WorldWideScience

Sample records for additional nitrogen responses

  1. Soil biochemical responses to nitrogen addition in a bamboo forest.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii plantation was conducted. Four levels of N treatment were applied: (1 control (CK, without N added, (2 low-nitrogen (LN, 50 kg N ha(-1 year(-1, (3 medium-nitrogen (MN, 150 kg N ha(-1 year(-1, and (4 high-nitrogen (HN, 300 kg N ha(-1 year(-1. Results indicated that N addition significantly increased the concentrations of NH4(+, NO3(-, microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0-20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease and phosphorus (acid phosphatase and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase activities. Results suggest that (1 this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2 the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition.

  2. Global response patterns of terrestrial plant species to nitrogen addition.

    Science.gov (United States)

    Xia, Jianyang; Wan, Shiqiang

    2008-07-01

    Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration. PMID:19086179

  3. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    Science.gov (United States)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, pHumification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, psoil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. Both time and the temperature presented the statistically significant effects on DOM characteristics of soil samples while the N-addition exhibited the insignificant difference among the samples.

  4. Soil microbial responses to nitrogen addition in arid ecosystems

    Directory of Open Access Journals (Sweden)

    Robert L Sinsabaugh

    2015-08-01

    Full Text Available The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts. We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg ha-1 yr-1 from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm and bulk soils (0-10 cm were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities (EEA and rates of N transformation. By most measures, nutrient availability, microbial biomass and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N.

  5. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    Science.gov (United States)

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  6. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition.

    Directory of Open Access Journals (Sweden)

    Wenjuan Huang

    Full Text Available Mineral elements in plants have been strongly affected by increased atmospheric carbon dioxide (CO2 concentrations and nitrogen (N deposition due to human activities. However, such understanding is largely limited to N and phosphorus in grassland. Using open-top chambers, we examined the concentrations of potassium (K, calcium (Ca, magnesium (Mg, aluminum (Al, copper (Cu and manganese (Mn in the leaves and roots of the seedlings of five subtropical tree species in response to elevated CO2 (ca. 700 μmol CO2 mol(-1 and N addition (100 kg N ha(-1 yr(-1 from 2005 to 2009. These mineral elements in the roots responded more strongly to elevated CO2 and N addition than those in the leaves. Elevated CO2 did not consistently decrease the concentrations of plant mineral elements, with increases in K, Al, Cu and Mn in some tree species. N addition decreased K and had no influence on Cu in the five tree species. Given the shifts in plant mineral elements, Schima superba and Castanopsis hystrix were less responsive to elevated CO2 and N addition alone, respectively. Our results indicate that plant stoichiometry would be altered by increasing CO2 and N deposition, and K would likely become a limiting nutrient under increasing N deposition in subtropics.

  7. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition

    Directory of Open Access Journals (Sweden)

    Johnson Jillian G

    2011-07-01

    Full Text Available Abstract Background The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Results Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes

  8. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh

    Science.gov (United States)

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-01-01

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability. PMID:26869197

  9. The responses of soil respiration to nitrogen addition in a temperate grassland in northern China.

    Science.gov (United States)

    Luo, Qinpu; Gong, Jirui; Zhai, Zhanwei; Pan, Yan; Liu, Min; Xu, Sha; Wang, Yihui; Yang, Lili; Baoyin, Taoge-Tao

    2016-11-01

    Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of soil N availability on soil respiration (RS) is critical to understand soil carbon balances and their responses to global climate change. A 2-year field experiment was conducted to evaluate the response of RS to soil mineral N in a temperate grassland in northern China. RS, abiotic and biotic factors, and N mineralization were measured in the grassland, at rates of N addition ranging from 0 to 25gNm(-2)yr(-1). Annual and dormant-season RS ranged from 241.34 to 283.64g C m(-2) and from 61.34 to 83.84g C m(-2) respectively. High N application significantly increased RS, possibly due to increased root biomass and increased microbial biomass. High N treatment significantly increased soil NO3-N and inorganic N content compared with the control. The ratio of NO3-N to NH4-N and the N mineralization rate were significantly positively correlated with RS, but NH4-N was not correlated or negatively correlated with RS during the growing season. The temperature sensitivity of RS (Q10) was not significantly affected by N levels, and ranged from 1.90 to 2.20, but decreased marginally significantly at high N. RS outside the growing season is an important component of annual RS, accounting for 25.0 to 29.6% of the total. High N application indirectly stimulated RS by increasing soil NO3-N and net nitrification, thereby eliminating soil N limitations, promoting ecosystem productivity, and increasing soil CO2 efflux. Our results show the importance of distinguishing between NO3-N and NH4-N, as their impact on soil CO2 efflux differed. PMID:27396319

  10. Soil Organic Matter Responses to Chronic Nitrogen Additions in a Temperate Forest (Invited)

    Science.gov (United States)

    Frey, S. D.; Nadelhoffer, K.; Bowden, R.; Brzostek, E. R.; Caldwell, B. A.; Crow, S. E.; Finzi, A. C.; Goodale, C. L.; Grandy, S.; Lajtha, K.; Ollinger, S. V.; Plante, A. F.

    2010-12-01

    The Chronic Nitrogen Addition Experiment at Harvard Forest in central Massacusetts, USA was established in 1988 to investigate the effects of increasing anthropogenic atmospheric N deposition on forests in the eastern United States. Located in an old red pine plantation and a mixed hardwood forest, the treated plots have received 50 and 150 kg N/ha/yr, as ammonium sulfate, in six equal monthly applications during the growing season each year since the start of the experiment. Additionally, the control and low N treatments were given a single pulse label of 15N-nitrate or 15N-ammonium in 1991 and 1992. Regular measurements have been made over the past 20 years to assess woody biomass production and mortality, foliar chemistry, litter fall, and soil N dynamics. Less frequent measurements of soil C pools, soil respiration, fine root dynamics, and microbial biomass and community structure have been made. For the 20th anniversary, an intensive sampling campaign was carried out in fall 2008 with a focus on evaluating how the long-term N additions have impacted ecosystem C storage and N dynamics. Our primary objective was to assess the amount of C and N stored in wood, foliage, litter, roots, and soil (to a depth of ~50 cm). We also wanted to examine the fate of N by comparing patterns of 15N recovery to those observed previously. An additional objective was to further examine how chronic N additions impact microbial biomass, activity and community structure. Results indicate that chronic N additions over the past 20 years have increased forest floor mass and soil organic matter across the soil profile; decreased microbial biomass, especially the fungal component; and altered microbial community composition (i.e., significantly lower fungal:bacterial biomass ratios in the N amended plots). N15 tracer recoveries in soils and forest floors were much higher than in tree biomass, ranging from 49 to 101% of additions across forest types and N addition rates. Stoichiometric

  11. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  12. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    DEFF Research Database (Denmark)

    Fang, Yun-ting; Zhu, Wei-xing; Mo, Jiang-ming;

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon...... evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N...... retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except...

  13. Response of Functional Structure of Soil Microbial Community to Multi-level Nitrogen Additions on the Central Tibetan Plateau

    Science.gov (United States)

    Zhang, G.; Yuan, Y.

    2015-12-01

    The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. Tibet is the one of the most threatened regions by nitrogen deposition, thus understanding how its microbial communities function maybe of high importance to predicting microbial responses to nitrogen deposition. Here we describe a short-time nitrogen addition conducted in an alpine steppe ecosystem to investigate the response of functional structure of soil microbial community to multi-level nitrogen addition. Using a GeoChip 4.0, we showed that functional diversities and richness of functional genes were unchanged at low level of nitrogen fertilizer inputs (=40 kg N ha-1 yr-1). Detrended correspondence analysis indicated that the functional structure of microbial communities was markedly different across the nitrogen gradients. Most C degradation genes whose abundances significantly increased under elevated N fertilizer were those involved in the degradation of relatively labile C (starch, hemicellulose, cellulose), whereas the abundance of certain genes involved in the degradation of recalcitrant C (i.e. lignin) was largely decreased (such as manganese peroxidase, mnp). The results suggest that the elevated N fertilization rates might significantly accelerate the labile C degradation, but might not spur recalcitrant C degradation. The combined effect of gdh and ureC genes involved in N cycling appeared to shift the balance between ammonia and organic N toward organic N ammonification and hence increased the N mineralization potential. Moreover, Urease directly involved in urea mineralization significantly increased. Lastly, Canonical correspondence analysis showed that soil (TOC+NH4++NO3-+NO2-+pH) and plant (Aboveground plant productivity + Shannon Diversity) variables could explain 38.9% of the variation of soil microbial community composition. On the basis of above observations, we predict that increasing of nitrogen

  14. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis.

    Science.gov (United States)

    Zhou, Lingyan; Zhou, Xuhui; Zhang, Baocheng; Lu, Meng; Luo, Yiqi; Liu, Lingli; Li, Bo

    2014-07-01

    Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta-analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta-analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.

  15. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Directory of Open Access Journals (Sweden)

    Andre eVelescu

    2016-05-01

    Full Text Available In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.In 2007, we established a nutrient manipulation experiment (NUMEX to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N, 10 kg ha-1 a-1 of phosphorus (P, 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC and dissolved organic nitrogen (DON concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N

  16. Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador

    Science.gov (United States)

    Velescu, Andre; Valarezo, Carlos; Wilcke, Wolfgang

    2016-05-01

    In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth. In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes. Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments. Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P

  17. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    Science.gov (United States)

    Dong, W. Y.; Zhang, X. Y.; Liu, X. Y.; Fu, X. L.; Chen, F. S.; Wang, H. M.; Sun, X. M.; Wen, X. F.

    2015-09-01

    Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha-1 yr-1 of N +50 kg ha-1 yr-1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.

  18. Response of wheat to additional nitrogen fertilizer application after pig slurry on over-fertilized soils

    OpenAIRE

    Guillaumes Cullell, Elisenda; Carrasco Martín, Israel; Villar Mir, Josep Ma.

    2006-01-01

    Pig slurry is a valuable nutrient resource but constitutes a waste disposal problem in areas of high animal density. In the semiarid area of Pla d’Urgell, in the Ebro Valley, North-East Spain, irrigated crops receive large amounts of nutrients in the form of manure and mineral fertilizers. We studied the effect of pig slurry and additional side-dress mineral fertilizers on irrigated wheat, Triticum aestivum L., on a coarse loam soil, with high soil P and K levels. Yields increased by 62...

  19. Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions

    Energy Technology Data Exchange (ETDEWEB)

    Sager, E.P.S.; Hutchinson, T.C. [Trent Univ., Peterborough, ON (Canada). Environmental Studies

    2006-10-15

    Elevated UV-B radiation due to climatic change and ozone depletion may represent a significant springtime environmental stressor to germinating seedlings in temperate forest regions. This study aimed to determine the effects of UV-B, nitrogen (N) fertilization and climate warming on the concentrations of base cations and secondary metabolites in the foliage of sugar maple seedlings growing in acid or alkaline soils. The influence of measured flavonoids and phenolics on herbivore activity was examined, as well as the relationship between foliar concentrations of calcium (Ca); manganese (Mn); and N and the production of phenolic and flavonoid compounds. Experimental plots were established in mature hardwood forests in alkaline and acid soil locations in Bobcaygeon and Haliburton, Ontario. Pentagonal open-top chambers were used to lengthen the growing season and simulate an earlier spring. Ammonium nitrate was applied at a rate comparable with an additional deposition of 5 g N per m per year. Fertilizer was applied on 3 separate occasions. Ambient UV-B radiation was screened out with Mylar D polyester film. Sites, treatments and time of sampling had complex effects on foliar elemental chemistry, production of secondary compounds and herbivory. Foliar concentrations of individual phenols were higher in seedlings in the UV-B exclusion treatments. At both sites, removal of ambient UV-B led to increases in flavonoids and chlorogenic acid, and reduced herbivore activity. At Haliburton, ammonium nitrate fertilization led to further increases in foliar Mn. Nitrogen additions led to decreases in the concentrations of some flavonoids at both sites. It was concluded that the composition of the forest soil governs the response of seedlings when they are exposed to abiotic stressors. 63 refs., 5 tabs., 8 figs.

  20. Physiological Responses of Two Epiphytic Bryophytes to Nitrogen, Phosphorus and Sulfur Addition in a Subtropical Montane Cloud Forest.

    Science.gov (United States)

    Chen, Xi; Liu, Wen-Yao; Song, Liang; Li, Su; Wu, Yi; Shi, Xian-Meng; Huang, Jun-Biao; Wu, Chuan-Sheng

    2016-01-01

    Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations. PMID:27560190

  1. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    Directory of Open Access Journals (Sweden)

    W. Y. Dong

    2015-07-01

    Full Text Available Nitrogen (N and phosphorus (P additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG and N-acetyl-β-D-glucosaminidase (NAG in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP activity was always higher (57 and 71 %, respectively in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs, fungal PLFAs (funPLFAs and actinomycic PLFAs (actPLFAs were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC. βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+ bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote

  2. Phosphorus applications improved the soil microbial responses under nitrogen additions in Chinese fir plantations of subtropical China

    Science.gov (United States)

    Zhang, Xinyu; Li, Dandan; Yang, Yang; Tang, Yuqian; Wang, Huimin; Chen, Fusheng; Sun, Xiaomin

    2016-04-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil microbial communities, enzyme kinetics, and N cycling genes to P additions in subtropical plantations are still not clear. The hypothesis that P application can alleviate the limitation and improve the soil microbial properties was tested by long term field experiment in the Chinese fir plantations in subtropical China. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates. The treatments are control (CK, no N and P application), low N addition (N1: 50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N and P addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1). A suite of responses of soil microorganism across four years (2012-2015) during three seasons (spring, summer and autumn) were measured. Following 4 years of N amendments, fertilized soils were more acidic and had lower soil microbial biomass carbon contents than CK. However, P alleviated the soil acidification and increased the soil microbial biomass carbon contents. Increases in microbial PLFA biomarkers and exoenzyme kinetics in N fertilized plots were observed in the initial year (2013) but reduced since then (2014 and 2015). Whereas P amendments increased the soil PLFA biomarkers and exoenzyme kinetics through the four years except that the acid phosphatase activities declined after 3 years applications. P applications enhanced the soil N cycling by increases the abundances of nitrifiers (ammonia-oxidizing archea) and denitrifiers (nos Z, norG, and nirK). The bacterial and fungal residue carbons (calculated by amino sugar indicators) were higher under NP fertilizations than the other treatments. Our results suggest that P application could improve the soil

  3. Nitrogen laser with additional components

    International Nuclear Information System (INIS)

    The development and construction of a Nitrogen laser with low cost domestic components is described. The model built is operated at 50 pulses per second with a 50 kW power per pulse at the ultraviolet 337.1 nm wavelength. (Author)

  4. Shifts and dynamics of greenhouse gas fluxes in coastal marshes: Responses to short- and long-term nitrogen additions (Invited)

    Science.gov (United States)

    Moseman-Valtierra, S.; Kroeger, K. D.; Tang, J.; Fisher, K.; Bratton, J. F.; Crusius, J.

    2010-12-01

    Coastal wetlands are estimated to sequester carbon at faster rates than most ecosystems, and thus they are appealing targets for efforts to ameliorate climate change through biological C storage. However, to accurately estimate the climatic impact of such strategies, we must simultaneously consider fluxes of greenhouse gases from these ecosystems, including CH4 and N2O. Coastal salt marshes are currently thought to represent minor sources of greenhouse gases relative to freshwater wetlands, but the few measurements that exist for N2O and CH4 fluxes in these systems have not spanned the range of their dynamic environmental conditions. Further, multiple anthropogenic sources have disproportionately increased nitrogen loads in coastal ecosystems, which we hypothesized may significantly enhance N2O emissions from salt marshes. We tested this hypothesis with short- and long-term manipulative experiments at low to moderate nitrogen loads in pristine temperate Spartina patens marshes at Plum Island (MA). In July 2009, we compared background greenhouse gas fluxes with those measured immediately after either a single addition of nitrate (equivalent to 1.4g N m -2) or a control solution of artificial seawater. Prior to manipulations, the salt marsh sediments represented small sinks of N2O, as fluxes averaged -33 μmol N2O m-2 day-1. Yet, within one hour of manipulations, the plots with nitrate additions became sources of N2O, with fluxes averaging 42 and 108 μmol N2O m-2 day-1 in light and dark chambers, respectively. These exceeded fluxes in control plots by more than an order of magnitude. Respiratory CO2 fluxes were also significantly higher in nitrate-enriched plots (4.4 +/- 1 μmol CO2 m-2 s-1) than in controls (2.4 +/- 0.3 μmol CO2 m-2 s-1) immediately following the nitrate additions. Methane fluxes were not affected by nitrogen, but they varied spatially, ranging from 7.5 to 2200 μmol CH4 m-2 day-1. Although the enhanced N2O fluxes did not persist after 2 days, the

  5. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia

    Science.gov (United States)

    Shi, Yao; Sheng, Lianxi; Wang, Zhongqiang; Zhang, Xinyu; He, Nianpeng; Yu, Qiang

    2016-10-01

    In order to explore the responses of soil enzyme activities and microbial community compositions to long-term nitrogen (N) addition in both bulk soil and microaggregate of chestnut soil, we conducted a 7-year urea addition experiment with N treatments at 6 levels (0, 56, 112, 224, 392 and 560 kg N ha-1 yr-1) in a temperate steppe of Inner Mongolia in China. Soil properties and the activities of four enzymes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were measured in both bulk soil and microaggregate, and phospholipid fatty acids (PLFAs) were measured in bulk soil. The results indicated that: 1) in bulk soil, N addition significantly decreased β-1,4-glucosidase (BG) and leucine aminopeptidase (LAP) activities at the treatment amounts of 224, 392 and 560 kg N ha-1 yr-1, and obviously suppressed β-1,4-N-acetylglucosaminidase (NAG) activity at the treatment amount of 560 kg N ha-1 yr-1. N addition enhanced total PLFAs (totPLFAs) and bacterial PLFAs (bacPLFAs) at the treatment amounts of 392 and 560 kg N ha-1 yr-1, respectively, but fungal PLFAs showed no response to N addition. The activities of BG, NAG and LAP were positively correlated with soil pH, but negatively correlated with the concentration of NH 4 + -N; 2) in microaggregate (53-250 μm), the activities of BG, NAG and AP showed no response to increased addition of N, but the significantly decreased LAP activity was observed at the treatment amount of 392 kg N ha-1 yr-1. These results suggested that enzyme activities were more sensitive to N addition than PLFA biomarkers in soil, and LAP activity in microaggregate may be a good indicator for evaluating N cycle response to long-term N addition.

  6. Response of Kobresia pygmaea and Stipa purpurea Grassland Communities in Northern Tibet to Nitrogen and Phosphate Addition

    Directory of Open Access Journals (Sweden)

    Jingsheng Wang

    2015-02-01

    Full Text Available The Tibetan Plateau is of fundamental ecological significance to China, Asia, and the world. In recent years, Tibetan grasslands have suffered from severe degradation due to climate change and anthropogenic disturbance. In this study, nitrogen (N and phosphate were applied to a moderately degraded Kobresia pygmaea meadow and Stipa purpurea steppe in the arid alpine northern Tibetan Plateau. The results showed that with increasing nitrogenous fertilizer, the height, coverage, biomass, and importance value of the K. pygmaea population decreased whereas the population of S. purpurea exhibited the opposite trend. Application of a mixed fertilizer with the same amount of N and phosphorus (P (5 g each per m2 doubled the biomass of the K. pygmaea meadow and increased the aboveground biomass of the S. purpurea steppe by 72.3%. The nitrogenous fertilizer increased the total biomass and belowground biomass of the S. purpurea steppe, whereas the mixed fertilizer was beneficial to aboveground grass recovery. Application of 10 g N + 5 g P m−2 fertilizer increased aboveground biomass by 164.8%, whereas the belowground biomass was less than the control by 4.7%. The N and P fertilizer did not affect soil pH, except for some changes in soil N and P contents.

  7. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China

    Science.gov (United States)

    He, Kejian; Qi, Yu; Huang, Yongmei; Chen, Huiying; Sheng, Zhilu; Xu, Xia; Duan, Lei

    2016-08-01

    Understanding the response of the plant community to increasing nitrogen (N) deposition is helpful for improving pasture management in semi-arid areas. We implemented a 5-year N addition experiment in a Stipa krylovii steppe of Inner Mongolia, northern China. The aboveground biomass (AGB) and species richness were measured annually. Along with the N addition levels, the species richness declined significantly, and the species composition changed noticeably. However, the total AGB did not exhibit a noticeable increase. We found that compensatory effects of the AGB occurred not only between the grasses and the forbs but also among Gramineae species. The plant responses to N addition, from the community to species level, lessened in dry years compared to wet or normal years. The N addition intensified the reduction of community productivity in dry years. Our study indicated that the compensatory effects of the AGB among the species sustained the stability of grassland productivity. However, biodiversity loss resulting from increasing N deposition might lead the semi-arid grassland ecosystem to be unsustainable, especially in dry years.

  8. Nitrogen Additions Affect Root Dynamics in a Boreal Forest Ecosystem

    Science.gov (United States)

    Turner, K. M.; Treseder, K. K.

    2004-12-01

    As with many ecosystems, North American boreal forests are increasingly subjected to anthropogenic nitrogen deposition. To examine potential effects on plant growth, we created nitrogen fertilization plots in three sites along an Alaskan fire chronosequence composed of forests aged 5, 17, and 80 years. Each site had been exposed to two years of nitrogen fertilization, with four control plots and four nitrogen plots per site. General observations indicate that aboveground net primary productivity appears to be nitrogen limited in each site. We hypothesized that nitrogen fertilization would positively influence root dynamics as well, with nitrogen additions resulting in an increase in standing root biomass and length. To test our hypothesis, we used a minirhizotron camera to collect sequential images of roots in the top 10 cm of soil in both nitrogen fertilized and control plots in each site. Images were collected monthly during the growing season, with a total of five sampling times between May 2003 and May 2004. We then analyzed the images with WinRhizotron root measurement software. Nitrogen fertilization had varying effects on root biomass among the three sites, with a significant site by N interaction (P = 0.039). A decrease in root biomass was observed in the 5 and 80 year old sites, dropping from 207 g/m2 to 79 g/m2 and from 230 g/m2 to 129 g/m2 for the youngest and oldest sites, respectively. In contrast, root biomass increased from 52 g/m2 to 107 g/m2 in the 17 year old site. (Values are for the top 10 cm of soil only, and likely underestimate total root stocks.) Patterns in standing root lengths diverged from those of root biomass, with a 2.5-fold overall increase under nitrogen fertilization across all sites (P = 0.004). There were no significant differences among sites in nitrogen response. Standing root biomass and length differed from one another in their responses to nitrogen fertilization because nitrogen additions decreased specific root weight (as g

  9. Water- and plant-mediated responses of ecosystem carbon fluxes to warming and nitrogen addition on the Songnen grassland in northeast China.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    Full Text Available BACKGROUND: Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. METHODOLOGY/PRINCIPAL FINDINGS: In-situ canopy CO(2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO(2 exchange (NEE and increased ecosystem respiration (ER; but had no significant impacts on gross ecosystem productivity (GEP. N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. CONCLUSION/SIGNIFICANCE: Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland.

  10. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity.

    Science.gov (United States)

    Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun

    2016-01-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761

  11. Grassland biodiversity bounces back from long-term nitrogen addition.

    Science.gov (United States)

    Storkey, J; Macdonald, A J; Poulton, P R; Scott, T; Köhler, I H; Schnyder, H; Goulding, K W T; Crawley, M J

    2015-12-17

    The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to 'bounce back' in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.

  12. Grassland biodiversity bounces back from long-term nitrogen addition

    Science.gov (United States)

    Storkey, J.; MacDonald, A. J.; Poulton, P. R.; Scott, T.; Köhler, I. H.; Schnyder, H.; Goulding, K. W. T.; Crawley, M. J.

    2015-12-01

    The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to ‘bounce back’ in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.

  13. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    OpenAIRE

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2) efflux to long-term experimental N addition (125 kg N ha−1 yr−1) in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In th...

  14. Nitrogen oxide abatement by distributed fuel addition

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  15. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    OpenAIRE

    B. Koehler; M. D. Corre; Veldkamp, E.; Sueta, J. P.

    2009-01-01

    Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1) in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane fo...

  16. Transcriptome response to nitrogen starvation in rice

    Indian Academy of Sciences (India)

    Hongmei Cai; Yongen Lu; Weibo Xie; Tong Zhu; Xingming Lian

    2012-09-01

    Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1% transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.

  17. Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China.

    Science.gov (United States)

    Qi, Yuchun; Liu, Xinchao; Dong, Yunshe; Peng, Qin; He, Yating; Sun, Liangjie; Jia, Junqiang; Cao, Congcong

    2014-04-01

    We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m(2)·year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil rang ed from 5.60 to 6.49 g C/m(2) over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the effluxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil CO2 effluxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution. PMID:25079414

  18. Nitrogen addition regulates soil nematode community composition through ammonium suppression.

    Directory of Open Access Journals (Sweden)

    Cunzheng Wei

    Full Text Available Nitrogen (N enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness, maturity index (MI, and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA, suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N

  19. Nitrogen addition enhances drought sensitivity of young deciduous tree species

    Directory of Open Access Journals (Sweden)

    Christoph Dziedek

    2016-07-01

    Full Text Available Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N and drought (D effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii in relation to functional diverse species mixtures using data from a four-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e. combined treatment effects were non-additive, while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e. trait combination, but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role (‘trait portfolio’ that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they

  20. Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species.

    Science.gov (United States)

    Dziedek, Christoph; Härdtle, Werner; von Oheimb, Goddert; Fichtner, Andreas

    2016-01-01

    Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N) and drought (D) effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii) in relation to functional diverse species mixtures using data from a 4-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e., combined treatment effects were non-additive), while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e., trait combination), but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role ('trait portfolio') that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they provide further

  1. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest in decadal scale

    Directory of Open Access Journals (Sweden)

    B. Koehler

    2009-09-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide CO2 efflux to long-term experimental N-addition (125 kg N ha−1 yr-1 in mature lowland and montane forests in Panamá. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger from the lowland (15.20±1.25 Mg C ha−1 than the montane forest (9.36±0.29 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance in decadal scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2- and 3 yr N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots where stem diameter growth was promoted.

  2. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale

    Directory of Open Access Journals (Sweden)

    B. Koehler

    2009-12-01

    Full Text Available Atmospheric nitrogen (N deposition is rapidly increasing in tropical regions. We studied the response of soil carbon dioxide (CO2 efflux to long-term experimental N addition (125 kg N ha−1 yr−1 in mature lowland and montane forests in Panama. In the lowland forest, on soils with high nutrient-supplying and buffering capacity, fine litterfall and stem-growth were neither N- nor phosphorus-limited. In the montane forest, on soils with low nutrient supplying capacity and an organic layer, fine litterfall and stem-growth were N-limited. Our objectives were to 1 explore the influence of soil temperature and moisture on the dynamics of soil CO2 efflux and 2 determine the responses of soil CO2 efflux from an N-rich and N-limited forest to elevated N input. Annual soil CO2-C efflux was larger in the lowland (15.44 ± 1.02 Mg C ha−1 than in the montane forest (9.37 ± 0.28 Mg C ha−1. In the lowland forest, soil moisture explained the largest fraction of the variance in soil CO2 efflux while soil temperature was the main explanatory variable in the montane forest. Soil CO2 efflux in the lowland forest did not differ between the control and 9–11 yr N-addition plots, suggesting that chronic N input to nutrient-rich tropical lowland forests on well-buffered soils may not change their C balance on a decadal time scale. In the montane forest, first year N addition did not affect soil CO2 efflux but annual CO2 efflux was reduced by 14% and 8% in the 2nd and 3rd year N-addition plots, respectively, compared to the control. This reduction was caused by a decrease in soil CO2 efflux during the high stem-growth period of the year, suggesting a shift in carbon partitioning from below- to aboveground in the N-addition plots in which stem diameter growth was promoted.

  3. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, J. S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  4. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.

    2016-09-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  5. Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition.

    Science.gov (United States)

    Pastore, Melissa A; Megonigal, J Patrick; Langley, J Adam

    2016-01-01

    Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2 . Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine-year CO2 xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a (15) N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or (15) N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced (15) N label retention. These findings suggest that in N-limited ecosystems, elevated CO2 is unlikely to increase long-term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant-microbe competition and allow for increased plant N uptake. PMID:26577708

  6. 落叶松原始林树木生长对氮添加的响应%Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest

    Institute of Scientific and Technical Information of China (English)

    刘修元; 杜恩在; 徐龙超; 沈海花; 方精云; 胡会峰

    2015-01-01

    氮沉降对树木生长的影响是全球变化研究的一个核心问题。该文通过设置4种氮添加水平(对照(0)、低氮(20 kg N·hm–2·a–1)、中氮(50 kg N·hm–2·a–1)和高氮(100 kg N·hm–2·a–1)),研究了模拟氮沉降对落叶松(Larix gmelinii)原始林树木胸径生长的影响。结果表明:中氮和高氮添加对落叶松胸径相对生长率有显著影响,而且这种影响随施氮年限的增加而增强。不同高度的树木对氮添加的响应有很大差异,较低树木(树高16.5 m)的树木在中氮和高氮处理下胸径生长有显著加速(胸径相对生长率增幅>79.5%),但随着树木高度的进一步增加,这种加速作用明显下降。研究结果显示氮添加会促进落叶松胸径生长,这种促进作用主要发生在较高的落叶松个体中。%Aims Global nitrogen (N) deposition has been consistently enhanced and significantly influenced the carbon (C) cycle of forest ecosystem. However, studies on the quantitive response of C sequestration to N deposition in China’s boreal forest ecosystem still remains insufficient. Tree growth is one of important components of C sequestration in forest ecosystem. In order to accurately evaluate the influence of N deposition on C sequestration in China’s boreal forest ecosystem, This study was designed to investigate how N deposition influenced the tree diameter at breast height (DBH) growth of a Larix gmelinii primitive forest. Methods We carried out a N enrichment experiment in an L. gmelinii primitive forest in Greater Khingan Mountains with four N addition levels (control (0), low N (20 kg N·hm–2·a–1), medium N (50 kg N·hm–2·a–1) and high N (100 kg N·hm–2·a–1)). DBH was measured from 2012–2014 within all treatments. Important findings Medium N and high N additions significantly influenced the relative DBH growth of L. gmelinii, and the influence became more pronounced through time. N deposition significantly

  7. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    Science.gov (United States)

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. PMID:27396293

  8. EFFECTS OF WATER TABLE AND NITROGEN ADDITION ON CO2 EMISSION FROM WETLAND SOIL

    Institute of Scientific and Technical Information of China (English)

    YANG Ji-song; LIU Jing-shuang; YU Jun-bao; WANG Jin-da; QIN Sheng-jin; LI Xin-hua

    2005-01-01

    Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study.Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control,were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table ( Ⅰ )and a fluctuant water table (Ⅳ),averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%-57% higher than that at static high water table ( Ⅱ and Ⅲ). After nitrogen addition, however, highest CO2 emission was found at Ⅱ and lowest emission at Ⅲ. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments,low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland.

  9. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    Science.gov (United States)

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession. PMID:20715634

  10. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-wen; LIU Ying; HAN Shi-jie

    2009-01-01

    The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg·ha-1yr-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dissolved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52·78% of added N was retained in the litter. The percentage of N retention was positively correlated (R2=0.91, p<0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter.

  11. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    Science.gov (United States)

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified. PMID:25826942

  12. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    Science.gov (United States)

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  13. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available BACKGROUND: Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland. CONCLUSIONS/SIGNIFICANCE: Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  14. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  15. Nitrogen addition using a gas blow in an ESR process

    Science.gov (United States)

    Yamamoto, S.; Momoi, Y.; Kajikawa, K.

    2016-07-01

    A new nitrogen method for adding in an ESR process using nitrogen gas blown in through the electrode was investigated. Nitrogen gas blown through a center bore of the electrode enabled contact between the nitrogen gas and the molten steel directly underneath the electrode tip. A ɸ 145mm diameter, laboratory-sized PESR furnace was used for the study on the reaction kinetics. Also, we carried out a water-model experiment in order to check the injection depth of the gas blown in the slag. The water model showed that the gas did not reach the upper surface of the molten metal and flowed on the bottom surface of the electrode only. An EPMA was carried out for a droplet remaining on the tip of the electrode after melting. The molten steel from the tip of the electrode shows that nitrogen gas absorption occurred at the tip of the electrode. The mass transfer coefficient was around 1.0x10-2 cm/sec in the system. This value is almost the same as the coefficient at the molten steel free surface.

  16. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-01-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  17. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  18. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Qi Li

    Full Text Available Climate warming and atmospheric nitrogen (N deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate steppe in northern China. After three to four years (2009-2010, we found that N addition positively affected microbial biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N addition and soil food web components were more important than the indirect connections through alterations in soil abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the temperate steppe less than N addition, and there was little influence of warming on N addition effects under these experimental conditions.

  19. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Lett, Signe; Michelsen, Anders

    2012-01-01

    is the main source of new nitrogen to arctic ecosystems. In order to gain information on future nitrogen fixation rates in a changing climate, we studied the effects of two decades of warming with passive greenhouses, shading with sackcloth, and fertilization with NPK fertilizer on nitrogen fixation rates....... To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation...

  20. Nitrogen oxide abatement by distributed fuel addition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J.O.L.; Mereb, J.B.

    1991-09-20

    Reburning is examined as a means of NO{sub x} destruction in a 17 kW down-fired pulverized coal combustor. In reburning, a secondary fuel is introduced downstream of the primary flame to produce a reducing zone, favorable to NO destruction, and air is introduced further downstream to complete the combustion. Emphasis is on natural gas reburning and a bituminous coal primary flame. A parametric examination of reburning employing a statistical experimental design, is conducted, complemented by detailed experiments. Mechanisms governing the inter-conversion of nitrogenous species in the fuel rich reburn zone is explored. The effect of reburning on N{sub 2}O emissions, the effect of primary flame mode (premixed and diffusion) and the effect of distributing the reburning fuel, are also investigated.

  1. The strength of the biotic compartment to retain nitrogen additions prevents nitrogen losses from a Mediterranean maquis

    Directory of Open Access Journals (Sweden)

    T. Dias

    2011-08-01

    Full Text Available Nitrogen (N is one of the nutrients most limiting to ecosystem productivity. However, N availability is increasing globally, which may affect ecosystem functions and stability. To understand the role of each ecosystem compartment in the cycling of increased N, we studied the initial response of a nutrient-poor ecosystem, a Mediterranean maquis, to increased N. N availability (dose and forms was modified by three N additions along the year (spring, summer and middle autumn/winter. Soil inorganic N pools (nitrate in particular strongly reflected the N additions in autumn, almost matching the total N added along the three additions. Cistus ladanifer, the dominant plant species, responded to the increased N (cover and N concentration in leaves and litter, and given that leaf shedding occurs in the summer, the importance of this N pool returning to the soil through litter decomposition on the total soil inorganic N in autumn was investigated. Data suggest that living plants and litter have a crucial role in preventing N losses from Mediterranean maquis. This is the first integrated field study on how European Mediterranean ecosystems retain increased N of different forms and doses, however longer-term studies are needed to explore the generality of this study's observations.

  2. Divergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland.

    Science.gov (United States)

    Zhu, Cheng; Ma, Yiping; Wu, Honghui; Sun, Tao; La Pierre, Kimberly J; Sun, Zewei; Yu, Qiang

    2016-01-01

    Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4 mol N m(-2) yr(-1) vs 1.6 mol N m(-2) yr(-1)) over a two-year period in a semiarid Leymus chinensis grassland in Inner Mongolia, China. Our results show that low-level N addition increased soil respiration, plant belowground biomass and soil microbial biomass carbon (MBC), while high-level N additions decreased them. Soil respiration was positively correlated with plant belowground biomass, MBC, soil temperature and soil moisture. Together plant belowground biomass and MBC explained 99.4% of variation in mean soil respiration, with plant belowground biomass explaining 63.4% of the variation and soil MBC explaining the remaining 36%. Finally, the temperature sensitivity of soil respiration was not influenced by N additions. Overall, our results suggest that low levels of N deposition may stimulate soil respiration, but large increases in N availability may decrease soil respiration, and that these responses are driven by the dissimilar responses of both plant belowground biomass and soil MBC. PMID:27629241

  3. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system.

  4. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. PMID:24140689

  5. Ammonia-oxidizing archaea respond positively to inorganic nitrogen addition in desert soils.

    Science.gov (United States)

    Marusenko, Yevgeniy; Garcia-Pichel, Ferran; Hall, Sharon J

    2015-02-01

    In soils, nitrogen (N) addition typically enhances ammonia oxidation (AO) rates and increases the population density of ammonia-oxidizing bacteria (AOB), but not that of ammonia-oxidizing archaea (AOA). We asked if long-term inorganic N addition also has similar consequences in arid land soils, an understudied yet spatially ubiquitous ecosystem type. Using Sonoran Desert top soils from between and under shrubs within a long-term N-enrichment experiment, we determined community concentration-response kinetics of AO and measured the total and relative abundance of AOA and AOB based on amoA gene abundance. As expected, N addition increased maximum AO rates and the abundance of bacterial amoA genes compared to the controls. Surprisingly, N addition also increased the abundance of archaeal amoA genes. We did not detect any major effects of N addition on ammonia-oxidizing community composition. The ammonia-oxidizing communities in these desert soils were dominated by AOA as expected (78% of amoA gene copies were related to Nitrososphaera), but contained unusually high contributions of Nitrosomonas (18%) and unusually low numbers of Nitrosospira (2%). This study highlights unique traits of ammonia oxidizers in arid lands, which should be considered globally in predictions of AO responses to changes in N availability. PMID:25764551

  6. Soil carbon mineralization following biochar addition associated with external nitrogen

    Directory of Open Access Journals (Sweden)

    Rudong Zhao

    2015-12-01

    Full Text Available Biochar has been attracting increasing attention for its potentials of C sequestration and soil amendment. This study aimed to understand the effects of combining biochar with additional external N on soil C mineralization. A typical red soil (Plinthudults was treated with two biochars made from two types of plantation-tree trunks (soil-biochar treatments, and was also treated with external N (soil-biochar-N treatments. All treatments were incubated for 42 d. The CO2-C released from the treatments was detected periodically. After the incubation, soil properties such as pH, microbial biomass C (MBC, and microbial biomass N (MBN were measured. The addition of biochar with external N increased the soil pH (4.31-4.33 compared to the soil treated with external N only (4.21. This was not observed in the comparison of soil-biochar treatments (4.75-4.80 to soil only (4.74. Biochar additions (whether or not they were associated with external N increased soil MBC and MBN, but decreased CO2-C value per unit total C (added biochar C + soil C according to the model fitting. The total CO2-C released in soil-biochar treatments were enhanced compared to soil only (i.e., 3.15 vs. 2.57 mg and 3.23 vs. 2.45 mg, which was attributed to the labile C fractions in the biochars and through soil microorganism enhancement. However, there were few changes in soil C mineralization in soil-biochar-N treatments. Additionally, the potentially available C per unit total C in soil-biochar-N treatments was lower than that observed in the soil-biochar treatments. Therefore, we believe in the short term, that C mineralization in the soil can be enhanced by biochar addition, but not by adding external N concomitantly.

  7. The Impact of Long-Term Nitrogen Addition on Microbial Community Composition in Three Hawaiian Forest Soils

    OpenAIRE

    Teri C. Balser

    2001-01-01

    We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N) additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year-1 N addition for at least 8 years. Soil parameters, water content, pH...

  8. Plant Responses to Varying Nitrogen Levels

    OpenAIRE

    APAYDIN, FATMA MUGE

    2012-01-01

    Studies show that nitrogen enrichment of the soil decreases plant diversity. From this point ofview, anthropogenic N enrichment is a threat to global plant biodiversity. Roadside verges remained one ofthe high potential of floral diversity. Regularly managed roadside verges could partly replace the grasslandhabitats loss in recent decades. However grassland biodiversity is under the threat of high anthropogenicinput of nitrogen.On the other hand roadside verges have been qualified as a habita...

  9. Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co-Cr-Mo alloys.

    Science.gov (United States)

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2014-01-01

    In the present study, the microstructures and tensile deformation behaviors of biomedical Co-29Cr-6Mo (wt%) alloys containing different concentrations of nitrogen (0-0.24wt%) were systematically investigated. As the nitrogen concentration increased, the volume fraction of athermal ε martensite decreased, because nanoprecipitates hindered the formation of stacking faults (SFs) by acting as obstacles to Shockley partial dislocation formation, and athermal ε martensite usually forms through the regular overlapping of SFs. The formation of the athermal ε martensite was completely suppressed when the nitrogen concentration exceeded 0.10wt%, resulting in a simultaneous improvement in the strength and ductility of the alloys. It was found that the glide of the Shockley partial dislocations and the strain-induced γ (fcc)→ε (hcp) martensitic transformation (SIMT) operated as the primary deformation mechanisms. However, adding nitrogen reduced the work hardening by suppressing the formation of the SFs and preventing the SIMT from taking place. This resulted in an intrinsic decrease in the tensile ductility of the alloys. It is also shown that all the alloys exhibited premature fractures owing to the SIMT. The formation of annealing twins in the γ grains is found to be enhanced by nitrogen addition and to promote the SIMT, resulting in a reduction in the elongation-to-failure due to nitrogen addition. These results should aid in the design of alloys that contain nitrogen.

  10. Response of N2 O Fluxes to the Addition of Nitrogen and Phosphorous in a Southern Subtropical Fir Forest%南方亚热带杉木林土壤 N2O排放对氮磷添加的响应

    Institute of Scientific and Technical Information of China (English)

    孙凡; 张磊

    2015-01-01

    利用国际森林土壤温室气体采集、分析最普遍的方法———静态箱法和气相色谱法,对石溪林场杉木林土壤主要温室气体的排放和吸收通量进行了研究.探讨氮磷添加后土壤主要温室气体的响应规律,以及对森林温室气体通量的影响.研究表明,高氮及高氮加磷对提高地表N2 O的排放量有统计学意义(p<0.01);低氮及低氮加磷也提高了地表N2 O的排放量,但是不具有统计学意义.施肥对地表N2 O的排放量的影响主要表现在施肥初期,施肥后一周内,添加氮肥会导致N2 O的排放量出现一个明显的峰值.随着时间的推移,N2 O的排放量明显下降,直到与对照样地的差异不具有统计学意义.%Using the most common method for sampling and analyzing gas sample ,the static chamber‐gas chromatography method ,we studied the greenhouse gas fluxes of the fir forest soil ,exploring the response pattern of the major greenhouse gases of nitrogen and phosphorus addition and the mechanism of green‐house gas fluxes of fir forest soil at Shixi forest .T his experiment show s high nitrogen and high nitrogen and phosphorus significantly improved surface N2O emissions(p <0.01) .low nitrogen and low nitrogen plus phosphorus increased surface N2 O emissions ,but did not reach the level of significance .The effect of fertilization on the N2 O emissions was mainly observed in the early stages of fertilization ,within a week after fertilization ,nitrogen fertilization will lead to an obvious peak of N 2 O ,and as time goes on ,N2 O e‐missions decreased until there was no significant difference compared with the blank .

  11. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Zhang, Wei;

    2016-01-01

    factor when N saturation has been reached. Although this hypothesis has been tested in temperate forests, whether they can be directly applied to N-saturated tropical forests remain poorly addressed. To test this hypothesis, soil inorganic N, soil N mineralization and nitrification rate, soil N2......O emission rate and nitrate (NO3-) leaching rate were measured in an N-saturated old-growth tropical forest in southern China, after 6 years of N and P addition. We hypothesized that N addition would stimulate further N saturation, but P addition might alleviate N saturation. As expected, our......-saturated tropical forests can be negative and that P addition can alleviate N saturation in such tropical systems....

  12. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    Science.gov (United States)

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  13. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China.

    Directory of Open Access Journals (Sweden)

    Zhuwen Xu

    Full Text Available Global nitrogen (N deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

  14. Nitrogen Addition Altered the Effect of Belowground C Allocation on Soil Respiration in a Subtropical Forest.

    Science.gov (United States)

    He, Tongxin; Wang, Qingkui; Wang, Silong; Zhang, Fangyue

    2016-01-01

    The availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of C supply and N availability on Rs and soil microbial community in a subtropical forest. The trees were girdled on 1 July 2012. Rs was monitored from July 2012 to November 2013, and soil microbial community composition was also examined by phospholipid fatty acids (PLFAs) 1 year after girdling. Results showed that Rs decreased by 40.5% with girdling alone, but N addition only did not change Rs. Interestingly, Rs decreased by 62.7% under the girdling with N addition treatment. The reducing effect of girdling and N addition on Rs differed between dormant and growing seasons. Girdling alone reduced Rs by 33.9% in the dormant season and 54.8% in the growing season compared with the control. By contrast, girdling with N addition decreased Rs by 59.5% in the dormant season and 65.4% in the growing season. Girdling and N addition significantly decreased the total and bacterial PLFAs. Moreover, the effect of N addition was greater than girdling. Both girdling and N addition treatments separated the microbial groups on the basis of the first principal component through principal component analysis compared with control. This indicated that girdling and N addition changed the soil microbial community composition. However, the effect of girdling with N addition treatment separated the microbial groups on the basis of the second principal component compared to N addition treatment, which suggested N addition altered the effect of girdling on soil microbial community composition. These results suggest that the increase in soil N availability by N deposition alters the effect of

  15. Calendula and camelina response to nitrogen fertility

    Science.gov (United States)

    The emerging oil-seed crops calendula (Calendula officinalis) and camelina (Camelina sativa L.) can provide a domestic, renewable, non-food alternative to imported oil sources for bioenergy and industrial purposes. However, very little information exists concerning nitrogen (N) fertilizer guidelines...

  16. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.

    Science.gov (United States)

    Qiao, Na; Xu, Xingliang; Hu, Yuehua; Blagodatskaya, Evgenia; Liu, Yongwen; Schaefer, Douglas; Kuzyakov, Yakov

    2016-01-01

    Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs. PMID:26806914

  17. Response of Nerica Rice to Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    R Shultana

    2015-12-01

    Full Text Available An experiment was conducted during T. Aman season, 2014 at the Agronomy Research Field, Bangladesh Rice Research Institute, Gazipur to determine the optimum rate of nitrogen fertilizer for higher yield in nerica rice. The experiment comprised of three rice varieties viz. NERICA1, NERICA10 and BRRI dhan57; and five nitrogen levels viz. 0, 23, 46, 69 and 92 kg ha-1. The rice var. BRRI dhan57 with 69 and 92 kg N ha-1 produced significantly identical with higher panicles m-2. But NERICA1 and NERICA10 produced higher number of panicles with 46 and 69 kg N ha-1, respectively. However, BRRI dhan57 with 46 kg N ha-1 produced highest grains panicle-1 but NERICA1 and NERICA10 produced higher number of grains panicle-1 with 23 kg N ha-1. The highest percentage of sterility was recorded in NERICA10 with 69 kg N ha-1. The regression analysis gave the optimum dose of nitrogen for NERICA1, NERICA10 and BRRI dhan57 which were 69.25, 74.25 and 85.75 kg N ha-1, respectively.

  18. Reassessing carbon sequestration in the North China Plain via addition of nitrogen.

    Science.gov (United States)

    Dong, Wenxu; Duan, Yongmei; Wang, Yuying; Hu, Chunsheng

    2016-09-01

    Soil inorganic carbon (SIC) exerts a strong influence on the carbon (C) sequestered in response to nitrogen (N) additions in arid and semi-arid ecosystems, but limited information is available on in situ SIC storage and dissolution at the field level. This study determined the soil organic/inorganic carbon storage in the soil profile at 0-100cm depths and the concentration of dissolved inorganic carbon (DIC) in soil leachate in 4N application treatments (0, 200, 400, and 600kgNha(-1)yr(-)(1)) for 15years in the North China Plain. The objectives were to evaluate the effect of nitrogen fertilizer on total amount of carbon sequestration and the uptake of atmospheric CO2 in an agricultural system. Results showed that after 15years of N fertilizer application the SOC contents at depths of 0-100cm significantly increased, whereas the SIC contents significantly decreased at depths of 0-60cm. However, the actual measured loss of carbonate was far higher than the theoretical maximum values of dissolution via protons from nitrification. Furthermore, the amount of HCO3(-) and the HCO3(-)/(Ca(2+)+Mg(2+)) ratio in soil leachate were higher in the N application treatments than no fertilizer input (CK) for the 0-80cm depth. The result suggested that the dissolution of carbonate was mainly enhanced by soil carbonic acid, a process which can absorb soil or atmosphere CO2 and less influenced by protons through the nitrification which would release CO2. To accurately evaluate soil C sequestration under N input scenarios in semi-arid regions, future studies should include both changes in SIC storage as well as the fractions of dissolution with different sources of acids in soil profiles. PMID:27135576

  19. [Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China].

    Science.gov (United States)

    Yang, Shan; Li, Xiao-bing; Wang, Ru-zhen; Cai, Jiang-ping; Xu, Zhu-wen; Zhang, Yu-ge; Li, Hui; Jiang, Yong

    2015-03-01

    In this study, we measured the responses of soil bacterial diversity and community structure to nitrogen (N) and water addition in the typical temperate grassland in northern China. Results showed that N addition significantly reduced microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) under regular precipitation treatment. Similar declined trends of MBC and MBN caused by N addition were also found under increased precipitation condition. Nevertheless, water addition alleviated the inhibition by N addition. N addition exerted no significant effects. on bacterial α-diversity indices, including richness, Shannon diversity and evenness index under regular precipitation condition. Precipitation increment tended to increase bacterial α-diversity, and the diversity indices of each N gradient under regular precipitation were much lower than that of the corresponding N addition rate under increased precipitation. Correlation analysis showed that soil moisture, nitrate (NO3(-)-N) and ammonium (NH4+-N) were significantly negatively correlated with bacterial evenness index, and MBC and MBN had a significant positive correlation with bacterial richness and evenness. Non-metric multidimensional scaling (NMDS) ordination illustrated that the bacterial communities were significantly separated by N addition rates, under both water ambient and water addition treatments. Redundancy analysis (RDA) revealed that soil MBC, MBN, pH and NH4+-N were the key environmental factors for shaping bacterial communities.

  20. Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

    NARCIS (Netherlands)

    Li, Q.; Bai, H.; Liang, W.; Xia, J.; Wan, S.; Putten, van der W.H.

    2013-01-01

    Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil

  1. [Effects of applying nitrogen fertilizer and fertilizer additive on rice yield and rice plant nitrogen uptake, translocation, and utilization].

    Science.gov (United States)

    Li, Wen-jun; Xia, Yong-qiu; Yang, Xiao-yun; Guo, Miao; Yan, Xiao-yuan

    2011-09-01

    A field experiment was conducted in the Taihu Lake region of southern Jiangsu to study the effects of applying nitrogen (N) fertilizer and fertilizer additive on the rice yield and the rice plant N uptake, translocation, and utilization. Applying N fertilizer had significant positive effects on the rice yield, accumulative absorbed N at all growth stages and at each growth stage, and N translocation rate after anthesis (P 0.05). The N translocation rate after anthesis and the N fertilizer use efficiency decreased with increasing N application rate. Applying fertilizer additive further improved the rice yield, accumulative absorbed N, N translocation rate after anthesis, and N fertilizer use efficiency, and this effect was more evident when the N application rate was equal to or greater than 200 kg x hm(-2). Relatively high rice yield and N use efficiency were achieved when applying 150 kg x hm(-2) of N fertilizer without the application of fertilizer additive.

  2. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    Science.gov (United States)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  3. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    Science.gov (United States)

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. PMID:27359061

  4. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  5. Influences of biochar addition on vegetable soil nitrogen balance and pH buffering capacity

    Science.gov (United States)

    Yu, Y.; Odindo, AO; Xue, L.; Yang, L.

    2016-08-01

    Leaching is a major path for chemical nitrogen fertilizer loss from in vegetable soil, which would destroy soil pH buffering capacity soil and result in acidification. It has been a common phenomenon in Tai Lake Region, China. However, few study focused on the change soil pH buffering capacity, especially the effect of soil amendment on pH buffering capacity. In this study, a pot experiment was conducted to research the effects of biochar addition to a vegetable soil on nitrogen leaching and pH buffering capacity with pakchoi (B.chinensis L.) growth as the experimental crop. The results showed that biochar could significantly increase the pakchoi nitrogen utilization efficiency, decrease 48%-65% nitrogen loss from leaching under the urea continuous applied condition. Biochar also could effectively maintain the content of soil organic matter and base cations. Therefore, it rose up soil pH buffering capacity by 9.4%-36.8% and significantly slowed down acidification rate. It was suggested that 1%-2% addition ratio was recommended from this study when used as similar soil condition.

  6. Fuzzy Control of Nitrate Recirculation and External Carbon Addition in A/O Nitrogen Removal Process

    Institute of Scientific and Technical Information of China (English)

    马勇; 彭永臻; 王淑莹; 王晓莲

    2005-01-01

    Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict.Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parazneter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at-86 mV and -90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.

  7. The Impact of Long-Term Nitrogen Addition on Microbial Community Composition in Three Hawaiian Forest Soils

    Directory of Open Access Journals (Sweden)

    Teri C. Balser

    2001-01-01

    Full Text Available We evaluated the microbial communities in three Hawaiian forest soils along a natural fertility gradient and compared their distinct responses to long-term nitrogen (N additions. The sites studied have the same elevation, climate, and dominant vegetation, but vary in age of development, and thus in soil nutrient availability and nutrient limitation to plant growth. Fertilized plots at each site have received 100 kg ha year-1 N addition for at least 8 years. Soil parameters, water content, pH, and ammonium and nitrate availability differed by site, but not between control and N-addition treatments within a site at the time of sampling. Microbial biomass also varied by site, but was not affected by N addition. In contrast, microbial community composition (measured by phospholipid analysis varied among sites and between control and N-addition plots within a site. These data suggest that microbial community composition responds to N addition even when plant net primary productivity is limited by nutrients other than N. This may have implications for the behavior of forests impacted by atmospheric N deposition that are considered to be “nitrogen saturated,” yet still retain N in the soil.

  8. Resposta do dendezeiro à adição de nitrogênio e sua influência na população de bactérias diazotróficas Response of African oil palm to nitrogen addition and its influence on the diazotrophic bacteria population

    Directory of Open Access Journals (Sweden)

    André Vieira de Carvalho

    2006-02-01

    Full Text Available O dendê (Elaeis guineensis, Jaquim pode produzir até sete toneladas de óleo por hectare por ano. O óleo vegetal é muito versátil e pode ser usado desde a indústria alimentícia até a produção de biocombustíveis. A planta é capaz de se associar com bactérias diazotróficas que colonizam raízes e caules. O objetivo deste trabalho foi avaliar a resposta à adubação nitrogenada de 17 genótipos de dendê no primeiro ano de cultivo e avaliar a influência da adição do N mineral sobre a população de bactérias diazotróficas, naturalmente presentes nas plântulas de dendezeiro. Foram utilizados potes de plástico completados com 50% de areia quartzoza e 50% de horizonte B de um Argissolo Vermelho-Amarelo, série Itaguaí, não esterilizado e extremamente pobre em nitrogênio. A uréia foi aplicada na dosagem de 33,68 kg ha-1 de N. Na presença do N, todos os genótipos melhoram os parâmetros biométricos, e houve aumento tanto do N total quanto do N acumulado. As populações de bactérias diazotróficas não foram influenciadas pela adição desse elemento. Dois genótipos foram selecionados, na presença e ausência de N, respectivamente, C-2001 e La Mé.African oil palm (Elaeis guineensis, Jaquim can produce up to 7 tons of oil per hectare per year. The vegetable oil is greatly versatile in its use, since food industry up to the production of fuels favorable to environmental protection. The plant has the potential to be associative with diazotrophic bacteria which colonize the roots and stem. The objective of this work was to evaluate 17 genotypes of E. guineensis in response to nitrogen addition and to verify the influence of this nitrogen on the diazotrophic population in an experiment using plastic pots filled with 50% quartz sand and 50% of non sterilized Horizon B; Red-Yellow Podzolic Soil series Itaguaí, extremely poor in nitrogen. Urea was used at a dose of 33.68 kg ha-1 de N. In the presence of the nitrogen, all

  9. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis

    Directory of Open Access Journals (Sweden)

    van Helden Paul

    2010-05-01

    Full Text Available Abstract Background The assimilation of nitrogen is an essential process in all prokaryotes, yet a relatively limited amount of information is available on nitrogen metabolism in the mycobacteria. The physiological role and pathogenic properties of glutamine synthetase (GS have been extensively investigated in Mycobacterium tuberculosis. However, little is known about this enzyme in other mycobacterial species, or the role of an additional nitrogen assimilatory pathway via glutamate dehydrogenase (GDH, in the mycobacteria as a whole. We investigated specific enzyme activity and transcription of GS and as well as both possible isoforms of GDH (NAD+- and NADP+-specific GDH under varying conditions of nitrogen availability in Mycobacterium smegmatis as a model for the mycobacteria. Results It was found that the specific activity of the aminating NADP+-GDH reaction and the deaminating NAD+-GDH reaction did not change appreciably in response to nitrogen availability. However, GS activity as well as the deaminating NADP+-GDH and aminating NAD+-GDH reactions were indeed significantly altered in response to exogenous nitrogen concentrations. Transcription of genes encoding for GS and the GDH isoforms were also found to be regulated under our experimental conditions. Conclusions The physiological role and regulation of GS in M. smegmatis was similar to that which has been described for other mycobacteria, however, in our study the regulation of both NADP+- and NAD+-GDH specific activity in M. smegmatis appeared to be different to that of other Actinomycetales. It was found that NAD+-GDH played an important role in nitrogen assimilation rather than glutamate catabolism as was previously thought, and is it's activity appeared to be regulated in response to nitrogen availability. Transcription of the genes encoding for NAD+-GDH enzymes seem to be regulated in M. smegmatis under the conditions tested and may contribute to the changes in enzyme activity

  10. 氮素和水分添加对贝加尔针茅草原土壤氨氧化微生物群落结构的影响%Differential Responses of Ammonia-oxidizers Communities to Nitrogen and Water Addition inStipa baicalensis Steppe, Inner Mongolia, Northern China

    Institute of Scientific and Technical Information of China (English)

    王杰; 李刚; 赖欣; 宋晓龙; 赵建宁; 杨殿林

    2015-01-01

    Atmospheric nitrogen deposition and precipitation as an important phenomenon of global climate change have a great impact on grassland ecosystems. However, little is known about how the soil ammonia-oxidizing microorganisms respond to the both changes. Ammonia oxidization is a crucial step in the soil nitrification and greatly inlfuenced by soil nitrogen availability. We used PCR and DGGE (denaturing gradient gel electrophoresis) approaches to investigate the responses of AOB (ammonia-oxidizing bacteria) 16S rRNA and AOA (ammonia-oxidizing archaea)amoA genes to nitrogen and water input inStipa baicalensis steppe, Inner Mongolia, northern China. After two years of nitrogen and water addition treatment, it was found that PNA (potential nitriifcation activity) was greatly enhanced by lower N fertilization treatment under water addition and higher N fertilization under no-water addition, while it decreased markedly in higher N fertilization under water addition. The community structure of AOB responded more sensitively to N fertilization and water input than AOA, resulting in the significantly decreased diversity in the AOB community along with a higher N fertilizer rate, but an obvious increase in the AOA community, demonstrating the active growth of AOA in higher N fertilization soils. Phylogenetic analysis showed that AOB communities were dominated byNitrosospira clusters3, 4 andNitrososmonas clusters 6 under water addition andNitrosospira culsters 1, 3 and 4 and under no-water addition, while AOA communities were grouped intoCrenarchaeote clusters 1, 2 and 5 under no-water addition and Crenarchaeote clusters 1, 2 and water lineage under water addition. The differences between the two water addition regimes strongly suggest that water input acts as an important role in shifting AOA and AOB communities. Moreover, in contrast to the AOA, the diversity of AOB was negatively correlated with total N, NH4+, NO3-andpH under water addition, implying a signiifcant N

  11. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    Science.gov (United States)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  12. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests

    OpenAIRE

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhu, Weixing; Zhang, Wei; Mo, Jiangming

    2016-01-01

    Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-gr...

  13. Comparison of Nitrogen Fertilizers, Induce and Zinc Addition on Glyphosate Efficacy on Three Different Weed Species.

    OpenAIRE

    Hussein F. Abouziena; Ibraheem M. El-Metwally; H.M. El-Saeid; Megh Singh

    2014-01-01

    Herbicides are often tank-mixed with fertilizers to save time, labour, energy, and equipment costs. However addition of some additives with glyphosate may result in reducing glyphosate efficacy. Therefore we evaluated the potential of three nitrogen sources (ammonium sulphate (AMS) at 2 or 4% w/v, ammonium nitrate (AN) at 1 or 2% w/v, urea at 1 or 2 % w/v), nonionic adjuvant (Induce at 0.05% v/v) and Zn at 250 g Zn/ha (1321 ppm) to enhance glyphosate efficacy on pig weed (Amaranthus retroflex...

  14. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    Directory of Open Access Journals (Sweden)

    Anthony Stuart Amend

    2015-02-01

    Full Text Available Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity. This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between phylogenetic diversity and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial phylogenetic diversity, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of sixty-six days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial phylogenetic diversity failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which phylogenetic diversity predicts ecosystem function will depend on environmental context.

  15. The effect of oxygen and nitrogen additives on the growth of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Nanocrystalline diamond (NCD) films have been synthesized by using either nitrogen addition or oxygen addition to conventional CH4/H2 mixtures besides the most commonly used Ar/CH4 with or without H2 chemistry. However, the synthesis of NCD films using both nitrogen and oxygen addition simultaneously into CH4/H2 gases has not been reported thus far. In this work, we investigate the effect of simultaneous O2 and N2 addition to CH4/H2 plasma on the growth of nanocrystalline diamond (NCD) films, focusing particularly on the ratio between the amount of O2 and N2 additives into conventional CH4/H2 gas mixtures on the morphology, microstructure, texture, and crystalline quality of the NCD films. The NCD samples were produced by using a high microwave power (3 kW) in a microwave plasma-assisted chemical vapour deposition reactor with a maximum power of 5 kW on large silicon wafers, 2 inches in diameter, and characterized by high-resolution scanning electron microscopy, x-ray diffraction and micro-Raman spectroscopy. Our work demonstrates that, under the conditions investigated here, NCD films can be formed when the ratio of O2/N2 addition is increased from 0 through 1 up to 7/3 (at higher than 7/3, for example 4, a large-grained polycrystalline diamond film will form), and the crystalline quality is significantly enhanced with the increase of oxygen addition. The mechanism of O2 and N2 additives on the formation of NCD films is briefly studied

  16. Molecular Response of Liquid Nitrogen Multiply Shocked to 40 GPa

    Science.gov (United States)

    Lacina, David; Gupta, Y. M.

    2015-06-01

    Liquid nitrogen was subjected to multiple shock compression to examine its response to pressures (15-40 GPa) and temperatures (1800-4000K) previously unexplored in static and shock compression. Raman spectroscopy measurements (of the 2330 cm-1 mode) were used to characterize the molecular bond response and to experimentally determine temperature in the peak P-T state. By extending our analysis of the measured Raman shifts to include Raman spectroscopy measurements from previous studies, an empirical relation was developed that describes the pressure and temperature dependence of the Raman shifts for both static and shock compression. Examining the P-T dependence of all measured Raman shifts showed that the molecular response of liquid nitrogen is both pressure and temperature dependent, and that the molecular response is best understood by considering three temperature regimes (below 1500K, 1500-4000K, above 4000K). Multiply shocked liquid nitrogen remained a molecular fluid at the pressures and temperatures accessed in our work, and became a greybody emitter at the highest pressures. Present Address: University of Dayton Research Institute.

  17. Effects of wood-ash addition on nitrogen turnover in a highly nitrogen loaded spruce site. Final project report

    International Nuclear Information System (INIS)

    During two consecutive years, it was studied how a fertilization with 4.2 tonnes pelleted bark ash per ha, made six-seven years earlier, affected soil chemistry, nitrogen turnover and soil-water chemistry on a Norway spruce site in SW Sweden. The actual site has a very acidic soil. At the same time, the supply of inorganic N is rich. Measures against soil acidification, e. g. addition of ash or lime, may significantly influence the turnover of N with a subsequent risk for increased leaching. Thus, there is a potential conflict between two urgent environmental goals, i. e. to decrease acidification and to decrease the N load on aquatic ecosystems. In the humus layer and the upper 5 cm of the mineral soil, pH(H2O) had increased with at the most 0.2 units because of the ash addition. The easily extractable amounts of Mg, P and nitrate were slightly increased. The potential nitrification in the humus layer was generally higher in the ash treatment, but the difference. was not statistically significant. The soil water at 50 cm depth was 0.1-0.2 pH-units more acidic where ash had been applied. Simultaneously, there were tendencies for higher concentrations of nitrate, Al and K. This is the first time in Sweden that ash fertilization of a closed forest has given clear indications of an increased N leaching. As expected, the ash fertilization decreased the acidity of the top soil. On the contrary, the runoff became more acidic and more rich in Al. Thus, the ash fertilization has counteracted one of its primary goals, i. e. to produce a runoff less toxic to aquatic life. The acidification of the runoff may partially be because of acid production during nitrification

  18. Effects of nitrogen dioxide on airway responsiveness in allergic asthma

    OpenAIRE

    Strand, Victoria

    1998-01-01

    Asthma is one of the most common chronic diseases in the industrialized world and its prevalence is increasing. Clinical symptoms of airway obstruction and bronchial hyper responsiveness can be induced by specific agents, such as allergens and non-specific stimuli, such as cold air and irritants. In order to avoid exacerbation it is important to identify these stimuli and to study how they interact with each other and amplify inflammation in asthma. Nitrogen dioxide (NO2) is...

  19. Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury

    OpenAIRE

    Au, Liemin; Meisch, Jeffrey P.; Das, Lopa M; Binko, Amy M; Boxer, Rebecca S.; Wen, Amy M.; Steinmetz, Nicole F.; Lu, Kurt Q.

    2015-01-01

    DNA alkylating agents like nitrogen mustard (NM) are easily absorbed through the skin and exposure to such agents manifest not only in direct cellular death but also in triggering inflammation. We show that toxicity resulting from topical mustard exposure is mediated in part by initiating exaggerated host innate immune responses. Using an experimental model of skin exposure to NM we observe activation of inflammatory dermal macrophages that exacerbate local tissue damage in an inducible nitri...

  20. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N 2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John; Green, Adrian; Shelton, James

    2011-08-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N 2O, CH 4, and CO 2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N 2O, CH 4 and respiratory CO 2 fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO 3 equivalent to 1.4 g N m -2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N 2O and CH 4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N 2O in July 2009 averaged -33 μmol N 2O m -2 day -1. However, within 1 h of nutrient additions, N 2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH 4 fluxes were not significantly affected. N 2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N 2O m -2 day -1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N 2O and CH 4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N 2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N 2O and CH 4 fluxes observed, exceeded half

  1. Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge

    International Nuclear Information System (INIS)

    A hybrid PIC/MC model is developed in this work for H2-xN2 capacitively coupled radio-frequency (CCRF) discharges in which we take into account 43 kinds of collisions reaction processes between charged particles (e−, H+3, H+2, H+, N+2, N+) and ground-state molecules (H2, N2). In addition, the mean energies and densities of electrons and ions (H+3, H+2, H+), and electric field distributions in the H2-N2 CCRF discharge are simulated by this model. Furthermore, the effects of addition of a variable percentage of nitrogen (0–30%) into the H2 discharge on the plasma processes and discharge characteristics are studied. It is shown that by increasing the percentage of nitrogen added to the system, the RF sheath thickness will narrow, the sheath electric field will be enhanced, and the mean energy of hydrogen ions impacting the electrodes will be increased. Because the electron impact ionization and dissociative ionization rates increase when N2 is added to the system, the electron mean density will increase while the electron mean energy and hydrogen ion density near the electrodes will decrease. This work aims to provide a theoretical basis for experimental studies and technological developments with regard to H2-N2 CCRF plasmas

  2. Comparison of Nitrogen Fertilizers, Induce and Zinc Addition on Glyphosate Efficacy on Three Different Weed Species.

    Directory of Open Access Journals (Sweden)

    Hussein F. Abouziena

    2014-05-01

    Full Text Available Herbicides are often tank-mixed with fertilizers to save time, labour, energy, and equipment costs. However addition of some additives with glyphosate may result in reducing glyphosate efficacy. Therefore we evaluated the potential of three nitrogen sources (ammonium sulphate (AMS at 2 or 4% w/v, ammonium nitrate (AN at 1 or 2% w/v, urea at 1 or 2 % w/v, nonionic adjuvant (Induce at 0.05% v/v and Zn at 250 g Zn/ha (1321 ppm to enhance glyphosate efficacy on pig weed (Amaranthus retroflexus L., crowfoot grass (Dactyloctenium egyptium L. and yellow nutsedge (Cyperus esculentus L. under greenhouse conditions. The results indicated that there were variations in susceptibility of the three weeds to glyphosate+adjuvant treatments. Addition of AN at 2% reduced the efficacy of glyphosate on crowfoot grass. There was an antagonistic effect between glyphosate herbicide and Zn; the phytotoxic effect of glyphosate on the three weeds was less than 50 %. Zinc tank-mixed with glyphosate resulted in a greater number of tubers and shoots per plant than the untreatedol. Addition of AN or urea at 2% reduced glyphosate efficacy by about 2.3 and 9 %, respectively, relative to their addition at 1%. Tankmixes of urea (1%, AN (1%, AMS (2% and Induce adjuvant (0.05% generally enhanced the efficacy of glyphosate (0.85 kg/ha, whereas the addition of Zn, as zinc sulphate, to glyphosate sprays adversely affected herbicide efficacy.

  3. Biochar Addition to Stormwater Treatment Media for Enhanced Removal of Nitrogen

    Science.gov (United States)

    Imhoff, P. T.; Jin, J.; Tian, J.; Chiu, P.; Guo, M.

    2015-12-01

    Urban stormwater management systems, such as bioretention facilities, require substantial land area and are often ineffective in removing nitrogen. This project seeks to improve nitrogen removal in bioretention media by modifying the hydraulic and treatment characteristics of the infiltration medium with biochar addition. A commercial wood biochar pyrolyzed from Southern Yellow Pine at 500°C was used. Laboratory experiments demonstrated that biochar addition to a typical bioretention medium (soil-mix: 4% saw dust, 88% sand, 8% clay) increased ammonium sorption at typical stormwater concentrations (2 mg/L) by a factor of 6, total porosity by 16.6%, and water retention at most matric potentials. The effect of the biochar-amended medium on nitrate removal was evaluated in pilot-scale experiments. Side-by-side experimental cells (91 cm dia., 1.2 m deep) were constructed to treat stormwater runoff from a parking lot. The control cell contained 100% soil mix while the biochar cell contained 4% biochar and 96% soil-mix by mass. Treatment media were 76.2 cm in depth and overlain by 5.1 cm of wood mulch in both cells, with a water table maintained at the bottom of the treatment zones. Cells were instrumented with TDR moisture sensors, pressure transducers, and redox and temperature sensors. Two pilot-scale experiments were conducted that included a bromide tracer and nitrate with a hydraulic loading of 5.5cm/h for 24 h in early spring and 36 h in summer. Effluent was continuously sampled for nitrogen compounds during these tests. Tracer tests and TDR measurements showed that biochar increased the average volumetric water content of the vadose zone by 14.7% and the mean residence time by 12.6%. For the spring field test at 14°C, nitrate in the control cell effluent increased by 6.1% but decreased by 43.5% for the biochar cell. For the summer field test at 22°C, 30.6% and 84.7% of influent nitrate was removed in the control and biochar cells, respectively. In the summer

  4. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq.

    Science.gov (United States)

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  5. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests

    Science.gov (United States)

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhu, Weixing; Zhang, Wei; Mo, Jiangming

    2016-06-01

    Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha-1 yr-1), P addition (150 kg P ha-1 yr-1), and NP addition (150 kg N ha-1 yr-1 plus 150 kg P ha-1 yr-1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m-2 h-1) than in the mixed (9.9 ± 0.4 µg N2O-N m-2 h-1) or pine (10.8 ± 0.5 µg N2O-N m-2 h-1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O

  6. Responses to ammonium and nitrate additions by boreal plants and their natural enemies

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Annika [Umeaa Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: annika.nordin@genfys.slu.se; Strengbom, Joachim [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: joachim.strengbom@ebc.uu.se; Ericson, Lars [Department of Ecology and Environmental Sciences, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: lars.ericson@eg.umu.se

    2006-05-15

    Separate effects of ammonium (NH{sub 4} {sup +}) and nitrate (NO{sub 3} {sup -}) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha{sup -1} year{sup -1} was added to 2 m{sup 2} sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO{sub 3} {sup -}. Bryophytes took up predominately NH{sub 4} {sup +} and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH{sub 4} {sup +} and NO{sub 3} {sup -} to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition. - Biota will respond to nitrogen deposition depending on the form of nitrogen.

  7. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.

  8. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before......Nitrogen (N) availability is the main constraint on primary production in most Arctic ecosystems, with microbial fixation of atmospheric N as the primary source of N input. However, there are only few reports on N fixation rates in relation to climate change in the Arctic. In order to investigate...... observed either no change or occasionally even a decrease in N fixation after warming. Both measured on whole-ecosystem level and on the two moss species separately, litter addition increased N fixation rates. The results suggest that warming will lead to a general increased ecosystem N input, but also...

  9. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics. PMID:26645232

  10. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  11. Effects of Nitrogen and Phosphorus Additions on Carbon Cycling of Tropical Mountain Rainforests in Hainan, China

    Science.gov (United States)

    Lai, J.

    2015-12-01

    Nitrogen (N) and Phosphorus (P) deposition is projected to increase significantly in tropical regions in the coming decades, which has changed and will change the structure and function of ecosystems, and affects on ecosystem Carbon (C) cycle. As an important part in global C cycle, how the C cycle of tropical rainforests will be influenced by the N and P deposition should be focused on. This study simulated N and P deposition in a primary and secondary forest of tropical mountain rainforest in Jianfengling, Hainan, China, during five-year field experiment to evaluate the effects of N and P deposition on C cycling processes and relate characteristics. Six levels of N and P treatments were treated: Control, Low-N, Medium-N, High-N, P and N+P. The relative growth rates (RGR) of tree layer in treatment plots were different from that in control plots after years of N and P addition. Simulated N and P deposition also increased ANPP in primary forest. N and P addition changed the growth of trees by altering soil nutrient and microbial activities. N and P addition increased soil organic carbon (SOC) and total N (TN) content, and significantly increased soil total P (TP) content, not changing soil pH. During the whole process of N and P addition, as net nitrification rate and net N mineralization rate were promoted by N and P addition, and effective N content (nitrate) of soil increased in the plot treated with N treatments compared to the control treatment. The microbial P content was increased by N and P addition, and microbial N was not changed. The increasing N deposition may enhance soil nutrient and stimulate growth of trees, which will lead to an increase of the C sequestration.

  12. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic v

  13. Direct-Seeded Broccoli Responses to Reduced Nitrogen Application at Shoot-Tip Straightened Stage

    OpenAIRE

    LI Hong; Li, Tingxian; Robert J. Gordon; Asiedu, Samuel K.

    2009-01-01

    Broccoli (Brassica oleracea var. italica) is an important high-nutritional-value vegetable yet broccoli plant and nitrogen nutrition relations are not well understood. We conducted a study of broccoli plant response to nitrogen nutrient treatments in a commercial production field in Nova Scotia. The objectives were to quantify the effects of nitrogen nutrition on direct-seeded broccoli development and plant nitrogen uptake in different soils. The nitrogen treatments consisted of the rates of ...

  14. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic composting reactors. The golden apple snail is a pesticide and cattle dung is an animal waste. Both materials are all waste of low values. The main purpose of this study was to determine the influence of nitrogen containing wastes addition to rice straw on the performance of natural aerobic composting process in terms of the following parameters: pH, temperature, organic matter, C/N ratio, electrical conductivity and GI. The impact of this study is to reuse agriculture residue by composting. Approach: The experiments was consisted of three reactors. The reactor 1 contains the rice straws and golden apple snails while the reactor 2 contains the rice straws, golden apple snails and urea. The reactor 3 contains the rice straws, cattle dung and urea. The experiments were carried out in designed natural aerobic reactors (60 L under controlled laboratory conditions over 60 days. The analysis was done every 5 days however the temperature was measured daily. Results: The experimental results showed that the initial C/N ratio was 30.7, 30.3 and 31.8 in the reactor 1, 2 and 3, respectively. After the 60-day period, the final C/N ratio was reduced to 17.9, 16.9 and 18.4 in the reactor 1, 2 and 3, respectively. The main nutrients (N: P: K from all reactors achieved the standard level for Thai compost standard. The rice straw as agricultural residue was suitable for co-composting with golden apple snails and cattle dung as the nitrogen containing wastes. Conclusion: The

  15. Effects of nitrogen addition on soil microbes and their implications for soil C emission in the Gurbantunggut Desert, center of the Eurasian Continent.

    Science.gov (United States)

    Huang, Gang; Cao, Yan Feng; Wang, Bin; Li, Yan

    2015-05-15

    Nitrogen (N) deposition can influence carbon cycling of terrestrial ecosystems. However, a general recognition of how soil microorganisms respond to increasing N deposition is not yet reached. We explored soil microbial responses to two levels of N addition (2.5 and 5 gN m(-2) yr(-1)) in interplant soil and beneath shrubs of Haloxylon ammodendron and their consequences to soil respiration in the Gurbantunggut Desert, northwestern China from 2011 to 2013. Microbial biomass and respiration were significantly higher beneath H. ammodendron than in interplant soil. The responses of microbial biomass carbon (MBC) and microbial respiration (MR) showed opposite responses to N addition in interplant and beneath H. ammodendron. N addition slightly increased MBC and MR in interplant soil and decreased them beneath H. ammodendron, with a significant inhibition only in 2012. N addition had no impacts on the total microbial physiological activity, but N addition decreased the labile carbon substrate utilization beneath H. ammodendron when N addition level was high. Phospholipid fatty acid (PLFA) analysis showed that N addition did not alter the soil microbial community structure as evidenced by the similar ratios of fungal to bacterial PLFAs and gram-negative to gram-positive bacterial PLFAs. Microbial biomass and respiration showed close correlations with soil water content and dissolved carbon, and they were independent of soil inorganic nitrogen across three years. Our study suggests that N addition effects on soil microorganisms and carbon emission are dependent on the respiratory substrates and water availability in the desert ecosystem.

  16. Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.

    Science.gov (United States)

    Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny

    2015-04-01

    Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.

  17. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Zhang, Weixin; Shao, Yuanhu; Ha, Denglong; Li, Yuanqiu; Zhang, Chuangmao; Cai, Xi-An; Rao, Xingquan; Lin, Yongbiao; Zhou, Lixia; Zhao, Ping; Ye, Qing; Zou, Xiaoming; Fu, Shenglei

    2016-05-15

    Anthropogenic N deposition has been well documented to cause substantial impacts on the chemical and biological properties of forest soils. In most studies, however, atmospheric N deposition has been simulated by directly adding N to the forest floor. Such studies thus ignored the potentially significant effect of some key processes occurring in forest canopy (i.e., nitrogen retention) and may therefore have incorrectly assessed the effects of N deposition on soils. Here, we conducted an experiment that included both understory addition of N (UAN) and canopy addition of N (CAN) in two contrasting forests (temperate deciduous forest vs. subtropical evergreen forest). The goal was to determine whether the effects on soil exchangeable cations and microbial biomass differed between CAN and UAN. We found that N addition reduced pH, BS (base saturation) and exchangeable Ca and increased exchangeable Al significantly only at the temperate JGS site, and reduced the biomass of most soil microbial groups only at the subtropical SMT site. Except for soil exchangeable Mn, however, effects on soil chemical properties and soil microbial community did not significantly differ between CAN and UAN. Although biotic and abiotic soil characteristics differ significantly and the responses of both soil exchangeable cations and microbial biomass were different between the two study sites, we found no significant interactive effects between study site and N treatment approach on almost all soil properties involved in this study. In addition, N addition rate (25 vs. 50kgNha(-1)yr(-1)) did not show different effects on soil properties under both N addition approaches. These findings did not support previous prediction which expected that, by bypassing canopy effects (i.e., canopy retention and foliage fertilization), understory addition of N would overestimate the effects of N deposition on forest soil properties, at least for short time scale. PMID:26930308

  18. Simultaneous enhancement of organics and nitrogen removal in drinking water biofilm pretreatment system with reed addition.

    Science.gov (United States)

    Feng, Li-Juan; Zhu, Liang; Yang, Qi; Yang, Guang-Feng; Xu, Jian; Xu, Xiang-Yang

    2013-02-01

    A novel drinking water biofilm pretreatment process with reed addition was established for enhancement of simultaneously organics and nitrogen removal. Results showed that nitrate removal efficiency was positively related with the influent C/N ratio, reaching to 87.8±2.8% at the C/N ratio of 4.7. However, the predicted trichloromethane (THM) levels based on total organic carbon (TOC) and UV254 were high with the increase of influent C/N ratio. Combined with the pollutants removal performance and microbial community variation, an appropriate C/N ratio via reed addition was determined at 2.2 for the continuous biofilm reactor. With adjustment of hydraulic retention time (HRT), the highest of nitrate removal efficiency (74.2±1.4%) and organics utilization efficiency (0.63 mg NO3--N mg(-1)TOC) were achieved at an optimum HRT of 18 h, with both low effluent NO3--N (0.88±0.03 mg l(-1)) and TOC (2.86±0.67 mg l(-1)).

  19. Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert.

    Directory of Open Access Journals (Sweden)

    Hongmei Zhao

    Full Text Available Climate change scenarios that include precipitation shifts and nitrogen (N deposition are impacting carbon (C budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands.Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content had a slower decomposition rate in comparison to coarse roots.Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover.

  20. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity.

  1. [Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils].

    Science.gov (United States)

    Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu

    2015-02-01

    An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation.

  2. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    OpenAIRE

    Fraś E.; Górny M.; Kawalec M.

    2007-01-01

    Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V) and niobium (about 0,05 and 0,16% Nb) as well as nitrogen (32 - 58 ppm.) on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing m...

  3. Effect of nitrogen on structure and mechanical properties of ductile iron with small additions vanadium and niobium

    Directory of Open Access Journals (Sweden)

    Fraś E.

    2007-01-01

    Full Text Available Results of investigations of influence of small additions of vanadium (about 0,08 and 0,12 % V and niobium (about 0,05 and 0,16% Nb as well as nitrogen (32 - 58 ppm. on mechanical properties and structure of ductile iron is presented. Effect of these additions on graphite diameter distribution, nodule count, and ferrite fraction is determined. It has been also shown that vanadium and niobium lead to formation of their complex carbides, while nitrogen – complex carbide-nitrides containing magnesium and silicon.

  4. Plant community responses to simultaneous changes in temperature, nitrogen availability, and invasion.

    Directory of Open Access Journals (Sweden)

    Elise S Gornish

    Full Text Available Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking.In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community.This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.

  5. Pretreatment with nitrogen dioxide modifies plant response to ozone

    Science.gov (United States)

    Runeckles, V. C.; Palmer, K.

    Plant growth inhibition by ozone is significantly affected by previous exposure to nitrogen dioxide. Experiments on the early growth of four crop species showed that daily pretreatment with NO 2 (0.08-0.10 ppm for 3 h) immediately prior to exposure to O 3 (0.08-0.10 ppm for 6 h) increased the inhibition of radish and wheat growth, decreased the inhibition of bush bean growth, but had no effect on the growth of mint. The magnitudes of the interactive effects indicate that in regions where relatively high concentrations of O 3 are produced by photochemical processes, for example, downwind from urban centres, assessments of the impact of O 3 on vegetation based on knowledge of response to O 3 alone may be seriously flawed.

  6. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Directory of Open Access Journals (Sweden)

    Jinsong Wang

    2015-12-01

    Full Text Available The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr. ecosystems. Chinese pine litter, Mongolian oak (Quercus mongolica Fisch. ex Ledeb. litter, and a pine–oak mixture were selected from a plantation and a natural forest of Chinese pine. Four N addition treatments, i.e., control (N0: 0 kg N ha−1·year−1, low-N (N1: 5 kg N ha−1·year−1, medium-N (N2: 10 kg N ha−1·year−1, and high-N (N3: 15 kg N ha−1·year−1, were applied starting May 2010. In the plantation, N addition significantly stimulated the decomposition of the Chinese pine litter. In the natural forest, N addition had variable effects on the decomposition of single-species litter and the litter mixture. A stimulatory effect of the high-N treatment on the Chinese pine litter decomposition could be attributed to a decrease in the substrate C:N ratio. However, an opposite effect was found for the Mongolian oak litter decomposition. The stimulating effect of N addition on the Chinese pine litter may offset the suppressive effect on the Mongolian oak litter, resulting in a neutral effect on the litter mixture. These results suggest that the different responses in decomposition of single-species litter and the litter mixture to N addition are mainly attributed to litter chemical composition. Further investigations are required to characterize the effect of long-term high-level N addition on the litter decomposition as N deposition is likely to increase rapidly in the region where this study was conducted.

  7. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China

    OpenAIRE

    Faming Wang; Jian Li; Xiaoli Wang; Wei Zhang; Bi Zou; Deborah A Neher; Zhian Li

    2014-01-01

    Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N×P interaction on tropical forests N2O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N2O emission and nitrification, and (2) P addition would increase N2O emission and N transformations. Nitrogen and P addition had no effect on N mineralizati...

  8. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  9. Decomposition of conifer tree bark under field conditions: effects of nitrogen and phosphorus additions

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Kurganova, Irina; Kapitsa, Ekaterina; Shorokhova, Ekaterina

    2016-04-01

    In forest ecosystems, the processes of decomposition of coarse woody debris (CWD) can contribute significantly to the emission component of carbon (C) cycle and thus accelerate the greenhouse effect and global climate change. A better understanding of decomposition of CWD is required to refine estimates of the C balance in forest ecosystems and improve biogeochemical models. These estimates will in turn contribute to assessing the role of forests in maintaining their long-term productivity and other ecosystems services. We examined the decomposition rate of coniferous bark with added nitrogen (N) and phosphorus (P) fertilizers in experiment under field conditions. The experiment was carried out in 2015 during 17 weeks in Moscow region (54o50'N, 37o36'E) under continental-temperate climatic conditions. The conifer tree bark mixture (ca. 70% of Norway spruce and 30% of Scots pine) was combined with soil and placed in piles of soil-bark substrate (SBS) with height of ca. 60 cm and surface area of ca. 3 m2. The dry mass ratio of bark to soil was 10:1. The experimental design included following treatments: (1) soil (Luvisols Haplic) without bark, (S), (2) pure SBS, (3) SBS with N addition in the amount of 1% of total dry bark mass (SBS-N), and (4) SBS with N and P addition in the amount of 1% of total dry bark mass for each element (SBS-NP). The decomposition rate expressed as CO2 emission flux, g C/m2/h was measured using closed chamber method 1-3 times per week from July to early November using LiCor 6400 (Nebraska, USA). During the experiment, we also controlled soil temperature at depths of 5, 20, 40, and 60 cm below surface of SBS using thermochrons iButton (DS1921G, USA). The pattern of CO2 emission rate from SBS depended strongly on fertilizing. The highest decomposition rates (DecR) of 2.8-5.6 g C/m2/h were observed in SBS-NP treatment during the first 6 weeks of experiment. The decay process of bark was less active in the treatment with only N addition. In this

  10. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  11. Nitrogen Mineralization Response to Tillage Practices on Low and High Nitrogen Soils

    Science.gov (United States)

    In strip tillage, crop residue is left on soil surface, decreasing the contact between soil and the residue, and therefore reducing decomposition rates compared to conventional tillage methods. Decomposition rates directly affect carbon and nitrogen ratios, which can affect nitrogen mineralization r...

  12. Carbon dynamics in subtropical forest soil. Effects of atmospheric carbon dioxide enrichment and nitrogen addition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juxiu X.; Zhou, Guoyi Y.; Zhang, Deqiang Q.; Duan, Honglang L.; Deng, Qi; Zhao, Liang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Xu, Zhihong H. [Griffith Univ., Nathan, Queensland (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2010-06-15

    The levels of atmospheric carbon dioxide concentration ([CO{sub 2}]) are rapidly increasing. Understanding carbon (C) dynamics in soil is important for assessing the soil C sequestration potential under elevated [CO{sub 2}]. Nitrogen (N) is often regarded as a limiting factor in the soil C sequestration under future CO{sub 2} enrichment environment. However, few studies have been carried out to examine what would happen in the subtropical or tropical areas where the ambient N deposition is high. In this study, we used open-top chambers to study the effect of elevated atmospheric [CO{sub 2}] alone and together with N addition on the soil C dynamics in the first 4 years of the treatments applied in southern China. Materials and methods Above- and below-ground C input (tree biomass) into soil, soil respiration, soil organic C, and total N as well as dissolved organic C (DOC) were measured periodically in each of the open-top chambers. Soil samples were collected randomly in each chamber from each of the soil layers (0-20, 20-40, and 40-60 cm) using a standard soil sampling tube (2.5-cm inside diameter). Soil leachates were collected at the bottom of the chamber below-ground walls in stainless steel boxes. Results and discussion The highest above- and below-ground C input into soil was found in the high CO{sub 2} and high N treatment (CN), followed by the only high N treatment (N+), the only high CO{sub 2} treatment (C+), and then the control (CK) without any CO{sub 2} enrichment or N addition. DOC in the leachates was small for all the treatments. Export of DOC played a minor role in C cycling in our experiment. Generally, soil respiration rate in the chambers followed the order: CN treatment > C + treatment > N + treatment > the control. Except for the C+ treatment, there were no significant differences in soil total N among the CN treatment, N + treatment, and the control. Overall, soil organic C (SOC) was significantly affected by the treatments (p < 0.0001). SOC

  13. Nitrogen

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  14. Effect of trehalose addition on volatiles responsible for strawberry aroma.

    Science.gov (United States)

    Kopjar, Mirela; Hribar, Janez; Simcic, Marjan; Zlatić, Emil; Pozrl, Tomaz; Pilizota, Vlasta

    2013-12-01

    Aroma is one of the most important quality properties of food products and has a great influence on quality and acceptability of foods. Since it is very difficult to control, in this study the effect of addition of trehalose (3, 5 and 10%) to freeze-dried strawberry cream fillings was investigated as a possible means for retention of some of the aroma compounds responsible for the strawberry aroma. In samples with added trehalose, higher amounts of fruity esters were determined. Increase of trehalose content did not cause a proportional increase in the amount of fruity esters. However, results of our research showed that trehalose addition did not have the same effect on both gamma-decalactone and furaneol. PMID:24555295

  15. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  16. Study on Tribological Behaviors of Boron-Nitrogen Modified Fatty Acid as Water-Based Lube Additives

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-hua; CHEN Bo-shui; DONG Ling; WANG Jiu

    2008-01-01

    A new type of boron-nitrogen modified fatty acid as water base lube additive was prepared and the chemical structure characterized by infrared spectrum. The tribological properties of the additive in water were evaluated by friction testers. The morphographies and tribochemical species of the worn surfaces were analyzed by means of X-ray Photoelectron Spectroscope (XPS). The results showed that the additive is excellent in increasing loadcarrying capacity, anti-wear and friction-reducing abilities of water. The lubrication mechanism is inferred that a high strength adsorption film and a tribochemical reaction film are formed on the rubbing surfaces due to the carrier effect of the long chain fatty acid molecules, high reaction activities of nitrogen, electron-deficient orbit of boron and their synergisms.

  17. Cell Production and Expansion in the Primary Root of Maize in Response to Low-Nitrogen Stress

    Institute of Scientific and Technical Information of China (English)

    GAO Kun; CHEN Fan-jun; YUAN Li-xing; MI Guo-hua

    2014-01-01

    Maize plants respond to low-nitrogen stress by enhancing root elongation. The underlying physiological mechanism remains unknown. Seedlings of maize (Zea mays L., cv. Zhengdan 958) were grown in hydroponics with the control (4 mmol L-1) or low-nitrogen (40 µmol L-1) for 12 d, supplied as nitrate. Low nitrogen enhanced root elongation rate by 4.1-fold, accompanied by increases in cell production rate by 2.2-fold, maximal elemental elongation rate (by 2.5-fold), the length of elongation zone (by 1.5-fold), and ifnal cell length by 1.8-fold. On low nitrogen, the higher cell production rate resulted from a higher cell division rate and in fact the number of dividing cells was reduced. Consequently, the residence time of a cell in the division zone tended to be shorter under low nitrogen. In addition, low nitrogen increased root diameter, an increase that occurred speciifcally in the cortex and was accompanied by an increase in cell number. It is concluded that roots elongates in response to low-nitrogen stress by accelerating cell production and expansion.

  18. Wheat-yield response to irrigation and nitrogen

    International Nuclear Information System (INIS)

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha-1. Higher N rates produced higher stomatal conductance, increased rates of CO2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha-1, which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO3- to groundwater. (author)

  19. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  20. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Science.gov (United States)

    Chen, Xianni; Wang, Xudong; Liebman, Matt; Cavigelli, Michel; Wander, Michelle

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1); 8.6%) from the IAsoil than the MDsoil (0.9 g kg(-1), 6.3%); fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents. PMID:25078458

  1. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories.

    Directory of Open Access Journals (Sweden)

    Xianni Chen

    Full Text Available To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil] comparing conventional grain systems (Conv amended with inorganic fertilizers with 3 yr (Med and longer (Long, more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs and decay rates (ka, ks of active and slow C pools which we compared with total particulate organic matter (POM and occluded-POM (OPOM. The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1; 8.6% from the IAsoil than the MDsoil (0.9 g kg(-1, 6.3%; fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230% and Cs (38% vs 21% and decreases in ka (58% vs 9% in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.

  2. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P;

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  3. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    OpenAIRE

    Lei Liu; Per Gundersen; , Wei Zhang; Tao Zhang; Hao Chen; Jiangming Mo

    2015-01-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m−2·yr−1), P addition (15 g P m−2·yr−1), and N and P addition (15 + 15 g N and P m−2·yr−1, respectively) in disturbed (plan...

  4. Prediction of Nitrogen Responses of Corn by Soil Nitrogen Mineralization Indicators

    Directory of Open Access Journals (Sweden)

    R.R. Simard

    2001-01-01

    Full Text Available Soil nitrogen mineralization potential (Nmin has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil Nmin potential based on clay and organic matter (OM contents and the impact of grouping soils using these criteria on corn grain (Zea mays L. yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150 were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha-1 were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The Nmin indicators were spatially structured but soil nitrate (NO3– was not. The N fertilizer rate to reach maximum grain yield (Nmax, as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha-1. The proportion of variability (R2 and the standard error of the estimate (SE varied among textural groups and Nmin indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha-1 rate, the apparent Nmin potential (ANM was significantly larger in the clay loam (122 kg ha-1 than in the fine sandy loam (80 kg ha-1 or clay (64 kg ha-1 soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict Nmax. The Nmin indicators may also assist the variable rate N fertilizer inputs for corn production.

  5. Prediction of nitrogen responses of corn by soil nitrogen mineralization indicators.

    Science.gov (United States)

    Simard, R R; Ziadi, N; Nolin, M C; Cambouris, A N

    2001-11-01

    Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production. PMID:12805786

  6. Influence of Nitrogen Containing Wastes Addition on Natural Aerobic Composting of Rice Straw

    OpenAIRE

    Thaniya Kaosol; Suchinun Kiepukdee; Prawit Towatana

    2012-01-01

    Problem statement: Rice straw is an agricultural residue. Typically, the rice straw can be burn in the rice field after the harvesting process. The burning can cause air pollution. Another alternative rice straw management method is animal feed. The amount of rice straw is enormus in Thailand. Another sustainable way to manage rice straw is required. Rice straw is used as main waste to compost with nitrogen containing wastes such as golden apple snail, cattle dung and urea in natural aerobic ...

  7. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    Science.gov (United States)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  8. Three-year growth response of young Douglas-fir to nitrogen, calcium, phosphorus, and blended fertilizers in Oregon and Washington

    Science.gov (United States)

    Mainwaring, Douglas B.; Maguire, Douglas A.; Perakis, Steven S.

    2014-01-01

    Studies of nutrient limitation in Douglas-fir forests of the Pacific Northwest focus predominantly on nitrogen, yet many stands demonstrate negligible or even negative growth response to nitrogen fertilization. To understand what nutrients other than nitrogen may limit forest productivity in this region, we tested six fertilizer treatments for their ability to increase stem volume growth response of dominant and co-dominant trees in young Douglas-fir plantations across a range of foliar and soil chemistry in western Oregon and Washington. We evaluated responses to single applications of urea, lime, calcium chloride, or monosodium phosphate at 16 sites, and to two site-specific nutrients blends at 12 of these sites. Across sites, the average stem volume growth increased marginally with urea, lime, and phosphorus fertilization. Fertilization responses generally aligned with plant and soil indicators of nutrient limitation. Response to nitrogen addition was greatest on soils with low total nitrogen and high exchangeable calcium concentrations. Responses to lime and calcium chloride additions were greatest at sites with low foliar calcium and low soil pH. Response to phosphorus addition was greatest on sites with low foliar phosphorus and high soil pH. Blended fertilizers yielded only marginal growth increases at one site, with no consistent effect across sites. Overall, our results highlight that calcium and phosphorus can be important growth limiting nutrients on specific sites in nitrogen-rich Douglas-fir forests of the Pacific Northwest.

  9. Responses of two summer annuals to interactions of atmospheric carbon dioxide and soil nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.B.

    1987-01-01

    The competitive relationship between Chenopodium album L. (C{sub 3}) and Amaranthus hybridus L. (C{sub 4}) was investigated in two atmospheric CO{sub 2} levels and tow soil nitrogen levels. Biomass and leaf surface area of Amaranthus plants did not respond to CO{sub 2} enrichment. Only in high nitrogen did Chenopodium plants respond to increased CO{sub 2} with greater biomass and leaf surface area. Nitrogen use efficiency (NUE) was higher in Amaranthus than in Chenopodium in all treatments except for the high-nitrogen high-CO{sub 2} treatment. Under conditions of high nitrogen and low CO{sub 2}, Chenopodium was a poor competitor, but competition favored Chenopodium in high nitrogen and high CO{sub 2}. In low nitrogen and high CO{sub 2}, competition favored Chenopodium on a dry weight basis, but favored Amaranthus on a seed weight basis, reflecting early senescence of Chenopodium. In low nitrogen and high CO{sub 2}, competition favored Amaranthus on a dry weight basis, but favored Chenopodium on a seed weight basis. Physiological aspects of the growth of Chenopodium and Amaranthus were studied. Acclimation to elevated CO{sub 2} occurred at the enzyme level in Chenopodium. Under conditions of high nitrogen and no competition, individual Chenopodium plants responded to elevated CO{sub 2} with greater biomass, leaf surface area, and maximum net photosynthetic rates. In high nitrogen, leaf nitrogen, soluble protein, and RuBP carboxylase activity of Chenopodium decreased and NUE increased when grown in elevated CO{sub 2}. In low nitrogen without competition, Chenopodium showed no significant response to CO{sub 2} enrichment. Amarantus grown in high and low nitrogen without competition showed no significant changes in leaf nitrogen, soluble protein, carboxylase activity, chlorophyll, or NUE of in response to CO{sub 2} enrichment.

  10. Effects of N2O and O2 addition to nitrogen Townsend dielectric barrier discharges at atmospheric pressure on the absolute ground-state atomic nitrogen density

    KAUST Repository

    Es-sebbar, Et-touhami

    2012-11-27

    Absolute ground-state density of nitrogen atoms N (2p3 4S3/2) in non-equilibrium Townsend dielectric barrier discharges (TDBDs) at atmospheric pressure sustained in N2/N2O and N2/O2 gas mixtures has been measured using Two-photon absorption laser-induced fluorescence (TALIF) spectroscopy. The quantitative measurements have been obtained by TALIF calibration using krypton as a reference gas. We previously reported that the maximum of N (2p3 4S3/2) atom density is around 3 × 1014 cm-3 in pure nitrogen TDBD, and that this maximum depends strongly on the mean energy dissipated in the gas. In the two gas mixtures studied here, results show that the absolute N (2p3 4S3/2) density is strongly affected by the N2O and O2 addition. Indeed, the density still increases exponentially with the energy dissipated in the gas but an increase in N2O and O2 amounts (a few hundreds of ppm) leads to a decrease in nitrogen atom density. No discrepancy in the order of magnitude of N (2p3 4S3/2) density is observed when comparing results obtained in N2/N2O and N2/O2 mixtures. Compared with pure nitrogen, for an energy of ∼90 mJ cm-3, the maximum of N (2p3 4S3/2) density drops by a factor of 3 when 100 ppm of N2O and O2 are added and it reduces by a factor of 5 for 200 ppm, to reach values close to our TALIF detection sensitivity for 400 ppm (1 × 1013 cm -3 at atmospheric pressure). © 2013 IOP Publishing Ltd.

  11. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest.

    Directory of Open Access Journals (Sweden)

    Xiaoming Sun

    Full Text Available The environmental changes arising from nitrogen (N deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O, while the opposite trend was found in the mineral horizon (A. Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.

  12. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    Science.gov (United States)

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  13. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    OpenAIRE

    Guopeng Liang; Houssou, Albert A.; Huijun Wu; Dianxiong Cai; Xueping Wu; Lili Gao; Jing Li; Bisheng Wang; Shengping Li

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respi...

  14. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    OpenAIRE

    Wei Li; Ji-Min Cheng; Kai-Liang Yu; Howard E. Epstein; Liang Guo; Guang-Hua Jing; Jie Zhao; Guo-Zhen Du

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alp...

  15. ROLE OF ETHYLENE IN RESPONSES OF PLANTS TO NITROGEN AVAILABILITY

    Directory of Open Access Journals (Sweden)

    M Iqbal R Khan

    2015-10-01

    Full Text Available Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signalling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological process such as leaf gas exchanges, roots architecture, leaf, fruits and flowers development. Low plant N use efficiency leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signalling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signalling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase N use efficiency and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.

  16. Effects of additive application upon ad libitum intake, in vivo digestibility and nitrogen balance of alfalfa haylage

    Directory of Open Access Journals (Sweden)

    Mladen Knežević

    2009-09-01

    Full Text Available The research objective was to determine the effect of the additive Sill-All application on ad libitum intake, in vivo digestibility and nitrogen balance of alfalfa haylage. About 40 % alfalfa plants was ensiled at the phonological flowering stage into plastic foil-wrapped bales without or with additive (2 L t-1 plant mass. No statistically significant differences were found between alfalfa ensiled without additive and alfalfa ensiled with additive for the content of dry matter (DM (632 g and 631 g DM kg-1 fresh sample, respectively. Alfalfa ensiled without additive contained 921 g organic matter (OM kg-1 DM, which was significantly higher (P<0.001 compared to alfalfa ensiled with additive (902 g OM kg-1 DM. Alfalfa ensiled without additive contained 141 g crude proteins (CP kg-1 DM, which was significantly higher (P<0.001 compared to alfalfa ensiled with additive (139 g CP kg-1 DM. Alfalfa ensiled with additive contained significantly less acid detergent fibers (ADF (P<0.001 compared to alfalfa ensiled without additive (445 g kg-1 DM and 456 g kg-1 DM, respectively and had a lower pH value (P<0.001 (5.29 and 5.56, respectively. No statistically significant differences were found between the studied feeding treatments for ad libitum intake of fresh ration and DM ration, for the measured parameters of digestibility and N balance. It was concluded that addition of the additive to alfalfa haylage led to significant changes in chemical composition; however, changes in chemical composition had no impact on measured biological parameters (ad libitum intake, in vivo digestibility and nitrogen balance.

  17. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes.

    Directory of Open Access Journals (Sweden)

    Ximei Zhang

    Full Text Available Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH, mineralization (chiA, nitrification (amoA of ammonia-oxidizing bacteria (AOB or archaea (AOA, and denitrification (nirS, nirK and nosZ. First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.

  18. BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch.

    Science.gov (United States)

    Carriero, G; Brunetti, C; Fares, S; Hayes, F; Hoshika, Y; Mills, G; Tattini, M; Paoletti, E

    2016-06-01

    Emission of BVOC (Biogenic Volatile Organic Compounds) from plant leaves in response to ozone exposure (O3) and nitrogen (N) fertilization is poorly understood. For the first time, BVOC emissions were explored in a forest tree species (silver birch, Betula pendula) exposed for two years to realistic levels of O3 (35, 48 and 69 ppb as daylight average) and N (10, 30 and 70 kg ha(-1) yr(-1), applied weekly to the soil as ammonium nitrate). The main BVOCs emitted were: α-pinene, β-pinene, limonene, ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and hexanal. Ozone exposure increased BVOC emission and reduced total leaf area. The effect on emission was stronger when a short-term O3 metric (concentrations at the time of sampling) rather than a long-term one (AOT40) was used. The effect of O3 on total leaf area was not able to compensate for the stimulation of emission, so that responses to O3 at leaf and whole-plant level were similar. Nitrogen fertilization increased total leaf area, decreased α-pinene and β-pinene emission, and increased ocimene, hexanal and DMNT emission. The increase of leaf area changed the significance of the emission response to N fertilization for most compounds. Nitrogen fertilization mitigated the effects of O3 exposure on total leaf area, while the combined effects of O3 exposure and N fertilization on BVOC emission were additive and not synergistic. In conclusion, O3 exposure and N fertilization have the potential to affect global BVOC via direct effects on plant emission rates and changes in leaf area. PMID:26809503

  19. BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch.

    Science.gov (United States)

    Carriero, G; Brunetti, C; Fares, S; Hayes, F; Hoshika, Y; Mills, G; Tattini, M; Paoletti, E

    2016-06-01

    Emission of BVOC (Biogenic Volatile Organic Compounds) from plant leaves in response to ozone exposure (O3) and nitrogen (N) fertilization is poorly understood. For the first time, BVOC emissions were explored in a forest tree species (silver birch, Betula pendula) exposed for two years to realistic levels of O3 (35, 48 and 69 ppb as daylight average) and N (10, 30 and 70 kg ha(-1) yr(-1), applied weekly to the soil as ammonium nitrate). The main BVOCs emitted were: α-pinene, β-pinene, limonene, ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and hexanal. Ozone exposure increased BVOC emission and reduced total leaf area. The effect on emission was stronger when a short-term O3 metric (concentrations at the time of sampling) rather than a long-term one (AOT40) was used. The effect of O3 on total leaf area was not able to compensate for the stimulation of emission, so that responses to O3 at leaf and whole-plant level were similar. Nitrogen fertilization increased total leaf area, decreased α-pinene and β-pinene emission, and increased ocimene, hexanal and DMNT emission. The increase of leaf area changed the significance of the emission response to N fertilization for most compounds. Nitrogen fertilization mitigated the effects of O3 exposure on total leaf area, while the combined effects of O3 exposure and N fertilization on BVOC emission were additive and not synergistic. In conclusion, O3 exposure and N fertilization have the potential to affect global BVOC via direct effects on plant emission rates and changes in leaf area.

  20. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  1. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m-2·yr-1), P addition (15 g P m-2·yr-1), and N and P addition (15 + 15 g N and P m-2·yr-1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  2. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-01-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  3. Effect of SF6 and NF3 additives on UV and IR lasing in nitrogen

    International Nuclear Information System (INIS)

    The lasing regimes of nitrogen laser on the C3Πu - B3Πg transition with a high-energy long laser pulse under pumping by a transverse discharge in N2 - SF6 (NF3) mixtures from generators with a semiconductor opening switch is studied. Laser pulses with two peaks and controlled delay between these peaks are obtained. It is shown that the time interval between the peaks may exceed 50 ns for N2 - NF3 mixtures. The conditions for obtaining effective UV lasing with a laser pulse width of more than 50 ns at the base level are determined. A possibility of depopulating the lower level of the C3Πu - B3Πg transition by induced transitions in the first positive B3Πg - A3Σu+ system is shown; this process makes it possible to expand the pulse to 100 ns at λ = 337.1 nm. The highest lasing energy and power in the IR and UV spectral ranges are obtained for nitrogen lasers with spark preionisation. (lasers)

  4. Effect of SF6 and NF3 additives on UV and IR lasing in nitrogen

    Science.gov (United States)

    Genin, D. E.; Panchenko, Aleksei N.; Tarasenko, Viktor F.; Tel'minov, A. E.

    2011-04-01

    The lasing regimes of nitrogen laser on the C3Πu — B3Πg transition with a high-energy long laser pulse under pumping by a transverse discharge in N2 — SF6 (NF3) mixtures from generators with a semiconductor opening switch is studied. Laser pulses with two peaks and controlled delay between these peaks are obtained. It is shown that the time interval between the peaks may exceed 50 ns for N2 — NF3 mixtures. The conditions for obtaining effective UV lasing with a laser pulse width of more than 50 ns at the base level are determined. A possibility of depopulating the lower level of the C3Πu — B3Πg transition by induced transitions in the first positive B3Πg — A3Σu+ system is shown; this process makes it possible to expand the pulse to 100 ns at λ = 337.1 nm. The highest lasing energy and power in the IR and UV spectral ranges are obtained for nitrogen lasers with spark preionisation.

  5. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    . In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  6. Structural Underpinnings of Nitrogen Regulation by the Prototypical Nitrogen-Responsive Transcriptional Factor NrpR

    Energy Technology Data Exchange (ETDEWEB)

    Wisedchaisri, Goragot; Dranow, David M.; Lie, Thomas J.; Bonanno, Jeffrey B.; Patskovsky, Yury; Ozyurt, Sinem A.; Sauder, J. Michael; Almo, Steven C.; Wasserman, Stephen R.; Burley, Stephen K.; Leigh, John A.; Gonen, Tamir (UWASH); (Einstein); (Lilly)

    2010-11-29

    Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins - the nitrogen regulatory protein NrpR - that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression.

  7. 复合酵母培养物对奶牛产奶性能、氮排放及血液生化指标的影响%Milk production,nitrogen excretion and blood biochemical parameter responses to di-etary addition of compound yeast cultures in dairy cows

    Institute of Scientific and Technical Information of China (English)

    王玲; 吕永艳; 程志伟; 杜高唐; 李金林; 付石军; 孙国强

    2015-01-01

    group (P <0.05).2)Compound yeast cultures significantly increased milk fat and protein concentra-tion (P <0.05),and reduced somatic cell counts (P <0.05),with treatment group 2 again the greatest re-sponse.3)The supply of compound yeast cultures in dairy cow feed concentrate reduced nitrogen excretion by 8.47%,12.01%,9.36% compared to the control group (P <0.05).4)Dietary supplementation with com-pound yeast cultures significantly increased the levels of glucose (GLU ),total protein (TP ),globulin (GLOB),and insulin (INS)(P <0.05 )in the serum,and reduced blood urea nitrogen (BUN)(P <0.05 ). Based on the data for milk yield,milk composition,nitrogen excretion and blood biochemical parameters,the optimal concentration of compound yeast cultures administered as a supplement for dairy cow diets is 1.0%.

  8. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  9. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    Science.gov (United States)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  10. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection

    Science.gov (United States)

    Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, an...

  11. Response of growth of tomato to phosphorus and nitrogen nutrition

    NARCIS (Netherlands)

    Groot, de C.C.; Marcelis, L.F.M.; Boogaard, van den R.; Lambers, H.

    2004-01-01

    A detailed growth analysis has been conducted to unravel the separate effects of nitrogen and phosphorus nutrition on growth of young tomato plants (Lycopersicon esculentum Mill. cv. Capita) and to study their interaction. We show that relative growth rate increased sharply with increasing plant P c

  12. The effect of nitrogen addition on biomass production and competition in three expansive tall grasses

    International Nuclear Information System (INIS)

    A large increase of grasses Calamagrostis epigejos, Bromus inermis and Brachypodium pinnatum has often been observed in many regions enriched by higher nitrogen (N) wet deposition inputs. Competitive relationships between these grasses under enhanced N loads have not yet been studied. Therefore an outdoor experiment was established which involved monocultures of Calamagrostis, Bromus and Brachypodium and their 1:1 mixtures in containers under two N treatments, i.e., unfertilized and fertilized (+50 kg N ha−1). In monocultures, the total aboveground biomass of Calamagrostis, Bromus and Brachypodium were 1.1, 3.6 and 2.5 times higher respectively due to enhanced N fertilization. Relative crowding and aggressivity coefficients indicate that Calamagrostis and Bromus dominate when mixed with Brachypodium at both levels of N availability. When mixed with Bromus, Calamagrostis is the poorer competitor at lower N loads, however, it can be dominating in N fertilized treatments. - Highlights: ► A large increase of tall grasses has often been observed in many ecosystems. ► Data on competitive relationships between grasses were investigated. ► Competition indices indicate that Calamagrostis and Bromus dominate in mixtures with Brachypodium. ► Calamagrostis is a better competitor when mixed with Bromus but only at higher N loads. ► N deposition may play a critical role in the expansion and persistence of grasses in the landscape. - Competition abilities of Calamagrostis and Bromus were greater than Brachypodium and the competitive superiority of Calamagrostis to Bromus was in N rich substrate.

  13. Investigation of the Gracilaria gracilis (Gracilariales, Rhodophyta) proteome response to nitrogen limitation.

    Science.gov (United States)

    Naidoo, Rene K; Rafudeen, Muhammad S; Coyne, Vernon E

    2016-06-01

    Inorganic nitrogen has been identified as the major growth-limiting nutritional factor affecting Gracilaria gracilis populations in South Africa. Although the physiological mechanisms implemented by G. gracilis for adaption to low nitrogen environments have been investigated, little is known about the molecular mechanisms of these adaptions. This study provides the first investigation of G. gracilis proteome changes in response to nitrogen limitation and subsequent recovery. A differential proteomics approach employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry was used to investigate G. gracilis proteome changes in response to nitrogen limitation and recovery. The putative identity of 22 proteins that changed significantly (P < 0.05) in abundance in response to nitrogen limitation and recovery was determined. The identified proteins function in a range of biological processes including glycolysis, photosynthesis, ATP synthesis, galactose metabolism, protein-refolding and biosynthesis, nitrogen metabolism and cytoskeleton remodeling. The identity of fructose 1,6 biphosphate (FBP) aldolase was confirmed by western blot analysis and the decreased abundance of FBP aldolase observed with two-dimensional gel electrophoresis was validated by enzyme assays and western blots. The identification of key proteins and pathways involved in the G. gracilis nitrogen stress response provide a better understanding of G. gracilis proteome responses to varying degrees of nitrogen limitation and is the first step in the identification of biomarkers for monitoring the nitrogen status of cultivated G. gracilis populations.

  14. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    Science.gov (United States)

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  15. Analysis of the influence of helium additions on the laser output and stability of a TEA nitrogen laser

    International Nuclear Information System (INIS)

    An experimental method to study the laser output and stability of a small TEA nitrogen laser is presented. The method is based on the amplitude analysis of the fluorescence produced by the interaction of the laser ultraviolet radiation with a yellow filter. Using this method, the influence of helium additions on the laser output energy and stability is analyzed. The experimental data shows that in our conditions, the higher laser output energy and stability are reached when the He presents the 45 % of the gas mixture coinciding with the helium concentration for which a spark-free laser discharge is produced. (Author)

  16. Interactions of water and nitrogen addition on soil microbial community composition and functional diversity depending on the inter-annual precipitation in a Chinese steppe

    Institute of Scientific and Technical Information of China (English)

    SUN Liang-jie; QI Yu-chun; DONG Yun-she; HE Ya-ting; PENG Qin; LIU Xin-chao; JIA Jun-qiang; GUO Shu-fang; CAO Cong-cong

    2015-01-01

    Water and nitrogen are primary limiting factors in semiarid grassland ecosystems. Our knowledge is stil poor regarding the interactive effects of water and N addition on soil microbial communities, although this information is crucial to reveal the mechanisms of the terrestrial ecosystem response to global changes. We addressed this problem by conducting a ifeld experiment with a 15%surplus of the average rainfal under three levels of N addition (50, 100, and 200 kg N ha–1 yr–1) in two consecutive years in Inner Mongolia, China. Microbial community composition and functional diversity were analyzed based on phospholipid fatty acids (PLFA) and BIOLOG techniques, respectively. The results showed that water addition did not affect the soil microbial community composition, but much more yearly precipitation general y decreased the PLFA concentration, which implied a fast response of soil microbes to changes of water condition. Soil fungi was depressed only by N addition at the high level (200 kg N ha–1 yr–1) and without hydrologic leaching, while Gram-negative bacteria was suppressed probably by plant competition at high level N addition but with hydrologic leaching. The study found unilateral positive/negative interactions between water and N addition in affecting soil microbial community, however, climate condi-tion (precipitation) could be a signiifcant factor in disturbing the interactions. This study highlighted that:(1) The sustained effect of pulsed water addition was minimal on the soil microbial community composition but signiifcant on the microbial community functional diversity and (2) the complex interaction between water and N addition on soil microbial community related to the inter-annual variation of the climate and plant response.

  17. A kelp with integrity: Macrocystis pyrifera prioritises tissue maintenance in response to nitrogen fertilisation.

    Science.gov (United States)

    Stephens, Tiffany A; Hepburn, Christopher D

    2016-09-01

    Our understanding of the response of vascular, terrestrial plants to nitrogen (N) addition is advanced and provides the foundation for modern agriculture. In comparison, information on responses of marine macroalgae to increased nitrogen is far less developed. We investigated how in situ pulses of nitrate (NO3 (-)) affected the growth and N physiology of Macrocystis pyrifera by adding N using potassium nitrate dissolution blocks during a period of low seawater N concentration. Multiple parameters (e.g. growth, pigments, soluble NO3 (-)) were measured in distinct tissues throughout entire fronds (apical meristem, stipe, adult blade, mature blade, sporophyll, and holdfast). Unexpectedly, N fertilisation did not enhance elongation rates within the frond, but instead thickness (biomass per unit area) increased in adult blades. Increased blade thickness may have enhanced tissue integrity as fertilised kelp had lower rates of blade erosion. Tissue chemistry also responded to enrichment; pigmentation, soluble NO3 (-), and % N were higher throughout fertilised fronds. Labelled (15)N traced N uptake and translocation from N sources in the kelp canopy to sinks in the holdfast, 10 m below. This is the first evidence of long-distance (>1 m) transport of N in macroalgae. Patterns in physiological parameters suggest that M. pyrifera displays functional differentiation between canopy and basal tissues that may aid in nutrient-tolerance strategies, similar to those seen in higher plants and unlike those seen in more simple algae (i.e. non-kelps). This study highlights how little we know about N additions and N-use strategies within kelp compared to the wealth of literature available for higher plants. PMID:27170330

  18. Response of soil fauna to simulated nitrogen deposition: A nursery experiment in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    XU Guo-liang; MO Jiang-ming; FU Sheng-lei; PER Gundersen; ZHOU Guo-yi; XUE Jing-Hua

    2007-01-01

    We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.

  19. Effects of nitrogen fertilizer application and solar radiation on the growth response of sorghum [Sorghum bicolor] seedlings to soil moisture

    International Nuclear Information System (INIS)

    The effects of nitrogen fertilizer application and solar radiation on the growth response to soil moisture were examined in sorghum seedlings grown in culture boxes. The effects of soil moisture (f) and amount of nitrogen fertilizer application (g) on the increment of total dry matter weight of sorghum seedling (ΔW) were represented satisfactorily by the following reciprocal equation, 1/ΔW = A/(f - f0) + B(g + g0)/(f - f0) + C/[(f - f0) (g + g0)] + D/(g + g0) + E, where f0 and g0 were the uppermost value of unavailable soil moisture and the amount of nitrogen supplied from soil and seeds. A, B, C, D and E were coefficients. The effects of soil moisture (f) and solar radiation (S) on ΔW were expressed approximately by the following reciprocal equation, 1/ΔW = A/(S - S0) + B/(f - f0) + C(f - f0) + D, where S0 was the daily compensation point. These results indicated that the effects of solar radiation and soil moisture are additive, but the interaction between soil moisture and nitrogen fertilizer is not negligible. The transpiration efficiency was unaffected by soil moisture, nitrogen fertilizer and solar radiation

  20. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    Science.gov (United States)

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  1. Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition

    Directory of Open Access Journals (Sweden)

    Anke K. Müller

    2015-10-01

    Full Text Available Nutrient deposition to tropical forests is increasing, which could affect soil fluxes of nitrous oxide (N2O, a powerful greenhouse gas. We assessed the effects of 35-56 months of moderate nitrogen (N and phosphorus (P additions on soil N2O fluxes and net soil N-cycling rates, and quantified the relative contributions of nitrification and denitrification to N2O fluxes. In 2008, a nutrient manipulation experiment was established along an elevation gradient (1000, 2000 and 3000 m of montane forests in southern Ecuador. Treatments included control, N, P and N+P addition (with additions of 50 kg N ha−1 yr-1 and 10 kg P ha−1 yr-1. Nitrous oxide fluxes were measured using static, vented chambers and N cycling was determined using the buried bag method. Measurements showed that denitrification was the main N2O source at all elevations, but that annual N2O emissions from control plots were low, and decreased along the elevation gradient (0.57 ± 0.26 to 0.05 ± 0.04 kg N2O-N ha-1 yr-1. We attributed the low fluxes to our sites’ conservative soil N cycling as well as gaseous N losses possibly being dominated by N2. Contrary to the first 21 months of the experiment, N addition did not affect N2O fluxes during the 35-56 month period, possibly due to low soil moisture contents during this time. With P addition, N2O fluxes and mineral N concentrations decreased during Months 35-56, presumably because plant P limitations were alleviated, increasing plant N uptake. Nitrogen plus phosphorus addition showed similar trends to N addition, but less pronounced given the counteracting effects of P addition. The combined results from this study (Months 1-21 and 35-56 showed that effects of N and P addition on soil N2O fluxes were not linear with time of exposure, highlighting the importance of long-term studies.

  2. Quantifying the Stress Responses of Brassica Rapa Genotypes, With Experimental Drought in Two Nitrogen Treatments

    Science.gov (United States)

    Hickerson, J. L.; Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Weinig, C.

    2014-12-01

    In a greenhouse study designed to quantify and compare stress responses of four genotypes of Brassica rapa, broccolette (bro), cabbage (cab), turnip (tur), and oil, leaf water potential and net CO2 assimilations were measured. Individuals from each genotype, grown either with high or low nitrogen, were exposed to experimental drought of the same duration. One hypothesis was that the genotypes would differ significantly in their responses to periodic drought. The other hypothesis was that the nitrogen treatment versus no nitrogen treatment would play a significant role in the stress responses during drought. It would be expected that the nitrogen treated would have greater dry leaf mass. A LI-6400 XT portable photosynthesis system was used to obtain A/Ci curves (net CO2 assimilation rate versus substomatal CO2) for each treatment group. Predawn and midday water potentials were obtained throughout the hydrated and drought periods using a Model 670 pressure chamber. The dry leaf mass was significantly greater among the high nitrogen group versus the low nitrogen group for each genotype. Nitrogen and genotype were both determinants in variation of water potentials and net CO2 assimilation. Bro and cab genotypes with high nitrogen showed the highest net CO2 assimilation rates during hydration, but the assimilation rates dropped to the lowest during droughts. The water potentials for bro and cab were lower than values for tur and oil. Nitrogen treated genotypes had lower water potentials, but higher net CO2 assimilation rates. Bayesian ecophysiological modeling with the TREES model showed significant differences in trait expression, quantified in terms of differences in model parameter posteriors, among the four genotypes.

  3. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and (15)N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized (15)N following N addition was lowest among treatments. Litter (15)N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  4. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-jian; W.ZHU; S.HU

    2005-01-01

    Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N),and a grassland soil (1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity. New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone,cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total Creleased induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5%and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs.

  5. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  6. Preparation method and use of visible light responsive nitrogen-doped titanium dioxide nano-tube

    OpenAIRE

    Jiang, Zheng; Zhu, Qingshan; Yang, Fan; Zhang, Yayuan; Li, Hongzhong

    2010-01-01

    The invention discloses a preparation method of a nitrogen-doped titanium dioxide nanotube with response to visible lights, and comprises the following steps: a. metallic titanium or titaniferous compounds are used for preparing a metatitanic acid nanotube with a hydrothermal or solvothermal method; b. the metatitanic acid or titanium dioxide nanotube that is prepared by step a or a commercial metatitanic acid or titanium dioxide nanotube is dispersed in a water solution with nitrogen sources...

  7. Improved creep and oxidation behavior of a martensitic 9Cr steel by the controlled addition of boron and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Peter [Massachusetts Institute of Technology, Cambridge, MA (United States). Dept. of Materials Science; Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Holzer, Ivan; Mendez-Martin, Francisca [Graz Univ. of Technology (Austria). Inst. of Material Science and Welding; Albu, Mihaela; Mitsche, Stefan [Graz Univ. of Technology (Austria). Inst. for Electron Microscopy; Gonzalez, Vanessa; Agueero, Alina [Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz (Spain)

    2010-07-01

    This manuscript gives an overview on recent developments of a martensitic steel grade based on 9Cr3W3CoVNb with controlled additions of boron and nitrogen. Alloy design by thermodynamic equilibrium calculations and calculation of boron-nitrogen solubility is discussed. Out of this alloy design process, two melts of a 9Cr3W3CoVNbBN steel were produced. The investigation focused on microstructural evolution during high temperature exposure, creep properties and oxidation resistance in steam at 650 C. Microstructural characterization of ''as-received'' and creep exposed material was carried out using conventional optical as well as advanced electron microscopic methods. Creep data at 650 was obtained at various stress levels. Longest-running specimens have reached more than 20,000 hours of testing time. In parallel, long-term oxidation resistance has been studied at 650 C in steam atmosphere up to 5,000 hours. Preliminary results of the extensive testing program on a 9Cr3W3CoVNbBN steel show significant improvement in respect to creep strength and oxidation resistance compared to the state-of-the-art 9 wt. % Cr martensitic steel grades. Up to current testing times, the creep strength is significantly beyond the +20% scatterband of standard grade P92 material. Despite the chromium content of 9 wt % the material exhibits excellent oxidation resistance. Steam exposed plain base material shows comparable oxidation behavior to coated material, and the corrosion rate of the boron-nitrogen controlled steel is much lower compared to standard 9 wt % Cr steel grades, P91 and P92. (orig.)

  8. 48 CFR 819.202-71 - Additional contracting officer responsibilities.

    Science.gov (United States)

    2010-10-01

    ... OF VETERANS AFFAIRS SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 819.202-71 Additional..., contracting officers must perform the following functions in support of the small business program: (a) Make maximum use of small business source lists. (b) Assure that small business firms are identified...

  9. Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon

    Institute of Scientific and Technical Information of China (English)

    Richard Poir; Vincent Chochois; Xavier R.R.Sirault; John P.Vogel; Michelle Watt; Robert T.Furbank

    2014-01-01

    This work evaluates the phenotypic response of the model grass (Brachypodium distachyon (L.) P. Beauv.) to nitrogen and phosphorus nutrition using a combination of imaging techniques and destructive harvest of shoots and roots. Reference line Bd21-3 was grown in pots using 11 phosphorus and 11 nitrogen concentrations to establish a dose-response curve. Shoot biovolume and biomass, root length and biomass, and tissue phosphorus and nitrogen concentrations increased with nutrient concentration. Shoot biovolume, estimated by imaging, was highly correlated with dry weight (R2>0.92) and both biovolume and growth rate responded strongly to nutrient availability. Higher nutrient supply increased nodal root length more than other root types. Photochemical efficiency was strongly reduced by low phosphorus concentrations as early as 1 week after germination, suggesting that this measurement may be suitable for high throughput screening of phosphorus response. In contrast, nitrogen concentration had little effect on photochemical efficiency. Changes in biovolume over time were used to compare growth rates of four accessions in response to nitrogen and phosphorus supply. We demonstrate that a time series image-based approach coupled with mathematical modeling provides higher resolution of genotypic response to nutrient supply than traditional destructive techniques and shows promise for high throughput screening and determina-tion of genomic regions associated with superior nutrient use efficiency.

  10. Effects of nitrogen additions on biomass, stoichiometry and nutrient pools of moss Rhytidium rugosum in a boreal forest in Northeast China

    International Nuclear Information System (INIS)

    Global nitrogen (N) deposition has been enhanced with anthropogenic N emissions, and its impacts on mosses are receiving more and more attention. This study investigates how N deposition influence the biomass and stoichiometry of moss Rhytidium rugosum, using a 3-year N enrichment experiment with 0, 2, 5 and 10 g N m−2 yr−1 in a boreal forest in Northeast China. Low N additions caused an N redundancy and moderate to high N additions resulted in a biomass loss. N additions reduced biomass ratios of green to brown tissues and increased N and phosphorus (P) contents, suggesting changes in photosynthetic capacity and litter decomposition. Biomass N pools showed a unimodal response to the N additions, and P pools decreased under moderate and high N additions. Our findings indicate significant stoichiometric and biomass changes caused by N deposition may lead to a substantial carbon and nutrient loss in boreal moss carpets. - Highlights: • Effects of N deposition on moss biomass and stoichiometry were investigated. • N deposition reduced biomass ratios of green to brown moss tissues. • N deposition increased N and P contents in moss tissues. • N deposition caused significant changes of moss carbon and nutrient pools. - Significant stoichiometric and biomass changes of mosses can be caused by N deposition and may lead to a substantial carbon and nutrient loss in boreal moss carpets

  11. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  12. Effect of hydrogen addition on the deposition of titanium nitride thin films in nitrogen added argon magnetron plasma

    Science.gov (United States)

    Saikia, P.; Bhuyan, H.; Diaz-Droguett, D. E.; Guzman, F.; Mändl, S.; Saikia, B. K.; Favre, M.; Maze, J. R.; Wyndham, E.

    2016-06-01

    The properties and performance of thin films deposited by plasma assisted processes are closely related to their manufacturing techniques and processes. The objective of the current study is to investigate the modification of plasma parameters occurring during hydrogen addition in N2  +  Ar magnetron plasma used for titanium nitride thin film deposition, and to correlate the measured properties of the deposited thin film with the bulk plasma parameters of the magnetron discharge. From the Langmuir probe measurements, it was observed that the addition of hydrogen led to a decrease of electron density from 8.6 to 6.2  ×  (1014 m‑3) and a corresponding increase of electron temperature from 6.30 to 6.74 eV. The optical emission spectroscopy study reveals that with addition of hydrogen, the density of argon ions decreases. The various positive ion species involving hydrogen are found to increase with increase of hydrogen partial pressure in the chamber. The thin films deposited were characterized using standard surface diagnostic tools such as x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Although it was possible to deposit thin films of titanium nitride with hydrogen addition in nitrogen added argon magnetron plasma, the quality of the thin films deteriorates with higher hydrogen partial pressures.

  13. Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa

    Directory of Open Access Journals (Sweden)

    Edison A. Díaz-Álvarez

    2015-06-01

    Full Text Available Potential ecophysiological responses to nitrogen deposition, which is considered to be one of the leading causes for global biodiversity loss, were studied for the endangered endemic Mexican epiphytic orchid, Laelia speciosa, via a shadehouse dose-response experiment (doses were 2.5, 5, 10, 20, 40, and 80 kg N ha−1 yr−1 in order to assess the potential risk facing this orchid given impending scenarios of nitrogen deposition. Lower doses of nitrogen of up to 20 kg N ha yr−1, the dose that led to optimal plant performance, acted as fertilizer. For instance, the production of leaves and pseudobulbs were respectively 35% and 36% greater for plants receiving 20 kg N ha yr−1 than under any other dose. Also, the chlorophyll content and quantum yield peaked at 0.66 ± 0.03 g m−2 and 0.85 ± 0.01, respectively, for plants growing under the optimum dose. In contrast, toxic effects were observed at the higher doses of 40 and 80 kg N ha yr−1. The δ13C for leaves averaged −14.7 ± 0.2‰ regardless of the nitrogen dose. In turn, δ15N decreased as the nitrogen dose increased from 0.9 ± 0.1‰ under 2.5 kg N ha−1yr−1 to −3.1 ± 0.2‰ under 80 kg N ha−1yr−1, indicating that orchids preferentially assimilate NH4+ rather than NO3− of the solution under higher doses of nitrogen. Laelia speciosa showed a clear response to inputs of nitrogen, thus, increasing rates of atmospheric nitrogen deposition can pose an important threat for this species.

  14. Role of Escherichia coli Nitrogen Regulatory Genes in the Nitrogen Response of the Azotobacter vinelandii NifL-NifA Complex

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2001-01-01

    The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been implicated in nitrogen control. However, the precise function of A. vinelandii glnK in this respons...

  15. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas.

    Science.gov (United States)

    Nieminen, Jouni K; Räisänen, Mikko

    2013-07-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4-N (2100%), the proportion of soil NO3-N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. PMID:23603467

  16. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  17. Complex response of the forest nitrogen cycle to climate change.

    Science.gov (United States)

    Bernal, Susana; Hedin, Lars O; Likens, Gene E; Gerber, Stefan; Buso, Don C

    2012-02-28

    Climate exerts a powerful influence on biological processes, but the effects of climate change on ecosystem nutrient flux and cycling are poorly resolved. Although rare, long-term records offer a unique opportunity to disentangle effects of climate from other anthropogenic influences. Here, we examine the longest and most complete record of watershed nutrient and climate dynamics available worldwide, which was collected at the Hubbard Brook Experimental Forest in the northeastern United States. We used empirical analyses and model calculations to distinguish between effects of climate change and past perturbations on the forest nitrogen (N) cycle. We find that climate alone cannot explain the occurrence of a dramatic >90% drop in watershed nitrate export over the past 46 y, despite longer growing seasons and higher soil temperatures. The strongest climate influence was an increase in soil temperature accompanied by a shift in paths of soil water flow within the watershed, but this effect explained, at best, only ∼40% of the nitrate decline. In contrast, at least 50-60% of the observed change in the N export could be explained by the long-lasting effect of forest cutting in the early 1900s on the N cycle of the soil and vegetation pools. Our analysis shows that historic events can obscure the influence of modern day stresses on the N cycle, even when analyses have the advantage of being informed by 0.5-century-long datasets. These findings raise fundamental questions about interpretations of long-term trends as a baseline for understanding how climate change influences complex ecosystems. PMID:22331889

  18. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    Science.gov (United States)

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.

  19. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    Science.gov (United States)

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  20. Nitrogen Dioxide Exposure and Airway Responsiveness in Individuals with Asthma

    Science.gov (United States)

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway r...

  1. Reproductive response to nitrogen and phosphorus fertilization along the Hawaiian archipelago's natural soil fertility gradient.

    Science.gov (United States)

    DiManno, Nicole M; Ostertag, Rebecca

    2016-01-01

    Nitrogen (N) and phosphorus (P) are the most important nutrients involved in plant reproduction and typically the most limiting in terrestrial ecosystems. The natural soil fertility gradient of the Hawaiian archipelago, in which younger islands are N limited and older islands are P limited, provides a model system to examine questions regarding allocation of nutrients. Using fertilized plots (+N or +P) at the extreme sites of the Hawaiian archipelago, vegetative productivity (e.g., net primary productivity, growth, and litterfall) and foliar nutrient responses have previously been studied for the dominant canopy tree, Metrosideros polymorpha. Here, we investigated whether the reproductive response of M. polymorpha mirrors the previously found vegetative productivity and foliar nutrient responses, by quantifying: (1) inflorescence and seed productivity, and (2) nutrient concentration of reproductive structures. Fertilization with N and P did not significantly affect the productivity of inflorescences or seeds, or seed viability at either site. However, nutrient concentrations increased after fertilization; %P increased in inflorescences in the +P treatment at the P-limited site. Seeds and inflorescences generally contained higher nutrient concentrations than leaves at both sites. Unlike foliar data, reproductive strategies of M. polymorpha differed depending on soil nutrient limitation with emphasis on quality (higher seed viability/greater nutrient concentrations) at the P-limited site. We suggest that in response to P additions M. polymorpha employs a nutrient conservation strategy for its inflorescences and an investment strategy for its seeds. Examining N and P simultaneously challenges a basic assumption that reproductive allocation follows a similar pattern to the often measured aboveground productivity.

  2. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress.

    Science.gov (United States)

    Gao, Kun; Chen, Fanjun; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2015-04-01

    The plasticity of root architecture is crucial for plants to acclimate to unfavourable environments including low nitrogen (LN) stress. How maize roots coordinate the growth of axile roots and lateral roots (LRs), as well as longitudinal and radial cell behaviours in response to LN stress, remains unclear. Maize plants were cultivated hydroponically under control (4 mm nitrate) and LN (40 μm) conditions. Temporal and spatial samples were taken to analyse changes in the morphology, anatomical structure and carbon/nitrogen (C/N) ratio in the axile root and LRs. LN stress increased axile root elongation, reduced the number of crown roots and decreased LR density and length. LN stress extended cell elongation zones and increased the mature cell length in the roots. LN stress reduced the cell diameter and total area of vessels and increased the amount of aerenchyma, but the number of cell layers in the crown root cortex was unchanged. The C/N ratio was higher in the axile roots than in the LRs. Maize roots acclimate to LN stress by optimizing the anatomical structure and N allocation. As a result, axile root elongation is favoured to efficiently find available N in the soil.

  3. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  4. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  5. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas

    International Nuclear Information System (INIS)

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH4–N (2100%), the proportion of soil NO3–N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. -- Highlights: •Spruces were fertilized with anaerobically digested and composted sewage sludge (CSS). •CSS increased soil N, proportion of NO3–N, and N concentration of spruce needles. •CSS reduced the abundances of enchytraeids, tardigrades and collembolans. •CSS increased the proportion and abundance of bacterial-feeding nematodes. •Sucrose did not reduce N pools or counteract negative CSS effects on soil animals. -- Composting and carbohydrate addition do not mitigate the harmful effects of anaerobically digested sewage sludge in boreal forest soil

  6. [Physiological response of Vallisneria natans to nitrogen and phosphorus contents in eutrophic waterbody].

    Science.gov (United States)

    Song, Yu-Zhi; Yang, Mei-Jiu; Qin, Bo-Qiang

    2011-09-01

    The response of Vallisneria natans to the increase contents of nitrogen and phosphorus were studied under laboratory conditions by measuring chlorophyll fluorescence parameters of V. natans using a pulse-amplitude modulated fluorometer (Diving-PAM), combined with measuring some other physiological indexes of V. natans. The results showed that V. natans responded quickly to water nitrogen and phosphorus concentration changes, the maximum quantum yield decreased significantly after 2 h and 6 h, the maximum quanta yield returned to normal levels 12 h after the treatment. There was no significant difference between treatment groups for the maximum quantum yield. Inhibitory effect of light intensity on photosynthesis of V. natans was more obvious under higher (treatment D) or lower (treatment A) concentrations of nitrogen and phosphorus. The average quantum yields of four measurements in the treatment B or C was significantly higher than that of A or D (p < 0.05). Within a certain range, chlorophyll content increased significantly with the nitrogen and phosphorus concentrations. When nitrogen and phosphorus concentrations further increased and reached the level of D treatment, chlorophyll content of V. natans decreased. Malondialdehyde (MDA) content of V. natans changed in the different treatment groups, MDA content of treatment B was the lowest while treatment D was the highest. It shows that V. natans is more suitable for growing in eutrophic waterbodies, but excessive nitrogen and phosphorus could inhibit the physiological activities of V. natans. PMID:22165222

  7. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen.

    Science.gov (United States)

    Yousuf, Peerzada Y; Ganie, Arshid H; Khan, Ishrat; Qureshi, Mohammad I; Ibrahim, Mohamed M; Sarwat, Maryam; Iqbal, Muhammad; Ahmad, Altaf

    2016-01-01

    Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard. PMID:27524987

  8. Nitrogen-Efficient and Nitrogen-Inefficient Indian Mustard Showed Differential Expression Pattern of Proteins in Response to Elevated CO2 and Low Nitrogen

    Science.gov (United States)

    Yousuf, Peerzada Y.; Ganie, Arshid H.; Khan, Ishrat; Qureshi, Mohammad I.; Ibrahim, Mohamed M.; Sarwat, Maryam; Iqbal, Muhammad; Ahmad, Altaf

    2016-01-01

    Carbon (C) and nitrogen (N) are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2], and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE) revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard. PMID:27524987

  9. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis.

    Science.gov (United States)

    Park, Jeong-Jin; Wang, Hongxia; Gargouri, Mahmoud; Deshpande, Rahul R; Skepper, Jeremy N; Holguin, F Omar; Juergens, Matthew T; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-02-01

    Drastic alteration in macronutrients causes large changes in gene expression in the photosynthetic unicellular alga Chlamydomonas reinhardtii. Preliminary data suggested that cells follow a biphasic response to this change hinging on the initiation of lipid accumulation, and we hypothesized that drastic repatterning of metabolism also followed this biphasic modality. To test this hypothesis, transcriptomic, proteomic, and metabolite changes that occur under nitrogen (N) deprivation were analyzed. Eight sampling times were selected covering the progressive slowing of growth and induction of oil synthesis between 4 and 6 h after N deprivation. Results of the combined, systems-level investigation indicated that C. reinhardtii cells sense and respond on a large scale within 30 min to a switch to N-deprived conditions turning on a largely gluconeogenic metabolic state, which then transitions to a glycolytic stage between 4 and 6 h after N depletion. This nitrogen-sensing system is transduced to carbon- and nitrogen-responsive pathways, leading to down-regulation of carbon assimilation and chlorophyll biosynthesis, and an increase in nitrogen metabolism and lipid biosynthesis. For example, the expression of nearly all the enzymes for assimilating nitrogen from ammonium, nitrate, nitrite, urea, formamide/acetamide, purines, pyrimidines, polyamines, amino acids and proteins increased significantly. Although arginine biosynthesis enzymes were also rapidly up-regulated, arginine pool size changes and isotopic labeling results indicated no increased flux through this pathway.

  10. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling.

    Science.gov (United States)

    Wase, Nishikant; Black, Paul N; Stanley, Bruce A; DiRusso, Concetta C

    2014-03-01

    Nitrogen starvation induces a global stress response in microalgae that results in the accumulation of lipids as a potential source of biofuel. Using GC-MS-based metabolite and iTRAQ-labeled protein profiling, we examined and correlated the metabolic and proteomic response of Chlamydomonas reinhardtii under nitrogen stress. Key amino acids and metabolites involved in nitrogen sparing pathways, methyl group transfer reactions, and energy production were decreased in abundance, whereas certain fatty acids, citric acid, methionine, citramalic acid, triethanolamine, nicotianamine, trehalose, and sorbitol were increased in abundance. Proteins involved in nitrogen assimilation, amino acid metabolism, oxidative phosphorylation, glycolysis, TCA cycle, starch, and lipid metabolism were elevated compared with nonstressed cultures. In contrast, the enzymes of the glyoxylate cycle, one carbon metabolism, pentose phosphate pathway, the Calvin cycle, photosynthetic and light harvesting complex, and ribosomes were reduced. A noteworthy observation was that citrate accumulated during nitrogen stress coordinate with alterations in the enzymes that produce or utilize this metabolite, demonstrating the value of comparing protein and metabolite profiles to understand complex patterns of metabolic flow. Thus, the current study provides unique insight into the global metabolic adjustments leading to lipid storage during N starvation for application toward advanced biofuel production technologies.

  11. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Science.gov (United States)

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  12. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    Science.gov (United States)

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  13. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Directory of Open Access Journals (Sweden)

    Guopeng Liang

    Full Text Available Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015. N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1 year(-1 (denoted as N0, N12, N18 and N24, respectively. Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG, soil organic carbon (SOC, total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  14. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  15. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  16. Physiological responses of Vigna radiata L. to nitrogen and argon+ laser irradiation - Short Communication

    International Nuclear Information System (INIS)

    The effect of nitrogen laser (337.1 nm) and argon+ laser (514.5 nm) irradiation on physiological responses in the green gram seedlings was studied. The shoot and root lengths and fresh and dry weights of the seedlings increased with 30 min exposure to nitrogen laser and 5 min exposure to Argon+ laser. Protein content was maximum with 20 min exposure to N laser and 5 min exposure to Ar+ laser, while DNA and RNA contents were maximum at 5 min exposure with both the laser treatments

  17. Influence of Residue and Nitrogen Fertilizer Additions on Carbon Mineralization in Soils with Different Texture and Cropping Histories

    OpenAIRE

    Xianni Chen; Xudong Wang; Matt Liebman; Michel Cavigelli; Michelle Wander

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double...

  18. Effect of nitrogen fertilizer rats combined with organic additives on sorghum growth using 15N isotope technique

    International Nuclear Information System (INIS)

    A pot experiment was conducted under green house conditions to evaluate the benefits from N fertilizer and organic manure to sorghum plants grown in calcareous soil. Labelled ammonium sulphate with 1% 15N atom excess was applied at rates of 0, 100 and 150 kg fed-1. Organic compost was applied at rates of 0, 50 and 100 g pot-1 on basis of its nitrogen content. Zinc, as zinc sulphate, was added at rates of 0, 5 and 10 mg kg-1 soil. The obtained data indicated that the dry matter yield of both shoot and roots of sorghum was positively affected by addition of N fertilizer, organic compost and Zn levels. Similarly, the N uptake was enhanced by application of 150 kg N fed-1, 100 g pot-1 of compost and 5 mg Zn kg-1 soil. 15N data revealed that the portion of N derived from fertilizer (Ndff) by shoots and roots was remarkable and followed the same trend of N uptake. Ndff utilized by shoots was higher than those uptakes by roots

  19. Study on the Key and Sensitive Stage of Winter Wheat Responses to Water and Nitrogen Coordination

    Institute of Scientific and Technical Information of China (English)

    ZHAI Bing-nian; LI Sheng-xiu

    2006-01-01

    Pot experiments were carried out to study the effect of nitrogen application on winter wheat under different status of soilmoisture, so that the key and sensitive stage of winter wheat responses to water and nitrogen coordination were determined.The results showed that the application of N fertilizer was more effective in early stage than in later stage, and at the lower N rates than at the higher N rates under non-irrigated conditions. N treatments had great effect on spikelet bearing number and grain number per spike, but had no effect on 1000-grain weight; Grain yield and yield component responses to N treatment were greater under irrigated conditions than under non-irrigated conditions. The joining stage was the key and sensitive stage of winter wheat responses to water and nitrogen coordination, and the grain yield, grain number per spike and 1000-grain weight increased, when water and N Fertilizer were applied at this stage. The mechanism is that water and fertilizer supply at joining stage can speed up the growth of above-ground crops, enhance the abilities to absorb and utilize nitrogen fertilizer, and meanwhile, delay the aging of the root and keep the root vigor for a longer period.

  20. Production and nutrition of irrigated Tanzania guinea grass in response to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Maria Celuta Machado Viana

    2014-05-01

    Full Text Available The objective of this study was to evaluate the effects of nitrogen (N fertilization in the four seasons of the year on forage production, nitrate (NO3 in the sap, total N in the forage and relative chlorophyll index (SPAD reading in the leaves of irrigated Panicum maximum cv. Tanzania grass, establishing their critical ranges. In addition, we evaluated the ability to predict forage production based on NO3 in the sap, total N in the forage and relative chlorophyll index. The soil in the experimental area was classified as an Oxisol (Red-Yellow Latosol with a clayey texture. Annual rates of N (0, 200, 400 and 800 kg ha-1 in the form of urea were the treatments tested. Irrigation was performed through a conventional spray system. The NO3 content in the sap and the relative chlorophyll index were measured in leaves using a portable meter with NO3 selective electrode and the SPAD-502 portable chlorophyll meter device, respectively. Tanzania guinea grass was very responsive to N fertilization, except in the winter. The critical ranges of the SPAD reading proved to be more adequate for monitoring the nutritional state of N of Tanzania guinea grass in the different seasons of the year than the NO3content in the sap and the total N content in the dry matter. Use of the chlorophyll meter is more advantageous than the use of the portable meter with an nitrate selective electrode for predicting the nutritional status of Tanzania guinea grass.

  1. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Ying Fang

    Full Text Available BACKGROUND: Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. METHODOLOGY/PRINCIPAL FINDINGS: Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. CONCLUSIONS/SIGNIFICANCE: Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the

  2. "RESPONSE OF DIFFERENT WHEAT (Triticum aestivum L. VARIETIES TO GRADED LEVELS OF NITROGEN" - A Critical review

    Directory of Open Access Journals (Sweden)

    M Satyanarayana

    2015-07-01

    Full Text Available Wheat is the most important and widely cultivated food crop in the world. In India, Wheat is the second important cereal crop, first being Rice. To improve the production of wheat, as in any other crop, introduction of varieties with a high yield potential is essential. Variety contributes more than 50 percent of the increased production. The next important component for increased production is the nutrient availability. Native fertility level of the tropical soils with special reference to nitrogen is invariably insufficient for touching the peak production mark of a variety and hence, the need for supplementing this nutrient is obvious with most varieties. Selection of suitable genotype is of prime importance as the genetic potential of varieties limits response to nitrogen. Moreover, varieties differ both in yield and nutrient uptake. Hence, it is necessary to find out the correct dose of nitrogen and suitable varieties for maximizing wheat yields in Southern Telangana agro-climatic zone.

  3. Quantify the loss of major ions induced by CO2 enrichment and nitrogen addition in subtropical model forest ecosystems

    Science.gov (United States)

    Liu, Juxiu; Zhang, Deqiang; Huang, Wenjuan; Zhou, Guoyi; Li, Yuelin; Liu, Shizhong

    2014-04-01

    Previous studies have reported that atmospheric CO2 enrichment would increase the ion concentrations in the soil water. However, none of these studies could exactly quantify the amount of ion changes in the soil water induced by elevated CO2 and all of these experiments were carried out only in the temperate areas. Using an open-top chamber design, we studied the effects of CO2 enrichment alone and together with nitrogen (N) addition on soil water chemistry in the subtropics. Three years of exposure to an atmospheric CO2 concentration of 700 ppm resulted in accelerated base cation loss via leaching water below the 70 cm soil profile. The total of base cation (K+ + Na+ + Ca2+ + Mg2+) loss in the elevated CO2 treatment was higher than that of the control by 220%, 115%, and 106% in 2006, 2007, and 2008, respectively. The N treatment decreased the effect of high CO2 treatment on the base cation loss in the leachates. Compared to the control, N addition induced greater metal cation (Al3+ and Mn2+) leaching loss in 2008 and net Al3+ and Mn2+ loss in the high N treatment increased by 100% and 67%, respectively. However, the CO2 treatment decreased the effect of high N treatment on the metal cation loss. Changes of ion export followed by the exposure to the elevated CO2, and N treatments were related to both ion concentrations and leached water amount. We hypothesize that forests in subtropical China might suffer from nutrient limitation and some poisonous metal activation in plant biomass under future global change.

  4. Nitrogen Under- and Over-supply Induces Distinct Protein Responses in Maize Xylem Sap

    Institute of Scientific and Technical Information of China (English)

    Chengsong Liao; Renyi Liu; Fusuo Zhang; Chunjian Li; Xuexian Li

    2012-01-01

    Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants.However,it remains largely unknown how nitrogenous compounds,especially proteins in xylem sap,respond to N under- or over-supply.We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap.Proteomic analysis showed that 23 proteins in the xylem sap of maize plants,including 12 newly identified ones,differentially accumulated in response to various N supplies.Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses,whereas the other five proteins appeared to respond largely to N under- or over-supply,suggesting distinct protein responses in maize xylem upon N under- and over-supply.Furthermore,one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.

  5. Growth and yield of corn hybrids in response to association with Azospirillum brasilense and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Deniele Marini

    2015-02-01

    Full Text Available There is a growing interest in optimizing the positive effects of the association between Azospirillum bacteria and corn crop in order to reduce the use of nitrogen fertilizers. This study aimed to evaluate the inoculation efficiency of an A. brasilense-based commercial product in association with different rates of nitrogen fertilization in two corn genotypes. The experiment was arranged in a 2 x 2 x 5 factorial randomized block design, with four replications. The treatments consisted of two corn hybrids (30F53 and CD386; with and without inoculation with a commercial product based on A. brasilense and five nitrogen rates (0, 40, 80, 120 and 160 kg ha-1. The variables plant height, basal stem diameter, leaf area, shoot dry matter, leaf nitrogen content, length and diameter of the cob, weight of 100 grains and grain yield were evaluated. Inoculation with A. brasilense provided increases of 11 and 12% in leaf area and shoot dry matter, respectively. There were differences in the response of the corn hybrids for most variables and the increase in nitrogen supply provided increments in the growth and yield of corn.

  6. [Response of active nitrogen to salinity in a soil from the Yellow River Delta].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Chen, Yin-Ping; Zhao, Xi-Men; Liu, Jing-Tao; Lu, Zhao-Hu

    2014-06-01

    Soil salinity can inhibit the processes of nitrogen cycle, and the active nitrogen is the important indicator to reflect the turnover of nitrogen. A laboratory experiment was conducted to study the effect of soil salinity on the active nitrogen in a soil of the Yellow River Delta incubated aerobically under 25 degrees C for 45 days. Four levels of salinity (S1: 0.1%, S2: 0.5%, S3: 0.9%, S4: 1.3%) were imposed using NaCl (mass fraction), and glucose with or without NH4Cl were added to the soils. NO3(-) -N, NH4(+) -N, total soluble nitrogen (TSN) and microbial biomass nitrogen (MBN) were monitored. Results showed that NO3(-)-N was significantly higher in the low salinity soil (S1, S2) than in the high salinity soil (S3, S4) under the control and with NH4Cl addition, and especially the difference was larger with NH4Cl addition. Comparing with the control, NO3(-) -N was increased significantly in S1 and S2. NO3(-) -N was decreased significantly with glucose addition, and there was no difference among the four salinity soils during the whole incubation period. NH4(+) -N was significantly higher in the high salinity soil (S3, S4) than in the low salinity soil (S1, S2), and it was increased particularly in S4 after day 5. With the addition of NH4Cl, NH4(+) -N was increased in S3 and S4. MBN was higher in the low salinity soil than in the high salinity soil, and it was not increased with NH4Cl addition, though TSN was increased. With glucose addition, MBN was increased by 89.9% - 130.9% in the low salinity soil (S1, S2) and 36.9% - 79.5% in the high salinity soil (S3, S4). It was suggested that soil salinity had influence on N transformation, and high salinity inhibited the transformation and assimilation of N by microorganism. The addition of C depressed the effect of salinity, and improved the microbial activity. The application of organic matter is an effective measure to improve N transformation in saline soils.

  7. Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands.

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Herrero, Mario; Havlík, Petr; Wang, Xuhui; Sultan, Benjamin; Soussana, Jean-François

    2016-01-01

    Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE-GM a process-based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991-2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8-2.0 g C m(-2)  yr(-2) during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36-43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has 'inadvertently' enhanced soil C sequestration and reduced N2 O and CH4 emissions by 1.2-1.5 Gt CO2 -equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991-2010. Land-cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual - nonattributed - term (22-26% of the trend due to all drivers) indicating negative interactions between drivers.

  8. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere.

    Directory of Open Access Journals (Sweden)

    Yanhong Cheng

    Full Text Available It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is "exclusion", where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter, and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm and a control treatment (5μm. The second method is "inoculation", whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas and Nematodes (Cephalobus and C. elegans. In order to detect the changes in the rice's perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA, rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion, low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation, a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status.

  9. Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere.

    Science.gov (United States)

    Cheng, Yanhong; Jiang, Ying; Wu, Yue; Valentine, Tracy A; Li, Huixin

    2016-01-01

    It has been hypothesized that faunal activity in the rhizosphere influences root growth via an auxin-dependent pathway. In this study, two methods were used to adjust nematode and bacterial populations within experimental soils. One is "exclusion", where soil mixed with pig manure was placed in two bags with different mesh sizes (1mm and 5μm diameter), and then surrounded by an outer layer of unamended soil resulting in soil with a greater populations of bacterial-feeding nematodes (1mm) and a control treatment (5μm). The second method is "inoculation", whereby autoclaved soil was inoculated with bacteria (E. coli and Pseudomonas) and Nematodes (Cephalobus and C. elegans). In order to detect the changes in the rice's perception of auxin under different nutrient and auxin conditions in the presence of soil bacterial-feeding nematodes, responses of soil chemistry (NH4+, NO3- and indole acetic acid (IAA)), rice root growth and the expression of an auxin responsive gene GH3-2 were measured. Results showed that, under low soil nutrient conditions (exclusion), low NO3- correlated with increased root branching and IAA correlated with increased root elongation and GH3-2 expression. However, under high soil nutrient conditions (inoculation), a high NH4+ to NO3- ratio promoted an increase in root surface area and there was an additional influence of NH4+ and NO3- on GH3-2 expression. Thus it was concluded that soil bacterial-feeding nematodes influenced soil nutritional status and soil IAA content, promoting root growth via an auxin dependent pathway that was offset by soil nitrogen status.

  10. Total dose radiation response of modified commercial silicon-on-insulator materials with nitrogen implanted buried oxide

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong-Shan; Liu Zhong-Li; Yu Fang; Li Ning

    2012-01-01

    Nitrogen ions of various doses are implanted into the buried oxide (BOX) of commercial silicon-on-insulator (SOI)materials,and subsequent annealings are carried out at various temperatures.The total dose radiation responses of the nitrogen-implanted SOI wafers are characterized by the high frequency capacitance-voltage (C-V) technique after irradiation using a Co-60 source.It is found that there exist relatively complex relationships between the radiation hardness of the nitrogen implanted BOX and the nitrogen implantation dose at different irradiation doses.Fhe experimental results also suggest that a lower dose nitrogen implantation and a higher post-implantation annealing temperature are suitable for improving the radiation hardness of SOI wafer.Based on the measured C-V data,secondary ion mass spectrometry (SIMS),and Fourier transform infrared (FTIR) spectroscopy,the total dose responses of the nitrogen-implanted SOI wafers are discussed.

  11. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    Directory of Open Access Journals (Sweden)

    Deirdre C. Rooney

    2010-01-01

    Full Text Available Agricultural improvement of seminatural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming on ammonia-oxidising bacterial (AOB communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaris and L. perenne were planted in microcosms, and lime, nitrogen (NH4NO3, or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP of the amoA gene. AOB community structure was largely altered by NH4NO3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure.

  12. Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil

    International Nuclear Information System (INIS)

    Agricultural improvement of semi natural grasslands has been shown to result in changes to plant and microbial diversity, with consequences for ecosystem functioning. A microcosm approach was used to elucidate the effects of two key components of agricultural improvement (nitrogen addition and liming) on ammonia-oxidising bacterial (AOB) communities in an upland grassland soil. Plant species characteristic of unimproved and improved pastures (A. capillaries and L. perenne) were planted in microcosms, and lime, nitrogen (NH4NO3), or lime plus nitrogen added. The AOB community was profiled using terminal restriction fragment length polymorphism (TRFLP) of the amoA gene. AOB community structure was largely altered by NH4NO3 addition, rather than liming, although interactions between nitrogen addition and plant species were also evident. Results indicate that nitrogen addition drives shifts in the structure of key microbial communities in upland grassland soils, and that plant species may play a significant role in determining AOB community structure

  13. Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex.

    Science.gov (United States)

    Reyes-Ramirez, F; Little, R; Dixon, R

    2001-05-01

    The redox-sensing flavoprotein NifL inhibits the activity of the nitrogen fixation (nif)-specific transcriptional activator NifA in Azotobacter vinelandii in response to molecular oxygen and fixed nitrogen. Although the mechanism whereby the A. vinelandii NifL-NifA system responds to fixed nitrogen in vivo is unknown, the glnK gene, which encodes a PII-like signal transduction protein, has been implicated in nitrogen control. However, the precise function of A. vinelandii glnK in this response is difficult to establish because of the essential nature of this gene. We have shown previously that A. vinelandii NifL is able to respond to fixed nitrogen to control NifA activity when expressed in Escherichia coli. In this study, we investigated the role of the E. coli PII-like signal transduction proteins in nitrogen control of the A. vinelandii NifL-NifA regulatory system in vivo. In contrast to recent findings with Klebsiella pneumoniae NifL, our results indicate that neither the E. coli PII nor GlnK protein is required to relieve inhibition by A. vinelandii NifL under nitrogen-limiting conditions. Moreover, disruption of both the E. coli glnB and ntrC genes resulted in a complete loss of nitrogen regulation of NifA activity by NifL. We observe that glnB ntrC and glnB glnK ntrC mutant strains accumulate high levels of intracellular 2-oxoglutarate under conditions of nitrogen excess. These findings are in accord with our recent in vitro observations (R. Little, F. Reyes-Ramirez, Y. Zhang, W. Van Heeswijk, and R. Dixon, EMBO J. 19:6041-6050, 2000) and suggest a model in which nitrogen control of the A. vinelandii NifL-NifA system is achieved through the response to the level of 2-oxoglutarate and an interaction with PII-like proteins under conditions of nitrogen excess. PMID:11325935

  14. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    Science.gov (United States)

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances

  15. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    Science.gov (United States)

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances

  16. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    Science.gov (United States)

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  17. Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen.

    Science.gov (United States)

    Adamczyk, B; Godlewski, M; Zimny, J; Zimny, A

    2008-11-01

    This paper reports on the role of proteases secreted by roots in nitrogen capture by plants. The study was conducted on aseptically cultivated wheat seedlings (Triticum aestivum cv. Tacher) obtained from embryos isolated from grains. Seedlings were cultivated for 21 days on deionised water, Murashige Skoog medium (MS), MS without inorganic nitrogen (IN), and MS without IN, in which IN was replaced by casein (0.01%, 0.1% or 1%). Comparison of seedlings grown on these media showed that casein entirely compensated for the lack of inorganic nitrogen in the medium. Shoots and roots of seedlings cultivated on MS medium with this protein had higher fresh weight than those cultivated on MS medium without casein. The increase in fresh weight of seedlings was correlated with casein concentration and proteolytic activity in the medium. In conclusion, wheat that uses proteases secreted by the roots can directly utilise proteins in the medium as a source of nitrogen without prior digestion by microbial proteases and without protein mineralisation. These results suggest the important role of organic nitrogen fertilisers in increasing wheat yield. PMID:18950429

  18. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    V. Wolff

    2012-05-01

    Full Text Available The input and loss of plant available nitrogen (reactive nitrogen: Nr from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3−, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal

  19. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought. PMID:27017604

  20. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F

    2016-07-01

    Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.

  1. Rapid Nitrogen Cycling Following Wet-Up Results from Heterotroph, then Nitrifier Response

    Science.gov (United States)

    Placella, S.; Herman, D.; Firestone, M.

    2009-12-01

    The first rainfall following the hot, dry summer in arid and semi-arid ecosystems, known as wet-up, results in large pulses of carbon dioxide and nitrous oxide, two radiatively important gases. Nitrous oxide in general, is produced by nitrifiers and denitrifiers. Using laboratory simulations of wet-up, we monitored soil pools of ammonium and nitrate, gross rates of nitrogen mineralization and nitrification, effluxes of carbon dioxide and nitrous oxide, and gene expression of archaeal and bacterial amoA, a functional gene for nitrification and nirK, a functional gene for denitrification. Results from a California annual grassland soil show significant increases in the ammonium pool within one hour of water addition followed by a significant increase in the nitrate pool within three hours of water addition. Gross nitrogen mineralization and gross nitrification were very high with nitrogen mineralization being highest within three hours of wet-up. Ammonia-oxidizers were most active at nine hours after water addition. Nitrous oxide emissions followed the same pattern as nitrifiers, suggesting nitrification may play an important role in nitrous oxide emissions during wet-up.

  2. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.

    Science.gov (United States)

    Wang, Xiubin; Zhou, Wei; Liang, Guoqing; Song, Dali; Zhang, Xiaoya

    2015-12-15

    In this study, the characteristics of maize biochar produced at different pyrolysis temperatures (300, 450 and 600°C) and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil were investigated. As pyrolysis temperature increased, ash content, pH, electrical conductivity, surface area, pore volume and aromatic carbon content of biochar increased while yield, ratios of oxygen:carbon and hydrogen: carbon and alkyl carbon content decreased. During incubation, SOC, total N, and ammonium-N contents increased in all biochar-amended treatments compared with the urea treatment; however, soil nitrate-N content first increased and then decreased with increasing pyrolysis temperature of the applied biochar. Extracellular enzyme activities associated with carbon transformation first increased and then decreased with biochars pyrolyzed at 450 and 600°C. Protease activity markedly increased with increased pyrolysis temperatures, whereas pyrolysis temperature had limited effect on soil urease activity. The results indicated that the responses of extracellular enzymes to biochar were dependent on the pyrolysis temperature, the enzyme itself and incubation time as well.

  3. Influence of additional alloying with nitrogen on structure and properties of high chromium steel Kh17 after hot rolling

    International Nuclear Information System (INIS)

    A study was made into the structure and mechanical properties of steel Kh17 with 0.16% N after hot rolling under various conditions. It is shown that nitrogen alloying promotes steel transition into a two-phase state (α+γ) in heating above 850 deg C and affects mechanical properties of the steel in a hot rolled state. Impact strength is at its maximum in nitrogen containing steel kh17 if the rolling is in the temperature range of α-phase solid solution. Depending on the temperatures of hot rolling beginning and completion the distinctions in steel microstructure are investigated

  4. Response of CH4 emission to moss removal and N addition in boreal peatland of Northeast China

    Directory of Open Access Journals (Sweden)

    H. N. Meng

    2014-02-01

    Full Text Available Boreal peatlands are an important natural source of atmospheric methane (CH4. Recently, boreal peatlands have been experiencing increased nitrogen (N input and decreased moss production. However, little is known about the interactive effect of moss and N availability on CH4 emission in boreal peatlands. In this study, the effects of moss removal and N addition (6 g N m−2 yr−1 on CH4 emission were examined during the growing seasons of 2011 to 2013 in a boreal peatland in the Great Hinggan Mountain of Northeast China. Notably, the response of CH4 emission to moss removal and N addition varied with experimental duration. Moss removal and N addition did not affect CH4 emission in 2011 and 2012, but respectively declined CH4 emission by 50% and 66% in 2013. However, moss removal and N addition did not produce an interactive effect on CH4 emission. Specifically, moss removal plus N addition had no effect on CH4 emission in 2011 and 2012, but decreased CH4 emission by 68% in 2013. These results suggest that the effects of moss removal and N enrichment on CH4 emission are time-dependent in boreal peatlands, and also imply that increased N loading and decreased moss growth would independently inhibit CH4 emission in the boreal peatlands of Northeast China.

  5. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea

    NARCIS (Netherlands)

    Robroek, B.J.M.; Adema, E.B.; Venterink, H.O.; Leonardson, L.; Wassen, M.J.

    2009-01-01

    Conservation and restoration of fens and fen meadows often aim to reduce soil nutrients, mainly nitrogen (N) andphosphorus (P). The biogeochemistry of P has received much attention as P-enrichment is expected to negatively impact on species diversity in wetlands. It is known that N, sulphur (S) and

  6. Response of Sunflower to Nitrogen Application and Water in Northern Brazil Alfisol

    Directory of Open Access Journals (Sweden)

    João Tadeu de Lima Oliveira

    2012-01-01

    Full Text Available Decline in crop yield has been a problem in Northern Brazil region due to inherent low fertility status of the soils and water deficit of different crops. In order to study the effects of nitrogen and available soil water levels on growth and yield components of sunflower, an experiment was carried out from March to June 2010 in a semi-controlled greenhouse condition of the Federal University of Campina Grande, Paraiba, Brazil using Alfisol soil. The treatments were arranged as a completely randomized design, in a 4×4 factorial experiment (four nitrogen levels and four available soil water levels, in triplicates, total of 48 experimental units. The nitrogen levels in kg/ha were 0; 60; 80 and 100 which was added as urea; the available soil water levels were 55; 70; 85 and 100%. The results of this research indicate that nitrogen had a significant effect only on leaf area at 40 DAS and % achenes viable. The effect of available soil water on sunflower cv. Embrapa 122/V-2000 biometry and the yield showed that there were significant differences, on average, in all growth traits (stem height and diameter at 40 and 60 DAS, in leaf number at 40 DAS, in leaf area at 40 and 60 DAS and in all production traits. The biometry and yield response to available soil water of different crops is of major importance in production planning. In this study, the maximum biometry and yield response factor of sunflower was determined at 100 % of available soil water.

  7. Response of anaerobic ammonium oxidation to inorganic nitrogen fluctuations in temperate estuarine sediments

    Science.gov (United States)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2016-07-01

    The discovery of anaerobic ammonium oxidation (anammox) highlighted the importance of alternative metabolic pathways to inorganic nitrogen removal in natural environments, particularly in those subjected to increased nitrate inputs, such as estuaries. Laboratory enrichment experiments were used to test the effect of increasing loads of nitrate (NO3-), nitrite (NO2-), and ammonium (NH4+) on the anammox process. Three Atlantic temperate estuaries (NW Portugal) were investigated along a salinity gradient, and anammox activity was measured under different NO3-, NO2-, and NH4+ treatments, using the isotope pairing technique. Obtained results showed that NO3- stimulated denitrification but not anammox, whereas NO2- additions had a positive effect on anammox activity, confirming its role as a key environmental control. On the other hand, increasing NH4+ concentrations seemed to inhibit anammox for low salinity sites. Our findings suggested an important role of the natural availability of nitrogen compounds in regulating anammox and the magnitude of anammox versus denitrification in estuarine environments.

  8. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    Science.gov (United States)

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  9. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Directory of Open Access Journals (Sweden)

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  10. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    Science.gov (United States)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  11. RESPONSES IN NITROGEN MASS AND NITROGEN METABOLISM OF WILD SUGARCANE (SACCHARUM SPONTANEUM L.) CLONES TO ENHANCED UV-B RADIATION UNDER FIELD CONDITIONS

    OpenAIRE

    Yanqun Zu; Yuan Li; Haiyun Wang; Yongmei He

    2013-01-01

    Field experiments were conducted to evaluate effects of enhanced UV-B radiation (280-315 nm) on intraspecific responses in nitrogen mass and nitrogen metabolism of six wild sugarcane (Saccharum spontaneum L.) clones. The clones were collected from original sites with different altitudes (4-1780 m above sea-level) and latitudes (18-38°N). The supplemental UV-B radiation was 5.00 kJâ¢m-2, simulating a depletion of 20% stratospheric ozone. Out of the six tested wild sugarcane clones, available ...

  12. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source. PMID:26988362

  13. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  14. Genetic Basis for Variation in Wheat Grain Yield in Response to Varying Nitrogen Application

    Science.gov (United States)

    Mahjourimajd, Saba; Taylor, Julian; Sznajder, Beata; Timmins, Andy; Shahinnia, Fahimeh; Rengel, Zed; Khabaz-Saberi, Hossein; Kuchel, Haydn; Okamoto, Mamoru

    2016-01-01

    Nitrogen (N) is a major nutrient needed to attain optimal grain yield (GY) in all environments. Nitrogen fertilisers represent a significant production cost, in both monetary and environmental terms. Developing genotypes capable of taking up N early during development while limiting biomass production after establishment and showing high N-use efficiency (NUE) would be economically beneficial. Genetic variation in NUE has been shown previously. Here we describe the genetic characterisation of NUE and identify genetic loci underlying N response under different N fertiliser regimes in a bread wheat population of doubled-haploid lines derived from a cross between two Australian genotypes (RAC875 × Kukri) bred for a similar production environment. NUE field trials were carried out at four sites in South Australia and two in Western Australia across three seasons. There was genotype-by-environment-by-treatment interaction across the sites and also good transgressive segregation for yield under different N supply in the population. We detected some significant Quantitative Trait Loci (QTL) associated with NUE and N response at different rates of N application across the sites and years. It was also possible to identify lines showing positive N response based on the rankings of their Best Linear Unbiased Predictions (BLUPs) within a trial. Dissecting the complexity of the N effect on yield through QTL analysis is a key step towards elucidating the molecular and physiological basis of NUE in wheat. PMID:27459317

  15. Differences in the growth response of three bryophyte species to nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Salemaa, Maija [Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa (Finland)], E-mail: maija.salemaa@metla.fi; Maekipaeae, Raisa [Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa (Finland)], E-mail: raisa.makipaa@metla.fi; Oksanen, Jari [University of Oulu, Department of Biology, P.O. Box 3000, FI-90014 Oulu (Finland)], E-mail: jarioksa@sun3.oulu.fi

    2008-03-15

    The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m{sup -2} during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators. - Boreal bryophytes display differences in their sensitivity to nitrogen.

  16. Beyond the Call of Duty: A Qualitative Study of Teachers' Additional Responsibilities Related to Sexuality Education

    Science.gov (United States)

    Eisenberg, Marla E.; Madsen, Nikki; Oliphant, Jennifer A.; Resnick, Michael

    2011-01-01

    Seven focus groups were conducted with sexuality educators in Minnesota to explore ways that teaching sexuality education differs from teaching other health education content and to determine if additional supports or resources are needed for sexuality educators. Teachers described many specific additional responsibilities or concerns related to…

  17. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium

    Science.gov (United States)

    Marks, Jade A; Pett-Ridge, Julie; Perakis, Steven S.; Allen, Jessica L; McCune, Bruce

    2015-01-01

    Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient

  18. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs.

    Science.gov (United States)

    Mendoza-Soto, Ana B; Naya, Loreto; Leija, Alfonso; Hernández, Georgina

    2015-01-01

    Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43-50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a

  19. Production and nutrition of irrigated Tanzania guinea grass in response to nitrogen fertilization

    OpenAIRE

    Maria Celuta Machado Viana; Inêz Pereira da Silva; Francisco Morel Freire; Mozart Martins Ferreira; Édio Luiz da Costa; Maria Helena Tabim Mascarenhas; Matheus Ferreira França Teixeira

    2014-01-01

    The objective of this study was to evaluate the effects of nitrogen (N) fertilization in the four seasons of the year on forage production, nitrate (NO3) in the sap, total N in the forage and relative chlorophyll index (SPAD reading) in the leaves of irrigated Panicum maximum cv. Tanzania grass, establishing their critical ranges. In addition, we evaluated the ability to predict forage production based on NO3 in the sap, total N in the forage and relative chlorophyll index. The soil in the ex...

  20. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nohrstedt, H.Oe. [Forestry Research Inst. of Sweden, Uppsala Science Park (Sweden)

    2001-07-01

    Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m{sup 3}/ha is obtained during a 10 yr period following an application of 150 kg N/ha. Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N/ha has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t/ha) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not

  1. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences

    International Nuclear Information System (INIS)

    Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m3/ha is obtained during a 10 yr period following an application of 150 kg N/ha. Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N/ha has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t/ha) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote

  2. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs

    Directory of Open Access Journals (Sweden)

    Ana Belén Mendoza-Soto

    2015-07-01

    Full Text Available Aluminum (Al toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris, the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43 - 50% reduction in nitrogenase activity indicates that Al toxicity highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Al toxicity. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated Al toxicity nodule-responsive miRNAs. We validated (qRT-PCR the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt responsive miRNAs identified have also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 and miR393/TIR1 in auxin and of miR170/SCL in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a foundation for evaluating the individual roles of miRNAs in the response of common bean nodules to Al toxicity.

  3. Enhanced bake-hardening response of an Al–Mg–Si–Cu alloy with Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, M.X., E-mail: mingxingguo@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Sha, G., E-mail: gang.sha@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Jiangsu 210094 (China); Cao, L.Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, W.Q. [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Zhang, J.S.; Zhuang, L.Z. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-07-15

    This study reports that Zn addition greatly enhances the bake-hardening response of an Al–Mg–Si–Cu alloy. The pre-aged alloy exhibits a high strength increment of 135 MPa after paint baking. Differential scanning calorimetry, atom probe tomography and high-resolution transmission electron microscopy reveal that Zn addition and pre-aging have significant effects on the solute nanostructure formation. Zn atoms partition into solute clusters/GP zones, and reduce the activation energy of β” precipitation in the alloy. - Highlights: • Zn addition can improve the bake-hardening response of an Al–Mg–Si–Cu alloy. • Zn addition can stabilize the solute clusters/GP zones from dissolution. • Zn addition can reduce the size of clusters formed in the pre-aging treatment. • Zn partitioned into solute clusters/GP zones and β” in the Zn-containing Al alloy.

  4. Tomato response traits to pathogenic Pseudomonas species: Does nitrogen limitation matter?

    Science.gov (United States)

    Royer, Mathilde; Larbat, Romain; Le Bot, Jacques; Adamowicz, Stéphane; Nicot, Philippe C; Robin, Christophe

    2016-03-01

    Induced chemical defence is a cost-efficient protective strategy, whereby plants induce the biosynthesis of defence-related compounds only in the case of pest attack. Plant responses that are pathogen specific lower the cost of defence, compared to constitutive defence. As nitrogen availability (N) in the root zone is one of the levers mediating the concentration of defence-related compounds in plants, we investigated its influence on response traits of tomato to two pathogenic bacteria, growing plants hydroponically at low or high N supply. Using two sets of plants for each level of N supply, we inoculated one leaf of one set of plants with Pseudomonas syringae, and inoculated the stem of other set of plants with Pseudomonas corrugata. Tomato response traits (growth, metabolites) were investigated one and twelve days after inoculation. In infected areas, P. syringae decreased carbohydrate concentrations whereas they were increased by P. corrugata. P. syringae mediated a redistribution of carbon within the phenylpropanoid pathway, regardless of N supply: phenolamides, especially caffeoylputrescine, were stimulated, impairing defence-related compounds such as chlorogenic acid. Inoculation of P. syringae produced strong and sustainable systemic responses. By contrast, inoculation of P. corrugata induced local and transient responses. The effects of pathogens on plant growth and leaf gas exchanges appeared to be independant of N supply. This work shows that the same genus of plant pathogens with different infection strategies can mediate contrasted plant responses.

  5. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    The objectives of the present study were to test (i) whether the effect of season-long CO2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r2 > 0.94). The slopes of the curves depended on the CO2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO2 from 2.7 g MJ−1 to 3.9 g MJ−1. CO2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO2 enrichment. However, at later growth stages, when the plants depended solely on N2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease due to the

  6. EFFECTS OF NITROGEN ADDITIVE AMOUNT ON ANAEROBIC HYDROGEN WITH VEGETABLESS GARBAGE%氮源对蔬菜废弃物发酵制氢的影响

    Institute of Scientific and Technical Information of China (English)

    张相锋; 张全国; 尤希凤; 王毅; 荆艳艳

    2012-01-01

    To reduce the cost of vegetable waste treatment, the anaerobic activated sludge was used as the anaero-pic hydrogen-producing bacteria to study the effects of the nitrogen additive amount on pH, gas production rate, hy-Irogen production capacity and gas composition. The results show that adding a good amount of nitrogen can effec-ively increase the organic production load and extend the hydrogen production cycle for the anaerobic hydrogen pro-luction system; Nitrogen source played the promoting role when the amount is in the range 0%-0. 1% , otherwise litrogen source behave the obvious inhibition on anaerobic hydrogen production when the amount got out of range. Phis is easy to see that the best nitrogen additive amount for anaerobic hydrogen production on vegetable waste treat-nent by the anaerobic activated sludge is 0. 1%.%以厌氧活性污泥为产氢菌种,研究了氮源对蔬菜废弃物厌氧生物制氢的pH值、产气能力、产氢能力以及气体成分的影响.结果表明添加适量的氮源能有效增加产氢量,延长产氢周期;氮源添加量在0%~0.1%范围内,对蔬菜废弃物产氢能力具有促进作用,超过0.1%,则有明显的抑制作用,蔬菜废弃物产氢的最佳氮源添加量为0.1%.

  7. Methods to classify maize cultivars in use efficiency and response to nitrogen

    Directory of Open Access Journals (Sweden)

    Cleiton Lacerda Godoy

    2013-10-01

    Full Text Available n plant breeding programs that aim to obtain cultivars with nitrogen (N use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1 in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.

  8. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Science.gov (United States)

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  9. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response.

    Science.gov (United States)

    Maekawa, Shugo; Sato, Takeo; Asada, Yutaka; Yasuda, Shigetaka; Yoshida, Midori; Chiba, Yukako; Yamaguchi, Junji

    2012-06-01

    In higher plants, the metabolism of carbon (C) and nitrogen nutrients (N) is mutually regulated and referred to as the C and N balance (C/N). Plants are thus able to optimize their growth depending on their cellular C/N status. Arabidopsis ATL31 and ATL6 encode a RING-type ubiquitin ligases which play a critical role in the C/N status response (Sato et al. in Plant J 60:852-864, 2009). Since many ATL members are involved in the plant defense response, the present study evaluated whether the C/N response regulators ATL31 and ATL6 are involved in defense responses. Our results confirmed that ATL31 and ATL6 expression is up-regulated with the microbe-associated molecular patterns elicitors flg22 and chitin as well as with infections with Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Moreover, transgenic plants overexpressing ATL31 and ATL6 displayed increased resistance to Pst. DC3000. In accordance with these data, loss of ATL31 and ATL6 function in an atl31 atl6 double knockout mutant resulted in reduced resistance to Pst. DC3000. In addition, the molecular cross-talk between C/N and the defense response was investigated by mining public databases. The analysis identified the transcription factors MYB51 and WRKY33, which are involved in the defense response, and their transcripts levels correlate closely with ATL31 and ATL6. Further study demonstrated that the expression of ATL31, ATL6 and defense marker genes including MYB51 and WRKY33 were regulated by C/N conditions. Taken together, these results indicate that ATL31 and ATL6 function as key components of both C/N regulation and the defense response in Arabidopsis.

  10. Solvent extraction of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction - Improvement of separation performance by addition of aluminum chloride to solvent

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, R.; Salim, C. [Tokyo Institute of Technology, Tokyo (Japan). Dept. of International Development Engineering, Graduate School of Science and Engineering

    2001-05-01

    The liquid-liquid equilibrium properties between the coal tar absorption oil fraction feed and the solvent (aqueous solution of methanol and aluminum chloride) were experimentally measured for nitrogen heterocyclic compounds (2,3-benzopyridine (quinoline), 3,4-benzopyridine (isoquinoline), and 2,3-benzopyrrole (indole)), homocyclic compounds (aromatics), and oxygen heterocyclic compounds. Nitrogen compounds were, extracted preferentially to the other compounds, and no oxygen compound was detected in the extract under all conditions. The distribution ratios of nitrogen compounds and aromatics increased with a larger mass fraction of AlCl{sub 3} in the extract. This increase in the distribution ratio was especially large for quinoline and isoquinoline, and the maximum ratios of quinoline and isoquinoline were 26 and 85 times larger, respectively, than in the cases without AlCl{sub 3} in the solvent. The separation selectivities for quinoline and isoquinoline relative to aromatics increased considerably with the mass fraction of AlCl{sub 3} in the extract, and the maximum ratios were 5 and 17 times higher than in the cases without AlCl{sub 3}. The separation selectivity for indole was apparently not affected by the addition of AlCl{sub 3}.

  11. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen

    Directory of Open Access Journals (Sweden)

    Marcelo Francisco Pompelli

    2012-11-01

    Full Text Available Phenotypic plasticity in response to environmental variation occurs at all organizational levels and across temporal scales within plants. However, the magnitude and functional significance of this plasticity is little explored in perennial species. We examined the influence of different light regimes and nitrogen (N availability on the morphological and physiological plasticity of coffee seedlings (Coffea arabica L.. Potted plants were grown under full sunlight and shade (50% and were fertilized with Hoagland’s solutions containing 0, 16 or 23mM N. Most leaf traits responded to light with a classic full sunlight vs. shade dichotomy [e.g., compared with those grown under full sunlight, 50% leaves had a thinner palisade mesophyll and a lower leaf mass per area (LMA for improved light capture]. The outer periclinal cell walls in both epidermises exhibited thick epicuticular wax and three distinct layers. Chloroplasts of the mesophyll cells were densely occupied by thylakoids and starch grains. These characteristics were observed most clearly in plants supplemented by nitrogen or in those grown in shade conditions. Large starch granules were observed, but no membrane injuries were observed in either treatment. The plasticity index was high for the physiological traits that are associated with photoprotection and the maintenance of a positive carbon balance under shade but was low for most morpho-anatomical features.

  12. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  13. Nitrogen and oxygen functionalized hollow carbon materials: The capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte

    Science.gov (United States)

    Nie, Yong Fu; Wang, Qian; Chen, Xiang Ying; Zhang, Zhong Jie

    2016-07-01

    In present work, we have developed a simple but effective template carbonization method for producing hollow carbon materials with high content of nitrogen and oxygen from thiocarbanilide. Among all samples, the NPC-1 exhibits high specific surface area (736 m2 g-1) and large pore volume (5.93 cm3 g-1) with high content of heteroatoms (∼11.25 at% nitrogen and ∼5.74 at% oxygen), which is conducive to the improvement of electrochemical performance. Specifically, the high specific capacitance and excellent cycling stability over 5000 cycles of the NPC-1-based electrode are achieved in 1 mol L-1 H2SO4 electrolyte. Additionally, pyrocatechol and rutin as novel redox additives that can easily cause redox-reactions have been incorporated into H2SO4 electrolyte to improve the capacitances. As a result, the NPC-1-R-0.15 and NPC-1-P-0.15 samples deliver high specific capacitances of 120.5 and 368.7 F g-1 at 2 A g-1, respectively, which are much higher than that of the NPC-1 sample (66.2 F g-1) without redox-additives at same current density. Furthermore, the large energy density of 18.9 and 11.9 Wh kg-1 of the NPC-1-based symmetric supercapacitors have been obtained in H2SO4+pyrocatechol and H2SO4+rutin electrolyte, respectively, and both samples also demonstrate excellent cyclic performance for 5000 cycles.

  14. The Chemical and Dynamical Responses of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    Science.gov (United States)

    Aquila, V.; Oman, L. D.; Stolarski, R.; Douglass, A. R.

    2012-01-01

    Observations have shown that the concentration of nitrogen dioxide decreased in both hemispheres in the years following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little or no change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the seasonal phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  15. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    Science.gov (United States)

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-01-01

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058

  16. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo

    Science.gov (United States)

    Aquila. Valentina; Oman, Luke D.; Stolarsk, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo, indicating an enhanced heterogeneous chemistry. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  17. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains.

    Science.gov (United States)

    Membrillo, Isabel; Sánchez, Carmen; Meneses, Marcos; Favela, Ernesto; Loera, Octavio

    2008-11-01

    Two strains of Pleurotus ostreatus (IE-8 and CP-50) were grown on defined medium added with wheat straw extract (WSE). Mycelia from these cultures were used as an inoculum for solid fermentation using sugar cane bagasse (C:N=142). This substrate was used separately either as a mixture of heterogeneous particle sizes (average size 2.9 mm) or as batches with two different particle sizes (0.92 mm and 1.68 mm). Protein enrichment and production of lignocellulolytic enzymes on each particle size was compared. The effect of ammonium sulphate (AS) addition was also analyzed (modified C:N=20), this compound favored higher levels of protein content. Strain CP-50 showed the highest increase of protein content (48% on particle size of 1.68 mm) when compared to media with no additional N source. However, strain IE-8 produced the highest levels of all enzymes: xylanases (5.79 IU/g dry wt on heterogeneous particles) and cellulases (0.18 IU/g dry wt on smallest particles), both without the addition of AS. The highest laccase activity (0.040 IU/g dry wt) was obtained on particles of 1.68 mm in the presence of AS. Since effect of particle size and addition AS was different for each strain, these criteria should be considered for diverse biotechnological applications.

  18. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response.

    Science.gov (United States)

    Guillemet, Elisabeth; Leréec, Alain; Tran, Seav-Ly; Royer, Corinne; Barbosa, Isabelle; Sansonetti, Philippe; Lereclus, Didier; Ramarao, Nalini

    2016-01-01

    Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO. PMID:27435260

  19. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2014-05-01

    Full Text Available The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i responsible minerals supply chains and (ii additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores future interlinked questions which arise in the circular economy for responsible supply chains, additive manufacturing, and metals recycling. For example, where do mined and recycled resources fit in responsible supply chains as inputs to responsible production? What is required to ensure 3D production systems are resource efficient? How could more distributed models of production, enabled by additive manufacturing, change the geographical scale at which it is economic or desirable to close the loop? Examples are given to highlight the need for an integrated research agenda to address these questions and to foster Australian opportunities in the circular economy.

  20. Response of bacterial community structure and function to experimental rainwater additions in a coastal eutrophic embayment

    Science.gov (United States)

    Teira, Eva; Hernando-Morales, Víctor; Martínez-García, Sandra; Figueiras, Francisco G.; Arbones, Belén; Álvarez-Salgado, Xosé Antón

    2013-03-01

    Although recognized as a potentially important source of both inorganic and organic nutrients, the impact of rainwater on microbial populations from marine planktonic systems has been poorly assessed. The effect of rainwater additions on bacterioplankton metabolism and community composition was evaluated in microcosm experiments enclosing natural marine plankton populations from the Ría de Vigo (NW Spain). The experiments were conducted during three different seasons (spring, autumn and winter) using rainwater collected at three different locations: marine, urban and rural sites. Bacterial abundance and production significantly increased up to 1.3 and 1.8-fold, respectively, after urban rainwater additions in spring, when ambient nutrient concentration was very low. Overall, the increments in bacterial production were higher than those in bacterial respiration, which implies that a higher proportion of carbon consumed by bacteria would be available to higher trophic levels. The response of the different bacterial groups to distinct rainwater types differed between seasons. The most responsive bacterial groups were Betaproteobacteria which significantly increased their abundance after urban (in spring and winter) and marine (in spring) rainwater additions, and Bacteroidetes which positively responded to all rainwater treatments in spring and to urban rainwater in autumn. Gammaproteobacteria and Roseobacter responded only to urban (in spring) and marine (in winter) rainwater treatment, respectively. The responses to rainwater additions were moderate and transient, and the resulting bacterial community structure was not importantly altered.

  1. Whole plant acclimation responses by finger millet to low nitrogen stress

    Directory of Open Access Journals (Sweden)

    Travis Luc Goron

    2015-08-01

    Full Text Available The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn, is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen, or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia that this crop can survive extreme environments.

  2. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    Science.gov (United States)

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. PMID:22728197

  3. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    Science.gov (United States)

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  4. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    Science.gov (United States)

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively. PMID:26508324

  5. The influence of deposit control additives on nitrogen oxides emissions from spark ignition engines (case study: Tehran).

    Science.gov (United States)

    Bidhendi, Gholamreza Nabi; Zand, Ali Daryabeigi; Tabrizi, Alireza Mikaeili; Pezeshk, Hamid; Baghvand, Akbar

    2007-04-15

    In the present research, the influence of a deposit control additive on NOx emissions from two types of gasoline engine vehicles i.e., Peykan (base on Hillman) and Pride (South Korea Kia motors) was studied. Exhaust NOx emissions were measured in to stages, before decarbonization process and after that. Statistical analysis was conducted on the measurement results. Results showed that NOx emissions from Peykans increased 0.28% and NOx emissions from Pride automobiles decreased 6.18% on average, due to the elimination of engine deposits. The observed variations were not statistically and practically significant. The results indicated that making use of detergent additives is not an effective way to reduce the exhaust NOx emissions from gasoline engine vehicles. PMID:19069943

  6. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  7. Effects of reduced dietary protein level and fat addition on heat production and nitrogen and energy balance in growing pigs

    OpenAIRE

    Noblet, J.; Le Bellego, L.; Van Milgen, J; Dubois, S.

    2001-01-01

    International audience Two trials were conducted in order to quantify the effects of reduction of dietary crude protein (CP) level, with or without fat addition, on heat production and energy balance in growing pigs. In trial 1, extreme variations in diet composition were obtained by using purified ingredients; conventional ingredients were used in trial 2. In each trial, three diets were prepared. Diet 1 had a conventional CP level (18.9 and 17.4% in trials 1 and 2, respectively) while di...

  8. TRANC – a novel fast-response converter to measure total reactive atmospheric nitrogen

    Directory of Open Access Journals (Sweden)

    O. Marx

    2011-12-01

    Full Text Available The input and loss of plant available nitrogen (N from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter, which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all

  9. Assessing factors influencing maize yield response to nitrogen using remote sensing technologies

    Science.gov (United States)

    Krienke, Brian Theodore

    Nitrogen (N) is a limiting nutrient in maize that is an environmental issue; the result of over or asynchronous application with respect to crop N uptake. Rates are largely determined by a yield goal, which fails to account for spatial and temporal variability in N supply and grain yield. Crop canopy sensors that monitor N status of maize have been validated as a way to increase nitrogen use efficiency (NUE), and maintain yield potential by applying N in-season. Such methods are not immune to the effects of temporal variability that occur beyond the time of application, such as intense rainfall events that are conducive to N loss. To identify potential factors that influence the temporal stability of hybrid respond to N, two different experiments carried out. In the first, blocks represented a range of soil organic matter (OM) and mean relative yield (MRY) values, and received split N application at different timings. Nitrogen, OM, MRY, and timing were evaluated across years for temporal stability and influence on yield. Results showed only MRY was temporally stable; although all factors influenced yield. Sidedress application beyond V14 lost yield. In the second experiment, temporal stability of hybrid response to N (RTN) was evaluated. Hybrids selected represented a broad range of RTN. Hybrid x N interaction was significant across site years, which indicated an inability to classify hybrids based on RTN. A final experiment compared crop canopy sensors from an unmanned aerial vehicle (UAV), to collect more frequent N status of maize, and established best management practices of how to utilize an active crop canopy sensor mounted to a UAV. Results showed that an active crop canopy sensor mounted on a UAV is a suitable platform to replace or augment current methods of acquiring N status of maize canopies. The collective result of experiments showed a lack in temporal stability that exists in terms of N management that is largely influence by local site and seasonal

  10. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    International Nuclear Information System (INIS)

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  11. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    OpenAIRE

    Damien Giurco; Anna Littleboy; Thomas Boyle; Julian Fyfe; Stuart White

    2014-01-01

    The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i) responsible minerals supply chains and (ii) additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores fu...

  12. Application of Response Surface Methodology for Optimization of Urea Grafted Multiwalled Carbon Nanotubes in Enhancing Nitrogen Use Efficiency and Nitrogen Uptake by Paddy Plants

    Directory of Open Access Journals (Sweden)

    Norazlina Mohamad Yatim

    2016-01-01

    Full Text Available Efficient use of urea fertilizer (UF as important nitrogen (N source in the world’s rice production has been a concern. Carbon-based materials developed to improve UF performance still represent a great challenge to be formulated for plant nutrition. Advanced N nanocarrier is developed based on functionalized multiwall carbon nanotubes (f-MWCNTs grafted with UF to produce urea-multiwall carbon nanotubes (UF-MWCNTs for enhancing the nitrogen uptake (NU and use efficiency (NUE. The grafted N can be absorbed and utilized by rice efficiently to overcome the N loss from soil-plant systems. The individual and interaction effect between the specified factors of f-MWCNTs amount (0.10–0.60 wt% and functionalization reflux time (12–24 hrs with the corresponding responses (NUE, NU were structured via the Response Surface Methodology (RSM based on five-level CCD. The UF-MWCNTs with optimized 0.5 wt% f-MWCNTs treated at 21 hrs reflux time achieve tremendous NUE up to 96% and NU at 1180 mg/pot. Significant model terms (p value < 0.05 for NUE and NU responses were confirmed by the ANOVA. Homogeneous dispersion of UF-MWCNTs was observed via FESEM and TEM. The chemical changes were monitored by FT-IR and Raman spectroscopy. Hence, this UF-MWCNTs’ approach provides a promising strategy in enhancing plant nutrition for rice.

  13. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies

    Science.gov (United States)

    Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, J.S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R.

    1998-01-01

    Most forests in North America remain nitrogen limited, although recent studies have identified forested areas that exhibit symptoms of N excess, analogous to overfertilization of arable land. Nitrogen excess in watersheds is detrimental because of disruptions in plant/soil nutrient relations, increased soil acidification and aluminum mobility, increased emissions of nitrogenous greenhouse gases from soil, reduced methane consumption in soil, decreased water quality, toxic effects on freshwater biota, and eutrophication of coastal marine waters. Elevated nitrate (NO3/-) loss to groundwater or surface waters is the primary symptom of N excess. Additional symptoms include increasing N concentrations and higher N:nutrient ratios in foliage (i.e., N:Mg, N:P), foliar accumulation of amino acids or NO3/-, and low soil C:N ratios. Recent nitrogen-fertilization studies in New England and Europe provide preliminary evidence that some forests receiving chronic N inputs may decline in productivity and experience greater mortality. Long-term fertilization at Mount Ascutney, Vermont, suggests that declining and slow N-cycling coniferous stands may be replaced by fast-growing and fast N-cycling deciduous forests. Symptoms of N saturation are particularly severe in high-elevation, nonaggrading spruce-fir ecosystems in the Appalachian Mountains and in eastern hardwood watersheds at the Fernow Experimental Forest near Parsons, West Virginia. In the Los Angeles Air Basin, mixed conifer forests and chaparral watersheds with high smog exposure are N saturated and exhibit the highest streamwater NO3/- concentrations for wildlands in North America. High-elevation alpine watersheds in the Colorado Front Range and a deciduous forest in Ontario, Canada, are N saturated, although N deposition is moderate (~8 kg??ha-1??yr-1). In contrast, the Harvard Forest hardwood stand in Massachusetts has absorbed >900 kg N/ha during 8 yr of N amendment studies without significant NO3/- leaching

  14. Response of Acala Cotton to Nitrogen Rates in the San Joaquin Valley of California

    Directory of Open Access Journals (Sweden)

    R.B. Hutmacher

    2001-01-01

    Full Text Available The responses of Acala cotton (Gossypium hirsutum L. in California to a range of applied nitrogen (N treatments were investigated in a 5-year, multisite experiment. The experiment’s goals were to identify crop growth and yield responses to applied N and provide information to better assess the utility of soil residual N estimates in improving fertilizer management. Baseline fertilizer application rates for the lowest applied N treatments were based on residual soil nitrate-N (NO3-N levels determined on soil samples from the upper 0.6 m of the soil collected prior to spring N fertilization and within 1 week postplanting each year. Results have shown positive cotton lint yield responses to increases in applied N across the 56 to 224 kg N/ha range in only 41% (16 out of 39 of test sites. Soil NO3-N monitoring to a depth of 2.4 m in the spring (after planting and fall (postharvest indicate most changes in soil NO3- occur within the upper 1.2 m of soil. However, some sites (those most prone to leaching losses of soluble nutrients also exhibited net increases in soil NO3-N in the 1.2- to 2.4-m depth zone when comparing planting time vs. postharvest data. The lack of yield responses and soil NO3-N accumulations at some sites indicate that more efforts should be put into identifying the amount of plant N requirements that can be met from residual soil N, rather than solely from fertilizer N applications.

  15. 氮添加对生长季寒温带针叶林土壤有效氮和酸化的影响%Effects of Nitrogen Addition on Available Nitrogen Content and Acidification in Cold-temperate Coniferous Forest Soil in the Growing Season

    Institute of Scientific and Technical Information of China (English)

    陈高起; 傅瓦利; 罗亚晨; 高文龙; 李胜功; 杨浩

    2014-01-01

    +4 -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH +4 -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO -3 -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO -3 -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO -3 -N. As time went on, the response of NH +4 -N and NO -3 -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0- 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  16. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes.

    Science.gov (United States)

    Barbour, Margaret M; Kaiser, Brent N

    2016-10-01

    Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions. PMID:27593470

  17. Species-specific Response of Photosynthesis to Burning and Nitrogen Fertilization

    Institute of Scientific and Technical Information of China (English)

    Yanfang Zhang; Shuli Niu; Wenhua Xu; Yi Han

    2008-01-01

    The present study was conducted to examine photosynthetic characteristics of three dominant grass species (Agropyron cristatum, Leymus chinensis, and Cleistogenes squarrosa) and their responses to burning and nitrogen fertilization in a semiarid grassland in northern China. Photosynthetic rate (Pn), stomatal conductance (gs), and water use efficiency (WUE) showed strong temporal variability over the growing season. C. squarrosa showed a significantly higher Pn and WUE than A. cristatum and L. chinensis. Burning stimulated Pn of A. cristatum and L. chinensis by 24-59% (P<0.05) in the early growing season, but not during other time periods. Light-saturated photosynthetic rate (φmax) in A. cristatum C. squarrosa. The burning-induced changes in soil moisture could explain 51% (P=0.01) of the burning-induced changes The stimulation of Pn under N fertilization was mainly observed in the early growing season when the soil extractable N content was significantly higher in the fertilized plots. The N fertilization-induced changes in soil extractable N content could explain 66% (P=0.001) of the changes in Pn, under N fertilization. The photosynthetic responses of the three species indicate that burning and N fertilization will potentially change the community structure and ecosystem productivity in the semiarid grasslands of northern China.

  18. Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    An, Zhenyi; Tassa, Amina; Thomas, Collin; Zhong, Rui; Xiao, Guanghua; Fotedar, Rati; Tu, Benjamin P; Klionsky, Daniel J; Levine, Beth

    2014-10-01

    In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G₁/G₀ in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G₂/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G₂/M transition and arrest in G₁/G 0₀ autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G₁/G₀ quiescent state.

  19. Herbage and animal production responses to fertilizer nitrogen in perennial ryegrass swards. II. rotational grazing and cutting

    NARCIS (Netherlands)

    Lantinga, E.A.; Deenen, P.J.A.G.; Keulen, van H.

    1999-01-01

    The yield response of grass swards to fertilizer nitrogen (N) differs under cutting and grazing, as grazing cattle exert positive and negative effects on pasture production, with varying negative effects on different soil types. Nevertheless, current N fertilization recommendations in the Netherland

  20. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.;

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...... activity. The large ELFA concentrations relative to soil organic carbon and the increases in ELFA response to organic carbon addition are both interpreted as evidence for the soil microbial community containing organisms with efficient scavenging mechanisms for carbon. The diversity of the ELFA profiles...

  1. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  2. Impact of high microwave power on hydrogen impurity trapping in nanocrystalline diamond films grown with simultaneous nitrogen and oxygen addition into methane/hydrogen plasma

    Science.gov (United States)

    Tang, C. J.; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2016-01-01

    In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

  3. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    Science.gov (United States)

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  4. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    Science.gov (United States)

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  5. Carbon And Nitrogen Storage Of A Mediterranean-Type Shrubland In Response To Post-Fire Succession And Long-Term Experimental Nitrogen Deposition

    Science.gov (United States)

    Vourlitis, G. L.; Hentz, C. S.

    2015-12-01

    Mediterranean-type shublands are subject to periodic fire and high levels of atmospheric nitrogen (N) deposition. Little is known how N inputs interact with post-fire secondary succession to affect ecosystem carbon (C) and N storage and cycling. Thus, a field experiment was conducted in a chaparral stand located in NE San Diego County, USA that burned during a wildfire in July 2003 to test the hypotheses that rates of C and N storage would significantly increase in response to experimental N addition. The experimental layout consists of a randomized design where four-10 x 10 m plots received 5 gN m-2 (added N) in the fall of each year since 2003 and four-10 x 10 m plots served as un-manipulated controls. Aboveground biomass C and N pools and fluxes, including biomass and litter C and N pool size, litter production, net primary production (NPP), N uptake, and litter C and N mineralization were measured seasonally (every 3 months) for a period of 10 years. Belowground surface (0-10 cm) soil extractable N, pH, and total soil N and C pools and surface root biomass C and N pools were also measured seasonally for a period of 10 years, while N losses from leaching were measured over a shorted (8 year) period of time. Added N led to a rapid increase in soil extractable N and a decline in soil pH; however, total soil C and N storage have yet to be affected by N input. Added N plots initially had significantly lower C and N storage than control plots; however, rates of aboveground N and C storage became significantly higher added N plots after 4-5 years of exposure. N losses from leaching continue to be significantly higher in added N plots even with an increase in aboveground C and N storage. The impact of N enrichment on ecosystem C and N storage varied depending on the stage of succession, but the eventual N-induced increase in NPP has implications for fuel buildup and future fire intensity. While N enrichment acted to increase aboveground C and N storage, plots exposed

  6. The plasma membrane H+ -ATPase AHA2 contributes to the root architecture in response to different nitrogen supply

    DEFF Research Database (Denmark)

    Młodzińska, Ewa; Kłobus, Grażyna; Christensen, Monica Daugbjerg;

    2015-01-01

    comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes...... of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter lower in aha2 mutant lines compared to wild-type plants in response to a variable nitrogen source. This suggests that the plasma membrane proton...

  7. Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen Eivind;

    2016-01-01

    Evapotranspiration (ET) and water use efficiency (WUE) are critical indexes in water flux cycles of croplands, being affected by climate change. However, field studies addressing influence of experimental warming on ET and WUE in semi-arid cropland are highly deficient. A two-factor experiment......, including soil temperature [ambient (C) and increased average 1.5 °C (T) at 5 cm soil depth] and nitrogen fertilizer (N) [without (N0) and with 315 kg N ha−1 input (N1)], was conducted from 2010 to 2014 in North China Plain to measure ET and WUE of wheat-soybean/fallow rotation. In the N1 treatment, warming...... with increasing soil temperature is likely due to the increased vapour pressure deficit (VPD). The study highlights the interactions between climate warming and N addition on hydrological cycles during wheat growth, contributing the understanding of how fertilized semi-arid cropland respond to climate change....

  8. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    Science.gov (United States)

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced.

  9. Response of yield and quality of cauliflower varieties (Brassica oleracea var. botrytis) to nitrogen supply

    NARCIS (Netherlands)

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    1999-01-01

    The fertilizer nitrogen (N) inputs to some vegetables such as cauliflower (Brassica oleracea var. botrytis) can be large. One approach to decreasing the input of N may be to select for cultivars efficient in the use of nitrogen. The objective of this investigation was to identify a cultivar which wa

  10. Carbon dioxide test as an additional clinical measure of treatment response in panic disorder

    OpenAIRE

    Valença Alexandre M; Nardi Antonio Egidio; Nascimento Isabella; Zin Walter A.; Versiani Márcio

    2002-01-01

    OBJECTIVE: We aim to determine if a treatment with a dose of clonazepam - 2 mg/day, for 6 weeks, blocks spontaneous panic attacks and the ones induced by the inhalation of 35% carbon dioxide (CO2) in panic disorder (PD) patients. The CO2 challenge-test may be a useful addition tool for measuring the pharmacological response during the initial phase (6 weeks) in the treatment of PD. METHOD: Eighteen PD patients drug free for a week participated in a carbon dioxide challenge test. Fourteen had ...

  11. Growth responses of plants to various concentrations of nitrogen dioxide. [Helianthus annuus L. ; Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Okano, K.; Totsuka, T.; Fukuzawa, T.; Tazaki, T.

    1985-01-01

    Sunflower Helianthus annuus L. and maize Zea mays L. plants in the vegetative phase were exposed to nitrogen dioxide (NO2) at 0.0 (control), 0.2, 0.5 and 1.0 ppm ( l liter ) for 2 weeks. The growth responses of the plants to NO2 were examined by the techniques of growth analysis. The sunflower plant was more susceptible to NO2 than the maize plant. Exposure to NO2 at 0.2 ppm slightly stimulated the growth of the sunflower plants. The net assimilation rate (NAR) was also significantly increased when the plants were exposed to 0.2 ppm NO2. Exposures to NO2 at 0.5 or more significantly reduced the dry weight of the sunflower plant. Of the component parts, the roots and stems were severely affected, while the leaves were less affected. This resulted in an elevated shoot/root ratio. The net assimilation rate of both species was reduced by the exposures to NO2 at 0.5 ppm or more, while, in contrast, the leaf area ratio (LAR) was increased. The relative growth rate (RGR), the product of the NAR and the LAR, was therefore less affected by NO2. The increase in the LAR was overwhelmingly the result of an increase in the leaf weight ratio (LWR). These results imply that a reduction in photosynthetic efficiency induced by NO2 could be, in part, compensated for by an increase in assimilatory area, suggesting an adaptive growth response of the plants to air pollutant stresses.

  12. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Energy Technology Data Exchange (ETDEWEB)

    Inconomou, D.; Arapoglou, D.; Israilides, C.

    2010-07-01

    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and {beta}-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N{sub 2} flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall organoleptic quality, but also increased the olive oil yield. (Author) 33 refs.

  13. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental...... in nitrate assimilation. This was the case as the gln2 mutant biomass was highly reduced with an increased supply of nitrate in solo. Nitrate assimilation was impaired in the mutant in parallel with reduced NR activity and activation state (%), leading to reduced glutamine content while glycine accumulated...

  14. Different Growth Responses of an Invasive Weed and a Native Crop to Nitrogen Pulse and Competition.

    Science.gov (United States)

    Lu, Ping; Li, Jingxin; Jin, Chenggong; Jiang, Baiwen; Bai, Yamei

    2016-01-01

    Resource pulses are a common event in agro-ecosystems. A pot experiment was conducted to assess the effects of nitrogen (N) pulses and competition on the growth of an invasive weed, Amaranthus retroflexus, and a native crop, Glycine max. A. retroflexus and G. max were planted in pure culture with two individuals of one species in each pot and in mixed culture with one A. retroflexus and one G. max individual and subjected to three N pulse treatments. The N treatments included a no-peak treatment (NP) with N applied stably across the growing period, a single-peak treatment (SP) with only one N addition on the planting date, and a double-peak treatment (DP) with two N additions, one on the planting date and the other on the flowering date. N pulse significantly impacted biomass and height of the two species across the whole growing season. However, only the relative growth rate (RGR) of A. retroflexus was significantly affected by N pulse. A. retroflexus had the greatest biomass and height in the SP treatment at the first harvest, and in the DP treatment at the last three harvests. Pure culture G. max produced the greatest biomass in the DP treatment. In mixed culture, G. max produced the greatest biomass in the NP treatment. Biomass production of both species was significantly influenced by species combination, with higher biomass in mixed culture than in pure culture at most growth stages. Relative yield total (RYT) values were all greater than 1.0 at the last three harvests across the three N treatments, suggesting partial resource complementarity occurred when A. retroflexus is grown with G. max. These results indicate that A. retroflexus has a strong adaptive capacity to reduce interspecific competition, likely leading to its invasion of G. max cropland in China. PMID:27280410

  15. Dynamic compressive response of wrought and additive manufactured 304L stainless steels

    Directory of Open Access Journals (Sweden)

    Nishida Erik

    2015-01-01

    Full Text Available Additive manufacturing (AM technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids, grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

  16. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    Directory of Open Access Journals (Sweden)

    Humbert Sabrina

    2013-01-01

    Full Text Available Abstract Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings.

  17. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L.).

    Science.gov (United States)

    Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua

    2015-01-01

    Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1) NN: normal nitrogen level (165 kg ha-1) with normal temperature (30°C); 2) HH: high nitrogen level (264 kg ha-1) with high temperature (37°C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs) in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH) and 135 DEGs in high nitrogen levels (HN vs HH), with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN) and higher temperature (NH vs HH), with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth, pollen

  18. Using RNA-seq to Profile Gene Expression of Spikelet Development in Response to Temperature and Nitrogen during Meiosis in Rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available Rice reproductive development is sensitive to high temperature and soil nitrogen supply, both of which are predicted to be increased threats to rice crop yield. Rice spikelet development is a critical process that determines yield, yet little is known about the transcriptional regulation of rice spikelet development in response to the combination of heat stress and low nitrogen availability. Here, we profiled gene expression of rice spikelet development during meiosis under heat stress and different nitrogen levels using RNA-seq. We subjected plants to four treatments: 1 NN: normal nitrogen level (165 kg ha-1 with normal temperature (30°C; 2 HH: high nitrogen level (264 kg ha-1 with high temperature (37°C; 3 NH: normal nitrogen level and high temperature; and 4 HN: high nitrogen level and normal temperature. The de novo transcriptome assembly resulted in 52,250,482 clean reads aligned with 76,103 unigenes, which were then used to compare differentially expressed genes (DEGs in the different treatments. Comparing gene expression in samples with the same nitrogen levels but different temperatures, we identified 70 temperature-responsive DEGs in normal nitrogen levels (NN vs NH and 135 DEGs in high nitrogen levels (HN vs HH, with 27 overlapping DEGs. We identified 17 and seven nitrogen-responsive DEGs by comparing changes in nitrogen levels in lower temperature (NN vs HN and higher temperature (NH vs HH, with one common DEG. The temperature-responsive genes were principally associated with cytochrome, heat shock protein, peroxidase, and ubiquitin, while the nitrogen-responsive genes were mainly involved in glutamine synthetase, amino acid transporter, pollen development, and plant hormone. Rice spikelet fertility was significantly reduced under high temperature, but less reduced under high-nitrogen treatment. In the high temperature treatments, we observed downregulation of genes involved in spikelet development, such as pollen tube growth

  19. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions

    Directory of Open Access Journals (Sweden)

    Alysia eCox

    2013-12-01

    Full Text Available Synechococcus sp. WH 8102 is a motile marine cyanobacterium isolated originally from the Sargasso Sea. To test the response of this organism to cadmium (Cd -generally considered a toxin- cultures were grown in a matrix of high and low zinc (Zn and phosphate (PO43- and were then exposed to an addition of 4.4 pM free Cd2+ at mid-log phase and harvested after 24 h. Whereas Zn and PO43- had little effect on overall growth rates, in the final 24 h of the experiment three growth effects were noticed: i low PO43- treatments showed increased growth rates relative to high PO43- treatments, ii the Zn/high PO43- treatment appeared to enter stationary phase, and iii Cd increased growth rates further in both the low PO43- and Zn treatments. Global proteomic analysis revealed that: i Zn appeared to be critical to the PO43- response in this organism, ii bacterial metallothionein (SmtA appears correlated with PO43- stress-associated proteins, iii Cd has the greatest influence on the proteome at low PO43- and Zn, iv Zn buffered the effects of Cd, and v in the presence of both replete PO43- and added Cd the proteome showed little response to the presence of Zn. Similar trends in alkaline phosphate (ALP and SmtA suggest the possibility of a Zn supply system to provide Zn to ALP that involves SmtA. In addition, proteome results were consistent with a previous transcriptome study of PO43- stress (with replete Zn in this organism, including the greater relative abundance of ALP (PhoA, ABC phosphate binding protein (PstS and other proteins. Yet with no Zn in this proteome experiment the PO43- response was quite different including the greater relative abundance of five hypothetical proteins with no increase in PhoA or PstS, suggesting that Zn nutritional levels are connected to the PO43- response in this cyanobacterium. Alternate ALP PhoX (Ca was found to be a low abundance protein, suggesting that PhoA (Zn, Mg may be more environmentally relevant than PhoX.

  20. Response of Popcorn (Zea mays everta) to Nitrogen Rates and Plant Densities

    OpenAIRE

    GÖKMEN, Sabri; SENCAR, Özer; SAKİN, Mehmet Ali

    2001-01-01

    The objective of this study was to evaluate grain yield and yield components of popcorn with different nitrogen rates and plant densities. Field studies were conducted in 1995 and 1996 at Kazova Plain in Tokat. The experiment was designed in a randomized-complete-block design with a split-plot arrangement with three replications. The treatments comprised six levels of nitrogen (0, 50, 100, 150, 200 and 250 kg N /ha) and four plant densities (5.7, 7.0, 9.5 and 14.0 plants /m2). Nitrogen rat...

  1. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  2. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility.

  3. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  4. Non-additive response of larval ringed salamanders to intraspecific density.

    Science.gov (United States)

    Ousterhout, Brittany H; Semlitsch, Raymond D

    2016-04-01

    Conditions experienced in early developmental stages can have long-term consequences for individual fitness. High intraspecific density during the natal period can affect juvenile and eventually adult growth rates, metabolism, immune function, survival, and fecundity. Despite the important ecological and evolutionary effects of early developmental density, the form of the relationship between natal density and resulting juvenile phenotype is poorly understood. To test competing hypotheses explaining responses to intraspecific density, we experimentally manipulated the initial larval density of ringed salamanders (Ambystoma annulatum), a pond-breeding amphibian, over 11 densities. We modeled the functional form of the relationship between natal density and juvenile traits, and compared the relative support for the various hypotheses based on their goodness of fit. These functional form models were then used to parameterize a simple simulation model of population growth. Our data support non-additive density dependence and presents an alternate hypothesis to additive density dependence, self-thinning and Allee effects in larval amphibians. We posit that ringed salamander larvae may be under selective pressure for tolerance to high density and increased efficiency in resource utilization. Additionally, we demonstrate that models of population dynamics are sensitive to assumptions of the functional form of density dependence. PMID:26683834

  5. Responses of Nitrogen Uptake and Yield of Winter Wheat to Nonuniformity of Sprinkler Fertigation

    Institute of Scientific and Technical Information of China (English)

    LI Jiu-sheng; LI Bei; SU Mei-shuang; RAO Min-jie

    2005-01-01

    Field experiments were conducted to investigate the effects of nonuniformity of sprinkler fertigation and the amount of fertilizers applied through fertigation on nitrogen uptake and crop yield during two growing seasons of winter wheat in 2002-2003 and 2003-2004 at an experimental station in Beijing. In the experiments, the seasonal averaged Christiansen irrigation uniformity coefficient (CU) varied from 72% to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system with a seasonal averaged CU for fertigation varied from 71% to 85%. Three levels of fertilizer applied varying from 0 to 180 kg N ha-1 were used in the experiments. The experimental results demonstrated that sprinkler fertigation uniformity had insignificant effects on nitrogen uptake and crop yield for the uniformity range tested. Also, the influence of fertilizer applied through sprinkler fertigation on crop yield was minor, while the total nitrogen content for stem and nitrogen uptake increased with increasing fertilizer applied.

  6. Effects of Ce additions on the age hardening response of Mg–Zn alloys

    International Nuclear Information System (INIS)

    The effects of Ce additions on the precipitation hardening behaviour of Mg–Zn are examined for a series of alloys, with Ce additions at both alloying and microalloying levels. The alloys are artificially aged, and studied using hardness measurement and X-ray diffraction, as well as optical and transmission electron microscopy. It is found that the age-hardening effect is driven by the formation of fine precipitates, the number density of which is related to the Zn content of the alloy. Conversely, the Ce content is found to slightly reduce hardening. When the alloy content of Ce is high, large secondary phase particles containing both Ce and Zn are present, and remain stable during solutionizing. These particles effectively reduce the amount of Zn available as solute for precipitation, and thereby reduce hardening. Combining hardness results with thermodynamic analysis of alloy solute levels also suggests that Ce can have a negative effect on hardening when present as solutes at the onset of ageing. This effect is confirmed by designing a pre-ageing heat treatment to preferentially remove Ce solutes, which is found to restore the hardening capability of an Mg–Zn–Ce alloy to the level of the Ce-free alloy. - Highlights: • The effects of Ce additions on precipitation in Mg–Zn alloys are examined. • Additions of Ce to Mg–Zn slightly reduce the age-hardening response. • Ce-rich secondary phase particles deplete the matrix of Zn solute. • Hardening is also decreased when Ce is present in solution. • Pre-ageing to preferentially precipitate out Ce restores hardening capabilities

  7. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop

    OpenAIRE

    Bhuvaneshwari, K.; Singh, Pawan Kumar

    2014-01-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influen...

  8. Responses of Nitrogen and related enzyme Activities to Fertilization in Rhizosphere of Wheat

    Institute of Scientific and Technical Information of China (English)

    YUANLING; YUSHANGQI; 等

    1997-01-01

    In the present experiment,wheat seedlings(Trticucum aestivum L.)were grown on a purple soil with various fertilizer treatments in order to investigate the responses of nitrogen and related enzyme activities in the rhizosphere,The results revealed the increments of both organic matter and total N in the soil with the proximity to the growing roots,especially in treatment of supplying pig manure in combination with chemical fertilizer,suggesting that they could ome from root and microorganism exudation which could be intensified by inorganic-organic fertiliztion,being of benefit to improving the physical and bilogical envi-ronment in the rhizosphere of wheat.Much more inorganic N was observed in the fertilized soils surrounding wheat roots than in the CK treatment ,indicating ,the improvement of crop N supply in the rhizosphere of wheat by fertilization. The activities of invertase,urease and protease in the root zone were greatly enhanced as compared to those in the other parts of soil except that the urease activities were similar in the rhizospher and nonrhi-zosphere of the CK and pig manure treatments,indicating that invertase and protese could be produced by growing roots and rhizosphere microorganisms,in contrast to urease which could be stimulated by urea,Also,significant increment of chemical fertilizer combined with pig manure,suggested that fertilization not only accelerated the renewal of organic matter bu also enhanced bioavailability of organic N in that soil zone .This could be the reason why the total amount of inorganic N available for plants was increased more obviously in the rhizosphere of wheat of the fertilizaton treatments than in taht of the CK treatment.

  9. Tillering of Tifton 85 bermudagrass in response to nitrogen rates and time of application after cutting

    Directory of Open Access Journals (Sweden)

    Premazzi Linda Monica

    2003-01-01

    Full Text Available Nitrogen fertilization is determinant for pasture productivity, as it results in increasing forage yield and is associated with the growth physiology of forage plants. An experiment was carried out in a greenhouse to evaluate the effects of nitrogen rates and times of application after cutting on Tifton 85 Bermuda grass (Cynodon spp. tillering. Plants were grown in a Typic Quartzipsamment soil and nitrogen rates were 0, 80, 160 and 240 mg kg-1 of soil; times of application were immediately after and seven days after cutting. A 4 x 2 factorial experiment was set in a completely randomized block design (n= 4. Plants were evaluated in two sequential growth periods - 39 and 41 days. Nitrogen rates affected tiller density, considering the initial number of tillers in the second growth and the emerged and final number of tillers at the end of the growth periods. Tiller weight increased up to the nitrogen rate of 201 and 185 mg kg-1 of soil in the first and second growth periods, and the correlation coefficients between the final number of tillers and dry matter yields in the top part of the plant for these periods were 0.92 and 0.94, respectively. The rate of tiller development, evaluated in each of the seven-day periods, was affected by nitrogen rates and time of application. There was an effect of rates and time of application in the first and a significant interaction between rates and time in the second growth period.

  10. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Science.gov (United States)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  11. Rapid and dissimilar response of ammonia oxidising archaea and bacteria to nitrogen and water amendment in two temperate forest soils

    OpenAIRE

    Szukics, Ute; Hackl, Evelyn; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela

    2011-01-01

    Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental ...

  12. Herbage and animal production responses to fertilizer nitrogen in perennial ryegrass swards. II. rotational grazing and cutting

    OpenAIRE

    Lantinga, E.A.; Deenen, P.J.A.G.; Keulen, van, S.

    1999-01-01

    The yield response of grass swards to fertilizer nitrogen (N) differs under cutting and grazing, as grazing cattle exert positive and negative effects on pasture production, with varying negative effects on different soil types. Nevertheless, current N fertilization recommendations in the Netherlands are based mainly on economic cost-benefit analyses of long-term cutting trials in small plots. To contribute to formulation of improved N fertilizer recommendations for grassland, experiments wer...

  13. PAT-1 safety analysis report addendum author responses to request for additional information.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

  14. Identification of tiller age categories based on morphogenetic responses of continuously stocked marandu palisade grass fertilised with nitrogen

    Directory of Open Access Journals (Sweden)

    Adenilson José Paiva

    2015-05-01

    Full Text Available Nitrogen fertilization augments tiller appearance and death, modifying the age profile of tiller population. Tillers from different age categories present distinct responses to environmental factors and management practices characterized by variation in their morphogenetic responses, which interfere in the dynamics of the herbage accumulation process. In that context, rates of leaf appearance and elongation and leaf lifespan were used as indicators to identify tiller age categories of continuously stocked marandu palisade grass managed at 30cm and subjected to nitrogen fertilization regimes using cluster analysis. Analysis was based on the average distance method using combined means of the response-variables studied, and the results used to build a dendogram to illustrate the arrangement of the resulting clusters. Three clusters were identified corresponding to the tiller age categories denominated young (tillers with age between 0 and 60 days, mature (between 60 and 120 days and old (over 120 days. Discrimination of the tiller age categories according to nitrogen fertilization regime followed the same pattern of clustering. The fact demonstrates consistency and indicates the three age categories as reference for detailed studies regarding the ecophysiology of marandu palisade grass.

  15. Seasonal changes of phytoplankton production in response to high nitrogen load in the Bay of Seine

    Science.gov (United States)

    L Helguen, S.; Maguer, J.-F.; Madec, C.

    2003-04-01

    Seasonal changes of uptake of nitrogenous nutrients and regeneration were investigated in nitrogen rich waters of the Bay of Seine. Uptake of nitrogen nutrients (NO_3-, NH_4^+ and urea), and NH_4^+ regeneration, were measured using the 15N isotope technique in three different water masses along a salinity gradient (salinity: 27-29, 31-32 and 34-35). The Seine river add very high quantities of inorganic nitrogen to the coastal waters mainly in the form of nitrate (up to 120 μmol l-1). In the plume, the nitrate concentration remained high (> 10 μmol l-1) during all the seasons. In these nitrate enrich waters, phytoplankton attained high biomass (20-25 μg chla l-1). Species succession was marked by blooms formation from the beginning of spring until the end of summer. The high biomass was represented by microplankton generally dominated by diatom species during all the seasons. However, nano- and picoplankton biomass increased significantly during the summer and represented up to 50% of the total biomass of phytoplankton. Nitrogen uptake rates were higher in the Seine Bay plume (0.5 μmol l-1 h-1) than the other coastal waters. Although, the N uptake was high, it was limited by light, which was due to the high turbidity and strong vertical mixing in these plume waters. The seasonal variations in nitrogen uptake demonstrated that during spring, up to 80% of nitrogen was utilized by microplancton whereas in summer, all the fractions utilized nitrogen significantly. In spring, nitrate was the major nitrogen nutrient taken up (˜ 80% of total nitrogen uptake). During other seasons, ammonium and urea were the highly utilized nitrogen compounds (up to 95% of total nitrogen uptake). Ammonium regeneration by microhétérotrophs increased significantly in the plume waters during the spring bloom and remained high (> 0.1 μmol l-1 h-1) until the end of summer. The high and prolonged use of NH_4^+ was due to high autochthonous production, fulfil 40 to 100% of NH_4^+ demand of

  16. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates

    Institute of Scientific and Technical Information of China (English)

    Nazim HUSSAIN; Hui LI; Yu-xiao JIANG; Zahra JABEEN; Imran Haider SHAMSI; Essa ALI; Li-xi JIANG

    2014-01-01

    本文题目:氮肥种类与施量对油菜种子生育酚的影响Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates研究目的:生育酚是菜籽重要的品质指标,氮肥是影响作物生物学与籽粒产量最常用的肥料。这项研究旨在搞清楚氮肥种类与施量对油菜种子生育酚含量与组分的确切影响,以及这种影响在基因型之间的差异。创新要点:这篇论文研究了不同的氮肥种类(硝态氮与铵态氮)与低、中、高施用量对种子生育酚总量与组分的影响,并分析了其中的原因,为通过合理的氮肥施用方案配置,以达到最理想的菜籽生育酚含量或组分提供依据。研究方法:采用盆钵实验控制氮肥施量与流失的精准方法,五种基因型、二种氮肥种类、三档施量水平,三重复控制误差;尝试用气相色谱法检测菜籽生育酚含量的新方法。重要结论:尿素比硝酸氨更有利于菜籽总生育酚、阿尔法生育酚及伽马生育酚的有效形成;提高氮肥施量对于菜籽形成高含量的总生育酚与伽马生育酚非常有效,但对提高菜籽阿尔法生育酚含量的效果却不太明显。%Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important see d oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increasedα-,γ-, and total

  17. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China.

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-01-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3(-)-N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau. PMID:27334692

  18. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    Science.gov (United States)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  19. Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots.

    Science.gov (United States)

    Yang, Yu; Wang, Jing; Zhu, Huiguang; Colvin, Vicki L; Alvarez, Pedro J

    2012-03-20

    Little is known about the potential impacts of accidental or incidental releases of manufactured nanomaterials to microbial ecosystem services (e.g., nutrient cycling). Here, quantum dots (QDs) coated with cationic polyethylenimine (PEI) were more toxic to pure cultures of nitrogen-cycling bacteria than QDs coated with anionic polymaleic anhydride-alt-1-octadecene (PMAO). Nitrifying bacteria (i.e., Nitrosomonas europaea) were much more susceptible than nitrogen fixing (i.e., Azotobacter vinelandii, Rhizobium etli, and Azospirillum lipoferum) and denitrifying bacteria (i.e., Pseudomonas stutzeri). Antibacterial activity was mainly exerted by the QDs rather than by their organic coating or their released QD components (e.g., Cd and Zn), which under the near-neutral pH tested (to minimize QD weathering) were released into the bacterial growth media at lower levels than their minimum inhibitory concentrations. Sublethal exposure to QDs stimulated the expression of genes associated with nitrogen cycling. QD-PEI (10 nM) induced three types of nitrogenase genes (nif, anf, and vnf) in A. vinelandii, and one ammonia monooxygenase gene (amoA) in N. europaea was up-regulated upon exposure to 1 nM QD-PEI. We previously reported up-regulation of denitrification genes in P. stutzeri exposed to low concentrations of QD-PEI. (1) Whether this surprising stimulation of nitrogen cycling activities reflects the need to generate more energy to overcome toxicity (in the case of nitrification or denitrification) or to synthesize organic nitrogen to repair or replace damaged proteins (in the case of nitrogen fixation) remains to be determined. PMID:22360857

  20. Nitrate Starvation Induced Changes in Root System Architecture, Carbon:Nitrogen Metabolism, and miRNA Expression in Nitrogen-Responsive Wheat Genotypes.

    Science.gov (United States)

    Sinha, Subodh Kumar; Rani, Manju; Bansal, Niketa; Gayatri; Venkatesh, K; Mandal, P K

    2015-11-01

    Improvement of nutrient use efficiency in cereal crops is highly essential not only to reduce the cost of cultivation but also to save the environmental pollution, reduce energy consumption for production of these chemical fertilizers, improve soil health, and ultimately help in mitigating climate change. In the present investigation, we have studied the morphological (with special emphasis on root system architecture) and biochemical responses (in terms of assay of the key enzymes involved in N assimilation) of two N-responsive wheat genotypes, at the seedling stage, under nitrate-optimum and nitrate-starved conditions grown in hydroponics. Expression profile of a few known wheat micro RNAs (miRNAs) was also studied in the root tissue. Total root size, primary root length, and first- and second-order lateral root numbers responded significantly under nitrate-starved condition. Morphological parameters in terms of root and shoot length and fresh and dry weight of roots and shoots have also been observed to be significant between N-optimum and N-starved condition for each genotypes. Nitrate reductase (NR), glutamine synthatase (GS), and glutamate dehydrogenase (GDH) activity significantly decreased under N-starved condition. Glutamine oxoglutarate amino transferase (GOGAT) and pyruvate kinase (PK) activity was found to be genotype dependent. Most of the selected miRNAs were expressed in root tissues, and some of them showed their differential N-responsive expression. Our studies indicate that one of the N-responsive genotype (NP-890) did not get affected significantly under nitrogen starvation at seedling stage. PMID:26315134

  1. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    Science.gov (United States)

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  2. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  3. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction.

    Directory of Open Access Journals (Sweden)

    Takeshi Matsui

    2016-07-01

    Full Text Available How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C ('E37', a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose and temperature (37°C as opposed to 30°C. Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose and temperature (30 or 37°C in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur.

  4. Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction

    Science.gov (United States)

    Matsui, Takeshi; Ehrenreich, Ian M.

    2016-01-01

    How combinations of gene-environment interactions collectively give rise to genotype-environment interactions is not fully understood. To shed light on this problem, we genetically dissected an environment-specific poor growth phenotype in a cross of two budding yeast strains. This phenotype is detectable when certain segregants are grown on ethanol at 37°C (‘E37’), a condition that differs from the standard culturing environment in both its carbon source (ethanol as opposed to glucose) and temperature (37°C as opposed to 30°C). Using recurrent backcrossing with phenotypic selection, we identified 16 contributing loci. To examine how these loci interact with each other and the environment, we focused on a subset of four loci that together can lead to poor growth in E37. We measured the growth of all 16 haploid combinations of alleles at these loci in all four possible combinations of carbon source (ethanol or glucose) and temperature (30 or 37°C) in a nearly isogenic population. This revealed that the four loci act in an almost entirely additive manner in E37. However, we also found that these loci have weaker effects when only carbon source or temperature is altered, suggesting that their effect magnitudes depend on the severity of environmental perturbation. Consistent with such a possibility, cloning of three causal genes identified factors that have unrelated functions in stress response. Thus, our results indicate that polymorphisms in stress response can show effects that are intensified by environmental stress, thereby resulting in major genotype-environment interactions when multiple of these variants co-occur. PMID:27437938

  5. Agronomic performance and chemical response of sunflower ( Helianthus annuus L.) to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Helmy, A. M.; Fawzy Ramadan, M. F.

    2009-07-01

    Sunflower ( Helianthus annuus L.) is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt) during the 2005 season. The objective of this research was to determine the effect of organic nitrogen (ON) sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS) as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macro nutrients by sunflowers grown on sandy soil.The treatments of chicken manure (CM) and a mixture of farmyard manure (FYM) with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR)> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N), phosphorus (P) and potassium (K) by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control. (Author) 58 refs.

  6. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    Science.gov (United States)

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  7. Response of plant community composition and productivity to warming and nitrogen deposition in a temperate meadow ecosystem

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2014-05-01

    Full Text Available Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and net primary productivity are not well understood. A field experiment was conducted to examine the effects of warming, nitrogen (N addition, and their interactions on plant community composition and productivity in a temperate meadow ecosystem in northeast China. Experimental warming significantly increased species richness, evenness and diversity, by contrast, N addition highly reduced species richness, evenness and diversity. Warming reduced the importance value of gramineous species but increased in forbs, N addition had the opposite effect. Warming had a significant positive effect on belowground productivity, but had a negative effect on aboveground biomass. The influences of warming on aboveground productivity were dependent on precipitation. Experimental warming had little effect on aboveground productivity in the years with higher precipitation, but significantly suppressed the growth of aboveground in dry years. Our results suggest that warming had indirect effects on plant productivity via altering water availability. Nitrogen addition significantly increased above- and belowground productivity, suggesting that N is one of the most important limiting factors which determine plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground productivity were also detected. Our observations revealed that climate changes (warming and N deposition plays significant roles in regulating plant community composition and productivity in temperate meadow steppe.

  8. Sugarcane Genotype Response to Nitrogen on a Sand Soil in Florida

    Science.gov (United States)

    Technical Abstract: Approximately 20% of sugarcane (Saccharum spp.) grows on sand soils in Florida. Nitrogen deficiency may limit sugarcane yields on these sand soils. The objective of this study was to determine the effects of N fertilizer rate on growth and physiological characteristics of three ...

  9. Soil organic carbon and total nitrogen responses after 34 years of tillage of a sandy ultisol

    Science.gov (United States)

    Conservation tillage and crop management strategies are available to increase soil organic carbon (SOC) and total nitrogen (TN) contents, but long-term (> 30 yrs) field results quantifying these increases are sparse. Our objectives were to quantity above ground biomass inputs and changes in vertica...

  10. Seedling geranium response to nitrogen deprivation and subsequent recovery in hydroponic culture

    Science.gov (United States)

    Nitrogen (N) fertilization recommendations to achieve optimum growth are well established for most floricultural crops. While it has been shown that plant functions can recover from N-deficiency in other crops, little research has investigated the threshold beyond which a bedding plant crop is reco...

  11. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were filter

  12. Nitrogen balance in response to dryland crop rotations and cultural practices

    Science.gov (United States)

    Nitrogen balance provides a measure of agroecosystem performance and environmental sustainability by taking into accounts of N inputs and outputs and N retention in the soil. The objective of this study was to evaluate N balance based on N inputs and outputs and soil N sequestration after 7 yr in re...

  13. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla;

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  14. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria;

    2015-01-01

    is within the range of concentrations that have been observed in a typical Central European shallow, eutrophic lake. 3. All studied species grew in all treatments, but their biomass gains decreased with increasing complexity of the N source. Urea addition caused the strongest biomass increase, only in some...... concentrations. The importance of complex DON compounds for growth of common phytoplankton species is still unknown. 2. This study compared changes in chlorophyll a concentrations of freshwater phytoplankton with different DON compounds of varying complexity (urea, dissolved free (DFAA) and combined amino acids...... cases matched by nitrate. 4. Urea was also utilised over a longer time period than any other compound, including nitrate. The assumed delay in availability with increasing compound complexity was not supported by this experiment. 5. The studied species differed in their temporal response...

  15. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    OpenAIRE

    Madjelia Cangre Ebou eDAO; Sergio eRossi; Denis eWalsh; Hubert eMorin; Daniel eHoule

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Quebec, Canada. During 2008-2013, the soil...

  16. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce

    OpenAIRE

    Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the ...

  17. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Ning Zong

    2013-01-01

    Full Text Available Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco; nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.

  18. Responses of ecosystem CO 2 fluxes to short-term experimental warming and nitrogen enrichment in an Alpine meadow, northern Tibet Plateau.

    Science.gov (United States)

    Zong, Ning; Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  19. Reciprocal Leaf and Root Expression of AtAmt1.1 and Root Architectural Changes in Response to Nitrogen Starvation1[W

    Science.gov (United States)

    Engineer, Cawas B.; Kranz, Robert G.

    2007-01-01

    Nitrogen is an essential macronutrient for plant growth and survival. Here, the temporal and spatial sensing of nitrogen starvation is analyzed in Arabidopsis (Arabidopsis thaliana). The promoter for the high-affinity ammonium transporter, AtAmt1.1, is shown to be a valid indicator for nitrogen status in leaves and roots. An AtAmt1.1-Gal4 transgene using three 5× upstream activating sequence-driven reporters (luciferase, green fluorescent protein, and β-glucuronidase) facilitated in vivo profiling at the whole-plant and cellular levels. The effects of nitrogen supply, light duration, light intensity, and carbon on the expression of the AtAmt1.1 gene in the roots and aerial tissues are reported. Under nitrogen starvation, high expression is observed in the roots and, under nitrogen-sufficient conditions, high expression is observed in the leaves. This reciprocal regulation of AtAmt1.1 was confirmed by quantitative reverse transcription-polymerase chain reaction, which was also used to quantitate expression of the five other Amt genes in Arabidopsis. Although some of these show tissue specificity (roots or leaves), none exhibit reciprocal regulation like the AtAmt1.1-encoded high-affinity transporter. This robust reciprocal expression suggests that Arabidopsis undergoes rapid resource reallocation in plants grown under different nitrogen supply regimens. Ultimately, nitrogen starvation-mediated reallocation results in root architectural restructuring. We describe the precise timing and cellular aspects of this nitrogen limitation response. PMID:17085512

  20. Ammonia Volatilization and Nitrogen Utilization Efficiency in Response to Urea Application in Rice Fields of the Taihu Lake Region, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.

  1. Mechanisms of nitrogen re-distribution in response to enzyme activities and the effects on nitrogen use efficiency in brassica napus during later growth stages

    International Nuclear Information System (INIS)

    In order to investigate the mechanisms of nitrogen (N) re-distribution in response to proteolytic enzyme (PE), glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities and the effects on N use efficiency (NUE). Two oilseed rape genotypes were grown in sand culture in a greenhouse under normal (15.0 mmol L-1 NO/sub 3/) and limited-N (7.5 mmol L-1 NO/sub 3/) levels. Isotope (15N) labeling and enzyme inhibitors against the PE, GS and GOGAT enzymes were used. We found that, when the two genotypes were subjected to specific inhibitors of PE, GS, and GOGAT, the activities of these enzymes were significantly decreased, resulting in reduced N re-distributed from leaf to grain, as well as reduced NUE. L-glutamine and free amino acid contents in the phloem sap were primarily influenced by PE and GS activities, whereas grain yield was primary regulated by GOGAT activity during the later growth stages. These findings suggest that PE, GS, and GOGAT are key enzymes for the regulation of N re-distribution in plant tissues during later growth stages, with grain yield and NUE of oilseed rape being positively regulated by PE, GS and GOGAT activities. (author)

  2. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds

    Directory of Open Access Journals (Sweden)

    Yoshio Nosaka, Masami Matsushita, Junichi Nishino and Atsuko Y. Nosaka

    2005-01-01

    Full Text Available In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.

  3. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla;

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate and ecos......Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... and ecosystems models. Recent research indicate the need for incorporating the ammonia (NH3) compensation point in atmospheric N deposition models to quantify the N budget for vegetative surfaces. This poster presents a PhD project within ECOCLIM of incorporating the NH3 compensation point in a coupled...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  4. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    OpenAIRE

    Kelly A. Nelson

    2015-01-01

    Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1) the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010), and (2) strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L.) growth (2008–2010) prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated contr...

  5. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    OpenAIRE

    Millstein, Dev

    2009-01-01

    Fine particulate matter (PM) affects public health, visibility, climate, and influences ecosystem productivity and species diversity. Diesel engines are an important source of air pollution and will face a variety of new regulations, so emissions from these vehicles are expected to undergo changes over the next decade that will have important effects on primary PM emissions, especially black carbon (BC) emissions, as well as nitrogen oxide (NOx) emissions and therefore secondary pollutants su...

  6. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment

    OpenAIRE

    Lee, Mark; Manning, Pete; Rist, Janna; Power, Sally A.; Marsh, Charles

    2010-01-01

    Grassland ecosystems cover vast areas of the Earth's surface and provide many ecosystem services including carbon (C) storage, biodiversity preservation and the production of livestock forage. Predicting the future delivery of these services is difficult, because widespread changes in atmospheric CO2 concentration, climate and nitrogen (N) inputs are expected. We compiled published data from global change driver manipulation experiments and combined these with climate data to assess grassland...

  7. Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment

    OpenAIRE

    Wang Y; Gao G.; Qin B; Wang X

    2012-01-01

    Here, we describe an experiment using four nitrogen (N) and phosphorus (P) concentrations to investigate the effects of nutrient enrichment on the submersed macrophyte Vallisneria natans (tape grass) grown in a sand culture medium. The objective of this study was to examine the influence of nutrient enrichment in the water column on V. natans, especially with regard to anatomical structures. The results showed both the absolute growth rate (AGR) and intrinsic efficiency of light energy conver...

  8. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    Science.gov (United States)

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  9. Potential Hydrological Responses, and Carbon and Nitrogen Pools of a Two Distinct Watersheds to Rainfall and Brush Management

    Science.gov (United States)

    Ray, R. L.; Fares, A.; Awal, R.; Johnson, A. B.

    2014-12-01

    Investigating the effects of brush management on hydrologic fluxes, in the parts of the Texas where brush is a dominant component of the landscape is essential for the State of Texas's water management strategy and planning. The main goal of this study is to test the performance of brush management as an effective approach for protecting soil quality (carbon and nitrogen pools), and water resources management and planning. Specifically, this work reports on the potential i) hydrological response and ii) carbon and nitrogen pools of two watersheds, one in Colorado River Basin (arid) and the second one in Neches River Basin (humid), to brush management (uniform thinning vs. clear cutting) simulated using Regional Hydro-ecological Simulation System (RHESSys) model and site specific input data. The selected watersheds have similar potential evapotranspiration level, but their average elevations are 600 m and 250 m for the arid and humid watersheds, respectively. Results are showing that light thinning alone may not be enough to significantly impact water yield and soil quality. They further indicate that the streamflow response to brush reduction is a non-linear positive response.

  10. Winter Annual Weed Response to Nitrogen Sources and Application Timings prior to a Burndown Corn Herbicide

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2015-01-01

    Full Text Available Autumn and early preplant N applications, sources, and placement may affect winter annual weed growth. Field research evaluated (1 the effect of different nitrogen sources in autumn and early preplant on total winter annual weed growth (2006–2010, and (2 strip-till and broadcast no-till N applied in autumn and early preplant on henbit (Lamium amplexicaule L. growth (2008–2010 prior to a burndown herbicide application. Total winter annual weed biomass was greater than the nontreated control when applying certain N sources in autumn or early preplant for no-till corn. Anhydrous ammonia had the lowest average weed density (95 weeds m−2, though results were inconsistent over the years. Winter annual weed biomass was lowest (43 g m−2 when applying 32% urea ammonium nitrate in autumn and was similar to applying anhydrous ammonia in autumn or early preplant and the nontreated control. Henbit biomass was 28% greater when applying N in the autumn compared to an early preplant application timing. Nitrogen placement along with associated tillage with strip-till placement was important in reducing henbit biomass. Nitrogen source selection, application timing, and placement affected the impact of N on winter annual weed growth and should be considered when recommending a burndown herbicide application timing.

  11. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes.

    Directory of Open Access Journals (Sweden)

    Yejian Wang

    Full Text Available Nitrogen (N is a major limiting factor in crop production, and plant adaptive responses to low N are involved in many post-transcriptional regulation. Recent studies indicate that miRNAs play important roles in adaptive responses. However, miRNAs in soybean adaptive responses to N limitation have been not reported. We constructed sixteen libraries to identify low N-responsive miRNAs on a genome-wide scale using samples from 2 different genotypes (low N sensitive and low N tolerant subjected to various periods of low nitrogen stress. Using high-throughput sequencing technology (Illumina-Solexa, we identified 362 known miRNAs variants belonging to 158 families and 90 new miRNAs belonging to 55 families. Among these known miRNAs variants, almost 50% were not different from annotated miRNAs in miRBase. Analyses of their expression patterns showed 150 known miRNAs variants as well as 2 novel miRNAs with differential expressions. These differentially expressed miRNAs between the two soybean genotypes were compared and classified into three groups based on their expression patterns. Predicted targets of these miRNAs were involved in various metabolic and regulatory pathways such as protein degradation, carbohydrate metabolism, hormone signaling pathway, and cellular transport. These findings suggest that miRNAs play important roles in soybean response to low N and contribute to the understanding of the genetic basis of differences in adaptive responses to N limitation between the two soybean genotypes. Our study provides basis for expounding the complex gene regulatory network of these miRNAs.

  12. Carbon and nitrogen allocations in corn grown in Central and Northeast China:different responses to fertilization treatments

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui-tian; L Jia-long; XU Ming-gang; ZHANG Wen-ju; HUANG Shao-min; PENG Chang; CHEN Li-ming

    2015-01-01

    In order to reveal the impact of various fertilization strategies on carbon (C) and nitrogen (N) accumulation and al ocation in corn (Zea mays L.), corn was grown in the ifelds where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China (Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer (control), chemical fertilizers of either nitrogen (N), or nitrogen and phosphorus (NP), or phosphorus and potassium (PK), or nitrogen, phospho-rus and potassium (NPK), NPK plus manure (NPKM), 150%of the NPKM (1.5NPKM), and NPK plus straw (NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha–1 in the control treatment to 9 300–9 610 kg ha–1 in the NPKM treatment, of which 57–67%and 43–50%were al ocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha–1 in the control treatment to 211–222 kg ha–1 in the NPKM treatment, of which 35–48% and 33–44% were al ocated in the non-grain parts, respectively. C al ocated to stem and leaf for the PK treatment was 65 and 49%higher than that for the NPKM treatment at the both sites, respectively, while N al ocated to the organs for the PK treatment was 18 and 6%higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N al ocation in corn to fertilization strategies were different, and C al ocation was more sensitive to fertilization treatments than N al ocation in the area.

  13. Response of Nodularia spumigena to pCO2 – Part I: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-03-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea contributing substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem, when inorganic nitrogen concentration in summer is low. Thus, it is of great ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the ocean. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover during batch growth of the heterocystous cyanobacterium Nodularia spumigena under glacial (180 ppm, present (380 ppm, and future (780 ppm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 resulted in an elevation in growth rate, C and N2 fixation by 23%, 36% and 25%, respectively (180 ppm vs. 380 ppm and by 27%, 2% and 4%, respectively (380 ppm vs. 780 ppm. Additionally, elevation in the carbon and nitrogen to phosphorus quota of the particulate biomass formed (POC:POP and PON:POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for non-heterocystous diazotrophs. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.

  14. Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition

    Directory of Open Access Journals (Sweden)

    An eYang

    2015-08-01

    Full Text Available We evaluated effects of 9-year simulation of simulated nitrogen (N deposition on microbial composition and diversity in the rhizosphere of two dominant temperate grassland species: grass Stipa krylovii and forb Artemisia frigida. Microbiomes in S. krylovii and A.frigida rhizosphere differed, but changed consistently along the N gradient. These changes were correlated to N-induced shifts to plant community. Hence, as plant biomass changed, so did bacterial rhizosphere communities, a result consistent with the role that N fertilizer has been shown to play in altering plant-microbial mutualisms. A total of 23 bacterial phyla were detected in the two rhizospheric soils by pyrosequencing, with Proteobacteria, Acidobacteria and Bacteroidetes dominating the sequences of all samples. Bacterioidetes and Proteobacteria tended to increase, while Acidobacteria declined with increase in N addition rates. TM7 increased >5-fold in the high N addition rates, especially in S. krylovii rhizosphere. Nitrogen addition also decreased diversity of OTUs (operational taxonomic units, Shannon and Chao1 indices of rhizospheric microbes regardless of plant species. These results suggest that there were both similar but also specific changes in microbial communities of temperate steppes due to N deposition.

  15. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    Science.gov (United States)

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.

  16. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Directory of Open Access Journals (Sweden)

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  17. Carbon rhizodeposition by plants of contrasting strategies for resource acquisition: responses to various nitrogen fertility regimes

    Science.gov (United States)

    Baptist, Florence; Aranjuelo, I.; Lopez-Sangil, L.; Rovia, P.; Nogués, S.

    2010-05-01

    Rhizodeposition by plants is one of the most important physiological mechanisms related to carbon and nitrogen cycling which is also believed to vary along the acquisition-conservation continuum. However, owing to methodological difficulties (i.e. narrow zone of soil around roots and rapid assimilation by soil microbes), root exudation and variations between species are one of the most poorly understood belowground process. Although previous approaches such as hydroponic culture based system, permit the chemical analysis of exudates, the fact that this protocol is qualitative, conditions its utility (see review in Phillips et al. 2008). Others techniques based on pulse-labelling approach have been developed to quantify rhizodeposition but are rarely sufficient to uniformly label all plant inputs to soil. Consequently with this typical pulse chase methods, recent assimilates are labeled but the recalcitrant carbon will not be labeled and therefore the contribution of this carbon will not be considered. Hence, traditional pulse labelling is not a quantitative means of tracing carbon due to inhomogeneous labelling and so limits greatly comparative studies of rhizodeposition fluxes at the interspecific level. In this study we developped a new protocole based on a long-term (3 months) steady state 13C labelling in order (1) to quantify rhizodeposition fluxes for six graminoid species caracterized by contrasted nutrient acquisition strategies and (2) to investigate to what extent various level of nitrogen fertility regimes modulate rhizodeposition fluxes. This method will enable to quantify under natural soil conditions both the accumulation of 13C in the soil but also the quantity that has been respired by the microorganisms during a given time and so will give an integrated picture of rhizodeposition fluxes for each species under each nitrogen fertility level. Results are currently being processed and will be presented at the conference. References: Phillips RP, Erlitz

  18. Nitrogen Deposition: A Component of Global Change Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  19. Response of Sphagnum papillosum and Drosera rotundifolia to reduced and oxidised wet nitrogen deposition

    OpenAIRE

    Millett, Jonathan; Leith, Ian; Sheppard, Lucy; Newton, Jason

    2012-01-01

    We transplanted Sphagnum ‘turfs’ containing abundant Drosera rotundifolia into an existing nitrogen deposition experiment at Whim Moss near Edinburgh. These mesocosms received simulated N deposition as either NH 4 + or NO 3 - , to give total N deposition rates of approximately 8, 16 or 32, or 64 kg N ha-1 year-1. Simulated N deposition was added in a realistic way (i.e., with rainfall throughout the year). The δ15N of this added N was elevated relative to background N. We measured the tissue ...

  20. Growth and yield responses of broccoli cultivars to different rates of nitrogen at western Chitwan, Nepal

    DEFF Research Database (Denmark)

    Giri, Raj Kumar; Sharma, Moha Datta; Shakya, Santa Man;

    2013-01-01

    A field experiment was conducted with the objective to determine the optimum rate of nitrogen (N) fertilizer for effective growth and yield of two varieties of broccoli in southern plain of Nepal. The experiment was laid out with two-factorial completely random block design (RCBD) comprising two......% higher total curd than Calabrese. Similarly, curd production increased N rate up to 200 kg ha-1 reaching a maximum of 14.47 t ha-1. This indicated that optimum level of N could be beyond the rates tested in this study, which needs further experimentation....

  1. [Response of black soil organic carbon, nitrogen and its availability to longterm fertilization].

    Science.gov (United States)

    Luo, Kun; Hu, Rong-Gui; Zhang, Wen-Ju; Zhou, Bao-Ku; Xu, Ming-Gang; Zhang, Jing-Ye; Xia, Ping-Ping

    2013-02-01

    Based on the long-term fertilization experiments, effects of various fertilization practices on the soil organic carbon (SOC) and total nitrogen (TN) in the surface (0-20 cm) and subsurface (20-40 cm) black soil in northeast China were studied. Results showed that, compared with the CK, long-term application of organic manure, especially the combination of mineral fertilizers and organic manure significantly increased the organic SOC and TN in the surface soil. Application of mineral fertilizers plus organic manure with conventional (NPM) and high application (N2P2M2) rate increased SOC significantly by 24. 6% and 25.1% , and TN by 29.5% and 32.8%, respectively. However, there was no significant difference among the treatments for SOC and TN at the subsurface. Compared with the CK (CKh), mineral fertilizer plus organic manure (NPM and N2P2M2) did not only increase the soil microbial biomass carbon (SMBC) and nitrogen (SMBN) , dissolved organic carbon (DOC) and nitrogen (DN), but also significantly increased the ratio of SMBC and DOC to SOC, SMBN and TN to TN. Application of the NPM and N2P2M2 increased the value of SMBC/SOC by 0.36 to 0.59 and SMBN/TN by 1.21 to 1.95 percentage points, respectively. The value of DOC/SOC and DN/TN ranged from 0.53% to 0.72% and 1.41% to 1.78%, respectively. This result indicated that SMBC, SMBN, DOC, DN and SMBC/ SOC, SMBN/TN, DOC/SOC, DN/TN were more sensitive than SOC and TN to long-term fertilization in the soil profile, and were better indicators for the impact of long-term fertilization soil fertility. The concluded that the application of manure especially manure plus mineral fertilizers can increase soil nutrients activity in the surface and subsurface black soil, acting as a helpful practice to improve soil fertility and the ability of nutrient supply, while it may cause potential environment pollution on carbon and nitrogen loss in the agroecosystem.

  2. Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Directory of Open Access Journals (Sweden)

    Iconomou, D.

    2010-09-01

    Full Text Available The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (Olea europaea, L. of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.

    La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (Olea europaea, L. de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La

  3. Spatial pattern of nitrogen isotopes as an indicator of ecosystem responses to rainfall in semi-arid and arid grasslands

    Science.gov (United States)

    WANG, C.; Bai, E.; Liu, D.; Fang, T. Y.; Jiang, P.; Han, G. X.

    2013-12-01

    Nitrogen (N) is an essential element for plant growth, however, whether it is a limiting factor of plant growth in water-limited areas is still not clear. Here we examined spatial variations of plant and soil stable N isotopes along a 3200 km precipitation gradient and proposed a conceptual model to explain ecosystem responses to increasing precipitation in arid and semi-arid grasslands in China. Soil δ15N increased with increasing MAP in areas with MAP areas with 200 mm 200 mm. In areas with MAP nutrient cycling in arid and semi-arid areas. If future climate change leads to drier climate in dryland, the uncoupled plant and microbial response may cause more N losses and higher ecosystem vulnerability. 3 Soil organic carbon (Soil C, a), total nitrogen (Soil N, b), C/N (c) and δ15N (d) of study sites along a MAP gradient. Relationship between MAP and foliar δ15N (a) and root δ15N (b).

  4. Effects of nitrogen-related defects on visible light photocatalytic response in N{sup +} implanted TiO{sub 2}: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Senga, Junya [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tatsumi, Kazuyoshi, E-mail: k-tatsumi@nucl.nagoya-u.ac.jp; Muto, Shunsuke; Yoshida, Tomoko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-09-21

    It was found that the visible-light responsiveness of a nitrogen ion-implanted TiO{sub 2} photocatalyst was attributable to the predominant chemical states of nitrogen, depending on the local nitrogen concentration near the surface. In the present study, we examined the effects of conceivable nitrogen-related defects on the visible light responsiveness, based on electronic structures calculated from first principles. Possible chemical states were proposed by comparing previously reported experiments with the present theoretical N-K X-ray absorption spectra. The theoretically predicted visible light absorption spectra and carrier trap states due to the bandgap states associated with the defects well explained the relationship between the catalytic reactivity and the proposed chemical states.

  5. Protozoan Response to the Addition of Bacterial Predators and Other Bacteria to Soil †

    OpenAIRE

    Casida, L. E.

    1989-01-01

    Representatives of several categories of bacteria were added to soil to determine which of them might elicit responses from the soil protozoa. The various categories were nonobligate bacterial predators of bacteria, prey bacteria for these predators, indigenous bacteria that are normally present in high numbers in soil, and non-native bacteria that often find their way in large numbers into soil. The soil was incubated and the responses of the indigenous protozoa were determined by most-proba...

  6. Dry matter accumulation and mineral nutrition of arracacha in response to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Luis Augusto Magolbo

    2015-08-01

    Full Text Available Abstract:The objective of this work was to evaluate the effect of nitrogen fertilization on the growth and yield of arracacha (Arracacia xanthorrhiza, as well as on the plant's nutrient uptake, distribution, and removal. The experiment was carried out in a typical Oxisol, with sandy texture. A randomized complete block design was used, with four replicates. The treatments consisted of five N rates: 0, 50, 100, 200, and 400 kg ha-1. The plots were composed of three 8-m-length rows, spaced at 0.60 m between rows and 0.40 m between plants. The plants were harvested after an 8-month cycle. Nitrogen fertilization significantly increased the proportion of N and S accumulated in stems, and of Ca, Mg, Fe, and Mn in leaves. N supply increased Zn distribution to stems and leaves, whereas high N rates increased Cu allocation to stems more than to the rootstock. High N rates increase plant dry matter (DM production and nutrient uptake and removal, but do not result in the greatest yield due to the greater development of leaves and stems, and to the lower allocation of DM in storage roots.

  7. Plant yield and nitrogen content of a digitgrass in response to azospirillum inoculation

    Energy Technology Data Exchange (ETDEWEB)

    Schank, S.C.; Weier, K.L.; MacRae, I.C.

    1981-02-01

    Two Australian soils, a vertisol (pH 6.8, 0.299% N) and a sandy yellow podzol (pH 6.2, 0.042% N), were used with digitgrass, Digitaria sp. X46-2 (PI 421785), in a growth room experiment. Comparisons were made between plants inoculated with live and autoclaved bacterial suspensions of Australian and Brazilian isolates of Azospirillum brasilense. Seedlings were inoculated on days 10 and 35. Acetylene-reducing activity was measured five times during the experiment. Dry matter yields of the digitgrass on the podzol (low N) inoculated with liver bacteria were 23% higher than those of the controls. On the vertisol (high N), yield increases from inoculation with live bacteria were 8.5%. The higher-yielding plants had significantly lower precent nitrogen, but when total nitrogen of the tops was calculated, the inoculated plants had a higher total N than did the controls (P = 0.04). Acetylene-reducing activity was variable in the experiment, ranging from 0.5 to 11.9 mu mol of C2H2 core -1 day -1. Live bacterial treatment induced a proliferation of roots, possible earlier maturity, higher percent dry matter, and a higher total N in the tops. (Refs. 21).

  8. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    Science.gov (United States)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots did not differ, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor using in situ incubations; fertilized soil mineralized 277 kg/ha/y in contrast to 18 kg/ha/y in control plots. Relative recovery of 15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  9. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  10. Soil Nematode Response to Biochar Addition in a Chinese Wheat Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Ke; LI Qi; LIANG Wen-Ju; ZHANG Min; BAO Xue-Lian; XIE Zu-Bin

    2013-01-01

    While studies have focused on the use of biochar as soil amendment,little attention has been paid to its effect on soil fauna.The biochar was produced from slow pyrolysis of wheat straw in the present study.Four treatments,no addition (CK) and three rates of biochar addition at 2400 (B1),12000 (B5) and 48000 kg ha-1 (B20),were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China.The B5 and B20 application significantly increased the total organic carbon and the C/N ratio.No significant difference in total nematode abundance was found among the treatments.The biochar addition to the soil significantly increased the abundance of fungivores,and decreased that of plant parasites.The diversity of soil nematodes was significantly increased by B1 compared to CK.Nematode trophic groups were more effectively indicative to biochar addition than total abundance.

  11. Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA.

    Science.gov (United States)

    Ehira, Shigeki; Kimura, Satoshi; Miyazaki, Shogo; Ohmori, Masayuki

    2014-09-01

    The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.

  12. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    model and the uncertainty of the driving parameters is considered low. The presented XF estimation method contributes with a central component for site-dependent characterization factors (CFs) for marine eutrophication, to be coupled with environmental fate of N emissions and effects of oxygen depletion......Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... variation of the modelled parameters and to characterise spatially differentiated N-emissions. Preliminary XF results range from 0.5 kgO2·kgN-1 in the Central Arctic Ocean to 16 kgO2·kgN-1 in the Baltic Sea, out of a total of 66 LME-dependent XFs. All the relevant processes were included in a mechanistic...

  13. Nitrogen processing in the hyporheic zone and its response to stream-groundwater interactions

    Science.gov (United States)

    Grant, Stanley; Azizian, Morvarid; Boano, Fulvio

    2016-04-01

    Modeling and experimental studies have shown that stream-groundwater interactions reduce hyporheic exchange, but the implications of this observation for hyporheic zone function are not yet clear. In this study we develop and test a simple process-based model for nitrate cycling in the hyporheic zone of a gaining or losing stream. Our model reproduces field measurements of nitrate uptake velocity and predicts that stream-groundwater interactions: (1) reduce hyporheic exchange; (2) reduce the residence time of water in the hyporheic zone; (3) slow denitrification; and (4) can cause stream sediments to switch from a net sink to source of nitrate. Stream-groundwater interactions attenuate denitrification across at least two scales of hyporheic exchange (fluvial dunes and riffle-pool bedforms). These results suggest that changes in regional groundwater hydrology (e.g., brought on by climate change) can indirectly affect stream nitrogen budgets by altering the form and function of the hyporheic zone.

  14. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  15. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  16. Response of Wheat to Tillage Plus Rice Residue and Nitrogen Management in Rice-Wheat System

    Institute of Scientific and Technical Information of China (English)

    Khalid Usman; Ejaz Ahmad Khan; Niamatullah Khan; Abdur Rashid; Fazal Yazdan; Saleem Ud Din

    2014-01-01

    Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.

  17. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    Science.gov (United States)

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  18. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    KAUST Repository

    Pallavicini, Piersandro

    2015-07-06

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  19. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae and Nannochloropsis sp. (Eustigmatophyceae.

    Directory of Open Access Journals (Sweden)

    Gregory J O Martin

    Full Text Available Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs, the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.

  20. Effects of nitrogen addition and precipitation change on soil methane and carbon dioxide fluxes%施氮和降水格局改变对土壤CH4和CO2通量的影响

    Institute of Scientific and Technical Information of China (English)

    李伟; 白娥; 李善龙; 孙建飞; 彭勃; 姜萍

    2013-01-01

    氮沉降增加和降水格局改变是全球变化的两项重要内容,但是同时考虑上述两因素对温室气体CH4和CO2通量影响的原位双因子模拟研究还相当有限.本研究以长白山温带阔叶红松林土壤为研究对象,采用静态箱法研究了外施氮源(50 kg N·hm-2·a-1)和增减30%降水对土壤CH4和CO2通量的影响.结果表明:施氮能抑制土壤CH4吸收,有时甚至能将土壤对CH4的吸收转为释放,但这种抑制效应只能维持5d左右,且能在一定程度上改变CH4通量和环境因子(温度、土壤pH、粘粒含量)的相关关系.降水改变未能显著影响土壤CH4通量.对CO2通量而言,施氮能降低土壤CO2排放,长白山阔叶红松林连续施氮第4年的平均抑制效应为27.4%.长期连续施氮的平均抑制效应随施氮时间延长而逐渐增大,一定年限后达到最大值.单次施氮的抑制效应随时间延长逐渐减弱,并在1个月的施氮周期末期基本消失.施氮的抑制效应和土壤充水孔隙度(WFPS)呈显著负相关关系,且升温能增强施氮对CO2释放的抑制效应并延长抑制时间.施氮、降水有可能改变土壤呼吸的温度敏感性.本研究表明,长白山森林土壤氮素尚未达到一定阈值,未来氮沉降增加将抑制CO2的释放和CH4的吸收,因此总体来看施氮抑制土壤碳排放.%Increased nitrogen deposition and changed precipitation pattern are the two important factors of global change,while the in situ experiments studying how the two factors affect greenhouse gases CO2 and CH4 fluxes are still limited.Taking the temperate broad-leaved Korean pine (Pinus koraiensis) forest in Changbai Mountains of Northeast China as the object,and by using static chambers,this paper studied the effects of nitrogen addition (50 kg N · hm-2 · a-1) and changed precipitation regime (30% increase and decrease of precipitation) on the soil CO2 and CH4 fluxes.Nitrogen addition inhibited the soil CH4 consumption

  1. Response of Sphagnum mosses to increased CO2 concentration and nitrogen deposition

    International Nuclear Information System (INIS)

    The main objective of this work was to study the effects of different CO2 concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO2 concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO2 and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO2 and N treatments, and (iv) species dependent differences in potential NH4+ and NO3- uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO2 concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant's metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO2 concentrations, but photosynthesis was down regulated with prolonged exposure to CO2. The water use efficiency in Sphagna appeared not to be coupled with exposure to the long-term CO2 concentration. The effects of CO

  2. Response of Sphagnum mosses to increased CO{sub 2} concentration and nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.

    1998-12-31

    The main objective of this work was to study the effects of different CO{sub 2} concentration and N deposition rates on Sphagna adapted to grow along a nutrient availability gradient (i.e. ombrotrophy-mesotrophy-eutrophy). The study investigated: (i) the effects of various longterm CO{sub 2} concentrations on the rate of net photosynthesis in Sphagna, (ii) the effects of the CO{sub 2} and N treatments on the moss density, shoot dry masses, length increment and dry mass production in Sphagna, (iii) the concentrations of the major nutrients in Sphagna after prolonged exposure to the CO{sub 2} and N treatments, and (iv) species dependent differences in potential NH{sub 4}{sup +} and NO{sub 3}{sup -} uptake rates. The internal nutrient concentration of the capitulum and the production of biomass were effected less by the elevated CO{sub 2} concentrations because the availability of N was a controlling factor. In addition responses to the N treatments were related to ecological differences between the Sphagna species. Species with a high tolerance of N availability were able to acclimatise to the increased N deposition rates. The data suggests a high nutrient status is less significant than the adaptation of the Sphagna to their ecological niche (e.g. low tolerance of meso-eutrophic S. warnstorfii to high N deposition rate). At the highest N deposition rate the ombrotrophic S. fuscum had the highest increase in tissue N concentration among the Sphagna studied. S. fuscum almost died at the highest N deposition rate because of the damaging effects of N to the plant`s metabolism. Ombrotrophic hummock species such as S. fuscum, were also found to have the highest potential N uptake rate (on density of dry mass basis) compared to lawn species. The rate of net photosynthesis was initially increased with elevated CO{sub 2} concentrations, but photosynthesis was down regulated with prolonged exposure to CO{sub 2}. The water use efficiency in Sphagna appeared not to be coupled

  3. Comparison of point injection and top-dressing application of nitrogen fertilizers with sulphur addition in winter rape (Brassica napus L.) in the Czech Republic

    OpenAIRE

    Lucie Peklová; Jindřich Černý; Zuzana Peklová; Karin Kubešová; Ondřej Sedlář; Jiří Balík

    2015-01-01

    In this paper, we are analyzing the yield and yield parameters of winter rape, fertilized using CULTAN system (Controlled Uptake Long Term Ammonium Nutrition) in comparison with top-dressing application of nitrogen fertilizers, which were studied on Haplic Luvisol over 5 years. No significant differences in seed yields between the two systems of fertilization were observed in 2008, 2009 and 2011. The effect of sulphur on a higher seed yield was proved in 2010 and 2012. The seed yield was high...

  4. Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To investigate the response of key enzymes to nitrogen (N) rates in cotton fiber and its relationship with fiber strength, experiments were conducted in 2005 and 2006 with cotton cultivars in Nanjing. Three N rates 0, 240 and 480 kgN/hm2, signifying optimum and excessive nitrogen application levels were applied.The activities and the gene expressions of the key enzymes were affected by N, and the characteristics of cellulose accumulation and fiber strength changed as the N rate varied. Beta-1,3-glucanase activity in cotton fiber declined from 9 DPA till boll opening, and the beta-1, 3-glucanase coding gene expression also followed a unimodal curve in 12—24 DPA. In 240 kgN/hm2 condition, the characteristics of enzyme activity and gene expression manner for sucrose synthase and beta-1,3-glucanase in developing cotton fiber were more favorable for forming a longer and more steady cellulose accumulation process, and for high strength fiber development.

  5. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    Science.gov (United States)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Fertilized soil mineralized 277 kg/ha per year in contrast to 18 kg/ha per year in control plots. Relative recovery of (N-15)H4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  6. Nitrogen inputs and losses in response to chronic CO2 exposure in a sub-tropical oak woodland

    Directory of Open Access Journals (Sweden)

    B. A. Hungate

    2014-01-01

    Full Text Available Rising atmospheric CO2 concentrations could alter the nitrogen (N content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 yr of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light and nutrients in shaping response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on asymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient, and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.

  7. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess.

    Science.gov (United States)

    Luo, Jie; Zhou, Jing; Li, Hong; Shi, Wenguang; Polle, Andrea; Lu, Mengzhu; Sun, Xiaomei; Luo, Zhi-Bin

    2015-12-01

    Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3(-) and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30-40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess.

  8. RESPONSE OF SPRING MAIZE TO NITROGEN APPLICATION IN GRAIN YIELD,NITROGEN UTILIZATION AND MINERAL NITROGEN BALANCE%春玉米产量、氮素利用及矿质氮平衡对施氮的响应

    Institute of Scientific and Technical Information of China (English)

    隽英华; 汪仁; 孙文涛; 邢月华

    2012-01-01

    通过在辽宁省昌图县的田间试验,研究了不同施氮水平(0、60、120、180、240和300 kg hm-2)对春玉米产量、氮素利用及农田矿质氮平衡的影响.结果表明:春玉米产量随施氮量增加而显著提高,当施氮量高于N 240 kg hm-2时,产量有减少趋势;氮素当季利用率随施氮量增加先增加后降低,在施氮量180 kg hm-2时达到最大,为27.95%.随着施氮量增加,氮肥农学利用率、氮素吸收效率和氮素偏生产力均显著降低,而氮肥生理利用率和氮肥表观残留率均先增加后降低,这与氮肥表观损失率的变化正好相反.作物吸氮量随施氮量增加而显著增加,氮盈余主要以土壤残留为主,表观损失在氮盈余中的比例虽小,但随着施氮量增加而明显增加.低量施氮( <180kg hm-2)主要引起土壤矿质氮残留量的显著增加,而高量施氮(240 kg hm-2和300 kg hm-2)主要引起土壤氮素表观损失量的显著增加.在本试验条件下,合理施氮量应控制在180~209 kg hm-2左右.%A field experiment, designed to have 6 levels of nitrogen application rates (0, 60, 120, 180, 240 and 300 kg hm-2) , was conducted at Changtu county of Liaoninng province to investigate effects of nitrogen application on spring maize in yield, nitrogen utilization and maize field mineral nitrogen ( Nmin) balance. Results show that the yield of spring maize increased significantly with increasing nitrogen application rate, but once the rate exceeded 240 kg N hm-2, yield of the crop began to show a declining trend. In the current season, N recovery rate ( NRR) increased first and then decreased with increasing N application rate, and reached the highest, 27.95% , when 180 kg N hm"2 was applied. With the nitrogen application rate further rising on agronomic N use efficiency ( ANUE) , nitrogen uptake efficiency ( NUE) and nitrogen partial productivity (NPP) all decreased significantly, however, physiological N use efficiency (PNUE) and nitrogen

  9. Differential Behavior of Young Eucalyptus Clones in Response to Nitrogen Supply

    Directory of Open Access Journals (Sweden)

    Eric Victor de Oliveira Ferreira

    2015-06-01

    Full Text Available Eucalyptus requires large amounts of nitrogen (N; however, it responds in diverse manners to the application of this nutrient. The aim of this study was to evaluate the differential performance in growth, mineral nutrition, and gas exchanges of N-fertilized Eucalyptus clones. The treatments consisted of two Eucalyptus clones (VM-01 and I-144 and six N application rates (0, 0.74, 2.93, 4.39, 5.85, and 8 mmol L-1 NH4NO3 arranged in a randomized complete block design with five replications. VM-01 had greater plant height and greater height/collar diameter ratio, as well as higher leaf concentrations of all macronutrients and of Cu, Fe, Mo, and Zn. In terms of total and root dry matter production, root/shoot ratio, and collar diameter, as well as stomatal conductance and transpiration, I-144 performed better. The performance of the clones was clearly differentiated, and the growth of I-144, despite lower leaf N concentration, was in general better than VM-01.

  10. Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment

    Directory of Open Access Journals (Sweden)

    Wang Y.

    2012-06-01

    Full Text Available Here, we describe an experiment using four nitrogen (N and phosphorus (P concentrations to investigate the effects of nutrient enrichment on the submersed macrophyte Vallisneria natans (tape grass grown in a sand culture medium. The objective of this study was to examine the influence of nutrient enrichment in the water column on V. natans, especially with regard to anatomical structures. The results showed both the absolute growth rate (AGR and intrinsic efficiency of light energy conversion of PSII (Fv/Fm decreased with increasing nutrient levels. Root morphological characteristics, including the total root length (L, root surface area (SA, projected root area (PA, total root volume (V, average root diameter (AD, total root length per volume (LPV, total tips (T and total forks (F, also showed a generally negative relationship with increasing nutrient concentrations. The anatomical structures of stolons and leaves also changed with nutrient enrichment. The shrinkage of aerenchyma and disappearance of starches and chloroplasts were the main structural changes leading to poor growth. These phenomena, especially the anatomical changes, might be the mechanism underlying the effect of nutrient enrichment on V. natans growth.

  11. Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China

    Institute of Scientific and Technical Information of China (English)

    JIANG Peng; XIONG Hong; ZOU Ying-bin; XIE Xiao-bing; HUANG Min; ZHOU Xue-feng; ZHANG Rui-chun; CHEN Jia-na; WU Dan-dan; XIA Bing; XU Fu-xian

    2015-01-01

    In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, ifeld experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1, 225 kg ha–1;N2, 112.5–176 kg ha–1;N3, 0 kg ha–1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attribut-ed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop perfor-mance of rice (especial y hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efifciency, recovery efifciency of applied N, agronomic N use efifciency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively smal . Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efifciency can be increased by using improved nitrogen management such as site-speciifc N management in both hybrid and inbred rice production.

  12. Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke; Smith, Matthew J.

    2016-03-01

    Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land ecosystems globally. In order to quantify this uncertainty and estimate likely effects on terrestrial biosphere dynamics, we applied six alternative formulations of BNF spanning the range of process formulations in current state-of-the-art biosphere models within a common framework, the O-CN model: a global map of static BNF rates, two empirical relationships between BNF and other ecosystem variables (net primary productivity and evapotranspiration), two process-oriented formulations based on plant N status, and an optimality-based approach. We examined the resulting differences in model predictions under ambient and elevated atmospheric [CO2] and found that the predicted global BNF rates and their spatial distribution for contemporary conditions were broadly comparable, ranging from 108 to 148 Tg N yr-1 (median: 128 Tg N yr-1), despite distinct regional patterns associated with the assumptions of each approach. Notwithstanding, model responses in BNF rates to elevated levels of atmospheric [CO2] (+200 ppm) ranged between -4 Tg N yr-1 (-3 %) and 56 Tg N yr-1 (+42 %) (median: 7 Tg N yr-1 (+8 %)). As a consequence, future projections of global ecosystem carbon (C) storage (+281 to +353 Pg C, or +13 to +16 %) as well as N2O emission (-1.6 to +0.5 Tg N yr-1, or -19 to +7 %) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change-induced perturbations, particularly through new empirical perturbation experiments and improved model representation.

  13. Carbon dioxide enrichment: Data on the response of cotton to varying CO sub 2 , irrigation, and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J. (Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center); Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. (Agricultural Research Service, Phoenix, AZ (United States)); Lakatos, E.A. (Arizona Univ., Tucs

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  14. Carbon dioxide enrichment: Data on the response of cotton to varying CO{sub 2}, irrigation, and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. [Agricultural Research Service, Phoenix, AZ (United States); Lakatos, E.A. [Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  15. Phosphorus utilization and microbial community in response to lead/iron addition to a waterlogged soil

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shunqing; WU Yuping; XU Jianming

    2009-01-01

    Constructed wetlands have emerged as a viable option for helping to solve a wide range of water quality problems. However, heavy metals adsorbed by substrates would decrease the growth of plants, impair the functions of wetlands and eventually result in failure of contaminant removal. Typha latifolia L., tolerant to heavy metals, has been widely used for phytoremediation of Pb/Zn mine tailings under waterlogged conditions. This study examined effects of iron as ferrous sulfate (100 and 500 mg/kg) and lead as lead nitrate (0, 100, 500 and 1000 mg/kg) on phosphorus utilization and microbial community structure in a constructed wetland. Wetland plants (T. latifolia) were grown for 8 weeks in rhizobags filled with a paddy soil under waterlogged conditions. The results showed that both the amount of iron plaque on the roots and phosphorus adsorbed on the plaque decreased with the amount of lead addition. When the ratio of added iron to lead was 1:1, phosphorus utilized by plants was the maximum. Total amount of phospholipids fatty acids (PLFAs) was 23%-59% higher in the rhizosphere soil than in bulk soil. The relative abundance of Gram-negative bacteria, aerobic bacteria, and methane oxidizing bacteria was also higher in the rhizosphere soil than in bulk soil, but opposite was observed for other bacteria and fungi. Based on cluster analysis, microbial communities were mostly controlled by the addition of ferrous sulfate and lead nitrate in rhizosphere and bulk soil, respectively.

  16. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    Science.gov (United States)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Experience of high-nitrogenous steel powder application in repairs and surface hardening of responsible parts for power equipment by plasma spraying

    Science.gov (United States)

    Kolpakov, A. S.; Kardonina, N. I.

    2016-02-01

    The questions of the application of novel diffusion-alloying high-nitrogenous steel powders for repair and surface hardening of responsible parts of power equipment by plasma spraying are considered. The appropriateness of the method for operative repair of equipment and increasing its service life is justified. General data on the structure, properties, and manufacture of nitrogen-, aluminum-, and chromium-containing steel powders that are economically alloyed using diffusion are described. It is noted that the nitrogen release during the decomposition of iron nitrides, when heating, protects the powder particles from oxidation in the plasma jet. It is shown that the coating retains 50% of nitrogen that is contained in the powder. Plasma spraying modes for diffusion-alloying high-nitrogenous steel powders are given. The service properties of plasma coatings based on these powders are analyzed. It is shown that the high-nitrogenous steel powders to a nitrogen content of 8.9 wt % provide the necessary wear resistance and hardness of the coating and the strength of its adhesion to the substrate and corrosion resistance to typical aggressive media. It is noted that increasing the coating porosity promotes stress relaxation and increases its thickness being limited with respect to delamination conditions in comparison with dense coatings on retention of the low defectiveness of the interface and high adhesion to the substrate. The examples of the application of high-nitrogenous steel powders in power engineering during equipment repairs by service companies and overhaul subdivisions of heat power plants are given. It is noted that the plasma spraying of diffusion-alloyed high-nitrogenous steel powders is a unique opportunity to restore nitrided steel products.

  18. Effects of nitrogen addition on ammonia volatilization and nitrate leaching of a sandy grassland.%氮添加对沙质草地氨挥发及硝态氮淋溶的影响

    Institute of Scientific and Technical Information of China (English)

    张亚欣; 范志平; 闫加亮; 孙学凯; 王琼

    2011-01-01

    采用密闭室法和离子交换树脂袋法,研究了科尔沁沙质草地不同处理(水添加、氮添加、水氮添加)氧挥发的损失量和硝态氮的淋溶量.结果表明:氮添加处理和水氮添加处理显著促进了氨挥发(P<0.05),最大氨挥发速率显著高于对照;氮添加处理和水氮添加处理的氨挥发累积量为111.80和148.64 mg·m-2,分别占氮添加量的1.1%和1.5%;水氮同时添加条件下,氨挥发累计量显著高于氨添加处理(P<0.05),水添加处理和对照相比没有显著差异(P>0.05);水氮添加处理显著增加了土壤深度20 cm处的硝态氮淋溶量(P<0.05),氮添加处理和水氮添加处理的硝态氮淋溶量分别是对照的1.96和4.22倍,然而在土壤深度40 cm处各处理硝态氮淋溶量差异不显著(P>0.05);可见,氮添加和水氮添加均促进了土壤的氧挥发,对硝态氮的淋溶没有显著影响.%With enclosed and static chambers and ion exchange resin bags, this paper studied the effects of water addition ( W) , nitrogen addition { N ) , and water and nitrogen addition ( WN ) on the ammonia volatilization and nitrate leaching of a sandy grassland in southeastern Keerqin Sandy Land, taking no water and nitrogen addition as the control (CK). Treatments N and WN promoted the ammonia volatilization significantly, and the maximum ammonia volatilization rate was significantly higher than that of the control ( P0.05). The results suggested that both nitrogen addition and water and nitrogen addition promoted the ammonia volatilization , bul had little effects on the nitrate leaching of the sandy grassland.

  19. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature

    DEFF Research Database (Denmark)

    Dieleman, Wouter I.J.; Vicca, Sara; Dijkstra, Feike A.;

    2012-01-01

    , possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic...

  20. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    Directory of Open Access Journals (Sweden)

    Rachel Wooliver

    Full Text Available A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1 native species monocultures and 2 mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both

  1. Inoculation Policies in Response to BW Attacks: Additional Factors to Consider

    International Nuclear Information System (INIS)

    When viewed on its own merits, the debate over who should be inoculated during a period of biological emergency is a rather straightforward public policy decision. The classic public policy 'balancing act' decision-making model is defaulted to as issues of fairness, efficiency, cost-effectiveness, adequacy of supply, mission performance, and constituencies are arrayed and adjudicated. This mainstream approach is appropriate as far as it goes but it also exemplifies a series of structural and perceptual weaknesses when applied to wartime or localized terrorism scenarios. In fact, the establishment of a vaccination policy appropriate to a flu pandemic falls squarely within this mainstream debate. Although the notion of a pandemic carries an assumption of a great many fatalities it does not possess the fear quotient, uncertainty, horror, unnaturalness, or inevitability of a bio-terror or biological warfare incident. As a result, the reliability and responsiveness of key personnel responding to a flu pandemic should be less of an issue than it will be in the event of an intentional man-made biological incident. The principal policy weakness in instances an intentional bio-attack stems from a generalized failure, or refusal, to systematically study the behavior of key personnel, first-responders, soldiers, or critical senior leadership during severe crises occurring in their own backyards. In other words, when the 'balloon goes up' how many of your responders and critical personnel will show up for work? This presentation considers many of the 'unaddressed' factors that experience has shown may have a determinative effect upon the efficacy of a response to a biological incident. Lessons are drawn from experiences of US forces station in the former West Germany, US Defense Department Continuity of Operations Programs, Hurricane Katrina, and the 9/11 attacks on the United States. (author)

  2. Reactive Oxygen and Nitrogen Species in Defense/Stress Responses Activated by Chitosan in Sycamore Cultured Cells

    Directory of Open Access Journals (Sweden)

    Massimo Malerba

    2015-01-01

    Full Text Available Chitosan (CHT is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L. cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO. We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.

  3. Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells.

    Science.gov (United States)

    Malerba, Massimo; Cerana, Raffaella

    2015-01-29

    Chitosan (CHT) is a non-toxic and inexpensive compound obtained by deacetylation of chitin, the main component of the exoskeleton of arthropods as well as of the cell walls of many fungi. In agriculture CHT is used to control numerous diseases on various horticultural commodities but, although different mechanisms have been proposed, the exact mode of action of CHT is still unknown. In sycamore (Acer pseudoplatanus L.) cultured cells, CHT induces a set of defense/stress responses that includes production of H2O2 and nitric oxide (NO). We investigated the possible signaling role of these reactive molecules in some CHT-induced responses by means of inhibitors of production and/or scavengers. The results show that both reactive nitrogen and oxygen species are not only a mere symptom of stress conditions but are involved in the responses induced by CHT in sycamore cells. In particular, NO appears to be involved in a cell death form induced by CHT that shows apoptotic features like DNA fragmentation, increase in caspase-3-like activity and release of cytochrome c from the mitochondrion. On the contrary, reactive oxygen species (ROS) appear involved in a cell death form induced by CHT that does not show these apoptotic features but presents increase in lipid peroxidation.

  4. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Directory of Open Access Journals (Sweden)

    Madjelia Cangre Ebou eDAO

    2015-11-01

    Full Text Available The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill. BSP] in Quebec, Canada. During 2008-2013, the soil around mature trees was warmed up by 4 °C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  5. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    Science.gov (United States)

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used.

  6. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce.

    Science.gov (United States)

    Dao, Madjelia C E; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008-2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  7. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability.

    Science.gov (United States)

    Yu, Peng; White, Philip J; Hochholdinger, Frank; Li, Chunjian

    2014-10-01

    Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution. PMID:25143250

  8. Initial response of the nitrogen cycle to soil warming in Northern Minnesota peatlands

    Science.gov (United States)

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce a...

  9. PREDICTING RICE YIELD RESPONSE TO MIDSEASON NITROGEN WITH PLANT AREA MEASURMENTS

    Science.gov (United States)

    A simple method is needed to aid farmers with midseason N decisions in dry-seeded, delayed flood rice (Oryza sativa L.). This study was conducted to develop thresholds using visual and digital image measurements for predicting rice yield response to N topdressing. 'Francis' and 'Cheniere' (cv) ric...

  10. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Directory of Open Access Journals (Sweden)

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  11. Synthetic Archaeosome Vaccines Containing Triglycosylarchaeols Can Provide Additive and Long-Lasting Immune Responses That Are Enhanced by Archaetidylserine

    Directory of Open Access Journals (Sweden)

    G. Dennis Sprott

    2012-01-01

    Full Text Available The relation between archaeal lipid structures and their activity as adjuvants may be defined and explored by synthesizing novel head groups covalently linked to archaeol (2,3-diphytanyl-sn-glycerol. Saturated archaeol, that is suitably stable as a precursor for chemical synthesis, was obtained in high yield from Halobacterium salinarum. Archaeosomes consisting of the various combinations of synthesized lipids, with antigen entrapped, were used to immunize mice and subsequently determine CD8+ and CD4+-T cell immune responses. Addition of 45 mol% of the glycolipids gentiotriosylarchaeol, mannotriosylarchaeol or maltotriosylarchaeol to an archaetidylglycerophosphate-O-methyl archaeosome, significantly enhanced the CD8+ T cell response to antigen, but diminished the antibody titres in peripheral blood. Archaeosomes consisting of all three triglycosyl archaeols combined with archaetidylglycerophosphate-O-methyl (15/15/15/55 mol% resulted in approximately additive CD8+ T cell responses and also an antibody response not significantly different from the archaetidylglycerophosphate-O-methyl alone. Synthetic archaetidylserine played a role to further enhance the CD8+ T cell response where the optimum content was 20–30 mol%. Vaccines giving best protection against solid tumor growth corresponded to the archaeosome adjuvant composition that gave highest immune activity in immunized mice.

  12. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L;

    2012-01-01

    N offtake when the residual effect originated from organic applications, but the interaction was not significant when mineral N fertilizer had been used in the past, making the residual effect of N applied in the past additive to the effect of N applied in the test year. The dry matter (DM) grain...

  13. Alpine Microbial Community Responses to Climate Change and Atmospheric Nitrogen Deposition in Rocky Mountain National Park

    Science.gov (United States)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.; Richer, E.

    2010-12-01

    Remote alpine ecosystems of the western US exhibit vulnerability to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to modified temperature regimes. We cannot yet predict the interacting effects and far-reaching biogeochemical consequences of this influence. Importantly, long-term data reveal headwater nitrate (NO3-) concentration trends increasing >50% from the 1990s to 2006 along the Colorado Front Range in conjunction with warm summer temperatures. Such a change in nutrient cycling raises concern for eutrophication in nutrient-poor alpine lakes. Increasing stream NO3- suggests terrestrial microbes may be responding to changes in important controls of community development and activity: temperature and ammonium (NH4+) availability. Nitrifying bacteria and archaea strongly influence alpine soil NO3- concentrations. Little is understood about alpine microbes. Our research characterizes nitrifier abundance and activity in alpine substrates by exposing them to experimental NH4+ and temperature treatments. Soil substrates fall along a gradient of succession commonly represented in alpine catchments due to deglaciation. These include well-developed meadow soils, unvegetated talus substrate, and newly-exposed glacial sediments. All three substrate types were collected from the Loch Vale watershed in Rocky Mountain National Park, a long-term research site in the Colorado Front Range known to receive elevated levels of atmospheric N deposition. All soils have been evaluated for initial %C, %N, microbial biomass, NO3-, NH4+, and DOC concentrations, and nitrifier abundance. After temperature and NH4+ treatments, samples will be evaluated for changes in biomass and nitrifier abundance as well as net and gross nitrification. Linking the influence of relative soil temperature and NH4+ concentrations on alpine substrates, at a range of successional stages, will

  14. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  15. Effect of nitrogen addition on the band gap, core level shift, surface energy, and the threshold field of electron emission of the SrTiO3 thin films

    Science.gov (United States)

    Bian, H. J.; Chen, X. F.; Pan, J. S.; Zhu, W.; Sun, Chang Q.

    2007-12-01

    The effect of nitrogen (N) doping on the behavior of field emission, surface energy and the band structure of strontium titanate (SrTiO3) thin films coated on silicon tip arrays has been examined in detail. Measurements using x-ray photoelectron spectroscopy, ellipsometry, water contact angle and field emission testing revealed that the optimal 50%-nitrogen partial pressure (PN) could improve substantially the threshold field of electron emission of the SrTiO3 films accompanied with narrowed band gap, lowered surface energy and work function and a negative energy shift of the N 1s level from 404 to 396 eV. Results evidence consistently the presence of the nonbonding lone pairs and the lone pair induced antibonding dipoles upon tetrahedron formation which is responsible for the observations. At PN below and above the optimal value physisorption and hydrogen bond likes formation like to occur.

  16. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    Science.gov (United States)

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs. PMID:27194103

  17. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice.

    Science.gov (United States)

    Sun, Huwei; Bi, Yang; Tao, Jinyuan; Huang, Shuangjie; Hou, Mengmeng; Xue, Ren; Liang, Zhihao; Gu, Pengyuan; Yoneyama, Koichi; Xie, Xiaonan; Shen, Qirong; Xu, Guohua; Zhang, Yali

    2016-07-01

    The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs.

  18. Proteomic analysis provides new insights into the adaptive response of a dinoflagellate Prorocentrum donghaiense to changing ambient nitrogen.

    Science.gov (United States)

    Zhang, Ying-Jiao; Zhang, Shu-Fei; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi

    2015-10-01

    Nitrogen (N) is the major nutrient limiting phytoplankton growth and productivity over large ocean areas. Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the ocean. However, very little is known about their adaptive response to changing ambient N. Here, we compared the protein profiles of a marine dinoflagellate Prorocentrum donghaiense grown in inorganic N-replete, N-deplete and N-resupplied conditions using 2-D fluorescence differential gel electrophoresis. The results showed that cell density, chlorophyll a and particulate organic N contents presented low levels in N-deplete cells, while particulate organic carbon content and glutamine synthetase (GS) activity maintained high levels. Comparison of the protein profiles of N-replete, N-deplete and N-resupplied cells indicated that proteins involved in photosynthesis, carbon fixation, protein and lipid synthesis were down-regulated, while proteins participating in N reallocation and transport activity were up-regulated in N-deplete cells. High expressions of GS and 60 kDa chaperonin as well as high GS activity in N-deplete cells indicated their central role in N stress adaptation. Overall, in contrast with other photosynthetic eukaryotic algae, P. donghaiense possessed a specific ability to regulate intracellular carbon and N metabolism in response to extreme ambient N deficiency. PMID:25789726

  19. Responses of Azospirillum brasilense to nitrogen deficiency and to wheat lectin: a diffuse reflectance infrared fourier transform (DRIFT) spectroscopic study.

    Science.gov (United States)

    Kamnev, Alexander A; Sadovnikova, Julia N; Tarantilis, Petros A; Polissiou, Moschos G; Antonyuk, Lyudmila P

    2008-11-01

    For the rhizobacterium Azospirillum brasilense, the optimal nutritional range of C:N ratios corresponds to the presence of malate (ca. 3 to 5 g l(-1) of its sodium salt) and ammonium (ca. 0.5 to 3 g l(-1) of NH4Cl) as preferred carbon and nitrogen sources, respectively. This microaerophilic aerotactic bacterium is known to have a narrow optimal oxygen concentration range of ca. 3 to 5 microM, which is 1.2% to 2% of oxygen solubility in air-saturated water under normal conditions. In this work, the effects of stress conditions (bound-nitrogen deficiency related to a high C:N ratio in the medium; excess of oxygen) on aerobically grown A. brasilense Sp245, a native wheat-associated endophyte, were investigated in the absence and presence of wheat germ agglutinin (WGA, plant stress protein and a molecular host-plant signal for the bacterium) using FTIR spectroscopy of whole cells in the diffuse reflectance mode (DRIFT). The nutritional stress resulted in the appearance of prominent spectroscopic signs of poly-3-hydroxybutyrate (PHB) accumulation in the bacterial cells; in addition, splitting of the amide I band related to bacterial cellular proteins indicated some stress-induced alterations in their secondary structure components. Similar structural changes were observed in the presence of nanomolar WGA both in stressed A. brasilense cells and under normal nutritional conditions. Comparative analysis of the data obtained and the relevant literature data indicated that the stress conditions applied (which resulted in the accumulation of PHB involved in stress tolerance) and/or the presence of nanomolar concentrations of WGA induced synthesis of bacterial cell-surface (glyco)proteins rich in beta-structures, that could be represented by hemagglutinin and/or porin.

  20. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A

    2002-07-01

    development of this work, the Electron Cyclotron Emission system (ECE) of ASDEX Upgrade is crucial since it allows local measurements of the electron temperature with high temporal and spatial resolutions. The analysis and interpretation of perturbative MECH discharges for power deposition localisation using different diagnostics, such as ECE and SXR measurements, are presented. The most important problem is related to the phase locking between the MECH and the sawtooth activity of the plasma, which disturbs both ECE and SXR measurements. Several techniques have been adopted to circumvent this difficulty. In particular, the Singular Value Decomposition (SVD) and the Generalised Singular Value Decomposition (GSVD) have been tested in both TCV and ASDEX Upgrade discharges. However, both methods are incapable of treating the problem correctly, which leads to potential misinterpretation of the results. A new method based on system identification using the SVD (SI-SVD) is developed and applied. This method, within reasonable limits induced by the assumption of linearity, is capable of simultaneously separating the MECH from the sawtooth contributions to both ECE electron temperature measurements and SXR emission measurements. Such a method is in particular applied to a NBI heated ASDEX Upgrade discharge in which MECH is added in order to analyse electron heat transport in a mostly ion-heated plasma. Since the NBI heating is also partly modulated with short pulses, which coincide with the sawtooth crashes to improve their stability, both the MECH and the NBI deposition profiles are determined. Moreover, treating the signals with the SI-SVD procedure enables a study of the plasma dynamic response also at higher MECH harmonic numbers. The procedure is then used to analyse MECH discharges in TCV using different diagnostics. The profiles determined using the ECE and soft X-ray measurements are compared and interpreted, demonstrating in particular that line integrated soft X

  1. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    Science.gov (United States)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  2. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xueyan, E-mail: liuxueyan@vip.skleg.c [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Xiao Huayun; Liu Congqiang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Youyi; Xiao Hongwei; Wang Yanli [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Graduate University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049 (China)

    2010-06-15

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta{sup 13}C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta{sup 13}C{sub moss} became less negative. With measurements of atmospheric CO{sub 2} and delta{sup 13}CO{sub 2}, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta{sup 13}C{sub moss} to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed. - Photosynthetic {sup 13}C discrimination of bryophytes might increase with elevated N deposition.

  3. Responses of Greenhouse Tomato and Pepper Yields and Nitrogen Dynamics to Applied Compound Fertilizers

    Institute of Scientific and Technical Information of China (English)

    ZHU Jian-Hua; LI Xiao-Lin; ZHANG Fu-Suo; LI Jun-Liang; P.CHRISTIE

    2004-01-01

    Yield and N uptake of tomato (Lycopersicum esculentum Mill.) and pepper (Capsicum annuum L.) crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-11 N-P2O5-K2O) were studied to determine 1)crop responses,2) dynamics of NO3-N and NH4-N in different soil layers,3) N balance and 4) system-level N efficiencies.Five treatments (2 fertilizers,2 fertilizer rates and a control),each with three replicates,were arranged in the study.The higher N fertilizer rate,300 kg N ha-1 (versus 150 kg N ha-i),returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer (12-12-17) applied at 300 kg N ha-1 rather than with the high-N fertilizer (21-8-11). Ammonium-N in the top 90 cm of the soil profile declined during the experiment,while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N.At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha-1. About 200 kg N ha-1 was applied with irrigation to each crop using NO3-contaminated groundwater. In general,about 50% of the total N input was recovered from all treatments. Pepper,relative to tomato,used N more efficiently with smaller N losses,but the crops utilized less than 29% of the fertilizer N over the two and a half-year period. Local agricultural practices maintained high residual soil nutrient status. Thus,optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.

  4. Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions

    NARCIS (Netherlands)

    Sepman, Alexey; Abtahizadeh, Ebrahim; Mokhov, Anatoli; van Oijen, Jeroen; Levinsky, Howard; de Goey, Philip

    2013-01-01

    In this work we investigate the effects of hydrogen addition on the flame structure of MILD combustion both experimentally and numerically using a laminar-jet-in-hot-coflow (LJHC) geometry. The addition of hydrogen appreciably decreases the flame height (similar to 25%), however only modestly affect

  5. Shallow groundwater nitrogen responses to different land use managements in the riparian zone of Yuqiao Reservoir in North China

    Institute of Scientific and Technical Information of China (English)

    LU Haiming; YIN Chengqing

    2008-01-01

    This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses:cropland,two-year restored (2yr) and five-years restored (5yr) woodlands,fishponds,and the nitrogen flux in the riparian zone of Yuqiao Reservoir.The groundwater nitrate-N concentrations in cropland were the highest among the four land uses.Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p<0.05) higher than in 5yr woodland.The lowest nitrogen concentrations were detected in fishponds.Nitrate-N was the main form in cropland and 2yr woodland,whereas both nitrate-N and diSSolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds.But,ammonium-N was the main form in the ephemeral stream.During the rainy season,the groundwater flow wim dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient.The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen.The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow.The fishpond Was not an important pollution source for nitrogen transfer via shallow groundwater.

  6. Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions

    Science.gov (United States)

    Kaleeem Abbasi, M.; Tahir, M. Mahmood; Sabir, N.; Khurshid, M.

    2015-02-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects carbon (C) and nitrogen (N) cycling in soil-plant systems. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water-filled pore space) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues, i.e., the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata, incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed a wide variation in total N, C, lignin, polyphenols and C / N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of Glycine max and the shoot and root of Trifolium repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% recovery of N that had been released from these added resources. The roots of Glycine max and Zea mays and the shoot of Zea mays showed continuous negative values throughout the incubation. After an initial immobilization, leaves of Populus euramericana, Robinia pseudoacacia and Elaeagnus umbellata exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively, and representing a 16, 32 and 33% N recovery, respectively. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01) and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C / N ratio (r = -0.69; p ≤ 0.05), lignin / N ratio (r = -0.68; p ≤ 0.05), polyphenol / N ratio (r = -0.73; p ≤ 0.05) and (lignin + polyphenol) : N ratio (r = -0.70; p ≤ 0.05) indicating a

  7. Copper addition helps alleviate iron stress in a coastal diatom: Response of Chaetoceros gracilis from the Bay of Bengal to experimental Cu and Fe addition

    Digital Repository Service at National Institute of Oceanography (India)

    Biswas, H.; Bandyopadhyay, D.; Waite, A.

    . Coastal waters receive significant Cu input from a variety of anthropogenic sources which may affect fundamental biological processes including phytoplankton growth. We investigated the responses of the coastal diatom Chaetoceros gracilis to variable Cu...

  8. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    Science.gov (United States)

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. PMID:25958969

  9. Switchgrass response to nitrogen and phosphorus during first growth after seeding

    Directory of Open Access Journals (Sweden)

    Rocky Lemusa

    2014-05-01

    Full Text Available Switchgrass (Panicum virgatum L. is a high-yielding, native perennial that could serve as a biofuels feedstock. The objectives of this research were to establish switchgrass’ responses to N and P under well-defined, soilless conditions and to measure its fertilizer recovery. ‘Cave-in-Rock’ switchgrass was grown from seed in the greenhouse in a 2:1 (v/v vermiculite: perlite substrate. Treatments (nine rates of N up to 400 kg N ha-1 and four rates of P up to 90 kg ha-1 were replicated three times in a randomized complete block design. In a second study, treatments from two N sources (ammonium sulfate and urea were applied at rates up to 270 kg N ha-1. In both studies, plants were harvested 12 wk after germination, dried, weighed, and analyzed for tissue N and P concentrations. Shoot biomass increased with N fertilization up to 210 kg N ha-1. In these pot studies, root biomass increased with N only to 100 kg N ha-1. No significant effect above 30 kg P ha-1 was observed in shoot or root biomass. Biomass and tiller number were highly correlated. Increases in tillers plant-1 were observed up to 116 kg N ha-1. Shoot and root N concentrations generally increased with fertilization. Ammonium sulfate had a greater effect than urea on shoot and root biomass. In field studies found in the literature, maximum yields have been obtained with as little as 50 kg added N ha-1 to as much 744 kg N ha-1.These data suggest switchgrass can maximize biomass production with ~200 kg available N ha-1.

  10. Agronomic performance and chemical response of sunflower (Helianthus annuus L. to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed Fawzy

    2009-03-01

    Full Text Available Sunflower (Helianthus annuus L. is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt during the 2005 season. The objective of this research was to determine the effect of organicnitrogen (ON sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macronutrients by sunflowers grown on sandy soil. The treatments of chicken manure (CM and a mixture of farmyard manure (FYM with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N, phosphorus (P and potassium (K by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control.El girasol (Helianthus annuus es una opción para la producción de semillas oleaginosas, en particular en terrenos arenosos debido al buen desarrollo de sus raíces. En este trabajo, dos estudios de campo fueron realizados en la región de El-Ishattara (Sharkia Governorate, Egypt durante la estación 2005. El efecto de

  11. Response surface optimization of carbon and nitrogen sources for nuclease P1 production by Penicillium citrinum F-5-5

    International Nuclear Information System (INIS)

    Penicillium citrinum F-5-5, a nuclease P1 high-producing strain with 978.6 U/ml in potato glucose medium, was derived from the original Penicillium citrinum CICC 4011 with 60Co γ-rays irradiation mutation and then protoplasts fusion treatment. Culture components were optimized for the nuclease P1 production, and response surface methodology was applied for the critical medium components(carbon and nitrogen sources) which were preselected by Plackett-Burman design approach. Glucose, soluble starch and corn steep powder showed significant effects on production of nuclease. Central composite design was used for the optimization levels by software Minitab 15, and it showed that, the optimal values for the concentration of glucose, soluble starch and corn steep powder were 30.89, 42.46 and 11.60 g/L, respectively. With this medium,an enzyme activity of 1687.16 U/ml could be obtained theoretically. Using this optimized medium, an experimental enzyme activity of 1672.6 U/ml was reached. (authors)

  12. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA.

    Science.gov (United States)

    McDonnell, T C; Belyazid, S; Sullivan, T J; Sverdrup, H; Bowman, W D; Porter, E M

    2014-04-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010-2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha(-1) yr(-1). Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone.

  13. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA

    International Nuclear Information System (INIS)

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010–2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha−1 yr−1. Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone. - Highlights: • A novel calibration step was introduced for modeling biodiversity with ForSAFE-Veg. • Modeled increases in tree cover are consistent with empirical studies. • Reductions in N deposition decreased future graminoid percent cover. • Critical loads of N to protect biodiversity should consider climate change effects. - Subalpine plant biodiversity in Rocky Mountain National Park has already been impacted by N deposition and climate change and is expected to experience significant future effects

  14. Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland

    Institute of Scientific and Technical Information of China (English)

    Viviana Loaiza; Jayne L. Jonas; Anthony Joern

    2011-01-01

    Key elements such as nitrogen (N) and phosphorus (P) are often limiting relative to the nutritional needs of herbivores that feed on them. While N often limits insect herbivores in natural terrestrial ecosystems, the effect of P is poorly studied in the field, even though compelling hypotheses from the ecological stoichiometry literature predict its importance. We evaluated small-scale spatial distributions of, and herbivory by, grasshoppers among neighboring plots that vary in foliar-N and -P in tallgrass prairie.Grasshopper densities were 67% greater in N-fertilized plots but detected no effect to grasshopper densities from P-fertilizer. Leaf damage to the dominant grass Andropogon gerardii was 32% greater in N-fertilized plots, but no response to foliar-P was detected.Herbivore damage to a common forb, goldenrod (Solidago missouriensis), was not strongly linked by fertilizer treatments, although there was increased leaf damage in N-fertilizer treatments when no P was applied (a significant N × P interaction). Under field conditions at local scales, we conclude that spatially heterogeneous distributions of grasshoppers are primarily affected by foliar-N in host plants with little evidence that P-levels contribute to the spatial patterns.

  15. Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation.

    Science.gov (United States)

    Alamri, Saad A; Mostafa, Yasser S

    2009-10-01

    Response of wheat to Azospirillum brasilense Sp-248 inoculation with different N-fertilizer levels using seawater irrigation was investigated. All inoculated treatments increased plant height, shoot and root dry weight, and tiller number in compared with uninoculated treatments. Yield parameters measured were also increased due to the inoculation. In terms of the effect of saline irrigation, there were no significant differences in growth and yield parameters in plants treated with tap water and others irrigated with 8.0% seawater concentration. This would indicate a relatively high tolerance of A. brasilense to saline irrigation and its ability to reduce the deleterious effects of saline on growth by increasing the plant's adaptation. However, increasing the seawater concentration in the irrigation water to 16.0% significantly decreased all tested parameters. Inoculation treatments generally increased NPKCa contents and decreased sodium ratio of the grains in compared with the uninoculated treatments. Overall results clearly revealed that the Azospirillum inoculation saved about 20 units of N-fertilizer and that saving was made economically feasible by decreasing the chemical fertilizers needed, improving the nitrogen content and counteracting the effects of salinity.

  16. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants

    Science.gov (United States)

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady–state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax–fleck) and the steady–state A under low light (Amin–fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax–fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax–fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  17. Soil and fertilizer nitrogen

    International Nuclear Information System (INIS)

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  18. Identiifcation of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deifciency

    Institute of Scientific and Technical Information of China (English)

    YU Chao; CHEN Hua-min; TIAN Fang; BI Yong-mei; Rothstein J Steven; Leach E Jan; HE Chen-yang

    2015-01-01

    Bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of high nitrogen (N) responsive diseases. Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between disease resistance and N utilization pathways might exist. However, the co-regulatory components in such crosstalk have not been elucidated. Here, we comparatively analyzed the gene expression proifling of rice under Xoo inoculation, low N treatment, or a combi-nation of both stresses, and identiifed the differential y-expressed genes (DEGs) in overlapping responses. These DEGs were involved in different biological processes, including innate immunity and nitrogen metabolism. The randomly-selected DEGs expression was validated by quantitative real-time PCR assays. Temporal expression of six genes from different functional categories suggested that N condition was the dominant factor when both stresses were present. These DEGs identiifed provide novel insights into the coordinated regulatory mechanism in biotic and abiotic stress responses in rice.

  19. Preliminary Study on the Responses of Three Marine Algae,Ulva pertusa ( Chlorophyta),Gelidium amansii (Rhodophyta)and Sargassum enerve (Phaeophyta), to Nitrogen Source and Its Availability

    Institute of Scientific and Technical Information of China (English)

    LIU Dongyan; Amy Pickering; SUN Jun

    2004-01-01

    An experiment was designed to select economically valuable macroalga species with high nutrient uptake rates.Such species cultured on a large scale could be a potential solution to eutrophication. Three macroalgae species, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), were chosen for the experiment because of their economic values and availability. Control and four nitrogen concentrations were achieved by adding NH4 and NO3. The results indicate that the fresh weights of all species increase faster than that of control after 5 d culture. The fresh weight of Ulva pertusa increases fastest among the 3 species. However, different species show different responses to nitrogen source and its availability. They also show the advantage of using NH+4 than using NO-3 . U. Pertusa grows best and shows higher capability of removing nitrogen at 200 μmol L-1, but it has lower economical value. G. Amansii has higher economical value but lower capability of removing nitrogen at 200μmolL-1. The capability of nitrogen assimilation of S. Enerve is higher than that of G. Amansii at 200μmolL-1, but the former's increase of fresh weight is lower than those of other two species.Then present preliminary study demonstrates that it is possible to use macroalgae as biofilters and further development of this approach could provide biologically valuable information on the source, fate, and transport of N in marine ecosystems. Caution is needed should we extrapolate these findings to natural environments.

  20. High atomic weight, high-energy radiation (HZE induces transcriptional responses shared with conventional stresses in addition to a core DSB response specific to clastogenic treatments.

    Directory of Open Access Journals (Sweden)

    Victor eMissirian

    2014-08-01

    Full Text Available Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as collateral damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR treatment, HZE (1 GeV Fe26+ high mass, high charge, and high energy relativistic particles and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs, but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5 to 24 hours after irradiation in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the DSB response were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 hours post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 hr after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing extended night. This response was not apparent in gamma-irradiated plants.

  1. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter.

    Directory of Open Access Journals (Sweden)

    Matthew J Harke

    Full Text Available Whole transcriptome shotgun sequencing (RNA-seq was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N, low levels of dissolved inorganic phosphorus (low P, and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM. Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE, and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC, and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed, transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.

  2. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon

    Directory of Open Access Journals (Sweden)

    Carolyn F Weber

    2013-04-01

    Full Text Available Increasing levels of atmospheric carbon dioxide (CO2 and rates of nitrogen (N-deposition to forest ecosystems are predicted to alter the structure and function of soil fungal communities, but the spatially heterogeneous distribution of soil fungi has hampered investigations aimed at understanding such impacts. We hypothesized that soil physical and chemical properties and fungal community composition would be differentially impacted by elevated atmospheric CO2 (eCO2 and N-fertilization in spatially separated field samples, in the forest floor, 0-2 cm, 2-5 cm and 5-10 cm depth intervals in a loblolly pine Free-Air-Carbon Dioxide Enrichment (FACE experiment. In all soils, quantitative PCR-based estimates of fungal biomass were highest in the forest floor. Fungal richness, based on pyrosequencing of the fungal ribosomal large subunit gene, increased in response to N-fertilization in 0-2 cm and forest floor intervals. Composition shifted in forest floor, 0-2 cm and 2-5 cm intervals in response to N-fertilization, but the shift was most distinct in the 0-2 cm interval, in which the largest number of statistically significant changes in soil chemical parameters (i.e phosphorus, organic matter, calcium, pH was also observed. In the 0-2 cm interval, increased recovery of sequences from the Thelephoraceae, Tricholomataceae, Hypocreaceae, Clavicipitaceae, and Herpotrichiellaceae families and decreased recovery of sequences from the Amanitaceae correlated with N-fertilization. In this same depth interval, Amanitaceae, Tricholomataceae and Herpotriciellaceae sequences were recovered less frequently from soils exposed to eCO2 relative to ambient conditions. These results demonstrated that vertical stratification should be taken into consideration in future efforts to elucidate environmental impacts on fungal communities and their feedbacks on ecosystem processes.

  3. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Science.gov (United States)

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection. PMID:23298196

  4. The Effect of Nitrogen Sources and Its Additional Strategies on L-valine Fermentation by Brevibacterium flavum XV0505%氮源及其补加策略对L-缬氨酸发酵的影响

    Institute of Scientific and Technical Information of China (English)

    冯宁; 白亚磊; 徐庆阳; 谢希贤; 陈宁

    2011-01-01

    通过分析黄色短杆菌xv0505发酵生产L-缬氨酸的过程,得知在菌体生长期和快速产酸期氮源对L-缬氨酸发酵的影响不同.以黄色短杆菌XV0505为供试菌株,研究了不同氮源种类及不同氮源浓度对L-缬氨酸发酵过程的影响,选定了以豆饼水解液和硫酸铵为氮源,并确定了合适的初始氮源浓度.在初始氮源浓度相同的情况下,考察了间歇流加补氮策略、恒氮源浓度补氮策略和幂函数流加补氮策略对L-缬氨酸发酵的影响,研究发现,幂指数补氮策略可减少频繁的取样及铵浓度检测,在缺乏在线监测系统和反馈自控系统的情况下,将发酵体系中氮源浓度维持在合适值,既可适度促进菌体生长,又可使L-缬氨酸的产量得到进一步提高.在最优的氮源添加策略下,在30 L发酵罐发酵60 h,发酵液中L-缬氨酸可达63.17 g/L,糖酸转化率24.69%.%By analyzing the L-valine fermentation process by Brevibacterium flavum XV0505, one of important factors influenced on the bacterial productivity and L-valine yield is nitrogen source and its additional strategies. The effect of nitrogen sources on the fermentation of L-valine was studied by adding different nitrogen sources with different concentrations. Therefore, soybean hydrolysates and ammonium sulfate were selected as the appropriate nitrogen source, and the best L-valine yield was obtained with the medium supplemented low initial concentration of 225 mmol/L. In the case of the same initial nitrogen concentration, the effects of three nitrogen feeding strategies (intermittent nitrogen feeding,constant concentration feeding and power function feeding) on biomass, yield of L-valine,concentration of byproduct and conversion rate were studied in the 30L fermentor. The result showed that the concentration and the feed rate of nitrogen source were effectively and timely manipulated by power function feeding, while lacking of online monitoring and feedback

  5. Effects of liquid aluminum chloride additions to poultry litter on broiler performance, ammonia emissions, soluble phosphorus, total volatile fatty acids, and nitrogen contents of litter

    Science.gov (United States)

    Recent studies have shown that the use of aluminum sulfate (Al2(SO4)3.14H2O) and aluminum chloride (AlCl3) additions to animal manures are more effective than other chemicals in reducing ammonia (NH3) emissions and phosphorus (P) solubility. Although the use of alum has been intensively