelerometers.

  13. Laser frequency combs for astronomical observations.

    Science.gov (United States)

    Steinmetz, Tilo; Wilken, Tobias; Araujo-Hauck, Constanza; Holzwarth, Ronald; Hänsch, Theodor W; Pasquini, Luca; Manescau, Antonio; D'Odorico, Sandro; Murphy, Michael T; Kentischer, Thomas; Schmidt, Wolfgang; Udem, Thomas

    2008-09-05

    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of approximately 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrated the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at approximately 1.5 micrometers-beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.

  14. Active Comb Filter Using Operational Transconductance Amplifier

    OpenAIRE

    Rajeev Kumar Ranjan; Surya Prasanna Yalla; Shubham Sorya; Paul, Sajal K.

    2014-01-01

    A new approach for the design of an active comb filter is proposed to remove the selected frequencies of various signals. The proposed filter is based on only OTAs and capacitors, hence suitable for monolithic integrated circuit implementation. The workability of the circuit is tested using PSPICE for test signals of 60, 180, 300, and 420 Hz as in ECG signal. The results are given in the paper and found to agree well with theory.

  15. Active Comb Filter Using Operational Transconductance Amplifier

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Ranjan

    2014-01-01

    Full Text Available A new approach for the design of an active comb filter is proposed to remove the selected frequencies of various signals. The proposed filter is based on only OTAs and capacitors, hence suitable for monolithic integrated circuit implementation. The workability of the circuit is tested using PSPICE for test signals of 60, 180, 300, and 420 Hz as in ECG signal. The results are given in the paper and found to agree well with theory.

  16. Frequency Comb Spectroscopy - From IR to XUV

    Science.gov (United States)

    2015-06-09

    sensitivity of highly charged ions. Unlike visible light, radiation in the extreme ultraviolet (XUV) has traditionally lacked long-term phase coherence...Direct frequency comb spectroscopy in the extreme ultraviolet ”, Nature, vol. 482, no. 7383, pp. 68 - 71, 2012. [2] C. Benko, Ruehl, A. , Martin, M...precision metrology and ultrafast science from the visible spectral region to the next exciting frontier of extreme ultraviolet (XUV) by developing

  17. Interference comb-spectroscopy with increasing sensitivity

    Science.gov (United States)

    Pulkin, Sergey; Borisov, Evgenii; Balabas, Michail; Uvarova, Svetlana; Shevtzov, Vladimir; Kalinichev, Alexei; Shoev, Vladislav; Venediktov, Dmitrii; Venediktov, Vladimir

    2016-10-01

    The paper considers the use of holographic interferometer for hologram recording of the wide spectrum from the comb - generator of the femtosecond laser was applied for illuminating of Michelson interferometer with atomic vapor. The behavior of spectral interference fringes on the exit slit of spectrograph reflects the behavior of nonlinear refractive index. The method of holographic interferometry with increasing sensitivity using phase modulator was applied for digital hologram processing.

  18. A microresonator frequency comb optical clock

    CERN Document Server

    Papp, Scott B; DelHaye, Pascal; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry J; Diddams, Scott A

    2013-01-01

    Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.

  19. Time-Delay Interferometry with optical frequency comb

    CERN Document Server

    Tinto, Massimo

    2015-01-01

    Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.

  20. Coherent data transmission with microresonator Kerr frequency combs

    CERN Document Server

    Pfeifle, Joerg; Wegner, Daniel; Brasch, Victor; Herr, Tobias; Hartinger, Klaus; Li, Jingshi; Hillerkuss, David; Schmogrow, Rene; Holzwarth, Ronald; Freude, Wolfgang; Leuthold, Juerg; Kippenberg, Tobias J; Koos, Christian

    2013-01-01

    Optical frequency combs enable coherent data transmission on hundreds of wavelength channels and have the potential to revolutionize terabit communications. Generation of Kerr combs in nonlinear integrated microcavities represents a particularly promising option enabling line spacings of tens of GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr combs may exhibit strong phase noise and multiplet spectral lines, and this has made high-speed data transmission impossible up to now. Recent work has shown that systematic adjustment of pump conditions allows generating low phase-noise Kerr combs with singlet spectral lines. Here, by employing an integrated Si3N4 microresonator, we demonstrate that Kerr combs are suited for coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the optical source. In our experiment, we encode a data stream of 392 Gbit/s on subsequent lines of a Kerr comb using quadrature phase shift keying (...

  1. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    Science.gov (United States)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  2. Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

    CERN Document Server

    Joshi, Chaitanya; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  3. Optical combs with a crystalline whispering gallery mode resonator

    CERN Document Server

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Solomatine, Iouri; Seidel, David; Maleki, Lute

    2008-01-01

    We report on the experimental demonstration of a tunable monolithic optical frequency comb generator. The device is based on the four-wave mixing in a crystalline calcium fluoride whispering gallery mode resonator. The frequency spacing of the comb is given by an integer number of the free spectral range of the resonator. We select the desired number by tuning the pumping laser frequency with respect to the corresponding resonator mode. We also observe interacting optical combs and high-frequency hyperparametric oscillation, depending on the experimental conditions. A potential application of the comb for generating narrowband frequency microwave signals is demonstrated.

  4. On-chip dual comb source for spectroscopy

    CERN Document Server

    Dutt, Avik; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2016-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 $\\mu$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow ($<$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave os...

  5. Combing genomic DNA for structural and functional studies.

    Science.gov (United States)

    Schurra, Catherine; Bensimon, Aaron

    2009-01-01

    Molecular combing is a process whereby single DNA molecules bind by their extremities to a silanised surface and are then uniformly stretched and aligned by a receding air/water interface (1). This method, with a high resolution ranging from a few kilobases to megabases, has many applications in the field of molecular cytogenetics, allowing structural and functional analysis at the genome level. Here we describe protocols for preparing DNA for combing and for the use of fluorescent hybridisation (FH) applied to combed DNA to conduct physical mapping or genomic structural analysis. We also present the methodology for visualising and studying DNA replication using combed DNA.

  6. Intrinsic linewidth of quantum cascade laser frequency combs

    CERN Document Server

    Cappelli, Francesco; Riedi, Sabine; Faist, Jerome

    2015-01-01

    The frequency noise power spectral density of a free-running quantum cascade laser frequency comb is investigated. A plateau is observed at high frequencies, attributed to the quantum noise limit set by the Schawlow-Townes formula for the total laser power on all comb lines. In our experiment, a linewidth of 292 Hz is measured for a total power of 25 mW. This result proves that the four-wave mixing process, responsible for the comb operation, effectively correlates the quantum noise of the individual comb lines.

  7. Wet combing for the eradication of head lice.

    Science.gov (United States)

    2013-03-01

    Manual removal (using conditioner and comb or a wet comb) can be used in the treatment of head lice. Head lice infestation (Pediculosis humanus capitis) is a common problem. It is diagnosed by visualising the lice. As half of people infested with head lice will not scratch, all people in contact with a person affected with head lice should be manually checked for infestations. Wet combing is easily and safely performed at home, but persistence is needed. This article describes the process of head lice removal using a wet comb. It has NHMRC Level 2 evidence of efficacy and no serious adverse effects have been reported.

  8. Single-molecule studies of DNA by molecular combing

    Institute of Scientific and Technical Information of China (English)

    Liu Yuying; Wang Pengye; Dou Shuoxing

    2007-01-01

    Molecular combing is a powerful method for aligning a large array of DNA molecules onto a surface. It is a process whereby DNA molecules are stretched and aligned on a glass surface by the force via fluid flow. The ability to comb up to several hundred DNAs on a single cover slip allows for a statistically significant number of measurements to be made. These features make molecular combing an attractive tool for genomic studies, such as DNA replication, DNA transcription, DNA-protein interaction and so on. In this review article, we discuss the molecular combing principle, method and its applications.

  9. Multispectral Kerr frequency comb initiated by Faraday ripples

    CERN Document Server

    Huang, Shu-Wei

    2016-01-01

    In a uniform microresonator, the generation of a broadband Kerr frequency comb is triggered by Turing patterns. Here, we study a distinctly different route to initiate the Kerr frequency comb by Faraday ripples. Momentum conservation is ensured by azimuthal modulation of the cavity dispersion. With a good agreement with the theoretical analysis, we demonstrate a multispectral Kerr frequency comb covering telecommunication O, C, L, and 2 {\\mu}m bands. Comb coherence and absence of a subcomb offset are confirmed by cw heterodyne beat note and amplitude noise spectra measurements. The device can be used for achieving broadband optical frequency synthesizer and high-capacity coherent telecommunication.

  10. Tunable Frequency Comb Generation from a Microring with a Thermal Heater

    CERN Document Server

    Xue, Xiaoxiao; Wang, Pei-Hsun; Wang, Jian; Leaird, Dan E; Qi, Minghao; Weiner, Andrew M

    2014-01-01

    We demonstrate a novel comb tuning method for microresonator-based Kerr comb generators. Continuously tunable, low-noise, and coherent comb generation is achieved in a CMOS-compatible silicon nitride microring resonator.

  11. Frequency domain processing of on-chip biphoton frequency comb

    CERN Document Server

    Jaramillo-Villegas, Jose A; Odele, Ogaga D; Leaird, Daniel E; Ou, Zhe-Yu; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Quantum information processing (QIP) promises to improve the security of our communications as well as to solve some algorithms with exponential complexity in polynomial time. Biphotons have been demonstrated as one of the most promising platforms for real implementations of QIP systems. In particular, time-bin entangled photons have been used for implementations of quantum gates which require highly stable interferometers. On the other hand, frequency-bin entanglement has been proposed to avoid the use of interferometers and the complexity of their stabilization, which potentially makes the implementation of quantum gates highly scalable. Through Fourier transform pulse shaping and electro-optic modulation, there has been a wide range of experiments that show control of entangled photons in the frequency domain. In addition, biphoton frequency combs (BFC) have also been generated using bulk optics and frequency filtering of broadband continuous biphoton spectra. However, on-chip entangled photon pair generat...

  12. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    Science.gov (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  13. Feshbach Resonances in Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    We show that both the power and repetition rate of a frequency comb generated in a nonlinear ring resonator, pumped with continuous wave (cw) coherent light, are modulated. The modulation is brought about by the interaction of the cw background with optical pulses excited in the resonator, and occurs in resonators with nonzero high-order chromatic dispersion and wavelength-dependent quality factor. The modulation frequency corresponds to the detuning of the pump frequency from the eigenfrequency of the pumped mode in the resonator.

  14. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  15. Generation of Kerr Frequency Combs in Resonators with Normal GVD

    CERN Document Server

    Matsko, Andrey B; Maleki, Lute

    2011-01-01

    We show via numerical simulation that Kerr frequency combs can be generated in a nonlinear resonator characterized with normal group velocity dispersion (GVD). We find the spectral shape of the comb and temporal envelope of the corresponding optical pulses formed in the resonator.

  16. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, Robertus A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process.

  17. Coherent Raman dual-comb spectroscopy and imaging

    Science.gov (United States)

    Ideguchi, Takuro; Holzner, Simon; Bernhardt, Birgitta; Guelachvili, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2014-11-01

    The invention of the optical frequency comb technique has revolutionized the field of precision spectroscopy, providing a way to measure the absolute frequency of any optical transition. Since, frequency combs have become common equipment for frequency metrology. In the last decade, novel applications for the optical frequency comb have been demonstrated beyond its original purpose. Broadband molecular spectroscopy is one of those. One such technique of molecular spectroscopy with frequency combs, dual-comb Fourier transform spectroscopy provides short measurement times with resolution and accuracy. Two laser frequency combs with slightly different repetition frequencies generate pairs of pulses with a linearly-scanned delay between pulses in a pair. The system without moving parts mimics a fast scanning Fourier transform interferometer. The measurement speed may be several orders of magnitude faster than that of a Michelson-based Fourier transform spectrometer, which opens up new opportunities for broadband molecular spectroscopy. Recently, dual-comb spectroscopy has been extended to nonlinear phenomena. A broadband Raman spectrum of molecular fingerprints may be measured within a few tens of microseconds with coherent Raman dual-comb spectroscopy. Raster scanning the sample leads to hyperspectral images. This rapid and broadband label-free vibrational spectroscopy and imaging technique might provide new diagnostic methods in a variety of scientific and industrial fields.

  18. Frequency comb-based four-wave-mixing spectroscopy.

    Science.gov (United States)

    Lomsadze, Bachana; Cundiff, Steven T

    2017-06-15

    We experimentally demonstrate four-wave-mixing (FWM) spectroscopy using frequency combs. The experiment uses a geometry where excitation pulses and FWM signals generated by a sample co-propagate. We separate them in the radio frequency domain by heterodyne detection with a local oscillator comb that has a different repetition frequency.

  19. Wax combs mediate nestmate recognition by guard honeybees

    DEFF Research Database (Denmark)

    D'Ettorre, Patrizia; Wenseleers, Tom; Dawson, Jenny

    2006-01-01

    Research has shown that the wax combs are important in the acquisition of colony odour in the honeybee, Apis mellifera. However, many of these studies were conducted in the laboratory or under artificial conditions. We investigated the role of the wax combs in nestmate recognition in the natural...

  20. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, R.A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process. C

  1. Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope

    CERN Document Server

    Qiufen, G; Feng, S; Fuqiang, L

    2008-01-01

    Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear...

  2. Adaptive real-time dual-comb spectroscopy

    CERN Document Server

    Ideguchi, Takuro; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2012-01-01

    With the advent of laser frequency combs, coherent light sources that offer equally-spaced sharp lines over a broad spectral bandwidth have become available. One decade after revolutionizing optical frequency metrology, frequency combs hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite its intriguing potential for the measurement of molecular spectra spanning tens of nanometers within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the extremely demanding high-bandwidth servo-control conditions of the laser combs. Here we overcome this difficulty. We experimentally demonstrate a straightforward concept of real-time dual-comb spectroscopy, which only uses free-running mode-locked lasers without any phase-lock electronics, a posteriori data-processing, or the need for expertise in frequency metrology. The resulting simplicity and versatility of our new technique of adaptive dual-com...

  3. Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Byrd, J; Matsko, A B; Seidel, D; Maleki, L

    2013-01-01

    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.

  4. Difference-frequency combs in cold atom physics

    CERN Document Server

    Kliese, Russell; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C; Bounds, Alistair D; Bridge, Elizabeth M; Leonard, Jack; Adams, Charles S; Cornish, Simon L; Jones, Matthew P A

    2016-01-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\\rm ceo}$ and the pulse repetition-rate $f_{\\rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{\\rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{\\rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical...

  5. Microresonator Kerr frequency combs with high conversion efficiency

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  6. Comb-locked Lamb-dip spectrometer

    Science.gov (United States)

    Gatti, Davide; Gotti, Riccardo; Gambetta, Alessio; Belmonte, Michele; Galzerano, Gianluca; Laporta, Paolo; Marangoni, Marco

    2016-06-01

    Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm2, which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10-11 cm-1 absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10-23 cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.

  7. Cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Bernhardt, Birgitta; Jacquet, Patrick; Jacquey, Marion; Kobayashi, Yohei; Udem, Thomas; Holzwarth, Ronald; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2009-01-01

    The sensitivity of molecular fingerprinting is dramatically improved when placing the absorbing sample in a high-finesse optical cavity, thanks to the large increase of the effective path-length. As demonstrated recently, when the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace-gases may be identified within a few milliseconds. Analyzing efficiently the light transmitted through the cavity however still remains challenging. Here, a novel approach, cavity-enhanced frequency comb Fourier transform spectroscopy, fully overcomes this difficulty and measures ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of $\\mu$s. It could be implemented from the Terahertz to the ultraviolet regions without any need for detector arrays. We recorded, within 18 $\\mu$s, spectra of the 1.0 $\\mu$m overtone bands of ammonia spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging per ...

  8. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    Institute of Scientific and Technical Information of China (English)

    Ruan Juan; Zhang Wei-Gang; Zhang Hao; Geng Peng-Cheng; Bai Zhi-Yong

    2013-01-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated.The filter tunability is achieved by rotating the polarization controller.The spectral shift is dependent on rotation direction and the position of the polarization controller.In addition,the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  9. Chipscale optical frequency combs: from soliton physics to coherent communication (Conference Presentation)

    Science.gov (United States)

    Brasch, Victor; Geiselmann, Michael; Herr, Tobias; Lihachev, Grigoriy; Pfeiffer, Martin H. P.; Gorodetsky, Michael L.; Kippenberg, Tobias J.

    2016-04-01

    In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional

  10. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  11. Frequency comb metrology with an optical parametric oscillator.

    Science.gov (United States)

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  12. From "Dirac combs" to Fourier-positivity

    CERN Document Server

    Giraud, Bertrand G

    2015-01-01

    Motivated by various problems in physics and applied mathematics, we look for constraints and properties of real Fourier-positive functions, i.e. with positive Fourier transforms. Properties of the "Dirac comb" distribution and of its tensor products in higher dimensions lead to Poisson resummation, allowing for a useful approximation formula of a Fourier transform in terms of a limited number of terms. A connection with the Bochner theorem on positive definiteness of Fourier-positive functions is discussed. As a practical application, we find simple and rapid analytic algorithms for checking Fourier-positivity in 1- and (radial) 2-dimensions among a large variety of real positive functions. This may provide a step towards a classification of positive positive-definite functions.

  13. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific Opinion on Rooster Combs Extract

    DEFF Research Database (Denmark)

    Tetens, Inge; Poulsen, Morten

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to carry out the additional assessment for „Rooster Combs Extract‟ (RCE) as a food ingredient in the context of Regulation (EC) No 258/97, taking into account the comment...

  14. Third-order chromatic dispersion stabilizes Kerr frequency combs

    CERN Document Server

    Parra-Rivas, Pedro; Leo, Francois; Coen, Stephane; Gelens, Lendert

    2014-01-01

    Using numerical simulations of an extended Lugiato-Lefever equation, we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  15. Third-order chromatic dispersion stabilizes Kerr frequency combs.

    Science.gov (United States)

    Parra-Rivas, Pedro; Gomila, Damià; Leo, François; Coen, Stéphane; Gelens, Lendert

    2014-05-15

    Using numerical simulations of an extended Lugiato-Lefever equation we analyze the stability and nonlinear dynamics of Kerr frequency combs generated in microresonators and fiber resonators, taking into account third-order dispersion effects. We show that cavity solitons underlying Kerr frequency combs, normally sensitive to oscillatory and chaotic instabilities, are stabilized in a wide range of parameter space by third-order dispersion. Moreover, we demonstrate how the snaking structure organizing compound states of multiple cavity solitons is qualitatively changed by third-order dispersion, promoting an increased stability of Kerr combs underlined by a single cavity soliton.

  16. An additional field method to sex adult Barn Swallows during the non-breeding season in Zambia: white spot length in the outer tail feather

    NARCIS (Netherlands)

    Duijns, S.; Dijk, van J.G.B.; Kraus, R.H.S.; Kerlen-Matema, A.C.; Brink, van den B.; Hooft, van W.F.

    2011-01-01

    Adult Barn Swallows Hirundo rustica exhibit strong sexual size dimorphism in the length of the outermost tail feathers, which are longer in males compared with females. This trait is traditionally used to sex adult Barn Swallows in the field. However, due to the wear and breakage of the tips of the

  17. Surface induced self-organization of comb-like macromolecules

    Science.gov (United States)

    Popov, Konstantin I; Palyulin, Vladimir V; Möller, Martin; Khokhlov, Alexei R

    2011-01-01

    Summary We present a review of the theoretical and experimental evidence for the peculiar properties of comb copolymers, demonstrating the uniqueness of these materials among other polymer architectures. These special properties include an increase in stiffness upon increasing side-chain length, the spontaneous curvature of adsorbed combs, rod–globule transition, and specific intramolecular self-assembly. We also propose a theory of chemically heterogeneous surface nanopattern formation in ultrathin films of comblike macromolecules containing two different types (A and B) of incompatible side chains (so-called binary combs). Side chains of the binary combs are strongly adsorbed on a surface and segregated with respect to the backbone. The thickness of surface domains formed by the B side chains is controlled by the interaction with the substrate. We predict the stability of direct and inverse disc-, torus- and stripelike nanostructures. Phase diagrams of the film are constructed. PMID:22003463

  18. Mechanical control of a microrod-resonator optical frequency comb

    CERN Document Server

    Papp, Scott B; Diddams, Scott A

    2012-01-01

    Robust control and stabilization of optical frequency combs enables an extraordinary range of scientific and technological applications, including frequency metrology at extreme levels of precision, novel spectroscopy of quantum gases and of molecules from visible wavelengths to the far infrared, searches for exoplanets, and photonic waveform synthesis. Here we report on the stabilization of a microresonator-based optical comb (microcomb) by way of mechanical actuation. This represents an important step in the development of microcomb technology, which offers a pathway toward fully-integrated comb systems. Residual fluctuations of our 32.6 GHz microcomb line spacing reach a record stability level of $5\\times10^{-15}$ for 1 s averaging, thereby highlighting the potential of microcombs to support modern optical frequency standards. Furthermore, measurements of the line spacing with respect to an independent frequency reference reveal the effective stabilization of different spectral slices of the comb with a $&...

  19. Ramsey-comb spectroscopy with intense ultrashort laser pulses

    CERN Document Server

    Morgenweg, Jonas; Eikema, Kjeld S E

    2014-01-01

    Optical frequency combs based on mode-locked lasers have revolutionised the field of metrology and precision spectroscopy by providing precisely calibrated optical frequencies and coherent pulse trains. Amplification of the pulsed output from these lasers is very desirable, as nonlinear processes can then be employed to cover a much wider range of transitions and wavelengths for ultra-high precision, direct frequency comb spectroscopy. Therefore full repetition rate laser amplifiers and enhancement resonators have been employed to produce up to microjoule-level pulse energies. Here we show that the full frequency comb accuracy and resolution can be obtained by using only two frequency comb pulses amplified to the millijoule pulse energy level, orders of magnitude more energetic than what has previously been possible. The novel properties of this approach, such as cancellation of optical light-shift effects, is demonstrated on weak two-photon transitions in atomic rubidium and caesium, thereby improving the fr...

  20. Performance analysis and experimental study on Flat Optical Comb Generation

    Directory of Open Access Journals (Sweden)

    Haining Li

    2013-01-01

    Full Text Available The performance of the optical frequency comb generation based on the re-circulating frequency shifter has been analyzed and demonstrated in this paper. We have theoretically analyzed the condition for flatness of the optical frequency comb and the relative intensity noise influence. We find out the influence to the flatness of optical comb owing to amplifier relative intensity noise and modulator relative factors imperfect, such as input RF signals amplitude and phase deviation and modulator defect owing to manufacture for the first time. Moreover, to verify the theoretical analysis, a 16 comb lines and spacing 12.5 GHz RFS generation system have also been carried out, and the results are in good agreement with the theoretical analysis results.

  1. A Compact, Waveguide Based Programmable Optical Comb Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based remote...

  2. Spectro-temporal dynamics of Kerr combs with parametric seeding.

    Science.gov (United States)

    Lin, Guoping; Martinenghi, Romain; Diallo, Souleymane; Saleh, Khaldoun; Coillet, Aurélien; Chembo, Yanne K

    2015-03-20

    We report a joint theoretical and experimental investigation of the parametric seeding of a primary Kerr optical frequency comb. Electro-optic modulation sidebands matching multiple free-spectral ranges of an ultrahigh-Q millimeter-size magnesium fluoride disk resonator are used as seed signals. These seed signals interact through four-wave mixing with the spectral components of a stable primary comb and give rise to complex spectro-temporal patterns. We show that the new frequency combs feature multiscale frequency spacing, with major frequency gaps in the order of a few hundred gigahertz, and minor frequency spacing in the order of a few tens of gigahertz. The experimental results are in agreement with numerical simulations using the Lugiato-Lefever equation. We expect such versatile and coherent optical frequency combs to have potential applications in optical communications systems where frequency management assigns predefined spectral windows at the emitter stage.

  3. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    CERN Document Server

    Long, David A; Plusquellic, David F; Hodges, Joseph T

    2016-01-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the $D_1$ and $D_2$ transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 $\\mu$s (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  4. Micro--structured crystalline resonators for optical frequency comb generation

    CERN Document Server

    Grudinin, Ivan S

    2014-01-01

    Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...

  5. Kerr optical frequency combs: theory, applications and perspectives

    Science.gov (United States)

    Chembo, Yanne K.

    2016-06-01

    The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  6. Kerr optical frequency combs: theory, applications and perspectives

    Directory of Open Access Journals (Sweden)

    Chembo Yanne K.

    2016-06-01

    Full Text Available The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

  7. Mid-IR Microresonator-Based Optical Frequency Combs

    Science.gov (United States)

    2015-09-01

    the atmosphere and overlaps with strong absorption bands of important greenhouse gases such as carbon dioxide (~4.2m) and nitrous oxide (~4.4m...frequency combs (Kerr combs) generated by cascading parametric nonlinear effects in whispering gallery mode (WGM) crystalline microresonators. The...quantitatively study the effect of the resonator morphology and mode characteristics on its GVD, with the goal of creating ideal conditions for mid-IR

  8. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  9. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  10. Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster

    OpenAIRE

    Robert M. Griffin; Holger Schielzeth; Urban Friberg

    2016-01-01

    Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila me...

  11. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    Science.gov (United States)

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-01

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs.

  12. Gigahertz frequency comb from a diode-pumped solid-state laser.

    Science.gov (United States)

    Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2014-12-15

    We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.

  13. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    Science.gov (United States)

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  14. Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean.

    Science.gov (United States)

    Shivaji, Sisinthy; Reddy, Gundlapally Sathyanarayana

    2014-09-01

    Phylogenetic analyses of the genus Glaciecola were performed using the sequences of the 16S rRNA gene and the GyrB protein to establish its taxonomic status. The results indicated a consistent clustering of the genus Glaciecola into two clades, with significant bootstrap values, with all the phylogenetic methods employed. Clade 1 was represented by seven species, Glaciecola agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. mesophila, G. polaris and G. psychrophila, while clade 2 consisted of only three species, Glaciecola nitratireducens, G. pallidula and G. punicea. Evolutionary distances between species of clades 1 and 2, based on 16S rRNA gene and GyrB protein sequences, ranged from 93.0 to 95.0 % and 69.0 to 73.0 %, respectively. In addition, clades 1 and 2 possessed 18 unique signature nucleotides, at positions 132, 184 : 193, 185 : 192, 230, 616 : 624, 631, 632, 633, 738, 829, 1257, 1265, 1281, 1356 and 1366, in the 16S rRNA gene sequence and can be differentiated by the occurrence of a 15 nt signature motif 5'-CAAATCAGAATGTTG at positions 1354-1368 in members of clade 2. Robust clustering of the genus Glaciecola into two clades based on analysis of 16S rRNA gene and GyrB protein sequences, 16S rRNA gene sequence similarity of ≤95.0 % and the occurrence of signature nucleotides and signature motifs in the 16S rRNA gene suggested that the genus should be split into two genera. The genus Paraglaciecola gen. nov. is therefore created to accommodate the seven species of clade 1, while the name Glaciecola sensu stricto is retained to represent species of clade 2. The species of clade 1 are transferred to the genus Paraglaciecola as Paraglaciecola mesophila comb. nov. (type strain DSM 15026(T) = KMM 241(T)), P. agarilytica comb. nov. (type strain NO2(T) = KCTC 12755(T) = LMG 23762(T)), P. aquimarina comb. nov. (type strain GGW-M5(T) = KCTC 32108(T) = CCUG 62918(T)), P. arctica comb. nov. (type strain BSs20135(T

  15. Comparison of nerve combing and percutaneous radiofrequency thermocoagulation in the treatment for idiopathic trigeminal neuralgia.

    Science.gov (United States)

    Zhou, Xuanchen; Liu, Yiqing; Yue, Zhiyong; Luan, Deheng; Zhang, Hong; Han, Jie

    2016-01-01

    Idiopathic trigeminal neuralgia (ITN) is a common pain disease in elderly people. Many methods have been used to alleviate the pain of patients, but few studies in the literature have compared the effect of nerve combing and percutaneous radiofrequency thermocoagulation. The purpose of this study was to describe and evaluate the clinical outcome of idiopathic trigeminal neuralgia after nerve combing (NC) and compare them with those obtained using percutaneous radiofrequency thermocoagulation (RF). The study included 105 idiopathic trigeminal neuralgia patients with similar symptom, age and underlying disease, which were divided into two groups. One group was treated by nerve combing (50 patients), the other by RF (55 cases). All patients were considered medical failures prior to the surgeries. A questionnaire was used to assess the long-term outcomes: pain relief, recurrence, complication and need for additional treatment. The median duration of follow-up in both groups was 90 months. Satisfactory relief was noted in 41 patients (82%), 5 patients (10%) initially experienced pain relief, then recurred, and four patients (8%) were designated poor among the group NC. In the group RF, satisfactory relief was noted in 42 patients (76.4%). There were eight "pain free with recurrence patients (14.5%) and 5 poor cases (9.1%). No statistically significant differences existed in the outcomes between both groups (p>0.05). Postoperative morbidity included dysesthesia, diplopia, partial facial nerve palsy, hearing loss, tinnitus, cerebrospinal fluid leak, meningitis and mortality. Nerve combing and RF are both satisfactory treatment strategies for patients with ITN. Because of the higher risk of sensory morbidity and surgical risk as open surgery, RF is preferred as the recommended procedure for patients with ITN. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Comparison of nerve combing and percutaneous radiofrequency thermocoagulation in the treatment for idiopathic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Xuanchen Zhou

    Full Text Available ABSTRACT INTRODUCTION: Idiopathic trigeminal neuralgia (ITN is a common pain disease in elderly people. Many methods have been used to alleviate the pain of patients, but few studies in the literature have compared the effect of nerve combing and percutaneous radiofrequency thermocoagulation. OBJECTIVE: The purpose of this study was to describe and evaluate the clinical outcome of idiopathic trigeminal neuralgia after nerve combing (NC and compare them with those obtained using percutaneous radiofrequency thermocoagulation (RF. METHODS: The study included 105 idiopathic trigeminal neuralgia patients with similar symptom, age and underlying disease, which were divided into two groups. One group was treated by nerve combing (50 patients, the other by RF (55 cases. All patients were considered medical failures prior to the surgeries. A questionnaire was used to assess the long-term outcomes: pain relief, recurrence, complication and need for additional treatment. RESULTS: The median duration of follow-up in both groups was 90 months. Satisfactory relief was noted in 41 patients (82%, 5 patients (10% initially experienced pain relief, then recurred, and four patients (8% were designated poor among the group NC. In the group RF, satisfactory relief was noted in 42 patients (76.4%. There were eight "pain free with recurrence patients (14.5% and 5 poor cases (9.1%. No statistically significant differences existed in the outcomes between both groups (p > 0.05. Postoperative morbidity included dysesthesia, diplopia, partial facial nerve palsy, hearing loss, tinnitus, cerebrospinal fluid leak, meningitis and mortality. CONCLUSION: Nerve combing and RF are both satisfactory treatment strategies for patients with ITN. Because of the higher risk of sensory morbidity and surgical risk as open surgery, RF is preferred as the recommended procedure for patients with ITN.

  17. Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov.

    Science.gov (United States)

    Brady, Carrie L; Venter, Stephanus N; Cleenwerck, Ilse; Vandemeulebroecke, Katrien; De Vos, Paul; Coutinho, Teresa A

    2010-03-01

    Pantoea citrea, Pantoea punctata and Pantoea terrea were described for strains isolated from fruit and soil originating in Japan. These three 'Japanese' species have been shown to be phylogenetically distant from other species of the genus Pantoea. It has been observed previously that, using multilocus sequence analysis (MLSA), the 'Japanese' species consistently formed a distinct clade with an extended branch length, casting doubt on the inclusion of these species within the genus Pantoea. Furthermore, the 'Japanese' species are closely related to Tatumella ptyseos, strains of which originate from human clinical specimens. DNA-DNA hybridization and phenotypic tests confirmed the observed phylogenetic distance of P. citrea, P. punctata and P. terrea from the genus Pantoea and the affiliation of these species with Tatumella. In addition, strains causing pink disease of pineapple, identified previously as P. citrea , were shown to represent a separate species by using 16S rRNA gene sequence analysis, and MLSA and DNA-DNA hybridization data. The name Tatumella morbirosei sp. nov. with the type strain LMG 23360(T) (=BD 878(T)=NCPPB 4036(T)=CMC6(T)) is proposed to accommodate these strains. The new combinations Tatumella citrea (Kageyama et al. 1992) comb. nov. (type strain, SHS 2003(T)=ATCC 31623(T)=BD 875( T)=CCUG 30156(T)=CIP 105599(T)=DSM 13699(T)=JCM 8882(T)=LMG 22049(T)), Tatumella punctata (Kageyama et al. 1992) comb. nov. (type strain, SHS 2006(T)=ATCC 31626(T)=BD 876( T)=CCUG 30159(T)=CIP 105598(T)=DSM 13700(T)=JCM 8885(T)=LMG 22050(T)) and Tatumella terrea (Kageyama et al. 1992) comb. nov. (type strain, SHS 2008(T)=ATCC 31628(T)=BD 877(T)=CCUG 30161(T)=CIP 105600(T)=DSM 13701(T)=JCM 8887(T)=LMG 22051(T)) are proposed for P. citrea, P. punctata and P. terrea , respectively.

  18. A Frequency Comb calibrated Solar Atlas

    CERN Document Server

    Molaro, P; Monai, S; Hernandez, J I Gonzalez; Hansch, T W; Holzwarth, R; Manescau, A; Pasquini, L; Probst, R A; Rebolo, R; Steinmetz, T; Udem, Th; Wilken, T

    2013-01-01

    The solar spectrum is a primary reference for the study of physical processes in stars and their variation during activity cycles. In Nov 2010 an experiment with a prototype of a Laser Frequency Comb (LFC) calibration system was performed with the HARPS spectrograph of the 3.6m ESO telescope at La Silla during which high signal-to-noise spectra of the Moon were obtained. We exploit those Echelle spectra to study the optical integrated solar spectrum . The DAOSPEC program is used to measure solar line positions through gaussian fitting in an automatic way. We first apply the LFC solar spectrum to characterize the CCDs of the HARPS spectrograph. The comparison of the LFC and Th-Ar calibrated spectra reveals S-type distortions on each order along the whole spectral range with an amplitude of +/-40 m/s. This confirms the pattern found by Wilken et al. (2010) on a single order and extends the detection of the distortions to the whole analyzed region revealing that the precise shape varies with wavelength. A new da...

  19. Optical-frequency-comb based ultrasound sensor

    Science.gov (United States)

    Minamikawa, Takeo; Ogura, Takashi; Masuoka, Takashi; Hase, Eiji; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi

    2017-03-01

    Photo-acoustic imaging is a promising modality for deep tissue imaging with high spatial resolution in the field of biology and medicine. High penetration depth and spatial resolution of the photo-acoustic imaging is achieved by means of the advantages of optical and ultrasound imaging, i.e. tightly focused beam confines ultrasound-generated region within micrometer scale and the ultrasound can propagate through tissues without significant energy loss. To enhance the detection sensitivity and penetration depth of the photo-acoustic imaging, highly sensitive ultrasound detector is greatly desired. In this study, we proposed a novel ultrasound detector employing optical frequency comb (OFC) cavity. Ultrasound generated by the excitation of tightly focused laser beam onto a sample was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The ultrasound-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. We constructed an OFC cavity for ultrasound sensing with a ring-cavity erbium-doped fiber laser. We provided a proof-of-principle demonstration of the detection of ultrasound that was generated by a transducer operating at 10 MHz. Our proposed approach will serve as a unique and powerful tool for detecting ultrasounds for photo-acoustic imaging in the future.

  20. 75 FR 14491 - Listing of Color Additives Exempt From Certification; Bismuth Citrate

    Science.gov (United States)

    2010-03-26

    ... action is in response to a petition filed by Combe, Inc. DATES: This rule is effective April 27, 2010... additive petition (CAP 8C0286) had been filed by Combe, Inc., c/o EAS Consulting Group, LLC, 1940 Duke St... per volume (w/v)) to 2.0 percent (w/v). II. Evaluation of Safety A. Determination of Safety...

  1. Regulation of Raoultella terrigena comb.nov. phytase expression.

    Science.gov (United States)

    Zamudio, Marcela; González, Aracely; Bastarrachea, Fernando

    2002-01-01

    Phytases catalyze the release of phosphate from phytate (myo-inositol hexakisphosphate) to inositol polyphosphates. Raoultella terrigena comb.nov. phytase activity is known to increase markedly after cells reach the stationary phase. In this study, phytase activity measurements made on single batch cultures indicated that specific enzyme activity was subject to catabolite repression. Cyclic AMP (cAMP) showed a positive effect in expression during exponential growth and a negative effect during stationary phase. RpoS exhibited the opposite effect during both growth phases; the induction to stationary phase decreased twofold in the rpoS::Tn10 mutant, but the effect of RpoS was not clearly determined. Two phy::MudI1734 mutants, MW49 and MW52, were isolated. These formed small colonies in comparison with the MW25 parent strain when plated on Luria-Bertani (LB) or LB supplemented with glucose. They did not grow in minimal media or under anaerobiosis, but did grow aerobically on LB and LB glucose at a lower rate than did MW25. The beta-galactosidase activity level in these mutants increased three to four fold during stationary growth in LB glucose and during anaerobiosis. Addition of cAMP during the exponential growth of MW52 on LB glucose provoked a decrease in beta-galactosidase activity during the stationary phase, confirming its negative effect on phytase expression during stationary growth.

  2. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans

    Science.gov (United States)

    Zellner, G.; Boone, D. R.; Keswani, J.; Whitman, W. B.; Woese, C. R.; Hagelstein, A.; Tindall, B. J.; Stackebrandt, E.

    1999-01-01

    Sequencing of 16S rRNA genes and phylogenetic analysis of Methanogenium tationis DSM 2702T (OCM 43T) (T = type strain) and Methanogenium liminatans GKZPZT (= DSM 4140T) as well as other members of the family Methanomicrobiaceae revealed that both species belong to a separate line of descent within this family. In addition, a new strain of Methanogenium liminatans, strain BM1 (= DSM 10196), was isolated from a butyrate-degrading, fluidized bed reactor and characterized. Cells of both species are mesophilic, highly irregular cocci that use H2/CO2 and formate for growth and methanogenesis. In addition, Methanogenium liminatans strains GKZPZT and BM1 used 2-propanol/CO2, 2-butanol/CO2 and cyclopentanol/CO2. Both species contained diether and tetraether lipids. The polar lipids comprised amino-phosphopentanetetrol derivatives, which appear to be characteristic lipids within the family Methanomicrobiaceae. The pattern of glycolipids, phosphoglycolipids and amino-phosphoglycolipids was consistent with the assignment of these two species to a taxon within the family Methanomicrobiaceae, but also permitted them to be distinguished from other higher taxa within this family. The G+C contents of the DNA of Methanogenium tationis and Methanogenium liminatans were 54 and 60 mol% (Tm and HPLC), respectively. On the basis of the data presented, the transfer of Methanogenium tationis and Methanogenium liminatans to the genus Methanofollis gen. nov. as Methanofollis tationis comb. nov. and Methanofollis liminatans comb. nov., respectively, is proposed, with Methanofollis tationis as the type species.

  3. Solution and Melt Rheology of Polypropylene Comb and Star Polymers

    Science.gov (United States)

    Ghosh, Arnav; Colby, Ralph H.; Rose, Jeffrey M.; Cherian, Anna E.; Coates, Geoffrey W.

    2006-03-01

    Syndiotactic polypropylene macromonomer arms have been prepared by coordination-insertion polymerization. These arms have been made into polypropylene star polymers by the homopolymerization of the syndiotactic arms with a living alkene polymerization catalyst. The macromonomer arms have also been randomly copolymerized with propylene using rac-dimethylsilyl(2-methyl-4-phenylindenyl) zirconium dichloride catalysts to make polypropylene combs. Consequently we have star polymers and a series of comb polymers with different backbone lengths that are all made from the same macromonomer arms. We compare linear viscoelastic data on star and comb polypropylene melts and solutions in squalane to predictions of the tube dilation model and the tube model without tube dilation. The ratio of comb terminal relaxation time to star terminal relaxation time eliminates the friction coefficient and allows determination of the extent of tube dilation the backbone experiences when it relaxes. The concentration dependence of the comb/star terminal relaxation time ratio can be described by either model, owing to adjustable parameters that are not known apriori, so independent means to evaluate those parameters will be discussed.

  4. Adsorption of comb copolymers on weakly attractive solid surfaces

    Science.gov (United States)

    Striolo, A.; Jayaraman, A.; Genzer, J.; Hall, C. K.

    2005-08-01

    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

  5. Interaction Between Waves and A Comb-Type Breakwater

    Institute of Scientific and Technical Information of China (English)

    董国海; 李玉成; 孙昭晨; 孙洋; 牛恩宗; 毛铠

    2003-01-01

    The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves kr are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24.5% of the investment has been saved owing to the use of this comb-type breakwater.

  6. Self-referencing of an on-chip soliton Kerr frequency comb without external broadening

    CERN Document Server

    Brasch, Victor; Jost, John D; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Self-referencing turns pulsed laser systems into self-referenced frequency combs. Such frequency combs allow counting of optical frequencies and have a wide range of applications. The required optical bandwidth to implement self-referencing is typically obtained via nonlinear broadening in optical fibers. Recent advances in the field of Kerr frequency combs have provided a path towards the development of compact frequency comb sources that provide broadband frequency combs, exhibit microwave repetition rates and that are compatible with on-chip photonic integration. These devices have the potential to significantly expand the use of frequency combs. Yet to date self-referencing of such Kerr frequency combs has only been attained by applying conventional, fiber based broadening techniques. Here we demonstrate external broadening-free self-referencing of a Kerr frequency comb. An optical spectrum that spans two-thirds of an octave is directly synthesized from a continuous wave laser-driven silicon nitride micro...

  7. A quadratic-shaped-finger comb parametric resonator

    Science.gov (United States)

    Guo, Congzhong; Fedder, Gary K.

    2013-09-01

    A large-stroke (8 µm) parametric resonator excited by an in-plane ‘shaped-finger’ electrostatic comb drive is fabricated using a 15 µm thick silicon-on-insulator microelectromechanical systems (SOI-MEMS) process. A quadratic capacitance-engagement response is synthesized by engineering a custom-shaped comb finger profile. A folded-flexure suspension allows lateral motion while constraining rotational modes. The excitation of the nonlinear parametric resonance is realized by selecting an appropriate combination of the linear and cubic electrostatic stiffness coefficients through a specific varying-gap comb-finger design. The large-amplitude parametric resonance promotes high signal-to-noise ratio for potential use in sensitive chemical gravimetric sensors, strain gauges, and mode-matched gyroscope applications.

  8. Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    CERN Document Server

    Adler, Florian; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun

    2010-01-01

    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared sp...

  9. Continuum Random Combs and Scale Dependent Spectral Dimension

    CERN Document Server

    Atkin, Max R; Wheater, John F

    2011-01-01

    Numerical computations have suggested that in causal dynamical triangulation models of quantum gravity the effective dimension of spacetime in the UV is lower than in the IR. In this paper we develop a simple model based on previous work on random combs, which share some of the properties of CDT, in which this effect can be shown to occur analytically. We construct a definition for short and long distance spectral dimensions and show that the random comb models exhibit scale dependent spectral dimension defined in this way. We also observe that a hierarchy of apparent spectral dimensions may be obtained in the cross-over region between UV and IR regimes for suitable choices of the continuum variables. Our main result is valid for a wide class of tooth length distributions thereby extending previous work on random combs by Durhuus et al.

  10. A deep-UV optical frequency comb at 205 nm.

    Science.gov (United States)

    Peters, E; Diddams, S A; Fendel, P; Reinhardt, S; Hänsch, T W; Udem, Th

    2009-05-25

    By frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages that take place in resonant cavities that are matched to the pulse repetition rate of 82 MHz. This allows for an overall efficiency of 4.5 % and produces an output power of up to 70 mW for a few minutes and 25 mW with continuous operation for hours. Such a deep UV frequency comb may be employed for direct frequency comb spectroscopy in cases where it is less efficient to convert to these short wavelengths with continuous wave lasers.

  11. Femtosecond Optical Frequency Comb Technology Principle, Operation and Application

    CERN Document Server

    Ye, Jun

    2005-01-01

    Over the last few years, there has been a remarkable convergence among the fields of ultrafast optics, optical frequency metrology, and precision laser spectroscopy. This convergence has enabled unprecedented advances in control of the electric field of the pulses produced by femtosecond mode-locked lasers. The resulting spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as "femtosecond comb technology." They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. This book provides an introductory description of mode-locked lasers, the connection between time and frequency descriptions of their output and the physical origins of the electric field dynamics, together with an overview of applications of femtosecond comb technology. Individual chapters go into more detail on mode-locked laser development, spectral broadening in microstructure fiber, optical parametric ...

  12. Enabling Arbitrary Wavelength Optical Frequency Combs on Chip

    CERN Document Server

    Soltani, Mohammad; Maleki, Lute

    2015-01-01

    A necessary condition for generation of bright soliton Kerr frequency combs in microresonators is to achieve anomalous group velocity dispersion (GVD) for the resonator modes. This condition is hard to implement in visible as well as ultraviolet since the majority of optical materials are characterized with large normal GVD in these wavelength regions. We overcome this challenge by borrowing ideas from strongly dispersive coupled systems in solid state physics and optics. We show that photonic compound ring resonators can possess large anomalous GVD at any desirable wavelength, even if each individual resonator is characterized with normal GVD. Based on this concept we design a mode locked frequency comb with thin-film silicon nitride compound ring resonators in the vicinity of Rubidium D1 line (794.6nm) and propose to use this optical comb as a flywheel for chip-scale optical clocks.

  13. Mid-Infrared Optical Frequency Combs based on Crystalline Microresonators

    CERN Document Server

    Wang, C Y; Del'Haye, P; Schliesser, A; Hofer, J; Holzwarth, R; Hänsch, T W; Picqué, N; Kippenberg, T J

    2011-01-01

    The mid-infrared spectral range (\\lambda ~ 2 \\mu m to 20 \\mu m) is known as the "molecular fingerprint" region as many molecules have their highly characteristic, fundamental ro-vibrational bands in this part of the electromagnetic spectrum. Broadband mid-infrared spectroscopy therefore constitutes a powerful and ubiquitous tool for optical analysis of chemical components that is used in biochemistry, astronomy, pharmaceutical monitoring and material science. Optical frequency combs, i.e. broad spectral bandwidth coherent light sources consisting of equally spaced sharp lines, have revolutionized optical frequency metrology one decade ago. They now demonstrate dramatically improved acquisition rates, resolution and sensitivity for molecular spectroscopy mostly in the visible and near-infrared ranges. Mid-infrared frequency combs have therefore become highly desirable and recent progress in generating such combs by nonlinear frequency conversion has opened access to this spectral region. Here we report on a pr...

  14. Device Characterization of High Performance Quantum Dot Comb Laser

    KAUST Repository

    Rafi, Kazi

    2012-02-01

    The cost effective comb based laser sources are considered to be one of the prominent emitters used in optical communication (OC) and photonic integrated circuits (PIC). With the rising demand for delivering triple-play services (voice, data and video) in FTTH and FTTP-based WDM-PON networks, metropolitan area network (MAN), and short-reach rack-to-rack optical computer communications, a versatile and cost effective WDM transmitter design is required, where several DFB lasers can be replaced by a cost effective broadband comb laser to support on-chip optical signaling. Therefore, high performance quantum dot (Q.Dot) comb lasers need to satisfy several challenges before real system implementations. These challenges include a high uniform broadband gain spectrum from the active layer, small relative intensity noise with lower bit error rate (BER) and better temperature stability. Thus, such short wavelength comb lasers offering higher bandwidth can be a feasible solution to address these challenges. However, they still require thorough characterization before implementation. In this project, we briefly characterized the novel quantum dot comb laser using duty cycle based electrical injection and temperature variations where we have observed the presence of reduced thermal conductivity in the active layer. This phenomenon is responsible for the degradation of device performance. Hence, different performance trends, such as broadband emission and spectrum stability were studied with pulse and continuous electrical pumping. The tested comb laser is found to be an attractive solution for several applications but requires further experiments in order to be considered for photonic intergraded circuits and to support next generation computer-communications.

  15. Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control

    Directory of Open Access Journals (Sweden)

    Laux Martin

    2013-03-01

    Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.

  16. Noise conversion in Kerr comb RF photonic oscillators

    CERN Document Server

    Matsko, Andrey B

    2014-01-01

    Transfer of amplitude and phase noise from a continuous wave optical pump to the repetition rate of a Kerr frequency comb is studied theoretically, with focus on generation of spectrally pure radio frequency (RF) signals via demodulation of the frequency comb on a fast photodiode. It is shown that both the high order chromatic dispersion of the resonator spectrum and frequency-dependent quality factor of the resonator modes facilitate the optical-to-RF noise conversion that limits spectral purity of the RF signal.

  17. Optical frequency comb interference profilometry using compressive sensing.

    Science.gov (United States)

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  18. Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs

    CERN Document Server

    Coddington, Ian; Newbury, Nathan R

    2007-01-01

    The broadband, coherent nature of narrow-linewidth fiber frequency combs is exploited to measure the full complex spectrum of a molecular gas through multi-heterodyne spectroscopy. We measure the absorption and phase shift experienced by each of 155,000 individual frequency comb lines, spaced by 100 MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen cyanide gas. The measured phase spectrum agrees with Kramers-Kronig transformation of the absorption spectrum. This technique can provide a full complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.

  19. Optical Kerr Frequency Comb Generation in Overmoded Resonators

    CERN Document Server

    Matsko, A B; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L

    2012-01-01

    We show that scattering-based interaction among nearly degenerate optical modes is the key factor in low threshold generation of Kerr frequency combs in nonlinear optical resonators possessing small group velocity dispersion (GVD). The mode interaction is capable of producing drastic change in the local GVD, resulting in either a significant reduction or increase of the oscillation threshold. It is also responsible for the majority of observed combs in resonators characterized with large normal GVD. We present results of our numerical simulations as well as supporting experimental data.

  20. Frequency Comb Assisted Broadband Precision Spectroscopy with Cascaded Diode Lasers

    CERN Document Server

    Liu, Junqiu; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Frequency comb assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this letter we present a novel method using cascaded frequency agile diode lasers, which allows extending the measurement bandwidth to 37.4 THz (1355 to 1630 nm) at MHz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy and in particular it enables to characterize the dispersion of integrated microresonators up to the fourth order.

  1. The Co-Development of Skill at and Preference for Use of Retrieval-Based Processes for Solving Addition Problems: Individual and Sex Differences from First to Sixth Grade

    Science.gov (United States)

    Bailey, Drew H.; Littlefield, Andrew; Geary, David C.

    2012-01-01

    The ability to retrieve basic arithmetic facts from long-term memory contributes to individual and perhaps sex differences in mathematics achievement. The current study tracked the co-development of preference for using retrieval over other strategies to solve single-digit addition problems, independent of accuracy, and skilled use of retrieval (i.e., accuracy and RT) from first to sixth grade, inclusive (n = 311). Accurate retrieval in first grade was related to working memory capacity and intelligence and predicted a preference for retrieval in second grade. In later grades, the relation between skill and preference changed such that preference in one grade predicted accuracy and RT in the next, as RT and accuracy continued to predict future gains in preference. In comparison to girls, boys had a consistent preference for retrieval over other strategies and had faster retrieval speeds, but the sex difference in retrieval accuracy varied across grades. Results indicate ability influences early skilled retrieval but both practice and skill influence each other in a feedback loop later in development, and provide insights into the source of the sex difference in problem solving approaches. PMID:22704036

  2. Hair breakage during combing. III. The effects of bleaching and conditioning on short and long segment breakage by wet and dry combing of tresses.

    Science.gov (United States)

    Robbins, Clarence; Kamath, Yash

    2007-01-01

    A recent publication (1), provided evidence for two types of hair breakage during combing, short segment breakage (approximately less than 1.27 cm) and longer segment breakage. We have confirmed these results and refined the separation distance between short and long segment breakage at about 2.54 cm. Furthermore, chemical bleaching increased both short and long segment breakage while a commercial hair conditioner decreased both types of breakage. Whether the hair is chemically bleached or conditioned, for dry combing, short segment breakage increases with increasing comb strokes, that is, short segment breakage increases as combing damages the ends of the hair, however, long segment breakage does not increase with increasing comb strokes. Wet combing provided a decrease in short segment breakage and an increase in long segment breaks, but no increase in breakage with increasing comb strokes. Mechanical combing of tresses shows similar results qualitatively, however the variance was too large and adjustments need to be made to provide for a larger number of broken hairs to bring the mechanical and hand combing results in line. For dry combing, as the comb descends through the hair, hairs above it are made parallel and those beneath are either made parallel or knot by, hairs looping around other hairs or hairs looping around comb teeth and other hairs several cm between the comb and the hair tips. As the comb advances through the looped/knotted hairs long breaks occur or as the comb descends near the tips wrapped ends can result. End wrapping by inertia & possibly static charge produces short segment breaks which are more severe if the hair is cut at 90 degrees versus a tapered cut. For wet combing, clumping of hairs by a capillary action produces fewer short segment breaks, by reducing end wrapping: however, crossed hair interactions occur & because of higher friction more severe snags arise higher up in the tress, and lower hair breaking load due to plasticization

  3. Clinically insignificant improvement of prostate cancer prediction by addition of sex steroid hormones and SHBG serum levels to serum PSA, fPSA%, and age in a screening setting.

    Science.gov (United States)

    Heidegger, Isabel; Popovscaia, Marina; Ramoner, Reinhold; Schäfer, Georg; Stenzel, Birgit; Bektic, Jasmin; Horninger, Wolfgang; Klocker, Helmut

    2012-10-01

    Abstract Various findings implicate sex hormones in prostate growth and development and also in prostate carcinogenesis. We investigated if addition of sex steroid hormone and sex hormone binding globulin (SHBG) serum levels to standard risk assessment parameters [prostate-specific antigen (PSA), free PSA percentage (fPSA%), and age] improves prostate cancer prediction in a PSA screening setting. Steroid hormones testosterone (T), free testosterone (fT), and estradiol (E2), and binding protein SHBG levels were measured in 762 men undergoing prostate biopsy due to suspect PSA serum levels. Prostate cancer was diagnosed in 286 (37.5%) of these men. Our data confirmed that PSA (mean BE=5.09; mean CA=6.05; p=1.24×10-5), fPSA% (mean BE=22.08; mean CA=18.67; p=1.97×10-7), and age (mean BE=60.64; mean CA=64.5; p=7.05×10-10) differentiate men with cancer (CA) and men with benign disease (BE), such as benign prostate hyperplasia. In addition, SHBG (mean BE=50.3; mean CA=54.9; p=0.008) also differed statistically significantly between these two groups. All hormones except E2 and tumor markers correlated significantly with age (T: ρ=-0.09; fT: ρ=-0.27; SHBG: ρ=0.21; PSA: ρ=0.32; and fPSA%: ρ=0.22). Furthermore, we found that PSA correlates with E2 (ρ=0.08), and fPSA% with SHBG (ρ=0.1) and fT (ρ=-0.09). Addition of hormones and SHBG to a baseline marker model including PSA, fPSA%, and age improved cancer prediction in three multivariate classification methods; however, the improvement was minimal. The best improvement by 0.8% was obtained in the logistic regression model with the addition of T and SHBG or of E2 and SHBG, or in the support vector machine model with the addition of SHBG and all steroid hormones to the combination of standard markers PSA, fPSA%, and age; however, this additional gain of accuracy is too small to justify the additional efforts and costs.

  4. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation

    CERN Document Server

    Leo, F; Ricciardi, I; De Rosa, M; Coen, S; Wabnitz, S; Erkintalo, M

    2016-01-01

    We derive a time-domain mean-field equation to model the full temporal and spectral dynamics of light in singly resonant cavity-enhanced second-harmonic generation systems. We show that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role under realistic conditions, giving rise to rich, previously unidentified nonlinear behaviour. Through linear stability analysis and numerical simulations, we discover a new kind of quadratic modulation instability which leads to the formation of optical frequency combs and associated time-domain dissipative structures. Our numerical simulations show excellent agreement with recent experimental observations of frequency combs in quadratic nonlinear media [Phys. Rev. A 91, 063839 (2015)]. Thus, in addition to unveiling a new, experimentally accessible regime of nonlinear dynamics, our work enables predictive modeling of frequency comb generation in cavity-enhanced second-harmonic generation systems.

  5. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H(2)-filled inhibited coupling Kagome fiber.

    Science.gov (United States)

    Benoît, Aurélien; Beaudou, Benoit; Alharbi, Meshaal; Debord, Benoit; Gérôme, Frédéric; Salin, François; Benabid, Fetah

    2015-06-01

    We report on the generation of over 5 octaves wide Raman combs using inhibited coupling Kagome guiding hollow-core photonic crystal fiber filled with hydrogen and pumped with 22.7 W average power and 27 picosecond pulsed fiber laser. Combs spanning from ~321 nm in the UV to ~12.5 µm in the long-wavelength IR (i.e. from 24 THz to 933 THz) with different spectral content and with an output average power of up to ~10 W were generated. In addition to the clear potential of such a comb as a laser source emitting at spectral ranges, which existing technology poorly addresses like long-wavelength IR and UV, the combination of high Raman net gain and short pump-pulse duration makes these spectra an excellent candidate for intra-pulse waveform synthesis.

  6. Hard and Soft Excitation Regimes of Kerr Frequency Combs

    CERN Document Server

    Matsko, Andrey B; Ilchenko, Vladimir S; Seidel, David; Maleki, Lute

    2011-01-01

    We theoretically study the stability conditions and excitation regimes of hyper-parametric oscillation and Kerr frequency comb generation in continuously pumped nonlinear optical resonators possessing anomalous group velocity dispersion. We show that both hard and soft excitation regimes are possible in the resonators. Selection between the regimes is achieved via change in the parameters of the pumping light.

  7. Invited Article: A compact optically coherent fiber frequency comb.

    Science.gov (United States)

    Sinclair, L C; Deschênes, J-D; Sonderhouse, L; Swann, W C; Khader, I H; Baumann, E; Newbury, N R; Coddington, I

    2015-08-01

    We describe the design, fabrication, and performance of a self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an optics package based on polarization-maintaining fiber, saturable absorbers for mode-locking, high signal-to-noise ratio (SNR) detection of the control signals, and digital feedback control for frequency stabilization. The output is phase-coherent over a 1-2 μm octave-spanning spectrum with a pulse repetition rate of ∼200 MHz and a residual pulse-to-pulse timing jitter <3 fs well within the requirements of most frequency-comb applications. Digital control enables phase coherent operation for over 90 h, critical for phase-sensitive applications such as timekeeping. We show that this phase-slip free operation follows the fundamental limit set by the SNR of the control signals. Performance metrics from three nearly identical combs are presented. This laptop-sized comb should enable a wide-range of applications beyond the laboratory.

  8. Optimized comb drive finger shape for shock-resistant actuation

    NARCIS (Netherlands)

    Engelen, Johan B.C.; Abelmann, Leon; Elwenspoek, Miko C.

    2010-01-01

    This work presents the analytical solution, realization and measurement of a comb drive with finger shapes optimized for shock-resistant actuation. The available force for actuating an external load determines how large shock forces can be compensated for. An analytical expression is presented for t

  9. Coherent Dual Comb Spectroscopy at High Signal to Noise

    CERN Document Server

    Coddington, I; Newbury, N R

    2010-01-01

    Two frequency combs can be used to measure the full complex response of a sample in a configuration which can be alternatively viewed as the equivalent of a dispersive Fourier transform spectrometer, infrared time domain spectrometer, or a multiheterodyne laser spectrometer. This dual comb spectrometer retains the frequency accuracy and resolution inherent to the comb sources. We discuss, in detail, the specific design of our coherent dual-comb spectrometer and demonstrate the potential of this technique by measuring the first overtone vibration of hydrogen cyanide, centered at 194 THz (1545 nm). We measure the fully normalized, complex response of the gas over a 9 THz bandwidth at 220 MHz frequency resolution yielding 41,000 resolution elements. The average spectral signal-to-noise ratio (SNR) is 2,500 for both the fractional absorption and the phase, with a peak SNR of 4,000 corresponding to a fractional absorption sensitivity of 0.025% and phase sensitivity of 250 microradians. As the spectral coverage of ...

  10. An Atlas of Medieval Combs from Northern Europe

    Directory of Open Access Journals (Sweden)

    Steven P. Ashby

    2011-07-01

    Full Text Available As an aid to understanding chronology, economics, identity and culture contact, the early medieval bone/antler hair-comb is an under-exploited resource, despite the existence of an extensive literature borne out of a long-standing tradition of empirical research. Such research has been undertaken according to diverse traditions, is scattered amongst site reports and grey literature, regional, national, and international journals, and is published in a number of different languages. The present article provides a general synthesis of this data, together with the author's personal research, situated within a broad view of chronology and geography. It presents the author's classification of early medieval composite combs, and applies this in a review of comb typology in space and time. It makes use of recently excavated material from little-known and unpublished sites, as well as the classic studies of familiar towns and 'emporia'. The atlas is intended for use as a reference piece that may be accessed according to need, and read in a non-linear fashion. Thus, it may act as a first port-of-call for scholars researching the material culture of a particular spatio-temporal context, while simultaneously facilitating rapid characterisation of freshly excavated finds material. It should provide a useful complement to recent and ongoing question-oriented research on combs.

  11. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    NARCIS (Netherlands)

    Augustine, S.; Jaspers, C.; Kooijman, S.A.L.M.; Carlotti, F.; Poggiale, J.-C.; Freitas, V.; van der Veer, H.W.; van Walraven, L.

    2014-01-01

    Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive b

  12. Frequency combs and precision spectroscopy in the extreme ultraviolet

    Science.gov (United States)

    Cingöz, Arman

    2012-06-01

    Development of the optical frequency comb has revolutionized optical metrology and precision spectroscopy due to its ability to provide a precise link between microwave and optical frequencies. A novel application that aims to extend the precision and accuracy obtained to the extreme ultraviolet (XUV) is the generation of XUV frequency combs via intracavity high harmonic generation (HHG). Recently, we have been able to generate > 200 μW average power per harmonic and demonstrate the comb structure of the high harmonics by resolving atomic argon and neon lines at 82 and 63 nm, respectively [1]. The argon transition linewidth of 10 MHz, limited by residual Doppler broadening, is unprecedented in this spectral region and places a stringent upper limit on the linewidth of individual comb teeth. To overcome this limitation, we have constructed two independent intracavity HHG sources to study the phase coherence directly via the heterodyne beats between them. With these developments, ultrahigh precision spectroscopy in the XUV is within grasp and has a wide range of applications that include tests of bound state quantum electrodynamics, development of nuclear clocks, and searches for variation of fundamental constants using the enhanced sensitivity of highly charged ions.[4pt] [1] Arman Cing"oz et al., Nature 482, 68 (2012).

  13. Coherent cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Fleisher, Adam J; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers, or via sophisticated signal processing algorithms, and therefore long integration times are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The combs of > 250 teeth and 203 MHz spacing were generated by driving the phase modulators with step-recovery diodes, passive devices that provided low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO$_2$, CO, HDO, and H$_2$O at a maximum acquisition rate of 150 kHz. Robus...

  14. Supercontinuum comb sources for broadband communications based on AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Da Ros, Francesco

    2017-01-01

    We experimentally demonstrated 10 GHz frequency comb spectral broadening in an AlGaAsOI nano-waveguide with the peak power of only several watts. The spectral broadened 10 GHz frequency comb has high optical signal to noise ratio (OSNR) at the output of the nano-waveguide. As far as we know......, it is the first photonic chip based frequency comb, relying on spectral broadening of a 10 GHz mode-locked laser comb in an AlGaAsOI nano-waveguide, with a sufficient comb output power to support several hundred Tbit/s optical data....

  15. The effect of drone comb on a honey bee colony's production of honey

    OpenAIRE

    Seeley, Thomas

    2002-01-01

    International audience; This study examined the impact on a colony's honey production of providing it with a natural amount (20%) of drone comb. Over 3 summers, for the period mid May to late August, I measured the weight gains of 10 colonies, 5 with drone comb and 5 without it. Colonies with drone comb gained only 25.2 $\\pm$ 16.0 kg whereas those without drone comb gained 48.8 $\\pm$ 14.8 kg. Colonies with drone comb also had a higher mean rate of drone flights and a lower incidence of drone ...

  16. On-chip, self-detected THz dual-comb spectrometer

    CERN Document Server

    Rösch, Markus; Villares, Gustavo; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme

    2016-01-01

    We present a directly generated on-chip dual-comb source at THz frequencies. The multi-heterodyne beating signal of two free-running THz quantum cascade laser frequency combs is measured electrically using one of the combs as a detector, fully exploiting the unique characteristics of quantum cascade active regions. Up to 30 modes can be detected corresponding to a spectral bandwidth of 630 GHz, being the available bandwidth of the dual comb configuration. The multi-heterodyne signal is used to investigate the equidistance of the comb modes showing an accuracy of $10^{-12}$ at the carrier frequency of 2.5 THz.

  17. Spectral characterization of a frequency comb based on cascaded quadratic nonlinearities inside an optical parametric oscillator

    CERN Document Server

    Ulvila, Ville; Halonen, Lauri; Vainio, Markku

    2015-01-01

    We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.

  18. The effect of drone comb on a honey bee colony's production of honey

    OpenAIRE

    Seeley, Thomas

    2002-01-01

    International audience; This study examined the impact on a colony's honey production of providing it with a natural amount (20%) of drone comb. Over 3 summers, for the period mid May to late August, I measured the weight gains of 10 colonies, 5 with drone comb and 5 without it. Colonies with drone comb gained only 25.2 $\\pm$ 16.0 kg whereas those without drone comb gained 48.8 $\\pm$ 14.8 kg. Colonies with drone comb also had a higher mean rate of drone flights and a lower incidence of drone ...

  19. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    Directory of Open Access Journals (Sweden)

    Julio E. Posada-Roman

    2016-11-01

    Full Text Available Optical frequency combs (OFC generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz. Measurements of ultrasounds (40 kHz and 120 kHz are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  20. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov.

    Science.gov (United States)

    Dobritsa, Anatoly P; Linardopoulou, Elena V; Samadpour, Mansour

    2017-09-07

    A recent study of a group of Burkholderia glathei-like bacteria resulted in the description of 13 novel species of the genus Burkholderia. However, our analysis of phylogenetic positions of these species and their molecular signatures (conserved protein sequence indels) showed that they belong to the genus Caballeronia, and we propose to transfer them to this genus. The reclassified species names are proposed as Caballeroniaarationis comb. nov., Caballeroniaarvi comb. nov., Caballeroniacalidae comb. nov., Caballeroniacatudaia comb. nov., Caballeroniaconcitans comb. nov., Caballeroniafortuita comb. nov., Caballeroniaglebae comb. nov., Caballeroniahypogeia comb. nov., Caballeroniapedi comb. nov., Caballeroniaperedens comb. nov., Caballeroniaptereochthonis comb. nov., Caballeroniatemeraria comb. nov. and Caballeronia turbans comb. nov. It is also proposed to reclassify Burkholderia jirisanensis as Paraburkholderiajirisanensis comb. nov. Based on the results of the polyphasic study, B. jirisanensis had been described as a member of the A-group of the genus Burkholderiaand the most closely related to Burkholderia rhizosphaerae, Burkholderia humisilvae and Burkholderia solisilvae currently classified as belonging to the genus Paraburkholderia.

  1. A stabilized chip-scale Kerr frequency comb via a high-Q reference photonic microresonator

    CERN Document Server

    Lim, Jinkang; Vinod, Abhinav K; Mortazavian, Parastou; Yu, Mingbin; Kwong, Dim-Lee; Savchenkov, Anatoliy A; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2016-01-01

    We stabilize a chip-scale Si3N4 phase-locked Kerr frequency comb via locking the pump laser to an independent stable high-Q reference microresonator and locking the comb spacing to an external microwave oscillator. In this comb, the pump laser shift induces negligible impact on the comb spacing change. This scheme is a step towards miniaturization of the stabilized Kerr comb system as the microresonator reference can potentially be integrated on-chip. Fractional instability of the optical harmonics of the stabilized comb is limited by the microwave oscillator used for comb spacing lock below 1 s averaging time and coincides with the pump laser drift in the long term.

  2. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  3. Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking.

    Science.gov (United States)

    Prior, E; de Dios, C; Criado, R; Ortsiefer, M; Meissner, P; Acedo, P

    2016-09-01

    The present experimental work studies the dynamics of dual-polarization optical frequency combs (OFCs) based on gain switching (GS) vertical-cavity surface-emitting laser (VCSEL) diodes under optical injection locking (OIL). This study presents two main results. First, we have obtained an overall comb formed by two orthogonally polarized sub-combs with comparable span and power. The overall comb shows enhanced optical span and flatness and high coherence between its modes. The second result is that we have been able to control the polarization state of the overall comb by tuning the polarization state of the injected light by locking the same single teeth of the comb. This produces an overall comb with single polarization that is parallel or orthogonal. These are novel findings that provide for the development of efficient and compact OFCs based on GS VCSEL sources with versatile polarization dynamics.

  4. Can neem oil help eliminate lice? Randomised controlled trial with and without louse combing

    Directory of Open Access Journals (Sweden)

    Christine M. Brown

    2017-06-01

    Full Text Available Background: Neem oil and wet combing with conditioner are both claimed to facilitate elimination of head louse infestation. The aim of this pilot study was to identify whether a 1% neem oil lotion showed activity itself and/or enhanced the effectiveness of combing in treating infestation. Methods: We treated 47 participants with 1% neem-based lotion on four occasions 3-4 days apart in a randomised, community based trial, analysed by intention to treat. The participants were randomly divided between two groups: One group used a grooming comb (placebo and the other a head louse detection and removal comb (wet combing with conditioner method to systematically comb the hair. Cure was defined as no lice on both Day 10 and Day 14. Results: The cure rates of 6/24 (25.0% for the placebo comb group and 8/23 (34.8% for the louse comb group were not significantly different. Conclusion: These results indicate that this formulation of neem oil was ineffective in the treatment of head louse infestations, even when accompanied by combing. Both combing methods were also ineffective, despite being implemented throughout by trained professionals.

  5. Methane Detection for Oil and Gas Production Sites Using Portable Dual-Comb Spectrometry

    Science.gov (United States)

    Coburn, Sean; Wright, Robert; Cossel, Kevin C.; Truong, Gar-Wing; Baumann, Esther; Coddington, Ian; Newbury, Nathan R.; Alden, Caroline; Ghosh, Subhomoy; Prasad, Kuldeep; Rieker, Greg B.

    2016-06-01

    Considerable uncertainty exists regarding the contribution of oil and gas operations to anthropogenic emissions of atmospheric methane. Additionally, new proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making this a topic of growing importance to the oil and gas industry as well as regulators. In order to gain a better understanding of emissions, reliable techniques that enable long-term monitoring of entire production facilities are needed. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory. Here we characterize and demonstrate a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites over extended periods of time. The DCS operates over kilometer scale open paths, and the path integrated methane measurements will ultimately be coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate. High instrument precision is needed in order to accurately perform the measurement inversion on the highly varying methane background, thus the DCS system has been fully optimized for the detection of atmospheric methane in the methane absorption region around 180-184 THz.

  6. High density THz frequency comb produced by coherent synchrotron radiation

    CERN Document Server

    Tammaro, S; Roy, P; Lampin, J -F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2014-01-01

    Frequency combs (FC) have radically changed the landscape of frequency metrology and high-resolution spectroscopy investigations extending tremendously the achievable resolution while increasing signal to noise ratio. Initially developed in the visible and near-IR spectral regions, the use of FC has been expanded to mid-IR, extreme ultra-violet and X-ray. Significant effort is presently dedicated to the generation of FC at THz frequencies. One solution based on converting a stabilized optical frequency comb using a photoconductive terahertz emitter, remains hampered by the low available THz power. Another approach is based on active mode locked THz quantum-cascade-lasers providing intense FC over a relatively limited spectral extension. Alternatively, here we show that dense powerful THz FC is generated over one decade of frequency by coherent synchrotron radiation (CSR). In this mode, the entire ring behaves in a similar fashion to a THz resonator wherein electron bunches emit powerful THz pulses quasi-synch...

  7. High-Q Bandpass Comb Filter for Mains Interference Extraction

    Directory of Open Access Journals (Sweden)

    Neycheva T.

    2009-12-01

    Full Text Available This paper presents a simple digital high-Q bandpass comb filter for power-line (PL or other periodical interference extraction. The filter concept relies on a correlated signal average resulting in alternating constructive and destructive spectrum interference i.e. the so-called comb frequency response. The presented filter is evaluated by Matlab simulations with real ECG signal contaminated with low amplitude PL interference. The made simulations show that this filter accurately extract the PL interference. It has high-Q notches only at PL odd harmonics and is appropriate for extraction of any kind of odd harmonic interference including rectangular shape. The filter is suitable for real-time operation with popular low-cost microcontrollers.

  8. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  9. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10-10. The uncertainty is estimated to be in a 10-8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10-10 level in vacuum.

  10. Frequency comb vernier spectroscopy in the near infrared

    CERN Document Server

    Zhu, F; Bicer, A; Strohaber, J; Kolomenskii, A A; Gohle, C; Amani, M; Schuessler, H A

    2014-01-01

    We perform femtosecond frequency comb vernier spectroscopy in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such spectroscopy provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2 corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. These measurements have broad applications for sensing other greenhouse gases in this fingerprint near IR region with a simple apparatus.

  11. Comb-assisted coherence transfer between laser fields

    CERN Document Server

    Sala, Tommaso; Burkart, Johannes; Marangoni, Marco; Romanini, Daniele

    2014-01-01

    Single mode laser fields oscillate at frequencies well outside the realm of electronics, but their phase/frequency fluctuations fall into the radio frequency domain, where direct manipulation is possible. Electro-optic devices have sufficient bandwidth for controlling and tailoring the dynamics of a laser field down to sub-nanosecond time scales. Thus, a laser field can be arbitrarily reshaped and in particular its phase/frequency fluctuations can be in principle removed. In practice, the time evolution of a reference laser field can be cloned to replace the fluctuations of another laser field, at a close-by frequency. In fact, it is possible to exploit a partially stabilized optical comb to perform the cloning across a large frequency gap. We realize this long-haul phase transfer by using a fibered Mach-Zehnder single-sideband modulator driven by an appropriate mix of the beat notes of the master and the slave laser with the comb.

  12. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  13. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    Science.gov (United States)

    2016-04-19

    May - Nov 1998; Nov 1998. 4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter...accordance with security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on...Consistent with the goals of this program, we have now realized microresonators at 75, 37.5, and 25 GHz free spectral range (FSR) and have observed comb

  14. One-way quantum computing in the optical frequency comb.

    Science.gov (United States)

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  15. Computation of Capacitance for MEMS Comb-Drive Structures

    Institute of Scientific and Technical Information of China (English)

    LI Ming-hui; GAO Shi-qiao; LIU Hai-peng; LIANG Xin-jian

    2009-01-01

    According to the characteristics of comb-drive structures,the electrical potential field is analyzed;the model based on corner capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor.Compared with the results of finite element method simulation,the model based on corner capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects,

  16. XUV Frequency Comb Development for Precision Spectroscopy and Ultrafast Science

    Science.gov (United States)

    2015-07-28

    Jason Jones, “A phase coherent dual-comb source in the VUV based on intracavity high harmonic generation,” Annual Meeting of the Division of Atomic...existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...overall objective will be the development of a coherent source capable of making a significant impact in precision spectroscopy and ultrafast

  17. A Novel Nit Comb Concept Using Ultrasound Actuation: Preclinical Evaluation.

    Science.gov (United States)

    Burgess, Mark N; Brunton, Elizabeth R; Burgess, Ian F

    2016-01-01

    Nit combing and removal of head louse, Pediculus humanus capitis De Geer (Anoplura: Pediculidae), eggs is a task made more difficult because "nit combs" vary in efficiency. There is currently no evidence that the binding of the eggshell to the hair can be loosened chemically and few hair treatments improve the slip of the louse eggs along the hair. Ultrasound, applied through the teeth of a nit comb, may facilitate the flow of fluids into the gap between the hair shaft and the tube of fixative holding louse eggs in place to improve lubrication. Ultrasound alone had little effect to initiate sliding, requiring a force of 121.5 ± 23.8 millinewtons (mN) compared with 125.8 ± 18.0 mN without ultrasound, but once the egg started to move it made the process easier. In the presence of a conditioner-like creamy lotion, ultrasound reduced the Peak force required to start movement to 24.3 ± 8.8 mN from 50.4 ± 13.0 mN without ultrasound. In contrast, some head louse treatments made removal of eggs more difficult, requiring approximately twice the Peak force to initiate movement compared with dry hair in the absence of ultrasound. However, following application of ultrasound, the forces required to initiate movement increased for an essential oil product, remained the same for isopropyl myristate and cyclomethicone, and halved for 4% dimeticone lotion. Fixing the nit comb at an estimated angle of 16.5° to the direction of pull gave an optimum effect to improve the removal process when a suitable lubricant was used.

  18. Sex determination in amphibians.

    Science.gov (United States)

    Nakamura, Masahisa

    2009-05-01

    The heterogametic sex is male in all mammals, whereas it is female in almost all birds. By contrast, there are two heterogametic types (XX/XY and ZZ/ZW) for genetic sex determination in amphibians. Though the original heterogametic sex was female in amphibians, the two heterogametic types were probably interchangeable, suggesting that sex chromosomes evolved several times in this lineage. Indeed, the frog Rana rugosa has the XX/XY and ZZ/ZW sex-determining systems within a single species, depending on the local population in Japan. The XY and ZW geographic forms with differentiated sex chromosomes probably have a common origin as undifferentiated sex chromosomes resulted from the hybridization between the primary populations of West Japan and Kanto forms. It is clear that the sex chromosomes are still undergoing evolution in this species group. Regardless of the presence of a sex-determining gene in amphibians, the gonadal sex of some species can be changed by sex steroids. Namely, sex steroids can induce the sex reversal, with estrogens inducing the male-to-female sex reversal, whereas androgens have the opposite effect. In R. rugosa, gonadal activity of CYP19 (P450 aromatase) is correlated with the feminization of gonads. Of particular interest is that high levels of CYP19 expression are observed in indifferent gonads at time before sex determination. Increases in the expression of CYP19 in female gonads and CYP17 (P450 17alpha-hydroxylase/C17-20 lyase) in male gonads suggest that the former plays an important role in phenotypic female determination, whereas the latter is needed for male determination. Thus, steroids could be the key factor for sex determination in R. rugosa. In addition to the role of sex steroids in gonadal sex determination in this species, Foxl2 and Sox3 are capable of promoting CYP19 expression. Since both the genes are autosomal, another factor up-regulating CYP19 expression must be recruited. The factor, which may be located on the X or W

  19. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  20. Development of ultrafast time-resolved dual-comb spectroscopy

    Directory of Open Access Journals (Sweden)

    Akifumi Asahara

    2017-04-01

    Full Text Available Ultrafast time-resolved dual-comb spectroscopy (TR-DCS has been demonstrated, which enables direct observations of transient responses of complex optical spectra by combining dual-comb spectroscopy with the pump–probe method. TR-DCS achieves two-dimensional spectroscopy with a wide dynamic range for both the temporal and frequency axes. As a demonstration, we investigated the femtosecond relaxation dynamics of a photo-excited InGaAs saturable absorber in the near-infrared frequency region. The transient response of the interferogram was successfully obtained, and both the amplitude and phase spectra of the dynamic complex transmittance were independently deduced without using the Kramers-Kronig relations. A high phase resolution in the order of milliradian was achieved by suppressing the effect from the slow phase drift caused in the experimental system. Our proof-of-principle experiment promotes a pathway to coherent, highly accurate, and multi-dimensional pump–probe spectroscopy using the optical frequency comb technology.

  1. Bottle microresonator broadband and low repetition rate frequency comb generator

    CERN Document Server

    Dvoyrin, V

    2016-01-01

    We propose a new type of broadband and low repetition rate frequency comb generator which has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height which is greater or equal to lambda/2pi*n0 (here lambda is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material). Overall, the microresonator possesses a broadband, small FSR, and accurately equidistant spectrum convenient for the generation of a broadband and low repetition rate optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, which radiation frequency matches a single axial eigenfrequency of the microresonator, or, alternatively, by p...

  2. Micro-Doppler frequency comb generation by rotating wire scatterers

    Science.gov (United States)

    Kozlov, V.; Filonov, D.; Yankelevich, Y.; Ginzburg, P.

    2017-03-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the 'quasi-stationary field' analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wires is analyzed theoretically and observed experimentally by illuminating the system with a 2 GHz carrier wave. Highly accurate 'lock in' detection scheme enables factorization of the carrier and observation of multiple peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to make analytical predictions of the spectral positions and amplitudes of the frequency comb peaks. Numeric simulations of the theoretic framework reveal the dependence of the micro-Doppler peaks on the wire's length and its axis of rotation. Unique spectral signature of micro-Doppler shifts could enable resolving internal structures of scatterers and mapping their accelerations in space, which is valuable for a variety of applications spanning from targets identification to stellar radiometry.

  3. Single DNA Condensation Induced by Hexammine Cobalt with Molecular Combing

    Institute of Scientific and Technical Information of China (English)

    Gao-ming Hu; Yu Lin; Shi-yong Ran; Yan-wei Wang; Guang-can Yang

    2012-01-01

    We investigated the interaction between DNA and hexammine cobalt Ⅲ [Co(NH3)6]3+ by a simple molecular combing method and dynamic light scattering.The average extension of λ-DNA-YOYO-1 complex is found to be 20.9 μm,about 30% longer than the contour length of the DNA in TE buffer (10 mmol/L Tris,1 mmol/L EDTA,pH=8.0),due to bis-intercalation of YOYO-1.A multivalent cation,hexammine cobalt,is used for DNA condensation.We find that the length of DNA-[Co(NH3)6]3+ complexes decrease from 20.9 μm to 5.9 μm as the concentration of the [Co(NH3)6]3+ vary from 0 to 3 μmol/L.This observation provides a direct visualization of single DNA condensation induced by hexammine cobalt.The results from the molecular combing studies are supported by dynamic light scattering investigation,where the average hydrodynamic radius of the DNA complex decreases from 203.8 nm to 39.26 nm under the same conditions.It shows that the molecular combing method is feasible for quantitative conformation characterization of single bio-macromolecules.

  4. Frequency-Comb Spectrum of Periodic-Patterned Signals

    Science.gov (United States)

    Steinmann, Johannes L.; Blomley, Edmund; Brosi, Miriam; Bründermann, Erik; Caselle, Michele; Hesler, Jeffrey L.; Hiller, Nicole; Kehrer, Benjamin; Mathis, Yves-Laurent; Nasse, Michael J.; Raasch, Juliane; Schedler, Manuel; Schönfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael; Smale, Nigel; Weber, Marc; Müller, Anke-Susanne

    2016-10-01

    Using arbitrary periodic pulse patterns we show the enhancement of specific frequencies in a frequency comb. The envelope of a regular frequency comb originates from equally spaced, identical pulses and mimics the single pulse spectrum. We investigated spectra originating from the periodic emission of pulse trains with gaps and individual pulse heights, which are commonly observed, for example, at high-repetition-rate free electron lasers, high power lasers, and synchrotrons. The ANKA synchrotron light source was filled with defined patterns of short electron bunches generating coherent synchrotron radiation in the terahertz range. We resolved the intensities of the frequency comb around 0.258 THz using the heterodyne mixing spectroscopy with a resolution of down to 1 Hz and provide a comprehensive theoretical description. Adjusting the electron's revolution frequency, a gapless spectrum can be recorded, improving the resolution by up to 7 and 5 orders of magnitude compared to FTIR and recent heterodyne measurements, respectively. The results imply avenues to optimize and increase the signal-to-noise ratio of specific frequencies in the emitted synchrotron radiation spectrum to enable novel ultrahigh resolution spectroscopy and metrology applications from the terahertz to the x-ray region.

  5. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  6. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  7. Second-harmonic mode coupling in microresonator-based optical frequency comb generation

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...

  8. Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities

    CERN Document Server

    Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M

    2015-01-01

    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  9. Symmetry Breaking of Frequency Comb in Varying Normal Dispersion Fiber Ring Cavity

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    We build on a previously reported frequency comb of mode spacing 0.136 nm in a fiber ring cavity of varying normal dispersion [1], to generate, for the first time, a frequency comb of mode spacing 0.144 nm centered at 978.544 nm to demonstrate the symmetry-breaking. By controlling the birefringence of the optical cavity through fiber stretching and polarization control, the spacing of the comb lines increases from 0.136 nm to 0.144 nm, and this small change in mode spacing generates very different spectral symmetry-breaking in the frequency comb relative to the frequency comb of mode spacing 0.136 nm. Interestingly, non-uniform depletion of primary modes is also observed. The experimental results are an important contribution in the continuing effort of understanding the dynamics of frequency combs involving large number of modes, nontrivial nonlinear waves and deterministic chaos.

  10. A simple application technique of fibrin-coated collagen fleece (TachoComb) in laparoscopic surgery.

    Science.gov (United States)

    Nakajima, Kiyokazu; Yasumasa, Keigo; Endo, Shunji; Takahashi, Tsuyoshi; Kai, Yasuyuki; Nezu, Riichiro; Nishida, Toshirou

    2007-01-01

    A fibrin-coated collagen fleece (TachoComb, Nycomed, Denmark) is a powerful topical hemostatic agent, which has been aggressively used in conventional open surgery with a favorable clinical outcome. However, the use of TachoComb in laparoscopic surgery has not yet gained wide clinical acceptance, because a simple and well-functioning application system is not available. The authors have newly developed a quick, simple, and effective laparoscopic TachoComb application technique: housing a small strip of TachoComb in a rubber tube, then conveying it into the peritoneal cavity, and applying it using standard laparoscopic forceps. The repeated application of TachoComb strips is feasible and of practical value especially in laparoscopic surgery, since a small TachoComb never compromises either the application procedure or laparoscopic visualization.

  11. Direct generation of optical frequency combs in χ(2 nonlinear cavities

    Directory of Open Access Journals (Sweden)

    Mosca Simona

    2016-06-01

    Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  12. Sex Stereotype

    Institute of Scientific and Technical Information of China (English)

    倪媛

    2014-01-01

    This paper analyzes the social phenomenon—sex stereotype.The paper illustrates the characteristics of stereotype and discusses about the factors which influence sex stereotypes and the reasons of its existence.And it also found the positive role that sex stereotype plays in the communication.

  13. Hydrocarbon Composition of Beeswax (Apis Mellifera) Collected from Light and Dark Coloured Combs

    OpenAIRE

    Waś Ewa; Szczęsna Teresa; Rybak-Chmielewska Helena

    2014-01-01

    The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“) that was collected at different dates, and beeswax obtained from dark combs („brood combs“). A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes) were identif...

  14. Kerr combs in microresonators: from chaos to solitons and from theory to experiment (Conference Presentation)

    Science.gov (United States)

    Gorodetsky, Michael L.; Lobanov, Valery E.; Lihachev, Grigory; Pavlov, Nikolay; Koptyaev, Sergey N.

    2017-02-01

    Kerr frequency combs in optical passive microresonators promise new breakthroughs in photonics. Such combs result from multiple hyper-parametric four-wave mixing processes when reaching a threshold of modulational instability. These combs however have chaotic nature. It was revealed in recent experiments, theoretical and numerical analysis that transition form these chaotic states to highly ordered states associated with dissipative Kerr solitons is possible. In this report we discuss theoretical approaches to analyze these soliton states and reveal methods of reliable transition to single soliton states. Latest experimental results with soliton combs are reported.

  15. Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs

    Science.gov (United States)

    Lin, Guoping; Saleh, Khaldoun; Henriet, Rémi; Diallo, Souleymane; Martinenghi, Romain; Coillet, Aurélien; Chembo, Yanne K.

    2014-12-01

    We theoretically and experimentally investigate some effects related to the Kerr optical frequency comb generation, using a millimeter-size magnesium fluoride ultrahigh quality disk resonator. We show that the Kerr comb tunability can be extremely wide in the Turing pattern (or primary comb) regime, with an intermodal frequency that can be tuned from 4 to 229 multiple free spectral ranges (corresponding to a frequency spacing ranging from 24 GHz to 1.35 THz). We also discuss the role played by thermal locking while pumping the resonator, as well as the effect of modal crossing when broadband combs are generated.

  16. Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.

    Science.gov (United States)

    Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan

    2012-07-30

    We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.

  17. Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium.

    Science.gov (United States)

    Fendel, P; Bergeson, S D; Udem, Th; Hänsch, T W

    2007-03-15

    We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.

  18. Mid-infrared dual-comb spectroscopy with electro-optic modulators

    CERN Document Server

    Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We demonstrate dual-comb spectroscopy based on difference frequency generation of frequency-agile near-infrared frequency combs, produced with the help of electro-optic modulators. The combs have a remarkably flat intensity distribution and their positions and line spacings can be selected freely by simply dialing a knob. We record, in the 3-micron region, Doppler-limited absorption spectra with resolved comb lines within milliseconds. Precise molecular line parameters are retrieved. Our technique holds promise for fast and sensitive time-resolved studies e.g. of trace gases.

  19. A new Generation of Spectrometer Calibration Techniques based on Optical Frequency Combs

    CERN Document Server

    Schmidt, Piet O; Kimeswenger, Stefan

    2007-01-01

    Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for calibration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometer's spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lase...

  20. An experiment on comb orientation by honey bees (Hymenoptera: Apidae) in traditional hives.

    Science.gov (United States)

    Adgaba, Nuru; Al-Ghamdi, Ahmad A; Chernet, Mebrat H; Ali, Yahya A; Ansari, Mohammad J; Radloff, Sarah E; Howard, Randall H

    2012-06-01

    The orientation of combs in traditional beehives is extremely important for obtaining a marketable honey product. However, the factors that could determine comb orientation in traditional hives and the possibilities of inducing honey bees, Apis mellifera (L.), to construct more desirable combs have not been investigated. The goal of this experiment was to determine whether guide marks in traditional hives can induce bees to build combs of a desired orientation. Thirty-two traditional hives of uniform dimensions were used in the experiment. In 24 hives, ridges were formed on the inner surfaces of the hives with fermented mud to obtain different orientations, circular, horizontal, and spiral, with eight replicates of each treatment. In the remaining eight control hives, the inner surface was left smooth. Thirty-two well-established honey bee colonies from other traditional hives were transferred to the prepared hives. The colonies were randomly assigned to the four treatment groups. The manner of comb construction in the donor and experimental hives was recorded. The results showed that 22 (91.66%) of the 24 colonies in the treated groups built combs along the ridges provided, whereas only 2 (8.33%) did not. Comb orientation was strongly associated with the type of guide marks provided. Moreover, of the 18 colonies that randomly fell to patterns different from those of their previous nests, 17 (94.4%) followed the guide marks provided, irrespective of the comb orientation type in their previous nest. Thus, comb orientation appears to be governed by the inner surface pattern of the nest cavity. The results suggest that even in fixed-comb hives, honey bees can be guided to build combs with orientations suitable to honey harvesting, without affecting the colonies.

  1. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  2. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    Science.gov (United States)

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  3. Application of the Molecular Combing Technique to Starch Granules

    Directory of Open Access Journals (Sweden)

    Zhong-Dong Liu

    2009-10-01

    Full Text Available The molecular combing technique was used to dissociate the nanostructural units of starch granules from the starch fragments after a gelatinization process. With the help of atomic force microscopy (AFM, we observed that some nanostructural chains were just flowing out of the granules. It proves that there are substantive nanostructural units in the starch granules, a phenomenon not previously observed, so these nanostructural units were defined as suspected intermediates. Furthermore, we conclude that blocklets of starch granules are formed through twisting or distortion of nanochains.

  4. Comb-Line Filter with Coupling Capacitor in Ground Plane

    Directory of Open Access Journals (Sweden)

    Toshiaki Kitamura

    2011-01-01

    Full Text Available A comb-line filter with a coupling capacitor in the ground plane is proposed. The filter consists of two quarter-wavelength microstrip resonators. A coupling capacitor is inserted into the ground plane in order to build strong coupling locally along the resonators. The filtering characteristics are investigated through numerical simulations as well as experiments. Filtering characteristics that have attenuation poles at both sides of the passband are obtained. The input susceptances of even and odd modes and coupling coefficients are discussed. The filters using stepped impedance resonators (SIRs are also discussed, and the effects of the coupling capacitor for an SIR structure are shown.

  5. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    Science.gov (United States)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  6. Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Can Zhang; Bo Liu; Guangyao Li; Lei Zhou

    2011-01-01

    Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity.PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications,respectively,and thus maintaining the expression status of homeotic genes.Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers.Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis.Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer.It is anticipated that Drosophila melanogaster,the model organism that contributed significantly to our understanding of the functional role of histone regulation in development,could also provide unique insight for our understanding of how histone dysregulation can lead to cancer.In this review,we will discuss several recent advances in this regard.

  7. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    Science.gov (United States)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  8. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NARCIS (Netherlands)

    Van den Berg, S.A.; Van Eldik, S.; Bhattacharya, N.

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phas

  9. Efficient frequency comb generation in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;

    2016-01-01

    The combination of nonlinear and integrated photonics enables Kerr frequency comb generation in stable chip-based microresonators. Such a comb system will revolutionize applications, including multi-wavelength lasers, metrology, and spectroscopy. Aluminum gallium arsenide (AlGaAs) exhibits very h...

  10. Optimally Coherent Kerr Combs Generated with Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications

    Science.gov (United States)

    Pfeifle, Joerg; Coillet, Aurélien; Henriet, Rémi; Saleh, Khaldoun; Schindler, Philipp; Weimann, Claudius; Freude, Wolfgang; Balakireva, Irina V.; Larger, Laurent; Koos, Christian; Chembo, Yanne K.

    2015-03-01

    Optical Kerr frequency combs are known to be effective coherent multiwavelength sources for ultrahigh capacity fiber communications. These combs are the frequency-domain counterparts of a wide variety of spatiotemporal dissipative structures, such as cavity solitons, chaos, or Turing patterns (rolls). In this Letter, we demonstrate that Turing patterns, which correspond to the so-called primary combs in the spectral domain, are optimally coherent in the sense that for the same pump power they provide the most robust carriers for coherent data transmission in fiber communications using advanced modulation formats. Our model is based on a stochastic Lugiato-Lefever equation which accounts for laser pump frequency jitter and amplified spontaneous emission noise induced by the erbium-doped fiber amplifier. Using crystalline whispering-gallery-mode resonators with quality factor Q ˜109 for the comb generation, we show that when the noise is accounted for, the coherence of a primary comb is significantly higher than the coherence of their solitonic or chaotic counterparts for the same pump power. In order to confirm this theoretical finding, we perform an optical fiber transmission experiment using advanced modulation formats, and we show that the coherence of the primary comb is high enough to enable data transmission of up to 144 Gbit /s per comb line, the highest value achieved with a Kerr comb so far. This performance evidences that compact crystalline photonic systems have the potential to play a key role in a new generation of coherent fiber communication networks, alongside fully integrated systems.

  11. Perovskites in the comb roof base of hornets : Their possible function

    NARCIS (Netherlands)

    Ishay, JS; Joseph, Z; Galushko, D; Ermakov, N; Bergman, DJ; Barkay, Z; Stokroos, [No Value; Van der Want, J

    2005-01-01

    On the ceiling of the Oriental hornet comb cell, there are mineral granules of poly-crystalline material known to belong to the group of perovskites. In a comb cell intended to house a worker hornet, the roof base usually carries one or several such perovskite granules containing titanium (Ti), wher

  12. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  13. Fourier transform spectroscopy around 3 microns with a broad difference frequency comb

    CERN Document Server

    Meek, Samuel A; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    We characterize a new mid-infrared frequency comb generator based on difference frequency generation around 3.2 microns. High power per comb mode (>10-7 W/mode) is obtained over a broad spectral span (>700 nm). The source is used for direct absorption spectroscopy with a Michelson-based Fourier transform interferometer.

  14. Widely-tunable mid-infrared frequency comb source based on difference frequency generation

    NARCIS (Netherlands)

    Ruehl, A.; Gambetta, A.; Hartl, I.; Fermann, M.E.; Eikema, K.S.E.; Marangoni, M.

    2012-01-01

    We report on a mid-IR frequency comb source of unprecedented tunability covering the entire 3-10 mu m molecular fingerprint region. The system is based on difference frequency generation in a GaSe crystal pumped by a 151 MHz Yb:fiber frequency comb. The process was seeded with Raman-shifted solitons

  15. MICROBIOLOGICAL COMPARISON BETWEEN HONEY IN JAR AND HONEY IN COMB FOR HUMAN CONSUMPTION

    Directory of Open Access Journals (Sweden)

    G. Formato

    2013-02-01

    Full Text Available The Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, during August-July 2007 analyzed, for the microbial aspects, 37 samples of jar honey and 53 samples of honey in comb obtained from 37 farms of Latium Region. In the jar honey there weren’t values up to 1*103 colony-forming unit (CFU/g of bacteria mesophiles, while in the honey in comb it was not up to 2*103 CFU/g. Bacillus cereus was found in 22 samples (41,5% of honey in comb and in 18 samples (48,6% of jar honey; Clostridium perfringens was found in 6 (11,3% samples of honey in comb and in 6 samples (16,2% of jar honey; Clostridium baratii was found in 1 (1,9% sample of honey in comb and in 1 sample (2,7% of jar honey; coagulase-positive staphylococci were found in 4 (11,3% samples of honey in comb and in 4 samples (10,8% of jar honey; Clostridium sordelli was found in 2 samples (3,8% of honey in comb and in 1 sample (2,7% of jar honey. Only 2 samples of honey in comb and 1 sample of jar honey had yeasts up to 1000 CFU/g. Finally, 9 samples (24,3% of jar honey and 16 samples (30,2% of honey in jar were positives for moulds.

  16. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.;

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  17. Picometer-resolution dual-comb spectroscopy with a free-running fibre laser

    CERN Document Server

    Zhao, Xin; Zhao, Bofeng; Li, Cui; Pan, Yingling; Liu, Ya; Yasui, Takeshi; Zheng, Zheng

    2016-01-01

    Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a real-time, high-resolution analytical spectroscopy tool for a range of important applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing electronics with the law of physics in lasers, a much simpler, dual-comb spectroscopy scheme is demonstrated here using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be robust against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve pi...

  18. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy.

    Science.gov (United States)

    Vainio, Markku; Karhu, Juho

    2017-02-20

    A fully stabilized mid-infrared optical frequency comb spanning from 2.9 to 3.4 µm is described in this article. The comb is based on half-harmonic generation in a femtosecond optical parametric oscillator, which transfers the high phase coherence of a fully stabilized near-infrared Er-doped fiber laser comb to the mid-infrared region. The method is simple, as no phase-locked loops or reference lasers are needed. Precise locking of optical frequencies of the mid-infrared comb to the pump comb is experimentally verified at sub-20 mHz level, which corresponds to a fractional statistical uncertainty of 2 × 10-16 at the center frequency of the mid-infrared comb. The fully stabilized mid-infrared comb is an ideal tool for high-precision molecular spectroscopy, as well as for optical frequency metrology in the mid-infrared region, which is difficult to access with other stabilized frequency comb techniques.

  19. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model

    OpenAIRE

    Coen, Stephane; Randle, Hamish G.; Sylvestre, Thibaut; Erkintalo, Miro

    2012-01-01

    A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr comb formation.

  20. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model.

    Science.gov (United States)

    Coen, Stéphane; Randle, Hamish G; Sylvestre, Thibaut; Erkintalo, Miro

    2013-01-01

    A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr-comb formation.

  1. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model

    CERN Document Server

    Coen, Stephane; Erkintalo, Miro

    2013-01-01

    We model Kerr frequency combs with a generalized Lugiato-Lefever equation combined with a Newton-Raphson solver. Results in excellent agreement with past experiments are obtained much faster than with any other technique, and we simulate for the first time to our knowledge an octave-spanning Kerr frequency comb. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of comb formation in ring resonators.

  2. Bathygrillotia n. g. (Cestoda: Trypanorhyncha), with redescriptions of B. rowei (Campbell, 1977) n. comb. and B. kovalevae (Palm, 1995) n. comb.

    Science.gov (United States)

    Beveridge, I; Campbell, R A

    2012-07-01

    Bathygrillotia n. g. (Cestoda: Trypanorhyncha) is erected for B. rowei (Campbell, 1977) n. comb. and B. kovalevae (Palm, 1995) n. comb. The new genus is based on the possession of two bothria, an atypical, heteroacanthous, heteromorphous armature with longitudinal files of hooks on the external surface of the tentacle associated with each principal row, each consisting of a large anterior hook followed by two smaller hooks. Bathygrillotia is allocated to the Lacistorhynchoidea Guiart, 1927 and its relationships with Grillotia Guiart, 1927 are discussed.

  3. Operation of an optically coherent frequency comb outside the metrology lab

    CERN Document Server

    Sinclair, Laura C; Swann, William C; Rieker, Greg B; Hati, Archita; Iwakuni, Kana; Newbury, Nathan R

    2013-01-01

    We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems. Work of the U.S. government, not subject to copyright

  4. Operation of an optically coherent frequency comb outside the metrology lab.

    Science.gov (United States)

    Sinclair, L C; Coddington, I; Swann, W C; Rieker, G B; Hati, A; Iwakuni, K; Newbury, N R

    2014-03-24

    We demonstrate a self-referenced fiber frequency comb that can operate outside the well-controlled optical laboratory. The frequency comb has residual optical linewidths of < 1 Hz, sub-radian residual optical phase noise, and residual pulse-to-pulse timing jitter of 2.4 - 5 fs, when locked to an optical reference. This fully phase-locked frequency comb has been successfully operated in a moving vehicle with 0.5 g peak accelerations and on a shaker table with a sustained 0.5 g rms integrated acceleration, while retaining its optical coherence and 5-fs-level timing jitter. This frequency comb should enable metrological measurements outside the laboratory with the precision and accuracy that are the hallmarks of comb-based systems.

  5. Phase stabilization of Kerr frequency comb internally without nonlinear optical interferometry

    CERN Document Server

    Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W

    2016-01-01

    Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically ...

  6. Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields

    CERN Document Server

    Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S

    2014-01-01

    The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...

  7. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  8. (87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb.

    Science.gov (United States)

    Schratwieser, Thomas C; Balskus, Karolis; McCracken, Richard A; Farrell, Carl; Leburn, Christopher G; Zhang, Zhaowei; Lamour, Tobias P; Ferreiro, Teresa I; Marandi, Alireza; Arnold, Aidan S; Reid, Derryck T

    2014-05-01

    We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a (87)Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

  9. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling.

    Science.gov (United States)

    Fordell, Thomas; Wallin, Anders E; Lindvall, Thomas; Vainio, Markku; Merimaa, Mikko

    2014-11-01

    Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

  10. Creating Sex

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    Thomas Laqueur’s influential yet controversial study Making Sex has, in many ways, revolutionized our understanding of sexuality in antiquity. Yet, most of Laqueur’s critics and supporters stressed the one-sex body, while the crux of his argument is the primacy of gender. Moreover, a systematic...

  11. Sex Offenders.

    Science.gov (United States)

    Hayes, Susan

    1991-01-01

    This paper on the problem of sex offending among individuals with intellectual disabilities examines the incidence of this problem, characteristics of intellectually disabled sex offenders, determination of whether the behavior is a paraphilia or functional age-related behavior, and treatment options, with emphasis on the situation in New South…

  12. Comb-referenced laser distance interferometer for industrial nanotechnology

    Science.gov (United States)

    Jang, Yoon-Soo; Wang, Guochao; Hyun, Sangwon; Kang, Hyun Jay; Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-01-01

    A prototype laser distance interferometer is demonstrated by incorporating the frequency comb of a femtosecond laser for mass-production of optoelectronic devices such as flat panel displays and solar cell devices. This comb-referenced interferometer uses four different wavelengths simultaneously to enable absolute distance measurement with the capability of comprehensive evaluation of the measurement stability and uncertainty. The measurement result reveals that the stability reaches 3.4 nm for a 3.8 m distance at 1.0 s averaging, which further reduces to 0.57 nm at 100 s averaging with a fractional stability of 1.5 × 10−10. The uncertainty is estimated to be in a 10−8 level when distance is measured in air due to the inevitable ambiguity in estimating the refractive index, but it can be enhanced to a 10−10 level in vacuum. PMID:27558016

  13. Arbitrary optical frequency synthesis traced to an optical frequency comb

    Science.gov (United States)

    Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun

    2016-11-01

    An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and Ring-Down Spectroscopy.

  14. Lévy processes on a generalized fractal comb

    Science.gov (United States)

    Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç

    2016-09-01

    Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

  15. Absolute frequency measurement of unstable lasers with optical frequency combs

    Science.gov (United States)

    Beverini, N.; Poli, N.; Sutyrin, D.; Wang, F.-Y.; Schioppo, M.; Tarallo, M. G.; Tino, G. M.

    2010-09-01

    Here we report on absolute frequency measurements of a commercial high power CW diode-pumped solid-state laser (Coherent Verdi-V5). This kind of lasers usually presents large frequency jitter (up to 50 MHz) both in the short term (1 ms time scale) and in the long term (>10 s time scale). A precise measurement of absolute frequency deviations in both temporal scales should require a set of different devices (optical cavities, optical wave-meters), each suited for measurements only at a specific integration time. Here we demonstrate how a frequency comb can be used to overcome this difficulty, allowing in a single step a full characterization of both short ( 103 s) absolute frequency jitter with a resolution better than 1 MHz. We demonstrate in this way the flexibility of optical frequency combs for absolute frequency measurements not only of ultra-stable lasers but also of relatively unstable lasers. The absolute frequency calibration of the Verdi laser that we have obtained have been used in order to improve the accuracy of the measurements of the local gravitational acceleration value with 88Sr atoms trapped in 1D vertical lattices.

  16. A Fine-Tooth Comb to Measure the Accelerating Universe

    Science.gov (United States)

    2008-09-01

    Astronomical instruments needed to answer crucial questions, such as the search for Earth-like planets or the way the Universe expands, have come a step closer with the first demonstration at the telescope of a new calibration system for precise spectrographs. The method uses a Nobel Prize-winning technology called a 'laser frequency comb', and is published in this week's issue of Science. Uncovering the disc ESO PR Photo 26a/08 A Laser Comb for Astronomy "It looks as if we are on the way to fulfil one of astronomers' dreams," says team member Theodor Hänsch, director at the Max Planck Institute for Quantum Optics (MPQ) in Germany. Hänsch, together with John Hall, was awarded the 2005 Nobel Prize in Physics for work including the frequency comb technique. Astronomers use instruments called spectrographs to spread the light from celestial objects into its component colours, or frequencies, in the same way water droplets create a rainbow from sunlight. They can then measure the velocities of stars, galaxies and quasars, search for planets around other stars, or study the expansion of the Universe. A spectrograph must be accurately calibrated so that the frequencies of light can be correctly measured. This is similar to how we need accurate rulers to measure lengths correctly. In the present case, a laser provides a sort of ruler, for measuring colours rather than distances, with an extremely accurate and fine grid. New, extremely precise spectrographs will be needed in experiments planned for the future European Extremely Large Telescope (E-ELT), which is being designed by ESO, the European Southern Observatory. These new spectrographs will need to be calibrated with even more accurate 'rulers'. In fact, they must be accurate to about one part in 30 billions - a feat equivalent to measuring the circumference of the Earth to about a millimetre! "We'll need something beyond what current technology can offer, and that's where the laser frequency comb comes in. It is

  17. Scanning micro-resonator direct-comb absolute spectroscopy

    CERN Document Server

    Gambetta, Alessio; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical frequency Comb Spectroscopy (DCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DCS approach based on a scanning Fabry-Perot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from XUV to THz. An application to high-precision spectroscopy of acetylene at 1.54 um is presented, demonstrating frequency resolution as low as 20 MHz with a single-scan optical bandwidth up to 1 THz in 20-ms measurement time and a noise-equ...

  18. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  19. Sex determination

    OpenAIRE

    McCullagh, W. McK. H.

    2013-01-01

    How the sex of offspring is determined has puzzled philosophers and scientists for millennia. Modern science has identified both genetic and environmental factors, but the question is still not yet fully answered.

  20. Why Sex?

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2006-01-01

    It is assumed that most organisms have sex because the resulting genetic recombination allows Darwinian selection to work better. It is now shown that in water fleas, recombination does lead to fewer deleterious mutations.......It is assumed that most organisms have sex because the resulting genetic recombination allows Darwinian selection to work better. It is now shown that in water fleas, recombination does lead to fewer deleterious mutations....

  1. Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique

    Science.gov (United States)

    Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru

    2017-06-01

    Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).

  2. Damages to the Black Sea, Caspian Sea and Baltic Sea by the invader comb jelly Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Elif Eker Develi

    2011-10-01

    Full Text Available In the present study changes in ecosystems of the Black Sea, Caspian Sea and Baltic Sea after the invasion of ctenophore Mnemiopsis leidyi were investigated. Excessive increase in plant plankton as a result of antrophogenic eutrophication leads to a shift in mesozooplankton com¬position, which is the main food item of these comb jellies. For instance, while some mesozoo¬plankton species disappeared from the environment or substantially decreased in number, some others increased in quantity. These changes in food chain may promote the rise of jellyfishes rather than fish in the environment. In addition, decrease in planktivorous fish abundance as a consequence of overfishing also triggers the increase of newly introduced comb jellies, which were possibly introduced via ballast waters of ships, in the ecosystem. Increase in abundance of M. leidyi, which compete with planktivorous fishes (anchovy, Engraulis encrasicolus ponticus in the Black Sea, kilka, Clupeonella spp. in the Caspian Sea for their food, causes to decrease of planktivorous fish stocks which have already been vulnerable due to overfishing. Another reason for successfully adaption of M. leidyi to its new ecosystems could be linked to global warming which provides favourable temperature ranges for reproduction and growth of this ctenophore. Although there are still many debates related to possible negative effects, one of the ways to reduce harmful impacts of invaders might be the transport of natural predators of these invaders to the new ecosystems of invaders. For example, it was reported that the abun¬dance of Mnemiopsis leidyi decreased to very low levels during 1999-2004 in the Black Sea following the introduction of another comb jelly, Beroe ovata, which feed on this ctenophore.

  3. Modeling Kerr frequency combs using the Lugiato-Lefever equation: a characterization of the multistable landscape

    Science.gov (United States)

    Parra-Rivas, P.; Gomila, D.; Matias, M. A.; Leo, F.; Coen, S.; Gelens, L.

    2014-05-01

    Optical frequency combs can be used to measure light frequencies and time intervals more easily and precisely than ever before, opening a large avenue for applications. Traditional frequency combs are usually associated with trains of evenly spaced, very short pulses. More recently, a new generation of comb sources has been demonstrated in compact high-Q optical microresonators with a Kerr nonlinearity pumped by continuous-wave laser light. These combs are now referred to as Kerr frequency combs and have attracted a lot of interest in the last few years. Kerr frequency combs can be modeled in a way that is strongly reminiscent of temporal cavity solitons (CSs) in nonlinear cavities. Temporal CSs have been experimentally studied in fiber resonators and their description is based on a now classical equation, the Lugiato-Lefever equation, that describes pattern formation in optical systems. In this work, we first perform a theoretical study of the correspondence between the CSs and patterns with frequency combs. It is known that the CSs appear in reversible systems that present bistability between a pattern and a homogeneous steady state through what it is called a homoclinic snaking structure. In this snaking region, single and multi-peak CSs coexist with patterns and homogeneous solutions, creating a largely multistable landscape. We study the changes of the homoclinic snaking for different parameter regimes in the Lugiato-Lefever equation and determine the stability and shape of the frequency combs through comparison with the underlying CSs and patterns. Secondly, we include third order dispersion in the system and study its effect on the multistable snaking structure. For high dispersion strengths the CS structures and the corresponding Kerr frequency combs disappear.

  4. Sex education in Portugal.

    Science.gov (United States)

    Frade, A; Vilar, D

    1991-05-01

    The article on sex education in Portugal covers background, the educational system, the clashes of the 1960's over sex education, the Committee for the Study of Sexuality and Education (CSSE), the policies, politics and social movements during the period 1974 - 1984, the discussions in Parliament, the 1988 Reform of the Educational System, the Family Planning Association (FPA) and sex education, and the future role of the FPA. It was not until the institution of the multiparity parliamentary system in 1974 that discussing social and political changes was possible, culminating in 1984 with new legislation on abortion, family planning, and sex education. School reform came in 1987/8 with the Ministry of Education primarily responsible for curricula. The 1960's brought with it the influence of the Catholic Church. Change came in the form of progressivism among Catholics who replaced dogma with dialogue and listening. Sex education was considered as preparation for marriage, but masturbation, contraception, and prostitution were also discussed. In addition, the founder of FPA chaired the CSSE in 1971 and opened up debate on sex issues and drafted a bill to establish co-education in Portuguese schools. The revolution of 1974 brought an end to censorship and brought forth a policy of developing family planning. Changed in the Family Code gave women greater equality. UNFPA supported teacher training in non-sexist education. With human reproduction included in the natural sciences, there was still no school sex education policy and contraception was only sometimes represented in the biology curriculum. The focus of FPA was on contraception and abortion. Finally in the 1980's, the first sex education programs were developed for out-of-school youth. Even though in the 1970's there were leftists groups promoting sex education, it took leftist parliamentary power to get legislation on sex education in the schools adopted. The Ministry of Education however was pressured by the

  5. Coherent Raman spectro-imaging with laser frequency combs

    CERN Document Server

    Ideguchi, Takuro; Bernhardt, Birgitta; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2013-01-01

    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within le...

  6. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    Science.gov (United States)

    Šmíd, R.; Hänsel, A.; Pravdová, L.; Sobota, J.; Číp, O.; Bhattacharya, N.

    2016-09-01

    In this work we present a design of an external optical cavity based on Fabry-Perot etalons applied to a 100 MHz Er-doped fiber optical frequency comb working at 1560 nm to increase its repetition frequency. A Fabry-Perot cavity is constructed based on a transportable cage system with two silver mirrors in plano-concave geometry including the mode-matching lenses, fiber coupled collimation package and detection unit. The system enables full 3D angle mirror tilting and x-y off axis movement as well as distance between the mirrors. We demonstrate the increase of repetition frequency by direct measurement of the beat frequency and spectrally by using the virtually imaged phased array images.

  7. Direct frequency comb two-photon laser cooling and trapping

    Science.gov (United States)

    Jayich, Andrew; Long, Xueping; Campbell, Wesley C.

    2016-05-01

    Generating and manipulating high energy photons for spectroscopy on electric dipole transitions of atoms and molecules with deeply bound valence electrons is difficult. Further, laser cooling of such species is even more challenging for lack of laser power. A possible solution is to drive two-photon transitions. This may alleviate the photon energy problem and open the door to cold, trapped samples of highly desirable species with tightly bound electrons. We perform a proof of principle experiment with rubidium by driving a two-photon transition with an optical frequency comb. We perform optical cooling and extend this technique to trapping, where we are able to make a magneto-optical trap in one dimension. This work is supported by the National Science Foundation CAREER program.

  8. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  9. Direct frequency comb measurement of OD + CO → DOCO kinetics.

    Science.gov (United States)

    Bjork, B J; Bui, T Q; Heckl, O H; Changala, P B; Spaun, B; Heu, P; Follman, D; Deutsch, C; Cole, G D; Aspelmeyer, M; Okumura, M; Ye, J

    2016-10-28

    The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  10. High spectral purity Kerr frequency comb radio frequency photonic oscillator.

    Science.gov (United States)

    Liang, W; Eliyahu, D; Ilchenko, V S; Savchenkov, A A; Matsko, A B; Seidel, D; Maleki, L

    2015-08-11

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than -60 dBc Hz(-1) at 10 Hz, -90 dBc Hz(-1) at 100 Hz and -170 dBc Hz(-1) at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10(-10) at 1-100 s integration time-orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption.

  11. Steering optical comb frequency by rotating polarization state

    CERN Document Server

    Zhang, Y; Zhang, X F; Zhang, L; Han, W; Guo, W; Jiang, H; Zhang, S

    2016-01-01

    Optical frequency combs, with precise control of repetition rate and carrier-envelope-offset frequency, have revolutionized many fields, such as fine optical spectroscopy, optical frequency standards, ultra-fast science research, ultra-stable microwave generation and precise ranging measurement. However, existing high bandwidth frequency control methods have small dynamic range, requiring complex hybrid control techniques. To overcome this limitation, we develop a new approach, where a home-made intra-cavity electro-optic modulator tunes polarization state of laser signal rather than only optical length of the cavity, to steer frequencies of a nonlinear-polarization-rotation mode-locked laser. By taking advantage of birefringence of the whole cavity, this approach results in not only broadband but also relative large-dynamic frequency control. Experimental results show that frequency control dynamic range increase at least one order in comparison with the traditional intra-cavity electro-optic modulator techn...

  12. X-ray harmonic comb from relativistic electron spikes

    CERN Document Server

    Pirozhkov, Alexander S; Esirkepov, Timur Zh; Ragozin, Eugene N; Faenov, Anatoly Ya; Pikuz, Tatiana A; Kawachi, Tetsuya; Sagisaka, Akito; Mori, Michiaki; Kawase, Keigo; Koga, James K; Kameshima, Takashi; Fukuda, Yuji; Chen, Liming; Daito, Izuru; Ogura, Koichi; Hayashi, Yukio; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Nishimori, Nobuyuki; Kondo, Kiminori; Kimura, Toyoaki; Tajima, Toshiki; Daido, Hiroyuki; Kato, Yoshiaki; Bulanov, Sergei V

    2010-01-01

    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathem...

  13. Direct Frequency Comb Measurement of OD + CO -> DOCO Kinetics

    CERN Document Server

    Bjork, Bryce J; Heckl, Oliver H; Changala, P Bryan; Spaun, Ben; Heu, Paula; Follman, David; Deutsch, Christoph; Cole, Garrett D; Aspelmeyer, Markus; Okumura, Mitchio; Ye, Jun

    2016-01-01

    The kinetics of the OH + CO reaction, fundamental to both atmospheric and combustion chemistry, are complex due to the formation of the HOCO intermediate. Despite extensive studies on this reaction, HOCO has not been observed at thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observe OD + CO reaction kinetics with the detection of stabilized trans-DOCO, the deuterated analogue of trans-HOCO, and its yield. By simultaneously measuring the time-dependent concentrations of both trans-DOCO and OD species, we observe unambiguous low-pressure termolecular dependence on the reaction rate coefficients for both N2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield.

  14. A direct frequency comb for two-photon transition spectroscopy in a cesium vapor

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Chi; Wu Ji-Zhou; Li Yu-Qing; Jin Li; Ma Jie; Wang Li-Rong; Zhao Yan-Ting; Xiao Lian-Tuan; Jia Suo-Tang

    2012-01-01

    A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.

  15. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators

    Science.gov (United States)

    Chembo, Yanne K.; Menyuk, Curtis R.

    2013-05-01

    We demonstrate that frequency (Kerr) comb generation in whispering-gallery-mode resonators can be modeled by a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatiotemporal model allows us to explore pulse formation in which a large number of modes interact cooperatively. Pulse formation is shown to play a critical role in comb generation, and we find conditions under which single pulses (dissipative solitons) and multiple pulses (rolls) form. We show that a broadband comb is the spectral signature of a dissipative soliton, and we also show that these solitons can be obtained by using a weak anomalous dispersion and subcritical pumping.

  16. Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    CERN Document Server

    Cruz, Flavio C; Johnson, Todd; Ycas, Gabriel; Klose, Andrew; Giorgetta, Fabrizio R; Coddington, Ian; Diddams, Scott A

    2015-01-01

    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \\mu m signal, which yields powers above 500 mW (3 \\mu W/mode) in the idler with spectra covering 2.8 \\mu m to 3.5 \\mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.

  17. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator.

    Science.gov (United States)

    Zhang, Zhaowei; Gardiner, Tom; Reid, Derryck T

    2013-08-15

    We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater than typical difference-frequency-generation sources. Mid-infrared dual-comb spectroscopy opens up unique opportunities to perform broadband spectroscopic measurements with high resolution, high requisition rate, and high detection sensitivity.

  18. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes.

    Science.gov (United States)

    Sharma, Deepti; Lim, Yeongjin; Lee, Yunjeong; Shin, Heungjoo

    2015-08-19

    We present a novel electrochemical glucose sensor employing an interdigitated array (IDA) of 1:1 aspect ratio carbon nanoelectrodes for the electrochemical-enzymatic redox cycling of redox species (ferricyanide/ferrocyanide) between glucose oxidase (GOx) and the two comb-shaped nanoelectrodes of the IDA. The carbon nanoelectrodes were fabricated using a simple, cost-effective, reproducible microfabrication technology known as the carbon-microelectromechanical-systems (C-MEMS) process. One comb (comb 1) of the IDA was selectively modified with GOx via the electrochemical reduction of an aryl diazonium salt, while the other comb (comb 2) remained unmodified; this facilitates electrochemically more active surface of comb 2, resulting in sensitive glucose detection. Ferricyanide is reduced to ferrocyanide by the GOx in the presence of glucose, and ferrocyanide diffuses to both combs of the IDA where it is oxidized. The limited electrochemical current collection at the surface-modified comb 1 is counterbalanced by the efficient redox cycling between the enzyme sites at comb 1 and the bare carbon surface of comb 2. Reducing the electrode-to-electrode gap between the two combs (gap = 1.9 μm) increases the diffusion flux of redox species at comb 2 hence, enhanced the sensitivity and limit of detection of the glucose sensor by ∼2.3 and ∼295 times, respectively at comb 2 compared to comb 1. The developed IDA-based glucose sensor demonstrated good amperometric response to glucose, affording two linear ranges from 0.001 to 1 mM and from 1 to 10 mM, with limits of detection of 0.4 and 61 μM and sensitivities of 823.2 and 70.0 μA mM(-1) cm(-2), respectively.

  19. Moral Pluralism and Sex Education

    Science.gov (United States)

    Corngold, Josh

    2013-01-01

    How should common schools in a liberal pluralist society approach sex education in the face of deep disagreement about sexual morality? Should they eschew sex education altogether? Should they narrow its focus to facts about biology, reproduction, and disease prevention? Should they, in addition to providing a broad palette of information about…

  20. Comb structure analysis of the capacitive sensitive element in MEMS-accelerometer

    Science.gov (United States)

    Shalimov, Andrew; Timoshenkov, Sergey; Korobova, Natalia; Golovinskiy, Maxim; Timoshenkov, Alexey; Zuev, Egor; Berezueva, Svetlana; Kosolapov, Andrey

    2015-05-01

    In this paper analysis of comb design for the sensing element MEMS accelerometer with longitudinal displacement of the inertial mass under the influence of acceleration to obtain the necessary parameters for the further construction of an electronic circuit for removal and signal processing has been done. Fixed on the stator the inertia mass has the ability to move under the influence of acceleration along the longitudinal structure. As a result the distance between the fixed and movable combs, and hence the capacitance in the capacitors have been changed. Measuring the difference of these capacitances you can estimate the value of the applied acceleration. Furthermore, managing combs that should apply an electrostatic force for artificial deviation of the inertial mass may be used for the initial sensitive elements culling. Also in this case there is a change of capacitances, which can be measured by the comb and make a decision about the spoilage presence or absence.

  1. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 {\\mu}m

    CERN Document Server

    Okubo, Sho; Inaba, Hajime; Hosaka, Kazumoto; Onae, Atsushi; Sasada, Hiroyuki; Hong, Feng-Lei

    2015-01-01

    We have carried out dual-comb spectroscopy and observed in a simultaneous acquisition a 140-THz-wide spectrum from 1.0 to 1.9 {\\mu}m using two fiber-based frequency combs phase-locked to each other. This ultra-broad wavelength bandwidth is realized by setting the difference between the repetition rates of the two combs to 7.6 Hz using the sub-Hz-linewidth fiber combs. The recorded spectrum contains five vibration-rotation bands of C${_2}$H${_2}$, CH${_4}$, and H${_2}$O at different wavelengths across the whole spectrum. The determined transition frequencies of C${_2}$H${_2}$ agree with those from the previous sub-Doppler resolution measurement of individual lines using CW lasers within 2 MHz.

  2. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation

    CERN Document Server

    Brasch, Victor; Geiselmann, Michael; Lihachev, Grigoriy; Pfeiffer, Martin H P; Gorodetsky, Michael L; Kippenberg, Tobias J

    2014-01-01

    By continuous wave pumping of a dispersion engineered, planar silicon nitride microresonator, continuously circulating, sub-30fs short temporal dissipative solitons are generated, that correspond to pulses of 6 optical cycles and constitute a coherent optical frequency comb in the spectral domain. Emission of soliton induced Cherenkov radiation caused by higher order dispersion broadens the spectral bandwidth to 2/3 of an octave, sufficient for self referencing, in excellent agreement with recent theoretical predictions and the broadest coherent microresonator frequency comb generated to date. The ability to preserve coherence over a broad spectral bandwidth using soliton induced Cherenkov radiation marks a critical milestone in the development of planar optical frequency combs, enabling on one hand application in e.g. coherent communications, broadband dual comb spectroscopy and Raman spectral imaging, while on the other hand significantly relaxing dispersion requirements for broadband microresonator frequen...

  3. Generation of high-frequency combs locked to atomic resonances by quantum phase modulation

    CERN Document Server

    Liu, Zuoye; Cavaletto, Stefano M; Harman, Zoltán; Keitel, Christoph H; Pfeifer, Thomas

    2013-01-01

    A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum system's dipole response. We develop an analytic description of the comb spectral structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.

  4. Microwave and RF Applications for Micro-resonator based Frequency Combs

    CERN Document Server

    Nguyen, Thach G; Ferrera, Marcello; Pasquazi, Alessia; Peccianti, Marco; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contr...

  5. A near infrared frequency comb for Y+J band astronomical spectroscopy

    CERN Document Server

    Osterman, Steve; Diddams, Scott A; Quinlan, Franklyn; Mahadevan, Suvrath; Ramsey, Lawrence; Bender, Chad F; Terrien, Ryan; Botzer, Brandon; Sigurddson, Steinn; Redman, Stephen L

    2012-01-01

    Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum wave band for observation for these objects moves into the near infrared (NIR) and new wavelength standards are required. To address this need we are following up our successful deployment of an H band(1.45-1.7{\\mu}m) laser frequency comb based wavelength reference with a comb working in the Y and J bands (0.98-1.3{\\mu}m). This comb will be optimized for use with a 50,000 resolution NIR spectrograph such as the Penn State Habitable Zone Planet Finder. We present design and performance details of the current Y+J band comb.

  6. Spatiotemporal Model for Kerr Comb Generation in Whispering Gallery Mode Resonators

    CERN Document Server

    Chembo, Yanne K

    2012-01-01

    We establish an exact partial differential equation to model Kerr comb generation in whispering-gallery mode resonators. This equation is a variant of the Lugiato-Lefever equation that includes higher-order dispersion and nonlinearity. This spatio-temporal model, whose main variable is the total intracavity field, is significantly more suitable than the modal expansion approach for the theoretical understanding and the numerical simulation of wide-span combs. It allows us to explore pulse formation in which a large number of modes interact cooperatively. This versatile approach can be straightforwardly extended to include higher-order dispersion, as well as other phenomena like Raman, Brillouin and Rayleigh scattering. We demonstrate for the first time that when the dispersion is anomalous, Kerr comb generation can arise as the spectral signature of dissipative cavity solitons, leading to wide-span combs with low pumping.

  7. TREATMENT OF 50 CASES OF MIGRAINE BY SCALP ACUPUNCTURE COMBINED WITH ELECTRO-COMB STIMULATION

    Institute of Scientific and Technical Information of China (English)

    CAO Renjun; SHI Qing

    2002-01-01

    @@ The authors of the present paper treated 50cases of migraine by scalp acupuncture plus electro-comb stimulation from 1995 to 1999 and achieved satisfactory therapeutic effects. It is reported as follows.

  8. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    CERN Document Server

    Probst, R A; Doerr, H-P; Steinmetz, T; Kentischer, T J; Zhao, G; Hänsch, T W; Udem, Th; Holzwarth, R; Schmidt, W

    2015-01-01

    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.

  9. Description of Histiostoma Conjuncta (New Comb.) (Acari: Anoetidae), An Associate of Central American Bark Beetles

    Science.gov (United States)

    J. P. Woodring; John C. Moser

    1975-01-01

    The adult female and male plus the tritonymph of Histiostoma conjuncta (Woodring and Moser, 1970) (new comb.) and described. The species is known to be associated with various pine bark beetles from Honduras, Guatemala, and Louisiana.

  10. Intracavity characterization of micro-comb generation in the single-soliton regime

    CERN Document Server

    Wang, Pei-Hsun; Xuan, Yi; Xue, Xiaoxiao; Bao, Chengying; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Soliton formation in on-chip micro-comb generation balances cavity dispersion and nonlinearity and allows coherent, low-noise comb operation. We study the intracavity waveform of an on-chip microcavity soliton in a silicon nitride microresonator configured with a drop port. Whereas combs measured at the through port are accompanied by a very strong pump line which accounts for >99% of the output power, our experiments reveal that inside the microcavity, most of the power is in the soliton. Time-domain measurements performed at the drop port provide information that directly reflects the intracavity field. Data confirm a train of bright, close to bandwidth-limited pulses, accompanied by a weak continuous wave (CW) background with a small phase shift relative to the comb.

  11. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    CERN Document Server

    Jang, Jae K; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  12. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy

    Science.gov (United States)

    Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Cassinerio, M.; Galzerano, G.; Laporta, P.; De Natale, P.; Cancio Pastor, P.

    2015-01-01

    Accurate frequency measurements of molecular transitions around 2 μ m are performed by using a direct-frequency-comb spectroscopy approach that combines an Er+ frequency-comb oscillator at 1.5 μ m , a Tm-Ho fiber amplifier, and a Fabry-Perot-filter, high-resolution dispersive spectrometer optical multiplex-detection system. This apparatus has unique performances in terms of a wide dynamic range to integrate the intensity per comb mode, which allows one to measure molecular absorption profiles with high precision. Spectroscopic information about transition frequencies and linewidths is very accurately determined. Relative frequency uncertainties of the order of a few parts in 10-9 are achieved for rovibrational transitions of the CO2 molecule around 5100 cm-1. Moreover, tiny frequency shifts due to molecular collisions and interacting laser power using direct comb spectroscopy are investigated in a systematic way.

  13. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators

    CERN Document Server

    Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute

    2012-01-01

    We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.

  14. Broadband Kerr frequency combs and intracavity soliton dynamics influenced by high-order cavity dispersion

    DEFF Research Database (Denmark)

    Wang, Shaofei; Guo, Hairun; Bai, Xuekun

    2014-01-01

    , showing that temporal shifts of steady-state intracavity solitons are induced by high-odd-order dispersion rather than high-even-order dispersion. The role of HOD on comb spectral envelopes is also elucidated through analyzing the intracavity dispersive wave generations. We further demonstrate...... that the spectral envelope of a broadband optical frequency comb can be engineered by using a cavity dispersion profile with multiple zero dispersion wavelengths. © 2014 Optical Society of America....

  15. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José;

    2013-01-01

    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported.......We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  16. Self-starting harmonic frequency comb generation in a quantum cascade laser

    OpenAIRE

    Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-En; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2017-01-01

    Optical frequency combs establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis and for generation of THz tones of high spectral purity in the future wireless communication networks. We demonstrate for the first time self-starting harmonic frequency co...

  17. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    Science.gov (United States)

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  18. Multifunctional tunable multiwavelength erbium-doped fiber laser based on tunable comb filter and intensity-dependent loss modulation

    Science.gov (United States)

    Quan, Mingran; Li, Yuan; Tian, Jiajun; Yao, Yong

    2015-04-01

    A multiwavelength erbium-doped fiber laser based on tunable comb spectral filter and intensity-dependent loss modulation is proposed and experimentally demonstrated. The laser allows fine and multifunctional tunable operations of channel-spacing, peak-location, spectral-range, and wavelength-number. More specifically, channel-spacing switch from 0.4 nm to 0.2 nm and peak-location adjustment within half of free spectrum range are obtained via controlling the tunable comb filter. The wavelength-number and the spectral-range of the lasing lines can be accurately controlled by intensity-dependent loss modulation in the laser cavity, enabled by a power-symmetric nonlinear optical loop mirror. In addition, fine control over the wavelength-number at fixed spectral-range is realized by simply adjusting the pump power. More important, the tunable operation process for every type of specific parameter is individual, without influences for other output parameters. Such features of this fiber laser make it useful and convenient for the practical application.

  19. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    Science.gov (United States)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  20. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi

    2016-02-08

    Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.

  1. Occurrence of fungi in combs of fungus-growing termites (Isoptera: Termitidae, Macrotermitinae).

    Science.gov (United States)

    Guedegbe, Herbert J; Miambi, Edouard; Pando, Anne; Roman, Jocelyne; Houngnandan, Pascal; Rouland-Lefevre, Corinne

    2009-10-01

    Fungus-growing termites cultivate their mutualistic basidiomycete Termitomyces species on a substrate called a fungal comb. Here, the Suicide Polymerase Endonuclease Restriction (SuPER) method was adapted for the first time to a fungal study to determine the entire fungal community of fungal combs and to test whether fungi other than the symbiotic cultivar interact with termite hosts. Our molecular analyses show that although active combs are dominated by Termitomyces fungi isolated with direct Polymerase Endonuclease Restriction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE), they can also harbor some filamentous fungi and yeasts only revealed by SuPER PCR-DGGE. This is the first molecular evidence of the presence of non-Termitomyces species in active combs. However, because there is no evidence for a species-specific relationship between these fungi and termites, they are mere transient guests with no specialization in the symbiosis. It is however surprising to notice that termite-associated Xylaria strains were not isolated from active combs even though they are frequently retrieved when nests are abandoned by termites. This finding highlights the implication of fungus-growing termites in the regulation of fungi occurring within the combs and also suggests that they might not have any particular evolutionary-based association with Xylaria species.

  2. Hydrocarbon Composition of Beeswax (Apis Mellifera Collected from Light and Dark Coloured Combs

    Directory of Open Access Journals (Sweden)

    Waś Ewa

    2014-12-01

    Full Text Available The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“ that was collected at different dates, and beeswax obtained from dark combs („brood combs“. A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes were identified in virgin beeswax and beeswax collected from brood combs. However, the studies showed differences in the content of n-alkanes in the beeswax obtained from light and dark coloured combs. In comparison to the virgin beeswax, the beeswax obtained from dark combs had higher content of the total n-alkanes, higher total contents of even-numbered alkanes and odd-numbered alkanes, and higher contents of certain alkanes. Furthermore, it has been found that the hydrocarbon composition of beeswax did not depend on the collection period.

  3. Somatic sex determination.

    Science.gov (United States)

    Zarkower, David

    2006-02-10

    C. elegans occurs in two natural sexes, the XX hermaphrodite and the XO male, which differ extensively in anatomy, physiology, and behavior. All somatic differences between the sexes result from the differential activity of a "global" sex determination regulatory pathway. This pathway also controls X chromosome dosage compensation, which is coordinated with sex determination by the action of the three SDC proteins. The SDC proteins control somatic and germline sex by transcriptional repression of the her-1 gene. HER-1 is a secreted protein that controls a regulatory module consisting of a transmembrane receptor, TRA-2, three intracellular FEM proteins, and the zinc finger transcription factor TRA-1. The molecular workings of this regulatory module are still being elucidated. Similarity of TRA-2 to patched receptors and of TRA-1 to GLI proteins suggests that parts of the global pathway originally derived from a Hedgehog signaling pathway. TRA-1 controls all aspects of somatic sexual differentiation, presumably by regulating a variety of tissue- and cell-specific downstream targets, including the cell death regulator EGL-1 and the male sexual regulator MAB-3. Sex determination evolves rapidly, and conservation of sexual regulators between phyla has been elusive. An apparent exception involves DM domain proteins, including MAB-3, which control sexual differentiation in nematodes, arthropods, and vertebrates. Important issues needing more study include the detailed molecular mechanisms of the global pathway, the identities of additional sexual regulators acting in the global pathway and downstream of TRA-1, and the evolutionary history of the sex determination pathway. Recently developed genetic and genomic technologies and comparative studies in divergent species have begun to address these issues.

  4. Sex differences in the brain-an interplay of sex steroid hormones and sex chromosomes.

    Science.gov (United States)

    Grgurevic, Neza; Majdic, Gregor

    2016-09-01

    Although considerable progress has been made in our understanding of brain function, many questions remain unanswered. The ultimate goal of studying the brain is to understand the connection between brain structure and function and behavioural outcomes. Since sex differences in brain morphology were first observed, subsequent studies suggest different functional organization of the male and female brains in humans. Sex and gender have been identified as being a significant factor in understanding human physiology, health and disease, and the biological differences between the sexes is not limited to the gonads and secondary sexual characteristics, but also affects the structure and, more crucially, the function of the brain and other organs. Significant variability in brain structures between individuals, in addition to between the sexes, is factor that complicates the study of sex differences in the brain. In this review, we explore the current understanding of sex differences in the brain, mostly focusing on preclinical animal studies.

  5. Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics

    Directory of Open Access Journals (Sweden)

    B. Dhiraj

    2013-01-01

    Full Text Available This study is aimed to assess the suitability of T. aestivum wheat milled products and its combinations with T. durum semolina with additives such as ascorbic acid, vital gluten and HPMC (Hydroxypropyl methyl cellulose for pasta processing quality characteristics such as pasta dough rheology, microstructure, cooking quality, and sensory evaluation. Rheological studies showed maximum dough stability in Comb1 (T. aestivum wheat flour and semolina. Colour and cooking quality of Comb2 (T. durum semolina and T. aestivum wheat flour and Comb3 (T. aestivum wheat semolina and T. durum semolina were comparable with control. Pasting results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9°C but the highest peak viscosity (1.053 BU. Starch release was maximum in Comb1 (53.45% when compared with control (44.9% as also proved by microstructure studies. Firmness was seen to be slightly high in Comb3 (2.430 N when compared with control (2.304 N, and sensory evaluations were also in the acceptable range for the same. The present study concludes that Comb3 comprising 50% T. durum semolina and 50% T. aestivum refined wheat flour with additives would be optimal alternate for 100% T. durum semolina for production of financially viable pasta.

  6. Dual-etalon, cavity-ring-down, frequency comb spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2010-10-01

    The 'dual etalon frequency comb spectrometer' is a novel low cost spectometer with limited moving parts. A broad band light source (pulsed laser, LED, lamp ...) is split into two beam paths. One travels through an etalon and a sample gas, while the second arm is just an etalon cavity, and the two beams are recombined onto a single detector. If the free spectral ranges (FSR) of the two cavities are not identical, the intensity pattern at the detector with consist of a series of heterodyne frequencies. Each mode out of the sample arm etalon with have a unique frequency in RF (radio-frequency) range, where modern electronics can easily record the signals. By monitoring these RF beat frequencies we can then determine when an optical frequencies is absorbed. The resolution is set by the FSR of the cavity, typically 10 MHz, with a bandwidth up to 100s of cm{sup -1}. In this report, the new spectrometer is described in detail and demonstration experiments on Iodine absorption are carried out. Further we discuss powerful potential next generation steps to developing this into a point sensor for monitoring combustion by-products, environmental pollutants, and warfare agents.

  7. Cationic comb-type copolymers for DNA analysis

    Science.gov (United States)

    Kim, Won Jong; Sato, Yuichi; Akaike, Toshihiro; Maruyama, Atsushi

    2003-12-01

    Genetic diagnoses, such as single nucleotide polymorphism (SNP) typing, allow elucidation of gene-based physiological differences, such as susceptibility to diseases and response to drugs, among individuals. Many detection technologies, including allele-specific hybridization, allele-specific primer extension and oligonucleotide ligation, are being used to discriminate SNP alleles. These methods still have many unsolved practical issues. In general they require adequate and specific hybridizations of primer or probe DNAs with target DNAs. This frequently needs optimization of the probe/primer structures and operating conditions. In nature, highly homology-sensitive hybridization is assisted by a nucleic acid chaperone that reduces the energy barrier associated with breakage and reassociation of nucleic base pairs. Here we report a simple, quick, precise but enzyme-free method for SNP analysis. The method uses cationic comb-type copolymers (CCCs) producing high nucleic acid chaperone activities. A single-base mismatch in 20-mer DNA can be detected within a few minutes at ambient temperatures (25-37 °C). Even without careful optimization processes, the method has the sensitivity to detect the mismatches causing subtle changes (ΔTm ~ 1 °C) in duplex thermal stability. CCCs may have various bioanalytical applications where precise hybridization of nucleic acids is needed.

  8. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    CERN Document Server

    Xie, Zhenda; Shrestha, Sajan; Xu, XinAn; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C; Restelli, Alessandro; Shapiro, Jeffrey H; Wong, Franco N C; Wong, Chee Wei

    2015-01-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to...

  9. Quantum dot mode locked lasers for coherent frequency comb generation

    Science.gov (United States)

    Martinez, A.; Calò, C.; Rosales, R.; Watts, R. T.; Merghem, K.; Accard, A.; Lelarge, F.; Barry, L. P.; Ramdane, A.

    2013-12-01

    Monolithic semiconductor passively mode locked lasers (MLL) are very attractive components for many applications including high bit rate telecommunications, microwave photonics and instrumentation. Owing to the three dimensional confinement of the charge carriers, quantum dot based mode-locked lasers have been the subject of intense investigations because of their improved performance compared to conventional material systems. Indeed, the inhomogeneous gain broadening and the ultrafast absorption recovery dynamics are an asset for short pulse generation. Moreover, the weak coupling of amplified spontaneous emission with the guided modes plus low loss waveguide leads to low timing jitter. Our work concentrates on InAs quantum dash nanostructures grown on InP substrate, intended for applications in the 1.55 μm telecom window. InAs/InP quantum dash based lasers, in particular, have demonstrated efficient mode locking in single section Fabry-Perot configurations. The flat optical spectrum of about 12 nm, combined with the narrow RF beat note linewidth of about 10 kHz make them a promising technology for optical frequency comb generation. Coherence between spectral modes was assessed by means of spectral phase measurements. The parabolic spectral phase profile indicates that short pulses can be obtained provided the intracavity dispersion can be compensated by inserting a single mode fiber.

  10. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    Science.gov (United States)

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-11-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture--a gold-coated highly tilted Bragg grating--that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.

  11. Polarized spectral combs probe optical fiber surface plasmons.

    Science.gov (United States)

    Caucheteur, Christophe; Voisin, Valérie; Albert, Jacques

    2013-02-11

    The high-order cladding modes of conventional single mode fiber come in semi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. Using tilted fiber Bragg gratings to excite these mode families separately, we show how plasmonic coupling to a thin gold coating on the surface of the fiber modifies the effective indices of the modes differently according to polarization and to mode order. In particular, we show the existence of a single "apolarized" grating resonance, with equal effective index for all input polarization states. This special resonance provides direct evidence of the excitation of a surface plasmon on the metal surface but also an absolute wavelength reference that allows for the precise localization of the most sensitive resonances in refractometric and biochemical sensing applications. Two plasmon interrogation methods are proposed, based on wavelength and amplitude measurements. Finally, we use a biotin-streptavidin biomolecular recognition experiment to demonstrate that differential spectral transmission measurements of a fine comb of cladding mode resonances in the vicinity of the apolarized resonance provide the most accurate method to extract information from plasmon-assisted Tilted fiber Bragg gratings, down to pM concentrations and at least 10(-5) refractive index changes.

  12. [Lethal sex].

    Science.gov (United States)

    Rabinerson, David; Ben-Shitrit, Gadi; Glezerman, Marek

    2011-03-01

    Asphyxiophilic sex is a form of autoerotic activity, in which the user creates mechanical means (such as hanging or bondage) in order to achieve cerebral hypoxia, which, in turn, enhances sexual, as well as orgasmic, stimulus. Failure of safety mechanisms, created by the user, may lead to instant death as a result of asphyxiation or strangulation. This kind of sexual practice is more prevalent among men than in women. In cases of death, it is difficult to relate it to the sexual practice itself. Suicide and homicide are the main differential diagnoses. Closely related derivatives of asphyxiophilic sex are anesthesiophilia (inhalation of variable volatile substances) and electrophilia (use of electric current during sexual activity)--both also intended to enhance the sexual stimulation. These forms of sexual practice are less prevalent than asphyxiophilia.

  13. Absolute-frequency measurements with a stabilized near-infrared opticalfrequency comb from a Cr:forsterite laser

    OpenAIRE

    Corwin, Kristan L.; Thomann, Isabell; Dennis, Tasshi; Fox, Richard W.; Swann, William; Curtis, Anne; Oates, Chris W.; Wilpers, Guido; Bartels, Albrecht; Gilbert, Sarah L.; Hollberg, Leo; Newbury, Nathan R.; Diddams, Scott A.; Nicholson, Jeffrey W.; Yan, Man F.

    2004-01-01

    A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8,um. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this com...

  14. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  15. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD

    CERN Document Server

    Liang, Wei; Ilchenko, Vladimir S; Eliyahu, Danny; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2014-01-01

    We demonstrate experimentally, and explain theoretically, generation of a wide, fundamentally phase locked Kerr frequency comb in a nonlinear resonator with a normal group velocity dispersion. A magnesium fluoride whispering gallery resonator characterized with 10 GHz free spectral range and pumped either at 780 nm or 795 nm is used in the experiment. The envelope of the observed frequency comb differs significantly from the Kerr frequency comb spectra reported previously. We show via numerical simulation that, while the frequency comb does not correspond to generation of short optical pulses, the relative phases of the generated harmonics are fixed.

  16. Regeneration of ciliary comb plates in the ctenophore Mnemiopsis leidyi. i. morphology.

    Science.gov (United States)

    Tamm, Sidney L

    2012-01-01

    Regeneration of missing body parts in model organisms provides information on the mechanisms underlying the regeneration process. The aim here is to use ctenophores to investigate regeneration of their giant ciliary swimming plates. When part of a row of comb plates on Mnemiopsis is excised, the wound closes and heals, greatly increasing the distance between comb plates near the former cut edges. Video differential interference contrast (DIC) microscopy of the regeneration of new comb plates between widely separated plates shows localized widenings of the interplate ciliated groove (ICG) first, followed by growth of two opposing groups of comb plate cilia on either side. The split parts of a new plate elongate as their bases extend laterally away from the ICG widening and continue ciliogenesis at both ends. The split parts of a new plate grow longer and move closer together into the ICG widening until they merge into a single plate that interrupts the ICG in a normal manner. Video DIC snapshots of dissected gap preparations 1.5-3-day postoperation show that ICG widenings and/or new plates do not all appear at the same time or with uniform spacing within a gap: the lengths and distances between young plates in a gap are quite variable. Video stereo microscopy of intact animals 3-4 days after the operation show that all the new plates that will form in a gap are present, fairly evenly spaced and similar in length, but smaller and closer together than normal. Normal development of comb plates in embryos and growing animals is compared to the pattern of comb plate regeneration in adults. Comb plate regeneration differs in the cydippid Pleurobrachia that lacks ICGs and has a firmer mesoglea than Mnemiopsis. This study provides a morphological foundation for histological, cellular, and molecular analysis of ciliary regeneration in ctenophores. Copyright © 2011 Wiley Periodicals, Inc.

  17. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  18. Sex during Pregnancy

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Sex During Pregnancy KidsHealth > For Parents > Sex During Pregnancy A A ... safe sexual relationship during pregnancy. Is Sex During Pregnancy Safe? Sex is considered safe during all stages ...

  19. When Sex Is Painful

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS GYNECOLOGIC PROBLEMS FAQ020 When Sex Is Painful • How common is painful sex? • What causes pain during sex? • Where is pain during sex felt? • When should ...

  20. Sex during Pregnancy

    Science.gov (United States)

    ... Habits for TV, Video Games, and the Internet Sex During Pregnancy KidsHealth > For Parents > Sex During Pregnancy ... satisfying and safe sexual relationship during pregnancy. Is Sex During Pregnancy Safe? Sex is considered safe during ...

  1. When Sex Is Painful

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS GYNECOLOGIC PROBLEMS FAQ020 When Sex Is Painful • How common is painful sex? • What causes pain during sex? • Where is pain during sex felt? • When should ...

  2. Morphology and phylogenies of two hypotrichous brackish-water ciliates from China, Neourostylopsis orientalis n. sp. and Protogastrostyla sterkii (Wallengren, 1900) n. comb., with establishment of a new genus Neourostylopsis n. gen. (Protista, Ciliophora, Hypotrichia).

    Science.gov (United States)

    Chen, Xiangrui; Shao, Chen; Liu, Xihan; Huang, Jie; Al-Rasheid, Khaled A S

    2013-03-01

    This paper investigates the morphology, infraciliature and small-subunit (SSU) rRNA gene sequences of two hypotrichous ciliates, Neourostylopsis orientalis n. sp., and Protogastrostyla sterkii (Wallengren, 1900) n. comb. (basionym Gastrostyla sterkii), collected from coastal waters in southern China. Neourostylopsis orientalis n. sp. is diagnosed mainly by the arrangement of brownish cortical granules, the numbers of adoral membranelles and frontal and transverse cirri and the characteristics of its midventral cirral pairs. The SSU rRNA gene phylogeny strongly supports the establishment of the new genus Neourostylopsis n. gen., which is characterized mainly by the following features: frontal and transverse cirri clearly differentiated, buccal cirri present, two frontoterminal cirri, midventral complex composed of midventral pairs only and not exceeding the halfway point of the cell, more than one row of marginal cirri on each side which derive from individual anlagen within each parental row, caudal cirri lacking. Thus, two new combinations are required: Neourostylopsis songi (Lei et al., 2005) n. comb., and Neourostylopsis flavicana (Wang et al., 2011) n. comb. Additionally, improved diagnoses for both Metaurostylopsis and Apourostylopsis are supplied in this study. Protogastrostyla sterkii (Wallengren, 1900) n. comb. differs from the similar congener Protogastrostyla pulchra mainly in body shape, ratio of buccal field to body length in vivo and molecular data. Based on the present studies, we conclude that the estuarine population of P. pulchra collected by J. Gong and others [Gong et al., J Eukaryot Microbiol (2007) 54, 468-478] is a population of P. sterkii.

  3. 梳状波导结构中石墨烯表面等离子体的传播性质∗%Propagation prop erties of the graphene surface plasmon in comb-like waveguide

    Institute of Scientific and Technical Information of China (English)

    乔文涛; 龚健; 张利伟; 王勤; 王国东; 廉书鹏; 陈鹏辉; 孟威威

    2015-01-01

    We investigate theoretically the electromagnetic propagation properties of graphene plasmons in a comb-like dielectric-graphene-dielectric (DGD) waveguide. The effective index of surface plasmon mode supported by the waveg-uide is analysed numerically, and it is found that the effective refractive index increases with the refractive index of the dielectric and decreases with Fermi energy of the graphene sheet. For a comb-like DGD waveguide with a finite branch length, a subwavelength plasmon filter can be formed by Fabry-Perot resonance caused by the reflection of the guided mode at the branch. The central frequencies of the gaps can be changed by varying the length of the branch, Fermi energy, the refractive index of the dielectric and the layer number of graphene sheets. The analytic and simulated result reveals that a novel nanometric plasmonic filter in such a comb-shaped waveguide can be realized with ultracompact size in a length of a few hundred nanometers in the mid-infrared range. We find that the frequencies of the stopband increase with Fermi energy and the layer number of graphene sheets, while will they decrease nonlinearly with the length of the branch and the refractive index of the dielectric. In addition, the width of the gap can be increased with the number of comb branches. Such electromagnetic properties could be utilized to develop ultracompact photonic filters for high integration.

  4. Reclassification of Rhodospirillum photometricum Molisch 1907, Rhodospirillum sulfurexigens Anil Kumar et al. 2008 and Rhodospirillum oryzae Lakshmi et al. 2013 in a new genus, Pararhodospirillum gen. nov., as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov., respectively, and emended description of the genus Rhodospirillum.

    Science.gov (United States)

    Lakshmi, K V N S; Divyasree, B; Ramprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2014-04-01

    The genus Rhodospirillum is represented by four species, with three of them showing phylogenetic divergence compared to the type species, Rhodospirillum rubrum. Differences in the major diagnostic properties such as internal photosynthetic membranes, quinones, fatty acids, carotenoid composition and a few other phenotypic properties warrant the reclassification of members of this genus. Resultantly, a new genus, Pararhodospirillum gen. nov., is proposed based on the analysis of nine strains to accommodate Rhodospirillum photometricum, Rhodospirillum sulfurexigens and Rhodospirillum oryzae as Pararhodospirillum photometricum comb. nov., Pararhodospirillum sulfurexigens comb. nov. and Pararhodospirillum oryzae comb. nov., respectively. The type species of the genus is Pararhodospirillum photometricum comb. nov. An emended description of the genus Rhodospirillum is also proposed.

  5. Sex work among men who have sex with men and transgender women in Bogotá.

    Science.gov (United States)

    Bianchi, Fernanda T; Reisen, Carol A; Zea, Maria Cecilia; Vidal-Ortiz, Salvador; Gonzales, Felisa A; Betancourt, Fabián; Aguilar, Marcela; Poppen, Paul J

    2014-11-01

    This qualitative study examined sex work among internally displaced male and transgender female sex workers in Bogotá, Colombia. Internal displacement has occurred in Colombia as a result of decades of conflict among armed groups and has created large-scale migration from rural to urban areas. Informed by the polymorphous model of sex work, which posits that contextual conditions shape the experience of sex work, we examined three main research questions. The first dealt with how internal displacement was related to the initiation of sex work; the second concerned the effect of agency on sex worker satisfaction; and the third examined how sex work in this context was related to HIV and other risks. Life history interviews were conducted with 26 displaced individuals who had done sex work: 14 were men who have sex with men and 12 were transgender women (natal males). Findings revealed that many participants began doing sex work in the period immediately after displacement, because of a lack of money, housing, and social support. HIV risk was greater during this time due to limited knowledge of HIV and inexperience negotiating safer sex with clients. Other findings indicated that sex workers who exerted more control and choice in the circumstances of their work reported greater satisfaction. In addition, we found that although many sex workers insisted on condom use with clients, several noted that they would sometimes have unprotected sex for additional money. Specific characteristics affecting the experience of sex work among the transgender women were also discussed.

  6. Mechanisms behind the metabolic flexibility of an invasive comb jelly

    Science.gov (United States)

    Augustine, Starrlight; Jaspers, Cornelia; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe; Freitas, Vânia; van der Veer, Henk; van Walraven, Lodewijk

    2014-11-01

    Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.

  7. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators.

    Science.gov (United States)

    Kim, Sangsik; Han, Kyunghun; Wang, Cong; Jaramillo-Villegas, Jose A; Xue, Xiaoxiao; Bao, Chengying; Xuan, Yi; Leaird, Daniel E; Weiner, Andrew M; Qi, Minghao

    2017-08-29

    Kerr nonlinearity-based frequency combs and solitons have been generated from on-chip microresonators. The initiation of the combs requires global or local anomalous dispersion which leads to many limitations, such as material choice, film thickness, and spectral ranges where combs can be generated, as well as fabrication challenges. Using a concentric racetrack-shaped resonator, we show that such constraints can be lifted and resonator dispersion can be engineered to be anomalous over moderately broad bandwidth. We demonstrate anomalous dispersion in a 300 nm thick silicon nitride film, suitable for semiconductor manufacturing but previously thought to result in waveguides with high normal dispersion. Together with a mode-selective, tapered coupling scheme, we generate coherent mode-locked frequency combs. Our method can realize anomalous dispersion for resonators at almost any wavelength and simultaneously achieve material and process compatibility with semiconductor manufacturing.Kerr frequency comb generation from microresonators requires anomalous dispersion, imposing restrictions on materials and resonator design. Here, Kim et al. propose a concentric racetrack-resonator design where the dispersion can be engineered to be anomalous via resonant mode coupling.

  8. Cascaded half-harmonic generation of femtosecond frequency combs in mid-IR

    CERN Document Server

    Marandi, Alireza; Jankowski, Marc; Byer, Robert L

    2015-01-01

    For the growing demand of frequency combs in mid-infrared (mid-IR), known as the "molecular fingerprint" region of the spectrum [1], down conversion of near-IR frequency combs through half- harmonic generation offers numerous benefits including high conversion efficiency and intrinsic phase and frequency locking to the near-IR pump [2]. Hence cascaded half-harmonic generation promises a simple path towards extending the wavelength coverage of stable frequency combs. Here, we report a two-octave down-conversion of a frequency comb around 1 {\\mu}m through cascaded half-harmonic generation with ~64% efficiency in the first stage, and ~18% in the second stage. We obtain broadband intrinsically-frequency-locked frequency combs with ~50-fs pulses at ~2 {\\mu}m and ~110-fs pulses at ~4 {\\mu}m. These results indicate the effectiveness of half-harmonic generation as a universal tool for efficient phase- and frequency-locked down-conversion, which can be beneficial for numerous applications requiring long-wavelength coh...

  9. Toward a Broadband Astro-comb: Effects of Nonlinear Spectral Broadening in Optical Fibers

    CERN Document Server

    Chang, Guoqing; Phillips, David F; Walsworth, Ronald L; Kärtner, Franz X

    2010-01-01

    We propose and analyze a new approach to generate a broadband astro-comb by spectral broadening of a narrowband astro-comb inside a highly nonlinear optical fiber. Numerical modeling shows that cascaded four-wave-mixing dramatically degrades the input comb's side-mode suppression and causes side-mode amplitude asymmetry. These two detrimental effects can systematically shift the center-of-gravity of astro-comb spectral lines as measured by an astrophysical spectrograph with resolution \\approx100,000; and thus lead to wavelength calibration inaccuracy and instability. Our simulations indicate that this performance penalty, as a result of nonlinear spectral broadening, can be compensated by using a filtering cavity configured for double-pass. As an explicit example, we present a design based on an Yb-fiber source comb (with 1 GHz repetition rate) that is filtered by double-passing through a low finesse cavity (finesse = 208), and subsequent spectrally broadened in a 2-cm, SF6-glass photonic crystal fiber. Spann...

  10. Phase Coherent Link of an Atomic Clock to a Self-Referenced Microresonator Frequency Comb

    CERN Document Server

    Del'Haye, Pascal; Fortier, Tara; Beha, Katja; Cole, Daniel C; Yang, Ki Youl; Lee, Hansuek; Vahala, Kerry J; Papp, Scott B; Diddams, Scott A

    2015-01-01

    The counting and control of optical cycles of light has become common with modelocked laser frequency combs. But even with advances in laser technology, modelocked laser combs remain bulk-component devices that are hand-assembled. In contrast, a frequency comb based on the Kerr-nonlinearity in a dielectric microresonator will enable frequency comb functionality in a micro-fabricated and chip-integrated package suitable for use in a wide-range of environments. Such an advance will significantly impact fields ranging from spectroscopy and trace gas sensing, to astronomy, communications, atomic time keeping and photonic data processing. Yet in spite of the remarkable progress shown over the past years, microresonator frequency combs ("microcombs") have still been without the key function of direct f-2f self-referencing and phase-coherent frequency control that will be critical for enabling their full potential. Here we realize these missing elements using a low-noise 16.4 GHz silicon chip microcomb that is coher...

  11. Simulation of Electrostatic Actuation in Interdigitated Comb Drive MEMS Resonator for Energy Harvester Applications

    Science.gov (United States)

    Sathya, S.; Pavithra, M.; Muruganand, S.

    2016-09-01

    This paper presents an actuation mechanism based on the interdigitated comb drive MEMS resonator. The important role of that device is to establish MEMS resonators for the second order systems. Comb drive model is one of the basic model which uses the principle of electrostatic and force can be generated for the capacitive sensors. This work is done by overlapping movable and fixed comb fingers which produces an energy. The specific range of the polyimide material properties of young's modulus of 3.1GPa and density of 1300 Kg/m3. Results are shown in the structural domain performance of a lateral motion which corresponds to the applying voltage between the interdigitated comb fingers. It has laterally driven about 40pm with driving voltage. Also the resonance frequency 24Hz and 15Hz with high quality factors are depending on the spring length 260pm and 360pm and structure thickness of 2μm and 5 μm. Here Finite element method (FEM) is used to simulate the various physics scenario and it is designed as two dimensional structure multiphysics domain. The prototype of comb drive MEMS resonator has been suitable for energy harvesting system applications.

  12. Wolbachia and Sex

    OpenAIRE

    Aper, Ian J.; Weglarz, Katie; Dohlen, Carol Von

    2016-01-01

    Insects with complex life cycles provide an ideal system for investigating the relationship between sex-skewing bacterial symbionts and the secondary loss of sexual reproduction. This research utilized the insect family Adelgidae, a group notorious for having peculiar and complex life cycles. In this family, some species have lost their sexual generation entirely, trapping them in asexual reproduction. Additionally, these insects are known to harbor multiple symbionts, both obligate and facul...

  13. A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao

    2017-02-01

    In this paper, a novel approach for generating flat optical frequency comb (OFC) based on externally injected gain-switched distributed feedback (DFB) semiconductor laser is proposed and experimentally demonstrated. In the proposed system, the flatness, the number of OFC spectral lines, and the spectral line to background noise ratio can be tuned to their optimized values by adjusting the current of the modulation signal, the injection ratio and the detuning frequency. Since the frequency of the modulation signal decides the frequency spacing of the output spectral lines, OFC spectral lines of different spacing can be achieved. In the experiment, 10 spectral lines with 1.5 dB power variation are demonstrated to verify the proposed approach. In addition, the expansion of the spectral line is investigated.

  14. Lumbriclymene interstricta comb. nov. with a taxonomic key and a catalogue for all species of Lumbriclymene (Maldanidae, Polychaeta

    Directory of Open Access Journals (Sweden)

    José Eriberto de Assis

    2010-01-01

    Full Text Available In this paper, we transfer Nicomache interstricta Ehlers, 1908 to Lumbriclymene Sars, 1872 based on a redescription of the type-specimen. We provide new illustrations for the species and new diagnostic features for the genus. Lumbriclymene interstricta (Ehlers, 1908 comb. nov. has 19 chaetigerous segments and four pre-anal achaetous segments; a prostomium rounded anteriorly, forming a slightly arched dorsal keel; semi-circular nuchal grooves; one acicular spine on chaetigers 1-4; and a small pygidium, with the anal pore bearing many small papillae. In addition, we compare the species with other subfamilies and genera of Maldanidae. We also provide a taxonomic key for all species presently included in Lumbriclymene. Finally, we provide a world catalogue for Lumbriclymene, containing synonyms and main references.

  15. Stretching and imaging of single DNA chains on a hydrophobic polymer surface made of amphiphilic alternating comb-copolymer.

    Science.gov (United States)

    Liu, Rongrong; Wong, Sheau Tyug; Lau, Peggy Pei Zhi; Tomczak, Nikodem

    2014-02-26

    Functionalization of amine derivatized glass slides with a poly(maleic anhydride)-based comb-copolymer to facilitate stretching, aligning, and imaging of individual dsDNA chains is presented. The polymer-coated surface is hydrophobic due to the presence of the long alkyl side chains along the polymer backbone. The surface is also characterized by low roughness and a globular morphology. Stretched and aligned bacteriophage λ-DNA chains were obtained using a robust method based on stretching by a receding water meniscus at pH 7.8 without the need for small droplet volumes or precoating the surface with additional layers of (bio)molecules. Although the dye to DNA base pairs ratio did not influence substantially the stretching length distributions, a clear peak at stretching lengths close to the contour length of the dsDNA is visible at larger staining ratios.

  16. Redescrição do tipo de equinoparyphium singularis (Lutz, 1924 comb. para Stephanoprora singularis (Lutz, 1924 (Trematoda, Equinostomatidae Redescription of Equinoparyphium singularis (Lutz, 1924 n. comb. to Stephanoprora singularis (Lutz, 1924 (Trematoda, Equinostomatidae

    Directory of Open Access Journals (Sweden)

    Anna Kohn

    1976-01-01

    Full Text Available Os autores redescrevem e apresentam figuras originais do exemplar tipo de Stephanoprora singularis (Lutz, 1924 propondo uma nova combinação: Equinoparyphium singularis (Lutz, 1924 comb. n.The authors redescribe and present original figures of the type of S. singularis (Lutz, 1924 proposing a new combination: Equinoparyphium singularis (Lutz, 1924 n. comb.

  17. Controlled deposition and combing of DNA across lithographically defined patterns on silicon

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    We have developed a new procedure for efficient combing of DNA on a silicon substrate, which allows reproducible deposition and alignment of DNA molecules across lithographically defined patterns. The technique involves surface modification of Si/SiO2 substrates with a hydrophobic silane by using...... gas-phase deposition. Thereafter, DNA molecules are aligned by dragging the droplet on the hydrophobic substrate with a pipette tip. Using this procedure, DNA molecules were stretched to an average value of 122% of their contour length. Furthermore, we demonstrated combing of ca. 900 nm long stretches...... of genomic DNA across nanofabricated electrodes, which was not possible by using other available combing methods. Similar results were also obtained for DNA–peptide conjugates. We suggest this method as a simple yet reliable technique for depositing and aligning DNA and DNA derivatives across nanofabricated...

  18. Velocity-selective direct frequency-comb spectroscopy of atomic vapors

    CERN Document Server

    Stalnaker, J E; Rowan, M E; Nguyen, K; Pradhananga, T; Palm, C A; Kimball, D F Jackson

    2015-01-01

    We present an experimental and theoretical investigation of two-photon direct frequency-comb spectroscopy performed through velocity-selective excitation. In particular, we explore the effect of repetition rate on the $\\textrm{5S}_{1/2}\\rightarrow \\textrm{5D}_{3/2, 5/2}$ two-photon transitions excited in a rubidium atomic vapor cell. The transitions occur via step-wise excitation through the $\\textrm{5P}_{1/2, 3/2}$ states by use of the direct output of an optical frequency comb. Experiments were performed with two different frequency combs, one with a repetition rate of $\\approx 925$ MHz and one with a repetition rate of $\\approx 250$ MHz. The experimental spectra are compared to each other and to a theoretical model.

  19. A novel frequency control scheme for comb-referenced sensitive difference-frequency-generation spectroscopy.

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Sasada, Hiroyuki

    2013-06-17

    We present a novel scheme of frequency scan and wavelength modulation of a difference-frequency-generation source for comb-referenced sensitive spectroscopy. While the pump and signal frequencies are phase-locked to an optical frequency comb (OFC), the offset frequency between the signal wave and the nearest comb tooth is modulated to apply a wavelength-modulation technique, and the idler wave frequency is repeatedly swept for signal accumulation by changing the repetition frequency of the OFC. The spectrometer is applied to absolute frequency measurement of weak hyperfine-resolved rovibration transitions of the ν(1) band of CH(3)I, and the uncertainty in frequency determination is reduced by one order of magnitude in compared with that of the previous work published in Optics Express 20, 9178-9186 (2012).

  20. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-07-01

    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  1. Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements

    Directory of Open Access Journals (Sweden)

    Nam Su Park

    2017-03-01

    Full Text Available We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain.

  2. Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs

    CERN Document Server

    Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra

    2015-01-01

    Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.

  3. Mach-zehnder based optical marker/comb generator for streak camera calibration

    Science.gov (United States)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  4. Nearly octave-spanning frequency comb generation in AlN-on-sapphire microresonators

    CERN Document Server

    Liu, Xianwen; Xiong, Bing; Wang, Lai; Wang, Jian; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tongbo; Zhang, Yun; Wang, Junxi

    2016-01-01

    We report a nearly octave-spanning optical frequency comb generation with a coverage of $\\sim$1000 nm in continuous-wave pumped aluminum nitride (AlN)-on-sapphire microring resonators. Thanks to optimized device design and fabrication process, high-quality-factor AlN microrings with high cavity finesse and low insertion loss are demonstrated. By tailoring the cavity dimension, a broadband anomalous dispersion is secured to facilitate the frequency comb generation. Blue-shifted dispersive wave emission as well as stimulated Raman scattering is observed, which helps extend the comb spectrum coverage. Our work suggests that AlN-on-sapphire can be an appealing platform for integrated nonlinear optics.

  5. Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov.

    Science.gov (United States)

    Grimes, D J; Woese, C R; MacDonell, M T; Colwell, R R

    1997-01-01

    A blue-pigmented colony that had a metallic copper-colored sheen was isolated in 1973 from a standard spread plate count preparation of oxidation pond sediment. Over the next 11 years, an additional 12 strains of blue-pigmented bacteria were isolated from freshwater samples and compared to several reference strains of bacteria. Morphological and biochemical tests revealed that these 13 isolates were very similar to [Pseudomonas] indigofera ATCC 19706T (T = type strain) and ATCC 14036. A numerical analysis (in which simple matching similarity coefficients were clustered by the unweighted pair group mathematical averaging method) of morphological and biochemical characteristics revealed 90.0% relatedness between the 13 isolates and [P.] indigofera ATCC 19706T and ATCC 14036 and 73.6% relatedness between the 13 isolates and a cluster containing Burkholderia cepacia ATCC 25416T, Janthinobacterium lividum ATCC 12473T, and the Pseudomonas species tested. A phylogenetic analysis, in which both 5S rRNA and 16S rRNA were used, also revealed that the 13 isolates were closely related to each other and to strains ATCC 19706T and ATCC 14036. In addition, both 5S rRNA and 16S rRNA analyses demonstrated that the isolates and strains ATCC 19706T and ATCC 14036 were members of the beta subdivision of the Proteobacteria and were closely related to Chromobacterium violaceum ATCC 12742T but sufficiently distinct to warrant placement in a new genus. Accordingly, we propose that the 13 isolates and strains ATCC 19706T and ATCC 14306 be placed in the genus Vogesella gen. nov., which is named in honor of Otto Voges, who first isolated and described this blue-pigmented eubacterium in 1893. We also propose that [P.] indigofera be renamed Vogesella indigofera comb. nov. and designated the type species of the genus; strain ATCC 19706 is the type strain of this species.

  6. Genomics of sex determination.

    Science.gov (United States)

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution.

  7. SEX EDUCATION

    Directory of Open Access Journals (Sweden)

    R N Srivastava

    1994-06-01

    Full Text Available Sex, though not everything in life, is a profoundly important aspect of human existence. It has evolved to serve more than reproductive functions; relational and recreational functions having taken precedence over procrea­tional. Sex has come to play a much wider socio-psychological function.Human sexuality is complex and multidimensional. It is subject to influence by multitude of factors often grouped as biological (e.g. genes, hormones, psychological (e.g. fear, anxiety, mood and socio-cultural (e.g. sex roles, values- religious/moral/ethical, customs. It is the interaction and interrelationship of these factors from the time of conception, through intrauterine life, infancy, childhood and adolescence, till adulthood (even later in life that determine the sexual development expressed as sexual attitudes and behaviour of the people. Learning, both social and cognitive, plays a significantly important role in such development.Sexual dysfunctions in men and women, result from factors often categorised as physical or organic and psychological; more often a combination may be involved. Experience has shown that in majority of men and women in India having sexual problems, ignorance misconceptions and prevailing myths are invariably responsible in the causation of Ihese problems. Sexual problems in individual man (e.g. erectile failure and woman (e.g. vaginismus cause anxiety, feelings of frustration, lowered self esteem and symptoms of depression. The condition may also affect the spouse; he/she, as a reaction to the problem in the partner, may develop sexual and psychosocial problems including distressed marital relationship. This may also have influence on general couple relationship, effecting adversely the quality of family life.Modern therapeutic endevours have made it possible now to offer effective therapy to most people who seek help for their sexual problems, thus preventing the consequences on couple relationship. However, there is also

  8. A stabilized 18 GHz chip-scale optical frequency comb at 2.8x10-16 relative inaccuracy

    CERN Document Server

    Huang, S -W; Yu, M; McGuyer, B H; Kwong, D -L; Zelevinsky, T; Wong, C W

    2015-01-01

    Optical frequency combs, coherent light sources that connect optical frequencies with microwave oscillations, have become the enabling tool for precision spectroscopy, optical clockwork and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but four-wave-mixing in high-Q resonators have emerged as alternative platforms. Here we report the generation and full stabilization of CMOS-compatible optical frequency combs. The spiral microcomb's two degrees-of-freedom, one of the comb line and the native 18 GHz comb spacing, are first simultaneously phase-locked to known optical and microwave references. Second, with pump power control, active comb spacing stabilization improves the long-term stability by six orders-of-magnitude, reaching an instrument-limited 3.6 mHz/sqrt(t) residual instability. Third, referencing thirty-three of the nitride frequency comb lines against a fiber comb, we demonstrate the comb tooth-to-tooth frequency relative inaccu...

  9. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars H.; Sørensen, Søren Johannes;

    2016-01-01

    time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from...

  10. Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy

    Science.gov (United States)

    Balling, Petr; Mašika, Pavel; Křen, Petr; Doležal, Miroslav

    2012-09-01

    In this paper we describe the progress we have made in our simultaneous length measurement and the femtosecond comb interferometric spectroscopy in a conventional arrangement with a moving mirror. Scanning and detection over an interval longer than the distance between two consecutive pulses of the frequency comb allow for a spectral resolution of the individual frequency modes of the comb. Precise knowledge of comb mode frequency leads to a precise estimation of the spectral characteristics of inspected phenomena. Using the pulse train of the frequency comb allows for measurement with highly unbalanced lengths of interferometer arms, i.e. an absolute long distance measurement. Further, we present a non-contact (double sided) method of measurement of the length/thickness of plane-parallel objects (gauge blocks, glass samples) by combining the fs comb (white light) with single frequency laser interferometry. The position of a fringe packet is evaluated by estimating the stationary phase position for any wavelength in the spectral band used. The repeatability of this position estimation is a few nanometres regardless of whether dispersion of the arms is compensated (transform limited fringe packet ˜10 fringes FWHM) or highly different (fringe packet stretched to >200 fringes FWHM). The measurement of steel gauge block by this method was compared with the standard method, and deviation (+13 ± 12) nm for gauge blocks (2 to 100) mm was found. The measurement of low reflecting ceramic gauges or clear glass samples was also tested. In the case of glass, it becomes possible to measure simultaneously both the thickness and the refractive index (and dispersion) of flat samples.

  11. Optical under-sampling by using a broadband optical comb with a high average power.

    Science.gov (United States)

    Sherman, Alexander; Horowitz, Moshe; Zach, Shlomo

    2014-06-30

    We demonstrate a new method to improve the performance of photonic assisted analog to digital converters (ADCs) that are based on frequency down-conversion obtained by optical under-sampling. The under-sampling is performed by multiplying the radio frequency signal by ultra-low jitter broadband phase-locked optical comb. The comb wave intensity has a smooth periodic function in the time domain rather than a train of short pulses that is currently used in most photonic assisted ADCs. Hence, the signal energy at the photo-detector output can be increased and the signal to noise ratio of the system might be improved without decreasing its bandwidth. We have experimentally demonstrated a system for electro-optical under-sampling with a 6-dB bandwidth of 38.5 GHz and a spur free dynamic range of 99 dB/Hz(2/3) for a signal with a carrier frequency of 35.8 GHz, compared with 94 dB/Hz(2/3) for a signal at 6.2 GHz that was obtained in the same system when a pulsed optical source was used. The optical comb was generated by mixing signals from two dielectric resonator oscillators in a Mach-Zehnder modulator. The comb spacing is equal to 4 GHz and its bandwidth was greater than 48 GHz. The temporal jitter of the comb measured by integrating the phase noise in a frequency region of 10 kHz to 10 MHz around comb frequencies of 16 and 20 GHz was only about 15 and 11 fs, respectively.

  12. Bandwidth scaling of a phase-modulated continuous-wave comb through four-wave mixing in a silicon nano-waveguide.

    Science.gov (United States)

    Liu, Yang; Metcalf, Andrew J; Company, Victor Torres; Wu, Rui; Fan, Li; Varghese, Leo T; Qi, Minghao; Weiner, Andrew M

    2014-11-15

    We demonstrate an on-chip four-wave mixing (FWM) scheme in a silicon nanowaveguide to scale the bandwidth of a frequency comb generated by phase modulation of continuous-wave (CW) lasers. The FWM process doubles the bandwidth of the initial comb generated by the modulation of a CW laser. For example, a wavelength-tunable frequency comb with >100 comb lines spaced by 10 GHz within a bandwidth of 5 dB is generated.

  13. Experimental observation of coherent cavity soliton frequency combs in silica microspheres

    CERN Document Server

    Webb, Karen E; Coen, Stéphane; Murdoch, Stuart G

    2016-01-01

    We report on the experimental observation of coherent cavity soliton frequency combs in silica microspheres. Specifically, we demonstrate that careful alignment of the microsphere relative to the coupling fiber taper allows for the suppression of higher-order spatial modes, reducing mode interactions and enabling soliton formation. Our measurements show that the temporal cavity solitons have sub-100-fs durations, exhibit considerable Raman self-frequency shift, and generally come in groups of three or four, occasionally with equidistant spacing in the time domain. RF amplitude noise measurements and spectral interferometry confirm the high coherence of the observed soliton frequency combs, and numerical simulations show good agreement with experiments.

  14. Coherent combs of anti-matter from nonlinear electron-positron pair creation

    CERN Document Server

    Krajewska, K

    2014-01-01

    Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.

  15. Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John;

    2007-01-01

    crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt......Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic...

  16. Self-Frequency Shift of Cavity Soliton in Kerr Frequency Comb

    CERN Document Server

    Zhang, Lin; Kimerling, Lionel C; Michel, Jurgen

    2014-01-01

    We show that the ultrashort cavity soliton in octave-spanning Kerr frequency comb generation exhibits striking self-adaptiveness and robustness to external perturbations, resulting in a novel frequency shifting/cancellation mechanism and gigantic dispersive wave generation in response to the strong frequency dependence of Kerr nonlinearity, Raman scattering, chromatic dispersion, and cavity Q. These observations open up a great avenue towards versatile manipulation of nonlinear soliton dynamics, flexible spectrum engineering of mode-locked Kerr frequency combs, and highly efficient frequency translation of optical waves.

  17. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-01-01

    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  18. Spin-wave storage using chirped control fields in atomic frequency comb-based quantum memory

    OpenAIRE

    2010-01-01

    It has been shown that an inhomogeneously broadened optical transition shaped into an atomic frequency comb can store a large number of temporal modes of the electromagnetic field at the single photon level without the need to increase the optical depth of the storage material. The readout of light modes is made efficient thanks to the rephasing of the optical-wavelength coherence similarly to photon echo-type techniques and the re-emission time is given by the comb structure. For on-demand r...

  19. Demonstration of atomic frequency comb memory for light with spin-wave storage

    OpenAIRE

    2009-01-01

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo type rephasing of the dipole moments a...

  20. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方

    2000-01-01

    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  1. Self-organization in Kerr-cavity-soliton formation in parametric frequency combs

    Science.gov (United States)

    Wen, Y. Henry; Lamont, Michael R. E.; Strogatz, Steven H.; Gaeta, Alexander L.

    2016-12-01

    We show that self-organization and synchronization underlie Kerr-cavity-soliton formation in parametric frequency combs. By reducing the Lugiato-Lefever equation to a set of phase equations, we find that self-organization arises from a two-stage process via pump-degenerate and pump-nondegenerate four-wave mixing. The reduced phase equations are akin to the Kuramoto model of coupled oscillators and intuitively explain the origin of the pump phase offset, predict antisymmetrization of the intracavity field before phase synchronization, and clarify the role of chaos in Kerr-cavity-soliton formation in parametric combs.

  2. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line.

    Science.gov (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2014-12-01

    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  3. Surface acoustic wave opto-mechanical oscillator and frequency comb generator.

    Science.gov (United States)

    Savchenkov, A A; Matsko, A B; Ilchenko, V S; Seidel, D; Maleki, L

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  4. Synthesis and characterization of star-comb polybutadiene and poly(ethylene-co-butene)

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel star-comb polybutadiene(SC-PB) was synthesized with n-butyllithium(n-BuLi) as initiator,epoxidized star liquid polybutadiene(ESPB) as coupling agent,cyclohexane as solvent by living anionic polymerization and grafting-onto technology. The SC-PB was subsequently hydrogenated by homogeneous catalysis(catalytic hydrogenation using nickel naphthenate/ triisobutyl aluminum),to transform the SC-PB into the corresponding star-comb poly(ethylene-co-butene)(SC-PEB).The SC-PB was characterized by SEC-TALLS...

  5. Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator

    CERN Document Server

    Jung, Hojoong; Guo, Xiang; Fischer, Debra; Tang, Hong X

    2014-01-01

    On-chip frequency comb generations enable compact broadband sources for spectroscopic sensing and precision spectroscopy. Recent microcomb studies focus on infrared spectral regime and have difficulty in accessing visible regime. Here, we demonstrate comb-like visible frequency line generation through second, third harmonic, and sum frequency conversion of a Kerr comb within a high Q aluminum nitride microring resonator pumped by a single telecom laser. The strong power enhancement, in conjunction with the unique combination of Pockels and Kerr optical nonlinearity of aluminum nitride, leads to cascaded frequency conversions in the visible spectrum. High-resolution spectroscopic study of the visible frequency lines indicates matched free spectrum range over all the bands. This frequency doubling and tripling effect in a single microcomb structure offers great potential for comb spectroscopy and self-referencing comb.

  6. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules...... with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high......-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria...

  7. Same sex families and children

    Directory of Open Access Journals (Sweden)

    Mršević Zorica

    2009-01-01

    Full Text Available Introduction comprises the information on two main forms of same sex families, civic partnership (same sex partnership and same sex marriage. Countries and various status modalities of legal regulations are mentioned. The main part of the text is dedicated to presentation of the findings of the most recent research on various aspects regarding children of same sex partnerships. It comprises presentations grouped in four main chapters: acceptance of same sex partnerships, acceptance of legal recognition of the same sex partnerships, family plans of homosexual teenagers, and raising children within and by the same sex partners. Also the real life cases mirroring legal changes through their life destinies are presented, such is e.g. the Irish way to legalization of the same sex partnerships. In addition, a love story of two women crowned by giving birth of their four children is mentioned. Reasons against and negative reactions the author puts under the title Homophobia. In the Concluding remarks, the author presents the most recent examples of legal changes happened in Norway, Ecuador, and in the American states of California and Connecticut. It was also stated that in European countries of low birth rate, the same sex families are inevitably identified as one of demographically valuable source of creating and raising children, which is worthy to be supported, rather than being hindered without reason and discriminated. Although different than a model of heterosexual family, same sex partnerships neither are harrowing to traditional family values, nor reflex of any kind of promiscuous, antisocial behavior, avoidance of parenthood, and negation of family. Quite opposite, these families are an outcome of endeavors of homosexuals not to be deprived of family, parenthood and all of other values of stabile, monogamous, emotional/sexual socially accepted and legally recognized and regulated conventional family. .

  8. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment.

    Science.gov (United States)

    Otani, Saria; Hansen, Lars H; Sørensen, Søren J; Poulsen, Michael

    2016-01-01

    Fungus-growing termites (subfamily Macrotermitinae) mix plant forage with asexual spores of their plant-degrading fungal symbiont Termitomyces in their guts and deposit this blend in fungus comb structures, within which the plant matter is degraded. As Termitomyces grows, it produces nodules with asexual spores, which the termites feed on. Since all comb material passes through termite guts, it is inevitable that gut bacteria are also deposited in the comb, but it has remained unknown which bacteria are deposited and whether distinct comb bacterial communities are sustained. Using high-throughput sequencing of the 16S rRNA gene, we explored the bacterial community compositions of 33 fungus comb samples from four termite species (three genera) collected at four South African geographic locations in 2011 and 2013. We identified 33 bacterial phyla, with Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over time. These shifts did not appear to be due to changes in the taxa present, but rather due to differences in the relative abundances of primarily gut-derived bacteria within fungus combs. This indicates that fungus comb microbiotas are largely termite species-specific due to major contributions from gut deposits and also that environment affects which gut bacteria dominate comb communities at a given point in time.

  9. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Science.gov (United States)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  10. Sex Bias in Children.

    Science.gov (United States)

    Zalk, Sue Rosenberg; And Others

    This study investigated children's sex biased attitudes as a function of the sex, age, and race of the child as well as a geographical-SES factor. Two attitudes were measured on a 55-item questionnaire: Sex Pride (attributing positive characteristics to a child of the same sex) and Sex Prejudice (attributing negative characteristics to a child of…

  11. Additivity dominance

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2009-10-01

    Full Text Available Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned. In support of this, skim milk (with major subtraction of fat is rated as more natural than whole milk with a small amount of natural vitamin D added. It is also noted that ``additives'' is a common word, with a synonym reported by a native speaker in 17 of 18 languages, whereas ``subtractive'' is lexicalized in only 1 of the 18 languages. We consider reasons for additivity dominance, relating it to omission bias, feature positive bias, and notions of purity.

  12. Modeling ovarian follicle growth in commercial and heritage Single Comb White Leghorn hens.

    Science.gov (United States)

    McLeod, E S; Jalal, M A; Zuidhof, M J

    2014-11-01

    Approximately 84% of the energy in chicken eggs resides in the yolk. A robust model of ovarian follicle development is therefore valuable for estimating energy requirements of laying hens. The current experiment was designed to model the growth of ovarian follicles in 32-wk-old modern commercial line (CL) and unselected heritage line (HL) Single Comb White Leghorn hens. The volume of yolk deposited daily during the rapid growth phase (RGP) was estimated using a double dye technique. For 21 d, 8 CL and 8 HL hens were fed capsules (no. 1) containing Sudan IV (red) and Sudan Black dyes on alternate days. An additional 8 control CL hens were fed empty capsules. Eggs were collected, and the daily volume of yolk deposited was estimated. Significant differences are reported where P hens, respectively. Duration of the RGP was shorter (7.35 d) in the CL hens compared with the HL hens (7.95 d). A nonlinear Lomolino model described follicular weight, which varied between strains over d 2 to 9 of follicle development; at each day during development, follicle weights were higher where RGP were shorter. The volume of yolk deposited for the 8 d preceding oviposition in CL was 0.17, 0.28, 0.43, 0.99, 1.84, 2.47, 2.82, 2.86, and 2.51 cm(3); and in HL was 0.17, 0.33, 0.72, 1.40, 2.15, 2.46, 2.48, 2.32, and 1.93 cm(3). The HL had a higher rate of yolk deposition 7 to 5 d before oviposition, and CL had a higher rate of yolk deposition 3 to 1 d before oviposition with no significant difference between lines on d 4 before oviposition. Although growth patterns differed, there were no differences among lines in final follicle weights (14.1 g) or retained energy (42.4 kcal).

  13. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers

    Science.gov (United States)

    Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; Giorgetta, Fabrizio R.; Swann, William C.; Coburn, Sean; Wright, Robert J.; Rieker, Gregory B.; Coddington, Ian; Newbury, Nathan R.

    2017-09-01

    We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm-1 (1568 to 1660 nm), corresponding to a 355 cm-1 bandwidth, at 0.0067 cm-1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10-4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO2, 0.35 % (7 ppb) for CH4, and 0.40 % (36 ppm) for H2O at ˜ 30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.

  14. Sex-linked dominant

    Science.gov (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  15. Sex and Arthritis

    Science.gov (United States)

    ... Well with Rheumatic Disease Sex & Arthritis Sex and Arthritis Fast Facts Sex and arthritis can coexist. Open ... ability for sexual expression and enjoyment. Impact of Arthritis on Sexual Expression Aspects of arthritis which can ...

  16. Silicon-chip-based mid-infrared dual-comb spectroscopy

    CERN Document Server

    Yu, Mengjie; Griffith, Austin G; Picqué, Nathalie; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    On-chip spectroscopy that could realize real-time fingerprinting with label-free and high-throughput detection of trace molecules is one of the 'holy grails" of sensing. Such miniaturized spectrometers would greatly enable applications in chemistry, bio-medicine, material science or space instrumentation, such as hyperspectral microscopy of live cells or pharmaceutical quality control. Dual-comb spectroscopy (DCS), a recent technique of Fourier transform spectroscopy without moving parts, is particularly promising since it measures high-precision spectra in the gas phase using only a single detector. Here, we present a microresonator-based platform designed for mid-infrared (mid-IR) DCS. A single continuous-wave (CW) low-power pump source generates two mutually coherent mode-locked frequency combs spanning from 2.6 $\\mu$m to 4.1 $\\mu$m in two silicon micro-resonators. Thermal control and free-carrier injection control modelocking of each comb and tune the dual-comb parameters. The large line spacing of the co...

  17. Description of the male of Laneella perisi (Mariluis) (Diptera: Calliphoridae) n. comb.

    Science.gov (United States)

    Wolff, M; Ramos-Pastrana, Y; Pujol-Luz, J R

    2013-02-01

    The male Laneella perisi (Mariluis) n. comb. is described based on specimens collected in the Cordillera Oriental (1,370-1,450 m asl), Florencia-Suaza, Caquetá, Colombia. A key to separate the two species of the genus Laneella and illustrations of the male genitalia and female abdomen, terminalia, and spermatheca are also presented.

  18. High-accuracy long-distance measurements in air with a frequency comb laser

    NARCIS (Netherlands)

    Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; Van den Berg, S.A.; Urbach, H.P.; Braat, J.J.M.

    2009-01-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for longdistance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, dis

  19. Bottle microresonator broadband and low-repetition-rate frequency comb generator.

    Science.gov (United States)

    Dvoyrin, V; Sumetsky, M

    2016-12-01

    We propose a new type of broadband and low repetition rate (RR) frequency comb generator that has the shape of an elongated and nanoscale-shallow optical bottle microresonator created at the surface of an optical fiber. The free spectral range (FSR) of the broadband azimuthal eigenfrequency series of this resonator is the exact multiple of the FSR of the dense and narrowband axial series. The effective radius variation of the microresonator is close to a parabola with a nanoscale height that is greater or equal to λ/2πn0. (Here λ is the characteristic radiation wavelength and n0 is the refractive index of the microresonator material.) Overall, the microresonator possesses a broadband, small FSR and accurately equidistant spectrum convenient for the generation of a broadband and low RR optical frequency comb. It is shown that this comb can be generated by pumping with a cw laser, with a radiation frequency that matches a single axial eigenfrequency of the microresonator or, alternatively, by pumping with a mode-locked laser, which generates a narrowband low RR comb matching a series of equidistant axial eigenfrequencies situated between adjacent azimuthal eigenfrequencies.

  20. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process

    Science.gov (United States)

    Bauer, Daniel; Bienefeld, Kaspar

    2013-01-01

    The nests of European honeybees ( Apis mellifera) are organised into wax combs that contain many cells with a hexagonal structure. Many previous studies on comb-building behaviour have been made in order to understand how bees produce this geometrical structure; however, it still remains a mystery. Direct construction of hexagons by bees was suggested previously, while a recent hypothesis postulated the self-organised construction of hexagonal comb cell arrays; however, infrared and thermographic video observations of comb building in the present study failed to support the self-organisation hypothesis because bees were shown to be engaged in direct construction. Bees used their antennae, mandibles and legs in a regular sequence to manipulate the wax, while some bees supported their work by actively warming the wax. During the construction of hexagonal cells, the wax temperature was between 33.6 and 37.6 °C. This is well below 40 °C, i.e. the temperature at which wax is assumed to exist in the liquid equilibrium that is essential for self-organised building.

  1. Ultra-pure RF tone from a micro-ring resonator based optical frequency comb source

    CERN Document Server

    Pasquazi, Alessia; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2014-01-01

    We demonstrate a novel mode locked ultrafast laser, based on an integrated high-Q micr-oring resonator. Our scheme exhibits stable operation of two slightly shifted spectral optical comb replicas. It generates a highly monochromatic radiofrequency modulation of 60MHz on a 200GHz output pulse train, with a linewidth < 10kHz

  2. Improvement of FISH mapping resolution on combed DNA molecules by iterative constrained deconvolution: a quantitative study.

    Science.gov (United States)

    Monier, K; Heliot, L; Rougeulle, C; Heard, E; Robert-Nicoud, M; Vourc'h, C; Bensimon, A; Usson, Y

    2001-01-01

    Image restoration approaches, such as digital deconvolution, are becoming widely used for improving the quality of microscopic images. However, no quantification of the gain in resolution of fluorescence images is available. We show that, after iterative constrained deconvolution, fluorescent cosmid signals appear to be 25% smaller, and 1.2-kb fragment signals on combed molecules faithfully display the expected length.

  3. Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.

    Science.gov (United States)

    Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B

    2016-12-01

    We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.

  4. Controlled deposition and combing of DNA across lithographically defined patterns on silicon

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    We have developed a new procedure for efficient combing of DNA on a silicon substrate, which allows reproducible deposition and alignment of DNA molecules across lithographically defined patterns. The technique involves surface modification of Si/SiO2 substrates with a hydrophobic silane by using...

  5. Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    NARCIS (Netherlands)

    Benko, C.; Ruehl, A.; Martin, M.J.; Eikema, K.S.E.; Fermann, M.E.; Hartl, I.; Ye, J.

    2012-01-01

    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fi

  6. A decade of astrocombs: recent advances in frequency combs for astronomy.

    Science.gov (United States)

    McCracken, Richard A; Charsley, Jake M; Reid, Derryck T

    2017-06-26

    A new regime of precision radial-velocity measurements in the search for Earth-like exoplanets is being facilitated by high-resolution spectrographs calibrated by laser frequency combs. Here we review recent advances in the development of astrocomb technology, and discuss the state of the field going forward.

  7. Look closer: Time sequence photography of Roosters Comb in the Sheep Creek Range, Nevada

    Science.gov (United States)

    The importance of understanding natural landscape changes is key in properly determining rangeland ecology. Time sequence photography allows a snapshot of a landscape to be documented and enables the ability to compare natural changes overtime. Photographs of Roosters Comb were taken from the same v...

  8. Fibers and combs: weaving a portable frequency reference in the near-IR

    Science.gov (United States)

    Corwin, Kristan

    2009-05-01

    Ten years after the advent of femtosecond optical frequency combs, they are now used for many applications. Here, we use near infrared combs to characterize and develop portable frequency references based on gas-filled hollow optical fibers. We explore the accuracy and stability of saturated absorption features in acetylene gas confined inside both 10 micron core diameter photonic bandgap fibers and ˜60 micron core diameter kagome-structured photonic crystal fibers. A cw fiber laser referenced to these features has resulted in stabilities of ˜10-11 in 1 s, competitive with iodine-stabilized HeNe lasers. Most of these studies have been performed using a femtosecond fiber laser that relies on a carbon nanotube saturable absorber. However, we have also explored Cr:forsterite femtosecond lasers with intracavity prisms, which reveal dramatic narrowing of the carrier-envelope offset beat when a knife edge is inserted in the cavity. Such observations and subsequent noise dynamics studies will lead to a better understanding of noise in these solid state combs, making Cr:forsterite laser combs more competitive for spectroscopy and other applications.

  9. ComB proteins expression levels determine Helicobacter pylori competence capacity

    Science.gov (United States)

    Corbinais, Christopher; Mathieu, Aurélie; Damke, Prashant P.; Kortulewski, Thierry; Busso, Didier; Prado-Acosta, Mariano; Radicella, J. Pablo; Marsin, Stéphanie

    2017-01-01

    Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency. PMID:28128333

  10. Impact of Decoherence on Internal State Cooling using Optical Frequency Combs

    CERN Document Server

    Malinovskaya, S A

    2012-01-01

    We discuss femtosecond Raman type techniques to control molecular vibrations, which can be implemented for internal state cooling from Feshbach states with the use of optical frequency combs with and without modulation. The technique makes use of multiple two-photon resonances induced by optical frequencies present in the comb. It provides us with a useful tool to study the details of molecular dynamics at ultracold temperatures. In our theoretical model we take into account decoherence in the form of spontaneous emission and collisional dephasing in order to ascertain an accurate model of the population transfer in the three-level system. We analyze the effects of odd and even chirps of the optical frequency comb in the form of sine and cosine functions on the population transfer. We compare the effects of these chirps to the results attained with the standard optical frequency comb to see if they increase the population transfer to the final deeply bound state in the presence of decoherence. We also analyze...

  11. Effect of partial comb and wattle trim on pullet behavior and thermoregulation

    Science.gov (United States)

    The wattles and comb of chickens are important for thermoregulation allowing for heat exchange during high temperatures. These integumentary tissues are sometimes trimmed to prevent tears if caught on cage equipment and to also improve feed efficiency; however, the procedure itself could be painful ...

  12. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2017-09-01

    We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.

  13. Hybrid Optical Comb Filter with Multi-Port Fiber Coupler for DWDM Optical Network

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical comb filters based on multi-port fused fiber couplers are proposed and numerically analyzed, 3-arm MZI composed by 1×7 fiber splitter and 3×3 fiber coupler, and 2-stage cascaded FIR type MZI interleave filter.

  14. High-accuracy long-distance measurements in air with a frequency comb laser

    NARCIS (Netherlands)

    Cui, M.; Zeitouny, M.G.; Bhattacharya, N.; Van den Berg, S.A.; Urbach, H.P.; Braat, J.J.M.

    2009-01-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for longdistance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, dis

  15. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy

    CERN Document Server

    Rutkowski, Lucile

    2016-01-01

    We have recently introduced the Vernier-based Direct Frequency Comb Cavity-Enhanced Spectroscopy technique and we present the corresponding formalism for quantitative broadband spectroscopy. We achieve high sensitivity and broadband performance by acquiring spectra covering more than 2000 cm$^{-1}$ around 12600 cm$^{-1}$ (800 nm), resolving the 3$\

  16. Potlining Additives

    Energy Technology Data Exchange (ETDEWEB)

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  17. Additivity dominance

    OpenAIRE

    2009-01-01

    Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA) that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned....

  18. Sulfite Additives

    OpenAIRE

    1988-01-01

    The CMA recommends that sulfites be banned as food preservatives when satisfactory and safe alternatives are available. When there is no suitable substitute strict labelling requirements on foods should be imposed for sulfite additives. The association supports the efforts of the Health Protection Branch of the Department of National Health and Welfare to regulate sulfites in the food and drug industry to prevent adverse reactions in people sensitive to sulfites. The CMA recommends that the D...

  19. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration.

    Science.gov (United States)

    Quinlan, F; Ycas, G; Osterman, S; Diddams, S A

    2010-06-01

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is approximately 350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.

  20. Sex-differences in heritability of BMI

    DEFF Research Database (Denmark)

    Schousboe, K; Willemsen, G; Kyvik, Kirsten Ohm

    2003-01-01

    pairs (including opposite sex pairs) aged 20-29 and 30-39 from eight different twin registries participating in the GenomEUtwin project. Quantitative genetic analyses were conducted and sex differences were explored. Variation in BMI was greater for women than for men, and in both sexes was primarily...... explained by additive genetic variance in all countries. Sex differences in the variance components were consistently significant. Results from analyses of opposite sex pairs also showed evidence of sex-specific genetic effects suggesting there may be some differences between men and women in the genetic...... factors that influence variation in BMI. These results encourage the continued search for genes of importance to the body composition and the development of obesity. Furthermore, they suggest that strategies to identify predisposing genes may benefit from taking into account potential sex specific effects....

  1. Morphology and phase diagram of comb block copolymer Am+1(BC)m.

    Science.gov (United States)

    Jiang, Zhibin; Wang, Rong; Xue, Gi

    2009-05-28

    The morphologies and the phase diagram of comb copolymer Am+1(BC)m are investigated by the self-consistent field theory. By changing the volume fractions of the blocks, the interaction parameters between the different blocks, and the side chain number, nine phases are found, including the two-colored lamellar phase, three-colored lamellar phase, hexagonal lattice phase, core shell hexagonal lattice phase, two interpenetrating tetragonal lattice, core shell tetragonal lattice, lamellar phase with beads inside, lamellar phase with alternating beads, and disordered phase. The phase diagrams are constructed for Am+1(BC)m with different side chain numbers of m=1, 2, 3, and 5. Due to the asymmetric topology of comb copolymer Am+1(BC)m, the phases and the diagrams are very different from linear ABC triblock copolymer or star ABC triblock copolymer. When the volume fraction of one of the blocks is the domination, the (core shell) hexagonal phase or two interpenetrating tetragonal lattice can form, depending on which block dominates and the interaction between the blocks. The (core shell) hexagonal phase easily forms at the corner of the block A (fA>or=0.5). The side chain number m affects the phase diagram largely due to the fact that the architecture of a comb copolymer is not invariant under the interchange between the three different monomers. Due to the connectivity of the blocks B and the inner blocks A, Am+1(BC)m comb copolymers with the longer main chain A or longer side chain with short block C, i.e., longer block B, are difficult to phase separate. The results are helpful to design nano- or biomaterials with complex architecture or tailor the phase behavior of comb copolymers.

  2. Surficial geology of the lower Comb Wash, San Juan County, Utah

    Science.gov (United States)

    Longpré, Claire I.

    2001-01-01

    The surficial geologic map of lower Comb Wash was produced as part of a master’s thesis for Northern Arizona University Quaternary Sciences program. The map area includes the portion of the Comb Wash alluvial valley between Highway 163 and Highway 95 on the Colorado Plateau in southeastern Utah. The late Quaternary geology of this part of the Colorado Plateau had not previously been mapped in adequate detail. The geologic information in this report will be useful for biological studies, land management and range management for federal, state and private industries. Comb Wash is a south flowing ephemeral tributary of the San Juan River, flanked to the east by Comb Ridge and to the west by Cedar Mesa (Figure 1). The nearest settlement is Bluff, about 7 km to the east of the area. Elevations range from 1951 m where Highway 95 crosses Comb Wash to 1291 m at the confluence with the San Juan River. Primary vehicle access to lower Comb Wash is provided by a well-maintained dirt road that parallels the active channel of Comb Wash between Highway 163 and Highway 95. For much of the year this road can be traversed without the aid of four-wheel drive. However, during inclement weather such as rain or snow the road becomes treacherous even with four-wheel drive. The Comb Wash watershed is public land managed by the Bureau of Land management (BLM) office in Monticello, Utah. The semi-arid climate of Comb Wash and the surrounding area is typical of the Great Basin Desert. Temperature in Bluff, Utah ranges from a minimum of –8° C in January to a maximum of 35° C in July with a mean annual temperature of 9.8° C (U.S. Department of Commerce, 1999). The difference between day and nighttime temperatures is as great as 20° C. Between 1928 and 1998, annual rainfall in Bluff averaged 178 mm per year (U.S. Department of Commerce, 1999). Annual rainfall in Comb Wash averaged 240 mm per year from 1991 to 1999 while Bluff received an average of 193 mm for the same 8 year period

  3. Generation of Kerr combs centered at 4.5{\\mu}m in crystalline microresonators pumped by quantum cascade lasers

    CERN Document Server

    Savchenkov, Anatoliy A; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute

    2015-01-01

    We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF$_2$ and MgF$_2$ whispering-gallery mode resonators pumped with continuous wave room temperature quantum cascade lasers. The combs were centered at 4.5$\\mu$m, the longest wavelength to date. A frequency comb wider than a half of an octave was demonstrated when approximately 20mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10$^8$.

  4. Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared.

    Science.gov (United States)

    Iwakuni, Kana; Okubo, Sho; Tadanaga, Osamu; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki

    2016-09-01

    We have observed an ultra-broadband frequency comb with a wavelength range of at least 0.35 to 4.4 μm in a ridge-waveguide-type periodically poled lithium niobate device. The PPLN waveguide is pumped by a 1.0-2.4 μm wide frequency comb with an average power of 120 mW generated using an erbium-based mode-locked fiber laser and a following highly nonlinear fiber. The coherence of the extended comb is confirmed in both the visible (around 633 nm) and the mid-infrared regions.

  5. Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

    CERN Document Server

    Ycas, Gabriel; Diddams, Scott A

    2012-01-01

    We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.

  6. Redescrição de Nomimoscolex admonticellia (Woodland, comb.n. (Cestoda: Proteocephalidea, parasito de Pinirampus pirinampu (Spix, um siluriforme de água doce Redescription of Nomimoscolex admonticellia (Woodland, comb.n (Cestoda: Proteocephalidea parasite of Pinirampus pirinampu (Spix, a freshwater siluriform fish

    Directory of Open Access Journals (Sweden)

    Amilcar Arandas Rego

    1992-01-01

    Full Text Available The Monticelliidae species, Nomimoscolex admonticellia (Woodland, 1934, comb.n., parasite of Pinirampus pirinampu (Spix, 1829 a freshwater siluriform fish, is redescribed. This species is the type of the genus Myzophorus Woodland, 1934. The authors discuss the validity of this genus and propose its suppression. Their species are transferred to Nomimoscolex (Zigobothriinae whose diagnose is modified to include: N. admonticellia, comb.n., N. pirarara (Woodland, 1935, comb.n. and N. woodlandi (Rego, 1984, comb.n.

  7. A review of the genus Paramoniezia Maplestone et Southwell, 1923 (Cestoda: Anoplocephalidae), with a new genus, Phascolocestus, from wombats (Marsupialia) and redescriptions of Moniezia mettami Baylis, 1934 and Moniezia phacochoeri (Baylis, 1927) comb. n. from African warthogs (Artiodactyla).

    Science.gov (United States)

    Beveridge, Ian

    2014-02-01

    Paramoniezia suis Maplestone et Southwell, 1923 is redescribed from the type and only specimen, and is considered to be a genus inquirendum and species inquirenda, possibly based on a host misidentification. Paramoniezia phacochoeri Baylis, 1927 is redescribed from new material from Phacochoerus africanus (Gmelin) from South Africa and is transferred to Moniezia Blanchard. 1891 as M. phacochoeri (Baylis, 1927) comb. n. A redescription of M. mettami Baylis, 1934, also from Ph. africanus, establishes the independence of the two congeneric species parasitizing warthogs. A new genus, Phascolocestus, is erected for Paramoniezia johnstoni Beveridge, 1976 from vombatid marsupials as Phascolocestus johnstoni (Beveridge, 1976) comb. n., and additional host and distributional data are provided for this species.

  8. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb.

    Science.gov (United States)

    Ycas, Gabriel G; Quinlan, Franklyn; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-03-12

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ∼10 m/s (∼6 MHz) was achieved from the comb-calibrated spectra.

  9. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator.

    Science.gov (United States)

    Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic

    2016-11-15

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  10. Single envelope equation modelling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearity

    CERN Document Server

    Hansson, T; Erkintalo, M; Anthony, J; Coen, S; Ricciardi, I; De Rosa, M; Wabnitz, S

    2016-01-01

    We numerically study, by means of the single envelope equation, the generation of optical frequency combs ranging from the visible to the mid-infrared spectral regions in resonators with quadratic and cubic nonlinearities. Phase-matched quadratic wave-mixing processes among the comb lines can be activated by low-power continuous wave pumping in the near infrared of a radially poled lithium niobate whispering gallery resonator (WGR). We examine both separate and co-existing intra-cavity doubly resonant second-harmonic generation and parametric oscillation processes, and find that modulation instabilities may lead to the formation of coupled comb arrays extending over multiple octaves. In the temporal domain, the frequency combs may correspond to pulse trains, or isolated pulses.

  11. Demonstration of On-Sky Calibration of Astronomical Spectra using a 25 GHz near-IR Laser Frequency Comb

    CERN Document Server

    Ycas, Gabriel G; Diddams, Scott A; Osterman, Steve; Mahadevan, Suvrath; Redman, Stephen; Terrien, Ryan; Ramsey, Lawrence; Bender, Chad F; Botzer, Brandon; Sigurdsson, Steinn

    2012-01-01

    We describe and characterize a 25 GHz laser frequency comb based on a cavity-filtered erbium fiber mode-locked laser. The comb provides a uniform array of optical frequencies spanning 1450 nm to 1700 nm, and is stabilized by use of a global positioning system referenced atomic clock. This comb was deployed at the 9.2 m Hobby-Eberly telescope at the McDonald Observatory where it was used as a radial velocity calibration source for the fiber-fed Pathfinder near-infrared spectrograph. Stellar targets were observed in three echelle orders over four nights, and radial velocity precision of ~10 m/s (~6 MHz) was achieved from the comb-calibrated spectra.

  12. The Matter and Imagery of Air in Eduardo Chillida’s The Comb of the Wind XV

    National Research Council Canada - National Science Library

    Mei-Hsin Chen

    2017-01-01

    Eduardo Chillida’s The Comb of the Wind XV, embedded in natural rocks rising from the Cantabrian Ocean in 1977, expresses the artistic potential of air as a material, a metaphor, and as an art-maker...

  13. Comb-shaped polyesters of aliphatic dicarboxylic acids and 2-octadecyl-1,3-propanediol: 1. Synthesis and microstructure

    DEFF Research Database (Denmark)

    Andruzzi, F.; Hvilsted, S.

    1991-01-01

    Comb-shaped polyesters are prepared by polytransesterification of 2-octadecyl-1,3-propanediol and diphenyl suberate, sebacate, dodecanedioate, tetradecanedioate and hexadecanedioate in turn. The developed melt polycondensation procedure generally results in polyesters with intrinsic viscosities i...

  14. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $\\mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical \\textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  15. Single-branch Er:fiber frequency comb for optical synthesis at the $10^{-18}$ level

    CERN Document Server

    Leopardi, Holly; Quinlan, Franklyn; Olson, Judith; Diddams, Scott; Fortier, Tara

    2016-01-01

    Laser frequency combs based on erbium-doped fiber mode-locked lasers have shown great potential for compact, robust and efficient optical clock comparisons. However, to simultaneously compare multiple optical clock species, fiber laser frequency combs typically require multiple amplifiers and fiber optic paths that reduce the achievable frequency stability near 1 part in $10^{16}$ at 1s. In this paper we describe an erbium-fiber laser frequency comb that overcomes these conventional challenges and supports optical frequency synthesis at the millihertz level, or fractionally $3 x 10^{-18}$ $tau^{-1/2}$ by ensuring that all critical fiber paths are within the servo-controlled feedback loop. We demonstrate the application of this frequency comb as a synthesizer for optical clocks operating across a wavelength range from 650 nm to 2100 nm.

  16. Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation.

    Science.gov (United States)

    Maram, Reza; Azaña, José

    2013-11-18

    Integer and fractional spectral self-imaging effects are induced on infinite-duration periodic frequency combs (probe signal) using cross-phase modulation (XPM) with a parabolic pulse train as pump signal. Free-spectral-range tuning (fractional effects) or wavelength-shifting (integer effects) of the frequency comb can be achieved by changing the parabolic pulse peak power or/and repetition rate without affecting the spectral envelope shape and bandwidth of the original comb. For design purposes, we derive the complete family of different pump signals that allow implementing a desired spectral self-imaging process. Numerical simulation results validate our theoretical analysis. We also investigate the detrimental influence of group-delay walk-off and deviations in the nominal temporal shape or power of the pump pulses on the generated output frequency combs.

  17. An Analysis of Near Field and Application of a New Comb-shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new comb-shaped antenna for radio frequency identification is proposed. The kind of antenna can replace some antenna array. So it is very convenient for omnidirectional identification. The test result proves this antenna is viable.

  18. To observe the effect of feed additives on the level of sex hormones puppies%观察饲料添加剂二次蓄积对幼犬性激素水平的影响

    Institute of Scientific and Technical Information of China (English)

    李惠; 沈澎; 卢大雷; 徐丹; 王卫杰

    2014-01-01

    This experiment aims to study and analysis the feed additives widely used on the mar-ket, and discuss the effect of feed additives accumulation on growth and reproductive development of the second-feed male pups. 12 one-month-old male pups were select to randomly divided into ex-perimental and control groups. The control group was fed the normal diet and rat meat. The experi-mental group was fed the normal diet and high-dose rat meat. After the dogs mature, to test if high-dose rat meat could effect on male pups growth and reproductive development. Detected indica-tors of dogs serum hormone levels by using ELISA kits method. The results showed that: in experi-mental group the estradiol and follicle-stimulating hormone levels were significantly increased (P<0.01), testosterone levels significantly decreased (P<0.01), serm luteinizing was no signifi-cant change in high-dose group. Feeding rats can lead male pups endocrine hormones levels to be abnormal: 11-month-old male pups, estradiol and follicle stimulating hormone levels increased, testosterone level reduced. There was an impact on the reproductive development of male pups through interfering with the function of testicles in tip experimental groups of male pups fed rat meat.%本试验旨在研究分析市场上正在广泛使用的饲料添加剂,探讨二次饲喂雄性幼犬后饲料添加剂蓄积对其生长、生殖发育的影响研究。选用12只1月龄犬,随机分为试验组和对照组,对照组犬饲喂正常日粮和大鼠鼠肉,试验组犬饲喂正常日粮和高剂量组大鼠鼠肉,喂养幼犬直至成熟,检测食用饲料添加剂高剂量组大鼠鼠肉是否对雄性犬的生长、生殖发育产生影响。采用酶联免疫试剂盒的方法来检测犬血清激素指标水平。结果显示:试验组雌二醇、促卵泡激素含量明显升高(P<0.01),而睾酮含量明显降低,有显著性差异(P<0.01),饲料添加剂高剂量组

  19. Synthesis and characterization of an exact comb polyisoprene with three branches having the middle branch twice the molecular weight of the other two identical external branches

    KAUST Repository

    Ratkanthwar, Kedar

    2013-01-01

    An exact comb polyisoprene (PI) with three branches, with the middle branch having twice the molecular weight of the two other identical external branches, was synthesized by using anionic polymerization high vacuum techniques and appropriate chlorosilane chemistry. The synthetic approach involves (a) the selective replacement of the two chlorines of 4-(dichloromethylsilyl) diphenylethylene (DCMSDPE, key molecule) with identical PI chains by titration with PILi, (b) the addition of sec-BuLi to the double bond of DPE followed by the polymerization of isoprene from the newly created anionic site to form a 3-arm living star PI, (c) the selective replacement of the two chlorines of trichloromethylsilane with 3-arm star PI to form an H-shape intermediate, and (d) the replacement of the remaining chlorine of trichloromethylsilane by linear PI chains with double the molecular weight. All intermediate and final products were characterized via size exclusion chromatography, temperature gradient interaction chromatography and 1H-NMR spectroscopy. As expected, due to the inability to control the exact stoichiometry of the linking reactants, the main product (exact comb PI) is contaminated by a few by-products, despite the fact that anionic polymerization is the most efficient way to produce well-defined polymers. © 2013 The Royal Society of Chemistry.

  20. Portable Dual-comb Spectrometer for Stable Detection of Methane Leaks over Kilometer Scale Paths at Oil and Natural Gas Production Site

    Science.gov (United States)

    Coburn, S.; Wright, R.; Cossel, K.; Truong, G. W.; Baumann, E.; Coddington, I.; Newbury, N.; Alden, C. B.; Ghosh, S.; Prasad, K.; Rieker, G. B.

    2016-12-01

    Newly proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making the detection of this important trace gas a topic of growing interest to the oil and gas industry, regulators, and the scientific community in general. Reliable techniques that enable long-term monitoring of entire production facilities are needed in order to fully characterize the temporal and spatial trends of emissions from these sites. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory, presenting opportunities for kilometer-scale open-path sensing of emissions at remote locations. Here we present the characterization and field deployment of a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites from long range. The DCS is a laser-based system that enables broad spectral absorption measurements (>50 nm) with high spectral resolution (locations near Boulder, CO, demonstrating sensitivities of better than 2 ppb-km for methane. In addition, path integrated methane measurements from the DCS are coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate from simulated methane leaks

  1. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  2. A distance meter using a terahertz intermode beat in an optical frequency comb.

    Science.gov (United States)

    Yokoyama, Shuko; Yokoyama, Toshiyuki; Hagihara, Yuki; Araki, Tsutomu; Yasui, Takeshi

    2009-09-28

    We propose a distance meter that utilizes an intermode beat of terahertz frequency in an optical frequency comb to perform high resolution and high dynamic range absolute distance measurements. The proposed system is based on a novel method, called multiheterodyne cross-correlation detection, in which intermode beat frequencies are scaled down to radio frequencies by optical mixing of two detuned optical frequency combs with a nonlinear optical crystal. Using this method, we obtained a 1.056 THz intermode beat and achieved a distance resolution of 0.820 microm from its phase measurement. Absolute distance measurement using 1.056 THz and 8.187 GHz intermode beats was also demonstrated in the range of 10 mm, resulting in a precision of 0.688 microm.

  3. Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi; Narbudowicz, Adam

    2017-01-01

    This paper introduces a new multilayered polymeric comb array antenna fabricated on a polydimethylsiloxane (PDMS) dielectric substrate. PDMS is selected due to its excellent electrical and mechanical properties such as low permittivity, water resistance and robustness. The polymeric comb array antenna consists of a zigzag array aligned at -90° with respect to the radiating patch with full ground plane. The radiating patch is embedded inside the PDMS substrate while the coaxial connector is located at the bottom of the transmission line. The proposed antenna functions from 22.649 to 27.792 GHz. Simulated and measured reflection coefficients and radiation patterns agreed well. A maximum gain of 9.856 dB is recorded at 25 GHz, indicating suitability for implementation in millimeter-wave applications.

  4. Transmission comb of a distributed Bragg reflector with two surface dielectric gratings

    KAUST Repository

    Zhao, Xiaobo

    2016-02-19

    The transmission behaviour of a distributed Bragg reector (DBR) with surface dielectric gratings on top and bottom is studied. The transmission shows a comb-like spectrum in the DBR band gap, which is explained in the Fano picture. The number density of the transmission peaks increases with increasing number of cells of the DBR, while the ratio of the average full width at half maximum to the corresponding average free spectral range, being only few percent for both transversal electric and magnetic waves, is almost invariant. The transmission peaks can be narrower than 0.1 nm and are fully separated from each other in certain wavebands. We further prove that the transmission combs are robust against randomness in the heights of the DBR layers. Therefore, the proposed structure is a candidate for an ultra-narrow-band multichannel filter or polarizer.

  5. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  6. Demonstration of atomic frequency comb memory for light with spin-wave storage.

    Science.gov (United States)

    Afzelius, Mikael; Usmani, Imam; Amari, Atia; Lauritzen, Björn; Walther, Andreas; Simon, Christoph; Sangouard, Nicolas; Minár, Jirí; de Riedmatten, Hugues; Gisin, Nicolas; Kröll, Stefan

    2010-01-29

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light, the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo-type rephasing of the dipole moments and directional retrieval of the light. This combination of photon-echo and spin-wave storage allows us to store submicrosecond (450 ns) pulses for up to 20 mus. The scheme has a high potential for storing multiple temporal modes in the single-photon regime, which is an important resource for future long-distance quantum communication based on quantum repeaters.

  7. WDM-CAP-PON integration with VLLC system based on optical frequency comb

    Science.gov (United States)

    He, Jing; Dong, Huan; Deng, Rui; Shi, Jin; Chen, Lin

    2016-09-01

    In this paper, a wavelength division multiplexing carrier-less amplitude phase modulation passive optical network (WDM-CAP-PON) integration with visible laser light communication (VLLC) system is proposed and experimentally demonstrated. To reduce the cost of WDM system, the optical frequency comb scheme using one Mach-Zehnder modulator (MZM) is utilized and five flat optical combs can be generated. Meanwhile, a blue laser diode (LD) as a VLLC optical source can provide high data rate and long transmission distance. Utilizing overlap frequency domain equalization (OFDE) and negative chirp of MZM, the system performance in both Q-factor and receiver sensitivity can be improved. After 20 km standard single mode fiber (SSMF) and 4.5 m free space transmission, the experimental results show that 10 Gb/s CAP signal can be achieved under 7% forward error correction (FEC) limit of 3 . 8 × 10-3.

  8. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    Science.gov (United States)

    Wu, Bao-Jian; Lu, Xin; Qiu, Kun

    2010-06-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking.

  9. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    CERN Document Server

    Doerr, H -P; Holzwarth, R; Schmidt, T Kentischer und W

    2012-01-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  10. Evaluation and modelling of integral capacitors produced by interdigitated comb electrodes

    Directory of Open Access Journals (Sweden)

    Leandro Alfredo Ramajo

    2008-12-01

    Full Text Available Integral capacitors (IC of one or two-layer printed wiring board (PWB circuits were produced using comb electrodes fixtures and dielectric composites as the inter-electrode material. ICs were fabricated at laboratory scale, using copper comb electrodes and BaTiO3-epoxy composite materials deposited on a glass-Epoxy FR4 board. They were experimentally tested in order to obtain their electrical response. Furthermore, ICs behaviour was modelled through 2-dimensional models applying finite element method (FEM. Results showed that by this laboratory technique it was possible to obtained integral capacitors with low dielectric losses. Moreover, acceptable agreement was found between numerical and experimental capacitance results for all the different analysed ICs. In conclusion, 2D FEM models are a suitable tool to predict electric response of IC devices.

  11. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

    Science.gov (United States)

    Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun

    2016-12-01

    We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.

  12. Unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation

    Science.gov (United States)

    Dong, Mark; Winful, Herbert G.

    2016-04-01

    We present a unified approach to cascaded stimulated Brillouin scattering and frequency-comb generation in which the multitude of interacting pump, Stokes, and anti-Stokes optical fields is described by a single forward wave and a single backward wave at a single carrier frequency. The envelopes of these two waves are modulated through coupling to a single acoustic oscillation and through four-wave mixing. Starting from a single pump field, we observe the emergence of a comb of frequencies as the intensity is increased. The set of three differential equations derived here is sufficient to describe the generation of any number of Brillouin sidebands in oscillator systems that would have required hundreds of coupled equations in the standard approach. We test this approach on some published experiments and find excellent agreement with the results.

  13. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    Science.gov (United States)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  14. [Molecular combing method in the research of DNA replication parameters in isolated organs of Drosophyla melanogaster].

    Science.gov (United States)

    Ivankin, A V; Kolesnikova, T D; Demakov, S A; Andreenkov, O V; Bil'danova, E R; Andreenkova, N G; Zhimulev, I F

    2011-01-01

    Methods of physical DNA mapping and direct visualization of replication and transcription in specific regions of genome play crucial role in the researches of structural and functional organization of eukaryotic genomes. Since DNA strands in the cells are organized into high-fold structure and present as highly compacted chromosomes, the majority of these methods have lower resolution at chromosomal level. One of the approaches to enhance the resolution and mapping accuracy is the method of molecular combing. The method is based on the process of stretching and alignment of DNA molecules that are covalently attached with one of the ends to the cover glass surface. In this article we describe the major methodological steps of molecular combing and their adaptation for researches of DNA replication parameters in polyploidy and diploid tissues of Drosophyla larvae.

  15. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Science.gov (United States)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  16. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    Science.gov (United States)

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  17. Continuous probe of cold complex molecules with infrared frequency comb spectroscopy

    CERN Document Server

    Spaun, Ben; Patterson, David; Bjork, Bryce J; Heckl, Oliver H; Doyle, John M; Ye, Jun

    2016-01-01

    Cavity-enhanced frequency comb spectroscopy for molecule detection in the mid-infrared powerfully combines high resolution, high sensitivity, and broad spectral coverage. However, this technique, and essentially all spectroscopic methods, is limited in application to relatively small, simple molecules. Here we integrate comb spectroscopy with continuous, cold samples of molecules produced via buffer gas cooling, thus enabling the study of significantly more complex molecules. We report simultaneous gains in resolution, sensitivity, and bandwidth and demonstrate this combined capability with the first rotationally resolved direct absorption spectra in the CH stretch region of several complex molecules. These include nitromethane (CH$_3$NO$_2$), a model system that presents challenging questions to the understanding of large amplitude vibrational motion, as well as several large organic molecules with fundamental spectroscopic and astrochemical relevance, including naphthalene (C$_{10}$H$_8$), adamantane (C$_{1...

  18. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    Science.gov (United States)

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  19. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li;

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fiber...... be proportionally improved by increasing the length of the optical fiber ring resonator....... of the fiber ring resonator can be measured with the transmission spectrum. A good linearity is obtained between displacement and the inverse of wavelength spacing with an R2 of 0.9989, and high sensitivities better than 40  pm/με within the range of 0 to 10  με are achieved. The sensitivity can...

  20. Asymptotic Capacity of Wireless Ad Hoc Networks with Realistic Links under a Honey Comb Topology

    CERN Document Server

    Asnani, Himanshu

    2007-01-01

    We consider the effects of Rayleigh fading and lognormal shadowing in the physical interference model for all the successful transmissions of traffic across the network. New bounds are derived for the capacity of a given random ad hoc wireless network that reflect packet drop or capture probability of the transmission links. These bounds are based on a simplified network topology termed as honey-comb topology under a given routing and scheduling scheme.

  1. Reclassification of Brevibacterium incertum (Breed 1953) as Desemzia incerta gen. nov., comb. nov.

    Science.gov (United States)

    Stackebrandt, E; Schumann, P; Swiderski, J; Weiss, N

    1999-01-01

    Phylogenetic analysis of 16S rDNA indicates that Brevibacterium incertum is not a member of the genus Brevibacterium but related to species of the genus Carnobacterium. Hence, Brevibacterium incertum is not a member of the class Actinobacteria but belongs to the phylogenetically defined broad Bacillus-Lactobacillus cluster. Based upon properties that taxonomically clearly distinguishes Brevibacterium incertum from species of the phylogenetic sister genus Carnobacterium, Brevibacterium incertum is reclassified as Desemzia incerta gen. nov., comb. nov.

  2. Brazilian species of Gadila (Mollusca: Scaphopoda: Gadilidae): rediscovery of Gadila elongata comb. nov. and shell morphometrics

    OpenAIRE

    Caetano,Carlos H. S.; Victor Scarabino; Ricardo S. Absalão

    2010-01-01

    Gadila elongata comb. nov. was described in 1920 from the northern Gulf of Mexico. Until recently, it was only known from the type locality. Herein we present the first record of G. elongata from Brazil (Northeast coast, Ceará state, collected at 177 m) and a morphometrics analysis of the Brazilian species of Gadila. A multivariate Discriminant Function Analysis, based on nine shell morphometric variables (length, maximum diameter, length to maximum diameter ratio, distance of point of maximu...

  3. Thermal energy conduction in a honey bee comb due to cell-heating bees.

    Science.gov (United States)

    Humphrey, J A C; Dykes, E S

    2008-01-07

    Theoretical analysis and numerical calculations are performed to characterize the unsteady two-dimensional conduction of thermal energy in an idealized honey bee comb. The situation explored corresponds to a comb containing a number of brood cells occupied by pupae. These cells are surrounded by other cells containing pollen which, in turn, are surrounded (above) by cells containing honey and (below) by vacant cells containing air. Up to five vacant cells in the brood region can be occupied by cell-heating bees which, through the isometrical contraction of their flight muscles, can generate sufficient energy to raise their body temperatures by a few degrees. In this way, the cell-heating bees alter the heat flux and temperature distributions in the brood region so as to maintain conditions that benefit the pupae. The calculations show that the number of cell-heating bees significantly affects the magnitude, time rate of change, and spatial distribution of temperature throughout the comb. They also reveal a vertically aligned asymmetry in the spatial distribution of temperature that is due to the large heat capacity and thermal conductivity of honey relative to air, whereby air-filled cells experience larger temperature increases than honey-filled cells. Analysis shows that convection and radiation represent negligible modes of thermal energy transfer at all levels in the problem considered. Also, because of its small thickness, the wax wall of a comb cell simultaneously presents negligible resistance to conduction heat transfer normal to it and very large resistance along it. As a consequence the walls of a cell play no thermal role, but simply serve as mechanical supports for the materials they contain.

  4. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  5. Phase-Locked Loop using a comb filter with fractional delay

    OpenAIRE

    Griñó Cubero, Robert; Mughal, Umair Najeeb

    2011-01-01

    A Phase Locked Loop is a feedback system combining a Voltage Controlled Oscillator and a Phase Comparator These are connected so that the oscillator maintains a constant phase angle relative to a reference signal. Phase locked loops can be used, for example to generate stable output frequency signals from a fixed frequency signal. A Comb Filter is a kind of Notch Filter (Non Recursive Filter) that is normally used to remove the harmonic terms from a particular signal. In this Design, a ...

  6. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    Science.gov (United States)

    2015-07-09

    stabilization To fully stabilize the comb, there are three servo loops, shown in Fig. 1, that lock the carrier offset frequency f0 to an RF synthesizer ...GPS-Rb oscillator serves as the external reference for all synthesizers and frequency counters. The filtering cavity is stabilized to a particular...filled frequency reference in a 10 m length. Since optimal single-modedness is expected at longer lengths (~10-30 m), a gas such as ammonia , with weaker

  7. Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.

  8. Development of Chip-Based Frequency Combs for Spectral and Timing Applications

    Science.gov (United States)

    2011-12-01

    by measuring the RF beat note. A 1-nm section of the comb spectrum is filtered at 1540 nm and amplified with an EDFA . The output is sent to a fast...amplitude Approved for public release; distribution unlimited. 13 noise from the EDFA and the laser. We estimate a frequency shift of approximately 100...oxide-semiconductor EDFA erbium-doped fiber amplifier FSR free spectral range FWM four-wave mixing IR infrared OPO optical parametric

  9. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    OpenAIRE

    Hansson, Tobias; Wabnitz, Stefan

    2015-01-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  10. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2015-07-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  11. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaoguang [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: xsun@lbl.gov; Hou Jun [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States); Kerr, John B. [Lawrence Berkeley National Laboratory, EETD, MS 62-203, One Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: jbkerr@lbl.gov

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10{sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer.

  12. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Guang Sun; Jan Hou; Kerr, J.B. [Lawrence Berkeley National Lab., CA (United States). EETD

    2005-01-15

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li{sup +} salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE{sub 8}-co-E{sub 3}SO{sub 3}Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE{sub 8}-g-E{sub n}SO{sub 3}Li, n = 2, 3). The highest conductivity at 25 {sup o}C of 2.0 x {sup -7} S cm{sup -1} was obtained for the PAE{sub 8}-co-E{sub 3}SO{sub 3}Li with a salt concentration of EO/Li = 40. The conductivity of PAE{sub 8}-g-E{sub 3}SO{sub 3}Li is lower than that of PAE{sub 8}-co-E{sub 3}SO{sub 3}Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li{sup +}. The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE{sub 8}-g-E{sub 2}SO{sub 3}Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 {mu}A cm{sup -2} at 85 {sup o}C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer. (Author)

  13. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers

    Directory of Open Access Journals (Sweden)

    E. M. Waxman

    2017-09-01

    Full Text Available We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm−1 (1568 to 1660 nm, corresponding to a 355 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10−4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO2, methane (CH4, water (H2O, and deuterated water (HDO. The retrieved dry mole fractions agree to 0.14 % (0.57 ppm for CO2, 0.35 % (7 ppb for CH4, and 0.40 % (36 ppm for H2O at  ∼  30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4.

  14. Proposal of Effusibacillus lacus gen. nov., sp. nov., and reclassification of Alicyclobacillus pohliae as Effusibacillus pohliae comb. nov. and Alicyclobacillus consociatus as Effusibacillus consociatus comb. nov.

    Science.gov (United States)

    Watanabe, Miho; Kojima, Hisaya; Fukui, Manabu

    2014-08-01

    A novel thermophilic, facultatively anaerobic bacterium, strain skLN1(T), was isolated from the sediment of a freshwater lake in Japan. Cells of strain skLN1(T) were rod-shaped and Gram-stain-variable. A KOH lysis test suggested that the cell wall of the isolate has a Gram-positive structure. For aerobic growth, the optimum pH was pH 7.25-7.50 and the optimum temperature was 50-52 °C. The G+C content of the genomic DNA was 50.8 mol%. Nitrate was reduced to nitrite. Alicyclic fatty acids were not detected, and branched-chain fatty acids were major components in the cellular fatty acid profile. MK-7 was the predominant respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolated strain was related most closely to Alicyclobacillus consociatus CCUG 53762(T) (95% similarity). This analysis also showed that the monophyly of the genus Alicyclobacillus had been lost. On the basis of phylogenetic and phenotypic characterization, Effusibacillus lacus gen. nov., sp. nov. is proposed. The type strain of Effusibacillus lacus is skLN1(T) ( = NBRC 109614(T) = DSM 27172(T)). It is also proposed that Alicyclobacillus pohliae and Alicyclobacillus consociatus should be reclassified to the genus Effusibacillus as Effusibacillus pohliae comb. nov. and Effusibacillus consociatus comb. nov., respectively.

  15. Molecular phylogeny of Urosomoida agilis, and new combinations: Hemiurosomoida longa gen. nov., comb. nov., and Heterourosomoida lanceolata gen. nov., comb. nov. (Ciliophora, Hypotricha).

    Science.gov (United States)

    Singh, Jasbir; Kamra, Komal

    2015-02-01

    For years, systematics of three species, Urosomoida agilis (Engelmann, 1862) Hemberger in Foissner, 1982, Urosomoida longa (Gelei and Szabados, 1950) Foissner et al., 1991 and Oxytricha lanceolata Shibuya, 1930, has remained unresolved due to lack of adequate molecular data. Though, it is known since several years that the three species are not very closely related. In the present paper, 18S rRNA gene sequences for two key species, U. agilis and U. longa, and their morphology and morphometry have been analyzed. Molecular phylogeny inferred from maximum likelihood, neighbour joining and maximum parsimony methods has adequately removed ambiguity over their systematics. In phylogenetic trees, U. agilis clustered consistently with non-stylonychine oxytrichids. Both Urosomoida longa and Oxytricha lanceolata clustered consistently away from U. agilis and O. granulifera, the type species of the genera Urosomoida and Oxytricha, respectively. As a result of the current molecular phylogenetic investigation and based on previously inferred morphological and morphogenetic data it is proposed to remove Urosomoida longa and Oxytricha lanceolata from Urosomoida and incertae sedis in Oxytricha, respectively, and establish two new generic combinations, Hemiurosomoida longa gen. nov., comb. nov. and Heterourosomoida lanceolata gen. nov., comb. nov. for them.

  16. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  17. Stably accessing octave-spanning microresonator frequency combs in the soliton regime

    CERN Document Server

    Li, Qing; Westly, Daron A; Drake, Tara E; Stone, Jordan R; Ilic, B Robert; Diddams, Scott A; Papp, Scott B; Srinivasan, Kartik

    2016-01-01

    Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, stably accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants have necessitated fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-so...

  18. Real-time closed-loop control for micro mirrors with quasistatic comb drives

    Science.gov (United States)

    Schroedter, Richard; Sandner, Thilo; Janschek, Klaus; Roth, Matthias; Hruschka, Clemens

    2016-03-01

    This paper presents the application of a real-time closed-loop control for the quasistatic axis of electrostatic micro scanning mirrors. In comparison to resonantly driven mirrors, the quasistatic comb drive allows arbitrary motion profiles with frequencies up to its eigenfrequency. A current mirror setup at Fraunhofer IPMS is manufactured with a staggered vertical comb (SVC) drive and equipped with an integrated piezo-resistive deflection sensor, which can potentially be used as position feedback sensor. The control design is accomplished based on a nonlinear mechatronic system model and the preliminary parameter characterization. In previous papers [1, 2] we have shown that jerk-limited trajectories, calculated offline, provide a suitable method for parametric trajectory design, taking into account physical limitations given by the electrostatic comb and thus decreasing the dynamic requirements. The open-loop control shows in general unfavorable residual eigenfrequency oscillations leading to considerable tracking errors for desired triangle trajectories [3]. With real-time closed-loop control, implemented on a dSPACE system using an optical feedback, we can significantly reduce these errors and stabilize the mirror motion against external disturbances. In this paper we compare linear and different nonlinear closed-loop control strategies as well as two observer variants for state estimation. Finally, we evaluate the simulation and experimental results in terms of steady state accuracy and the concept feasibility for a low-cost realization.

  19. Wintering Reserve Queens in Mini-Plus and 3-Comb Nuclei

    Directory of Open Access Journals (Sweden)

    Siuda Maciej

    2014-06-01

    Full Text Available The aim of this study was to develop an effective method of overwintering reserve honey bee queens in two-storey mini-plus mating nuclei and in 3-comb nuclei (frames 36 x 26 cm, Wielkopolski hive. The assay was performed during three wintering seasons (2005 - 2008 parallel at two centers in Poland: the Division of Apiculture at the University of Life Sciences (SGGW in Warsaw, and the Apiculture Division at the University of Warmia and Mazury (UWM in Olsztyn. The results showed that 59% of queens overwintered in mini-plus nuclei and 77% in 3-comb nuclei. Among queens in mini-plus nuclei 63% overwintered in bee yard and only 55% in cellar. Within queens in 3-comb nuclei, 62% overwintered in Olsztyn and 91% in Warsaw. The highest survival rate of 93% was observed in Warsaw during the first season. Due to low survival rate, it is not recommended to overwinter the queens in miniplus nuclei.

  20. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.

    Science.gov (United States)

    Peng, Fulai; Liu, Hongyun; Wang, Weidong

    2015-10-01

    A photoplethysmographic (PPG) signal can provide very useful information about a subject's cardiovascular status. Motion artifacts (MAs), which usually deteriorate the waveform of a PPG signal, severely obstruct its applications in the clinical diagnosis and healthcare area. To reduce the MAs from a PPG signal, in the present study we present a comb filter based signal processing method. Firstly, wavelet de-noising was implemented to preliminarily suppress a part of the MAs. Then, the PPG signal in the time domain was transformed into the frequency domain by a fast Fourier transform (FFT). Thirdly, the PPG signal period was estimated from the frequency domain by tracking the fundamental frequency peak of the PPG signal. Lastly, the MAs were removed by the comb filter which was designed based on the obtained PPG signal period. Experiments with synthetic and real-world datasets were implemented to validate the performance of the method. Results show that the proposed method can effectively restore the PPG signals from the MA corrupted signals. Also, the accuracy of blood oxygen saturation (SpO2), calculated from red and infrared PPG signals, was significantly improved after the MA reduction by the proposed method. Our study demonstrates that the comb filter can effectively reduce the MAs from a PPG signal provided that the PPG signal period is obtained.