WorldWideScience

Sample records for additional nitrogen responses

  1. Grassland Soil Carbon Responses to Nitrogen Additions

    Science.gov (United States)

    Hofmockel, K. S.; Tfailly, M.; Callister, S.; Bramer, L.; Thompson, A.

    2017-12-01

    Using a long-term continental scale experiment, we tested if increases in nitrogen (N) inputs augment the accumulation of plant and microbial residues onto mineral soil surfaces. This research investigates N effects on molecular biogeochemistry across six sites from the Nutrient Network (NutNet) experiment. The coupling between concurrently changing carbon (C) and N cycles remains a key uncertainty in understanding feedbacks between the terrestrial C cycle and climate change. Existing models do not consider the full suite of linked C-N processes, particularly belowground, that could drive future C-climate feedbacks. Soil harbors a wealth of diverse organic molecules, most of which have not been measured in hypothesis driven field research. For the first time we systematically assess the chemical composition of soil organic matter (SOM) and functional characteristics of the soil microbiome, to enhance our understanding of the molecular underpinnings of ecosystem C and N cycling. We have acquired soils from 5 ecosystem experiments across the US that have been subjected to 8 years of N addition treatments. These soils have been analyzed for chemical composition to identify how the soil fertility and stability is altered by N fertilization. We found distinct SOM signatures from our field experiments and shifts in soil chemistry in response to 8 years of N fertilization. Across all sites, we found the molecular composition of SOM varied with clay content, supporting the importance of soil mineralogy in the accumulation of specific chemical classes of SOM. While many molecules were common across sites, we discovered a suite of molecules that were site specific. N fertilization had a significant effect on SOM composition. Differences between control and N amended plots were greater in sites rich in lipids and more complex molecules, compared to sites with SOM rich in amino-sugar and protein like substances. Our results have important implications for how SOM is

  2. Quantifying nitrogen leaching response to fertilizer additions in China's cropland

    International Nuclear Information System (INIS)

    Gao, Shuoshuo; Xu, Peng; Zhou, Feng; Yang, Hui; Zheng, Chunmiao; Cao, Wei; Tao, Shu; Piao, Shilong; Zhao, Yue; Ji, Xiaoyan; Shang, Ziyin

    2016-01-01

    Agricultural soils account for more than 50% of nitrogen leaching (L_N) to groundwater in China. When excess levels of nitrogen accumulate in groundwater, it poses a risk of adverse health effects. Despite this recognition, estimation of L_N from cropland soils in a broad spatial scale is still quite uncertain in China. The uncertainty of L_N primarily stems from the shape of nitrogen leaching response to fertilizer additions (N_r_a_t_e) and the role of environmental conditions. On the basis of 453 site-years at 51 sites across China, we explored the nonlinearity and variability of the response of L_N to N_r_a_t_e and developed an empirical statistical model to determine how environmental factors regulate the rate of N leaching (LR). The result shows that L_N-N_r_a_t_e relationship is convex for most crop types, and varies by local hydro-climates and soil organic carbon. Variability of air temperature explains a half (∼52%) of the spatial variation of LR. The results of model calibration and validation indicate that incorporating this empirical knowledge into a predictive model could accurately capture the variation in leaching and produce a reasonable upscaling from site to country. The fertilizer-induced L_N in 2008 for China's cropland were 0.88 ± 0.23 TgN (1σ), significantly lower than the linear or uniform model, as assumed by Food and Agriculture Organization and MITERRA-EUROPE models. These results also imply that future policy to reduce N leaching from cropland needs to consider environmental variability rather than solely attempt to reduce N_r_a_t_e. - Highlights: • L_N-N_r_a_t_e relationship is convex and varies by local hydro-climates and SOC. • Variability of temperature explains a half of spatial variation of N leaching rate. • L_N in 2008 were 0.88 ± 0.23 Tg, lower than the linear or uniform models. • Reducing L_N should consider background rather than decreasing N_r_a_t_e solely. - Variability of air temperature explains a half of

  3. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Lu, Meng; Yang, Yuanhe; Luo, Yiqi; Fang, Changming; Zhou, Xuhui; Chen, Jiakuan; Yang, Xin; Li, Bo

    2011-03-01

    • Anthropogenic nitrogen (N) addition may substantially alter the terrestrial N cycle. However, a comprehensive understanding of how the ecosystem N cycle responds to external N input remains elusive. • Here, we evaluated the central tendencies of the responses of 15 variables associated with the ecosystem N cycle to N addition, using data extracted from 206 peer-reviewed papers. • Our results showed that the largest changes in the ecosystem N cycle caused by N addition were increases in soil inorganic N leaching (461%), soil NO₃⁻ concentration (429%), nitrification (154%), nitrous oxide emission (134%), and denitrification (84%). N addition also substantially increased soil NH₄+ concentration (47%), and the N content in belowground (53%) and aboveground (44%) plant pools, leaves (24%), litter (24%) and dissolved organic N (21%). Total N content in the organic horizon (6.1%) and mineral soil (6.2%) slightly increased in response to N addition. However, N addition induced a decrease in microbial biomass N by 5.8%. • The increases in N effluxes caused by N addition were much greater than those in plant and soil pools except soil NO₃⁻, suggesting a leaky terrestrial N system. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  4. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  5. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  6. A test for clinal variation in Artemisia californica and associated arthropod responses to nitrogen addition.

    Science.gov (United States)

    Meza-Lopez, Maria M; Mooney, Kailen A; Thompson, Amanda L; Ho, Nicole K; Pratt, Jessica D

    2018-01-01

    The response of plant traits to global change is of fundamental importance to understanding anthropogenic impacts on natural systems. Nevertheless, little is known about plant genetic variation in such responses or the indirect effect of environmental change on higher trophic levels. In a three-year common garden experiment, we grew the shrub Artemisia californica from five populations sourced along a 700 km latitudinal gradient under ambient and nitrogen (N) addition (20 kg N ha-1) and measured plant traits and associated arthropods. N addition increased plant biomass to a similar extent among all populations. In contrast, N addition effects on most other plant traits varied among plant populations; N addition reduced specific leaf area and leaf percent N and increased carbon to nitrogen ratios in the two northern populations, but had the opposite or no effect on the three southern populations. N addition increased arthropod abundance to a similar extent among all populations in parallel with an increase in plant biomass, suggesting that N addition did not alter plant resistance to herbivores. N addition had no effect on arthropod diversity, richness, or evenness. In summary, genetic variation among A. californica populations mediated leaf-trait responses to N addition, but positive direct effects of N addition on plant biomass and indirect effects on arthropod abundance were consistent among all populations.

  7. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  8. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Science.gov (United States)

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  9. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  10. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    Science.gov (United States)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen

  11. Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.

    Science.gov (United States)

    Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim

    2009-09-01

    Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.

  12. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  13. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  14. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  15. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China.

    Science.gov (United States)

    Zhang, Lihua; Song, Changchun; Nkrumah, Philip N

    2013-09-01

    It has widely been documented that nitrogen (N) stimulates plant growth and net primary production. But how N affects net ecosystem CO2 exchange (NEE) is still dispute. We conduct an experimental study to assess the response of NEE to N addition in a freshwater marsh. Experimental treatments involved elevated N and control treatments on triplicate 1 m(2) plots. Gas exchange, air temperature, plant biomass and leaf area as well as N% of leaf were measured from 2004 to 2005. The results indicated that N addition initially decreased the CO2 sequestration but the trend changed in the second year. It was concluded that N addition enhanced the greenhouse effect in marshland as far as global warming potential (GWP) is concerned. This increase was attributed to a substantial increase in CH4 and N2O emissions after N addition. We recommended long-term studies to further clarify the effect of N addition on NEE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions

    Energy Technology Data Exchange (ETDEWEB)

    Sager, E.P.S.; Hutchinson, T.C. [Trent Univ., Peterborough, ON (Canada). Environmental Studies

    2006-10-15

    Elevated UV-B radiation due to climatic change and ozone depletion may represent a significant springtime environmental stressor to germinating seedlings in temperate forest regions. This study aimed to determine the effects of UV-B, nitrogen (N) fertilization and climate warming on the concentrations of base cations and secondary metabolites in the foliage of sugar maple seedlings growing in acid or alkaline soils. The influence of measured flavonoids and phenolics on herbivore activity was examined, as well as the relationship between foliar concentrations of calcium (Ca); manganese (Mn); and N and the production of phenolic and flavonoid compounds. Experimental plots were established in mature hardwood forests in alkaline and acid soil locations in Bobcaygeon and Haliburton, Ontario. Pentagonal open-top chambers were used to lengthen the growing season and simulate an earlier spring. Ammonium nitrate was applied at a rate comparable with an additional deposition of 5 g N per m per year. Fertilizer was applied on 3 separate occasions. Ambient UV-B radiation was screened out with Mylar D polyester film. Sites, treatments and time of sampling had complex effects on foliar elemental chemistry, production of secondary compounds and herbivory. Foliar concentrations of individual phenols were higher in seedlings in the UV-B exclusion treatments. At both sites, removal of ambient UV-B led to increases in flavonoids and chlorogenic acid, and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar Mn. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites. It was concluded that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors. 63 refs., 5 tabs., 8 figs.

  17. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    Science.gov (United States)

    Daniela F. Cusack; Margaret S. Torn; William H. McDowell; Whendee L. Silver

    2010-01-01

    Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in...

  18. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Science.gov (United States)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  19. Soil bacterial and fungal community responses to nitrogen addition across soil depths and microhabitat in an arid shrubland

    Directory of Open Access Journals (Sweden)

    Rebecca C Mueller

    2015-09-01

    Full Text Available Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0-0.5 cm or 0-10 cm across the N-amendment gradient (0, 7 and 15 kg ha-1 yr-1. We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  20. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  1. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem.

    Science.gov (United States)

    Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao

    2017-11-15

    The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  3. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Science.gov (United States)

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  4. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits.

    Science.gov (United States)

    Zhang, Hongxia; Li, Weibin; Adams, Henry D; Wang, Anzhi; Wu, Jiabing; Jin, Changjie; Guan, Dexin; Yuan, Fenghui

    2018-01-01

    Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity ( P 50 , +21.5%; i.e., P 50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases

  5. Photosynthetic and growth response of sugar maple (Acer saccharum Marsh.) mature trees and seedlings to calcium, magnesium, and nitrogen additions in the Catskill Mountains, NY, USA

    Science.gov (United States)

    Momen, Bahram; Behling, Shawna J; Lawrence, Gregory B.; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the

  6. Photosynthetic and Growth Response of Sugar Maple (Acer saccharum Marsh.) Mature Trees and Seedlings to Calcium, Magnesium, and Nitrogen Additions in the Catskill Mountains, NY, USA.

    Science.gov (United States)

    Momen, Bahram; Behling, Shawna J; Lawrence, Greg B; Sullivan, Joseph H

    2015-01-01

    Decline of sugar maple in North American forests has been attributed to changes in soil calcium (Ca) and nitrogen (N) by acidic precipitation. Although N is an essential and usually a limiting factor in forests, atmospheric N deposition may cause N-saturation leading to loss of soil Ca. Such changes can affect carbon gain and growth of sugar maple trees and seedlings. We applied a 22 factorial arrangement of N and dolomitic limestone containing Ca and Magnesium (Mg) to 12 forest plots in the Catskill Mountain region of NY, USA. To quantify the short-term effects, we measured photosynthetic-light responses of sugar maple mature trees and seedlings two or three times during two summers. We estimated maximum net photosynthesis (An-max) and its related light intensity (PAR at An-max), apparent quantum efficiency (Aqe), and light compensation point (LCP). To quantify the long-term effects, we measured basal area of living mature trees before and 4 and 8 years after treatment applications. Soil and foliar chemistry variables were also measured. Dolomitic limestone increased Ca, Mg, and pH in the soil Oe horizon. Mg was increased in the B horizon when comparing the plots receiving N with those receiving CaMg. In mature trees, foliar Ca and Mg concentrations were higher in the CaMg and N+CaMg plots than in the reference or N plots; foliar Ca concentration was higher in the N+CaMg plots compared with the CaMg plots, foliar Mg was higher in the CaMg plots than the N+CaMg plots; An-max was maximized due to N+CaMg treatment; Aqe decreased by N addition; and PAR at An-max increased by N or CaMg treatments alone, but the increase was maximized by their combination. No treatment effect was detected on basal areas of living mature trees four or eight years after treatment applications. In seedlings, An-max was increased by N+CaMg addition. The reference plots had an open herbaceous layer, but the plots receiving N had a dense monoculture of common woodfern in the forest floor

  7. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition.In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland.Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  8. Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones.

    Science.gov (United States)

    Herman, R P; Provencio, K R; Torrez, R J; Seager, G M

    1993-01-01

    In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373

  9. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Hai-Wei Wei

    Full Text Available Plant nitrogen (N use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2 yr(-1 and prescribed fire (annual burning on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP, inorganic N, and N uptake, decreased N response efficiency (NRE, but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  10. Soilaluminum, iron, and phosphorus dynamics in response to long-term experimental nitrogen and sulfur additions at the Bear Brook Watershed in Maine, USA

    Science.gov (United States)

    Jessica Sherman; Ivan J. Fernandez; Stephen A. Norton; Tsutomu Ohno; Lindsey E. Rustad

    2006-01-01

    Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear BrookWatershed in Maine (BBWM) is a long-term paired...

  11. Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China.

    Science.gov (United States)

    Qi, Yuchun; Liu, Xinchao; Dong, Yunshe; Peng, Qin; He, Yating; Sun, Liangjie; Jia, Junqiang; Cao, Congcong

    2014-04-01

    We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m(2)·year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil rang ed from 5.60 to 6.49 g C/m(2) over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the effluxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil CO2 effluxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  14. Nitrogen turnover in fresh Douglas fir litter directly after additions of moisture and inorganic nitrogen

    NARCIS (Netherlands)

    Raat, K.J.; Tietema, A.; Verstraten, J.M.

    2010-01-01

    The effects of wetting and drying and inorganic nitrogen (N) addition on carbon (C) and N turnover in fresh Douglas fir litter (Speuld forest, the Netherlands) were investigated. Litter was incubated for 9 days in the laboratory, receiving different moisture and N addition treatments. Following the

  15. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  16. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  17. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.

    Science.gov (United States)

    Pastore, Melissa A; Megonigal, J Patrick; Langley, J Adam

    2016-01-01

    Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake. © 2015 John Wiley & Sons Ltd.

  18. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  19. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  20. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland

    OpenAIRE

    Cheng Zhu; Yiping Ma; Honghui Wu; Tao Sun; Kimberly J. La Pierre; Zewei Sun; Qiang Yu

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4?mol N m?2 yr?1 vs 1.6?mol N m?2 yr?1) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plan...

  1. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads.

    Science.gov (United States)

    Fritz, C; van Dijk, G; Smolders, A J P; Pancotto, V A; Elzenga, T J T M; Roelofs, J G M; Grootjans, A P

    2012-05-01

    Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear whether P-addition can alleviate physiological N-stress in Sphagnum plants. A 3-year fertilisation experiment was conducted in lawns of a pristine Sphagnum magellanicum bog in Patagonia, where competing vascular plants were practically absent. Background wet deposition of nitrogen was low (≈ 0.1-0.2 g · N · m(-2) · year(-1)). Nitrogen (4 g · N · m(-2) · year(-1)) and phosphorus (1 g · P · m(-2) · year(-1)) were applied, separately and in combination, six times during the growing season. P-addition substantially increased biomass production of Sphagnum. Nitrogen and phosphorus changed the morphology of Sphagnum mosses by enhancing height increment, but lowering moss stem density. In contrast to expectations, phosphorus failed to alleviate physiological stress imposed by excess nitrogen (e.g. amino acid accumulation, N-saturation and decline in photosynthetic rates). We conclude that despite improving growth conditions by P-addition, Sphagnum-bog ecosystems remain highly susceptible to nitrogen additions. Increased susceptibility to desiccation by nutrients may even worsen the negative effects of excess nitrogen especially in windy climates like in Patagonia. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  3. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-27

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  4. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  5. Delayed addition of nitrogen-rich substrates during composting of municipal waste

    DEFF Research Database (Denmark)

    Nigatu, Abebe Nigussie; Bruun, Sander; Kuyper, Thomas W.

    2017-01-01

    -rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed...

  6. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    Science.gov (United States)

    N.S. Nowinski; S.E. Trumbore; G. Jimenez; M.E. Fenn

    2009-01-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha−1 a−1 as slow release urea since 1997) at two end‐member...

  7. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  8. Nematodes, exotic earthworms and nitrogen addition: interactions between global change factors lead to cancellation effects.

    Science.gov (United States)

    De Long, Jonathan R

    2017-07-01

    Photos from the experiment described in Shao et al. (): (a) the endogeic (i.e. earthworms that typically live in the soil, burrowing horizontally to acquire nutrients) earthworm Pontoscolex corethrurus that was added to the plots; (b) P. corethrurus in a quiescence state in response to drought; (c) set-up of the control plots (i.e. no earthworms, ambient nitrogen) used in this experiment. [Colour figure can be viewed at wileyonlinelibrary.com] In Focus: Shao, Y., Zhang, W., Eisenhauer, N., Liu, T., Xiong, Y., Liang, C. & Fu, S. (2017) Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. Journal of Animal Ecology, 86, 708-717. In this issue of Journal of Animal Ecology, Shao et al. () explored how N addition and exotic earthworms interacted to impact on the plant-feeding nematode community. They demonstrate that exotic earthworm presence alone increased the abundance of less harmful plant-feeding nematodes and decreased the abundance of the more harmful plant-feeding nematodes. However, in plots receiving both exotic earthworms and N addition, such earthworm effects on the nematode community were negated. These findings pull focus on the need to simultaneously consider multiple global change factors (e.g. exotic species invasions and N deposition) when making predictions about how such factors might affect above- and below-ground interactions and thereby alter ecosystem function. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  9. Efficiency and response of conilon coffee genotypes to nitrogen supply

    African Journals Online (AJOL)

    The objective of the study was to differentiate genotypes with higher efficiency and responsiveness to nitrogen supply, to understand how the nitrogen supply can impact the dry matter allocation and the accumulation of this nutrient in the different plant compartments of genotypes of conilon coffee, cultivated under ...

  10. Seasonal response of Eragrostis curvula to nitrogen | R | African ...

    African Journals Online (AJOL)

    On the basis of the seasonal response of Eragrostis curvula to nitrogen applied as single dressings to separate plots at the beginning of each of the six months of the growing season, it is deduced that nitrogen can profitably be applied in the Ukulinga environment from early spring though to early January. Late summer and ...

  11. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Science.gov (United States)

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  12. Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-Ting; M. YOH; MO Jiang-Ming; P. GUNDERSEN; ZHOU Guo-Yi

    2009-01-01

    Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.

  13. Phospholipase Dε enhances Braasca napus growth and seed production in response to nitrogen availability.

    Science.gov (United States)

    Lu, Shaoping; Yao, Shuaibing; Wang, Geliang; Guo, Liang; Zhou, Yongming; Hong, Yueyun; Wang, Xuemin

    2016-03-01

    Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Response of Nerica Rice to Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    R Shultana

    2015-12-01

    Full Text Available An experiment was conducted during T. Aman season, 2014 at the Agronomy Research Field, Bangladesh Rice Research Institute, Gazipur to determine the optimum rate of nitrogen fertilizer for higher yield in nerica rice. The experiment comprised of three rice varieties viz. NERICA1, NERICA10 and BRRI dhan57; and five nitrogen levels viz. 0, 23, 46, 69 and 92 kg ha-1. The rice var. BRRI dhan57 with 69 and 92 kg N ha-1 produced significantly identical with higher panicles m-2. But NERICA1 and NERICA10 produced higher number of panicles with 46 and 69 kg N ha-1, respectively. However, BRRI dhan57 with 46 kg N ha-1 produced highest grains panicle-1 but NERICA1 and NERICA10 produced higher number of grains panicle-1 with 23 kg N ha-1. The highest percentage of sterility was recorded in NERICA10 with 69 kg N ha-1. The regression analysis gave the optimum dose of nitrogen for NERICA1, NERICA10 and BRRI dhan57 which were 69.25, 74.25 and 85.75 kg N ha-1, respectively.

  15. Effect of phosphate additive on the nitrogen transformation during pig manure composting.

    Science.gov (United States)

    Wu, Juan; He, Shengzhou; Liang, Ying; Li, Guoxue; Li, Song; Chen, Shili; Nadeem, Faisal; Hu, Jingwei

    2017-07-01

    Previous studies revealed that phosphate, as an additive to composting, could significantly reduce NH 3 emission and nitrogen loss through change of pH and nitrogen fixation to form ammonium phosphate. However, few studies have explored the influence of pH change and phosphate additive on NO x - -N, NH 4 + -N, NH 3 , and N 2 O, which are dominate forms of nitrogen in composting. In this study, the equimolar H 3 PO 4 , H 2 SO 4 , and K 2 HPO 4 were added into pig manure composting to evaluate the effect of H + and PO 4 3- on nitrogen transformation. As a result, we reached the conclusion that pH displays significant influence on adsorption from PO 4 3- to NH 4 + . The NH 4 + -N concentration in H 3 PO 4 treatment kept over 3 g kg -1 DM (dry matter) which is obviously higher than that in H 2 SO 4 treatment, and NH 4 + -N concentration in K 2 HPO 4 treatment (pH>8.5) is lower than 0.5 g kg -1 DM because adsorption capacity of PO 4 3- is greatly weakened and NH 4 + -N rapidly transformed to NH 3 -N influenced by high pH value. The N 2 O emission of composting is significantly correlated with incomplete denitrification of NO x - -N, and PO 4 3- addition could raise NO x - -N contents to restrict denitrification and further to promote N 2 O emission. The study reveals the influence mechanism of phosphate additive to nitrogen transformation during composting, presents theoretical basis for additive selection in nitrogen fixation, and lays foundation for study about nitrogen circulation mechanism during composting.

  16. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    Science.gov (United States)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-01

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowground respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model-observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.

  17. Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe

    OpenAIRE

    Ma, L.; Guo, C.; Xin, X.; Yuan, S.; Wang, R.

    2013-01-01

    Soil carbon (C) and nitrogen (N) cycling are sensitive to changes in environmental factors and play critical roles in the responses of terrestrial ecosystems to natural and anthropogenic perturbations. This study was conducted to quantify the effects of belowground particulate litter (BPL) addition, increased precipitation and their interactions on soil C and N mineralization in two adjacent sites where belowground photosynthate allocation was manipulated through vegetation ...

  18. Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management

    International Nuclear Information System (INIS)

    Britton, Andrea J.; Fisher, Julia M.

    2008-01-01

    Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50 kg N ha -1 y -1 were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10 kg N ha -1 y -1 (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species. - Low levels of N deposition increase productivity in alpine dwarf-shrub heath despite strong climatic constraints

  19. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Directory of Open Access Journals (Sweden)

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  20. Ruminal degradation kinetic of Brachiaria decumbens silages with different nitrogen additives

    Directory of Open Access Journals (Sweden)

    Odimári Pricila Pires do Prado

    2014-02-01

    Full Text Available This study aimed to assess levels of nitrogen additive Silogen® pasto on ruminal in vitro degradability gas production in Brachiaria decumbens silages. The nitrogen additive contained bacterial strains (Bacillus subtilis, Lactobacillus curvatus, Lactobacillus plantarum and Pediococcus acidilactici and minimum nitrogen to 360 g/kg. The levels were: 0.0; 1.0; 1.5; 2.0 and 2.5%. In fractionation were calculated total carbohydrates (TC, non-fiber carbohydrates (NFC, soluble and rapidly degradable (A + B1, potentially degradable (B2 and degradable (C. The kinetic parameters of FC and NFC were estimated using the technique of in vitro gas production. Data were subjected to analysis of variance at 5%. The level additive did not influence the TC and fraction A + B1. The levels of nitrogen additive influenced the NFC, fractions B2 and C. For NFC content 2.0% showed the lowest (22.0 %. The lower levels of additive nitrogen (0, 1.0 and 1.5 % had higher fractions of B2 (average 40.2 % and lower values for the fraction C (average 20.0 % . There was no difference in the volume of gas CNF (average 86.73 mL and final volume of gas produced (average 195.79 mL. Was no influence of nitrogen additives for the time of colonization, the lowest time of 3.89 h to 1.0%. The volume of gas of FC was influenced by levels of nitrogen additives with higher values to 0 % from 1.0 %, and 114.74 and 115.09 mL, respectively. Degradation rates of FC and FNC were also affected by the concentrations of nitrogenous additives, which presented higher rates to the levels of 2.0 and 2.5%. It follows that the lower levels of additives to 1.5 % promoted the reduction of the C fraction and increased B2, and greater production of gas volume of the fiber in these silages, showing better nutritional value in these silages.

  1. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Directory of Open Access Journals (Sweden)

    Yulin Li

    Full Text Available The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined.A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis with contrasting substrate chemistry (e.g. N concentration, lignin content in this study in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter.These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species

  2. Litter Decomposition in a Semiarid Dune Grassland: Neutral Effect of Water Supply and Inhibitory Effect of Nitrogen Addition.

    Science.gov (United States)

    Li, Yulin; Ning, Zhiying; Cui, Duo; Mao, Wei; Bi, Jingdong; Zhao, Xueyong

    2016-01-01

    The decomposition of plant material in arid ecosystems is considered to be substantially controlled by water and N availability. The responses of litter decomposition to external N and water, however, remain controversial, and the interactive effects of supplementary N and water also have been largely unexamined. A 3.5-year field experiment with supplementary nitrogen and water was conducted to assess the effects of N and water addition on mass loss and nitrogen release in leaves and fine roots of three dominant plant species (i.e., Artemisia halondendron, Setaria viridis, and Phragmites australis) with contrasting substrate chemistry (e.g. N concentration, lignin content in this study) in a desertified dune grassland of Inner Mongolia, China. The treatments included N addition, water addition, combination of N and water, and an untreated control. The decomposition rate in both leaves and roots was related to the initial litter N and lignin concentrations of the three species. However, litter quality did not explain the slower mass loss in roots than in leaves in the present study, and thus warrant further research. Nitrogen addition, either alone or in combination with water, significantly inhibited dry mass loss and N release in the leaves and roots of the three species, whereas water input had little effect on the decomposition of leaf litter and fine roots, suggesting that there was no interactive effect of supplementary N and water on litter decomposition in this system. Furthermore, our results clearly indicate that the inhibitory effects of external N on dry mass loss and nitrogen release are relatively strong in high-lignin litter compared with low-lignin litter. These findings suggest that increasing precipitation hardly facilitates ecosystem carbon turnover but atmospheric N deposition can enhance carbon sequestration and nitrogen retention in desertified dune grasslands of northern China. Additionally, litter quality of plant species should be considered

  3. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition

    Science.gov (United States)

    Li, Yue; Liu, Yinghui; Wu, Shanmei; Niu, Lei; Tian, Yuqiang

    2015-01-01

    The role of soil microbial variables in shaping the temporal variability of soil respiration has been well acknowledged but is poorly understood, particularly under elevated nitrogen (N) deposition conditions. We measured soil respiration along with soil microbial properties during the early, middle, and late growing seasons in temperate grassland plots that had been treated with N additions of 0, 2, 4, 8, 16, or 32 g N m−2 yr−1 for 10 years. Representing the averages over three observation periods, total (Rs) and heterotrophic (Rh) respiration were highest with 4 g N m−2 yr−1, but autotrophic respiration (Ra) was highest with 8 to 16 g N m−2 yr−1. Also, the responses of Rh and Ra were unsynchronized considering the periods separately. N addition had no significant impact on the temperature sensitivity (Q10) for Rs but inhibited the Q10 for Rh. Significant interactions between observation period and N level occurred in soil respiration components, and the temporal variations in soil respiration components were mostly associated with changes in microbial biomass carbon (MBC) and phospholipid fatty acids (PLFAs). Further observation on soil organic carbon and root biomass is needed to reveal the long-term effect of N deposition on soil C sequestration. PMID:26678303

  4. Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings

    Directory of Open Access Journals (Sweden)

    Hang Jing

    2017-11-01

    Full Text Available Background: Nitrogen (N deposition could influence plant stoichiometry and growth rate and thus alter the structure and function of the ecosystem. However, the mechanism by which N deposition changes the stoichiometry and relative growth rate (RGR of plant organs, especially roots with different diameters, is unclear.Methods: We created a gradient of N availability (0–22.4 g N m-2 year-1 for Pinus tabuliformis seedlings for 3 years and examined changes in the carbon (C:N:phosphorus (P ratios and RGRs of the leaves, stems, and roots with four diameter classes (finest roots, <0.5 mm; finer roots, 0.5–1 mm; middle roots, 1–2 mm; and coarse roots, >2 mm.Results: (1 N addition significantly increased the C and N contents of the leaves and whole roots, the C content of the stems, the N:P ratios of the leaves and stems, and the C:P ratio of the whole roots. (2 In the root system, the C:N ratio of the finest roots and the C:P ratios of the finest and finer roots significantly changed with N addition. The N:P ratios of the finest, finer, and middle roots significantly increased with increasing amount of N added. The stoichiometric responses of the roots were more sensitive to N addition than those of the other organs (3 The RGR of all the organs significantly increased at low N addition levels (2.8–11.2 g N m-2 year-1 but decreased at high N addition levels (22.4 g N m-2 year-1. (4 The RGRs of the whole seedlings and leaves were not significantly correlated with their N:P ratios at low and high N addition levels. By contrast, the RGRs of the stems and roots showed a significantly positive correlation with their own N:P ratio only at low N addition level.Conclusion: Addition of N affected plant growth by altering the contents of C and N; the ratios of C, N, and P; and the RGRs of the organs. RGR is correlated with the N:P ratios of the stems and roots at low N addition level but not at high N addition level. This finding is inconsistent with the

  5. Effects of Calcium Superphosphate Additive on Nitrogen Conservation During Dead-pig Composting

    Directory of Open Access Journals (Sweden)

    LEI Ping

    2017-05-01

    Full Text Available To study the effects of calcium superphosphate additive on nitrogen conservation, an experiment of 30 days dead-pig composting was carried out. Three mixtures were treated with different amount of calcium superphosphate additive of 0%(CK, 5%(T1 and 10%(T2. The results showed that each composte temperature higher than 50 ℃ remained above 10 days, meeting the requirements of hygiene index about the compost rotten. The pH of composting with calcium superphosphate was significantly decreased, while NH4+-N, NH3-N, total nitrogen contents were significant higher than the control. 5% and 10% calcium superphosphate addition increased the total nitrogen contents by 10.7%, 10.1%, respectively. The seed germination index(GI of 5% calcium superphosphate addition was up to 101.4% on the 14th day, which was significant higher than the contrast. It demonstrated that calcium superphosphate could accelerate maturity during dead-pig compositng. Thus, calcium superphosphate as an additive in dead-pig composting could decrease nitrogen losses, which would bring prospects of application in dead-pig composting.

  6. Reassessing carbon sequestration in the North China Plain via addition of nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenxu, E-mail: dongwx@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Duan, Yongmei, E-mail: 106086193@QQ.com [Geological Survey of Jiangxi Province, Nanchang 330030 (China); Wang, Yuying, E-mail: wangyy@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Hu, Chunsheng, E-mail: cshu@sjziam.ac.cn [Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021 (China)

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0–100 cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4 N application treatments (0, 200, 400, and 600 kg N ha{sup −1} yr{sup −1}) for 15 years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO{sub 2} in an agricultural system. Results showed that after 15 years of N fertilizer application the SOC contents at depths of 0–100 cm significantly increased, whereas the SIC contents significantly decreased at depths of 0–60 cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO{sub 3}{sup −} and the HCO{sub 3}{sup −} / (Ca{sup 2+} + Mg{sup 2+}) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0–80 cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO{sub 2} and less influenced by protons through the nitrification which would release CO{sub 2}. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. - Highlights: • The SOC contents significantly increased after long-term nitrogen application, while SIC decreased. • The measured loss of carbonate was far higher than the theoretical values of dissolution from

  7. Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

    NARCIS (Netherlands)

    Li, Q.; Bai, H.; Liang, W.; Xia, J.; Wan, S.; Putten, van der W.H.

    2013-01-01

    Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil

  8. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions

    Science.gov (United States)

    Linda T.A. van Diepen; Erik A. Lilleskov; Kurt S. Pregitzer; R. Michael Miller

    2007-01-01

    Arbuscular mycorrhizal (AM) fungi are important below-ground carbon (C) sinks that can be sensitive to increased nitrogen (N) availability. The abundance of AM fungi (AMF) was estimated in maple (Acer spp.) fine roots following more than a decade of experimental additions of N designed to simulate chronic atmospheric N deposition.

  9. Effects of fire and nitrogen addition on forage quality of Aristida purpurea

    Science.gov (United States)

    Purple threeawn (Aristida purpurea Nutt.) is a native perennial bunchgrass with limited forage value that dominates sites with disturbed soils and persists with continued severe grazing. Fire and nitrogen addition have been used to reduce threeawn and may increase grazing utilization of threeawn by...

  10. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  11. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  12. Meta-analysis of high-latitude nitrogen-addition and warming studies imply ecological mechanisms overlooked by land models

    Science.gov (United States)

    Bouskill, N. J.; Riley, W. J.; Tang, J.

    2014-08-01

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the atmosphere. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the above and belowground high-latitude ecosystem responses to warming and nitrogen addition, and identified mechanisms absent, or poorly parameterized in CLM4.5. While the two model versions predicted similar trajectories for soil carbon stocks following both types of perturbation, other variables (e.g., belowground respiration) differed from the observations in both magnitude and direction, indicating the underlying mechanisms are inadequate for representing high-latitude ecosystems. The observational synthesis attribute these differences to missing representations of microbial dynamics, characterization of above and belowground functional processes, and nutrient competition. We use the observational meta-analyses to discuss potential approaches to improving the current models (e.g., the inclusion of dynamic vegetation or different microbial functional guilds), however, we also raise a cautionary note on the selection of data sets and experiments to be included in a meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average =72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which preclude a rigorous evaluation of the model responses to nitrogen perturbation. Overall, we demonstrate here that elucidating ecological mechanisms via meta-analysis can identify deficiencies in both ecosystem models and empirical experiments.

  13. Transcriptome response to nitrogen starvation in rice

    Indian Academy of Sciences (India)

    N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or ...

  14. Cottonwood Response to Nitrogen Related To Plantation Age and Site

    Science.gov (United States)

    B.G. Blackmon

    1977-01-01

    When applied at plantation age 4,336 kg N/ha increased diameter growth of cottonwood on Sharkey clay by 33 percent over unfertilized controls. Fertilizing at ages 2 and 3 resulted in no response, nor was there any benefit from applying nitrogen fertilizer to cottonwood on Commerce silt loam. On both sites, foliar N levels were increased by fertilization regardless of...

  15. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  16. Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas Response of African oil palm to nitrogen addition and its influence on the diazotrophic bacteria population

    Directory of Open Access Journals (Sweden)

    André Vieira de Carvalho

    2006-02-01

    Full Text Available O dendê (Elaeis guineensis, Jaquim pode produzir até sete toneladas de óleo por hectare por ano. O óleo vegetal é muito versátil e pode ser usado desde a indústria alimentícia até a produção de biocombustíveis. A planta é capaz de se associar com bactérias diazotróficas que colonizam raízes e caules. O objetivo deste trabalho foi avaliar a resposta à adubação nitrogenada de 17 genótipos de dendê no primeiro ano de cultivo e avaliar a influência da adição do N mineral sobre a população de bactérias diazotróficas, naturalmente presentes nas plântulas de dendezeiro. Foram utilizados potes de plástico completados com 50% de areia quartzoza e 50% de horizonte B de um Argissolo Vermelho-Amarelo, série Itaguaí, não esterilizado e extremamente pobre em nitrogênio. A uréia foi aplicada na dosagem de 33,68 kg ha-1 de N. Na presença do N, todos os genótipos melhoram os parâmetros biométricos, e houve aumento tanto do N total quanto do N acumulado. As populações de bactérias diazotróficas não foram influenciadas pela adição desse elemento. Dois genótipos foram selecionados, na presença e ausência de N, respectivamente, C-2001 e La Mé.African oil palm (Elaeis guineensis, Jaquim can produce up to 7 tons of oil per hectare per year. The vegetable oil is greatly versatile in its use, since food industry up to the production of fuels favorable to environmental protection. The plant has the potential to be associative with diazotrophic bacteria which colonize the roots and stem. The objective of this work was to evaluate 17 genotypes of E. guineensis in response to nitrogen addition and to verify the influence of this nitrogen on the diazotrophic population in an experiment using plastic pots filled with 50% quartz sand and 50% of non sterilized Horizon B; Red-Yellow Podzolic Soil series Itaguaí, extremely poor in nitrogen. Urea was used at a dose of 33.68 kg ha-1 de N. In the presence of the nitrogen, all

  17. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshurica plantations

    OpenAIRE

    Haifeng Zhuang; Yue Sun; Jiacun Gu; Yang Xu; Zhengquan Wang

    2010-01-01

    Soil fauna play a key role in regulating carbon allocation and nutrient cycling in terrestrial ecosystems. As soil fauna are sensitive to environmental changes, increases in soil nitrogen (N) availability resulting from global changes may profoundly influence the structure and function of soil faunal communities. However, the response of soil fauna in forest ecosystems to increases in soil N availability is still poorly understood. In order to explore the relationship between soil N availabil...

  18. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.; Fenn, Mark E.

    2008-01-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study. - Nitrogen additions at sites impacted by air pollution were associated with altered foliar herbivore communities and increased densities of a catkin-feeding beetle on Quercus kellogii

  19. Macrophyte Community Response to Nitrogen Loading and ...

    Science.gov (United States)

    Empirical determination of nutrient loading thresholds that negatively impact seagrass communities have been elusive due to the multitude of factors involved. Using a mesocosm system that simulated Pacific Northwest estuaries, we evaluated macrophyte metrics across gradients of NO3 loading (0, 1.5, 3 and 6x ambient) and temperature (10 and 20 °C). Macroalgal growth, biomass, and C:N responded positively to increased NO3 load and floating algal mats developed at 20 ºC. Zostera japonica metrics, including C:N, responded more to temperature than to NO3 loading. Z. marina biomass exhibited a negative temperature effect and in some cases a negative NO3 effect, while growth rate increased with temperature. Shoot survival decreased at 20 ºC but was not influenced by NO3 loading. Wasting disease index exhibited a significant temperature by NO3 interaction consistent with increased disease susceptibility. Community shifts observed were consistent with the nutrient loading hypothesis at 20 ºC, but there was no evidence of other eutrophication symptoms due to the short residence time. The Nutrient Pollution Index tracked the NO3 gradient at 10 ºC but exhibited no response at 20 ºC. We suggest that systems characterized by cool temperatures, high NO3 loads, and short residence time may be resilient to many symptoms of eutrophication. Estuarine systems characterized by cool temperatures, high nutrient loads and rapid flushing may be resilient to some symptoms

  20. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  1. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  2. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  3. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    Directory of Open Access Journals (Sweden)

    Anthony Stuart Amend

    2015-02-01

    Full Text Available Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity. This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between phylogenetic diversity and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial phylogenetic diversity, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of sixty-six days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial phylogenetic diversity failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which phylogenetic diversity predicts ecosystem function will depend on environmental context.

  4. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    Science.gov (United States)

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context.

  5. Steady-state and dynamic gene expression programs in Saccharomyces cerevisiae in response to variation in environmental nitrogen

    Science.gov (United States)

    Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David

    2016-01-01

    Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR

  6. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Junjun, E-mail: jia@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Kawashima, Emi; Utsuno, Futoshi [Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., Sodegaura, Chiba 299-0293 (Japan); Shigesato, Yuzo, E-mail: yuzo@chem.aoyama.ac.jp [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2017-02-28

    Highlights: • Nitrogen addition induces the structure of ITZO film change from amorphous phase to a c-axis oriented InN polycrystalline phase. • Nitrogen addition suppressed the formation of oxygen-related vacancies in ITZO films. • A red-shift in the optical band edge for ITZO films was observed as the nitrogen flow ratio increased, which was due to the generation of InN crystallites. - Abstract: Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In{sub 2}O{sub 3} phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In{sub 2}O{sub 3} matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  7. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  8. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    Science.gov (United States)

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nonlinear disruption of ecological interactions in response to nitrogen deposition.

    Science.gov (United States)

    Ochoa-Hueso, Raúl

    2016-10-01

    Global environmental change (GEC) is affecting species interactions and causing a rapid decline in biodiversity. In this study, I present a new Ecosystem Disruption Index to quantify the impacts of simulated nitrogen (N) deposition (0, 10, 20, and 50 kg N·ha -1 ·yr -1  + 6-7 kg N·ha -1 ·yr -1 background) on abiotic and biotic ecological interactions. This comparative index is based on pairwise linear and quadratic regression matrices. These matrices, calculated at the N treatment level, were constructed using a range of abiotic and biotic ecosystem constituents: soil pH, shrub cover, and the first component of several separate principal component analyses using soil fertility data (total carbon and N) and community data (annual plants, microorganisms, biocrusts, edaphic fauna) for a total of seven ecosystem constituents. Four years of N fertilization in a semiarid shrubland completely disrupted the network of ecological interactions, with a greater proportional increase in ecosystem disruption at low N addition levels. Biotic interactions, particularly those involving microbes, shrubs, and edaphic fauna, were more prone to be lost in response to N, whereas interactions involving soil properties were more resilient. In contrast, edaphic fauna was the only group directly affected by N addition, with mites and collembolans increasing their abundance with up to 20 kg N·ha -1 ·yr -1 and then decreasing, which supports the idea of higher-trophic-level organisms being more sensitive to disturbance due to more complex links with other ecosystem constituents. Future experimental studies evaluating the impacts of N deposition, and possibly other GEC drivers, on biodiversity and biotic and abiotic interactions may be able to explain results more effectively in the context of ecological networks as a key feature of ecosystem sensitivity. © 2016 by the Ecological Society of America.

  10. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species

    DEFF Research Database (Denmark)

    Cai, Jiangping; Weiner, Jacob; Wang, Ruzhen

    2017-01-01

    A 9-year manipulative experiment with nitrogen (N) and water addition, simulating increasing N deposition and changing precipitation regime, was conducted to investigate the bioavailability of trace elements, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in soil, and their uptake by plants...... in the organism and the chemical concentration in the growth substrate) and foliar Fe:Mn ratio in each plant was calculated. Our results showed that soil available Fe, Mn and Cu concentrations increased under N addition and were negatively correlated with both soil pH and cation exchange capacity. Water addition...... under the two environmental change factors in a semi-arid grassland of Inner Mongolia. We measured concentrations of trace elements in soil and in foliage of five common herbaceous species including 3 forbs and 2 grasses. In addition, bioaccumulation factors (BAF, the ratio of the chemical concentration...

  11. Response of sunflower to various levels of nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Arif, M.; Karar, K.M.

    2003-01-01

    To study the response of sunflower to various levels of nitrogen and phosphorous, an experiment was conducted in pots at NWFP Agricultural University Peshawar, during 1997. Four nitrogen levels 0, 80, 120, 160 kg/ha and three phosphorous levels 0,60,90 kg/ha were included in the experiment. Increase in nitrogen levels significantly increased head diameter, grain yield per head and thousand-grain weight. Maximum head diameter (25.71), grain yield per head (114.84g) and thousand-grain weight (75.67g) was recorded at nitrogen level of 160 kg/ha. Increased in phosphorus level increased plant height and thousand grains weight. Tallest plants (198.92cm) were observed at 6Okg P/ha while heavy grains (70.67g) were recorded at P level of 9Okg P/sub 2/O/sub 5/ha. It is concluded that l60kg N/ha and 9Okg P/ha is proper dose of N and P for sunflower hybrid. (author)

  12. Nutrient additions in pristine Patagonian Sphagnum bog vegetation : can phosphorus addition alleviate (the effects of) increased nitrogen loads

    NARCIS (Netherlands)

    Fritz, C.; Dijk, G. van; Smolders, A.J.P.; Pancotto, V.A.; Elzenga, J.T.M.; Roelofs, J.G.M.; Grootjans, A.P.

    Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear

  13. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    Science.gov (United States)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  14. Effects of wood-ash addition on nitrogen turnover in a highly nitrogen loaded spruce site. Final project report

    International Nuclear Information System (INIS)

    Nohrstedt, H.Oe.; Hoegbom, Lars; Nordlund, Sten

    2000-04-01

    During two consecutive years, it was studied how a fertilization with 4.2 tonnes pelleted bark ash per ha, made six-seven years earlier, affected soil chemistry, nitrogen turnover and soil-water chemistry on a Norway spruce site in SW Sweden. The actual site has a very acidic soil. At the same time, the supply of inorganic N is rich. Measures against soil acidification, e. g. addition of ash or lime, may significantly influence the turnover of N with a subsequent risk for increased leaching. Thus, there is a potential conflict between two urgent environmental goals, i. e. to decrease acidification and to decrease the N load on aquatic ecosystems. In the humus layer and the upper 5 cm of the mineral soil, pH(H 2 O) had increased with at the most 0.2 units because of the ash addition. The easily extractable amounts of Mg, P and nitrate were slightly increased. The potential nitrification in the humus layer was generally higher in the ash treatment, but the difference. was not statistically significant. The soil water at 50 cm depth was 0.1-0.2 pH-units more acidic where ash had been applied. Simultaneously, there were tendencies for higher concentrations of nitrate, Al and K. This is the first time in Sweden that ash fertilization of a closed forest has given clear indications of an increased N leaching. As expected, the ash fertilization decreased the acidity of the top soil. On the contrary, the runoff became more acidic and more rich in Al. Thus, the ash fertilization has counteracted one of its primary goals, i. e. to produce a runoff less toxic to aquatic life. The acidification of the runoff may partially be because of acid production during nitrification

  15. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    Science.gov (United States)

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  16. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha

    2015-01-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements...

  17. The Effects of Application Vinasseand additive nitrogen and phosphorus on Growth and Yield of Tomato

    Directory of Open Access Journals (Sweden)

    Ahmad Golchin

    2017-02-01

    Full Text Available Introduction:Vinasse is a byproduct of the sugar industry. Sugarcane or Sugarbeet is processed to produce crystallinesugar, pulp and molasses. The latter isfurther processed by fermentation to ethanol, ascorbicacid or other products. After the removal of the desired product (alcohol, ascorbicacid, etc. the remaining material is called vinasse. Vinasse is sold after a partial dehydration and usually has a viscositycomparable to molasses. Commercially offered vinasse comes either from sugarcaneand is called cane-vinasse or from sugarbeet and is called beet-vinasse. On average, for each liter of vinasse, 12 liters alcohol produced. Vinasse is a material with dark brown color and the smell of burned sugar, which is rich in potassium, calcium, magnesium, phosphorus and nitrogen. Materials and Methods:To determine the effect of vinasse and additive nitrogen and phosphorus on growth and yield of tomato, a factorial pot experiment was conducted at ZanjanUniversity in 2008. Two different plant nutrient including N and P and their combination (N+P were added to vinasse with three different concentrations to form experimental treatments. In addition to these treatments, three control treatments with vinasse of different concentrations, but with no additive were also included in the experiment. Each treatment used with two different application methods (soil application and soil + foliar application.The experiment had 24 treatments, a complete randomized design and three replications. The vinasse used in this experiment was diluted with water 10, 20 and 40 times to make a nutrient solution of three different concentrations of tomato plant. The amounts of nitrogen and phosphorus that were added to vinasse were 224 and 62 mg/l, respectively. Phosphorus and nitrogen were applied to as super-phosphate triple and calcium nitrate and ammonium nitrate respectively. After being deployed to ensure complete installation of tomatoes in pots containing perlite (about 2

  18. Response of Sphagnum fuscum to Nitrogen Deposition: A Case Study of Ombrogenous Peatlands in Alberta, Canada

    Science.gov (United States)

    Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.

    2003-01-01

    Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.

  19. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  20. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  1. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  2. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  3. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth.

    Science.gov (United States)

    Mantovani, T R D; Linde, G A; Colauto, N B

    2007-01-01

    The same substratum formulation to grow Agaricus bisporus has been used to grow Agaricus brasiliensis since its culture started in Brazil. Despite being different species, many of the same rules have been used for composting or axenic cultivation when it comes to nitrogen content and source in the substrate. The aim of this study was to verify the mycelial growth of A. brasiliensis in different ammonium sulfate and (or) urea concentrations added to cassava fiber and different carbon-to-nitrogen (C:N) ratios to increase the efficiency of axenic cultivation. Two nitrogen sources (urea and (or) ammonium sulfate) added to cassava fiber were tested for the in vitro mycelial growth in different C:N ratios (ranging from 2.5:l to 50:l) in the dark at 28 degrees C. The radial mycelial growth was measured after 8 days of growth and recorded photographically at the end of the experiment. Nitrogen from urea enhanced fungal growth better than ammonium sulfate or any mixture of nitrogen. The best C:N ratios for fungal growth were from 10:l to 50:l; C:N ratios below 10:l inhibited fungal growth.

  4. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  5. Nitrogen Addition Exacerbates the Negative Effects of Low Temperature Stress on Carbon and Nitrogen Metabolism in Moss

    Directory of Open Access Journals (Sweden)

    Bin-Yang Liu

    2017-08-01

    Full Text Available Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3 or ammonium (NH4Cl, were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days. LTS decreased the photosystem II (PSII performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The

  6. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  7. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.

  8. Exogenous Nitrogen Addition Reduced the Temperature Sensitivity of Microbial Respiration without Altering the Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2017-12-01

    Full Text Available Atmospheric nitrogen (N deposition is changing in both load quantity and chemical composition. The load effects have been studied extensively, whereas the composition effects remain poorly understood. We conducted a microcosm experiment to study how N chemistry affected the soil microbial community composition characterized by phospholipid fatty acids (PLFAs and activity indicated by microbial CO2 release. Surface and subsurface soils collected from an old-growth subtropical forest were supplemented with three N-containing materials (ammonium, nitrate, and urea at the current regional deposition load (50 kg ha-1 yr-1 and incubated at three temperatures (10, 20, and 30°C to detect the interactive effects of N deposition and temperature. The results showed that the additions of N, regardless of form, did not alter the microbial PLFAs at any of the three temperatures. However, the addition of urea significantly stimulated soil CO2 release in the early incubation stage. Compared with the control, N addition consistently reduced the temperature dependency of microbial respiration, implying that N deposition could potentially weaken the positive feedback of the warming-stimulated soil CO2 release to the atmosphere. The consistent N effects for the surface and subsurface soils suggest that the effects of N on soil microbial communities may be independent of soil chemical contents and stoichiometry.

  9. Effects of the addition of different nitrogen sources in the tequila fermentation process at high sugar concentration.

    Science.gov (United States)

    Arrizon, J; Gschaedler, A

    2007-04-01

    To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.

  10. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    Science.gov (United States)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  11. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Annika [Umeaa Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: annika.nordin@genfys.slu.se; Strengbom, Joachim [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: joachim.strengbom@ebc.uu.se; Ericson, Lars [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: lars.ericson@eg.umu.se

    2006-05-15

    Separate effects of ammonium (NH{sub 4} {sup +}) and nitrate (NO{sub 3} {sup -}) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha{sup -1} year{sup -1} was added to 2 m{sup 2} sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO{sub 3} {sup -}. Bryophytes took up predominately NH{sub 4} {sup +} and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH{sub 4} {sup +} and NO{sub 3} {sup -} to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen.

  12. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    International Nuclear Information System (INIS)

    Nordin, Annika; Strengbom, Joachim; Ericson, Lars

    2006-01-01

    Separate effects of ammonium (NH 4 + ) and nitrate (NO 3 - ) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha -1 year -1 was added to 2 m 2 sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO 3 - . Bryophytes took up predominately NH 4 + and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH 4 + and NO 3 - to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen

  13. CORN PRODUCERS´ RESPONSE TO THE 2001 NITROGEN FERTILIZER PRICE INCREASE

    OpenAIRE

    Daberkow, Stan G.; McBride, William D.

    2004-01-01

    During the past few years, nitrogen fertilizer prices and price volatility have increased. Producers of nitrogen-intensive crops, such as corn, who are faced with increased nitrogen prices or price volatility, can adopt either cost-reducing or price variability-reducing strategies. Using a behavioral model in the logit specification and data from a 2001 national survey of U.S. corn producers, we found that the probability of forward pricing nitrogen fertilizer and the probability of using nit...

  14. Response of bread wheat to increasing mustard meal nitrogen ...

    African Journals Online (AJOL)

    Greenhouse experiment on the nitrogen uptake from the mustard meal using 15N showed significant difference on both soil types. On the Vertisol the per cent nitrogen derived from the meal and per cent nitrogen use efficiency varied from 18 to 40 and from 18 to 62%, respectively. On the Nitosol, these values varied from 25 ...

  15. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  16. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    Science.gov (United States)

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  17. Yield and nutritional efficiency of corn in response to rates and splits of nitrogen fertilization

    OpenAIRE

    Amado, Telmo Jorge Carneiro; Villalba, Enrique Oswin Hahn; Bortolotto, Rafael Pivotto; Nora, Douglas Dalla; Bragagnolo, Jardes; León, Enrique Asterio Benítez

    2017-01-01

    ABSTRACT Despite its relevance, nitrogen is poorly utilized by the plants when improperly applied. Thus, the objective of this study was to evaluate the yield and nitrogen use efficiency (NUE) in corn in response to doses and split application of nitrogen fertilization. The experimental design was a randomized block design, with three replications. Doses of nitrogen of 0, 30, 60 and 180 kg ha-1 were applied at sowing in order to create different nutritional status of corn plants and to obtain...

  18. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow.

    Science.gov (United States)

    Zhang, Juanjuan; Yan, Xuebin; Su, Fanglong; Li, Zhen; Wang, Ying; Wei, Yanan; Ji, Yangguang; Yang, Yi; Zhou, Xianhui; Guo, Hui; Hu, Shuijin

    2018-06-01

    Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania...... huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen-replete and -limited conditions is not well understood in this ecologically important species....... In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  20. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  1. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  2. GLOBAL TRANSCRIPTION PROFILING REVEALS DIFFERENTIAL RESPONSES TO CHRONIC NITROGEN STRESS AND PUTATIVE NITROGEN REGULATORY COMPONENTS IN ARABIDOPSIS

    Science.gov (United States)

    Background: A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and to identifying N-responsive gen...

  3. Short-term Effect of Nitrogen Addition on Microbial and Root Respiration in an Alpine Spruce Ecosystem

    Directory of Open Access Journals (Sweden)

    Jian Wang1

    2017-03-01

    Full Text Available Soil respiration plays an important role in the carbon (C flux of the global C cycle and is greatly affected by nitrogen (N additions in the form of deposition or fertilization. The aim of this study was to investigate the response of total soil respiration (Rs, microbial respiration (Rm, and root respiration (Rr to short-term N addition and the potential mechanisms of short-term N deposition influencing soil respiration in an alpine spruce ecosystem. Four N treatment levels (0, 50, 100, 150 kg N ha-1 year-1 were applied monthly in a Picea balfouriana (commonly known as "alpine spruce" plantation beginning in November 2013 and Rs, Rm, and Rr were measured from May to November 2014. The results show that simulated N depositions stimulate Rs, Rm, and Rr and the beneficial effects decreased along N gradients from hourly to seasonal scales. The seasonal temperature coefficients (Q10 of Rs, Rm, and Rr ranged from 2.50 to 3.8, 2.99 to 4.63, and 1.86 to 2.96, while the diurnal Q10 ranged from 1.71 to 2.04, 1.89 to 2.32, 1.42 to 1.75, and there was a similar trend with soil respiration along N gradients. In addition, Rr showed significant positive correlation with fine root biomass, and Rm was likely driven by soil enzyme related to the microbial C cycle in the growing season. Our results indicate that short-term N addition stimulated fine root biomass and soil enzymatic activity to bring about a potential increase in soil respiration rates under low-N addition, while the opposite occurred under high-N addition.

  4. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  5. Additional Responses to Hugh Heclo's "On Thinking Institutionally"

    Science.gov (United States)

    Lincoln, Timothy D.; Fennell, Robert C.

    2011-01-01

    Issue 13:3 of this journal (July 2010) included a "Conversation" on Hugh Heclo's recent publication "On Thinking Institutionally" (Paradigm Publishers, 2008) with a book review by Robert Fennell and responses by Richard Ascough, Tat-siong Benny Liew, Michael McLain, and Lynne Westfield. Here we publish two additional responses to this same book.…

  6. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2

    Science.gov (United States)

    Haley F. Wicklein; Scott V. Ollinger; Mary E. Martin; David Y. Hollinger; Lucie C. Lepine; Michelle C. Day; Megan K. Bartlett; Andrew D. Richardson; Richard J. Norby

    2012-01-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen-albedo relationship have not been established, and it is unknown whether factors affecting...

  7. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse.

    Science.gov (United States)

    Liu, Chi; Yao, Minjie; Stegen, James C; Rui, Junpeng; Li, Jiabao; Li, Xiangzhen

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. We started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightly increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.

  8. Response of Wheat Genotypes to Different Levels of Nitrogen

    Directory of Open Access Journals (Sweden)

    Shukra Raj Shrestha

    2016-12-01

    Full Text Available A field experiment was conducted using six genotypes of wheat (Triticum aestivum L. for response to different levels of nitrogen (N use. The experiment was laid out in split plot design with four levels (0, 50, 100 and 150 kg N ha-1 as main plots and six wheat genotypes (BL 3623, BL 3629, BL 3872, NL 1008, NL 1055 and Vijay, a check variety as sub-plots. Grain yield and other yield components increased linearly in response to N concentrations in both seasons. Only two parameters: days to heading (DOH and days to maturity (DTM varied significantly (p ≤ 0.05 among wheat genotypes in both the years. None of the parameters showed interaction effects in both seasons. Vijay showed highest grain yield of 3.12 t ha-1 in 2013 with the application of 100 kg N ha-1, and 3.23 t ha-1 in 2014 with 150 kg N ha-1. Spike length, productive tillers m-2, number of spikes m-2 and test weight were greater with higher N rates. The straw yield of wheat fertilized with 150 kg N ha-1 was the highest in Vijay (4.35 t ha-1 and BL 3872 (4.33 t ha-1, respectively. Vijay with 100 kg N ha-1 produced the highest number of productive tillers m-2 (276.33 in 2013 and 296.00 with the application of 150 kg N ha-1 in 2014.

  9. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Directory of Open Access Journals (Sweden)

    Jinsong Wang

    2015-12-01

    Full Text Available The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr. ecosystems. Chinese pine litter, Mongolian oak (Quercus mongolica Fisch. ex Ledeb. litter, and a pine–oak mixture were selected from a plantation and a natural forest of Chinese pine. Four N addition treatments, i.e., control (N0: 0 kg N ha−1·year−1, low-N (N1: 5 kg N ha−1·year−1, medium-N (N2: 10 kg N ha−1·year−1, and high-N (N3: 15 kg N ha−1·year−1, were applied starting May 2010. In the plantation, N addition significantly stimulated the decomposition of the Chinese pine litter. In the natural forest, N addition had variable effects on the decomposition of single-species litter and the litter mixture. A stimulatory effect of the high-N treatment on the Chinese pine litter decomposition could be attributed to a decrease in the substrate C:N ratio. However, an opposite effect was found for the Mongolian oak litter decomposition. The stimulating effect of N addition on the Chinese pine litter may offset the suppressive effect on the Mongolian oak litter, resulting in a neutral effect on the litter mixture. These results suggest that the different responses in decomposition of single-species litter and the litter mixture to N addition are mainly attributed to litter chemical composition. Further investigations are required to characterize the effect of long-term high-level N addition on the litter decomposition as N deposition is likely to increase rapidly in the region where this study was conducted.

  10. Response of bread wheat ( Tritcum aestivum L. ) to nitrogen after ...

    African Journals Online (AJOL)

    Crop rotation is a common practice in the study area, but there is no enough information on the specific rate of nitrogen to be applied after legumes for wheat production. Hence, on farm field experiments were conducted to determine the amount of nitrogen fertilizer rates needed for bread wheat after chick pea, grass pea, ...

  11. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    Science.gov (United States)

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute

  12. Wheat-yield response to irrigation and nitrogen

    International Nuclear Information System (INIS)

    Kirda, C.; Derici, R.; Kanber, R.; Yazar, A.; Koc, M.; Barutcular, C.

    2000-01-01

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha -1 . Higher N rates produced higher stomatal conductance, increased rates of CO 2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha -1 , which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO 3 - to groundwater. (author)

  13. Maize response to time of nitrogen application and planting seasons

    Directory of Open Access Journals (Sweden)

    Parbati Adhikari

    2016-12-01

    Full Text Available Nitrogen (N response by maize differs due to growing seasons, growth stages, duration and growing domain as N losses is higher due to leaching as well as volatilization. Objective of this study was to know the response of split applications of N and growing seasons on maize under Chitwan environments. Field experiments were conducted for two consecutive years at the research field of NMRP Rampur during the winter, spring, and summer seasons of 2012/013 and 2013/014. Experiments were laid out in factorial randomized complete block design with four replications for all the seasons. Early maturing maize genotype Arun-1 EV was used for the experiments. Five splits of recommended dose of N were tested. Grain yield, days to flowering, plant height, ear height, kernel rows per ear, no. of kernels per row, ear length and thousand grain weight significantly differed due to growing seasons and split applications of N. Significantly higher grain yield (3911 kg ha-1 was obtained with the application of 30 kg N ha-1 each at 30, 45, 60, and 75 days after sowing as compared to control (2801 kg ha-1. Regarding the growing seasons, highest grain yield was obtained in winter (4393 kg ha-1 followed by spring (3791 kg ha-1 and summer (2468 kg ha-1 season, respectively. Results of these studies revealed that four splits of N viz. application of 30 kg N each at 30, 45, 60, and 75 days after sowing respectively, would be more economical to minimize N losses from the soil and efficient use of N at critical growth and development stages of maize.

  14. Enhancement of biodegradation of crude petroleum-oil in contaminated water by the addition of nitrogen sources.

    Science.gov (United States)

    Mukred, A M; Hamid, A A; Hamzah, A; Yusoff, W M Wan

    2008-09-01

    Addition of nitrogen sources as supplementary nutrient into MSM medium to enhance biodegradation by stimulating the growth four isolates, Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata isolated from petroleum contaminated groundwater, wastewater aeration pond and biopond at the oil refinery Terengganu Malaysia was investigated. The organic nitrogen sources tested not only supported growth but also enhances biodegradation of 1% Tapis crude oil. All four isolates showed good growth especially when peptone was employed as the organic nitrogen compared to growth in the basal medium. Gas chromatography showed that more then 91, 93, 94 and 95% degradation of total hydrocarbon was observed after 5 days of incubation by isolates Pseudomonas putida, Neisseria elongate, Acinetobacter faecalis and Staphylococcus sp., respectively.

  15. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    Science.gov (United States)

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  16. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    International Nuclear Information System (INIS)

    Azam, F.; Lodhi, A.; Sajjad, M.H.

    2003-01-01

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  17. Improvement in the long term creep rupture strength of SUS 316 steel for fast breeder reactors by nitrogen addition

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime; Tashimo, Masanori; Nishida, Takashi.

    1989-01-01

    Improvement of creep fatigue property of structural materials for fast breeder reactors. In order to improve the resistance to creep fatigue of SUS 316 steels, the effects of nitrogen, carbon, and molybdenum on creep properties have been investigated, under the concept that creep fatigue endurance is correspond to creep rupture ductility. Creep rupture tests and slow strain rate tensile tests were conducted at 550degC and extensive microstructural works were performed. The strengthening by nitrogen is much greater than carbon. Moreover, while carbon reduces rupture ductility, nitrogen does not change it. The addition of carbon results in coarse carbide formation on grain boundaries during creep, but with nitrogen very fine Fe 2 Mo particles precipitate on grain boundaries. The difference between the effects of nitrogen and carbon on creep properties is arise from the different morphology of precipitation. Strengthening by molybdenum brings about a slight decrease in rupture ductility. On the basis of these results, 0.01%C-0.07%N-11%Ni-16.5%Cr-2%Mo steel is selected as a promising material for fast breeder reactors. This steel has higher rupture ductility and strength than SUS 316 steel. It is also confirmed that this steel has a higher resistance to creep fatigue. (author)

  18. Mutational rectification of plant type for introducing responsiveness to nitrogen in rice

    International Nuclear Information System (INIS)

    Chakrabarti, S.N.; Sen, S.

    1975-01-01

    Dhairal, a local indica cultigen, although is very popular in many parts of Eastern India to several desirable traits, possesses the draw-back of low response to the application of nitrogen fertilizer. Attempts were made to alter the plant type and introduce the trait of 'high-responsiveness to nitrogen fertilizer' into this variety through induction of mutation using once and recurrent X-ray radiation. In field trails with several mutant strains along with the control selections in successive seasons at various levels of nitrogen (0 to 180 kg N/ha), selection x nitrogen interaction and the differential responses of the mutant strains were noted to be highly significant with regard to grain yield. Increased genotypic variance for grain yield at high 'N' level indicated the change in 'spread' amongst mutant strains. Few strains showed considerably high response to nitrogen application as expressed from grain yield and performance with regard to several agronomic attributes. (author)

  19. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  20. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; William H. McDowell

    2011-01-01

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and...

  1. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone

    2011-01-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...

  2. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  3. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  4. Effects of nitrogen addition on soil microbes and their implications for soil C emission in the Gurbantunggut Desert, center of the Eurasian Continent.

    Science.gov (United States)

    Huang, Gang; Cao, Yan Feng; Wang, Bin; Li, Yan

    2015-05-15

    Nitrogen (N) deposition can influence carbon cycling of terrestrial ecosystems. However, a general recognition of how soil microorganisms respond to increasing N deposition is not yet reached. We explored soil microbial responses to two levels of N addition (2.5 and 5 gN m(-2) yr(-1)) in interplant soil and beneath shrubs of Haloxylon ammodendron and their consequences to soil respiration in the Gurbantunggut Desert, northwestern China from 2011 to 2013. Microbial biomass and respiration were significantly higher beneath H. ammodendron than in interplant soil. The responses of microbial biomass carbon (MBC) and microbial respiration (MR) showed opposite responses to N addition in interplant and beneath H. ammodendron. N addition slightly increased MBC and MR in interplant soil and decreased them beneath H. ammodendron, with a significant inhibition only in 2012. N addition had no impacts on the total microbial physiological activity, but N addition decreased the labile carbon substrate utilization beneath H. ammodendron when N addition level was high. Phospholipid fatty acid (PLFA) analysis showed that N addition did not alter the soil microbial community structure as evidenced by the similar ratios of fungal to bacterial PLFAs and gram-negative to gram-positive bacterial PLFAs. Microbial biomass and respiration showed close correlations with soil water content and dissolved carbon, and they were independent of soil inorganic nitrogen across three years. Our study suggests that N addition effects on soil microorganisms and carbon emission are dependent on the respiratory substrates and water availability in the desert ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  6. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  7. Response of maize to reduced urea application combined with compound nitrogen fertilizer synergists

    International Nuclear Information System (INIS)

    Tian Xiuying; WANG Zhengyin

    2006-01-01

    Pot and field experiments were conducted to study the response to application rate of urea labeled with 15 N combined with compound nitrogen fertilizer synergists in the growth, yield, uptake and utilization rate of urea of maize. In pot experiment, the standard urea application rate is 120 mg/perpot; in field experiment, the standard urea application rate is 157.5 kg/hm 2 . Maize with 15 N-urea. The results showed that the growth of maize seedling was obviously promoted with appropriate dosage of compound nitrogen fertilizer synergists (20%-60% of N). The treatments of urea application rate reduced by 5%-15% and added compound nitrogen fertilizer synergists, the growth and nitrogen content of maize were not significant changed, and the total 15 N uptake and nitrogen uptake by maize were the same as CK 2 or increased a little. Nitrogen use efficiency of other treatments increased by 5.6%-7.3% comparing with CK, except the treatment of urea application rate reduced by 30%. The apparent utilization rate of nitrogen was enhanced by 7.7%-17.0%. Under the field condition, maize yield, total uptake, net uptake, physiological rate and agronomic use efficiency of nitrogen were the same as CK or increased. The apparent utilization rate of nitrogen was enhanced by 14.8%-15.2% treated with urea reduced by 5%-15% (7.8-23.7 kg/hm 2 ) and added with compound nitrogen fertilizer synergists. It was not helpful for the growth and nitrogen utilization rate of maize when urea reduced by 30% and combined with compound nitrogen fertilizer synergists. As a result, treated with urea decreased by 15% and combined with appropriate dosage of compound nitrogen fertilizer synergists (20% of urea), the growth and yield of maize had litter effect and higher the uptake and utilization of nitrogen. (authors)

  8. The effect of nitrogen addition on biomass production and competition in three expansive tall grasses

    Czech Academy of Sciences Publication Activity Database

    Holub, Petr; Tůma, I.; Fiala, Karel

    2012-01-01

    Roč. 170, NOV 2012 (2012), s. 211-216 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GA526/06/0556; GA MZe QJ1220007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67985939 ; RVO:67179843 Keywords : aboveground biomass * aggressivity * crowding coefficient * Nitrogen * tall grasses Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J) Impact factor: 3.730, year: 2012

  9. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  10. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    Science.gov (United States)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  11. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... and nitrogen in glucose and ammonium chloride, respectively, on the soil microbial community in a field experiment lasting three years in the Garwood Valley. In the control treatment, the total ELFA concentration was small by comparison with temperate soils, but very large when expressed relative to the soil...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...

  12. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  13. Effects of additive application upon ad libitum intake, in vivo digestibility and nitrogen balance of alfalfa haylage

    Directory of Open Access Journals (Sweden)

    Mladen Knežević

    2009-09-01

    Full Text Available The research objective was to determine the effect of the additive Sill-All application on ad libitum intake, in vivo digestibility and nitrogen balance of alfalfa haylage. About 40 % alfalfa plants was ensiled at the phonological flowering stage into plastic foil-wrapped bales without or with additive (2 L t-1 plant mass. No statistically significant differences were found between alfalfa ensiled without additive and alfalfa ensiled with additive for the content of dry matter (DM (632 g and 631 g DM kg-1 fresh sample, respectively. Alfalfa ensiled without additive contained 921 g organic matter (OM kg-1 DM, which was significantly higher (P<0.001 compared to alfalfa ensiled with additive (902 g OM kg-1 DM. Alfalfa ensiled without additive contained 141 g crude proteins (CP kg-1 DM, which was significantly higher (P<0.001 compared to alfalfa ensiled with additive (139 g CP kg-1 DM. Alfalfa ensiled with additive contained significantly less acid detergent fibers (ADF (P<0.001 compared to alfalfa ensiled without additive (445 g kg-1 DM and 456 g kg-1 DM, respectively and had a lower pH value (P<0.001 (5.29 and 5.56, respectively. No statistically significant differences were found between the studied feeding treatments for ad libitum intake of fresh ration and DM ration, for the measured parameters of digestibility and N balance. It was concluded that addition of the additive to alfalfa haylage led to significant changes in chemical composition; however, changes in chemical composition had no impact on measured biological parameters (ad libitum intake, in vivo digestibility and nitrogen balance.

  14. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  15. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  16. Soybean response to nitrogen fertilizer under water deficit conditions

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... In order to determine the effect of water deficit and nitrogen fertilizer application on growth indices, yield and yield ... located in 39°N and 47°E longitude and has 32 m altitude. The soil ...... Stable Isotope Research (GASIR).

  17. Data for Macrophyte Community Response to Nitrogen Loading and Thermal Stressors in Rapidly Flushed Mesocosm Systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data represent response variables from a series of mesocosm experiments to assess how estuarine macrophyte communities respond to nitrogen loading under two...

  18. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings.

    Science.gov (United States)

    Tiiva, Päivi; Häikiö, Elina; Kasurinen, Anne

    2018-04-10

    The changing climate will expose boreal forests to rising temperatures, increasing soil nitrogen (N) levels and an increasing risk of herbivory. The single and interaction effects of warming (+2 °C increase), moderate N addition (30 kg ha-1 year-1) and bark herbivory by large pine weevil (Hylobius abietis L.) on growth and emissions of biogenic volatile organic compounds (BVOCs) from shoots of Scots pine (Pinus sylvestris L.) seedlings were studied in growth chambers over 175 days. In addition, warming and N addition effects on shoot net photosynthesis (Pn) were measured. Nitrogen addition increased both shoot and root dry weights, whereas warming, in combination with herbivory, reduced stem height growth. Warming together with N addition increased current-year shoot Pn, whereas N effects on previous-year shoot Pn were variable over time. Warming decreased non-oxygenated monoterpene (MT) emissions in June and increased them in July. Of individual MT compounds, α-pinene, δ-3-carene, γ-terpinene and terpinolene were among the most frequently responsive compounds in warming treatments in the May-July period. Sesquiterpene emissions were observed only from warming treatments in July. Moderate N addition increased oxygenated monoterpenes in May, and MTs in June and September. However, N addition effect on MTs in June was clearer without warming than with warming. Bark herbivory tended to increase MT emissions in combination with warming and N addition 3 weeks after the damage caused by weevils. Of individual compounds in other BVOC blends, herbivory increased the emissions of methyl-benzene, benzene and hexanal in July. Hence, though both warming and N addition have a potential to change BVOC emissions from Scots pines, the N effect may also be partly cancelled by warming. Furthermore, herbivory pressure in combination with climate warming and N addition may, at least periodically, increase BVOC release to the atmosphere from young Scots pine seedlings.

  19. Effect of trehalose addition on volatiles responsible for strawberry aroma.

    Science.gov (United States)

    Kopjar, Mirela; Hribar, Janez; Simcic, Marjan; Zlatić, Emil; Pozrl, Tomaz; Pilizota, Vlasta

    2013-12-01

    Aroma is one of the most important quality properties of food products and has a great influence on quality and acceptability of foods. Since it is very difficult to control, in this study the effect of addition of trehalose (3, 5 and 10%) to freeze-dried strawberry cream fillings was investigated as a possible means for retention of some of the aroma compounds responsible for the strawberry aroma. In samples with added trehalose, higher amounts of fruity esters were determined. Increase of trehalose content did not cause a proportional increase in the amount of fruity esters. However, results of our research showed that trehalose addition did not have the same effect on both gamma-decalactone and furaneol.

  20. Soil nitrogen dynamics and Capsicum Annuum sp. plant response to biochar amendment in silt loam soil

    Science.gov (United States)

    Horel, Agota; Gelybo, Gyorgyi; Dencso, Marton; Toth, Eszter; Farkas, Csilla; Kasa, Ilona; Pokovai, Klara

    2017-04-01

    The present study investigated the growth of Capsicum Annuum sp. (pepper) in small-scale experiment to observe changes in plant growth and health as reflected by leaf area, plant height, yield, root density, and nitrogen usage. Based on field conditions, part of the study aimed to examine the photosynthetic and photochemical responses of plants to treatments resulting from different plant growth rates. During the 12.5 week long study, four treatments were investigated with biochar amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. The plants were placed under natural environmental conditions, such that photosynthetic activities from photosynthetically active radiation (PAR) and the plants photochemical reflectance index (PRI) could be continuously measured after exposure to sunlight. In this study we found that benefits from biochar addition to silt loam soil most distinguishable occurred in the BC2.5 treatments, where the highest plant yield, highest root density, and highest leaf areas were observed compared to other treatments. Furthermore, data showed that too low (0.5%) or too high (5.0%) biochar addition to the soil had diminishing effects on Capsicum Annuum sp. growth and yield over time. At the end of the 12th week, BC2.5 had 22.2%, while BC0.5 and BC5.0 showed 17.4% and 15.7% increase in yield dry weight respectively compared to controls. The collected data also showed that the PRI values of plants growing on biochar treated soils were generally lower compared to control treatments, which could relate to leaf nitrogen levels. Total nitrogen amount showed marginal changes over time in all treatments. The total nitrogen concentration showed 28.6% and 17.7% increase after the 6th week of the experiment for BC2.5 and BC5.0, respectively, while inorganic nutrients of NO3-N and NH4+-N showed a continuous decrease during the course of the study, with a substantial drop during the first few weeks. The present study provides evidence for impact

  1. Yield and nutritional efficiency of corn in response to rates and splits of nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Telmo Jorge Carneiro Amado

    Full Text Available ABSTRACT Despite its relevance, nitrogen is poorly utilized by the plants when improperly applied. Thus, the objective of this study was to evaluate the yield and nitrogen use efficiency (NUE in corn in response to doses and split application of nitrogen fertilization. The experimental design was a randomized block design, with three replications. Doses of nitrogen of 0, 30, 60 and 180 kg ha-1 were applied at sowing in order to create different nutritional status of corn plants and to obtain different values of Normalized Difference Vegetation Index (NDVI measured with “Greenseeker®” optical sensor. The subplots with nitrogen doses in topdressing of 0, 30, 60 and 90 kg ha-1 at V8 and a dose of 60 kg ha-1 at V12 were placed in experimental plots with doses of 0, 30, 60 and 180 kg ha-1 of nitrogen at sowing. Moreover, NUE was calculated in the experiment using agronomic indexes determined by applications of nitrogen in late topdressing (V8 and V12 and contrasted to the possible combinations at doses of 60, 90 and 120 kg ha-1 of total N applied. The results showed the occurrence of a linear relationship between nitrogen fertilizer dose and NDVI at V8 as well as at V12 stages. Late topdressing fertilizations (V12 did not cause a decrease in grain yield when combined with nitrogen fertilization at sowing, moreover resulted in higher NUE. Split the nitrogen dose showed better NUE than the combinations where nitrogen was not applied at sowing or in topdressing. The delay of nitrogen topdressing can be an alternative for the planning of the moment of the N fertilization according to the climate forecast in each region.

  2. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: an example from two N-limited boreal forests.

    Science.gov (United States)

    Hasselquist, Niles J; Högberg, Peter

    2014-08-01

    Although it is well known that nitrogen (N) additions strongly affect ectomycorrhizal (EM) fungal community composition, less is known about how different N application rates and duration of N additions affect the functional role EM fungi play in the forest N cycle.We measured EM sporocarp abundance and species richness as well as determined the δ (15)N in EM sporocarps and tree foliage in two Pinus sylvestris forests characterized by short- and long-term N addition histories and multiple N addition treatments. After 20 and 39 years of N additions, two of the long-term N addition treatments were terminated, thereby providing a unique opportunity to examine the temporal recovery of EM sporocarps after cessation of high N loading.In general, increasing N availability significantly reduced EM sporocarp production, species richness, and the amount of N retained in EM sporocarps. However, these general responses were strongly dependent on the application rate and duration of N additions. The annual addition of 20 kg·N·ha(-1) for the past 6 years resulted in a slight increase in the production and retention of N in EM sporocarps, whereas the addition of 100 kg·N·ha(-1)·yr(-1) during the same period nearly eliminated EM sporocarps. In contrast, long-term additions of N at rates of ca. 35 or 70 kg·N·ha(-1)·yr(-1) for the past 40 years did not eliminate tree carbon allocation to EM sporocarps, although there was a decrease in the abundance and a shift in the dominant EM sporocarp taxa. Despite no immediate recovery, EM sporocarp abundance and species richness approached those of the control 20 years after terminating N additions in the most heavily fertilized treatment, suggesting a recovery of carbon allocation to EM sporocarps after cessation of high N loading.Our results provide evidence for a tight coupling between tree carbon allocation to and N retention in EM sporocarps and moreover highlight the potential use of δ (15)N in EM sporocarps as a

  3. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  4. RESPONSE TO DIFFERENT RATES OF NITROGEN BY FIVE ...

    African Journals Online (AJOL)

    150kgN/ha with a mean leaf area of 55.60cm2. A lower rate of 100kgN/ha was however, found to be optimum in. 2012 with an average leaf area of 51.70cm2, when ... Exchange Acidity. 3.32. 3.35. ECEC (cmol/kg). 7.27. 7.34. Number of Tillers per Plant. Nitrogen application significantly enhanced the tillering ability of the ...

  5. RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION

    Science.gov (United States)

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...

  6. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    International Nuclear Information System (INIS)

    Sumi, A.; Katayama, T.C.

    2000-01-01

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f 0 ) + B(g + g 0 )/(f - f 0 ) + C/[(f - f 0 ) (g + g 0 )] + D/(g + g 0 ) + E, where f 0 and g 0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S 0 ) + B/(f - f 0 ) + C(f - f 0 ) + D, where S 0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  7. Growth and sporulation of Trichoderma polysporum on organic substrates by addition of carbon and nitrogen sources

    International Nuclear Information System (INIS)

    Rajput, A.Q.; Shahzad, S.

    2015-01-01

    During the present study nine different organic substrates viz., rice grains, sorghum grains, wheat grains, millet grains, wheat straw, rice husk, cow dung, sawdust and poultry manure were used for mass multiplication of Trichoderma polysporum. Grains, especially sorghum grains were found to be the best substrate for T. polysporum. Wheat straw and rice husk were less suitable, whereas, cow dung, sawdust and poultry manure were not suitable for growth of the fungus. Sucrose at the rate of 30,000 ppm and ammonium nitrate at the rate of 3,000 ppm were found to be the best carbon and nitrogen sources for growth and sporulation of T. polysporum. Amendment of the selected C and N sources to wheat straw, rice husk and millet grains resulted in significantly higher growth and conidia production by T. polysporum as compared to un-amended substrates. Sorghum and rice grains showed suppression in growth and sporulation of T. polysporum when amended with C and N sources. During studies on shelf life, populations of T. polysporum attained the peck at 60-135 days intervals on different substrates and declined gradually thereafter. However, even after 330 days, the populations were greater than the population at 0-day. At 345-360 days interval, populations were less than the initial populations at 0- days. Shelf life on C+N amended wheat straw and rice husk were more as compared to un-amended substrates. (author)

  8. Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Miyazaki, Shuichi; Inamura, Tomonari; Hosoda, Hideki

    2008-01-01

    Recently, the Ti-Zr-Nb alloys have been developed as Ni-free shape memory and superelastic alloys. In this study, the effect of Nb and nitrogen (N) contents on martensitic transformation behavior, shape memory effect and superelasticity in Ti-18Zr-(12-16)Nb-(0-1.0)N (at%) alloys were investigated using tensile tests, optical microscopy and X-ray diffraction. Shape memory effect was observed in Ti-18Zr-(12-13)Nb and Ti-18Zr-12Nb-0.5N alloys at room temperature. The superelastic behavior appeared by the increase of Nb or N content. The Ti-18Zr-(14-15)Nb, Ti-18Zr-(13-14)Nb-0.5N and Ti-18Zr-(12-14)Nb-1.0N alloys exhibited the superelasticity at room temperature. The martensitic transformation start temperature (M s ) decreased by 75 K with 1 at% increase of N content for Ti-18Zr-13Nb alloy. The critical stress for slip deformation and the stress for inducing the martensitic transformation increased with increasing N content. The superelastic recovery strain was also increased by adding N. The maximum recovery strain of 5.0% was obtained in the Ti-18Zr-14Nb-0.5N alloy. (author)

  9. Response of soil fauna to simulated nitrogen deposition: a nursery experiment in subtropical China.

    Science.gov (United States)

    Xu, Guo-Liang; Mo, Jiang-Ming; Fu, Sheng-Lei; Gundersen, Per; Zhou, Guo-Yi; Xue, Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting in January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2 x a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2 x a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  10. Plants' use of different nitrogen forms in response to crude oil contamination

    International Nuclear Information System (INIS)

    Nie Ming; Lu Meng; Yang Qiang; Zhang Xiaodong; Xiao Ming; Jiang Lifen; Yang Ji; Fang Changming; Chen Jiakuan; Li Bo

    2011-01-01

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15 N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  11. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Science.gov (United States)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  12. The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization.

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke

    2015-12-01

    The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and which of these assumptions best correspond to the available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity (NPP), leaf N concentration, and ecosystem N partitioning, observed at 22 forest N fertilization experiments. Employing flexible ecosystem pool C : N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate degree of stoichiometric flexibility in vegetation, where wood C : N ratio changes were decoupled from leaf and root C : N ratio changes, led to consistent simulation of production and N cycle responses to N addition. Assuming fixed C : N ratios or scaling leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported data. Between the tested assumptions, the simulated changes in ecosystem C storage relative to changes in C assimilation varied by up to 20%. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  14. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  15. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

    Science.gov (United States)

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E.; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape

  16. Nitrogen Use Efficiency and Tomato Crop Response to Nitrogen Fertigation Using N15

    International Nuclear Information System (INIS)

    El-Zoreiky, S.; Quasmy, W.; El-Rosan, M.

    2003-01-01

    Field studies were conducted during two seasons at the Deir Alla Research Center to compare the conventional fertilization method with Fertigation on water and nitrogen use efficiency with a tomato crop (c v. Gardenia). Four N application rates (0,50,100 and 150 m NIL) were applied with the irrigation water and one soil application Ns) treatment, equivalent to one of the fertigation treatment, was included Labeled ammonium sulfate was applied to micro plots within the, micro plots to evaluate the N recovery and utilization efficiency Results obtained form tow seasons indicate that increasing the N rate significantly increased the total and marketable yield by both method of application suggesting that the crop was under fertilized. The so application treatment gave a higher yield than the control (N0) and lower one than the fertigated treatments. In comparison to the N0, the total number of fruits in both seasons was significantly increased at all N level. The soil application (Ns) treatment gave the lowest number fruits compared to the Fertigation treatments in the first season and higher number than the fertigated treatments in the second season

  17. Biochar addition induced the same plant responses as elevated CO2 in mine spoil.

    Science.gov (United States)

    Zhang, Yaling; Drigo, Barbara; Bai, Shahla Hosseini; Menke, Carl; Zhang, Manyun; Xu, Zhihong

    2018-01-01

    Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO 2 ). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO 2 under N-poor conditions; (2) elevated CO 2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 μL L -1 ) and elevated (700 μL L -1 ) CO 2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ 15 N (P < 0.05); (2) decreased leaf total N and δ 15 N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO 2 than under elevated CO 2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO 2 in the N-deficient mine spoil. As expected, elevated CO 2 decreased the ability of biochar addition in improving plant growth.

  18. Isolate-specific conidiation in Trichoderma in response to different nitrogen sources.

    Science.gov (United States)

    Steyaert, Johanna M; Weld, Richard J; Stewart, Alison

    2010-01-01

    A characteristic feature of Trichoderma is the production of concentric rings of conidia in response to alternating light/dark conditions and a single ring of conidia in response to a single burst of light. In this study, conidiation was investigated in four biocontrol isolates (T. hamatum, T. atroviride, T. asperellum, T. virens) and one isolate from the mushroom pathogen species, T. pleuroticola. All five isolates produced concentric conidial rings under alternating light/dark conditions on potato-dextrose agar (PDA), however, in response to a 15min burst of blue light, only T. asperellum and T. virens produced a clearly defined conidial ring. Both T. pleuroticola and T. hamatum photoconidiated in a disk-like fashion and T. atroviride produced a broken ring with a partially filled in appearance. In the presence of primary nitrogen, T. asperellum and T. pleuroticola conidiated in a disk, whereas, when grown in the presence of secondary nitrogen, a ring of conidia was produced. Primary nitrogen promoted photoconidiation and competency to conidiate in response to light appeared dependent on the nitrogen catabolite repression state of the cell. Mycelial injury was also investigated in the same five isolates of Trichoderma on PDA and under different nitrogen statuses. For the first time, we report that conidiation in response to injury is differentially regulated in different isolates/species of Trichoderma. Copyright © 2009 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Sweetgum Response to Nitrogen Fertilization on Sites of Different Quality and Land Use History

    Science.gov (United States)

    D. Andrew Scott; Donald J. Kaczmarek; James A. Burger; Michael B. Kane

    2002-01-01

    Nitrogen (N) fertilizer management in young hardwood plantations is difficult due to our lack of understanding of the site-specific mechanisms that control tree response. Differences in landuse history and soil characteristics can alter the plant response to added N considerably. Foliage biomass, N content, N concentration, resorption, and soil N supply characteristics...

  20. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L

    2012-01-01

    Knowledge of the cumulated effect of long-continued nitrogen (N) inputs is important for both agronomic and environmental reasons. However, only little attention has been paid to estimate the crop response to mineral fertilizer N residues. Before interpreting estimates for the crop response...

  1. Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa

    Directory of Open Access Journals (Sweden)

    Edison A. Díaz-Álvarez

    2015-06-01

    Full Text Available Potential ecophysiological responses to nitrogen deposition, which is considered to be one of the leading causes for global biodiversity loss, were studied for the endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha−1 yr−1 in order to assess the potential risk facing this orchid given impending scenarios of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr−1, the dose that led to optimal plant performance, acted as fertilizer. For instance, the production of leaves and pseudobulbs were respectively 35% and 36% greater for plants receiving 20 kg N ha yr−1 than under any other dose. Also, the chlorophyll content and quantum yield peaked at 0.66 ± 0.03 g m−2 and 0.85 ± 0.01, respectively, for plants growing under the optimum dose. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr−1. The δ13C for leaves averaged −14.7 ± 0.2‰ regardless of the nitrogen dose. In turn, δ15N decreased as the nitrogen dose increased from 0.9 ± 0.1‰ under 2.5 kg N ha−1yr−1 to −3.1 ± 0.2‰ under 80 kg N ha−1yr−1, indicating that orchids preferentially assimilate NH4+ rather than NO3− of the solution under higher doses of nitrogen. Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of atmospheric nitrogen deposition can pose an important threat for this species.

  2. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection.

    Science.gov (United States)

    Divon, Hege H; Rothan-Denoyes, Beatrice; Davydov, Olga; DI Pietro, Antonio; Fluhr, Robert

    2005-07-01

    SUMMARY Nitrogen is an essential growth component whose availability will limit microbial spread, and as such it serves as a key control point in dictating an organism's adaptation to various environments. Little is known about fungal nutrition in planta. To enhance our understanding of this process we examined the transcriptional adaptation of Fusarium oxysporum f. sp. lycopersici, the causal agent for vascular wilt in tomato, during nutritional stress and plant colonization. Using RT-PCR and microarray technology we compared fungal gene expression in planta to axenic nitrogen starvation culture. Several expressed sequence tags, representing at least four genes, were identified that are concomitantly induced during nitrogen starvation and in planta growth. Three of these genes show similarity to a general amino acid permease, a peptide transporter and an uricase, all functioning in organic nitrogen acquisition. We further show that these genes represent a distinguishable subset of the nitrogen-responsive transcripts that respond to amino acids commonly available in the plant. Our results indicate that nitrogen starvation partially mimics in planta growth conditions, and further suggest that minute levels of organic nitrogen sources dictate the final outcome of fungal gene expression in planta. The nature of the identified transcripts suggests modes of nutrient uptake and survival for Fusarium during colonization.

  3. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    Science.gov (United States)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  4. Utilization of nitrogen by soybean (Glycine max) influenced by the addition of sugar cane bagasse

    International Nuclear Information System (INIS)

    Bonetti, R.; Saito, S.M.T.

    1982-01-01

    N 2 -fixation in soybean and soil-N and 15 N-urea utilization where studied in a glasshouse. Doses of fertilizer were 0, 40 and 80 kgN/ha added either to cultivated - or virgin soil, where sugar cane bagasse was also added (20 ton/ha). Non-nodulating soybean was used as a control to determine the absorption of the three N-sources: soil, fertilizer and N 2 -fixation. The N-immobilization effect caused by bagasse addition was observed even after a pre-incubation period of 40 days, being greater in the cultivated than in the soil without organic matter. Accumulations of N, P and S where also smaller in these plants. Additions of N were not sufficient to equal the values observed in soils without organic matter. Addition of 40 kgN/ha showed a sinergistic and positive effect on treatments that had N-immobilization, reinforcing the idea that starter doses of N are necessary for maximization of nodulation and N 2 -fixation in soybean, in soils with low N. N 2 -fixation contributed with mean values of 54% and 84% N, respectively, in the aerial part and pools in non-treated soil. When bagasse was added, the percentages of N 2 -fixed increased, however in smaller amounts, showing a necessity of different sources of N to increase the total N in plant. The greatest N 2 -fixation (48,6 kgN/ha) was found in the cultivated soil, where only bagasse had been added. (M.A.) [pt

  5. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  6. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C.J. [Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Manning, P. [School of Agriculture Food and Rural Development, Newcastle University, Newcastle upon Tyne, Tyne and Wear, NE1 7RU (United Kingdom); Van den Berg, L.J.L. [Environment Department, University of York, Heslington, York, YO 5DD (United Kingdom); De Graaf, M.C.C. [University of Applied Sciences, HAS Den Bosch, PO BOX 90108, 5200 MA ' s-Hertogenbosch (Netherlands); Wieger Wamelink, G.W. [Alterra, Droevendaalsesteeg 3a, P.O. Box 47, 6700 AA Wageningen (Netherlands); Boxman, A.W.; Vergeer, P.; Lamers, L.P.M. [Department of Aquatic Ecology and Environmental Biology, University of Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Bleeker, A. [Energy research Centre of the Netherlands, Petten, NH, 1755 ZG (Netherlands); Arroniz-Crespo, M. [Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid (Spain); Limpens, J. [Nature Conservation and Plant Ecology Group, Wageningen University, Bornsesteeg 69, 6708 PD Wageningen (Netherlands); Bobbink, R. [Ware Research Centre, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen (Netherlands); Dorland, E. [Staatsbosbeheer, PO Box 1300, 3970 BH, Driebergen (Netherlands)

    2011-03-15

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NHx and NOy) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NHx:NOy ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH4+ concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NHx:NOy deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.

  7. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  8. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  9. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  10. Response of nitrogen metabolism to boron toxicity in tomato plants.

    Science.gov (United States)

    Cervilla, L M; Blasco, B; Ríos, J J; Rosales, M A; Rubio-Wilhelmi, M M; Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2009-09-01

    Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 mM and 2.0 mM B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGR(L)), concentration of B, nitrate (NO(3) (-)), ammonium (NH(4) (+)), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGR(L), organic N, soluble proteins, and NR and NiR activities. The lowest NO(3) (-) and NH(4) (+) concentration in leaves was recorded when plants were supplied with 2.0 mM B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO(3) (-) reduction and increases NH(4) (+) assimilation in tomato plants.

  11. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Directory of Open Access Journals (Sweden)

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  12. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  13. Positive responses of belowground C dynamics to nitrogen enrichment in China.

    Science.gov (United States)

    Deng, Lei; Peng, Changhui; Zhu, Guangyu; Chen, Lei; Liu, Yulin; Shangguan, Zhouping

    2018-03-01

    Determining how nitrogen (N) impacts ecosystem carbon (C) cycling is critical to using C sequestration to offset anthropogenic CO 2 emissions. The N deposition rate in China is higher than the global average; however, many results of N enrichment experiments in China have not been included in global syntheses. In this study, we assembled a large dataset that comprised 124 published studies concerning N addition experiments, including 570 observations at 127 sites across China, to quantify the responses of belowground C dynamics to N enrichment in terrestrial ecosystems in China by a meta-analysis. The results showed that overall soil organic C, dissolved organic C (DOC) and soil microbial biomass C (MBC) increased by 1.8, 7.4, and 8.8%, respectively (Penrichment; belowground biomass and litter increased by 14.6 and 24.4%, respectively (Penrichment promoted C inputs into the soil mainly by increasing litter and belowground biomass inputs. Additionally, N enrichment increased C output by increasing soil respiration. Land use type and N addition level had different impacts on the soil C pool and on soil respiration. DOC, MBC, and litter exhibited more positive responses to N deposition in cooler and more arid regions than in other regions. The meta-analysis indicated that N enrichment had a positive impact on belowground C cycles in China. Climate played a greater role than did N deposition level in affecting processes of ecosystem C cycling. Moreover, belowground C cycle processes are determined by complicated interactions among land use type, N enrichment, and climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba

    Science.gov (United States)

    Kabbadj, Ablaa; Makoudi, Bouchra; Mouradi, Mohammed; Frendo, Pierre; Ghoulam, Cherki

    2017-01-01

    Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d’Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes. PMID:29281721

  15. Physiological and biochemical responses involved in water deficit tolerance of nitrogen-fixing Vicia faba.

    Directory of Open Access Journals (Sweden)

    Ablaa Kabbadj

    Full Text Available Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD, Luz d'Otonio (LO and Reina Mora (RM to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity. A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.

  16. Soil CO2 evolution: Response from arginine additions

    Science.gov (United States)

    Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial response and keep other soil properties constant. The evolution of CO2 during one and thr...

  17. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  18. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.

    Science.gov (United States)

    Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei

    2018-06-01

    Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Validation on wheat response to irrigation, CO2 and nitrogen fertilization in the Community Land Model

    Science.gov (United States)

    Lu, Y.

    2016-12-01

    Wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Understanding whether the Community Land Model (CLM) appropriate response to elevated CO2 and different levels of nitrogen fertilization and irrigation is a crucial question. We participated the AgMIP-wheat project and run 72 simulations at Maricopa spring wheat FACE sites and five winter wheat sites in North America forcing with site observed meteorology data. After calibration on the phenology, carbon allocation, and soil hydrology parameters, wheat in CLM45 has reasonable response to irrigation and elevated CO2. However, wheat in CLM45 has no response to low or high N fertilization because the low amount of N fertilization is sufficient for wheat growth in CLM45. We plan to further extend the same simulations for CLM5 (will release in Fall 2016), which has substantial improvements on soil hydrology (improved soil evaporation and plant hydraulic parameterization) and nitrogen dynamics (flexible leaf CN ratio and Vcmax25, plant pays for carbon to get nitrogen). We will evaluate the uncertainties of wheat response to nitrogen fertilization, irrigation, CO2 due to model improvements.

  20. EFFECTS OF MYCORRHIZAL FUNGI ON IN-VITRO NITROGEN RESPONSE OF SOME DUTCH INDIGENOUS ORCHID SPECIES

    NARCIS (Netherlands)

    DIJK, E; ECK, ND

    The effect of mycorrhizal infection on the response to mineral nitrogen was studied in Orchis morio L., Dactylorhiza praetermissa (Druce) Soo var. junialis (Vermin.) Sengh., Dactylorhiza majalis (Reichb.) Hunt & Summerh., and Dactylorhiza incarnara (L.) Soo, using two strains of Ceratorhiza sp. and

  1. Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Patrick K. H. [University of California, Berkeley; Dill, Brian [ORNL; Louie, Tiffany S. [University of California, Berkeley; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Andersen, Gary L. [Lawrence Berkeley National Laboratory (LBNL); Zinder, Stephen H. [Cornell University; Alvarez-Cohen, Lisa [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing D. ethenogenes strain 195 to fixed nitrogen limitation (FNL) as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially up-regulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly up-regulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally down regulated in response to FNL and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and post-translational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status.

  2. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field.

    Science.gov (United States)

    Liu, Tao; Liang, Yongchao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (Puse efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.

  3. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas

    International Nuclear Information System (INIS)

    Nieminen, Jouni K.; Räisänen, Mikko

    2013-01-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH 4 –N (2100%), the proportion of soil NO 3 –N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. -- Highlights: •Spruces were fertilized with anaerobically digested and composted sewage sludge (CSS). •CSS increased soil N, proportion of NO 3 –N, and N concentration of spruce needles. •CSS reduced the abundances of enchytraeids, tardigrades and collembolans. •CSS increased the proportion and abundance of bacterial-feeding nematodes. •Sucrose did not reduce N pools or counteract negative CSS effects on soil animals. -- Composting and carbohydrate addition do not mitigate the harmful effects of anaerobically digested sewage sludge in boreal forest soil

  4. Winter wheat response to irrigation, nitrogen fertilization, and cold hazards in the Community Land Model 5

    Science.gov (United States)

    Lu, Y.

    2017-12-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under changing climate, but also for understanding the energy and water cycles for winter wheat dominated regions. A winter wheat growth model has been developed in the Community Land Model 4.5 (CLM4.5), but its responses to irrigation and nitrogen fertilization have not been validated. In this study, I will validate winter wheat growth response to irrigation and nitrogen fertilization at five winter wheat field sites (TXLU, KSMA, NESA, NDMA, and ABLE) in North America, which were originally designed to understand winter wheat response to nitrogen fertilization and water treatments (4 nitrogen levels and 3 irrigation regimes). I also plan to further update the linkages between winter wheat yield and cold hazards. The previous cold damage function only indirectly affects yield through reduction on leaf area index (LAI) and hence photosynthesis, such approach could sometimes produce an unwanted higher yield when the reduced LAI saved more nutrient in the grain fill stage.

  5. Price Response to Factor Index Additions and Deletions

    NARCIS (Netherlands)

    J.J. Huij (Joop); G.S. Kyosev (Georgi)

    2016-01-01

    textabstractAbnormal price reaction around S&P 500 index changes has been considered as strong evidence that long term demand for stocks is downward sloping. This notion, however, has recently lost popularity due to the evidence that new additions are accompanied with a contemporaneous change in

  6. Effect of borax additive on the dielectric response of polypyrrole

    Indian Academy of Sciences (India)

    2018-03-29

    Mar 29, 2018 ... fore, borax additive is effective on the properties of composite material. 2.5 Particle size of .... of a very mobile group of electric dipoles in PPy–50 wt% ..... [9] Cavdar A D, Mengelo˘glu F and Karakus K 2015 Measurement. 60 6.

  7. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    Science.gov (United States)

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  9. Growth and yield of corn hybrids in response to association with Azospirillum brasilense and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Deniele Marini

    2015-02-01

    Full Text Available There is a growing interest in optimizing the positive effects of the association between Azospirillum bacteria and corn crop in order to reduce the use of nitrogen fertilizers. This study aimed to evaluate the inoculation efficiency of an A. brasilense-based commercial product in association with different rates of nitrogen fertilization in two corn genotypes. The experiment was arranged in a 2 x 2 x 5 factorial randomized block design, with four replications. The treatments consisted of two corn hybrids (30F53 and CD386; with and without inoculation with a commercial product based on A. brasilense and five nitrogen rates (0, 40, 80, 120 and 160 kg ha-1. The variables plant height, basal stem diameter, leaf area, shoot dry matter, leaf nitrogen content, length and diameter of the cob, weight of 100 grains and grain yield were evaluated. Inoculation with A. brasilense provided increases of 11 and 12% in leaf area and shoot dry matter, respectively. There were differences in the response of the corn hybrids for most variables and the increase in nitrogen supply provided increments in the growth and yield of corn.

  10. Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea

    Science.gov (United States)

    Zhang, Chao; Gao, Huiwang; Yao, Xiaohong; Shi, Zongbo; Shi, Jinhui; Yu, Yang; Meng, Ling; Guo, Xinyu

    2018-02-01

    In this study, five on-board microcosm experiments were performed in the subtropical gyre, the Kuroshio Extension region of the northwest Pacific Ocean (NWPO), and the Yellow Sea (YS) in order to investigate phytoplankton growth following the addition of artificially modified mineral dust (AM dust) and various nutrients (nitrogen (N), phosphorus (P), iron (Fe), N + P, and N + P + Fe). The two experiments carried out with AM-dust addition in the subtropical gyre showed a maximum chlorophyll a (Chl a) concentration increase of 1.7- and 2.8-fold, while the cell abundance of large-sized phytoplankton ( > 5 µm) showed a 1.8- and 3.9-fold increase, respectively, relative to the controls. However, in the Kuroshio Extension region and the YS, the increases in maximum Chl a and cell abundance of large-sized phytoplankton following AM-dust addition were at most 1.3-fold and 1.7-fold larger than those in the controls, respectively. A net conversion efficiency index (NCEI) newly proposed in this study, size-fractionated Chl a, and the abundance of large-sized phytoplankton were analysed to determine which nutrients contribute to supporting phytoplankton growth. Our results demonstrate that a combination of nutrients, N-P or N + P + Fe, is responsible for phytoplankton growth in the subtropical gyre following AM-dust addition. Single nutrient addition, i.e., N in the Kuroshio Extension region and P or N in the YS, controls the phytoplankton growth following AM-dust addition. In the AM-dust-addition experiments, in which the increased N-P or P was identified to determine phytoplankton growth, the dissolved inorganic P from AM dust (8.6 nmol L-1) was much lower than the theoretically estimated minimum P demand (˜ 20 nmol L-1) for phytoplankton growth. These observations suggest that additional supply augments the bioavailable P stock in incubated seawater with AM-dust addition, most likely due to an enhanced solubility of P from AM dust or the remineralization of the dissolved

  11. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Science.gov (United States)

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  12. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions.

    Science.gov (United States)

    Nguyen, Giao N; Rothstein, Steven J; Spangenberg, German; Kant, Surya

    2015-01-01

    Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.

  13. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  14. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  15. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress.

    Science.gov (United States)

    Dolatabadian, Aria; Modarres Sanavy, Seyed Ali Mohammad; Ghanati, Faezeh; Gresshoff, Peter M

    2013-07-01

    We evaluated response differences of normal and transformed (so-called 'hairy') roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in 'hairy' roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.

  16. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami; Gherardi, Nicolas; Massines, Franç oise

    2012-01-01

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser

  17. Additional information for impact response of the restart safety rods

    International Nuclear Information System (INIS)

    Yau, W.W.F.

    1991-01-01

    WSRC-RP-91-677 studied the structural response of the safety rods under the conditions of brake failure and accidental release. It was concluded that the maximum impact loading to the safety rod is 6020 pounds based on conservative considerations that energy dissipation attributable to fluid resistance and reactor superstructure flexibility. The staffers of the Defense Nuclear Facility Safety Board reviewed the results and inquired about the extent of conservatism. By request of the RESTART team, I reassessed the impact force due to these conservative assumptions. This memorandum reports these assessments

  18. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

  19. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    Science.gov (United States)

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    Science.gov (United States)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  1. Generation of human auditory steady-state responses (SSRs). II: Addition of responses to individual stimuli.

    Science.gov (United States)

    Santarelli, R; Maurizi, M; Conti, G; Ottaviani, F; Paludetti, G; Pettorossi, V E

    1995-03-01

    In order to investigate the generation of the 40 Hz steady-state response (SSR), auditory potentials evoked by clicks were recorded in 16 healthy subjects in two stimulating conditions. Firstly, repetition rates of 7.9 and 40 Hz were used to obtain individual middle latency responses (MLRs) and 40 Hz-SSRs, respectively. In the second condition, eight click trains were presented at a 40 Hz repetition rate and an inter-train interval of 126 ms. We extracted from the whole train response: (1) the response-segment taking place after the last click of the train (last click response, LCR), (2) a modified LCR (mLCR) obtained by clearing the LCR from the amplitude enhancement due to the overlapping of the responses to the clicks preceding the last within the stimulus train. In comparison to MLRs, the most relevant feature of the evoked activity following the last click of the train (LCRs, mLCRs) was the appearance in the 50-110 ms latency range of one (in 11 subjects) or two (in 2 subjects) additional positive-negative deflections having the same periodicity as that of MLR waves. The grand average (GA) of the 40 Hz-SSRs was compared with three predictions synthesized by superimposing: (1) the GA of MLRs, (2) the GA of LCRs, (3) the GA of mLCRs. Both the MLR and mLCR predictions reproduced the recorded signal in amplitude while the LCR prediction amplitude resulted almost twice that of the 40 Hz-SSR. With regard to the phase, the MLR, LCR and mLCR closely predicted the recorded signal. Our findings confirm the effectiveness of the linear addition mechanism in the generation of the 40 Hz-SSR. However the responses to individual stimuli within the 40 Hz-SSR differ from MLRs because of additional periodic activity. These results suggest that phenomena related to the resonant frequency of the activated system may play a role in the mechanisms which interact to generate the 40 Hz-SSR.

  2. On the dynamic response of additively manufactured 316L

    Science.gov (United States)

    Smith, Liam; Eakins, Daniel; Chapman, David; Hooper, Paul

    2017-06-01

    Understanding the dynamic performance of Additively Manufactured (AM) materials is important when designing components for real-world applications. A series of Taylor tests were carried out on AM and conventionally manufactured 316L Stainless Steel. AM specimens were produced with a Renishaw AM250 selective laser melting machine. Taylor tests were conducted in a reverse anvil-on-rod configuration with soft capture and post loading measurements used to corroborate high speed deformation imaging. The influence of microstructure orientation and surface roughness was investigated by manufacturing samples parallel and perpendicular to build direction and with both as-built and machined finishes. Results were compared with optimised Johnson-Cook and Zerilli-Armstrong constitutive models within AUTODYN FE software.

  3. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    Science.gov (United States)

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers

  4. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Rooney, D.C.; Kennedy, N.M.; Clipson, N.J.W.; Rooney, D.C.; Kennedy, N.M.; Gleeson, D.B.

    2010-01-01

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH 4 NO 3 ), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH 4 NO 3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  5. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  6. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  7. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    Science.gov (United States)

    Fang, Ying; Xun, Fen; Bai, Wenming; Zhang, Wenhao; Li, Linghao

    2012-01-01

    Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N

  8. Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, and Corn after Soybeans

    OpenAIRE

    Boyer, Christopher N.; Larson, James A.; Roberts, Roland K.; McClure, Angela T.; Tyler, Donald D.; Zhou, Vivian

    2013-01-01

    Deterministic and stochastic yield response plateau functions were estimated to determine the expected profit-maximizing nitrogen rates, yields, and net returns for corn grown after corn, cotton, and soybeans. The stochastic response functions were more appropriate than their deterministic counterparts, and the linear response stochastic plateau described the data the best. The profit-maximizing nitrogen rates were similar for corn after corn, cotton, and soybeans, but relative to corn after ...

  9. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    Science.gov (United States)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2012-05-01

    The input and loss of plant available nitrogen (reactive nitrogen: Nr) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr) in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic

  10. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  11. Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats

    International Nuclear Information System (INIS)

    Stevens, Carly J.; Manning, Pete; Berg, Leon J.L. van den; Graaf, Maaike C.C. de; Wamelink, G.W. Wieger; Boxman, Andries W.; Bleeker, Albert; Vergeer, Philippine; Arroniz-Crespo, Maria; Limpens, Juul; Lamers, Leon P.M.; Bobbink, Roland; Dorland, Edu

    2011-01-01

    While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NH x and NO y ) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NH x :NO y ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH 4 + concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NH x :NO y deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems. - Changing ratios of NH x and NO y in deposition has important consequences for ecosystem function.

  12. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    Science.gov (United States)

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  13. Inoculation of Trichoderma harzianum on Zea mays its effect on the addition of nitrogen fertilizer at 50%

    Directory of Open Access Journals (Sweden)

    Tavera-Zavala Dulce Daniela

    2017-08-01

    Full Text Available The crop Zea mays (maize requires nitrogen fertilizer (NF usually as NH4NO3 (ammonium nitrate, which applied in excess causes loss of productivity in soil. An alternative to reduce and optimize the dose of NF in crop Z. mays is to inoculate it with Trichoderma harzianum. The main objective was to analyze the effect of three doses of T. harzianum in Z. mays at 50% of NF. This experiment was performed in a greenhouse under an experimental design of random blocks, with 5 treatment and 5 replicates, the re-sponse variables used were: phenology: seedling height (SH and root length (RL, and biomass: aerial and radical fresh/dry weight (AFW/ADW/(RFW/RDW at seedlings and flowering stage, the experimental data were analyzed by Tukey 0.05%. The results showed a positive effect of the specific density of all viable structures of T. harzianum in Z. mays since was observed 92% of seed germination, numerical value statistical difference to the 81% in Z. mays without inoculum and NF at 100% or relative control (RC. At seedling Z. mays with T. harzianum 40 g/100 g seeds registered an ADW of 0.32 g and a RDW of 0.25 g, these values were statistical different to the 0.21 g of ADW, and 0.19 g of RDW in Z. mays without inoculum and fed with NF at 100% or RC. The above mentioned suggests that T. harzi-anum transform seed and root exudates in plant growth promoting substances (PGPS, optimizing the use of NH4NO3 and allowing its reduction until 50% without causing a nutritional deficit on normal Z. mays growth.

  14. Response of wheat varieties to different nitrogen levels under agro-climatic conditions of mansehra

    International Nuclear Information System (INIS)

    Shahzad, K.; Khan, A.

    2013-01-01

    A field experiment, comprising of three Nitrogen levels viz.0, 60, 120 and 180 kg/ha and five wheat varieties, viz., Pir Sabak-04 (P.S), P.S-05, P.S-08, Atta Habib and Siran, was conducted at Agricultural Research Station, Baffa, Mansehra, in 2011. The experiment was laid out in randomised complete block design with split-plot arrangement. The results indicated that varieties and nitrogen levels were significantly different for tillers per m2, days to physiological maturity, plant height (cm), spike length, grains per spike, 1000 grains weight (gm), biological yield (kg/ha) and grain yield (kg/ha), while harvest index (%) was significantly affected by varieties only. Maximum tillers per m2 were produced in varieties P.S-2008, P.S-2004 and P.S-2005. Maximum days to physiological maturity and grains per spike were observed in variety P.S-2008. Taller plants were produced by variety P.S. 2005. Longer spikes, maximum thousand grains weight and grain yield (kg/ha) were obtained in varieties P.S-2008 and Atta Habib, respectively. Maximum biological yield (kg/ha) was recorded in Atta Habib. Among nitrogen levels, maximum tillers per m2, days to physiological maturity, longer spikes, number of grains per spike, thousand grains weight, biological yield and grain yield were maximum when N was applied at the rate of 120 kg/ha. Similarly the interactive response of varieties and nitrogen was significantly affected for days to emergence, grains per spike, biological yield, grain yield and harvest index (%). From the study, it was concluded that the varieties, Pir Sabak-2008 and Atta Habib, produced maximum seed yield whereas nitrogen applied at the rate of 120 kg/ha performed better in productivity than other treatments. (author)

  15. Response of Cotton to Irrigation Methods and Nitrogen Fertilization: Yield Components, Water-Use Efficiency, Nitrogen Uptake, and Recovery

    International Nuclear Information System (INIS)

    Janat, M.

    2009-01-01

    Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)

  16. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield

    NARCIS (Netherlands)

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Slafer, G.A.; Rabbinge, R.

    2000-01-01

    We investigated the response of spring wheat and oilseed rape to nitrogen (N) supply, focusing on the critical period for grain number definition and grain filling. Crops were grown in containers under a shelter and treated with five combinations of applied N. Wheat and oilseed rape produced

  17. Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff

    Science.gov (United States)

    Menéndez, Margarita

    2009-05-01

    The response of early Ruppia cirrhosa Petagna (Grande) litter decomposition to external nitrogen and phosphorus availability in La Tancada (Ebro River, NE Spain), a coastal lagoon that receives agricultural freshwater runoff from rice fields has been examined. Recently abscised dead R. cirrhosa stems were collected and 25 g of fresh weight was placed in litter bags with a mesh size of 100 μm and 1 mm. These bags were fertilised by adding nitrogen (N), a mixture of nitrogen plus phosphorus (N + P), or phosphorus (P), or were left untreated (CT). Macroinvertebrates were retrieved from the bags and the ash-free dry weight, and carbon, and N and P content of the remaining plant material were measured after 0, 3, 7, 14, 22 and 32 days. Litter decomposition rates, k (day -1), were estimated using a simple exponential model. Litter decay was clearly accelerated by the addition of P in the fine (100 μm) litter bags (0.042), but when N was added alone (0.0099) the decomposition rate was lower than in the CT treatments (0.022). No significant difference was observed between the N (0.0099-0.018) and N + P (0.0091-0.015) treatments in either the fine or the coarse (1 mm) litter bags. These results could be attributed to the relatively high availability of external (environmental) and internal (detritus contents) N. No significant effect of macro invertebrates was observed in the CT treatment or under N or P or N + P addition. The ratio between the decomposition rates in coarse and fine litter bags (k c/k f) was lower in disturbed Tancada lagoon (0.82) than in Cesine lagoon (2.11), a similar Mediterranean coastal water body with almost pristine conditions. These results indicate that, in addition to data on macroinvertebrate community structure, decomposition rates could also be used to assess water quality in coastal lagoons.

  18. An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Science.gov (United States)

    Rusch, David W.; Solomon, Stanley C.

    1992-01-01

    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer.

  19. Marsh soil responses to tidal water nitrogen additions contribute to creek bank fracturing and slumping

    Science.gov (United States)

    Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...

  20. Experimental study on heat transfer with condensation of vapors of pure nitrogen tetroxide with nitrogen oxide additions on a bundle of horizontal tubes

    International Nuclear Information System (INIS)

    Batishcheva, T.M.; Derov, B.T.; Kolykhan, L.I.; Pulyaev, V.F.

    1977-01-01

    The results of an experimental investigation of heat transfer during condensation of pure N 2 O 4 vapours and with NO admixtures on the outside surface of a bundle of horizontal tubes are considered. The tests with pure N 2 O 4 have been performed at pressures between 0.3-1.0 MPa in the range of thermal loads 22-121 kW/m 2 , temperature heads of 5-33 grades with complete condensation and evaporation. The content of admixtures boiling at high temperatures do not exceed 0.8%. A concentration of noncondensing nitrogen oxide in a gas phase have changed in the range of 3-27%. It is shown, that a concentration of noncondensible NO doesn't result in a considerable decrease of the heat transfer intensity as well as in the case of condensation of vapour-liquid mixtures. The generalized criterion relations are presented

  1. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Directory of Open Access Journals (Sweden)

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  2. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    Science.gov (United States)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  3. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius

    Czech Academy of Sciences Publication Activity Database

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2011-01-01

    Roč. 66, č. 2 (2011), s. 275-281 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA526/06/0556 Institutional research plan: CEZ:AV0Z60050516 Keywords : nitrogen * drought * above-ground biomass Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  4. Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition

    Science.gov (United States)

    Jennifer L. Tank; Judy L. Meyer; Diane M. Sanzone; Patrick J. Mulholland; Jackson R. Webster; Bruce J. Peterson; Wilfred M. Wollheim; Norman E. Leonard

    2000-01-01

    We added l5NH4Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of ...

  5. Exogenous sodium sulfide improves morphological and physiological responses of a hybrid Populus species to nitrogen dioxide.

    Science.gov (United States)

    Hu, Yanbo; Bellaloui, Nacer; Sun, Guangyu; Tigabu, Mulualem; Wang, Jinghong

    2014-06-15

    Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5mmolL(-1)) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba×P. berolinensis) to gaseous NO2 (4μl1(-1)) for three time periods (0, 14 and 48h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13-15s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Nitrogen-source preference in blueberry (Vaccinium sp.): Enhanced shoot nitrogen assimilation in response to direct supply of nitrate.

    Science.gov (United States)

    Alt, Douglas S; Doyle, John W; Malladi, Anish

    2017-09-01

    Blueberry (Vaccinium sp.) is thought to display a preference for the ammonium (NH 4 + ) form over the nitrate (NO 3 - ) form of inorganic nitrogen (N). This N-source preference has been associated with a generally low capacity to assimilate the NO 3 - form of N, especially within the shoot tissues. Nitrate assimilation is mediated by nitrate reductase (NR), a rate limiting enzyme that converts NO 3 - to nitrite (NO 2 - ). We investigated potential limitations of NO 3 - assimilation in two blueberry species, rabbiteye (Vaccinium ashei) and southern highbush (Vaccinium corymbosum) by supplying NO 3 - to the roots, leaf surface, or through the cut stem. Both species displayed relatively low but similar root uptake rates for both forms of inorganic N. Nitrate uptake through the roots transiently increased NR activity by up to 3.3-fold and root NR gene expression by up to 4-fold. However, supplying NO 3 - to the roots did not increase its transport in the xylem, nor did it increase NR activity in the leaves, indicating that the acquired N was largely assimilated or stored within the roots. Foliar application of NO 3 - increased leaf NR activity by up to 3.5-fold, but did not alter NO 3 - metabolism-related gene expression, suggesting that blueberries are capable of post translational regulation of NR activity in the shoots. Additionally, supplying NO 3 - to the cut ends of stems resulted in around a 5-fold increase in NR activity, a 10-fold increase in NR transcript accumulation, and up to a 195-fold increase in transcript accumulation of NITRITE REDUCTASE (NiR1) which codes for the enzyme catalyzing the conversion of NO 2 - to NH 4 + . These data indicate that blueberry shoots are capable of assimilating NO 3 - when it is directly supplied to these tissues. Together, these data suggest that limitations in the uptake and translocation of NO 3 - to the shoots may limit overall NO 3 - assimilation capacity in blueberry. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium

    Science.gov (United States)

    Marks, Jade A; Pett-Ridge, Julie; Perakis, Steven S.; Allen, Jessica L; McCune, Bruce

    2015-01-01

    Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient

  8. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  9. The response of winter wheat to water stress and nitrogen fertilizer use efficiency

    International Nuclear Information System (INIS)

    Wang, F.; Qi, M.; Wang, H.; Changjiu, Z.

    1995-01-01

    The response of winter wheat to water stress imposed at different crop growth stages by deficit irrigation and fertilizer use under several schemes of irrigation were evaluated on fine sandy soil and sand loam soil. The results showed that according to grain yield response factor K, the order of sensitive growth stages of winter wheat to water stress in decreasing sequence were booting to flowering ( K= 0.90), winter afterward to booting ( K= 0.69), flowering to milking ( K= 0.44) and milking to ripening ( K= 0.25). Field water efficiency would get 16.7 kg/mm.ha when no water stress in growth period, and when water stress has occurred in some growth stages, the value of it decreased by 5 - 20 percent. It was also found that high fertilizer application rate without split application would not significantly influence the yield on fine sandy soil. But schedule of irrigation affected the translocation of nitrogen in the plant. When water stress occurred in later growth stage, the ratio of NUE in gain to straw decreased, and fertilizer was available for crop only about one month after fertilizer application, excessive fertilizer rate would result in decrease of NUE by leaching of nitrogen in sandy soil. Total recovery of fertilizer at harvest was half amount of application. 6 refs; 10 tabs; ( author)

  10. Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance.

    Science.gov (United States)

    Yan, Xiaodan; Shi, Lin; Cai, Rumeng

    2018-01-01

    A mineral soil conditioner (MSC) composed of activated potash feldspar, gypsum, and calcium carbonate and containing an amount of available mineral nutrients, is shown to be effective for plant growth and acidic soil amelioration. In this study, a field test was conducted over four rice seasons by examining treatment with control check (CK), MSC, biological active carbon, and lime to investigate the nitrogen-use efficiency and mechanism of soil characteristic variations due to the desilicification and allitization of soil as well as the unrestrained use of nitrogen (N) fertilizer in recent years. Influences of MSC on the xylem sap intensity and mean rice yields were evaluated, and the soil type was also analyzed using the FactSage 6.1 Reaction, phase diagram, and Equilib modules. The results of the field trial showed that MSC application increased the xylem sap intensity and nitrogen export intensity by 37.33-39.85% and 31.40-51.20%, respectively. A significant increase (5.63-15.48%) in mean grain yields was achieved with MSC application over that with biological active carbon and lime application. The effects of MSC had a tendency to increase with time in the field experiment results, and grain yields increased after the initial application. The new formation of clay minerals exhibits a significant influence on [Formula: see text] fixation, especially for 2:1 phyllosilicates with illite, owing to the interlayers of the clay minerals. Our preliminary results showed that kaolinite, the main 1:1 phyllosilicate clay mineral in ferralsol, transformed to illite at room temperature as a consequence of the presence of H 4 SiO 4 and available K + supplied by MSC. This indicated that improving the soil quality combined with reducing N losses from soils is an efficient way to control non-point source pollution from agriculture without the risk of decreased in grain yield.

  11. Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest

    International Nuclear Information System (INIS)

    Aravindhakshan, Sijesh C.; Epplin, Francis M.; Taliaferro, Charles M.

    2011-01-01

    Switchgrass (Panicum virgatum) has been identified as a model dedicated energy crop species. After a perennial grass is established, the major variable costs are for nitrogen (N) fertilizer and harvest. Prior to establishing switchgrass on millions of ha in a particular agro-climatic region, it would be useful to determine switchgrass yield response to N and its response to harvest frequency relative to alternative grass species. The objective of this research is to determine biomass yield response to N for four perennial grass species and to determine the species, N level, and harvest frequency that will maximize expected net returns, given the climate and soils of the U.S.A. Southern Plains. Yield data were produced in an experiment that includes four species (switchgrass, bermudagrass (Cynodon dactylon), weeping lovegrass (Eragrostis curvula), and carostan flaccidgrass (Pennisetum flaccidum)), four N levels, and two harvest levels. Linear response plateau (LRP), linear response stochastic plateau (LRSP), and quadratic response (QR) functions are estimated. For all combinations of biomass and N prices considered, the optimal species is switchgrass. For most price situations, it is economically optimal to fertilize established stands of switchgrass with 69 kg N ha -1 yr -1 and to harvest once yr -1 after senescence.

  12. Switchgrass, Bermudagrass, Flaccidgrass, and Lovegrass biomass yield response to nitrogen for single and double harvest

    Energy Technology Data Exchange (ETDEWEB)

    Aravindhakshan, Sijesh C.; Epplin, Francis M. [Department of Agricultural Economics, Oklahoma State University, Stillwater, OK 74078-6026 (United States); Taliaferro, Charles M. [Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2011-01-15

    Switchgrass (Panicum virgatum) has been identified as a model dedicated energy crop species. After a perennial grass is established, the major variable costs are for nitrogen (N) fertilizer and harvest. Prior to establishing switchgrass on millions of ha in a particular agro-climatic region, it would be useful to determine switchgrass yield response to N and its response to harvest frequency relative to alternative grass species. The objective of this research is to determine biomass yield response to N for four perennial grass species and to determine the species, N level, and harvest frequency that will maximize expected net returns, given the climate and soils of the U.S.A. Southern Plains. Yield data were produced in an experiment that includes four species (switchgrass, bermudagrass (Cynodon dactylon), weeping lovegrass (Eragrostis curvula), and carostan flaccidgrass (Pennisetum flaccidum)), four N levels, and two harvest levels. Linear response plateau (LRP), linear response stochastic plateau (LRSP), and quadratic response (QR) functions are estimated. For all combinations of biomass and N prices considered, the optimal species is switchgrass. For most price situations, it is economically optimal to fertilize established stands of switchgrass with 69 kg N ha{sup -1} yr{sup -1} and to harvest once yr{sup -1} after senescence. (author)

  13. RESPONSE OF SESAME PROMISING LINES (Sesamum indicum L. TO NITROGEN IN IRRIGATED WETLAND AFTER PADDY

    Directory of Open Access Journals (Sweden)

    Moch. Romli

    2010-10-01

    Full Text Available An experiment on sesame was conducted in Nganjuk in 2005 to study the response of sesame promising lines to nitrogen in irrigated wetland after paddy. The experiment was arranged in factorial randomized block design with two factors and three replications. The first factor were two sesame lines (Si.25, Si.28 and Sbr.1 variety as control, whereas the second were five N dosage (0; 22.5; 45; 67.5 and 90 kg N/ha. Result showed that sesame in irrigated land after paddy was response to N. The respective optimum N dosages for irrigated wetland after paddy were: 83.34 kg/ha for Si.28, and 42.20 kg/ha for Sbr.1. The best N dosage for Si.25 was 22.5 kg N/ha. The superior line for irrigated land after paddy is Si.28.

  14. Microarray and growth analyses identify differences and similarities of early corn response to weeds, shade, and nitrogen stress

    Science.gov (United States)

    Weed interference with crop growth is often attributed to water, nutrient, or light competition; however, specific physiological responses to these stresses are not well described. This study’s objective was to compare growth, yield, and gene expression responses of corn to nitrogen (N), low light (...

  15. Methods to classify maize cultivars in use efficiency and response to nitrogen

    Directory of Open Access Journals (Sweden)

    Cleiton Lacerda Godoy

    2013-10-01

    Full Text Available n plant breeding programs that aim to obtain cultivars with nitrogen (N use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1 in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.

  16. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Science.gov (United States)

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  17. Increasing fermentation efficiency at high sugar concentrations by supplementing an additional source of nitrogen during the exponential phase of the tequila fermentation process.

    Science.gov (United States)

    Arrizon, Javier; Gschaedler, Anne

    2002-11-01

    In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.

  18. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  19. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    Science.gov (United States)

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  20. Response of Cotton (Gossypium Hirsutum L.) to Nitrogen Phosphorous Fertilizers in Western Kenya

    International Nuclear Information System (INIS)

    Kouko, W.O; Owino, G.

    1999-01-01

    The requirements for nitrogen and phosphorous fertilizers for growing cotton (Gossypium hirsutum L.) in Kenya are 26-kg N ha - 1 and 27 kg P ha - 1, respectively. Calcium ammonium nitrate (CAN) was recommended at the rate of 100 kg ha - 1 for black cotton soils while double superphosphate (DSP) was recommended at the rate of 150 kg ha - 1 on reddish brown clays. However, experiments conducted on a major soil types on which cotton is grown in Kenya showed that, soil colour is not the best indicator of nutrients supply power of the soil. It was found that Verto-eutric planosols of National Fibre Research Centres-Kibos requires application of 13-kg ha - 1 as CAN for optimal yields. Ferralo-eurtric Acrisols of Alupe Agricultural Research Sub-Centre, Busia needed 26-kg N ha - 1 and 9 kg P ha - 1 to give high yields. At Siaya FTC 9 kg P ha - 1 was adequate in providing the highest yields without nitrogen. Strict observation of recommended agronomic practices for growing cotton and good soil management practices for growing cotton and good soil management practices were observed a prerequisite for high response and efficient utilisation of fertilizers

  1. Elevated CO2 and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability.

    Science.gov (United States)

    Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise

    2018-05-01

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.

  2. Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.

    Science.gov (United States)

    Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A

    2017-08-01

    Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non

  3. Evaluation of Physiological Responses of Maize Hybrids to different Nitrogen levels in Kerman Province, Iran

    Directory of Open Access Journals (Sweden)

    M Madadizadeh

    2017-10-01

    Full Text Available Introduction Nitrogen is one of the most abundant elements on earth and major essential for crop growth and development that is heavily used in modern agriculture to maximize yields. Among cereals, maize (Zea mays L. is an important food and feed crop which ranks third after wheat and rice in the world. As N fertilizer costs remain relatively high and environmental concerns over excessive N application increase, the objectives of the present study were: (i to compare maize hybrids growth and yield responses to N rates, (ii to determine optimum N rate for maize grain yield production, (iii to explore the physiological functions controlling maize growth and yield and (iv to identify more effective physiological indices in maize grain production under N stress as well as potential condition. Materials and Methods Two field experiments were conducted in 2014 and 2015 at the Experimental Field of Kerman Agricultural and Natural Resources Research Center, Kerman, Iran. The experiment was laid out as a randomized complete block design with factorial arrangement of treatments and three replications. Four nitrogen rates (0, 92, 220 and 368 kg N ha-1 were applied to three maize hybrids (KSC 704, Maxima and TWC 604. Statistical analysis was done using SAS software (version 9.4. Results and Discussion Due to a significant lack of homogeneity of variance across the two years, data from the two years were treated as independent experiments and analyzed separately. Results showed that both N rates and hybrids had significant effect on growth indices and maize grain yield. The interaction between genotype and N rate was significant for grain yield in 2015 (P < 0.01. Thus, physical slicing was used to do mean comparison. Results showed that KSC 704 and Maxima had quite similar responses to N rates and with an increase in N fertilization, their grain yield also increased. This response, however, was different in case of TWC 604 so that 92 kg N ha-1 showed maximum

  4. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    International Nuclear Information System (INIS)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo

    2014-01-01

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr 2 N are the key points of this study. The primary results of this study are as follows. The addition of N 2 to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N 2 decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N 2 gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion

  5. Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Jin; Jeon, Soon-Hyeok; Kim, Soon-Tae; Lee, In-Sung; Park, Yong-Soo [Yonsei University, Seoul (Korea, Republic of)

    2014-03-15

    Duplex stainless steels with nearly equal fraction of the ferrite(α) phase and austenite(γ) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE= wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of α-phase and γ-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of Cr{sub 2}N are the key points of this study. The primary results of this study are as follows. The addition of N{sub 2} to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the α-phase to γ-phase, increasing the fraction of γ-phase as well as decreasing the precipitation of Cr2N. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing N{sub 2} decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of γ-phase and the stability of passive film according to the addition N{sub 2} gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

  6. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  7. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    DEFF Research Database (Denmark)

    Salo, T J; Palosuo, T; Kersebaum, K C

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen......, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area...... ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi...

  8. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-05-19

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.

  9. Geographically distinct Ceratophyllum demersum populations differ in growth, photosynthetic responses and phenotypic plasticity to nitrogen availability

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Sorrell, Brian Keith; Olesen, Birgit

    2012-01-01

    from New Zealand (NZ) and a noninvasive population from Denmark (DK). The populations were compared with a focus on both morphological and physiological traits. The NZ population had higher relative growth rates (RGRs) and photosynthesis rates (Pmax) (range: RGR, 0.06–0.08 per day; Pmax, 200–395 µmol O......2 g–1 dry mass (DM) h–1) compared with the Danish population (range: RGR, 0.02–0.05 per day; Pmax, 88–169 µmol O2 g–1 DM h–1). The larger, faster-growing NZ population also showed higher plasticity than the DK population in response to nitrogen in traits important for growth. Hence, the observed...... differences in growth behaviour between the two populations are a result of genetic differences and differences in their level of plasticity. Here, we show that two populations of the same species from similar climates but different geographical areas can differ in several ecophysiological traits after growth...

  10. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  11. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences

    International Nuclear Information System (INIS)

    Nohrstedt, H.Oe.

    2001-01-01

    Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m 3 /ha is obtained during a 10 yr period following an application of 150 kg N/ha. Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N/ha has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t/ha) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote

  12. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  13. Beyond the Call of Duty: A Qualitative Study of Teachers' Additional Responsibilities Related to Sexuality Education

    Science.gov (United States)

    Eisenberg, Marla E.; Madsen, Nikki; Oliphant, Jennifer A.; Resnick, Michael

    2011-01-01

    Seven focus groups were conducted with sexuality educators in Minnesota to explore ways that teaching sexuality education differs from teaching other health education content and to determine if additional supports or resources are needed for sexuality educators. Teachers described many specific additional responsibilities or concerns related to…

  14. Whole plant acclimation responses by finger millet to low nitrogen stress

    Directory of Open Access Journals (Sweden)

    Travis Luc Goron

    2015-08-01

    Full Text Available The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn, is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen, or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia that this crop can survive extreme environments.

  15. Whole plant acclimation responses by finger millet to low nitrogen stress.

    Science.gov (United States)

    Goron, Travis L; Bhosekar, Vijay K; Shearer, Charles R; Watts, Sophia; Raizada, Manish N

    2015-01-01

    The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn), is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen (N), or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal species. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root, and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia, where it is reported that this crop can survive extreme environments.

  16. The Effects of Nitrogen Addition on the Uptake and Allocation of Macro- and Micronutrients in Bothriochloa ischaemum on Loess Plateau in China

    Directory of Open Access Journals (Sweden)

    Zemin Ai

    2017-08-01

    Full Text Available The effects of nitrogen (N addition on the macro- and micronutrient concentrations, storage, and allocation of Bothriochloa ischaemum (L. Keng, a native forage plant on the Loess Plateau in China remain unclear. We studied the effects of N addition at 0 (CK, 2.5 (N1, 5.0 (N2, and 10.0 (N3 g N m-2 y-1. N addition significantly decreased the available copper (Cu, zinc (Zn, and total Cu concentration, but significantly increased the available iron concentration in the soil. Cu, manganese (Mn, and sodium (Na concentrations in aboveground tissues and potassium (K, magnesium, and Zn concentrations in belowground tissues significantly increased with N addition. Calcium (Ca concentrations in belowground tissues decreased significantly. The ratios of above- to belowground Ca, Cu, Zn, and Mn significantly increased with N addition. The maximum ratios appeared at N2 for Cu, Zn, and Mn. The aboveground, belowground, and total biomass storage of studied nutrients significantly changed with N addition, and most attained maximum values under N2 treatment. The storage ratios of above- to belowground Cu, Zn, Mn, and Na attained maximum values at N2. We conclude that N addition significantly, but differentially influence the macro- and micronutrient concentrations and storage in B. ischaemum. B. ischaemum allocated and accumulated increased macro- and micronutrients to its aboveground tissues and exhibited high total storage when the amount of N addition reached 5 g N m-2 y-1.

  17. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand

    Directory of Open Access Journals (Sweden)

    Taiki Mori

    2017-04-01

    Full Text Available An incubation experiment was conducted to test the effects of phosphorus (P addition on nitrous oxide (N2O emissions and methane (CH4 uptakes, using tropical tree plantation soils in Thailand. Soil samples were taken from five forest stands—Acacia auriculiformis, Acacia mangium, Eucalyptus camaldulensis, Hopea odorata, and Xylia xylocarpa—and incubated at 80% water holding capacity. P addition stimulated N2O emissions only in Xylia xylocarpa soils. Since P addition tended to increase net ammonification rates in Xylia xylocarpa soils, the stimulated N2O emissions were suggested to be due to the stimulated nitrogen (N cycle by P addition and the higher N supply for nitrification and denitrification. In other soils, P addition had no effects on N2O emissions or soil N properties, except that P addition tended to increase the soil microbial biomass N in Acacia auriculiformis soils. No effects of P addition were observed on CH4 uptakes in any soil. It is suggested that P addition on N2O and CH4 fluxes at the study site were not significant, at least under laboratory conditions.

  18. Application of Response Surface Methodology for Optimization of Urea Grafted Multiwalled Carbon Nanotubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    Directory of Open Access Journals (Sweden)

    Norazlina Mohamad Yatim

    2016-01-01

    Full Text Available Efficient use of urea fertilizer (UF as important nitrogen (N source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nanocarrier is developed based on functionalized multiwall carbon nanotubes (f-MWCNTs grafted with UF to produce urea-multiwall carbon nanotubes (UF-MWCNTs for enhancing the nitrogen uptake (NU and use efficiency (NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10–0.60 wt% and functionalization reflux time (12–24 hrs with the corresponding responses (NUE, NU were structured via the Response Surface Methodology (RSM based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (p value < 0.05 for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  19. Application of Response Surface Methodology for Optimization of Urea Grafted Multi walled Carbon Nano tubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    International Nuclear Information System (INIS)

    Yatim, N. M.; Shaaban, A.; Dimin, M. F.; Yusof, F.; Abo Razak, J.

    2016-01-01

    Efficient use of urea fertilizer (UF) as important nitrogen (N) source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nano carrier is developed based on functionalized multi wall carbon nano tubes (f-MWCNTs) grafted with UF to produce urea-multi wall carbon nano tubes (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and use efficiency (NUE). The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10-0.60 wt%) and functionalization reflux time (12-24 hrs) with the corresponding responses (NUE, NU) were structured via the Response Surface Methodology (RSM) based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (Þ value < 0.05) for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  20. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies

    Science.gov (United States)

    Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, Jill S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R.

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on freshwater biota, and eutrophication of coastal marine waters. Elevated nitrate (NO3/-) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient ratios in foliage (i.e., N:Mg, N:P), foliar accumulation of amino acids or NO3/-, and low soil C:N ratios. Recent nitrogen-fertilization studies in New England and Europe provide preliminary evidence that some forests receiving chronic N inputs may decline in productivity and experience greater mortality. Long-term fertilization at Mount Ascutney, Vermont, suggests that declining and slow N-cycling coniferous stands may be replaced by fast-growing and fast N-cycling deciduous forests. Symptoms of N saturation are particularly severe in high-elevation, nonaggrading spruce-fir ecosystems in the Appalachian Mountains and in eastern hardwood watersheds at the Fernow Experimental Forest near Parsons, West Virginia. In the Los Angeles Air Basin, mixed conifer forests and chaparral watersheds with high smog exposure are N saturated and exhibit the highest streamwater NO3/- concentrations for wildlands in North America. High-elevation alpine watersheds in the Colorado Front Range and a deciduous forest in Ontario, Canada, are N saturated, although N deposition is moderate (~8 kg??ha-1??yr-1). In contrast, the Harvard Forest hardwood stand in Massachusetts has absorbed >900 kg N/ha during 8 yr of N amendment studies without significant NO3/- leaching

  1. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental....... Plants grown under elevated CO2 absorbed ammonia from the atmosphere, except with a high ammonium supply. GLN1;2 had a non-redundant role in determining vegetative growth and ammonium tolerance in response to elevated CO2. Under elevated CO2, GLN1;2 was compensable by GLN2 in assimilating nitrate...

  2. Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition.

    Science.gov (United States)

    Wiedermann, Magdalena M; Gunnarsson, Urban; Ericson, Lars; Nordin, Annika

    2009-01-01

    Here, it was investigated whether Sphagnum species have adjusted their nitrogen (N) uptake in response to the anthropogenic N deposition that has drastically altered N-limited ecosystems, including peatlands, worldwide. A lawn species, Sphagnum balticum, and a hummock species, Sphagnum fuscum, were collected from three peatlands along a gradient of N deposition (2, 8 and 12 kg N ha(-1) yr(-1)). The mosses were subjected to solutions containing a mixture of four N forms. In each solution one of these N forms was labeled with (15)N (namely (15)NH(+)(4), (15)NO(-)(3) and the amino acids [(15)N]alanine (Ala) and [(15)N]glutamic acid (Glu)). It was found that for both species most of the N taken up was from , followed by Ala, Glu, and very small amounts from NO(-)(3). At the highest N deposition site N uptake was reduced, but this did not prevent N accumulation as free amino acids in the Sphagnum tissues. The reduced N uptake may have been genetically selected for under the relatively short period with elevated N exposure from anthropogenic sources, or may have been the result of plasticity in the Sphagnum physiological response. The negligible Sphagnum NO(-)(3) uptake may make any NO(-)(3) deposited readily available to co-occurring vascular plants.

  3. Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sihui Hou

    2018-03-01

    Full Text Available Nitrogen dioxide (NO2 sensors based on organic thin-film transistors (OTFTs were fabricated by conventional annealing (horizontal and vertical annealing processes of organic semiconductor (OSC films. The NO2 responsivity of OTFTs to 15 ppm of NO2 is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO2, while showing a preferential response to NO2 compared with SO2, NH3, CO, and H2S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl-pentacene (TIPS-pentacene films were characterized by atomic force microscopy (AFM in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO2 gas sensing performance.

  4. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    Science.gov (United States)

    Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose

    2005-01-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...

  5. Do soil tests help forecast nitrogen response in first-year corn following alfalfa on fine-textured soils?

    Science.gov (United States)

    Improved methods of predicting grain yield response to fertilizer N for first-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) on fine-textured soils are needed. Data from 21 site-years in the North Central Region were used to (i) determine how Illinois soil nitrogen test (ISNT) and pr...

  6. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  7. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    Science.gov (United States)

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  8. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems

    NARCIS (Netherlands)

    Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J.

    2006-01-01

    Water quality and shrimp production were monitored in extensively managed ponds which were fed a 25% (P25) or 40% (P40) dietary protein, each diet complemented with or without carbohydrate (CH) addition. The experiment was carried out in 6-m3 concrete tanks, with a mud bottom and stocked with 7 post

  9. Effects of water and nutrient addition on the coppice growth response of cut Terminalia sericea

    Directory of Open Access Journals (Sweden)

    Hloniphani Moyo

    2016-07-01

    Full Text Available The ability of a woody plant to coppice and remain vigorous largely depends on the severity of disturbances, resource availability and the mobilisation of stored reserves. There is limited information about the role played by resource limitation on the recovery of cut trees. This study investigated the effects of water and nutrient supplementation on coppice growth responses of resprouting cut trees in a semi-arid savannah in South Africa. Cut trees were exposed to different levels of water and nutrient (nitrogen and phosphorus supplementation over a period of 2 years in a factorial experimental design. We hypothesised that adding water and nutrients would result in an increased coppice growth response and replenishment of stored structural reserves. Adding water and nutrients significantly increased shoot diameter, shoot length and resprouting ratio for the initial 12 months after cutting but not stored structural reserves. Such a response pattern suggests that the initial growth of resprouting shoots may be strongly resource-limited, while resources are concentrated on supporting fewer resprouting shoots compared to a higher number. Conservation implications: If practicing rotational tree harvesting, trees resprouting in resource-poor locations need a longer resting period to recover stored reserves and to also recover lost height after cutting.

  10. Respuesta del trigo a la fertilización nitrogenada y nitroazufrada en suelos arenosos Wheat response to nitrogen and nitrogen with sulfur fertilization in sandy soils

    Directory of Open Access Journals (Sweden)

    Mirian Barraco

    2009-12-01

    Full Text Available Abundantes estudios desarrollados en suelos con texturas gruesas muestran incrementos significativos en la producción de trigo al incrementarse la oferta de nitrógeno (N del suelo y en algunos casos respuestas positivas al agregado de azufre (S. No obstante, la relación entre respuestas a ambos nutrientes y las condiciones de respuesta a la fertilización azufrada no son consistentes. El objetivo de este trabajo fue cuantificar la respuesta de cultivos de trigo a la fertilización con N y con NS y su relación con algunas propiedades edáficas en suelos arenosos. El estudio se desarrolló en 34 sitios de producción de trigo bajo prácticas de labranza cero en la región de la pampa arenosa (Argentina. Se evaluaron 3 tratamientos de nutrición: i control (sin fertilizar, ii 140 kg de N ha-¹ [N suelo (0-40 cm + N fertilizante], iii 140 kg de N ha-¹ [N suelo (0- 40 cm + N fertilizante] + 12 kg de S ha-¹. En todos los sitios se observó respuesta significativa al agregado de N con un incremento promedio de 949 kg ha-¹ con respecto al tratamiento control. Para S, si bien la respuesta media fue de 232 kg ha-¹, sólo en el 38% de los casos (13 sitios se observaron aumentos de rendimiento por la adición de dicho nutriente, relacionándose positivamente con la respuesta a la fertilización con N. Esta respuesta fue independiente de los contenidos de materia orgánica (MO (p = 0,61, de S-S0(4 ²- (p = 0,29, de N-N0(3 - (p = 0,47 disponibles al momento de la siembra o de arena de los suelos (p = 0,90. No obstante, la respuesta disminuyó en la medida que se incrementaron los rendimientos máximos. Se concluye que en sitios deficitarios en N, la respuesta al agregado de S es de mayor magnitud y frecuencia en condiciones de productividad limitada.Numerous studies conducted on coarse-textured soils show, significant and positive wheat yield responses when soil nitrogen (N availability is increased, and occasional positive yield responses to sulfur

  11. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    Science.gov (United States)

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  12. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    Science.gov (United States)

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Thalli Growth, Propagule Survival, and Integrated Physiological Response to Nitrogen Stress of Ramalina calicaris var. japonica in Shennongjia Mountain (China

    Directory of Open Access Journals (Sweden)

    Chuan-Hua Wang

    2018-05-01

    Full Text Available In this study, effects of nitrogen (N availability on growth, survival of Ramalina calicaris var. japonica, and whether it respond nitrogen stress in an integrated physiological way was evaluated. Thalli growth and propagule survival, thalli N and phosphorus (P content, and activity of phosphomonoesterase (PME of R. calicaris var. japonica were determined in a field experiment. Its differentiate adsorption in ammonia and nitrate, the activity of glutamine synthetase (GSA and nitrate reductase (NRA also were investigated in a series of indoor experiments. The results showed that N deposition significantly decreased the growth and survival of this lichen, and the N sensitivity threshold was suggested at 6.0 kg N⋅ha-1⋅y-1. When the N deposition increased from 8.59 kg N⋅ha-1⋅y-1 to 14.24, 20.49, 32.99 and 57.99 kg N⋅ha-1⋅y-1, the growth rates of lichen thalli decreased by 26.47, 39.01, 52.18 and 60.3%, respectively; Whereas the survival rate of the lichen propagules decreased from 92.8% of control (0.0 kg N⋅ha-1⋅y-1 to 10.7% of 50.0 kg N⋅ha-1⋅y-1, when they were treated with 0.00, 6.25, 12.5, 25.0, and 50.0 kg N⋅ha-1⋅y-1 deposition. Compared with an adequate adsorption of ammonium N, no nitrate adsorption occurred when thalli was submerged in solution lower than 0.4 mM. Our results also suggested that thalli total nitrogen, N:P ratio increased with N availability, and the activity of PME was significantly correlated with thalli total nitrogen. These all indicated that phosphorus limitation occurred when R. calicaris var. japonica treated with higher nitrogen deposition. Compared with slightly effects of NRA, GSA of R. calicaris var. japonica responded nitrogen availability significantly; In addition, GSA and NRA negatively correlated with thalli growth rate and propagule survival significantly. These results indicated that nitrogen stress do decrease growth and survival of R. calicaris var. japonica, and lichen would be

  14. Nitrogen Excess in North American Ecosystems: Predisposing Factors, Ecosystem Responses, and Management Strategies

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth; John D. Aber; Jill S. Baron; Bernard T. Bormann; Dale W. Johnson; A. Dennis Lemly; Steven G. McNulty; Douglas F. Ryan; Robert Stottlemyer

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of...

  15. Response of yield and quality of cauliflower varieties (Brassica oleracea var. botrytis) to nitrogen supply

    NARCIS (Netherlands)

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    1999-01-01

    The fertilizer nitrogen (N) inputs to some vegetables such as cauliflower (Brassica oleracea var. botrytis) can be large. One approach to decreasing the input of N may be to select for cultivars efficient in the use of nitrogen. The objective of this investigation was to identify a cultivar which

  16. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    Science.gov (United States)

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Science.gov (United States)

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  18. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Directory of Open Access Journals (Sweden)

    Xiubo Wang

    Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  19. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  20. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    Science.gov (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (warming and negative drying effects on the soil N cycle may counterbalance each other.

  1. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    Science.gov (United States)

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  2. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage

    Directory of Open Access Journals (Sweden)

    Caio Fortes

    2013-01-01

    Full Text Available The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009. Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application. In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows. In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH, and samples were collected in the field for analysis of sugar content (TSH. Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.

  3. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    Science.gov (United States)

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  4. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  5. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    Science.gov (United States)

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  6. Less than 50% nitrogen retention 1-year after high N additions to Pacific Northwest Douglas-fir forests

    Science.gov (United States)

    Michelsen-Correa, S.; Harrison, R. B.

    2017-12-01

    In Pacific Northwest forests, N is known to be a limiting nutrient particularly in Douglas-fir (Pseudotsuga menziesii) ecosystems. Fertilizers are commonly applied to increase productivity in commercially managed forests. Despite known N limitations, Douglas-fir uptake of applied fertilizers is typically low and highly variable depending on environmental site conditions of a particular forest. We measured N recovery within a 1-year time frame at five sites using a fertilizer enriched in 15N as a tracer. Comparisons were also made between Enhanced Efficiency Fertilizers (EEFs) and an unformulated urea fertilizer to determine if N recovery is improved with fertilizers designed to limit volatile losses of ammonia. Retention was low across all sites and fertilizer types with a mean of 39.0% recovered after 1-year. The largest fertilizer pool was the top 20cm of mineral soil. The use of EFFs as a management tool to improve N use efficiency at the five sites in our study is not supported by our results as no significant differences in total 1-year N recovery or tree uptake of N were observed between treatments. The low N recovery after 1-year but simultaneous increases in above ground biomass support a model of N loss where the ecosystem can continue to accumulate biomass with simultaneous leaching and gaseous losses of N. This conclusion contrasts with the commonly held assumption that fertilization of N limited Douglas-fir forests, should yield negligible losses of N and high recovery of the applied fertilizer. Additionally, we conclude that management decisions regarding fertilizer use efficiency and the benefits of fertilization need to be site specific due to the variable N recovery rates based on site factors as opposed to fertilizer treatment type. Finally, despite differences in the size of available soil N pools the amount of N recovered in the above group pools (i.e. bole wood and foliage) were not significantly different between sites. N uptake by the plants

  7. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    Science.gov (United States)

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Additive and Interactive Effects on Response Time Distributions in Visual Word Recognition

    Science.gov (United States)

    Yap, Melvin J.; Balota, David A.

    2007-01-01

    Across 3 different word recognition tasks, distributional analyses were used to examine the joint effects of stimulus quality and word frequency on underlying response time distributions. Consistent with the extant literature, stimulus quality and word frequency produced additive effects in lexical decision, not only in the means but also in the…

  9. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Nam, Tae-hyun [School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); School of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2010-10-15

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of {alpha} phase increases M{sub s} and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M{sub s} and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of {alpha} phase can be attributed to the fact that N is absorbed in {alpha} phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M{sub s} of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of {alpha} phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  10. Effect of nitrogen addition and annealing temperature on superelastic properties of Ti-Nb-Zr-Ta alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Hosoda, Hideki; Nam, Tae-hyun; Miyazaki, Shuichi

    2010-01-01

    Research highlights: In this study, the effects of composition and annealing temperature on microstructure, shape memory effect and superelastic properties were investigated in Ti-Nb-4Zr-2Ta-N alloys by measuring stress-strain curves at various temperatures and using transmission electron microscopy. Dissolution of α phase increases M s and decreases the critical stress for slip for the Ti-22Nb-4Zr-2Ta alloy while it causes the decrease of M s and the increase of the critical stress for slip for the Ti-20Nb-4Zr-2Ta-0.6N alloy. The different effect of dissolution of α phase can be attributed to the fact that N is absorbed in α phase. - Abstract: The composition dependence of the mechanical properties and martensitic transformation behavior of Ti-Nb-4Zr-2Ta-N alloys is investigated. The effect of annealing temperature on the microstructural evolution and superelastic properties in the N-added and N-free alloys is compared. The addition of N decreases M s of Ti-Nb-4Zr-2Ta alloys by about 200 K per 1 at.%N and improves the superelastic properties of Ti-Nb-4Zr-2Ta alloys. The dissolution of α phase increases the martensitic transformation start temperature and decreases the superelastic recovery strain for the N-free alloy, whereas it causes opposite effects for the N-added alloy. The different annealing temperature dependences of superelastic properties are discussed on the basis of microstructure observation.

  11. Tile Drainage Nitrate Losses and Corn Yield Response to Fall and Spring Nitrogen Management.

    Science.gov (United States)

    Pittelkow, Cameron M; Clover, Matthew W; Hoeft, Robert G; Nafziger, Emerson D; Warren, Jeffery J; Gonzini, Lisa C; Greer, Kristin D

    2017-09-01

    Nitrogen (N) management strategies that maintain high crop productivity with reduced water quality impacts are needed for tile-drained landscapes of the US Midwest. The objectives of this study were to determine the effect of N application rate, timing, and fall nitrapyrin addition on tile drainage nitrate losses, corn ( L.) yield, N recovery efficiency, and postharvest soil nitrate content over 3 yr in a corn-soybean [ (L.) Merr.] rotation. In addition to an unfertilized control, the following eight N treatments were applied as anhydrous ammonia in a replicated, field-scale experiment with both corn and soybean phases present each year in Illinois: fall and spring applications of 78, 156, and 234 kg N ha, fall application of 156 kg N ha + nitrapyrin, and sidedress (V5-V6) application of 156 kg N ha. Across the 3-yr study period, increases in flow-weighted NO concentrations were found with increasing N rate for fall and spring N applications, whereas N load results were variable. At the same N rate, spring vs. fall N applications reduced flow-weighted NO concentrations only in the corn-soybean-corn rotation. Fall nitrapyrin and sidedress N treatments did not decrease flo8w-weighted NO concentrations in either rotation compared with fall and spring N applications, respectively, or increase corn yield, crop N uptake, or N recovery efficiency in any year. This study indicates that compared with fall N application, spring and sidedress N applications (for corn-soybean-corn) and sidedress N applications (for soybean-corn-soybean) reduced 3-yr mean flow-weighted NO concentrations while maintaining yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Effects of organic additives with oxygen- and nitrogen-containing functional groups on the negative electrolyte of vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Jianlei; Liu, Suqin; He, Zhangxing; Han, Huiguo; Chen, Yong

    2014-01-01

    DL-malic acid and L-aspartic acid are investigated as additives for the negative electrolyte of vanadium redox flow battery (VFRB) to improve its stability and electrochemical performance. The stability experiments indicate that the addition of L-aspartic acid into the 2 M V(III) electrolyte can stabilize the electrolyte by delaying its precipitation. The results of cyclic voltammetry and electrochemical impedance spectroscopy show that the V(III) electrolyte with both additives demonstrates enhanced electrochemical activity and reversibility. The introduction of DL-malic acid and L-aspartic acid can increase the diffusion coefficient of V(III) species and facilitate the charge transfer of V(III)/V(II) redox reaction. Between the two additives, the effect of L-aspartic acid is more remarkable. Moreover, the VFRB cell employing negative electrolyte with L-aspartic acid exhibits excellent cycling stability and achieves higher average energy efficiency (76.4%) compared to the pristine cell (73.8%). The comparison results with the cell employing L-aspartic acid pre-treated electrode confirm that L-aspartic acid in the electrolyte can modify the electrode by constantly providing oxygen- and nitrogen-containing groups, leading to the enhancement of electrochemical performance

  13. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    Science.gov (United States)

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  14. Site-Specific Multilevel Modeling of Potato Response to Nitrogen Fertilization

    OpenAIRE

    Serge-Étienne Parent; Michaël A. Leblanc; Annie-Claude Parent; Zonlehoua Coulibali; Léon E. Parent

    2017-01-01

    Technologies of precision agriculture, digital soil maps, and meteorological stations provide a minimum data set to guide precision farming operations. However, determining optimal nutrient requirements for potato (Solanum tuberosum L.) crops at subfield scale remains a challenge given specific climatic, edaphic, and managerial conditions. Multilevel modeling can generalize yield response to fertilizer additions using data easily accessible to growers. Our objective was to elaborate a multile...

  15. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, T., E-mail: ftibi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Ponta, M., E-mail: mponta@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, A.I., E-mail: alinblaj2005@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Darvasi, E., E-mail: edarvasi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, M., E-mail: frentiu.maria@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, E., E-mail: emilcordos@gmail.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2010-07-15

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A{sup 2{Sigma}+} {yields} X{sup 2{Pi}}) and N{sub 2} second positive system (C{sup 3{Pi}}{sub u} {yields} B{sup 3{Sigma}}{sub g}) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH{sub 4} addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH{sub 4} molecule and the collisions of the second kind between nitrogen excited molecules and CH{sub 4}, respectively. The decrease of the emission of N{sub 2} second positive system in the presence of CH{sub 4} is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min{sup -1} Ar with addition of 7.5 ml min{sup -1} CH{sub 4}, the molecular emission of OH and N{sub 2} was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH{sub 2} species was not observed in the emission spectrum of Ar/CH{sub 4} plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml{sup -1}, 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  16. Pelagic Nitrogen Cycle Observations In The Arctic Ocean - How Might They Change In Response To Ocean Acidification?

    Science.gov (United States)

    Clark, D. R.; Rees, A.; Brown, I.; Al-Moosawi, L.; Cripps, G.

    2016-02-01

    Phytoplankton forms the base of marine food webs by assimilating nutrients and generating biomass that supports higher trophic levels. Conversely, marine heterotrophs degrade organic matter produced by phytoplankton and recycle nutrients, maintaining food web integrity. We investigated the assimilation and regeneration of dissolved inorganic nitrogen (DIN) at stations located in the Arctic Ocean. In addition, we measured the concentration of nitrous oxide, a by-product of N-regeneration (specifically nitrification) and a climatically active gas. Measurements demonstrated the simultaneous regeneration and assimilation of ammonium, nitrite and nitrate at open ocean, ice-edge and within-ice locations. Ammonium was regenerated and assimilated within the range 0.2-4.5 nmol·L-1·h-1 and 0.5-24.8 nmol·L-1·h-1 respectively. Nitrite was regenerated and assimilated within the range 0.1-9.2 nmol·L-1·h-1 and 0.0-6.9 nmol·L-1·h-1 respectively. Nitrate was regenerated and assimilated within the range 0.3-372.7 nmol·L-1·h-1 and 0.1-48.3 nmol·L-1·h-1 respectively. Results indicated that the ice-edge was associated with enhanced DIN assimilation. The concentration of nitrous oxide (oxidation and the concentration of nitrous oxide did not respond in a clear or consistent way to OA treatments. In contrast, the regeneration of NH4+ increased in response to elevated PCO2. The bacterial degradation of organic matter may be enhanced in the Arctic Ocean in response to OA, potentially modifying DIN pool composition and concentration in the future.

  17. [Response of Algae to Nitrogen and Phosphorus Concentration and Quantity of Pumping Water in Pumped Storage Reservoir].

    Science.gov (United States)

    Wan, You-peng; Yin, Kui-hao; Peng, Sheng-hua

    2015-06-01

    Taking a pumped storage reservoir located in southern China as the research object, the paper established a three-dimensional hydrodynamic and eutrophication model of the reservoir employing EFDC (environmental fluid dynamics code) model, calibrated and verified the model using long-term hydraulic and water quality data. Based on the model results, the effects of nitrogen and phosphorus concentrations on the algae growth were analyzed, and the response of algae to nitrogen and phosphorus concentration and quantity of pumping water was also calculated. The results showed that the nitrogen and phosphorus concentrations had little limit on algae growth rate in the reservoir. In the nutrients reduction scenarios, reducing phosphorus would gain greater algae biomass reduction than reducing nitrogen. When reducing 60 percent of nitrogen, the algae biomass did not decrease, while 12.4 percent of algae biomass reduction could be gained with the same reduction ratio of phosphorus. When the reduction ratio went to 90 percent, the algae biomass decreased by 17.9 percent and 35.1 percent for nitrogen and phosphorus reduction, respectively. In the pumping water quantity regulation scenarios, the algae biomass decreased with the increasing pumping water quantity when the pumping water quantity was greater than 20 percent of the current value; when it was less than 20 percent, the algae biomass increased with the increasing pumping water quantity. The algae biomass decreased by 25.7 percent when the pumping water quantity was doubled, and increased by 38.8 percent when it decreased to 20 percent. The study could play an important role in supporting eutrophication controlling in water source area.

  18. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    Science.gov (United States)

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  19. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    Science.gov (United States)

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  20. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress.

    Science.gov (United States)

    Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming

    2016-03-01

    QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.

  1. Response of Pearl Millet to nitrogen as affected by water deficit

    OpenAIRE

    Diouf , O.; Brou , Yao Télesphore; Diouf , M.; Sarr , B.; Eyletters , M.; Roy-Macauley , H.; Delhaye , J.

    2004-01-01

    International audience; In the Sahelian zone, low soil N could be as limiting as drought in pearl millet production. Although growth and crop productivity depend on several biochemical reactions in which the nitrogen metabolism plays a great role, there is little information available on how N uptake and key enzymes, nitrate reductase and glutamine synthetase, are affected by nitrogen and water interaction in millet. For this purpose, the millet variety cv. Souna III was grown in the field du...

  2. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2014-05-01

    Full Text Available The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i responsible minerals supply chains and (ii additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores future interlinked questions which arise in the circular economy for responsible supply chains, additive manufacturing, and metals recycling. For example, where do mined and recycled resources fit in responsible supply chains as inputs to responsible production? What is required to ensure 3D production systems are resource efficient? How could more distributed models of production, enabled by additive manufacturing, change the geographical scale at which it is economic or desirable to close the loop? Examples are given to highlight the need for an integrated research agenda to address these questions and to foster Australian opportunities in the circular economy.

  3. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Energy Technology Data Exchange (ETDEWEB)

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  4. Nitrogen utilization efficiency and yield response of drip-irrigated tomatoes grown in the glass house

    International Nuclear Information System (INIS)

    Elinc, F.; Deviren, A.; Oeztuerk, A.

    1996-01-01

    This greenhouse study conducted on a Mediterranean Terra Rose soil, as a single crop production, heated only for anti frost, was designed to investigate the response of drip-irrigated tomatoes (Lycopersicon esculentum Mill.) to four nitrogen levels continually applied with the irrigation stream. Water containing 0, 50, 100 or 150 mgN/l and uniformly supplied with 60 and 180 mg/l of P and K, respectively, were applied two times a week. Three adjacent plants in each plot were fertigated with N 15 labeled NH 4 S 2 O 4 (2% a.e. enrichment). For each plant the amount of water, P,K and the N 15 applied through the bottles was equivalent to that amount applied through a single dripper. These treatments were compared with banded application of NH 4 S 2 O 4 at the rate of 400 kgN/ha that was equivalent to 100 mgN/l treatment. The resulting N application totals ranged from 200 to 600 kgN/ha.The total amount of water applied was 427mm. The results obtainedshowed that the percentage fertilizer utilization by the tomatoes was the highest in 50 mgN/l (200 kgN/ha) treatment, 100 mgN/l (400 kgN/ha) treatment, was on the second row, the percentage fertilizer utilization in 150 mgN/l (600 kgN/ha) and soil applications (400 kgN/ha) were the same and were significantly lower than the other treatments. The highest yield was achieved in the 100 and 150 mgN/l (400 and 600 kgN/ha) treatments. This experiment demonstrated that the amount of N fertilizer by applying in the irrigation water is to be recommended 100 mgN/l for tomatoes to obtain high yield in production under greenhouse conditions

  5. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  6. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  7. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum.

    Science.gov (United States)

    Bonnot, Titouan; Bancel, Emmanuelle; Alvarez, David; Davanture, Marlène; Boudet, Julie; Pailloux, Marie; Zivy, Michel; Ravel, Catherine; Martre, Pierre

    2017-09-01

    Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region.

    Science.gov (United States)

    Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin

    2018-04-15

    Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Science.gov (United States)

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  10. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis.

    Science.gov (United States)

    Chen, Lianghua; Han, Ying; Jiang, Hao; Korpelainen, Helena; Li, Chunyang

    2011-10-01

    Populus yunnanensis was employed as a model species to detect sexual differences in growth, physiological, biochemical, and ultrastructural responses to cadmium (Cd) stress, nitrogen (N) deposition, and their combination. Compared with the control conditions, Cd decreased plant biomass, damaged the photosynthetic apparatus, visible as a decreased maximum efficiency of photosystem II (PSII; F(v)/F(m)) and effective quantum yield of PSII (Yield), depressed gas exchange capacity, and induced oxidative stress, visible as the disruption of antioxidative enzymes and accumulation of reactive oxygen species (ROS), in both sexes. On the other hand, Cd toxicity was mitigated by the recovery of gas exchange capacity, a decrease in ROS, and improvement of the redox imbalance in both sexes when N deposition was applied. However, males showed a higher gas exchange capacity, lower enzyme inhibition and ROS accumulation, stronger abilities to maintain cellular redox homeostasis, and a better maintenance of chloroplast ultrastructure than did females when exposed to Cd stress alone. Although males exhibited a higher Cd content in leaves than did females, males also accumulated higher levels of non-protein thiols (NP-SHs) and free amino acids (FAAs) for detoxification than did females. Sexual differences induced by Cd, visible, for example, in F(v)/F(m), Yield, net photosynthesis rate (A), and stomatal conductance (g(s)), decreased under N deposition, as no significant differences between the sexes existed in these parameters under the combined treatment. The results indicated that females are more sensitive to Cd stress and suffer more injuries than do males. Moreover, N deposition can mitigate Cd toxicity and decrease sexual differences in Cd sensitivity.

  11. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  12. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Science.gov (United States)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  13. Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.

    Science.gov (United States)

    Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf

    2014-02-18

    Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.

  14. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  15. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  16. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3--N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  17. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings.

    Directory of Open Access Journals (Sweden)

    Aobo Huang

    Full Text Available The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60 were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS, chlorophyll a-b binding protein (CAB and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B, malate dehydrogenase (OsMDH and lysine and histidine specific transporter 1 (OsLHT1. Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3 and pleiotropic drug resistance 9 (OsPDR9, were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.

  18. [Nitrogen input altered testate amoebae community in peatland of Sanjiang Plain, Northeast China].

    Science.gov (United States)

    Song, Li-hong; Yan, Xiu-min; Wang, Ke-hong; Zhu, Xiao-yan; Wu, Dong-hu

    2015-02-01

    In the present study, an in situ control experiment was carried out to explore the response of testate amoebae to exogenous nitrogen addition in peatland of Sanjiang Plain. The results showed that nitrogen addition increased the biomass of testate amoebae at lower levels (6 g N · m(-2)), while decreased it at higher levels (> 12 g N · m(-2)). At genus level, nitrogen addition significantly increased the biomass of Arcella and Phryganella, decreased the biomass of Euglypha. Only lower nitrogen addition significantly increased the biomass of Centropyxis. At species level, nitrogen addition significantly decreased the biomass of Euglypha rotunda, while the biomass of either Centropyxis cassis or Phryganella acropodia was increased by a lower nitrogen addition treatment. This study suggested that the response of peatland testate amoebae to nitrogen addition was species specific, which could potentially be used as an indicator for the environment of peatlands.

  19. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  20. Corroborating tomographic defect metrics with mechanical response in an additively manufactured precipitation-hardened stainless steel

    Science.gov (United States)

    Madison, Jonathan D.; Underwood, Olivia D.; Swiler, Laura P.; Boyce, Brad L.; Jared, Bradley H.; Rodelas, Jeff M.; Salzbrenner, Bradley C.

    2018-04-01

    The intrinsic relation between structure and performance is a foundational tenant of most all materials science investigations. While the specific form of this relation is dictated by material system, processing route and performance metric of interest, it is widely agreed that appropriate characterization of a material allows for greater accuracy in understanding and/or predicting material response. However, in the context of additive manufacturing, prior models and expectations of material performance must be revisited as performance often diverges from traditional values, even among well explored material systems. This work utilizes micro-computed tomography to quantify porosity and lack of fusion defects in an additively manufactured stainless steel and relates these metrics to performance across a statistically significant population using high-throughput mechanical testing. The degree to which performance in additively manufactured stainless steel can and cannot be correlated to detectable porosity will be presented and suggestions for performing similar experiments will be provided.

  1. Agronomic performance and chemical response of sunflower ( Helianthus annuus L.) to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Helmy, A. M.; Fawzy Ramadan, M. F.

    2009-07-01

    Sunflower ( Helianthus annuus L.) is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt) during the 2005 season. The objective of this research was to determine the effect of organic nitrogen (ON) sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS) as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macro nutrients by sunflowers grown on sandy soil.The treatments of chicken manure (CM) and a mixture of farmyard manure (FYM) with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR)> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N), phosphorus (P) and potassium (K) by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control. (Author) 58 refs.

  2. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Cooper, James W; Kunert, Karl J; Foyer, Christine H

    2015-04-01

    Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  4. Molecular analysis of physiological responses to changes in nitrogen in a marine macroalga, Porphyra yezoensis (Rhodophyta).

    Science.gov (United States)

    Kakinuma, M; Coury, D A; Nakamoto, C; Sakaguchi, K; Amano, H

    2008-12-01

    The rhodophyte seaweed Porphyra yezoensis, known more commonly world-wide as "nori", is an important commercial crop in Japan. Cultivation of nori in Japan is often affected by outbreaks of "iroochi", a discoloration of the thalli due to a decrease in inorganic nutrients in the culture area that in turn decreases the amount of photosynthetic pigments in the thalli. Treating thalli with inorganic nitrogen can reverse iroochi. In this paper, we report on the characterization of three P. yezoensis genes, a nitrate transporter (PyNRT2) and two urea transporters (PyUT1 and PyUT2), which may be involved in reversing iroochi. The predicted length of the PyNRT2 protein was 479 amino acids (AA), while PyUT1 and PyUT2 were 740 and 680 AA, respectively. PyNRT2 was more similar to NRT2 from a chromophyte than to NRTs from Chlamydomonas and higher plants. The two P. yezoensis UTs had 56% AA identity to each other, and showed the closest relationship to higher plant and yeast DUR3 proteins which formed a subfamily of the sodium-solute symporter protein family. Hydrophobicity plots of the AA sequences showed that the PyNRT2, PyUT1, and PyUT2 included 12, 15, and 16 transmembrane domains, respectively. Southern blot analysis indicated that the P. yezoensis genome has a single NRT2-encoding gene and at least four UT-encoding genes. Expression analysis of PyNRT2 and PyUT genes showed that the messenger RNA level of the PyNRT2 gene reached a maximum after 48 h in the nitrate starvation condition and was then restored to the constitutive level, while expression of the PyUT genes was induced in proportion to treatment times in the nitrate starvation condition. These results suggest that the PyNRT2 and PyUT are responsible for the high-affinity nitrate/urea transport systems that operate under low external nitrate concentrations.

  5. Ecological Responses to Five Years of Experimental Nitrogen Application in an Upland Jack-pine Stand

    Science.gov (United States)

    Melaschenko, N.; Berryman, S.; Straker, J.; Berg, K.; McDonough, A.; Watmough, S. A.

    2016-12-01

    A five-year experimental study was conducted to evaluate the response of an upland jack-pine (Pinus banksiana) forest to elevated levels of nitrogen (N) deposition in Northern Alberta. N deposition in the region is expected to increase with industrial expansion of oil sands activity, and there is regional interest to set N critical loads for sensitive ecosystems. In this study, N was applied as NH4NO3 above a jack-pine canopy via helicopter, annually for five years (2010-2015) at dosages equivalent to 5, 10, 15, 20 and 25 kg N ha-1 yr-1. Approximately 35% of the applied N was retained in the canopy while 65% reached understory vegetation dominated by lichens and mosses. We measured a significant increase in tissue N concentrations of common ground lichens (Cladonia mitis and C. stellaris) and ground moss (Pleurozium schreberi) as well as epiphytic lichens (Hypogymnia physodes and Evernia mesomorpha). On an annual basis, the applied N was primarily captured in the lichen and moss understory, dominated by C. mitis. In the highest treatments, N concentrations in C. mitis were 1.5-2.5 times greater than pre-treatment values. Peak N concentrations in the ground moss Pleurozium schreberi (1.4%) indicate that a threshold of N saturation was reached by year 3. We observed no changes in community composition of vascular and non-vascular plants, or changes in vascular plant tissue N. Chlorophyll levels in C. mitis increased with N treatment, but there was no indication of toxicity or changes to decomposition and growth. After five years of N application, only Peltigera polydactylon, a ground cyanolichen, appeared to be negatively impacted where the thalli showed necrosis at deposition loads >10kg N ha-1 yr-1. No changes to biomass or N ecosystem processes were observed. Based on these observations, we provide evidence that the first adverse ecological effects of N deposition in jack-pine stands occurred at deposition rates of 10 kg N ha-1 yr-1.

  6. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro.

    Science.gov (United States)

    Meise, Philipp; Jozefowicz, Anna Maria; Uptmoor, Ralf; Mock, Hans-Peter; Ordon, Frank; Schum, Annegret

    2017-08-23

    Aiming at a better understanding of the physiological and biochemical background of nitrogen use efficiency, alterations in the shoot proteome under N-deficiency were investigated in two contrasting potato genotypes grown in vitro with 60 and 7.5mM N, respectively. A gel based proteomic approach was applied to identify candidate proteins associated with genotype specific responses to N-deficiency. 21% of the detected proteins differed in abundance between the two genotypes. Between control and N-deficiency conditions 19.5% were differentially accumulated in the sensitive and 15% in the tolerant genotype. 93% of the highly N-deficiency responsive proteins were identified by MALDI TOF/TOF mass spectrometry. The major part was associated with photosynthesis, carbohydrate metabolism, stress response and regulation. Differential accumulation of enzymes involved in the Calvin cycle and glycolysis suggest activation of alternative carbohydrate pathways. In the tolerant genotype, increased abundance under N-deficiency was also found for enzymes involved in chlorophyll synthesis and stability of enzymes, which increase photosynthetic carbon fixation efficiency. Out of a total of 106 differentially abundant proteins, only eight were detected in both genotypes. Our findings suggest that mutually responsive proteins reflect universal stress responses while adaptation to N-deficiency in metabolic pathways is more genotype specific. Nitrogen losses from arable farm land considerably contribute to environmental pollution. In potato, this is a special problem due cultivation on light soils, irrigation and the shallow root system. Therefore, breeding of cultivars with improved nitrogen use efficiency and stable yields under reduced N fertilization is an important issue. Knowledge of genotype dependent adaptation to N-deficiency at the proteome level can help to understand regulation of N efficiency and development of N-efficient cultivars. Copyright © 2017 Elsevier B.V. All rights

  7. A Long-term Forest Fertilization Experiment to Understand Ecosystem Responses to Atmospheric Nitrogen Deposition

    Science.gov (United States)

    Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.

    2016-12-01

    Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one

  8. Response to different rates of nitrogen by five varieties of swamp rice

    African Journals Online (AJOL)

    A field experiment was conducted in 2011 and 2012 in Ini Local Government Area of Akwa Ibom State, Nigeria; mainly to determine the optimum nitrogen fertilizer rate for the area as well as select the rice varieties that responded optimally. A split plot design was used with five N rates (0, 50, 100, 150and 200kg/ha) as the ...

  9. Response of Soil Bulk Density and Mineral Nitrogen to Harvesting and Cultural Treatments

    Science.gov (United States)

    Minyi Zhou; Mason C. Carter; Thomas J. Dean

    1998-01-01

    The interactive effects of harvest intensity, site preparation, and fertilization on soil compaction and nitrogen mineralization were examined in a loblolly pine (Pinus taeda L.) stand growing on a sandy, well-drained soil in eastern Texas. The experimental design was 2 by 2 by 2 factorial, consisting of two harvesting treatments (mechanical whole-...

  10. Prescribed fire, soil inorganic nitrogen dynamics, and plant responses in a semiarid grassland

    Science.gov (United States)

    David J. Augustine; Paul Brewer; Dana M. Blumenthal; Justin D. Derner; Joseph C. von Fischer

    2014-01-01

    In arid and semiarid ecosystems, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through direct effects on plant meristem mortality. We examined effects of annual and triennial prescribed fires conducted in early spring on soil moisture, temperature, and N, plant growth, and plant N content...

  11. Within-field Corn Nitrogen Response Related to Aerial Photograph Color

    Science.gov (United States)

    Precision agriculture management of nitrogen (N) using aerial imagery of corn [Zea mays L.] canopy color has been a proposed strategy to understand crop N health and base within-season N fertilizer application rates. The objective of this study was to evaluate at field scale the relationship between...

  12. Macrophyte Community Response to Nitrogen Loading and Thermal Stressors in Rapidly Flushed Mesocosm Systems

    Science.gov (United States)

    Increased nitrogen loading has been directly linked to the proliferation of planktonic and macroalgal blooms at a global scale with negative impacts on estuarine ecology and human health. Under excessive anthropogenic nutrient loads, seagrass systems can be replaced by either ma...

  13. Preservation of Meloidogyne hapla and M. chitwoodi in liquid nitrogen: Differences in response between populations

    NARCIS (Netherlands)

    Beek, van der J.G.; Veldhuis, W.B.J.; ZijIstra, C.; Silfhout, van C.H.

    1996-01-01

    A procedure for long-term preservation of gennplasm of Meloidogyne hapla and M. chitwoodi in liquid nitrogen is described, including a pretrearrnenr with 10% ethanediol for 2 h at room temperature and 40 % ethanecliol for 45 min on ice. Survival rates ranged from 45 to 98 % with an average of 75 %.

  14. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  15. Seedling geranium response to nitrogen deprivation and subsequent recovery in hydroponic culture

    Science.gov (United States)

    Nitrogen (N) fertilization recommendations to achieve optimum growth are well established for most floricultural crops. While it has been shown that plant functions can recover from N-deficiency in other crops, little research has investigated the threshold beyond which a bedding plant crop is reco...

  16. Can the responses of photosynthesis and stomatal conductance to water and nitrogen stress combinations be modeled using a single set of parameters?

    NARCIS (Netherlands)

    Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou

    2017-01-01

    Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental

  17. WHIRLY1 Functions in the Control of Responses to Nitrogen Deficiency But Not Aphid Infestation in Barley.

    Science.gov (United States)

    Comadira, Gloria; Rasool, Brwa; Kaprinska, Barbara; García, Belén Márquez; Morris, Jennifer; Verrall, Susan R; Bayer, Micha; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2015-07-01

    WHIRLY1 is largely targeted to plastids, where it is a major constituent of the nucleoids. To explore WHIRLY1 functions in barley (Hordeum vulgare), RNA interference-knockdown lines (W1-1, W1-7, and W1-9) that have very low levels of HvWHIRLY1 transcripts were characterized in plants grown under optimal and stress conditions. The WHIRLY1-1 (W1-1), W1-7, and W1-9 plants were phenotypically similar to the wild type but produced fewer tillers and seeds. Photosynthesis rates were similar in all lines, but W1-1, W1-7, and W1-9 leaves had significantly more chlorophyll and less sucrose than the wild type. Transcripts encoding specific subsets of chloroplast-localized proteins, such as ribosomal proteins, subunits of the RNA polymerase, and thylakoid nicotinamide adenine dinucleotide (reduced) and cytochrome b6/f complexes, were much more abundant in the W1-7 leaves than the wild type. Although susceptibility of aphid (Myzus persicae) infestation was similar in all lines, the WHIRLY1-deficient plants showed altered responses to nitrogen deficiency, maintaining higher photosynthetic CO2 assimilation rates than the wild type under limiting nitrogen. Although all lines showed globally similar low nitrogen-dependent changes in transcripts and metabolites, the increased abundance of FAR-RED IMPAIRED RESPONSE1-like transcripts in nitrogen-deficient W1-7 leaves infers that WHIRLY1 has a role in communication between plastid and nuclear genes encoding photosynthetic proteins during abiotic stress. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Effects of wood-ash addition on nitrogen turnover in a highly nitrogen loaded spruce site. Final project report; Effekter av askaaterfoering paa kvaeveomsaettningen i ett kvaeverikt granbestaand i Halland. Slutrapport foer projektet

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, H.Oe.; Hoegbom, Lars; Nordlund, Sten [Forestry Research Inst. of Sweden, Uppsala (Sweden)

    2000-04-01

    During two consecutive years, it was studied how a fertilization with 4.2 tonnes pelleted bark ash per ha, made six-seven years earlier, affected soil chemistry, nitrogen turnover and soil-water chemistry on a Norway spruce site in SW Sweden. The actual site has a very acidic soil. At the same time, the supply of inorganic N is rich. Measures against soil acidification, e. g. addition of ash or lime, may significantly influence the turnover of N with a subsequent risk for increased leaching. Thus, there is a potential conflict between two urgent environmental goals, i. e. to decrease acidification and to decrease the N load on aquatic ecosystems. In the humus layer and the upper 5 cm of the mineral soil, pH(H{sub 2}O) had increased with at the most 0.2 units because of the ash addition. The easily extractable amounts of Mg, P and nitrate were slightly increased. The potential nitrification in the humus layer was generally higher in the ash treatment, but the difference. was not statistically significant. The soil water at 50 cm depth was 0.1-0.2 pH-units more acidic where ash had been applied. Simultaneously, there were tendencies for higher concentrations of nitrate, Al and K. This is the first time in Sweden that ash fertilization of a closed forest has given clear indications of an increased N leaching. As expected, the ash fertilization decreased the acidity of the top soil. On the contrary, the runoff became more acidic and more rich in Al. Thus, the ash fertilization has counteracted one of its primary goals, i. e. to produce a runoff less toxic to aquatic life. The acidification of the runoff may partially be because of acid production during nitrification.

  19. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  20. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  1. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Dali Song

    Full Text Available Biochar (BC addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass and urea (U application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC, dissolved organic carbon (DOC, total nitrogen (TN, and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC, TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility.

  2. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gardsjoen, Sweden (NITREX)

    International Nuclear Information System (INIS)

    Moldan, Filip; Wright, Richard F.

    2011-01-01

    The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gardsjoen, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha -1 yr -1 as NH 4 NO 3 to the ambient 9 kg N ha -1 yr -1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO 3 in runoff partially offset the decreasing concentrations of SO 4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g -1 . - Research highlights: → The fraction of input N lost to runoff has increased from 0% to 10%. → Increased concentrations of NO 3 in runoff slowed ecosystem recovery from acid deposition. → About 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. → N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g -1 . - N addition has led to increased flux of N and increased C sequestration at a forested catchment in Sweden; the NO 3 released has partially offset recovery from acidification.

  3. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Directory of Open Access Journals (Sweden)

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  4. Effects of nitrogen on egg-laying inhibition and ovicidal response in planthopper-resistant rice varieties.

    Science.gov (United States)

    Horgan, Finbarr G; Srinivasan, Thanga Suja; Naik, Bhaskar S; Ramal, Angelee Fame; Bernal, Carmencita C; Almazan, Maria Liberty P

    2016-11-01

    A series of experiments was set up to examine the effects of nitrogen on rice ( Oryza sativa L.) resistance against Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth). Egg laying by N. lugens was reduced on the indica variety IR60. Nymph biomass ( N. lugens and S. furcifera ) was also lower on IR60: this was associated with low honeydew production and a high proportion of xylem-derived honeydew in N. lugens but not in S. furcifera . Nitrogen increased egg-laying by S. furcifera and increased N. lugens nymph biomass on all varieties tested. Oviposition and egg mortality in both planthopper species were examined on plants at 15, 30 and 45 days after sowing (DAS). Sogatella furcifera laid more eggs on plants at 15 DAS, but laid few eggs during darkness; N. lugens continued to lay eggs on older rice plants (30 DAS) and during darkness. Egg mortality was high on cv. Asiminori, highest at 45 DAS, and higher for S. furcifera than for N. lugens . Mortality of S. furcifera eggs was associated with lesions around the egg clusters. These were more common around clusters laid during the day and suggested induction by Asiminori of an ovicidal response. Egg mortality declined under higher soil nitrogen levels. Results are discussed in the light of improving rice resistance against planthoppers and reducing rates of planthopper adaptation to resistance genes.

  5. Nitrogen and azolla response on growth of rice plant of Mitra-I variety with SRI method

    International Nuclear Information System (INIS)

    Nurmayulis; Putra Utama; Dewi Firnia; Hasnan Yani; Ania Citraresmini

    2011-01-01

    The research was conducted in Cisadap, Bunter Village, District of Sukadana, Ciamis Regency, West Java Province from January to May 2011. This study was carried out to know the response of growth of rice plant which was fertilized by nitrogen fertilizer and Azolla michrophylla using the system of rice intensification. This research used five dozes of nitrogen fertilizer (0 %, 25 %, 50 %, 75 %, 100 %) from N 92 kg ha -1 as a recommended nitrogen fertilizer (urea 200 kg ha -1 ), and also 1,13 ton ha -1 Azolla michrophylla. The result obtained from this research showed that the application of N fertilizer at 50 % of the recommend dose (100 kg ha -1 ) with adding Azolla at a rate of 1.13 t ha -1 gave good result in the terms of plant height at 2-6 weeks after planting and number of tillers at 2-7 weeks after planting. Interaction of the 50 % N fertilizer from the recommended dose planting 1,13 t ha -1 give the highest dry weight of Azolla of plants at seven weeks after planting. (author)

  6. Site-Specific Multilevel Modeling of Potato Response to Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Serge-Étienne Parent

    2017-12-01

    Full Text Available Technologies of precision agriculture, digital soil maps, and meteorological stations provide a minimum data set to guide precision farming operations. However, determining optimal nutrient requirements for potato (Solanum tuberosum L. crops at subfield scale remains a challenge given specific climatic, edaphic, and managerial conditions. Multilevel modeling can generalize yield response to fertilizer additions using data easily accessible to growers. Our objective was to elaborate a multilevel N fertilizer response model for potato crops using the Mitscherlich equation and a core data set of 93 N fertilizer trials conducted in Québec, Canada. Daily climatic data were collected at 10 × 10 km resolution. Soils were characterized by organic matter content, pH, and texture in the arable layer, and by texture and tools of pedometrics across a gleization-podzolization continuum in subsoil layers. There were five categories of preceding crops and five cultivar maturity orders. The three Mitscherlich parameters (Asymptote, Rate, and Environment were most often site-specific. Sensitivity analysis showed that optimum N dosage increased with non-leguminous high-residue preceding crops, coarser soils, podzolization, drier climatic condition, and late cultivar maturity. The inferential model could guide site-specific N fertilization using an accessible minimum data set to support fertilization decisions. As decision-support system, the model could also provide a range of optimum N doses across a large spectrum of site-specific conditions including climate change.

  7. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds

    Directory of Open Access Journals (Sweden)

    Yoshio Nosaka, Masami Matsushita, Junichi Nishino and Atsuko Y. Nosaka

    2005-01-01

    Full Text Available In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.

  8. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    OpenAIRE

    Salo , Tapio J.; Palosuo , Taru; Kersebaum , Kurt Christian; Nendel , Claas; Angulo , Carlos; Ewert , Frank; Bindi , Marco; Calanca , Pierluigi; Klein , Tommy; Moriondo , Marco; Ferrise , Roberto; Olesen , Jørgen Eivind; Patil , Rasmi H.; Ruget , Francoise; Takac , Jozef

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included si...

  9. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Directory of Open Access Journals (Sweden)

    Alysia eCox

    2013-12-01

    Full Text Available Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd -generally considered a toxin- cultures were grown in a matrix of high and low zinc (Zn and phosphate (PO43- and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43- had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: i low PO43- treatments showed increased growth rates relative to high PO43- treatments, ii the Zn/high PO43- treatment appeared to enter stationary phase, and iii Cd increased growth rates further in both the low PO43- and Zn treatments. Global proteomic analysis revealed that: i Zn appeared to be critical to the PO43- response in this organism, ii bacterial metallothionein (SmtA appears correlated with PO43- stress-associated proteins, iii Cd has the greatest influence on the proteome at low PO43- and Zn, iv Zn buffered the effects of Cd, and v in the presence of both replete PO43- and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43- stress (with replete Zn in this organism, including the greater relative abundance of ALP (PhoA, ABC phosphate binding protein (PstS and other proteins. Yet with no Zn in this proteome experiment the PO43- response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43- response in this cyanobacterium. Alternate ALP PhoX (Ca was found to be a low abundance protein, suggesting that PhoA (Zn, Mg may be more environmentally relevant than PhoX.

  10. Methane emissions from a freshwater marsh in response to experimentally simulated global warming and nitrogen enrichment

    DEFF Research Database (Denmark)

    Flury, Sabine; McGinnis, Daniel Frank; Gessner, Mark O.

    2010-01-01

    We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel ...... to the atmosphere, even when they occupy only relatively small littoral areas. More detailed investigations are clearly needed to assess whether global warming and nitrogen deposition can have climate feedbacks by altering methane fluxes from these wetlands.  ......We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel...... traps deployed in a series of enclosures for two 3 week periods. Diffusive fluxes were estimated on the basis of measured CH4 concentrations and application of Fick's law. Neither diffusive nor ebullitive fluxes of methane were significantly affected by warming or nitrate enrichment, possibly because...

  11. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  12. Nitrogen transformations in response to temperature and rainfall manipulation in oak savanna: A global change experiment

    Science.gov (United States)

    Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.

    2013-12-01

    Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of

  13. Reciprocal Regulation of GlnR and PhoP in Response to Nitrogen and Phosphate Limitations in Saccharopolyspora erythraea

    Science.gov (United States)

    Yao, Li-li

    2015-01-01

    Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes. PMID:26519391

  14. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    Science.gov (United States)

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  15. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  16. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of Pinus cembra at Treeline in the Central Austrian Alps

    Directory of Open Access Journals (Sweden)

    Andreas Gruber

    2018-05-01

    Full Text Available Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of Pinus cembra has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N fertilization, soil warming, and understory removal on stem radial growth of P. cembra at treeline. Soil warming was achieved by roofing the forest floor with a transparent polyvinyl skin, while understory competition was prevented by shading the forest floor with a non-transparent foil around six trees each. Six trees received N- fertilization and six other trees served as controls. Stem growth was monitored with band dendrometers during the growing seasons 2012–2014. Our 3 years experiment showed that soil warming had no considerable effect on radial growth. Though understory removal through shading was accompanied by root-zone cooling, understory removal as well as N fertilization led to a significant increase in radial growth. Hardly affected was tree root biomass, while N-fertilization and understory removal significantly increased in 100-needle surface area and 100-needle dry mass, implying a higher amount of N stored in needles. Overall, our results demonstrate that beside low temperatures, tree growth at cold-climate boundaries may also be limited by root competition for nutrients between trees and understory vegetation. We conclude that tree understory interactions may also control treeline dynamics in a future changing environment.

  17. Stability of cracked naphthas from thermal and catalytic processes and their additive response. Part 1. Evaluation of stability and additive response

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Joshi, G.C.; Rastogi, S.N. [Indian Institute of Petroleum, Dehradun (India)

    1995-05-01

    Olefinic naphthas derived from fluid catalytic cracking (FCC) or thermal cracking units are increasingly being used in high-octane motor gasoline with growing concern for resulting fuel quality. Hindered phenols and substituted arylamines are the two classes of antioxidants generally used for improving the stability of gasoline. The olefin types in cracked naphthas depend strongly on the process from which they are derived and hence are expected to show different responses with different antioxidants. However, systematic information on this aspect of antioxidant action is non-existent in the literature. Using two representative commercial antioxidants from each class with representative naphthas (FCC, visbreaking and coker), it was found that phenolic antioxidants gave a better response with thermally cracked naphthas. With amine-type antioxidants no clear preference could be observed. 28 refs., 6 figs., 4 tabs.

  18. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  19. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  20. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder

    Directory of Open Access Journals (Sweden)

    Valença Alexandre M.

    2002-01-01

    Full Text Available OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2 in panic disorder (PD patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had a panic attack and were openly treated for a 6-week period with clonazepam. At the end of the 6-week period they were submitted again to the CO2 challenge test. RESULTS: After 6 weeks of treatment with clonazepam, 12 of 14 PD patients (85.7% did not have a panic attack after the CO2 challenge test. Just 2 of 14 patients (14.3% had a panic attack after the CO2 challenge test. Ten of 14 (71.4% PD patients had panic free status after clonazepam treatment. The 2 patients who had a panic attack in the sixth week, after the CO2 test, did not have panic free status after the treatment with clonazepam. CONCLUSION: The CO2-test may be a valid tool for testing and predicting the drug response.

  1. Response of sunflower hybrids to different nitrogen levels for physiological and agronomical traits under field conditions

    International Nuclear Information System (INIS)

    Baig, D.; Abbasi, F.M.; Ahmed, H.; Qamar, M.; Khan, M.A.

    2016-01-01

    Sunflower occupies main position among oil seed crops in Pakistan. Mostly indigenous sunflower hybrids are cultivated which give low achene and fodder yields. The issue related with these hybrids ascribed to lack of information about use of inputs and cultural practices. Judicious nitrogen use and suitable high yielding hybrid play key role in increasing sunflower productivity. Protein is the basic requirement of the metabolic processes for the vegetative, reproductive growth and yield of the crop. The protein is wholly dependent upon the amount of nitrogen fertilization available in soil for the plant use. A two year study was conducted in 2012 and 2013 at National Agricultural Research Centre (NARC), Islamabad, Pakistan. The experiment was aimed to evaluate the effect of different nitrogen (N) levels (N = 0 kgha , N = 60 kgha , N = 0 1 2 -1 -1 -1 -1 80 kgha , N3 = 120 kgha , N4 = 180 kgha and N5 = 240 kgha ) on two sunflower hybrids, SMH-0907 and SMH-0917 to optimize the N levels for obtaining maximum yield on sustainable basis. Both hybrids were kept in the main plot while N levels in the sub plot in a randomized complete block design with three replications. -1 The results showed that the number of achene head , 100-achene weight and achene yield increased with increased N application. The increased levels of N -1 also enhanced the achene yield. The maximum achene yield (3170.8 kg ha ) was -1 -1 recorded at 180 kg N ha followed by 240 kg N ha . Minimum achene yield (2115 kg -1 ha ) was observed in control treatment (N ). Polynomial regression line showed 0-1 that the rate of yield increase was higher up to 180 kg N ha and become slow-1 thereafter. The hybrid SMH-0907 produced more achene (2736 kg ha ) as compared -1 to the hybrid SMH-0917 (2694 kg ha ). Results revealed that economized application of different doses of N can boost up the yield in both sunflower hybrids SMH-0907 and SMH-0917. These findings could be helpful in rationalizing most valuable inputs

  2. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  3. Growth and yield responses of broccoli cultivars to different rates of nitrogen at western Chitwan, Nepal

    DEFF Research Database (Denmark)

    Giri, Raj Kumar; Sharma, Moha Datta; Shakya, Santa Man

    2013-01-01

    A field experiment was conducted with the objective to determine the optimum rate of nitrogen (N) fertilizer for effective growth and yield of two varieties of broccoli in southern plain of Nepal. The experiment was laid out with two-factorial completely random block design (RCBD) comprising two...... varieties of broccoli (Calabrese and Green Sprouting) and five N rates (0, 50, 100, 150 and 200 kg ha-1) with three replication in each treatment combinations. The effects of variety and N rate on total curd yield were significant but the interaction effect was non-significant. Green Sprouting produced 11...

  4. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed.

    Science.gov (United States)

    Gieswein, Alexander; Hering, Daniel; Feld, Christian K

    2017-09-01

    Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Response of Nodularia spumigena to pCO2 – Part 1: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-08-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm, mid (median 353 μatm, and high (median 548 μatm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2 and 40 ± 25% (mid vs. high pCO2, as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low and 44% (high vs. mid at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the

  6. Response of rice cultivars to rates of nitrogen and potassium application in field and pot conditions.

    Science.gov (United States)

    Bahmaniar, M A; Ranjbar, G A

    2007-05-01

    Nitrogen and potassium are the yield-limiting nutrients in rice production regions of Iran. Use of N and K efficient cultivars is an important complementary strategy in improving rice yield, increasing the quality properties of rice grains and reducing cost of production. In order to consider the effects of different amounts of N and K application on rice (Oryza sativa L.) yield and yield components in pot and field conditions these experiments were undertaken in 2004 at Sari Agricultural Station, Iran. Four levels of N (0, 50, 100 and 150 Kg N ha(-1) in field and 0, 0.6, 1.2 and 1.8 g N pot(-1) in pot) corresponding with four levels of K (0, 75, 150 and 225 kg K2O ha(-1) in field and 0, 0.5, 1 and 1.5 g K2O pot(-1) in pot) were applied in a split-factorial plot design with three replications in both pot and field experiments, variously. Grain yield, number of grain per panicle, number of tiller, plant height, length of flag leaf, total and shoot dry matter, 1000 grain weight and harvest index have been increased by N application in field conditions. However, in pot conditions grain yield, number of grain per panicle, number of tiller, plant height, width of flag leaf, total and shoot dry matter, leaf nitrogen contents and harvest index have significantly been increased (p pot conditions (p < or = 0.05).

  7. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  8. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  9. Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

    Directory of Open Access Journals (Sweden)

    Travis Goron

    2017-06-01

    Full Text Available After uptake in cereal crops, nitrogen (N is rapidly assimilated into glutamine (Gln and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha−1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development and NDVI (Normalized Difference Vegetation Index measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

  10. Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine

    Science.gov (United States)

    Jose Alexander Elvir; Lindsey Rustad; G. Bruce Wiersma; Ivan Fernandez; Alan S. White; Gregory J. White

    2005-01-01

    The foliar chemistry of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) was studied from 1993 to 2003 at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study, with one watershed treated bimonthly since...

  11. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Directory of Open Access Journals (Sweden)

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  12. Microbial Community Structure of a Leachfield Soil: Response to Intermittent Aeration and Tetracycline Addition

    Directory of Open Access Journals (Sweden)

    David A. Potts

    2013-04-01

    a native leachfield soil. In addition, there is a differential response of the microbial communities of AIR and LEACH soil to tetracycline addition which may be linked to changes in function.

  13. Overexpression of miR169o, an Overlapping microRNA in Response to Both Nitrogen Limitation and Bacterial Infection, Promotes Nitrogen Use Efficiency and Susceptibility to Bacterial Blight in Rice.

    Science.gov (United States)

    Chao, Yu; Chen, Yutong; Cao, Yaqian; Chen, Huamin; Wang, Jichun; Bi, Yong-Mei; Tian, Fang; Yang, Fenghuan; Rothstein, Steven J; Zhou, Xueping; He, Chenyang

    2018-03-15

    Limiting nitrogen (N) supply contributes to improved resistance to bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) in susceptible rice (Oryza sativa). To understand the regulatory roles of microRNAs in this phenomenon, sixty-three differentially-expressed overlapping miRNAs in response to Xoo infection and N-limitation stress in rice were identified through deep RNA-sequence and stem loop qRT-PCR. Among these, miR169o was further assessed as a typical overlapping miRNA through the overexpression of the miR169o primary gene. Osa-miR169o-OX plants were taller, and had more biomass accumulation with significantly increased nitrate and total amino acid contents in roots than wild type (WT). Transcript level assays showed that under different N supply conditions miR169o opposite regulated NRT2 which is reduced under normal N supply condition but remarkably induced under N limiting stress. On the other hand, osa-miR169o-OX plants also displayed increased disease lesion lengths and reduced transcriptional levels of defense gene (PR1b, PR10a, PR10b and PAL) compared with WT after inoculation with Xoo. In addition, miR169o impeded Xoo-mediated NRT transcription. Therefore, the overlapping miR169o contributes to increase N use efficiency and negatively regulates the resistance to bacterial blight in rice. Consistently, transient expression of NF-YAs in rice protoplast promoted the transcripts of PR genes and NRT2 genes, while reduced the transcripts of NRT1 genes. Our results provide novel and additional insights into the coordinated regulatory mechanisms of crosstalk between Xoo infection and N-deficiency responses in rice.

  14. Effect of saccharide additives on response of ferrous-agarose-xylenol orange radiotherapy gel dosimeters

    International Nuclear Information System (INIS)

    Healy, B.J.; Zahmatkesh, M.H.; Nitschke, K.N.; Baldock, C.

    2003-01-01

    Glucose, sucrose, starch, and locust bean gum have been used as additives to the ferrous-agarose-xylenol orange (FAX) gel dosimeter. The saccharide enhanced dosimeters were found to have a higher dose sensitivity over a standard FAX gel as measured by both optical density change and magnetic resonance imaging (MRI). With optical density measurement, OD-dose sensitivity increases were up to 55% for glucose, 122% for sucrose and 43% for starch, while locust bean gum did not give a consistent response. With MRI, R 1 -dose sensitivity increases were up to 178% with sucrose addition. The FAX gel with sucrose was studied in greatest detail. The OD-dose sensitivity dependence on cooling rate was reduced for the sucrose FAX gel over the standard FAX gel, which has significant implications for uniform dose sensitivity in large gel phantoms. The thermal oxidation rate in the sucrose FAX gel was up to 2.3 times higher than in the standard gel. The OD-dose sensitivity of oxygenated sucrose FAX gels was 4.3 times greater than standard FAX gels, while continued enhancement in OD-dose sensitivity with increased sucrose concentrations beyond 2.0 g/l was found only for the oxygenated sucrose FAX gels. Both the molar absorption coefficient of the ferric ion-xylenol orange complex at 543 nm and gel pH were not affected by the presence of sucrose, with the implication that the higher OD-dose sensitivity of gels with saccharides is due to increased chain reaction production of ferric ions

  15. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  16. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  17. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  18. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Directory of Open Access Journals (Sweden)

    Iconomou, D.

    2010-09-01

    Full Text Available The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L. of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.

    La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (Olea europaea, L. de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La

  19. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.).

    Science.gov (United States)

    Lv, Yuanda; Liang, Zhikai; Ge, Min; Qi, Weicong; Zhang, Tifu; Lin, Feng; Peng, Zhaohua; Zhao, Han

    2016-05-11

    Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however, little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which have emerged as key regulators in gene expression. In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637 nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative phosphorylation and the nitrogen compounds metabolic process. We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of lncRNAs' role in response to nitrogen stresses.

  20. Short-Term Response of Sasa Dwarf Bamboo to a Change of Soil Nitrogen Fertility in a Forest Ecosystem in Northern Hokkaido, Japan

    Directory of Open Access Journals (Sweden)

    Tsunehiro Watanabe

    2016-04-01

    Full Text Available In forest ecosystems, a change of soil nitrogen (N cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem function of Sasa after disturbances in the soil N cycling is not fully understood. The purpose of this study was to determine the short-term response of Sasa to a change of soil N fertility. Biomass, litterfall, litter decomposition, soil N pool, and N leaching from soil were measured in control, and low- (5 g N m−2 year−1 and high-N (15 g N m−2 year−1 addition plots. Sasa immobilized much N as the soil N fertility increased. However, the leaf N concentration in aboveground biomass did not increase, suggesting that the N in leaves was maintained because of the increase of leaf biomass. As a result, the decomposition and mineralization rates of the produced litter before and after N addition were comparable among plots, even though the soil inorganic N fertility increased greatly. These results suggest that immediate response of Sasa to an increase of soil inorganic N mitigates the excess N leaching from soil.

  1. Nitrogen (N) dynamics in the mineral soil of a Central Appalachian hardwood forest during a quarter century of whole-watershed N additions

    Science.gov (United States)

    Frank S. ​Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn

    2018-01-01

    The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications...

  2. Soil solution and sugar maple response to NH(4)NO (3) additions in a base-poor northern hardwood forest of Québec, Canada.

    Science.gov (United States)

    Moore, Jean-David; Houle, Daniel

    2009-08-01

    Nitrogen additions (NH4NO3) at rates of three- and ten-fold ambient atmospheric deposition (8.5 kg ha(-1) year(-1)) were realised in an acid- and base-poor northern hardwood forest of Québec, Canada. Soil solution chemistry, foliar chemistry, crown dieback and basal area growth of sugar maple (Acer saccharum Marsh.) were measured. Except for a transitory increase of NO3 and NH4 concentrations, there was no persistent increase in their level in soil solution 3 years after N treatments, with the exception of one plot out of three, that received the highest N addition, beginning to show persistent and high NO3 concentrations after 2 years of N additions. Three years of N additions have significantly increased the N DRIS index of sugar maple but not N foliar concentration. Potassium, Ca and Mn foliar concentrations, as well as P and Ca DRIS indices, decreased in treated plots after 3 years. No treatment effect was observed for basal area growth and dieback rate. One unexpected result was the significant decrease in foliar Ca even in the treated plots that received low N rates, despite the absence of significant NO3-induced leaching of Ca. The mechanism responsible for the decrease in foliar Ca is not known. Our results, however, clearly demonstrate that increased N deposition at sites with low base saturation may affect Ca nutrition even when clear signs of N saturation are not observed.

  3. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  4. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae and Nannochloropsis sp. (Eustigmatophyceae.

    Directory of Open Access Journals (Sweden)

    Gregory J O Martin

    Full Text Available Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs, the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.

  5. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  6. Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress.

    Science.gov (United States)

    Chiozzotto, Remo; Ramírez, Mario; Talbi, Chouhra; Cominelli, Eleonora; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2018-02-15

    The common bean ( Phaseolus vulgaris L.) low phytic acid ( lpa1 ) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N₂-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb ₃ oxidase ( fixN d).

  7. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    Jauhiainen, J.

    1998-01-01

    The main objective of this work was to study the effects of different CO 2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO 2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO 2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO 2 and N treatments, and (iv) species dependent differences in potential NH 4 + and NO 3 - uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO 2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO 2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO 2 . The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO 2 concentration. The

  8. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  9. Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus tectorum-invaded Artemisia tridentata ssp. wyomingensis communities

    Science.gov (United States)

    Witwicki, Dana L.; Doescher, Paul S.; Pyke, David A.; DeCrappeo, Nicole M.; Perakis, Steven S.

    2012-01-01

    Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.

  10. Response to the additional information request from the Terra Nova Environmental Assessment Panel

    International Nuclear Information System (INIS)

    1997-03-01

    This document provides responses to the questions addressed to the proponents of the Terra Nova Development by the Environmental Assessment Panel. The questions and the responses concern hiring practices, labour relations, environmental and wildlife protection, impacts to the Grand Banks fishing industry, operating practices and the effects on offshore installations should extreme conditions of ice, weather, sea and wind occur simultaneously. References cited in response to individual questions are included following each response. Tabs., figs

  11. Plant physiological responses to hydrologically mediated changes in nitrogen supply on a boreal forest floodplain: a mechanism explaining the discrepancy in nitrogen demand and supply

    Science.gov (United States)

    Lina Koyama; Knut. Kielland

    2011-01-01

    A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the...

  12. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  13. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces. Abaxial surfaces also produced higher reflectances, in general, in the 400-800 nm spectrum.

  14. Maize growth in response to Azospirillum brasilense, Rhizobium tropici, molybdenum and nitrogen

    Directory of Open Access Journals (Sweden)

    Angelita A. C. Picazevicz

    Full Text Available ABSTRACT The objective of this research was to evaluate the effect of Azospirillum brasilense, Rhizobium tropici, nitrogen (N and molybdenum (Mo fertilization on maize growth. The experiment was carried out in a greenhouse from October to November 2015, in a completely randomized design, in 2 x 2 x 2 x 5 factorial scheme, with 5 replicates, corresponding to the absence and presence of Azospirillum brasilense, Rhizobium tropici, N (30 kg ha-1 and five Mo doses (0, 7.5, 15.0, 22.5 and 30.0 g ha-1. The analyzed variables were: plant height, basal stem diameter, dry biomass of shoots, roots, total and N accumulated in the shoots. There was double or triple interaction between N fertilization, Azospirillum brasilense and Rhizobium tropici for the evaluated variables. However, isolated and/or combined effect of Mo was not observed. Seed inoculation with Azospirillum brasilense as well as their co-inoculation with Rhizobium tropici in the absence of N fertilization was efficient to increase plant growth. Soil N fertilization at sowing was less efficient in promoting plant growth than when it was combined with seed inoculation with Rhizobium tropici.

  15. Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition

    International Nuclear Information System (INIS)

    Chen Juan; Wu Feihua; Liu Tingwu; Chen Lei; Xiao Qiang; Dong Xuejun; He Junxian; Pei Zhenming; Zheng Hailei

    2012-01-01

    To assess the potential contribution of nitric oxide (NO) emission from the plants grown under the increasing nitrogen (N) deposition to atmospheric NO budget, the effects of simulated N deposition on NO emission and various leaf traits (e.g., specific leaf area, leaf N concentration, net photosynthetic rate, etc.) were investigated in 79 plant species classified by 13 plant functional groups. Simulated N deposition induced the significant increase of NO emission from most functional groups, especially from conifer, gymnosperm and C 3 herb. Moreover, the change rate of NO emission was significantly correlated with the change rate of various leaf traits. We conclude that the plants grown under atmospheric N deposition, especially in conifer, gymnosperm and C 3 herb, should be taken into account as an important biological source of NO and potentially contribute to atmospheric NO budget. - Highlights: ► Simulated N deposition induces the significant increase of NO emission from plants. ► The increased NO emission is closely related to leaf N level and net photosynthesis. ► Abundant nitrite accumulation is a reason of NO emission induced by excess N input. ► The plants grown under N deposition potentially contribute to atmospheric NO budget. - Simulated N deposition induced a significant increase of NO emission from 79 plants.

  16. Mechanical response of nitrogen ion implanted NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Kucharski, S.; Levintant-Zayonts, N.; Luckner, J.

    2014-01-01

    Highlights: • The effect of ion implantation process on shape memory alloy was investigated. • In the implantation process both surface layer and bulk material are modified. • The microstructure is modified and superelastic effect is destroyed in surface layer. • The parameters of superelastic phenomena are changed in bulk material. - Abstract: In the paper a change of material (mechanical) parameters of NiTi shape memory alloy subjected to ion implantation treatment is investigated. The spherical indentation tests in micro- and nano-scale and tension test have been performed to study an evolution of local superelastic effect in different volumes of nonimplanted and nitrogen ion implanted NiTi alloy. The differential scanning calorimetry has been applied to measure the change of characteristic temperatures due to ion implantation treatment. The structure of implanted material has been investigated using electron microscopy technique. It has been found that the ion implantation process changes the properties not only in a thin surface layer but also in bulk material. In the layer the pseudoelastic effect is destroyed, and in the substrate is preserved, however its parameters are changed. The characteristic phase transformation temperatures in substrate are also modified

  17. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Rohloff, Jens; Winge, Per; Bones, Atle M; Brembu, Tore

    2015-10-01

    Algal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum. Physiological and metabolite measurements indicated that the photosynthetic capacity and chlorophyll content of the cells decreased, while neutral lipids increased in N-deprived cultures. Global gene expression analysis showed that P. tricornutum responded to N deprivation through an increase in N transport, assimilation, and utilization of organic N resources. Following N deprivation, reduced biosynthesis and increased recycling of N compounds like amino acids, proteins, and nucleic acids was observed at the transcript level. The majority of the genes associated with photosynthesis and chlorophyll biosynthesis were also repressed. Carbon metabolism was restructured through downregulation of the Calvin cycle and chrysolaminarin biosynthesis, and co-ordinated upregulation of glycolysis, the tricarboxylic acid cycle, and pyruvate metabolism, leading to funnelling of carbon sources to lipid metabolism. Finally, reallocation of membrane lipids and induction of de novo triacylglycerol biosynthesis directed cells to accumulation of neutral lipids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Merjo P. P. Laine

    2013-01-01

    Full Text Available In the northern hemisphere, variability in hydrological conditions was suggested to increase as a consequence of climate warming, which may result in longer droughts than the area has experienced before. Due to their predominately anoxic conditions, peatlands are expected to respond to changes in hydrological conditions, such as successive drying and rewetting periods. As peatlands are rich in organic matter, any major changes in water table may influence the decomposition of it. The hydrological conditions may also influence release of nutrients from peat profiles as well as affect their transport to downstream ecosystems. In our mesocosm experiment, artificial water table fluctuations in pristine peat profiles caused an increase in dissolved organic nitrogen (DON and ammonium (NH4+-N concentrations, while no response was found in drained peat profiles, although originating from the same peatland complex.

  19. Histopathological analysis of the therapeutic response to cryotherapy with liquid nitrogen in patients with multiple actinic keratosis.

    Science.gov (United States)

    Oliveira, Marina Câmara de; Trevisan, Flávia; Pinto, Clovis Antônio Lopes; Xavier, Célia Antônia; Pinto, Jaqueline Campoi Calvo Lopes

    2015-01-01

    Actinic keratoses are premalignant lesions of the skin caused by excessive sun exposure. Lesions may become mainly squamous cell carcinoma. Cryotherapy with liquid nitrogen is one of the main treatments. In order to evaluate the response of actinic keratosis to cryotherapy by histopathology, two lesions were selected in each of 14 patients with multiple actinic keratoses. In one lesion a biopsy was performed and in the other lesion a biopsy was performed after cryotherapy. Subsequently, both biopsies were compared histologically. Of the thirteen patients who completed the study, the best results were obtained in lesions undergoing cryotherapy concerning the atypia of keratinocytes, epithelial thickness and corneal layer and lymphocytic infiltrate. Despite the small number of patients, it was concluded that, if performed correctly, cryotherapy has high efficacy in the treatment of actinic keratoses.

  20. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition.

    Science.gov (United States)

    Biswas, Haimanti; Bandyopadhyay, Debasmita

    2017-10-01

    Trace amount of copper (Cu) is essential for many physiological processes; however, it can be potentially toxic at elevated levels. The impact of variable Cu concentrations on a coastal phytoplankton community was investigated along a coastal transect in SW Bay of Bengal. A small increase in Cu supply enhanced the concentrations of particulate organic carbon, particulate organic nitrogen, biogenic silica, total pigment, phytoplankton cell and total bacterial count. At elevated Cu levels all these parameters were adversely affected. δ 13 C POM and δ 15 N POC reflected a visible signature of both beneficial and toxic impacts of Cu supply. Skeletonema costatum, the dominant diatom species, showed higher tolerance to increasing Cu levels relative to Chaetoceros sp. Cyanobacteria showed greater sensitivity to copper than diatoms. The magnitude of Cu toxicity on the phytoplankton communities was inversely related to the distance from the coast. Co-enrichment of iron alleviated Cu toxicity to phytoplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Application of response surface methodology in optimization of lactic acid fermentation of radish: effect of addition of salt, additives and growth stimulators.

    Science.gov (United States)

    Joshi, V K; Chauhan, Arjun; Devi, Sarita; Kumar, Vikas

    2015-08-01

    Lactic acid fermentation of radish was conducted using various additive and growth stimulators such as salt (2 %-3 %), lactose, MgSO4 + MnSO4 and Mustard (1 %, 1.5 % and 2 %) to optimize the process. Response surface methodology (Design expert, Trial version 8.0.5.2) was applied to the experimental data for the optimization of process variables in lactic acid fermentation of radish. Out of various treatments studied, only the treatments having ground mustard had an appreciable effect on lactic acid fermentation. Both linear and quadratic terms of the variables studied had a significant effect on the responses studied. The interactions between the variables were found to contribute to the response at a significant level. The best results were obtained in the treatment with 2.5 % salt, 1.5 % lactose, 1.5 % (MgSO4 + MnSO4) and 1.5 % mustard. These optimized concentrations increased titrable acidity and LAB count, but lowered pH. The second-order polynomial regression model determined that the highest titrable acidity (1.69), lowest pH (2.49) and maximum LAB count (10 × 10(8) cfu/ml) would be obtained at these concentrations of additives. Among 30 runs conducted, run 2 has got the optimum concentration of salt- 2.5 %, lactose- 1.5 %, MgSO4 + MnSO4- 1.5 % and mustard- 1.5 % for lactic acid fermentation of radish. The values for different additives and growth stimulators optimized in this study could successfully be employed for the lactic acid fermentation of radish as a postharvest reduction tool and for product development.

  2. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species.

    Science.gov (United States)

    Li, Weibin; Hartmann, Henrik; Adams, Henry D; Zhang, Hongxia; Jin, Changjie; Zhao, Chuanyan; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing

    2018-06-11

    Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.

  3. Response of Vallisneria natans to Increasing Nitrogen Loading Depends on Sediment Nutrient Characteristics

    Directory of Open Access Journals (Sweden)

    Jiao Gu

    2016-11-01

    Full Text Available High nitrogen (N loading may contribute to recession of submerged macrophytes in shallow lakes; yet, its influences vary depending on environmental conditions. In August 2013, we conducted a 28-day factorial-designed field mesocosm experiment in Lake Taihu at the Taihu Laboratory for Lake Ecosystem Research (TLLER to examine the effects of high N loading on the growth of Vallisneria natans in systems with contrasting sediment types. We ran the experiments with two levels of nutrient loading—present-day external nutrient loading (average P: 5 μg·L−1·day−1, N: 130 μg·L−1·day−1 and P: 5 μg·L−1·day−1, and with three times higher N loading (N: 390 μg·L−1·day−1 and used sediment with two contrasting nutrient levels. V. natans growth decreased significantly with increasing N loading, the effect being dependent, however, on the nutrient status of the sediment. In low nutrient sediment, relative growth rates, leaf biomass and root biomass decreased by 11.9%, 18.2% and 23.3%, respectively, at high rather than low N loading, while the decline was larger (44.0%, 32.7% and 41.8%, respectively when using high nutrient sediment. The larger effect in the nutrient-rich sediment may reflect an observed higher shading of phytoplankton and excess nutrient accumulation in plant tissue, though potential toxic effects of the high-nutrient sediment may also have contributed. Our study confirms the occurrence of a negative effect of increasing N loading on submerged plant growth in shallow nutrient-enriched lakes and further shows that this effect is augmented when the plants grow in nutrient-rich sediment. External N control may, therefore, help to protect or restore submerged macrophytes, especially when the sediment is enriched with nutrients and organic matter.

  4. The Dose–Response Association between Nitrogen Dioxide Exposure and Serum Interleukin-6 Concentrations

    Directory of Open Access Journals (Sweden)

    Jennifer L. Perret

    2017-05-01

    Full Text Available Systemic inflammation is an integral part of chronic obstructive pulmonary disease (COPD, and air pollution is associated with cardiorespiratory mortality, yet the interrelationships are not fully defined. We examined associations between nitrogen dioxide (NO2 exposure (as a marker of traffic-related air pollution and pro-inflammatory cytokines, and investigated effect modification and mediation by post-bronchodilator airflow obstruction (post-BD-AO and cardiovascular risk. Data from middle-aged participants in the Tasmanian Longitudinal Health Study (TAHS, n = 1389 were analyzed by multivariable logistic regression, using serum interleukin (IL-6, IL-8 and tumor necrosis factor-α (TNF-α as the outcome. Mean annual NO2 exposure was estimated at residential addresses using a validated satellite-based land-use regression model. Post-BD-AO was defined by post-BD forced expiratory ratio (FEV1/FVC < lower limit of normal, and cardiovascular risk by a history of either cerebrovascular or ischaemic heart disease. We found a positive association with increasing serum IL-6 concentration (geometric mean 1.20 (95% CI: 1.1 to 1.3, p = 0.001 per quartile increase in NO2. This was predominantly a direct relationship, with little evidence for either effect modification or mediation via post-BD-AO, or for the small subgroup who reported cardiovascular events. However, there was some evidence consistent with serum IL-6 being on the causal pathway between NO2 and cardiovascular risk. These findings raise the possibility that the interplay between air pollution and systemic inflammation may differ between post-BD airflow obstruction and cardiovascular diseases.

  5. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    Directory of Open Access Journals (Sweden)

    Rachel Wooliver

    Full Text Available A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1 native species monocultures and 2 mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both

  6. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species

    Directory of Open Access Journals (Sweden)

    Martin I Voskuil

    2011-05-01

    Full Text Available The bacteriostatic and bacteriocidal effects and the transcriptional response of Mycobacterium tuberculosis to representative oxidative and nitrosative stresses were investigated by growth and survival studies and whole genome expression analysis. The M. tuberculosis reaction to a range of hydrogen peroxide (H2O2 concentrations fell into three distinct categories: (1 low level exposure resulted in induction of a few highly sensitive H2O2-responsive genes, (2 intermediate exposure resulted in massive transcriptional changes without an effect on growth or survival, and (3 high exposure resulted in a muted transcriptional response and eventual death. M. tuberculosis appears highly resistant to DNA damage-dependent, mode-one killing caused by low millimolar levels of H2O2 and only succumbs to overwhelming levels of oxidative stress observed in mode-two killing. Nitric oxide (NO exposure initiated much the same transcriptional response as H2O2. However, unlike H2O2 exposure, NO exposure induced dormancy-related genes and caused dose-dependent bacteriostatic activity without killing. Included in the large shared response to H2O2 and NO was the induction of genes encoding iron-sulfur cluster repair functions including iron acquisition. Stress regulons controlled by IdeR, Sigma H, Sigma E, and FurA comprised a large portion of the response to both stresses. Expression of several oxidative stress defense genes was constitutive, or increased moderately from an already elevated constitutive level, suggesting that bacilli are continually primed for oxidative stress defense.

  7. Effects of temporally biased watering on the nitrogen response of Chenopodium album

    Science.gov (United States)

    Kinugasa, Toshihiko; Hozumi, Yumi

    2017-07-01

    Plant growth responses to an increasing N deposition are stimulated by an increase in annual precipitation, but such a stimulation has not always been found. We hypothesized that the effect of precipitation on plant N responses can change with temporally biased precipitation: a plant N response will be suppressed when precipitation is lower in the late growing period because larger plants are more susceptible to water limitations. We grew Chenopodium album under a high and low N application level with three watering patterns while maintaining the total supplied watering amount during the experimental period: constant watering, low watering in the first period and high watering in the latter period, and high watering in the first period and low watering in the latter period. The watering pattern did not affect plant dry mass under low N conditions. The plant dry mass under high N conditions was reduced by low watering in the first period, but the reduction was fully compensated in the subsequent high watering period by the stimulation of photosynthesis. Low watering following high watering under high N conditions did not suppress plant growth, but partial leaf wilting was observed at the end of the experimental period. Finally, at the end of the experiment, the response of plant dry mass to N was not different among the watering patterns. We concluded that a plant's response to increasing N deposition could be affected by temporally biased precipitation, depending on the scale of the precipitation bias and the ability of the plant to compensate or mitigate growth inhibition due to a water deficit. Precipitation deficits later in the growing period may be more detrimental to plant growth and can reduce plant responses to an increasing N deposition.

  8. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2018-03-01

    A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.

  9. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  10. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Simulatd Nitrogen Cycling Response to Elevated CO2 in Pinus taeda and Mixed Dediduous Forests

    Science.gov (United States)

    D.W. Johnson

    1999-01-01

    Interactions between elevated CO2 and N cycling were explored with a nutrient cycling model (NuCM, Johnson et al. 1993, 1995) for a Pinus tuedu L. site at Duke University North Carolina, and a mixed deciduous site at Walker Branch, Tennessee. The simulations tested whether N limitation would prevent growth increases in response to elevated CO...

  12. Initial response of the nitrogen cycle to soil warming in Northern Minnesota peatlands

    Science.gov (United States)

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce a...

  13. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  14. Do individuals with asthma experience airway hyper-responsiveness after exposure to nitrogen dioxide?

    Science.gov (United States)

    Goodman, Julie E; Kennedy, Erin M; Seeley, Mara

    2017-10-01

    The current 100 ppb short-term National Ambient Air Quality Standard for NO 2 , and EPA's determination of a causal association for respiratory effects, are based in part on controlled human exposure studies evaluating airway hyper-responsiveness (AHR). A meta-analysis by Goodman et al. (2009) found increased AHR at 100 ppb NO 2 but no clear concentration-response relationship up to 600 ppb, and an overall lack of an AHR effect for studies involving exercise or exposure to allergens. Several factors have been suggested to explain why effects on AHR are observed while people are at rest, but not during exercise or after exposure to allergens. These include an exercise-induced refractory period; partial reversal of bronchospasm from use of forced expiration maneuvers; and greater airway responsiveness of participants exposed to NO 2 at rest. We reviewed the scientific evidence to determine whether there is biological support for these factors and found that none sufficiently explained the lack of an effect during exercise or after exposure to allergens. In the absence of either a consistent concentration-response or a plausible explanation for the paradoxical AHR findings, the biological significance of these findings is uncertain and provides equivocal support for NO 2 as a causal factor of AHR at these exposure levels. Copyright © 2017 Gradient. Published by Elsevier Inc. All rights reserved.

  15. Growth and nutrition response of young sweetgum plantations to repeated nitrogen fertilization on two site types

    Science.gov (United States)

    D. Andrew Scott; James A. Burger; Donald J. Kaczmarek; Michael B. Kane

    2004-01-01

    Short-rotation intensive tree culture is being investigated in the southern United States as a method of producing hardwood fiber, but little is known about the early productivity and nutritional needs of these systems, especially on different site types. We studied the growth and foliar nutrition response of two sweetgum (Liquidambar styraciflua L...

  16. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies.

    Science.gov (United States)

    Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2018-01-01

    Maize ( Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha -1 ), N1 (129 kg N ha -1 ), N2 (185 kg N ha -1 ), and N3 (300 kg N ha -1 ) was conducted using hybrid 'ZhengDan958' at Dawenkou research field (36°11'N, 117°06'E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33-52% ( P ≤ 0.05) and 6-32% ( P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35-38% ( P ≤ 0.05) and 9-23% ( P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13-22% ( P ≤ 0.05) and 5-11% ( P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 ( P > 0.05). The net photosynthetic rate ( P n ), maximal quantum efficiency of PSII ( F v / F m ) and quantum efficiency of PSII (Φ PSII ) were higher with the increase of N rate up to N2 ( P ≤ 0.05), and those of N3 were significantly less than N2 ( P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment ( P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were

  17. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2018-05-01

    Full Text Available Maize (Zea mays L. is the important crop over the world. Nitrogen (N as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha-1, N1 (129 kg N ha-1, N2 (185 kg N ha-1, and N3 (300 kg N ha-1 was conducted using hybrid ‘ZhengDan958’ at Dawenkou research field (36°11′N, 117°06′E, 178 m altitude in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI, chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33–52% (P ≤ 0.05 and 6–32% (P ≤ 0.05, respectively, compared with other treatments. During the growing from silking (R1 to milk (R3 stage, LAI of N0 and N1 were 35–38% (P ≤ 0.05 and 9–23% (P ≤ 0.05 less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13–22% (P ≤ 0.05 and 5–11% (P ≤ 0.05 lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 (P > 0.05. The net photosynthetic rate (Pn, maximal quantum efficiency of PSII (Fv/Fm and quantum efficiency of PSII (ΦPSII were higher with the increase of N rate up to N2 (P ≤ 0.05, and those of N3 were significantly less than N2 (P ≤ 0.05. In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment (P ≤ 0.05. Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were shown in N3

  18. Foliar Reflectance and Fluorescence Responses for Corn and Soybean Plants Under Nitrogen Stress

    Science.gov (United States)

    Middleton, E. M.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; McMurtrey, J. E.

    2003-01-01

    We are investigating the use of spectral indices derived from actively induced fluorescence spectra and passive optical spectra. We examined the influence of photosynthetic pigment, carbon (C) and nitrogen (N) content on the spectral fluorescence and passive optical property characteristics of mature, upper leaves from plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of recommended N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight. Steady state laser-induced fluorescence emission spectra (5 nm resolution) were obtained from adaxial and abaxial surfaces resulting from excitation at single wavelengths (280, 380 or 360, and 532 nm). For emission spectra produced by each of these excitation wavelengths, ratios of emission peaks were calculated, including the red far-red chlorophyll fluorescence (ChlF) ratio (F685/F740) and the far-red/green (F740/F525) ratio. High resolution (< 3 nm) optical spectra (350-2500 nm) of reflectance, transmittance, and absorptance were also acquired for both adaxial and abaxial leaf surfaces. Species differences were demonstrated for several optical parameters. A 'red edge' derivative ratio determined from transmittance spectra [as the maximum first deivative, between 650-750 nm, normalized to the value at 744 nm, or Dmax/D744], was strongly associated with the C/N ratio (r(exp 2) = 0.90, P +/- 0.001). This ratio, calculated from reflectance spectra, was inversely related to chlorophyll b content (r(exp 2) = 0.91, P +/- 0.001) as was the ChlF (F685/F740) ratio obtained with 532 nm excitation (r(exp 2) = 0.76, P +/- 0.01). Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380 nm excitation). Higher ChlF and blue-green emissions were measured from the abaxial leaf surfaces

  19. Foliar Reflectance and Fluorescence Responses for Plants Under Nitrogen Stress Determined with Active and Passive Systems

    Science.gov (United States)

    Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.

    2003-01-01

    Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment

  20. 75 FR 5715 - Identification of Additional Classes of Facilities for Development of Financial Responsibility...

    Science.gov (United States)

    2010-02-04

    ... as facilities engaged in the recycling of materials containing CERCLA hazardous substances as... addition, the Agency identified the Waste Management and Remediation Services industry (NAICS 562), the... Liability Act (CERCLA). In addition, the Agency identified the Waste Management and Remediation Services...

  1. Response of Sphagnum species mixtures to increased temperature and nitrogen availability

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Berendse, F.; Gleichman, J.M.; Robroek, B.J.M.; Limpens, J.

    2009-01-01

    To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments

  2. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems

    NARCIS (Netherlands)

    Verburg, P.H.

    2005-01-01

    Several studies show that increases in soil temperature result in higher N mineralization rates in soils. It is, however, unclear if additional N is taken up by the vegetation or accumulates in the soil. To address this question two small, forested catchments in southern Norway were experimentally

  3. Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen Eivind

    2016-01-01

    Evapotranspiration (ET) and water use efficiency (WUE) are critical indexes in water flux cycles of croplands, being affected by climate change. However, field studies addressing influence of experimental warming on ET and WUE in semi-arid cropland are highly deficient. A two-factor experiment......, including soil temperature [ambient (C) and increased average 1.5 °C (T) at 5 cm soil depth] and nitrogen fertilizer (N) [without (N0) and with 315 kg N ha−1 input (N1)], was conducted from 2010 to 2014 in North China Plain to measure ET and WUE of wheat-soybean/fallow rotation. In the N1 treatment, warming...

  4. Optimizing of Nitrogen, Phosphorus and Cattle Manure Fertilizers Application in Winter Wheat Production Using Response-Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    M. jahan

    2016-02-01

    low levels of manure were determined based on nutrient content and local recommendations. Response of measured variables (y to experimental factors (X was estimated by using second order polynomials with interaction (Equation 1: (1 Where 0 is constant and i, ij and ii are coefficients for linear, interaction and quadratic terms, respectively. After simulation, using statistical methods, the result is a second order polynomial which states the estimated of response (yield as a function of inputs variables. Finally, after optimizing of resulted function and eliminating of low effect terms, using statistical tests and criteria such as, F test, lack of fit test, coefficient of determination (R2, a final function to predict yield and other expected variables was calculated (Equation 2: (2 In this function, Y is a dependent variable, X is the independent variable of N fertilizer, X2 is independent variable of P fertilizer, X3 is independent variable of manure, and a0 to a9 are coefficients of function. The equation is functional only in the defined range of input variables and could not predict values out of the range. The optimized rates of N, P and manure, determined considering 3 scenarios including: economic, environmental and eco-environmental, which seed yield, N loss and NUE and N loss were the main determining factors, respectively. To obtain optimized levels, response-surface methodology was used. Finally, the fitted values compared to observed values then validity of regression models evaluated by RMSE test (Equation 3 and 1:1 regression line. (3 RMSE (% Results and Discussion Optimization of nitrogen, phosphorus and manure fertilization were done according to 3 scenarios of economic, environmental and eco-environmental. In economic scenario, wheat seed yield was considered as the main determining factor of optimized resource, thus the result showed by applying of 145.45 kg ha-1 N, 200 kg ha-1 P and 18.48 tones ha-1 manure, it would be attained the

  5. Phenotypic Plasticity Explains Response Patterns of European Beech (Fagus sylvatica L. Saplings to Nitrogen Fertilization and Drought Events

    Directory of Open Access Journals (Sweden)

    Christoph Dziedek

    2017-03-01

    Full Text Available Abstract: Climate and atmospheric changes affect forest ecosystems worldwide, but little is known about the interactive effects of global change drivers on tree growth. In the present study, we analyzed single and combined effects of nitrogen (N fertilization and drought events (D on the growth of European beech (Fagus sylvatica L. saplings in a greenhouse experiment. We quantified morphological and physiological responses to treatments for one‐ and two‐year‐old plants. N fertilization increased the saplings’ aboveground biomass investments, making them more susceptible to D treatments. This was reflected by the highest tissue dieback in combined N and D treatments and a significant N × D interaction for leaf δ13C signatures. Thus, atmospheric N deposition can strengthen the drought sensitivity of beech saplings. One‐year‐old plants reacted more sensitively to D treatments than two‐year‐old plants (indicated by D‐induced shifts in leaf δ13C signatures of one‐year‐old and two‐year‐old plants by +0.5‰ and −0.2‰, respectively, attributable to their higher shoot:root‐ratios (1.8 and 1.2, respectively. In summary, the saplings’ treatment responses were determined by their phenotypic plasticity (shifts in shoot:root‐ratios, which in turn was a function of both the saplings’ age (effects of allometric growth trajectories = apparent plasticity and environmental impacts (effects of N fertilization = plastic allometry.

  6. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    Science.gov (United States)

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  7. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO₂ exposure in a subtropical oak woodland.

    Science.gov (United States)

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-11-01

    Rising atmospheric carbon dioxide (CO₂) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO₂. We used open-top chambers to manipulate CO₂ during regrowth after fire, and measured C, N and tracer (15) N in ecosystem components throughout the experiment. Elevated CO₂ increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO₂ increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term (15) N tracer indicated that CO₂ exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO₂ on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO₂ in current biogeochemical models, where the effect of elevated CO₂ on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Maize (Zea mays L.) yield response to nitrogen as influenced by spatio-temporal variations of soil-water-topography dynamics

    Science.gov (United States)

    Reducing nitrogen (N) loss from agricultural lands and applying N fertilizer at rates that satisfy both economic and environmental objectives is critical for sustainable agricultural management. This study investigated spatial variability in maize yield response to N and its controlling factors alon...

  9. Soil organic matter and nitrogen cycling in response to harvesting, mechanical site preparation, and fertilization in a wetland with a mineral substrate

    Science.gov (United States)

    James W. McLaughlin; Margaret R. Gale; Martin F. Jurgensen; Carl C. Trettin

    2000-01-01

    Forested wetlands are becoming an important timber resource in the Upper Great Lakes Region of the US. However, there is limited information on soil nutrient cycling responses to harvesting and post-harvest manipulations (site preparation and fertilization). The objective of this study was to examine cellulose decomposition, nitrogen mineralization, and soil solution...

  10. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    Science.gov (United States)

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Directory of Open Access Journals (Sweden)

    Madjelia Cangre Ebou eDAO

    2015-11-01

    Full Text Available The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill. BSP] in Quebec, Canada. During 2008-2013, the soil around mature trees was warmed up by 4 °C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  12. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  13. Differential response of microbial respiration to supplied nitrogen forms in 3 contrasting alpine meadow soils on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zeng

    Full Text Available ABSTRACT An incubation experiment was conducted to examine the effects of nitrogen (N applications in different forms (NH4NO3, NH4Cl, and KNO3 on microbial respiration considering 3 different alpine meadow soils (C poor soil, pH = 8.1, 1.6% C; C moderate soil, pH = 6.0, 5.0% C; C rich soil, pH = 7.1, 7.4% C in the Tibetan Plateau. The addition of NH4NO3 and NH4Cl increased the microbial respiration in C poor soil, but KNO3 had no effect. The inorganic N forms had no effects on C rich soil, but decreased microbial respiration in C moderate soil. Soil microbial respiration levels across the different types were ordered as follows: C poor soil < C rich soil < C moderate soil, regardless of N addition. These results suggest that the effect of N on microbial respiration in alpine meadow soils is more dependent on the initial soil pH than on soil C availability.

  14. Soil Nematode Response to Biochar Addition in a Chinese Wheat Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Ke; LI Qi; LIANG Wen-Ju; ZHANG Min; BAO Xue-Lian; XIE Zu-Bin

    2013-01-01

    While studies have focused on the use of biochar as soil amendment,little attention has been paid to its effect on soil fauna.The biochar was produced from slow pyrolysis of wheat straw in the present study.Four treatments,no addition (CK) and three rates of biochar addition at 2400 (B1),12000 (B5) and 48000 kg ha-1 (B20),were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China.The B5 and B20 application significantly increased the total organic carbon and the C/N ratio.No significant difference in total nematode abundance was found among the treatments.The biochar addition to the soil significantly increased the abundance of fungivores,and decreased that of plant parasites.The diversity of soil nematodes was significantly increased by B1 compared to CK.Nematode trophic groups were more effectively indicative to biochar addition than total abundance.

  15. Manipulating the jasmonate response: How do methyl jasmonate additions mediate characteristics of aboveground and belowground mutualisms?

    NARCIS (Netherlands)

    Kiers, E.T.; Adler, L.S.; Grman, E.L.; van der Heijden, M.G.A.

    2010-01-01

    Plants use a range of sophisticated strategies to protect themselves against herbivores and pathogens, such as the production of jasmonates, a group of plant hormones that prime the plant's defense system upon attack. However, defense-related mechanisms, such as the jasmonate response, play a more

  16. Exploring Additional Determinants of Environmentally Responsible Behavior: The Influence of Environmental Literature and Environmental Attitudes

    Science.gov (United States)

    Mobley, Catherine; Vagias, Wade M.; DeWard, Sarah L.

    2010-01-01

    It is often assumed that individuals who are knowledgeable and concerned about the environment will engage in environmentally responsible behavior (ERB). We use data from a large scale Web survey hosted on National Geographic's Web site in 2001-2002 to investigate this premise. We examine whether reading three classic environmental books…

  17. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    KAUST Repository

    Pallavicini, Piersandro; Basile, Simone; Chirico, Giuseppe; Dacarro, Giacomo; D'Alfonso, Laura; Donà , Alice; Patrini, Maddalena; Falqui, Andrea; Sironi, Laura; Taglietti, Angelo

    2015-01-01

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  18. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    KAUST Repository

    Pallavicini, Piersandro

    2015-07-06

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  19. Soil and fertilizer nitrogen

    International Nuclear Information System (INIS)

    Winteringham, F.P.W.

    1984-01-01

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  20. Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2017-09-01

    Full Text Available Nitrogen deficiency limits crop performance under elevated CO2 (eCO2, depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2 or 550 ppm CO2 (eCO2. The plants were supplied with 100 mg N kg−1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5 and full-mature (R8 stages. Increased yield in response to eCO2 correlated highly (r = 0.95 with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  1. Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: a 3-year field experiment.

    Science.gov (United States)

    Chen, Zengming; Xu, Yehong; Zhou, Xuhui; Tang, Jianwu; Kuzyakov, Yakov; Yu, Hongyan; Fan, Jianling; Ding, Weixin

    2017-08-01

    Extreme precipitation is predicted to be more frequent and intense accompanying global warming and may have profound impacts on soil respiration (Rs) and its components, that is, autotrophic (Ra) and heterotrophic (Rh) respiration. However, how natural extreme rainfall or snowfall events affect these fluxes are still lacking, especially under nitrogen (N) fertilization. In this study, extreme rainfall and snowfall events occurred during a 3-year field experiment, allowing us to examine their effects on the response of Rs, Rh, and Ra to N supply. In normal rainfall years of 2011/2012 and 2012/2013, N fertilization significantly stimulated Rs by 23.9% and 10.9%, respectively. This stimulation was mainly due to the increase of Ra because of N-induced increase in plant biomass. In the record wet year of 2013/2014, however, Rs was independent on N supply because of the inhibition effect of the extreme rainfall event. Compared with those in other years, Rh and Ra were reduced by 36.8% and 59.1%, respectively, which were likely related to the anoxic stress on soil microbes and decreased photosynthates supply. Although N supply did not affect annual Rh, the response ratio (RR) of Rh flux to N fertilization decreased firstly during growing season, increased in nongrowing season and peaked during spring thaw in each year. Nongrowing season Rs and Rh contributed 5.5-16.4% to their annual fluxes and were higher in 2012/2013 than other years due to the extreme snowfall inducing higher soil moisture during spring thaw. The RR of nongrowing season Rs and Rh decreased in years with extreme snowfall or rainfall compared to those in normal years. Overall, our results highlight the significant effects of extreme precipitation on responses of Rs and its components to N fertilization, which should be incorporated into models to improve the prediction o