Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.
2010-06-01
We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈20 keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γgsim 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ >~ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
LAT, The Fermi
2010-01-01
We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with $\\Epeak = 3.9\\pm 0.3$\\,MeV, which is the highest yet measured, and a hard power-law component with photon index $-1.62\\pm 0.03$ that dominates the emission below $\\approx$\\,20\\,keV and above $\\approx$\\,100\\,MeV. The onset of the high-energy spectral component appears to be delayed by $\\sim$\\,0.1\\,s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5\\,s before the main pulse. During the prompt phase, the LAT detected a photon with energy $30.5^{+5.8}_{-2.6}$ GeV, the highest ever measured from a short GRB. Observ...
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4
Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)
2014-12-20
The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.
A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4
Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.
2015-01-01
The low-mass X-ray binary Cen X-4 is the brightest and closest (kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown...... origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1 x 10^(33) erg/s (for D=1kpc), with around 60...
A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4
Chakrabarty, Deepto; Grefenstette, Brian W; Psaltis, Dimitrios; Bachetti, Matteo; Barret, Didier; Boggs, Steven E; Christensen, Finn E; Craig, William W; Fuerst, Felix; Hailey, Charles J; Harrison, Fiona A; Kaspi, Victoria A; Miller, Jon M; Nowak, Michael A; Rana, Vikram; Stern, Daniel; Wik, Daniel R; Wilms, Joern; Zhang, William W
2014-01-01
The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1 x 10^(33) erg/s (for D=1kpc), with around 60 percent in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with an 18 keV electron temperature, which can be understood as...
A Hard X-Ray Power-law Spectral Cutoff in Centaurus X-4
Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.; Psaltis, Dimitrios; Bachetti, Matteo; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fürst, Felix; Hailey, Charles J.; Harrison, Fiona A.; Kaspi, Victoria M.; Miller, Jon M.; Nowak, Michael A.; Rana, Vikram; Stern, Daniel; Wik, Daniel R.; Wilms, Jörn; Zhang, William W.
2014-12-01
The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1× 1033 D^2_kpc erg s-1, with sime60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kTe = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.
Hard-core thinnings of germ-grain models with power-law grain sizes
Kuronen, Mikko
2012-01-01
Random sets with long-range dependence can be generated using a Boolean model with power-law grain sizes. We study thinnings of such Boolean models which have the hard-core property that no grains overlap in the resulting germ-grain model. A fundamental question is whether long-range dependence is preserved under such thinnings. To answer this question we study four natural thinnings of a Poisson germ-grain model where the grains are spheres with a regularly varying size distribution. We show that a thinning which favors large grains preserves the slow correlation decay of the original model, whereas a thinning which favors small grains does not. Our most interesting finding concerns the case where only disjoint grains are retained, which corresponds to the well-known Mat\\'ern type I thinning. In the resulting germ-grain model, typical grains have exponentially small sizes, but rather surprisingly, the long-range dependence property is still present. As a byproduct, we obtain new mechanisms for generating hom...
Suzaku Discovery of a Hard Component Varying Independently of the Power-Law Emission in MCG-6-30-15
Noda, Hirofumi; Uehara, Yuuichi; Yamada, Shin'ya; Nakazawa, Kazuhiro
2011-01-01
Focusing on hard X-ray variability, we reanalyzed Suzaku data of Type I Seyfert galaxy MCG-6-30-15 obtained in 2006. Intensity-sorted spectroscopy and a principal component analysis consistently revealed a very hard component that varies independently of the dominant power-law emission. Although the exact nature of this hard component is not yet identified, it can be modeled as a power-law with a photon index ~2 affected by a partial covering absorption, or as a thermal Comptonization emission with a relatively large optical depth. When this component is included in the fitting model, the time-averaged 2.5-55 keV spectrum of MCG-6-30-15 can be reproduced successfully by invoking a mildly broadened iron line with its emission region located at > 8 times the gravitational radii from the central black hole, and a moderate reflection with a covering fraction of ~3.4. This result implies that the solution of a highly spinning black hole in MCG-6-30-15, obtained by Miniutti et al. (2007, PASJ, 59, S315) using the s...
The Suzaku Discovery of A Hard Power-Law Component in the Spectra of Short Bursts from SGR 0501+4516
Nakagawa, Yujin E; Enoto, Teruaki
2011-01-01
Using data with the Suzaku XIS and HXD, spectral studies of short bursts from the soft gamma repeater SGR 0501+4516 were performed. In total, 32 bursts were detected during the ~60 ks of observation conducted in the 2008 August activity. Excluding the strongest one, the remaining 31 bursts showed an average 2--40 keV fluence of 1.0(-0.5,+0.3)*10^-9 erg cm^-2. A 1--40 keV spectrum summed over them leaves significant positive residuals in the HXD-PIN band with chi^2/d.o.f. = 74/50, when fitted with a two-blackbody function. By adding a power law model, the fit became acceptable with chi^2/d.o.f. = 56/48, yielding a photon index of Gamma=1.0(-0.3,+0.4). This photon index is comparable to Gamma=1.33(-0.16,+0.23) (Enoto et al. 2010a) for the persistent emission of the same object obtained with Suzaku. The two-blackbody components showed very similar ratios, both in the temperature and the emission radii, to those comprising the persistent emission. However, the power-law to two-blackbody flux ratio was possibly hi...
Thomas, Hoben
1981-01-01
Psychophysicists neglect to consider how error should be characterized in applications of the power law. Failures of the power law to agree with certain theoretical predictions are examined. A power law with lognormal product structure is proposed and approximately unbiased parameter estimates given for several common estimation situations.…
Anisotropic Power-law Inflation
Kanno, Sugumi; Watanabe, Masa-aki
2010-01-01
We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.
Kaizoji, T
2006-01-01
In this paper, we quantitatively investigate the statistical properties of a statistical ensemble of stock prices. We selected 1200 stocks traded on the Tokyo Stock Exchange, and formed a statistical ensemble of daily stock prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period of the forming of the internet bubble in Japn, and its bursting in the Japanese stock market. We found that the tail of the complementary cumulative distribution function of the ensemble of stock prices in the high value of the price is well described by a power-law distribution, $ P(S>x) \\sim x^{-\\alpha} $, with an exponent that moves in the range of $ 1.09 < \\alpha < 1.27 $. Furthermore, we found that as the power-law exponents $ \\alpha $ approached unity, the bubbles collapsed. This suggests that Zipf's law for stock prices is a sign that bubbles are going to burst. PACS: 89.65.Gh
Automated image enhancement using power law transformations
S P Vimal; P K Thiruvikraman
2012-12-01
We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks corresponding to the background and the foreground are not widely separated.
Modelling power-law spread of infectious diseases
Meyer, Sebastian
2013-01-01
Short-time human travel behaviour can be well described by a power law with respect to distance. We incorporate this information in space-time models for infectious disease surveillance data to better capture the dynamics of disease spread. Two previously established model classes are extended, which both decompose disease risk additively into endemic and epidemic components: a space-time point process model for individual point-referenced data, and a multivariate time series model for aggregated count data. In both frameworks, the power-law spread is embedded into the epidemic component and its decay parameter is estimated simultaneously with all other unknown parameters using (penalised) likelihood inference. The performance of the new approach is investigated by a re-analysis of individual cases of invasive meningococcal disease in Germany (2002-2008), and count data on influenza in 140 administrative districts of Southern Germany (2001-2008). In both applications, the power-law formulations substantially ...
Edge effect on the power law distribution of granular avalanches.
Lorincz, Kinga A; Wijngaarden, Rinke J
2007-10-01
Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.
Power law inflation with electromagnetism
Luo, Xianghui; Isenberg, James, E-mail: isenberg@uoregon.edu
2013-07-15
We generalize Ringström’s global future causal stability results (Ringström 2009) [11] for certain expanding cosmological solutions of the Einstein-scalar field equations to solutions of the Einstein–Maxwell-scalar field system. In particular, after noting that the power law inflationary spacetimes (M{sup n+1},g{sup -hat}, ϕ{sup -hat}) considered by Ringström (2009) in [11] are solutions of the Einstein–Maxwell-scalar field system (with exponential potential) as well as of the Einstein-scalar field system (with the same exponential potential), we consider (nonlinear) perturbations of initial data sets of these spacetimes which include electromagnetic perturbations as well as gravitational and scalar perturbations. We show that if (as in Ringström (2009) [11]) we focus on pairs of relatively scaled open sets U{sub R{sub 0}}⊂U{sub 4R{sub 0}} on an initial slice of (M{sup n+1},g{sup -hat}), and if we choose a set of perturbed data which on U{sub 4R{sub 0}} is sufficiently close to that of (M{sup n+1},g{sup -hat},ϕ{sup -hat}, A{sup -hat} = 0), then in the maximal globally hyperbolic spacetime development (M{sup n+1},g,ϕ,A) of this data via the Einstein–Maxwell-scalar field equations, all causal geodesics emanating from U{sub R{sub 0}} are future complete (just as in (M{sup n+1},g{sup -hat})). We also verify that, in a certain sense, the future asymptotic behavior of the fields in the spacetime developments of the perturbed data sets does not differ significantly from the future asymptotic behavior of (M{sup n+1},g{sup -hat}, ϕ{sup -hat}, A{sup -hat} = 0). -- Highlights: •We prove stability of expanding solutions of the Einstein–Maxwell-scalar field equations. •All nearby solutions are geodesically complete. •The topology of the initial slice is irrelevant to our stability results.
Power laws, Pareto distributions and Zipf's law
Newman, M E J
2004-01-01
When the probability of measuring a particular value of some quantity varies inversely as a power of that value, the quantity is said to follow a power law, also known variously as Zipf's law or the Pareto distribution. Power laws appear widely in physics, biology, earth and planetary sciences, economics and finance, computer science, demography and the social sciences. For instance, the distributions of the sizes of cities, earthquakes, solar flares, moon craters, wars and people's personal ...
Power-law distributions in empirical data
Clauset, Aaron; Newman, M E J
2007-01-01
Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the tail of the distribution. In particular, standard methods such as least-squares fitting are known to produce systematically biased estimates of parameters for power-law distributions and should not be used in most circumstances. Here we describe statistical techniques for making accurate parameter estimates for power-law data, based on maximum likelihood methods and the Kolmogorov-Smirnov statistic. We also show how to tell whether the data follow a power-law distribution at all, defining quantitative measures that indicate when the power law is a reasonable fit to the data and when it is not. We demonstrate these methods by applying them to twenty-four real-world data sets from a range of different disciplines. Eac...
Power law models of stock indices
Tse, Man Kit
Viewing the stock market as a self-organized system, Sornette and Johansen introduced physics-based models to study the dynamics of stock market crashes from the perspective of complex systems. This involved modeling stock market Indices using a mathematical power law exhibiting log-periodicity as the system approaches a market crash, which acts like a critical point in a thermodynamic system. In this dissertation, I aim to investigate stock indices to determine whether or not they exhibit log-periodic oscillations, according to the models proposed by Sornette, as they approach a crash. In addition to analyzing stock market crashes in the frequency domain using the discrete Fourier transform and the Lomb-Scargle periodogram, I perform a detailed analysis of the stock market crash models through parameter estimation and model testing. I find that the probability landscapes have a complex topography and that there is very little evidence that these phase transition-based models accurately describe stock market crashes.
Power-law regularities in human language
Mehri, Ali; Lashkari, Sahar Mohammadpour
2016-11-01
Complex structure of human language enables us to exchange very complicated information. This communication system obeys some common nonlinear statistical regularities. We investigate four important long-range features of human language. We perform our calculations for adopted works of seven famous litterateurs. Zipf's law and Heaps' law, which imply well-known power-law behaviors, are established in human language, showing a qualitative inverse relation with each other. Furthermore, the informational content associated with the words ordering, is measured by using an entropic metric. We also calculate fractal dimension of words in the text by using box counting method. The fractal dimension of each word, that is a positive value less than or equal to one, exhibits its spatial distribution in the text. Generally, we can claim that the Human language follows the mentioned power-law regularities. Power-law relations imply the existence of long-range correlations between the word types, to convey an especial idea.
Power laws from linear neuronal cable theory
Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom
2014-01-01
Power laws, that is, power spectral densities (PSDs) exhibiting [Formula: see text] behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been...... expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements...... to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency [Formula: see text] power laws with power-law exponents analytically identified as [Formula: see text] for the soma...
Topological defects with power-law tails
Radomskiy, Roman V; Gani, Vakhid A; Christov, Ivan C
2016-01-01
We study interactions of kinks and antikinks of the $(1+1)$-dimensional $\\varphi^8$ model. In this model, there are kinks with mixed tail asymptotics: power-law behavior at one infinity versus exponential decay towards the other. We show that if a kink and an antikink face each other in way such that their power-law tails determine the kink--antikink interaction, then the force of their interaction decays slowly, as some negative power of distance between them. We estimate the force numerically using the collective coordinate approximation, and analytically via Manton's method (making use of formulas derived for the kink and antikink tail asymptotics).
Instabilities in power law gradient hardening materials
Niordson, Christian Frithiof; Tvergaard, Viggo
2005-01-01
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...
Corner Flow of Power Law Fluids
Henriksen, P.; Hassager, Ole
1989-01-01
A local analysis of the flow of power law fluids near corners is performed. The equation for the stream function is shown to allow separated solutions in plane polar coordinates. The radial behavior is shown to be algebraic and results are given for the exponent for different values of corner ang...
Power Laws, Scale-Free Networks and Genome Biology
Koonin, Eugene V; Karev, Georgy P
2006-01-01
Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...
Power law analysis of the human microbiome.
Ma, Zhanshan Sam
2015-11-01
Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs.
Fractal power law in literary English
Gonçalves, L. L.; Gonçalves, L. B.
2006-02-01
We present in this paper a numerical investigation of literary texts by various well-known English writers, covering the first half of the twentieth century, based upon the results obtained through corpus analysis of the texts. A fractal power law is obtained for the lexical wealth defined as the ratio between the number of different words and the total number of words of a given text. By considering as a signature of each author the exponent and the amplitude of the power law, and the standard deviation of the lexical wealth, it is possible to discriminate works of different genres and writers and show that each writer has a very distinct signature, either considered among other literary writers or compared with writers of non-literary texts. It is also shown that, for a given author, the signature is able to discriminate between short stories and novels.
Power laws governing epidemics in isolated populations
Rhodes, C. J.; Anderson, R. M.
1996-06-01
TEMPORAL changes in the incidence of measles virus infection within large urban communities in the developed world have been the focus of much discussion in the context of the identification and analysis of nonlinear and chaotic patterns in biological time series1-11. In contrast, the measles records for small isolated island populations are highly irregular, because of frequent fade-outs of infection12-14, and traditional analysis15 does not yield useful insight. Here we use measurements of the distribution of epidemic sizes and duration to show that regularities in the dynamics of such systems do become apparent. Specifically, these biological systems are characterized by well-defined power laws in a manner reminiscent of other nonlinear, spatially extended dynamical systems in the physical sciences16-19. We further show that the observed power-law exponents are well described by a simple lattice-based model which reflects the social interaction between individual hosts.
Zipf's law, power laws, and maximum entropy
Visser, Matt
2012-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Zipf's law, power laws and maximum entropy
Visser, Matt
2013-04-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Power laws in Elections A Survey
2010-01-01
Empirical power laws in general elections are surveyed in Brazil, Mexico, India, and with focal analysis in Indonesia. The diversity of preference dynamics in voter’s social network and the way multi-party systems to be in its critical conditions are responsible for this pushing around the evolution of political system at general. For the special case of Indonesia, we report the existing robustness for levels of legislative elections throughout 1999 to 2009. We show that the scale free phenom...
Beyond the power law: Uncovering stylized facts in interbank networks
Vandermarliere, Benjamin; Karas, Alexei; Ryckebusch, Jan; Schoors, Koen
2015-06-01
We use daily data on bilateral interbank exposures and monthly bank balance sheets to study network characteristics of the Russian interbank market over August 1998-October 2004. Specifically, we examine the distributions of (un)directed (un)weighted degree, nodal attributes (bank assets, capital and capital-to-assets ratio) and edge weights (loan size and counterparty exposure). We search for the theoretical distribution that fits the data best and report the "best" fit parameters. We observe that all studied distributions are heavy tailed. The fat tail typically contains 20% of the data and can be mostly described well by a truncated power law. Also the power law, stretched exponential and log-normal provide reasonably good fits to the tails of the data. In most cases, however, separating the bulk and tail parts of the data is hard, so we proceed to study the full range of the events. We find that the stretched exponential and the log-normal distributions fit the full range of the data best. These conclusions are robust to (1) whether we aggregate the data over a week, month, quarter or year; (2) whether we look at the "growth" versus "maturity" phases of interbank market development; and (3) with minor exceptions, whether we look at the "normal" versus "crisis" operation periods. In line with prior research, we find that the network topology changes greatly as the interbank market moves from a "normal" to a "crisis" operation period.
Study on local resistance of non-Newtonian power law fluid in elbow pipes
Zhang, Hao; Xu, Tiantian; Zhang, Xinxin; Wang, Yuxiang; Wang, Yuancheng; Liu, Xueting
2016-06-01
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing numerical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and different diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficient. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.
Deformation of a Capsule in a Power-Law Shear Flow
Fang-Bao Tian
2016-01-01
Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.
Poissonian renormalizations, exponentials, and power laws
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Power Laws and Fragility in Flow Networks
Shore, Jesse; Bianchi, Matt T
2013-01-01
What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.
Origin of power-law X-ray emission in the steep power-law state of X-ray binaries
Li-Hong Yan; Jian-Cheng Wang
2011-01-01
We present a new explanation for the origin of the steep power-law (SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies, which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss the relevance of the model to high-frequency quasi-periodic oscillations and the extremely high luminosity of the SPL state.
Discrete power law with exponential cutoff and Lotka's Law
Smolinsky, Lawrence
2015-01-01
The first bibliometric law appeared in Alfred J. Lotka's 1926 examination of author productivity in chemistry and physics. The result is that the productivity distribution is thought to be described by a power law. In this paper, Lotka's original data on author productivity in chemistry is reconsidered by comparing the fit of the data to both a discrete power law and a discrete power law with exponential cutoff.
Power law scaling in synchronization of brain signals depends on cognitive load.
Tinker, Jesse; Velazquez, Jose Luis Perez
2014-01-01
As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors.
Power law scaling in synchronization of brain signals depends on cognitive load
Jose Luis ePerez Velazquez
2014-05-01
Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.
Cota, Wesley F C; Ódor, Géza
2015-01-01
We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving on finite-size random networks with power-law degree distributions. Extensive simulations were done by averaging the activity density over many realizations of networks. We investigated the effects of outliers in both highly fluctuating (natural cutoff) and non-fluctuating (hard cutoff) most connected vertices. Logarithmic and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended regions of the control parameter space $\\lambda_1<\\lambda<\\lambda_2$, suggesting Griffiths effects, induced by the topological inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudo thresholds is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions remain bounded at $\\lambda_2$. We argue these to be signals of a smeared transition. However, in the thermodynamic limit the Griffiths...
Piecewise power laws in individual learning curves.
Donner, Yoni; Hardy, Joseph L
2015-10-01
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning.
Anisotropic power-law k-inflation
Ohashi, Junko; Tsujikawa, Shinji
2013-01-01
It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...
Enhanced discriminability for nonbiological motion violating the two-thirds power law.
Salomon, Roy; Goldstein, Ariel; Vuillaume, Laurène; Faivre, Nathan; Hassin, Ran R; Blanke, Olaf
2016-06-01
The two-thirds power law describes the relationship between velocity and curvature in human motor movements. Interestingly, this motor law also affects visual motion perception, in which stimuli moving according to the two-thirds power law are perceived to have a constant velocity compared to stimuli actually moving at constant velocity. Thus, visual motion adhering to biological motion principles causes a kinematic illusion of smooth and velocity-invariant motion. However, it is yet unclear how this motion law affects the discrimination of visual stimuli and if its encoding requires attention. Here we tested the perceptual discrimination of stimuli following biological (two-thirds power law) or nonbiological movement under conditions in which the stimuli were degraded or masked through continuous flash suppression. Additionally, we tested subjective perception of naturalness and velocity consistency. Our results show that the discriminability of a visual target is inversely related to the perceived "naturalness" of its movement. Discrimination of stimuli following the two-thirds power law required more time than the same stimuli moving at constant velocity or nonecological variants of the two-thirds power law and was present for both masked and degraded stimuli.
Natural orbit approximations in single power-law potentials
Struck, Curtis
2014-01-01
In a previous paper, I demonstrated the accuracy of simple, precessing, power ellipse (p-ellipse) approximations to orbits of low-to-moderate eccentricity in power-law potentials. Here I explore several extensions of these approximations to improve accuracy, especially for nearly radial orbits. 1) It is found that moderately improved orbital fits can be achieved with higher order perturbation expansions (in eccentricity), with the addition of `harmonic' terms to the solution. 2) Alternately, a matching of the extreme radial excursions of an orbit can be imposed, and a more accurate estimate of the eccentricity parameter is obtained. However, the error in the precession frequency is usually increased. 3) A correction function of small magnitude corrects the frequency problem. With this correction, even first order approximations yield excellent fits at quite high eccentricity over a range of potential indices that includes flat and falling rotation curve cases. 4) Adding a first harmonic term to fit the breadt...
Power laws in the information production process Lotkaian informetrics
Egghe, Leo
2005-01-01
Explains many informetric regularities, only based on a decreasing power law as size-frequency function, that is Lotka''s law. This book revives the historical formulation of Alfred Lotka and shows the power of this power law, both in classical aspects of informetrics as well as in applications such as social networks and others.
Reconciling power laws in microscopic and macroscopic neural recordings
Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T
2013-01-01
Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...
Visiting Power Laws in Cyber-Physical Networking Systems
Ming Li
2012-01-01
Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.
Power laws in citation distributions: evidence from Scopus.
Brzezinski, Michal
Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.
Power-law behavior in a cascade process with stopping events: a solvable model.
Yamamoto, Ken; Yamazaki, Yoshihiro
2012-01-01
The present paper proposes a stochastic model to be solved analytically, and a power-law-like distribution is derived. This model is formulated based on a cascade fracture with the additional effect that each fragment at each stage of a cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points. The applicability of our model is also discussed.
Modified power law equations for vertical wind profiles. [in investigation of windpower plant siting
Spera, D. A.; Richards, T. R.
1979-01-01
In an investigation of windpower plant siting, equations are presented and evaluated for a wind profile model which incorporates both roughness and wind speed effects, while retaining the basic simplicity of the Hellman power law. These equations recognize the statistical nature of wind profiles and are compatible with existing analytical models and recent wind profile data. Predictions of energy output based on the proposed profile equations are 10% to 20% higher than those made with the 1/7 power law. In addition, correlation between calculated and observed blade loads is significantly better at higher wind speeds when the proposed wind profile model is used than when a constant power model is used.
Elusiveness of Fluid-Fluid Demixing in Additive Hard-Core Mixtures
Lafuente, Luis; Cuesta, José A.
2002-09-01
The conjecture that when an additive hard-core mixture phase separates when one of the phases is spatially ordered, well supported by considerable evidence, is in contradiction with some simulations of a binary mixture of hard cubes on cubic lattices. By extending Rosenfeld's fundamental measure theory to lattice models we show that the phase behavior of this mixture is far more complex than simulations show, exhibiting regions of stability of several smectic, columnar, and solid phases, but no fluid-fluid demixing. A comparison with the simulations show that they are, in fact, compatible with a fluid-columnar demixing transition, thus bringing this model into the same demixing scheme as the rest of additive hard-core mixtures.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Statistical analyses support power law distributions found in neuronal avalanches.
Andreas Klaus
Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Yazaki, Ryo; Kumagai, Naoya; Shibasaki, Masakatsu
2010-04-21
We report that a hard Lewis base substantially affects the reaction efficiency of direct catalytic asymmetric gamma-addition of allyl cyanide (1a) to ketones promoted by a soft Lewis acid/hard Brønsted base catalyst. Mechanistic studies have revealed that Cu/(R,R)-Ph-BPE and Li(OC(6)H(4)-p-OMe) serve as a soft Lewis acid and a hard Brønsted base, respectively, allowing for deprotonative activation of 1a as the rate-determining step. A ternary catalytic system comprising a soft Lewis acid/hard Brønsted base and an additional hard Lewis base, in which the basicity of the hard Brønsted base Li(OC(6)H(4)-p-OMe) was enhanced by phosphine oxide (the hard Lewis base) through a hard-hard interaction, outperformed the previously developed binary soft Lewis acid/hard Brønsted base catalytic system, leading to higher yields and enantioselectivities while using one-tenth the catalyst loading and one-fifth the amount of 1a. This second-generation catalyst allows efficient access to highly enantioenriched tertiary alcohols under nearly ideal atom-economical conditions (0.5-1 mol % catalyst loading and a substrate molar ratio of 1:2).
Power-law distributions in binned empirical data
Virkar, Yogesh
2012-01-01
Many man-made and natural phenomena, including the intensity of earthquakes, population of cities, and size of international wars, are believed to follow power-law distributions. The accurate identification of power-law patterns has significant consequences for developing an understanding of complex systems. However, statistical evidence for or against the power-law hypothesis is complicated by large fluctuations in the empirical distribution's tail, and these are worsened when information is lost from binning the data. We adapt the statistically principled framework for testing the power-law hypothesis, developed by Clauset, Shalizi and Newman, to the case of binned data. This approach includes maximum-likelihood fitting, a hypothesis test based on the Kolmogorov-Smirnov goodness-of-fit statistic and likelihood ratio tests for comparing against alternative explanations. We evaluate the effectiveness of these methods on synthetic binned data with known structure and apply them to twelve real-world binned data...
Optical monitoring for power law fluids during spin coating.
Jardim, P L G; Michels, A F; Horowitz, F
2012-01-30
Optical monitoring is applied, in situ and in real time, to non-newtonian, power law fluids in the spin coating process. An analytical exact solution is presented for thickness evolution that well fits to most measurement data. As result, typical rheological parameters are obtained for several CMC (carboximetilcelullose) concentrations and rotation speeds. Optical monitoring thus precisely indicates applicability of the model to power law fluids under spin coating.
Upper-truncated Power Laws in Natural Systems
Burroughs, S. M.; Tebbens, S. F.
- When a cumulative number-size distribution of data follows a power law, the data set is often considered fractal since both power laws and fractals are scale invariant. Cumulative number-size distributions for data sets of many natural phenomena exhibit a ``fall-off '' from a power law as the measured object size increases. We demonstrate that this fall-off is expected when a cumulative data set is truncated at large object size. We provide a generalized equation, herein called the General Fitting Function (GFF), that describes an upper-truncated cumulative number-size distribution based on a power law. Fitting the GFF to a cumulative number-size distribution yields the coefficient and exponent of the underlying power law and a parameter that characterizes the upper truncation. Possible causes of upper truncation include data sampling limitations (spatial or temporal) and changes in the physics controlling the object sizes. We use the GFF method to analyze four natural systems that have been studied by other approaches: forest fire area in the Australian Capital Territory; fault offsets in the Vernejoul coal field; hydrocarbon volumes in the Frio Strand Plain exploration play; and fault lengths on Venus. We demonstrate that a traditional approach of fitting a power law directly to the cumulative number-size distribution estimates too negative an exponent for the power law and overestimates the fractal dimension of the data set. The four systems we consider are well fit by the GFF method, suggesting they have properties characterized by upper-truncated power laws.
Power laws in citation distributions: Evidence from Scopus
Brzezinski, Michal
2014-01-01
Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative mo...
Systematic harmonic power laws inter-relating multiple fundamental constants
Chakeres, Donald; Buckhanan, Wayne; Andrianarijaona, Vola
2017-01-01
Power laws and harmonic systems are ubiquitous in physics. We hypothesize that 2, π, the electron, Bohr radius, Rydberg constant, neutron, fine structure constant, Higgs boson, top quark, kaons, pions, muon, Tau, W, and Z when scaled in a common single unit are all inter-related by systematic harmonic powers laws. This implies that if the power law is known it is possible to derive a fundamental constant's scale in the absence of any direct experimental data of that constant. This is true for the case of the hydrogen constants. We created a power law search engine computer program that randomly generated possible positive or negative powers searching when the product of logical groups of constants equals 1, confirming they are physically valid. For 2, π, and the hydrogen constants the search engine found Planck's constant, Coulomb's energy law, and the kinetic energy law. The product of ratios defined by two constants each was the standard general format. The search engine found systematic resonant power laws based on partial harmonic fraction powers of the neutron for all of the constants with products near 1, within their known experimental precision, when utilized with appropriate hydrogen constants. We conclude that multiple fundamental constants are inter-related within a harmonic power law system.
Hard Fats As Additives In Palm Oil And Its Relationships To Crystallization Process And Polymorphism
Oliveira, MR; Glazieli Marangoni; Ribeiro; Ana Paula Badan; dos Santos; Adenilson Oliveira; Cardoso; Lisandro Pavie; Kieckbusch; Theo Guenter
2016-01-01
The application of palm oil in fat-based product can be inappropriate due to its low crystallization rates and formation of crystalline clusters in post-processing stages. The adjustment of these properties can be achieved with the addition of hard fats, which are low-cost industrial products resulting from the process of total catalytic hydrogenation of liquid oils. During the crystallization of palm oil, these components can act as preferential nuclei in a crystalline ordering process, and ...
Power-law cross-correlations estimation under heavy tails
Kristoufek, Ladislav
2016-11-01
We examine the performance of six estimators of the power-law cross-correlations-the detrended cross-correlation analysis, the detrending moving-average cross-correlation analysis, the height cross-correlation analysis, the averaged periodogram estimator, the cross-periodogram estimator and the local cross-Whittle estimator-under heavy-tailed distributions. The selection of estimators allows to separate these into the time and frequency domain estimators. By varying the characteristic exponent of the α-stable distributions which controls the tails behavior, we report several interesting findings. First, the frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, the time domain estimators are upward biased for heavy tails but they have lower estimator variance than the other group for short series. Third, specific estimators are more appropriate depending on distributional properties and length of the analyzed series. In addition, we provide a discussion of implications of these results for empirical applications as well as theoretical explanations.
Power-law ansatz in complex systems: Excessive loss of information
Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-12-01
The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.
A generalization of the power law distribution with nonlinear exponent
Prieto, Faustino; Sarabia, José María
2017-01-01
The power law distribution is usually used to fit data in the upper tail of the distribution. However, commonly it is not valid to model data in all the range. In this paper, we present a new family of distributions, the so-called Generalized Power Law (GPL), which can be useful for modeling data in all the range and possess power law tails. To do that, we model the exponent of the power law using a non-linear function which depends on data and two parameters. Then, we provide some basic properties and some specific models of that new family of distributions. After that, we study a relevant model of the family, with special emphasis on the quantile and hazard functions, and the corresponding estimation and testing methods. Finally, as an empirical evidence, we study how the debt is distributed across municipalities in Spain. We check that power law model is only valid in the upper tail; we show analytically and graphically the competence of the new model with municipal debt data in the whole range; and we compare the new distribution with other well-known distributions including the Lognormal, the Generalized Pareto, the Fisk, the Burr type XII and the Dagum models.
Robust Statistical Detection of Power-Law Cross-Correlation
Blythe, Duncan A. J.; Nikulin, Vadim V.; Müller, Klaus-Robert
2016-06-01
We show that widely used approaches in statistical physics incorrectly indicate the existence of power-law cross-correlations between financial stock market fluctuations measured over several years and the neuronal activity of the human brain lasting for only a few minutes. While such cross-correlations are nonsensical, no current methodology allows them to be reliably discarded, leaving researchers at greater risk when the spurious nature of cross-correlations is not clear from the unrelated origin of the time series and rather requires careful statistical estimation. Here we propose a theory and method (PLCC-test) which allows us to rigorously and robustly test for power-law cross-correlations, correctly detecting genuine and discarding spurious cross-correlations, thus establishing meaningful relationships between processes in complex physical systems. Our method reveals for the first time the presence of power-law cross-correlations between amplitudes of the alpha and beta frequency ranges of the human electroencephalogram.
Characterizing and Predicting the Robustness of Power-law Networks
LaRocca, Sarah
2013-01-01
Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2,000 power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing...
A complete data frame work for fitting power law distributions
Gillespie, Colin S
2014-01-01
Over the last few decades power law distributions have been suggested as forming generative mechanisms in a variety of disparate fields, such as, astrophysics, criminology and database curation. However, fitting these heavy tailed distributions requires care, especially since the power law behaviour may only be present in the distributional tail. Current state of the art methods for fitting these models rely on estimating the cut-off parameter $x_{\\min}$. This results in the majority of collected data being discarded. This paper provides an alternative, principled approached for fitting heavy tailed distributions. By directly modelling the deviation from the power law distribution, we can fit and compare a variety of competing models in a single unified framework.
Human learning: Power laws or multiple characteristic time scales?
Gottfried Mayer-Kress
2006-09-01
Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.
Afterglow Light Curves and Broken Power Laws: A Statistical Study
J'ohannesson, G; Gudmundsson, E H; J\\'ohannesson, Gudlaugur; Bj\\"ornsson, Gunnlaugur; Gudmundsson, Einar H.
2006-01-01
In gamma-ray burst research it is quite common to fit the afterglow light curves with a broken power law to interpret the data. We apply this method to a computer simulated population of afterglows and find systematic differences between the known model parameters of the population and the ones derived from the power law fits. In general, the slope of the electron energy distribution is overestimated from the pre-break light curve slope while being underestimated from the post-break slope. We also find that the jet opening angle derived from the fits is overestimated in narrow jets and underestimated in wider ones. Results from fitting afterglow light curves with broken power laws must therefore be interpreted with caution since the uncertainties in the derived parameters might be larger than estimated from the fit. This may have implications for Hubble diagrams constructed using gamma-ray burst data.
Relaxation Dynamics of Non-Power-Law Fluids
Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong
2013-12-01
The relaxation of non-Newtonian liquids with non-power-law rheology on partially wetted surfaces is rarely investigated. This study assesses the relaxation behavior of 14 partial wetting systems with non-power-law fluids by sessile drop method. These systems are two carboxymethylcellulose sodium solutions on two kinds of slides, cover glass, and silicon wafer surfaces; three polyethylene glycol (PEG400) + silica nanoparticle suspensions on polymethyl methacrylate and polystyrene surfaces. The dynamic contact angle and moving velocity of contact line relationship data for relaxation drops of the 14 tested systems demonstrate a power-law fluid-like behavior, and the equivalent power exponent for a certain fluid on different solid substrates are uniform. By analyzing the relationship between the equivalent power exponent and shear rate, it is proposed that a fluid regime with shear rates of a few tens of s controls relaxation dynamics.
Power laws statistics of cliff failures, scaling and percolation
Baldassarri, Andrea
2014-01-01
The size of large cliff failures may be described in several ways, for instance considering the horizontal eroded area at the cliff top and the maximum local retreat of the coastline. Field studies suggest that, for large failures, the frequencies of these two quantities decrease as power laws of the respective magnitudes, defining two different decay exponents. Moreover, the horizontal area increases as a power law of the maximum local retreat, identifying a third exponent. Such observation suggests that the geometry of cliff failures are statistically similar for different magnitudes. Power laws are familiar in the physics of critical systems. The corresponding exponents satisfy precise relations and are proven to be universal features, common to very different systems. Following the approach typical of statistical physics, we propose a "scaling hypothesis" resulting in a relation between the three above exponents: there is a precise, mathematical relation between the distributions of magnitudes of erosion ...
Universal power law behaviors in genomic sequences and evolutionary models
Martignetti, L
2007-01-01
We study the length distribution of a particular class of DNA sequences known as 5'UTR exons. These exons belong to the messanger RNA of protein coding genes, but they are not coding (they are located upstream of the coding portion of the mRNA) and are thus less constrained from an evolutionary point of view. We show that both in mouse and in human these exons show a very clean power law decay in their length distribution and suggest a simple evolutionary model which may explain this finding. We conjecture that this power law behaviour could indeed be a general feature of higher eukaryotes.
Noncommutativity, Extra Dimensions, and Power Law Running in the Infrared
Abel, Steven A.; Jaeckel, Joerg; Khoze, Valentin V.; Ringwald, Andreas
2005-01-01
We investigate the running gauge couplings of U(N) noncommutative gauge theories with compact extra dimensions. Power law running of the trace-U(1) gauge coupling in the ultraviolet is communicated to the infrared by ultraviolet/infrared mixing, whereas the SU(N) factors run exactly as in the commutative theory. This results in theories where the experimentally excluded trace-U(1) factors decouple with a power law running of the momentum in the extreme infrared, effectively hiding them from d...
Fractional-power-law level statistics due to dynamical tunneling.
Bäcker, Arnd; Ketzmerick, Roland; Löck, Steffen; Mertig, Normann
2011-01-14
For systems with a mixed phase space we demonstrate that dynamical tunneling universally leads to a fractional power law of the level-spacing distribution P(s) over a wide range of small spacings s. Going beyond Berry-Robnik statistics, we take into account that dynamical tunneling rates between the regular and the chaotic region vary over many orders of magnitude. This results in a prediction of P(s) which excellently describes the spectral data of the standard map. Moreover, we show that the power-law exponent is proportional to the effective Planck constant h(eff).
Natural orbit approximations in single power-law potentials
Struck, Curtis
2015-01-01
In a previous paper, I demonstrated the accuracy of simple, precessing, power ellipse (p-ellipse) approximations to orbits of low-to-moderate eccentricity in power-law potentials. Here, I explore several extensions of these approximations to improve accuracy, especially for nearly radial orbits. (1) It is found that moderately improved orbital fits can be achieved with higher order perturbation expansions (in eccentricity), with the addition of `harmonic' terms to the solution. (2) Alternately, a matching of the extreme radial excursions of an orbit can be imposed, and a more accurate estimate of the eccentricity parameter is obtained. However, the error in the precession frequency is usually increased. (3) A correction function of small magnitude corrects the frequency problem. With this correction, even first-order approximations yield excellent fits at quite high eccentricity over a range of potential indices that includes flat and falling rotation-curve cases. (4) Adding a first harmonic term to fit the breadth of the orbital loops, and determining the fundamental and harmonic coefficients by matching to three orbital positions further improves the fit. With a couple of additional small corrections, one obtains excellent fits to orbits with radial ranges of more than a thousand for some potentials. These simple corrections to the basic p-ellipse are basically in the form of several successive approximations, and can provide high accuracy. They suggest new results including that the apsidal precession rate scales approximately as log(1 - e) at very high eccentricities e. New insights are also provided on the occurrence of periodic orbits in various potentials, especially at high eccentricity.
Effect of titania addition on hot hardness of UO{sub 2}
Sengupta, A.K. E-mail: arghya@apsara.barc.ernet.in; Basak, C.B.; Jarvis, T.; Bhagat, R.K.; Pandey, V.D.; Majumdar, S
2004-02-15
Large grain UO{sub 2} is a potential fuel for LWR's for achieving extended burn up. Large grains are obtained by addition of dopants like Nb{sub 2}O{sub 5}, TiO{sub 2}, Cr{sub 2}O{sub 3}, V{sub 2}O{sub 5} etc. However, presence of such dopants might affect the thermophysical and thermomechanical properties of the fuel. In the present investigation the effect of TiO{sub 2} addition on the hot hardness (H) of sintered UO{sub 2} fuel has been studied from ambient to 1573 K in vacuum. TiO{sub 2} content was varied from 0.01 to 0.15 w/o resulting in a grain size (G) variation of 9 to 94 {mu}m. With increase in grain size (or TiO{sub 2} content) H first decreases, attains a minima and then increases further. The increase is more prominent at lower temperature (<773 K) than that at higher temperatures. H vs. G{sup -1/2} plots indicates the same type of variation like other oxide ceramics with H minima at an intermediate grain size at low temperature. The intrinsic hardness and softening coefficient of UO{sub 2} indicate cubic dependence on TiO{sub 2} content.
Step-Step Random Walk Network with Power-Law Clique-Degree Distribution
YANG Han-Xin; WANG Bing-Hong; LIU Jian-Guo; HAN Xiao-Pu; ZHOU Tao
2008-01-01
We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distribution based on our model obeys a power-law form, which is in agreement with the recently empirical evidences. In addition, our model displays the small-world effect and the hierarchical structure.
Power Laws and Gaussians for Stock Market Fluctuations
Tuncay, C; Tuncay, Caglar; Stauffer, Dietrich
2006-01-01
The daily volume of transaction on the New York Stock Exchange and its day-to-day fluctuations are analysed with respect to power-law tails as well long-term trends. We also model the transition to a Gaussian distribution for longer time intervals, like months instead of days.
Power Law of Customers’ Expenditures in Convenience Stores
Mizuno, Takayuki
2008-03-01
In a convenience store chain, a tail of the cumulative density function of the expenditure of a person during a single shopping trip follows a power law with an exponent of -2.5. The exponent is independent of the location of the store, the shopper's age, the day of week, and the time of day.
Power-law relations in random networks with communities
Stegehuis, Clara; van Leeuwaarden, Johan S H
2016-01-01
Most random graph models are locally tree-like - do not contain short cycles - which makes them unfit for modeling networks with a community structure. We introduce the hierarchical configuration model (HCM), a generalization of the configuration model that includes community structures, while properties such as the size of the giant component, and the size of the giant percolating cluster under bond percolation can still be derived analytically. Furthermore, viewing real-world networks as realizations of the HCM reveals two previously unobserved power-law relations: between the number of edges inside a community and the community sizes, and between the number of edges going out of a community and the community sizes. Many real-world networks have both a community structure and a power-law degree distribution. We relate the power-law exponent $\\tau$ of the degree distribution with the power-law exponent of the community size distribution $\\gamma$. In the special case of dense communities, this relation takes ...
Thresholded Power Law Size Distributions of Instabilities in Astrophysics
Aschwanden, Markus J
2015-01-01
Power law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold $x_0$; (3) contamination by an event-unrelated background $x_b$; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in simplest terms with a "thresholded power law" distribution function (also called generalized Pareto [type II] or Lomax distribution), $N(x) dx \\propto (x+x_0)^{-a} dx$, where $x_0 > 0$ is positive for a threshold effect, while $x_0 < 0$ is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential-growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold $x_0$. We app...
Back-reaction effect in power-law inflation
Bellini, M
2004-01-01
I consider a power-law inflationary model taking into account back-reaction effects. The interesting result is that the spectrum for the scalar field fluctuations does not depends on the expansion rate of the universe $p$ and that it result to be scale invariant for cosmological scales. However, the amplitude for these fluctuations depends on $p$.
Persistence and permanence of mass-action and power-law dynamical systems
Craciun, Gheorghe; Pantea, Casian
2010-01-01
Persistence and permanence are properties of dynamical systems that describe the long-term behavior of the solutions, and in particular specify whether positive solutions approach the boundary of the positive orthant. Mass-action systems (or more generally power-law systems) are very common in chemistry, biology, and engineering, and are often used to describe the dynamics in interaction networks. We prove that two-species mass-action systems derived from weakly reversible networks are both persistent and permanent, for any values of the reaction rate parameters. Moreover, we prove that a larger class of networks, called endotactic networks, also give rise to permanent systems, even if we allow the reaction rate parameters to vary in time. These results also apply to power-law systems and other nonlinear dynamical systems. In addition, ideas behind these results allow us to prove the Global Attractor Conjecture for three-species systems.
Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions
Gong, Jingyu; Du, Jiulin
2012-01-01
The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.
Power-law Distributions in Information Science - Making the Case for Logarithmic Binning
Milojević, Staša
2010-01-01
We suggest partial logarithmic binning as the method of choice for uncovering the nature of many distributions encountered in information science (IS). Logarithmic binning retrieves information and trends "not visible" in noisy power-law tails. We also argue that obtaining the exponent from logarithmically binned data using a simple least square method is in some cases warranted in addition to methods such as the maximum likelihood. We also show why often used cumulative distributions can make it difficult to distinguish noise from genuine features, and make it difficult to obtain an accurate power-law exponent of the underlying distribution. The treatment is non-technical, aimed at IS researchers with little or no background in mathematics.
Deviation from Power Law Behavior in Landslide Phenomenon
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law
Precise algorithm to generate random sequential addition of hard hyperspheres at saturation.
Zhang, G; Torquato, S
2013-11-01
The study of the packing of hard hyperspheres in d-dimensional Euclidean space R^{d} has been a topic of great interest in statistical mechanics and condensed matter theory. While the densest known packings are ordered in sufficiently low dimensions, it has been suggested that in sufficiently large dimensions, the densest packings might be disordered. The random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time saturation limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for nearly saturated configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. U. Uche, and F. H. Stillinger, Phys. Rev. E 74, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space in a large simulation box using finite computational time with heretofore unattained precision and across the widest range of dimensions (2≤d≤8). We have also calculated the packing and covering densities, pair correlation function g(2)(r), and structure factor S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average
Arif, Saqib; Ali, Tahira Mohsin; Ul Afzal, Qurat; Ahmed, Mubarik; Siddiqui, Asim Jamal; Hasnain, Abid
2014-06-01
The effects of water extractable pentosans (WEP) and water unextractable pentosans (WUP) on pasting properties in flours of eight different hard white spring wheat (HWSW) cultivars was studied. WEP and WUP isolated from a hard wheat flour were added to each of the cultivars at 1% and 2% level. The results indicated that WEP exhibited a pronounced effect on pasting properties as compared to WUP and variety. Univariate analysis of variance (ANOVA) was used to evaluate sources of variation. The variety significantly (P < 0.001) influenced all the pasting parameters. WUP caused significant (P < 0.001) variation in paste viscosities (except breakdown). WEP influenced more pronouncedly the hot paste, cold paste, breakdown and setback viscosities with F values-221.802, 214.286, 98.073 and 120.159, respectively. Variety-by-WEP interaction exhibited significant (P < 0.01) influence on pasting time, peak, hot paste and cold paste viscosities. Whereas, variety-by-WUP interaction only significantly (P < 0.001) influenced the pasting- time and -temperature. Duncan's test was used to analyze the significant difference (P < 0.05) within the variety. The results revealed that WUP did not induce significant (P < 0.05) influence on all the pasting parameters, whereas, WEP influenced significantly (P < 0.05) the paste viscosities of some of the varieties. It was also found that the addition of WEP remarkably reduced the setback, hot paste, cold paste viscosities and increased the breakdown viscosity in all cultivar flours. The effect of WEP was greater at higher level of supplementation on paste viscosities.
Diffusion with stochastic resetting at power-law times
Nagar, Apoorva; Gupta, Shamik
2016-06-01
What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ˜τ-(1 +α );α >0 ? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α 1 . The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.
Robustness of Power-law Behavior in Cascading Failure Models
Sloothaak, F; Zwart, A P
2016-01-01
Inspired by reliability issues in electric transmission networks, we use a probabilistic approach to study the occurrence of large failures in a stylized cascading failure model. In this model, lines have random capacities that initially meet the load demands imposed on the network. Every single line failure changes the load distribution in the surviving network, possibly causing further lines to become overloaded and trip as well. An initial single line failure can therefore potentially trigger massive cascading effects, and in this paper we measure the risk of such cascading events by the probability that the number of failed lines exceeds a certain large threshold. Under particular critical conditions, the exceedance probability follows a power-law distribution, implying a significant risk of severe failures. We examine the robustness of the power-law behavior by exploring under which assumptions this behavior prevails.
Power law cosmology model comparison with CMB scale information
Tutusaus, Isaac; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Fèvre, Olivier Le; Ilić, Stéphane; Piazza, Federico; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-01-01
Despite the ability of the cosmological concordance model ($\\Lambda$CDM) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO, can be well reproduced by both $\\Lambda$CDM and power law expansion models with $n \\sim 1.5$, while the constant expansion rate model ($n = 1$) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data is well known to provide the most stringent constraints on standard cosmological models, in particular through the position of the first peak of the temperature ...
Weak power law rheology of soft glassy and gelled materials
Patricio, Pedro
2015-01-01
We make a parallel excursion to the generalised Maxwell and Kelvin-Voigt models to find which general conditions may lead to the weak power law behaviours of the elastic and viscous moduli, $G'(w)\\sim G''(w)\\sim w^\\alpha$, with $0 y\\approx \\alpha$ and $y> x\\approx \\alpha$ for respectively the generalised Maxwell and Kelvin-Voigt models. Beyond this region, we find very different and interesting exponents.
London house prices are power-law distributed
MacKay, Niall
2010-01-01
In this pilot study we explore the house price distributions for London, Manchester, Bristol, Newcastle, Birmingham and Leeds. We find Pareto (power law) behaviour in their upper tails, which is clearly distinct from lognormal behaviour in the cases of London and Manchester. We propose an index of Housing Wealth Inequality based on the Pareto exponent and analogous to the Gini coefficient, and comment on its possible uses.
Power law cosmology model comparison with CMB scale information
Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-11-01
Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.
Primordial perturbations in tachyonic power-law inflation
de Souza, Rudinei C
2013-01-01
In this work we determine the power spectrum of the gravitational potential of the primordial fluctuations for an inflationary model whose \\emph{inflaton} is a non-canonical scalar field of the tachyon-type. The respective background field equations for an inverse-square potential produce a power-law inflation, and it is explicitly shown that for such a potential the power spectrum tends to be scale-independent for highly accelerated regimes in the inflationary expansion.
Scaling range of power laws that originate from fluctuation analysis.
Grech, Dariusz; Mazur, Zygmunt
2013-05-01
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R^{2} of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
Simple inflationary quintessential model. II. Power law potentials
de Haro, Jaume; Amorós, Jaume; Pan, Supriya
2016-09-01
The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive
Power-law deformation of Wishart-Laguerre ensembles of random matrices
Akemann, G
2008-01-01
We introduce a one-parameter deformation of the Wishart-Laguerre or chiral ensembles of positive definite random matrices with Dyson index beta=1,2 and 4. Our generalised model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size NxM for all three beta, in terms of the orthogonal polynomials of the standard Wishart-Laguerre ensembles. For large-N in a certain double scaling limit we obtain a generalised Marcenko-Pastur distribution on the macroscopic scale, and a generalised Bessel-law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power-law tails, where the microscopic limit depends on beta and the difference M-N. In the limit where our parameter governing the power-law goes to infinity we recover the correlations of the Wishart-Laguerre ensembles. To illustrate these findings the generalised Marcenko-Pastur distribut...
Size-frequency and rank-frequency relations,power laws and exponentials: a unified approach
无
2003-01-01
Power laws, such as Zipf's law, and exponential relations, leading to straight lines in logarithmic or semi-logarithmic scales, are presented in a unified setting. It is shown that the class of size-frequency power laws is larger than the class of rank-frequency power laws. Their ubiquity in all fields of science is illustrated.
Event-scale power law recession analysis: quantifying methodological uncertainty
Dralle, David N.; Karst, Nathaniel J.; Charalampous, Kyriakos; Veenstra, Andrew; Thompson, Sally E.
2017-01-01
The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship
Power-Law Tail in the Chinese Wealth Distribution
DING Ning; WANG You-Gui
2007-01-01
@@ We analyse the data from the recently published lists of the richest Chinese from the year 2003 to 2005. The results confirm that in these years the wealth is distributed according to a power law with exponents between 1.758 and 2.285 in the high end. The power distribution is found to be quite robust although the persons in the list change drastically and the wealth increases rapidly. The relation between the wealth and the absolute change of wealth rejects the notion that the wealth evolution is a multiplicative stochastic process.
Failure analysis on China power grid based on power law
Xiaofeng WENG; Yiguang HONG; Ancheng XUE; Shengwei MEI
2006-01-01
This paper is concerned with the mechanism of blackouts in China power system from the viewpoint of self-organized criticality. By using two estimation algorithms of scaled window variance (SWV) and rescaled rangestatistics (R/S), this paper studies the blackout data in China power system during 1988-1997. The result of analysis shows that the blackout data of 1994-1997 coincides well with the autocorrelation. Furthermore, it is found that the function of blackout probability vs. blackout size exhibits power law distribution.
Thermal emission in fatigue described by power laws
Gallinatti A.E.
2010-06-01
Full Text Available In the present work, a theoretical model proposed by the literature and focused on the relationship between microplasticizations thermal behaviour and fatigue scatter is analysed and applied to fatigue test results of standard and notched steel specimens. The same experimental data are subjected to the TCM (Two Curves Method thermographic elaboration technique, in order to quickly evaluate fatigue limit values. TCM method has been modified, aiming at interpolating thermal data referred to the region of loads upper than fatigue limit with a non linear regression law having the same mathematical structure of the theoretical model equations (power laws.
Universal power law for front propagation in all fiber resonators.
Coulibaly, S; Taki, M; Tlidi, M
2014-01-13
We consider a bistable system consisting of all fiber cavity driven by an external injected continuous wave. We report on front propagation in a high finesse cavity. We study the asymptotic behavior of the front velocity. We show that the front velocity is affected by the distance from the critical point associated with bistability. We provide a scaling low governing its evolution near the up-switching point of the bistable curve. We show also that the velocity of front propagation obeys a generic power law when the front velocity approaches asymptotically its linear growing value.
Heat Transfer for Power Law Non-Newtonian Fluids
ZHENG Lian-Cun; ZHANG Xin-Xin; LU Chun-Qing
2006-01-01
We present a theoretical analysis for heat transfer in power law non-Newtonian fluid by assuming that the thermal diffusivity is a function of temperature gradient. The laminar boundary layer energy equation is considered as an example to illustrate the application. It is shown that the boundary layer energy equation subject to the corresponding boundary conditions can be transformed to a boundary value problem of a nonlinear ordinary differential equation when similarity variables are introduced. Numerical solutions of the similarity energy equation are presented.
Power law distributions of patents as indicators of innovation.
Dion R J O'Neale
Full Text Available The total number of patents produced by a country (or the number of patents produced per capita is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan and 2.37 (Poland. We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.
Protostellar fragmentation in a power-law density distribution
Burkert, A; Bodenheimer, P
1997-01-01
Hydrodynamical calculations in three space dimensions of the collapse of an isothermal, rotating 1 M\\sol protostellar cloud are presented. The initial density stratification is a power law with density $\\rho \\propto r^{-p}$, with $p=1$. The case of the singular isothermal sphere ($p=2$) is not considered; however $p=1$ has been shown observationally to be a good representation of the density distribution in molecular cloud cores just before the beginning of collapse. The collapse is studied with two independent numerical methods, an SPH code with 200,000 particles, and a finite-difference code with nested grids which give high spatial resolution in the inner regions. Although previous numerical studies have indicated that such a power-law distribution would not result in fragmentation into a binary system, both codes show, in contrast, that multiple fragmentation does occur in the central regions of the protostar. Thus the process of binary formation by fragmentation is shown to be consistent with the fact th...
Power Law Distributions of Patents as Indicators of Innovation
O'Neale, D R J
2012-01-01
The total number of patents produced by a country (or the number of patents produced per capita) is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many OECD countries is well-described by power laws with exponents that vary between 1.66 (Japan) and 2.37 (Poland). Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as R&D intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in...
Power Laws in Real Estate Prices during Bubble Periods
Ohnishi, Takaaki; Mizuno, Takayuki; Shimizu, Chihiro; Watanabe, Tsutomu
How can we detect real estate bubbles? In this paper, we propose making use of information on the cross-sectional dispersion of real estate prices. During bubble periods, prices tend to go up considerably for some properties, but less so for others, so that price inequality across properties increases. In other words, a key characteristic of real estate bubbles is not the rapid price hike itself but a rise in price dispersion. Given this, the purpose of this paper is to examine whether developments in the dispersion in real estate prices can be used to detect bubbles in property markets as they arise, using data from Japan and the U.S. First, we show that the land price distribution in Tokyo had a power-law tail during the bubble period in the late 1980s, while it was very close to a lognormal before and after the bubble period. Second, in the U.S. data we find that the tail of the house price distribution tends to be heavier in those states which experienced a housing bubble. We also provide evidence suggesting that the power-law tail observed during bubble periods arises due to the lack of price arbitrage across regions.
Concerning the Nature of the Cosmic Ray Power Law Exponents
Widom, A; Srivastava, Y N
2014-01-01
We have recently shown that the cosmic ray energy distributions as detected on earthbound, low flying balloon or high flying satellite detectors can be computed by employing the heats of evaporation of high energy particles from astrophysical sources. In this manner, the experimentally well known power law exponents of the cosmic ray energy distribution have been theoretically computed as 2.701178 for the case of ideal Bose statistics, 3.000000 for the case of ideal Boltzmann statistics and 3.151374 for the case of ideal Fermi statistics. By "ideal" we mean virtually zero mass (i.e. ultra-relativistic) and noninteracting. These results are in excellent agreement with the experimental indices of 2.7 with a shift to 3.1 at the high energy ~ PeV "knee" in the energy distribution. Our purpose here is to discuss the nature of cosmic ray power law exponents obtained by employing conventional thermal quantum field theoretical models such as quantum chromodynamics to the cosmic ray sources in a thermodynamic scheme w...
Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Leonard, Donovan N [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-03-01
The objectives for this considerations described here are to; investigate the compatibility of engine lubricant antiwear (AW) additives, specifically conventional zinc dialkyldithiophosphate (ZDDP) and newly developed ionic liquids (ILs), with selected commercial hard coatings, and provide fundamental understanding to guide future development of engine lubricants.
Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems
Parolari, A.; Katul, G. G.; Porporato, A. M.
2015-12-01
The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.
Extended power-law scaling of heavy-tailed random fields or processes
A. Guadagnini
2012-06-01
Full Text Available We analyze the scaling behaviors of two log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along two horizontal transects on a 21 m long outcrop of lower-shoreface bioturbated sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power ξ (q of separation scale or lag, s, over limited ranges of s. A procedure known as Extended Self-Similarity (ESS extends this range to all lags and yields a nonlinear (concave functional relationship between ξ (q and q. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian truncated (additive, self-affine, monofractal fractional Brownian motion (tfBm, the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm, stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm and (ii provide maximum likelihood estimates of parameters characterizing the corresponding Lévy stable subordinators and tfBm functions.
Stability of core-annular flow of power-law fluids in the presence of interfacial surfactant
无
2010-01-01
The shear-thinning influence on the core-annular flow stability of two immiscible power-law fluids is considered by making a linear stability analysis.The flow is driven by an axial pressure gradient in a straight pipe with the interface between the two fluids occupied by an insoluble surfactant.Given the basic flow for this core-annular arrangement,the analytical solution is obtained with respect to the power-law fluid model.The linearized equations for the evolution of infinitesimal disturbances are derived and the stability problem is formulated as a generalized matrix eigenvalue problem,which is solved by using the software package Matlab based on the QZ algorithm.The shear-thinning property is found to have marked influence on the power-law fluid core-annular flow stability,which is reflected in various aspects.First,the capillary instability is magnified by the shear-thinning property,which may lead to an essential difference between power-law and Newtonian fluid flows.Especially when the interface is close to the pipe wall,the power-law fluid flow may be unstable while the Newtonian fluid flow is stable.Second,under disturbances to the interface a velocity discontinuity at the interface appears which is destabilizing to the flow.The magnitude of this velocity discontinuity is affected by the power-law index and the flow stability is influenced correspondingly.Besides,the shear-thinning property may induce new stability modes which do not appear in the Newtonian fluid flow.The flow stability shows much dependence on the interface location,the role of which was neglected in most previous studies.The shear-thinning fluid flow is more unstable to long wave disturbances when the interface is close to the pipe wall,while the Newtonian fluid flow is more unstable when the interface is close to the pipe centerline.But this trend is changed by the addition of interfacial surfactant,for which the power-law fluid flow is more stable no matter where the interface is
Resetting of fluctuating interfaces at power-law times
Gupta, Shamik; Nagar, Apoorva
2016-11-01
What happens when the time evolution of a fluctuating interface is interrupted by resetting to a given initial configuration after random time intervals τ distributed as a power-law ∼ {τ }-(1+α ); α \\gt 0? For an interface of length L in one dimension, and an initial flat configuration, we show that depending on α, the dynamics in the limit L\\to ∞ exhibit a spectrum of rich long-time behavior. It is known that without resetting, the interface width grows unbounded with time as {t}β in this limit, where β is the so-called growth exponent characteristic of the universality class for a given interface dynamics. We show that introducing resetting leads to fluctuations that are bounded at large times for α \\gt 1. Corresponding to such a reset-induced stationary state is a distribution of fluctuations that is strongly non-Gaussian, with tails decaying as a power-law. The distribution exhibits a distinctive cuspy behavior for a small argument, implying that the stationary state is out of equilibrium. For α \\lt 1, on the contrary, resetting to the flat configuration is unable to counter the otherwise unbounded growth of fluctuations in time, so that the distribution of fluctuations remains time dependent with an ever-increasing width, even at long times. Although stationary for α \\gt 1, the width of the interface grows forever with time as a power-law for 1\\lt α \\lt {α }({{w})}, and converges to a finite constant only for larger α, thereby exhibiting a crossover at {α }({{w})}=1 + 2β . The time-dependent distribution of fluctuations exhibits for α \\lt 1 and for small arguments further interesting crossover behavior from cusp to divergence across {α }({{d})}=1-β . We demonstrate these results by exact analytical results for the paradigmatic Edwards–Wilkinson (EW) dynamical evolution of the interface, and further corroborate our findings by extensive numerical simulations of interface models in the EW and Kardar–Parisi–Zhang universality
Bessaa, Assia; Djebli, Mourad
2017-02-01
We present a numerical analysis of several phase transitions which take place in the eigenmode spectrum of a two-dimensional (2D) logarithmic cluster subjected to an anisotropic power law confinement. Varying the anisotropy in a non-parabolic soft confinement drives the system to undergo structural phase transitions of first order, while for a hard wall confinement this variation affects strongly the eigenmode spectrum and breaks the symmetry of the system due to the removal of degeneracy and the coupling between some normal modes.
Disobeying Power Laws: Perils for Theory and Method
G. Christopher Crawford
2012-08-01
Full Text Available The “norm of normality” is a myth that organization design scholars should believe only at their peril. In contrast to the normal (bell-shaped distribution with independent observations and linear relationships assumed by Gaussian statistics, research shows that nearly every input and outcome in organizational domains is power-law (Pareto distributed. These highly skewed distributions exhibit unstable means, unlimited variance, underlying interdependence, and extreme outcomes that disproportionally influence the entire system, making Gaussian methods and assumptions largely invalid. By developing more focused research designs and using methods that assume interdependence and potentially nonlinear relationships, organization design scholars can develop theories that more closely depict empirical reality and provide more useful insights to practitioners and other stakeholders.
A reservoir for inverse power law decoherence of a qubit
Giraldi, Filippo
2010-01-01
The exact dynamics of a Jaynes-Cummings model for a qubit interacting with a continuous distribution of bosons, characterized by a special form of the spectral density, is evaluated analytically. The special reservoir is designed to induce anomalous decoherence, resulting in an inverse power law relaxation, of power $3/2$, over an evaluated long time scale. If compared to the exponential-like relaxation obtained from the original Jaynes-Cummings model for Lorentzian-type spectral density functions, decoherence is strongly suppressed. The special reservoir exhibits an upper band edge frequency coinciding with the qubit transition frequency. Known theoretical models of photonic band gap media suitable for the realization of the designed reservoir are proposed.
Power-law rheology controls aftershock triggering and decay
Zhang, Xiaoming; Shcherbakov, Robert
2016-11-01
The occurrence of aftershocks is a signature of physical systems exhibiting relaxation phenomena. They are observed in various natural or experimental systems and usually obey several non-trivial empirical laws. Here we consider a cellular automaton realization of a nonlinear viscoelastic slider-block model in order to infer the physical mechanisms of triggering responsible for the occurrence of aftershocks. We show that nonlinear viscoelasticity plays a critical role in the occurrence of aftershocks. The model reproduces several empirical laws describing the statistics of aftershocks. In case of earthquakes, the proposed model suggests that the power-law rheology of the fault gauge, underlying lower crust, and upper mantle controls the decay rate of aftershocks. This is verified by analysing several prominent aftershock sequences for which the rheological properties of the underlying crust and upper mantle were established.
An effective quintessence field with a power-law potential
Khurshudyan, M; Myrzakulov, R; Chattopadhyay, S; Kahya, E O
2014-01-01
In this paper, we will consider an effective quintessence scalar field with a power-law potential interacting with a $P_{b}=\\xi q\\rho_{b}$ barotropic fluid as a first model, where $q$ is a deceleration parameter. For the second model we assume viscous polytropic gas interacting with the scalar field. We investigate problem numerically and analyze behavior of different cosmological parameter concerning to components and behavior of Universe. We also compare our results with observational data to fix parameters of the models. We find some instabilities in the first model which may disappear in the second model for the appropriate parameters. Therefore, we can propose interacting quintessence dark energy with viscous polytropic gas as a successful model to describe Universe.
Deviation from power law of the global seismic moment distribution
Serra, Isabel; Corral, Álvaro
2017-01-01
The distribution of seismic moment is of capital interest to evaluate earthquake hazard, in particular regarding the most extreme events. We make use of likelihood-ratio tests to compare the simple Gutenberg-Richter power-law (PL) distribution with two statistical models that incorporate an exponential tail, the so-called tapered Gutenberg-Richter (Tap) and the truncated gamma, when fitted to the global CMT earthquake catalog. Although the Tap distribution does not introduce any significant improvement of fit respect the PL, the truncated gamma does. Simulated samples of this distribution, with parameters β = 0.68 and mc = 9.15 and reshuffled in order to mimic the time occurrence of the order statistics of the empirical data, are able to explain the temporal heterogeneity of global seismicity both before and after the great Sumatra-Andaman earthquake of 2004. PMID:28053311
Degeneracies and scaling relations in general power-law models for gravitational lenses
Wucknitz, O
2002-01-01
The time delay in gravitational lenses can be used to derive the Hubble constant in a relatively simple way. The results of this method are less dependent on astrophysical assumptions than in many other methods. The most important uncertainty is related to the mass model used. We discuss a family of models with a separable radial power-law and an arbitrary angular dependence for the potential psi = r^beta * F(theta). Isothermal potentials are a special case of these models with beta=1. An additional external shear is used to take into account perturbations from other galaxies. Using a simple linear formalism for quadruple lenses, we can derive H0 as a function of the observables and the shear. If the latter is fixed, the result depends on the assumed power-law exponent according to H0 proportional to (2-beta)/beta. The effect of external shear is quantified by introducing a `critical shear' gamma_c as a measure for the amount of shear that changes the result significantly. The analysis shows, that in the gene...
Fractal Analysis of Power-Law Fluid in a Single Capillary
YUN Mei-Juan; YU Bo-Ming; Xu Peng; CAI Jian-Chao
2008-01-01
The fractal expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fxactal nature of tortuous capillaries.Every parameter in the proposed expressions has clear physical meaning.The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index.Tjle flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension.Good agreement between the model predictions for flow in a fractal capillary and in a converging-diverging duct is obtained.The results suggest that the fractal capillary model can be used to model the power-law fluids with different rheological properties.
Numerical Study of Thermal Boundary Layer on a Continuous Moving Surface in Power Law Fluids
Hao ZHANG; Xinxin ZHANG; Liancun ZHENG
2007-01-01
This paper investigates flow and heat transfer of power law fluids on a continuous moving surface. The temperature distribution is obtained numerically by considering the effect of the power law viscosity on thermal diffusivity and the characteristics of the flow and heat transfer are analyzed. The results show that the distribution of the thermal boundary layer depends not only on the velocity ratio parameter of the plate, but also on the power law index and Prandtl number of fluids.
Existence of Hierarchies and Human's Pursuit of Top Hierarchy Lead to Power Law
Yu, Shuiyuan; Liu, Haitao
2016-01-01
The power law is ubiquitous in natural and social phenomena, and is considered as a universal relationship between the frequency and its rank for diverse social systems. However, a general model is still lacking to interpret why these seemingly unrelated systems share great similarity. Through a detailed analysis of natural language texts and simulation experiments based on the proposed 'Hierarchical Selection Model', we found that the existence of hierarchies and human's pursuit of top hierarchy lead to the power law. Further, the power law is a statistical and emergent performance of hierarchies, and it is the universality of hierarchies that contributes to the ubiquity of the power law.
Chaudry Masood Khalique
2013-03-01
In this paper, exact solutions of Benjamin–Bona–Mahony–Peregrine equation are obtained with power-law and dual power-law nonlinearities. The Lie group analysis as well as the simplest equation method are used to carry out the integration of these equations. The solutions obtained are cnoidal waves, periodic solutions and soliton solutions. Subsequently, the conservation laws are derived for the underlying equations.
Effects of Sorghum Flour Addition on Chemical and Rheological Properties of Hard White Winter Wheat
Ranya F. Abdelghafor
2013-11-01
Full Text Available This study was carried out to investigate the chemical and rheological properties of different blends prepared using hard white winter wheat (HWWW; Triticum aestivum Desf. and whole or decorticated sorghum (Sorghum bicolor. Whole and decorticated sorghum were used to replace 5, 10, 15 and 20% of wheat flour. Wheat samples had higher protein, moisture and calcium values and lower fat, ash, carbohydrates, iron and phosphorous values compared to whole and decorticated sorghum flours. Decortication of sorghum grains decreased moisture, ash, fat, crude protein, iron and phosphorous content, but increased carbohydrate content. Farinogram properties such as dough water absorption, development time and stability and Farinograph quality number decreased as the amount of substituted sorghum increased; whereas mixing tolerance index increased. Moreover, at fixed gluten levels, as sorghum flour increased in the blend, wet gluten, dry gluten and gluten index decreased. Increasing sorghum in the blend also decreased energy, resistance to extension and extensibility of the dough, but contributed to an increase in the ratio of resistance to extensibility. Furthermore, as fermentation time increased, energy, resistance to extension and the ratio number of energy to extension increased, whereas extensibility decreased.
Reciprocity and the Emergence of Power Laws in Social Networks
Schnegg, Michael
Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.
Quantum healing of classical singularities in power-law spacetimes
Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)
2007-07-07
We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.
The speed–curvature power law in Drosophila larval locomotion
2016-01-01
We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. PMID:28120807
Power law distribution of seismic rates: theory and data
Saichev, A
2004-01-01
We report an empirical determination of the probability density functions P(r) of the number r of earthquakes in finite space-time windows for the California catalog, over fixed spatial boxes 5 x 5 km^2 and time intervals dt =1, 10, 100 and 1000 days. We find a stable power law tail P(r) ~ 1/r^{1+mu} with exponent mu \\approx 1.6 for all time intervals. These observations are explained by a simple stochastic branching process previously studied by many authors, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks''). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. We develop the full theory in terms of generating functions for describing the space-time organization of earthquake sequences and develop several approximations to solve the equations. The calibration of the theory to the empirical observations shows that it is essential to augment the ETAS model by taking account of th...
Modified bosonic gas trapped in a generic 3-dim power law potential
Castellanos, E., E-mail: elias@zarm.uni-bremen.de; Laemmerzahl, C., E-mail: claus.laemmerzahl@zarm.uni-bremen.de
2014-04-04
We analyze the consequences caused by an anomalous single-particle dispersion relation suggested in several quantum-gravity models, upon the thermodynamics of a Bose–Einstein condensate trapped in a generic 3-dimensional power-law potential. We prove that the condensation temperature is shifted as a consequence of such deformation and show that this fact could be used to provide bounds on the deformation parameters. Additionally, we show that the shift in the condensation temperature, described as a non-trivial function of the number of particles and the trap parameters, could be used as a criterion to analyze the effects caused by a deformed dispersion relation in weakly interacting systems and also in finite size systems.
E. Dologlou
2009-01-01
Full Text Available The power law relation between the stress drop of "non thrust" earthquakes and the lead time of precursory Seismic Electric Signals (SES, obtained by Dologlou (2008a, has been tested by using additional data from the most recent earthquake that occurred on 8 June 2008, in Andravida, NW. Peloponnesus, Greece and from two other destructive earthquakes that occurred in the past in Ionian sea. A critical exponent α=0.33 is derived which is close to the one (e.g. 0.29 reported by Dologlou (2008a. The above preliminary result strengthens the hypothesis that probably signatures of criticality are present in the earthquake preparation and precursory SES processes and that both phenomena are governed by same physics.
Mathematical modeling for laminar flow of power law fluid in porous media
Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao
2010-07-01
In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)
A Possible Origin of Power-Law Distribution in Stock Markets
杨纯斌; 蔡勖
2002-01-01
The origin of the power-law distribution in stock markets is discussed from the point of view of self-organized criticality. An analytical expression for the distribution is given from a simple model consideration. We see that power-law increasing or decreasing distribution functions can have the same origin, depending on the values of the parameters.
Numerical tools for obtaining power-law representations of heavy-tailed datasets
Mansfield, Marc L.
2016-01-01
Many empirical datasets have highly skewed, non-Gaussian, heavy-tailed distributions, dominated by a relatively small number of data points at the high end of the distribution. Consistent with their role as stable distributions, power laws have frequently been proposed to model such datasets. However there are physical situations that require distributions with finite means. Such situations may call for power laws with high-end cutoffs. Here, I present a maximum-likelihood technique for determining an optimal cut-off power law to represent a given dataset. I also develop a new statistical test of the quality of fit. Results are demonstrated for a number of benchmark datasets. Non-power-law datasets can frequently be represented by power laws, but this is a trivial result unless the dataset spans a broad domain. Nevertheless, I demonstrate that there are non-power-law distributions, including broad log-normal distributions, whose tails can be fit to power laws over many orders of magnitude. Therefore, caution is called for whenever power laws are invoked to represent empirical data. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2015-60452-3
Investigating dynamics of inhibitory and feedback loops in ERK signalling using power-law models.
Vera, Julio; Rath, Oliver; Balsa-Canto, Eva; Banga, Julio R; Kolch, Walter; Wolkenhauer, Olaf
2010-11-01
The investigation of the structure and dynamics of signal transduction systems through data-based mathematical models in ordinary differential equations or other paradigms has proven to be a successful approach in recent times. Extending this concept, we here analysed the use of kinetic models based on power-law terms with non-integer kinetic orders in the validation of hypotheses concerning regulatory structures in signalling systems. We integrated pre-existent biological knowledge, hypotheses and experimental quantitative data into a power-law model to validate the existence of certain regulatory loops in the Ras/Raf-1/MEK/ERK pathway, a MAPK pathway involved in the transduction of mitogenic and differentiation signals. Towards this end, samples of a human mammary epithelial cell line (MCF-10A) were used to obtain time-series data, characterising the behaviour of the system after epidermal growth factor stimulation in different scenarios of expression for the critical players of the system regarding the investigated loops (e.g., the inhibitory protein RKIP). The mathematical model was calibrated using a computational procedure that included: analysis of structural identifiability, global ranking of parameters to detect the most sensitivity ones towards the experimental setup, model calibration using global optimization methods to find the parameter values that better fit the data, and practical identifiability analysis to estimate the confidence in the estimated values for the parameters. The obtained model was used to perform computational simulations concerning the role of the investigated regulatory loops in the time response of the signalling pathway. Our findings suggest that the special regularity in the structure of the power-law terms make them suitable for a data-based validation of regulatory loops in signalling pathways. The model-based analysis performed identified RKIP as an actual inhibitor of the activation of the ERK pathway, but also suggested
Glitch observation and hard X-ray power law measurement in PSR J1119-6127
Archibald, R. F.; Tendulkar, S. P.; Scholz, P. A.; Kaspi, V. M.
2016-07-01
We report on Swift-XRT, NuSTAR and Fermi spectral and timing observations of PSR J1119-6127, a rotation-powered high magnetic field pulsar that showed a magnetar-like burst on 2016 July 28, 01:27:51 UT (ATel #9274, ATel #9282).
Chen, Yanguang
2013-01-01
The different between the inverse power function and the negative exponential function is significant. The former suggests a complex distribution, while the latter indicates a simple distribution. However, the association of the power-law distribution with the exponential distribution has been seldom researched. Using mathematical derivation and numerical experiments, I reveal that a power-law distribution can be created through averaging an exponential distribution. For the distributions defined in a 1-dimension space, the scaling exponent is 1; while for those defined in a 2-dimension space, the scaling exponent is 2. The findings of this study are as follows. First, the exponential distributions suggest a hidden scaling, but the scaling exponents suggest a Euclidean dimension. Second, special power-law distributions can be derived from exponential distributions, but they differ from the typical power-law distribution. Third, it is the real power-law distribution that can be related with fractal dimension. ...
Echeverria, J. C.; Rodriguez, E.; Aguilar-Cornejo, M.; Alvarez-Ramirez, J.
2016-10-01
In many instances, the fluctuation function obtained from detrended fluctuation analysis (DFA) cannot be described by a uniform power-law function along scales. In fact, the manifestation of crossover scales may reflect the simultaneous action of different stochastic mechanisms displayed predominantly within certain scale ranges. This note proposes the use of a linear combination of power-law functions for adjusting DFA data. The idea is that each power-law function recast the dominance of certain stochastic mechanisms (e.g., the mean-reversion and long-term trends) at specific scale domains. Different values of the scaling exponents are numerically estimated by means of a nonlinear least-squares fitting of power-law functions. Examples of crude oil market and heart rate variability are discussed with some detail for illustrating the advantages of taking a linear combination of power-law functions for describing scaling behavior from DFA.
On the structure and phase transitions of power-law Poissonian ensembles
Eliazar, Iddo; Oshanin, Gleb
2012-10-01
Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.
Chimera patterns induced by distance-dependent power-law coupling in ecological networks
Banerjee, Tanmoy; Dutta, Partha Sharathi; Zakharova, Anna; Schöll, Eckehard
2016-09-01
This paper reports the occurrence of several chimera patterns and the associated transitions among them in a network of coupled oscillators, which are connected by a long-range interaction that obeys a distance-dependent power law. This type of interaction is common in physics and biology and constitutes a general form of coupling scheme, where by tuning the power-law exponent of the long-range interaction the coupling topology can be varied from local via nonlocal to global coupling. To explore the effect of the power-law coupling on collective dynamics, we consider a network consisting of a realistic ecological model of oscillating populations, namely the Rosenzweig-MacArthur model, and show that the variation of the power-law exponent mediates transitions between spatial synchrony and various chimera patterns. We map the possible spatiotemporal states and their scenarios that arise due to the interplay between the coupling strength and the power-law exponent.
Mobile user forecast and power-law acceleration invariance of scale-free networks
Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao
2011-01-01
This paper studies and predicts the number growth of China's mobile users by using the power-law regression.We find that the number growth of the mobile users follows a power law.Motivated by the data on the evolution of the mobile users,we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model,in which the nodes grow following a power-law acceleration.The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process.This result shows that the model generates appropriate power-law connectivity distributions.Therefore,we find a power-law acceleration invariance of the scale-free networks.The numerical simulations of the models agree with the analytical results well.
Power-law distribution functions derived from maximum entropy and a symmetry relationship
Peterson, G J
2011-01-01
Power-law distributions are common, particularly in social physics. Here, we explore whether power-laws might arise as a consequence of a general variational principle for stochastic processes. We describe communities of 'social particles', where the cost of adding a particle to the community is shared equally between the particle joining the cluster and the particles that are already members of the cluster. Power-law probability distributions of community sizes arise as a natural consequence of the maximization of entropy, subject to this 'equal cost sharing' rule. We also explore a generalization in which there is unequal sharing of the costs of joining a community. Distributions change smoothly from exponential to power-law as a function of a sharing-inequality quantity. This work gives an interpretation of power-law distributions in terms of shared costs.
Power law olivine crystal size distributions in lithospheric mantle xenoliths
Armienti, P.; Tarquini, S.
2002-12-01
Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy γr-α . Such systems are useful in modeling melting transitions. The limit α→∞ corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (α>3) and repulsive (γ>0) interactions. The geometric theory solutions for given α>3 , γ>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b(ρT-3/α) , where ρ is the density; (2) all solutions are equivalent up to a single scaling constant for ρT-3/α , related to γ via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any α>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if α→∞ , the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 33.7913 a phase transition is required to go between these regimes; (7) for any alpha>3 we may include a first-order phase transition, which is expected from computer simulations; and (8) if alpha-->infinity, the density approaches a finite value as the pressure increases to infinity, with the pressure diverging logarithmically in the density difference.
Flow of power-law fluids in fixed beds of cylinders or spheres
Singh, John P.
2012-10-29
An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an
Evolution of Hard X-Ray Spectra Along the Branches in Cir X-1
Ding, G Q; Li, T P
2003-01-01
Using the data from the PCA and HEXTE on board the RXTE satellite, we investigate the evolution of the 3-200 keV spectra of the peculiar low mass X-ray binary (LMXB) Cir X-1 along the branches on its hardness-intensity diagram (HID) from the vertical horizontal branch (VHB), through the horizontal horizontal branch (HHB) and normal branch (NB), to the flaring branch (FB). We detect a power-law hard component in the spectra. It is found that the derived photon indices ($\\Gamma$) of the power-law hard component are correlated with the position on the HID. The power-law component dominates the X-ray emission of Cir X-1 in the energy band higher than $\\sim 20$ keV. The fluxes of the power-law component are compared with those of the bremsstrahlung component in the spectra. A possible origin of the power-law hard component is discussed.
A SECOND-ORDER MOMENT TURBULENCE MODEL FOR POWER LAW FLUID WITH PARTICLES
无
2007-01-01
The model of power law fluid for dense two-phase turbulent flow was developed, which combines the unified second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. This model was used to simulate the turbulent flow of power law fluid single-phase in pipe. It is shown that the model has better prediction result than the model. The model was then used to simulate the dense two-phase turbulent up flow of power law fluid with particles. With the increase of the flow exponent, the velocities of power law fluid and particles increase near the pipe centre. Comparison between the two-phase flow of power law fluid-particle and of liquid-particle indicates that the axial fluctuation velocity of fluid phase and particle phase in liquid-particle two-phase flow is smaller than that in the power law fluid two-phase flow, but the two-phase velocities of power law fluid-particle and liquid-particle are close to each other.
Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
Jonathan Touboul
Full Text Available The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
Blinking in quantum dots: The origin of the grey state and power law statistics
Ye, Mao; Searson, Peter C.
2011-09-01
Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full range of blinking behavior reported in the literature and provides new insight into features such as the gray state, the power-law distribution of on and off times, and the power-law exponents.
The double power law in human collaboration behavior: The case of Wikipedia
Kwon, Okyu; Son, Woo-Sik; Jung, Woo-Sung
2016-11-01
We study human behavior in terms of the inter-event time distribution of revision behavior on Wikipedia, an online collaborative encyclopedia. We observe a double power law distribution for the inter-editing behavior at the population level and a single power law distribution at the individual level. Although interactions between users are indirect or moderate on Wikipedia, we determine that the synchronized editing behavior among users plays a key role in determining the slope of the tail of the double power law distribution.
A SIMILARITY METHOD FOR LAMINAR WAKE OF POWER-LAW FLUID FLOW AROUND A FLAT PLATE
Liu Cun-fang; Wang Mei-xia
2003-01-01
Based on the characteristic equation for power-law fluid and the Prandtl boundary layer equation, using the similarity method similar to that of Newtonian fluids, two similarity variables were given and a normal differential equation was derived for the laminar wake of power-law fluid flow produced by a flat plate. And numerical results were obtained. The results show that the power-law index n has evident influence on the velocity distribution in the wake. In the wake, velocity gradient is larger, and the wake is narrower for larger n.
Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media
Meijuan Yun
2014-01-01
Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.
Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron
Razavi, Mansour [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)], E-mail: m-razavi@merc.ac.ir; Rahimipour, Mohammad Reza [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of); Rajabi-Zamani, Amir Hossein [Materials and Energy Research Center, P.O. Box 1455-4777, Tehran (Iran, Islamic Republic of)
2007-04-25
In this research, the feasibility of the addition of nanocrystalline TiC particles - synthesized via mechanical alloying - to iron matrix melt was investigated. For the preparation of TiC, impure titanium chips and carbon black were placed in a high-energy ball mill and sampled after different milling time. XRD studies showed that at milling times more than 15 h, TiC was synthesized. It was observed from the peak broadening of the diffraction patterns that the TiC crystallites were in the scale of nanometer. 0.96 wt.% TiC synthesized after 15 h was added to a 4 wt.% C cast iron melt. It was observed that this small amount of TiC was enough to improve the structure, hardness and wear resistance of the cast iron significantly.
Hydrodynamics of Newtonian and power-law fluids in microchannel with superhydrophobic wall
Vagner, S. A.; Patlazhan, S. A.
2016-11-01
The flow peculiarities of the Newtonian and Carreau-Yasuda power-law fluids in a microchannel with the striped superhydrophobic wall is studied numerically. The driving forces leading to deviation of streamlines from the channel axis are analyzed.
Oscillatory and Power-law Mass Inflation in Non-Abelian Black Holes
Galtsov, D V; Zotov, M Yu
1997-01-01
Interior structure of non-Abelian black holes is shown to exhibit in a general case either an oscillating mass-inflationary behavior, or power-law behavior with a divergent mass function. In both cases no Cauchy horizon forms.
Symmetries of boundary layer equations of power-law fluids of second grade
Mehmet Pakdemirli; Yi(g)it Aksoy; Muhammet Y(u)r(u)soy; Chaudry Masood Khalique
2008-01-01
A modified power-law fluid of second grade is considered. The model is a combination of power-law and second grade fluid in which the fluid may exhibit normal stresses, shear thinning or shear thickening behaviors. The equations of motion are derived for two dimensional incom-pressible flows, and from which the boundary layer equations are derived. Symmetries of the boundary layer equations are found by using Lie group theory, and then group classifica-tion with respect to power-law index is performed. By using one of the symmetries, namely the scaling symmetry, the partial differential system is transformed into an ordinary differential system, which is numerically integrated under the classical boundary layer conditions. Effects of power-law index and second grade coefficient on the boundary layers are shown and solutions are contrasted with the usual second grade fluid solutions.
Exploring the effect of power law social popularity on language evolution.
Gong, Tao; Shuai, Lan
2014-01-01
We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.
Important Property of GRB Pulse: Power-Law Indices of Time Properties on Energy
Zhao-Yang Peng
2014-09-01
The dependence of pulse temporal properties (pulse width, pulse rise width and pulse decay width) on energy is power-law function. Some correlated relationships between the power-law indices of the pulse time properties on energy and the spectral lags, relative spectral lags, spectral parameters of band function, and photon flux using a well-separated long-duration -ray burst (GRB) pulse sample is demonstrated here. We argue that the curvature effect can explain the correlated properties.
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Wondimu Teka
2016-03-01
Full Text Available We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate, the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-03-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
Perera-Burgos, Jorge Adrián; Méndez-Alcaraz, José Miguel; Pérez-Ángel, Gabriel; Castañeda-Priego, Ramón
2016-09-01
Depletion forces are a particular class of effective interactions that have been mainly investigated in binary mixtures of hard-spheres in bulk. Although there are a few contributions that point toward the effects of confinement on the depletion potential, little is known about such entropic potentials in two-dimensional colloidal systems. From theoretical point of view, the problem resides in the fact that there is no general formulation of depletion forces in arbitrary dimensions and, typically, any approach that works well in three dimensions has to be reformulated for lower dimensionality. However, we have proposed a theoretical framework, based on the formalism of contraction of the description within the integral equations theory of simple liquids, to account for effective interactions in colloidal liquids, whose main feature is that it does not need to be readapted to the problem under consideration. We have also shown that such an approach allows one to determine the depletion pair potential in three-dimensional colloidal mixtures even near to the demixing transition, provided the bridge functions are sufficiently accurate to correctly describe the spatial correlation between colloids [E. López-Sánchez et al., J. Chem. Phys. 139, 104908 (2013)]. We here report an extensive analysis of the structure and the entropic potentials in binary mixtures of additive hard-disks. In particular, we show that the same functional form of the modified-Verlet closure relation used in three dimensions can be straightforwardly employed to obtain an accurate solution for two-dimensional colloidal mixtures in a wide range of packing fractions, molar fractions, and size asymmetries. Our theoretical results are explicitly compared with the ones obtained by means of event-driven molecular dynamics simulations and recent experimental results. Furthermore, to assess the accuracy of our predictions, the depletion potentials are used in an effective one-component model to reproduce
Why credit risk markets are predestined for exhibiting log-periodic power law structures
Wosnitza, Jan Henrik; Leker, Jens
2014-01-01
Recent research has established the existence of log-periodic power law (LPPL) patterns in financial institutions’ credit default swap (CDS) spreads. The main purpose of this paper is to clarify why credit risk markets are predestined for exhibiting LPPL structures. To this end, the credit risk prediction of two variants of logistic regression, i.e. polynomial logistic regression (PLR) and kernel logistic regression (KLR), are firstly compared to the standard logistic regression (SLR). In doing so, the question whether the performances of rating systems based on balance sheet ratios can be improved by nonlinear transformations of the explanatory variables is resolved. Building on the result that nonlinear balance sheet ratio transformations hardly improve the SLR’s predictive power in our case, we secondly compare the classification performance of a multivariate SLR to the discriminative powers of probabilities of default derived from three different capital market data, namely bonds, CDSs, and stocks. Benefiting from the prompt inclusion of relevant information, the capital market data in general and CDSs in particular increasingly outperform the SLR while approaching the time of the credit event. Due to the higher classification performances, it seems plausible for creditors to align their investment decisions with capital market-based default indicators, i.e., to imitate the aggregate opinion of the market participants. Since imitation is considered to be the source of LPPL structures in financial time series, it is highly plausible to scan CDS spread developments for LPPL patterns. By establishing LPPL patterns in governmental CDS spread trajectories of some European crisis countries, the LPPL’s application to credit risk markets is extended. This novel piece of evidence further strengthens the claim that credit risk markets are adequate breeding grounds for LPPL patterns.
Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current
Mostert, W.
2016-03-16
We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong
Power law versus exponential state transition dynamics: application to sleep-wake architecture.
Jesse Chu-Shore
Full Text Available BACKGROUND: Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. CONCLUSIONS/SIGNIFICANCE: Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic, and the generation of predictive models for clinical classification of normal and pathological sleep architecture.
Orrego, Juan F; Truong, Thanh N; Mondragón, Fanor
2008-09-11
A new linear relationship between absolute hardness and global activation energy of O-addition reaction to a series of aromatic hydrocarbons (benzene, naphthalene, phenanthrene, and pyrene) is presented. A total of seventeen O((3)P)-addition reactions were evaluated. Thermal rate constants were calculated for each elementary reaction and used to estimate the total rate constants. This information was employed to obtain the global activation energy. A new linear relationship is shown and is estimated that it can be used within the RC-TST framework to predict relative rate constants for any reaction within an O-addition to PAH class from just absolute hardness values.
Eadie, Chris; Favis-Mortlock, David
2010-05-01
distribution is fitted, but a much longer recurrence interval — on the order of 1000 years — using the USA's standard LP3 method. In addition Pandey et al. (1998) found that fitting a power-law distribution, compared with fitting a Generalized Extreme Value distribution, can lead to a large decrease in the predicted return period for a given flood event. Both these findings have obvious implications for river management design. Power-law distributions have been fitted to fluvial discharge data by many authors (most notably by Malamud et al., 1996 and Pandey et al., 1998), who then use these fitted distributions to estimate flow probabilities. These authors found that the power-law performed as well or better than many of the distributions currently used around the world, despite utilising fewer parameters. The power-law has not, however, been officially adopted by any country for fitting to fluvial discharge data. This paper demonstrates a statistically robust method, based on Maximum Likelihood Estimation, for fitting a power-law distribution to mean daily streamflows. The fitted distribution is then used to calculate return periods, which are compared to the return periods obtained by other, more commonly used, distributions. The implications for river management, extremes of flow in particular, are then explored.
A stable and robust calibration scheme of the log-periodic power law model
Filimonov, V.; Sornette, D.
2013-09-01
We present a simple transformation of the formulation of the log-periodic power law formula of the Johansen-Ledoit-Sornette (JLS) model of financial bubbles that reduces it to a function of only three nonlinear parameters. The transformation significantly decreases the complexity of the fitting procedure and improves its stability tremendously because the modified cost function is now characterized by good smooth properties with in general a single minimum in the case where the model is appropriate to the empirical data. We complement the approach with an additional subordination procedure that slaves two of the nonlinear parameters to the most crucial nonlinear parameter, the critical time tc, defined in the JLS model as the end of the bubble and the most probable time for a crash to occur. This further decreases the complexity of the search and provides an intuitive representation of the results of the calibration. With our proposed methodology, metaheuristic searches are not longer necessary and one can resort solely to rigorous controlled local search algorithms, leading to a dramatic increase in efficiency. Empirical tests on the Shanghai Composite index (SSE) from January 2007 to March 2008 illustrate our findings.
Predicting the long tail of book sales: Unearthing the power-law exponent
Fenner, Trevor; Levene, Mark; Loizou, George
2010-06-01
The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology.
Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong; Su, Ay
2010-08-01
Spreading non-Newtonian liquids with non-power-law rheology on completely wetting surfaces are seldom investigated. This study assessed the wetting behavior of polydimethylsiloxane (PDMS), a Newtonian fluid, two carboxymethylcellulose (CMC) sodium solutions, a PDMS+2%w/w silica nanoparticle suspension and three polyethylene glycol (PEG400)+5-10%w/w silica nanoparticle suspensions (non-power-law fluids) on a mica surface. The theta(D)-U and R-t data for spreading drops of the six tested, non-power-law fluids can be described by power-law wetting models. We propose that this behavior is attributable to a uniform shear rate (a few tens to a few hundreds of s(-1)) distributed over the thin-film regime that controls spreading dynamics. Estimated film thickness was below the resolution of an optical microscope for direct observation. Approximating a general non-Newtonian fluid spreading as a power-law fluid greatly simplifies theoretical analysis and data interpretation.
Park, Simsoo; Lee, Dong-Ryul
2003-09-01
Numerical solutions are presented for fully developed laminar flow for a modified power law fluid (MPL) in a rectangular duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian behavior at low shear rates, through a transition region, to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which, for a given set of operating conditions, specifies where in the shear rate range a particular system is operating, i.e. in the Newtonian, transition, or power law regions. The numerical results of the friction factor times Reynolds number for the Newtonian and power law region are compared with previously published results showing agreement within 0.05% in the Newtonian region, and 0.9% and 5.1% in the power law region. Rheological flow curves were measured for three CMC-7H4 solutions and were found to be well represented by the MPL constitutive equation. The friction factor times Reynolds number values were measured in the transition region for which previous measurements were unavailable. Good agreement was found between experiment and calculation thus confirming the validity of the analysis.
Hybrid solution for the laminar flow of power-law fluids inside rectangular ducts
Lima, J. A.; Pereira, L. M.; Macêdo, E. N.; Chaves, C. L.; Quaresma, J. N. N.
The so-called generalized integral transform technique (GITT) is employed in the hybrid numerical-analytical solution of two-dimensional fully-developed laminar flow of non-Newtonian power-law fluids inside rectangular ducts. The characteristic of the automatic and straightforward global error control procedure inherent to this approach, permits the determination of fully converged benchmark results to assess the performance of purely numerical techniques. Therefore, numerical results for the product Fanning friction factor-generalized Reynolds number are computed for different values of power-law index and aspect ratio, which are compared with previously reported results in the literature, providing critical comparisons among them as well as illustrating the powerfulness of the integral transform approach. The resulting velocity profiles computed by using this methodology are also compared with those calculated by approximated methods for power-law fluids, within the range of governing parameters studied.
Zhao, Kai; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu
2014-01-01
Human mobility has been empirically observed to exhibit Levy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we analyze urban human mobility and we propose to explain the Levy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bicycle, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an e...
Stability of a power law relation between characteristics of earthquakes and electric precursors
E. Dologlou
2012-05-01
Full Text Available New data were used to test the credibility of a previously reported power law relation between the stress drop of earthquakes and the lead time of precursory SES. Here, we found that the critical exponent of this power law is very sensitive and remains stable around 0.33 only for appropriate sets of data. This value is in full agreement with the reported one in literature for critical phenomena. That means this power law is not an artifact, but probably implies that real physical dynamic processes evolving to criticality are present in the pre-focal area when the SES is emitted. An attempt to advance the underlying physics of the interconnection of the stress drop and the lead time of the precursory SES is still in progress.
Modes of Collaboration in Modern Science - Beyond Power Laws and Preferential Attachment
Milojević, Staša
2010-01-01
The goal of the study is to determine the underlying processes leading to the observed collaborator distribution in modern scientific fields, with special attention to non-power law behavior. Nanoscience is used as a case study of a modern interdisciplinary field, and its coauthorship network for 2000-04 period is constructed from NanoBank database. We find three collaboration modes that correspond to three distinct ranges in the distribution of collaborators: (1) for authors with fewer than 20 collaborators (the majority) preferential attachment does not hold and they form a log-normal "hook" instead of a power law, (2) authors with more than 20 collaborators benefit from preferential attachment and form a power law tail, and (3) authors with between 250 and 800 collaborators are more frequent than expected because of the hyperauthorship practices in certain subfields.
Alves, Luiz G A; Lenzi, Ervin K; Mendes, Renio S
2014-01-01
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labour, illiteracy, income, sanitation and unemployment). Our analysis reveal that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residua...
Power laws from individual differences in learning and forgetting: mathematical analyses.
Murre, Jaap M J; Chessa, Antonio G
2011-06-01
It has frequently been claimed that learning performance improves with practice according to the so-called "Power Law of Learning." Similarly, forgetting may follow a power law. It has been shown on the basis of extensive simulations that such power laws may emerge through averaging functions with other, nonpower function shapes. In the present article, we supplement these simulations with a mathematical proof that power functions will indeed emerge as a result of averaging over exponential functions, if the distribution of learning rates follows a gamma distribution, a uniform distribution, or a half-normal function. Through a number of simulations, we further investigate to what extent these findings may affect empirical results in practice.
Using GPU Simulation to Accurately Fit to the Power-Law Distribution
Rappos, Efstratios
2013-01-01
This article describes a methodology for fitting experimental data to the discrete power-law distribution and provides the results of a detailed simulation exercise used to calculate accurate cutoff values used to assess the fit to a power-law distribution when using the maximum likelihood estimation for the exponent of the distribution. Using massively parallel programming computing, we were able to accelerate by a factor of 60 the computational time required for these calculations across a range of parameters and construct a series of detailed tables containing the test values to be used in a Kolmogorov-Smirnov goodness-of-fit test, allowing for an accurate assessment of the power-law fit from empirical data.
Predicted and verified evolution of power-law exponent in product market
Hisano, Ryohei; Mizuno, Takayuki
2011-01-01
Power-law distributions constitute a generic empirical statistical regularity found in many complex systems. A recently developed theory finds that the interplay between one of the most universal ingredient, i.e., stochastic proportional growth, and stochastic birth and death processes, leads to generic power law distributions together with a non-universal exponent which depends explicitly on the characteristics of growth, birth and death. In particular, the theory rationalizes Zipf's law and explains deviations from it, for instance for the distribution of firm and of city sizes. Here, we report the first complete test of the theory, based on the empirical analysis from a real world complex phenomenon, namely the dynamics of market shares in the consumer electronics market. We estimate directly from the data the average growth rate of market shares, their standard deviation, the birth rates as well as the "death" hazard rate of products. When plugged in the theory, this predicts the power law exponent of the...
Forced convection of power-law fluids flow over a rotating nonisothermal body
Kim, H. W.; Essemyi, A. J.
1993-10-01
Presented is an analysis of steady laminar flow of power-law fluids past a rotating body with nonisothermal surfaces. A coordinate transformation combined with the Merk-type series expansion is employed to transform the governing momentum equations into a set of coupled ordinary differential equations. The equations are numerically integrated to obtain the axial and tangential velocity gradients for determining the friction coefficient. For forced convection, a generalized coordinate transformation is used to analyze the temperature field of the power-law flow. Solutions to the transformed energy equations are obtained in the form of universal functions. The heat transfer coefficients in terms of NuRe(sup 1/(n + 1)) are presented for a rotating sphere. The effects of power-law index, rotation sphere, Prandtl number, and the location of step discontinuity in surface temperature on the local Nusselt number are fully investigated and demonstrated.
Heat transfer analysis in an annular cone subjected to power law variations
Salman Ahmed, N. J.; Al-Rashed, Abdullah A. A. A.; Yunus Khan, T. M.; Kamangar, Sarfaraz; Athani, Abdulgaphur; Anjum Badruddin, Irfan
2016-09-01
Present study deals with the analysis of heat transfer and fluid flow behavior in an annular cone fixed with saturated porous medium. The inner surface of the cone is assumed to have power law variable wall temperature. The governing partial differential equations are solved using well known Finite Element Method (FEM). The coupled nonlinear differential equations are converted into the algebraic equations by using Galerkin method. A 3 noded triangular element is used to divide the porous domain into smaller segments. The effects of various geometrical parameters on the cone angle are presented. It is found that the effect of cone angle on the heat transfer characteristics and fluid flow behavior is considerably significant. The fluid moment is found to shift towards the upper side of cone with increase in the power law coefficient. The fluid velocity decreases with increase in the power law coefficient.
Similarity solutions for non-Newtonian power-law fluid flow
D.M.WEI; S.AL-ASHHAB
2014-01-01
The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindel¨of theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva-ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.
Phase diagram of power law and Lennard-Jones systems: Crystal phases
Travesset, Alex [Ames Laboratory
2014-10-28
An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.
A power-law distribution of phase-locking intervals does not imply critical interaction
Botcharova, Maria; Berthouze, Luc
2012-01-01
Neural synchronisation plays a critical role in information processing, storage and transmission. Characterising the pattern of synchronisation is therefore of great interest. It has recently been suggested that the brain displays broadband criticality based on two measures of synchronisation - phase locking intervals and global lability of synchronisation - showing power law statistics at the critical threshold in a classical model of synchronisation. In this paper, we provide evidence that, within the limits of the model selection approach used to ascertain the presence of power law statistics, the pooling of pairwise phase-locking intervals from a non-critically interacting system can produce a distribution that is similarly assessed as being power law. In contrast, the global lability of synchronisation measure is shown to better discriminate critical from non critical interaction.
On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment
CHANG Zhe; CAO Xiao-Feng; GUAN Cheng-Bo; DENG Zong-Wei; HUANG Chao-Guang; YANG Chun-Bin; LI Xin
2008-01-01
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability fl, to decrease by 1 with probability f2, or remain unchanged with probability 1-f1-f2. This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.
On the scaling range of power-laws originated from fluctuation analysis
Dariusz, Grech
2012-01-01
We extend our previous study of scaling range properties done for detrended fluctuation analysis (DFA) \\cite{former_paper} to other techniques of fluctuation analysis (FA). The new technique called Modified Detrended Moving Average Analysis (MDMA) is introduced and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy $R^2$ of the fit to the considered scaling law imposed by DMA or MDMA schemes. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful ...
Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays
Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)
2011-08-01
A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.
Treeby, Bradley E; Cox, B T
2011-06-01
An efficient Green's function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.
Dilatonic BTZ black holes with power-law field
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.
2017-04-01
Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.
Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel
Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.
1989-10-01
A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.
Spherical collapse model and cluster number counts in power-law f(T) gravity
Malekjani, M.; Basilakos, S.; Heidari, N.
2017-04-01
We study the spherical collapse model in the framework of spatially flat power law f(T) ∝ (- T)b gravity model. We find that the linear and non-linear growth of spherical overdensities of this particular f(T) model are affected by the power-law parameter b. Finally, we compute the predicted number counts of virialized haloes in order to distinguish the current f(T) model from the expectations of the concordance Λ cosmology. Specifically, the present analysis suggests that the f(T) gravity model with positive (negative) b predicts more (less) virialized objects with respect to those of Λ cold dark matter.
Calculation Metho d of Power Law Fluid Equivalent Permeability Considering Capillary Shap e
YANG Er-long; LI Huan; GAO Hui-juan; GU Ting-ting
2015-01-01
While studying the flow of oil and gas in the reservoir, it is not realistic that capillary with circular section is only used to express the pores. It is more representative to simulate porous media pore with kinds of capillary with triangle or rectangle section etc. In the condition of the same diameter, when polymer for oil displacement flows in the porous medium, there only exists shear flow which can be expressed with power law model. Based on fluid flow-pressure drop equation in single capillary, this paper gives a calculation method of equivalent permeability of power law fluid of single capillary and capillary bundles with different sections.
Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process
Jabbari, Masoud; Hattel, Jesper Henri
2012-01-01
interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...... are identified for the considered LSM material and applied in the numerical modelling for the tape thickness. This model is then used for different values of substrate velocity and material load in the reservoir and compared with experimental findings of the wet tape thickness and good agreement is found....
Similarity solutions to a laminar boundary layer problem in power law fluids
无
2002-01-01
A suitable similarity transformation is introduced to reduce the laminar boundary layer equations of power law fluids to a class of singular nonlinear two-point boundary value problems. The skin friction and shear stress distributions for boundary layer flow over a moving flat plate are investigated by utilizing the shooting technique. Results indicate that for each fixed value of the power law exponent n or the velocity ratio parameter (, the skin friction and shear stress decrease with the increasing of n or ( respectively.
Werner, G R; Cerutti, B; Nalewajko, K; Begelman, M C
2014-01-01
Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations $\\sigma$ and system sizes $L$. The particle spectra are well-represented by a power law $\\gamma^{-\\alpha}$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to $\\sigma$ and $L$, respectively. For large $L$ and $\\sigma$, the power-law index $\\alpha$ approaches about 1.2.
Stability of Natural Convection of Power-law Fluid and non-Darcy Flow in Porous Media
Kong Xiangyan; Chen Guoquan; Wu Jianbing; Li Peichao; Lu Detang; Xu Xianzhi
2001-01-01
In the present work the effect of the power law exponent of power-law fluid and non-Darcy number of non-Darcy flow on stability of natural convection in porous media are studied. The computation analysis of effect of power law exponent of power-law fluid and non-Darcy number of non-Darcy flow in the rectangular duct on the transition Rayleigh number Ra*, which means the convective model transiting from stationary state to periodic solution. The duct has filled a porous medium saturated with the power-law non-Newtonian fluid or Newtonian fluid for non-Darcy flow, in which there is uniform internal heat generation per unit volume q. In this paper the relationship between the transition Rayleigh number Ra* and the power-law exponent n, Ra* and non-Darcy number Be, are shown .To these two aspects, the transition route from steady to chaotic convection is also obtained.
Lillo, F
2006-01-01
I consider the problem of the optimal limit order price of a financial asset in the framework of the maximization of the utility function of the investor. The analytical solution of the problem gives insight on the origin of the recently empirically observed power law distribution of limit order prices. In the framework of the model, the most likely proximate cause of this power law is a power law heterogeneity of traders' investment time horizons .
On Integral Upper Limits Assuming Power-law Spectra and the Sensitivity in High-energy Astronomy
Ahnen, Max L.
2017-02-01
The high-energy non-thermal universe is dominated by power-law-like spectra. Therefore, results in high-energy astronomy are often reported as parameters of power-law fits, or, in the case of a non-detection, as an upper limit assuming the underlying unseen spectrum behaves as a power law. In this paper, I demonstrate a simple and powerful one-to-one relation of the integral upper limit in the two-dimensional power-law parameter space into the spectrum parameter space and use this method to unravel the so-far convoluted question of the sensitivity of astroparticle telescopes.
Zygadło, Ryszard
2008-02-01
It is shown analytically that the flashing annihilation term of a Verhulst kinetic leads to the power-law distribution in the stationary state. For the frequency of switching slower than twice the free growth rate this provides the quasideterministic source of a Lévy noise at the macroscopic level.
Fingering instability in the flow of a power-law fluid on a rotating disc
Arora, Akash; Doshi, Pankaj
2016-01-01
A computational study of the flow of a non-Newtonian power law fluid on a spinning disc is considered here. The main goal of this work is to examine the effect of non-Newtonian nature of the fluid on the flow development and associated contact line instability. The governing mass and momentum balance equations are simplified using the lubrication theory. The resulting model equation is a fourth order non-linear PDE which describes the spatial and temporal evolutions of film thickness. The movement of the contact line is modeled using a constant angle slip model. To solve this moving boundary problem, a numerical method is developed using a Galerkin/finite element method based approach. The numerical results show that the spreading rate of the fluid strongly depends on power law exponent n. It increases with the increase in the shear thinning character of the fluid (n 1). It is also observed that the capillary ridge becomes sharper with the value of n. In order to examine the stability of these ridges, a linear stability theory is also developed for these power law fluids. The dispersion relationship depicting the growth rate for a given wave number has been reported and compared for different power-law fluids. It is found that the growth rate of the instability decreases as the fluid becomes more shear thinning in nature, whereas it increases for more shear thickening fluids.
Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems.
Rodin, A S; Fogler, M M
2010-09-03
The dependence of hopping conductance on temperature and voltage for an ensemble of modestly long one-dimensional wires is studied numerically using the shortest-path algorithm. In a wide range of parameters this dependence can be approximated by a power law rather than the usual stretched-exponential form. The relation to recent experiments and prior analytical theory is discussed.
Graph Structure in Three National Academic Webs: Power Laws with Anomalies.
Thelwall, Mike; Wilkinson, David
2003-01-01
Explains how the Web can be modeled as a mathematical graph and analyzes the graph structures of three national university publicly indexable Web sites from Australia, New Zealand, and the United Kingdom. Topics include commercial search engines and academic Web link research; method-analysis environment and data sets; and power laws. (LRW)
Simulation of mass transfer during osmotic dehydration of apple: a power law approximation method
Abbasi Souraki, B.; Tondro, H.; Ghavami, M.
2014-10-01
In this study, unsteady one-dimensional mass transfer during osmotic dehydration of apple was modeled using an approximate mathematical model. The mathematical model has been developed based on a power law profile approximation for moisture and solute concentrations in the spatial direction. The proposed model was validated by the experimental water loss and solute gain data, obtained from osmotic dehydration of infinite slab and cylindrical shape samples of apple in sucrose solutions (30, 40 and 50 % w/w), at different temperatures (30, 40 and 50 °C). The proposed model's predictions were also compared with the exact analytical and also a parabolic approximation model's predictions. The values of mean relative errors respect to the experimental data were estimated between 4.5 and 8.1 %, 6.5 and 10.2 %, and 15.0 and 19.1 %, for exact analytical, power law and parabolic approximation methods, respectively. Although the parabolic approximation leads to simpler relations, the power law approximation method results in higher accuracy of average concentrations over the whole domain of dehydration time. Considering both simplicity and precision of the mathematical models, the power law model for short dehydration times and the simplified exact analytical model for long dehydration times could be used for explanation of the variations of the average water loss and solute gain in the whole domain of dimensionless times.
Extended Power Law and Hall Anomaly of High-Temperature Superconductors
HE Li; HU Xiang; YIN Lan; XU Xiao-Lin; GUO Jian-Dong; LI Chuan-Yi; YIN Dao-Le
2009-01-01
Starting from the free energy of a moving vortex,we obtain the extended power law form of longitudinal resistivity pxx and the analytical form of Hall resistivity pxy.Based on them,we obtain a scaling relation which agrees well with the experimental data of different kinds of high-temperature superconductors.Fhrthermore,the theoretical results well fit the scaling results.
New statistic for financial return distributions: power-law or exponential?
Pisarenko, V F
2004-01-01
We introduce a new statistical tool (the TP-statistic and TE-statistic) designed specifically to compare the behavior of the sample tail of distributions with power-law and exponential tails as a function of the lower threshold u. One important property of these statistics is that they converge to zero for power laws or for exponentials correspondingly, regardless of the value of the exponent or of the form parameter. This is particularly useful for testing the structure of a distribution (power law or not, exponential or not) independently of the possibility of quantifying the values of the parameters. We apply these statistics to the distribution of returns of one century of daily data for the Dow Jones Industrial Average and over one year of 5-minutes data of the Nasdaq Composite index. Our analysis confirms previous works showing the tendency for the tails to resemble more and more a power law for the highest quantiles but we can detect clear deviations that suggest that the structure of the tails of the ...
The effect of a power-law mantle viscosity on trench retreat rate
Holt, Adam F.; Becker, Thorsten W.
2017-01-01
The subduction of lithospheric plates is partitioned between subducting plate motion and lateral slab migration (i.e. trench retreat and advance). We use 3-D, dynamic models of subduction to address the role of a power-law mantle viscosity on subduction dynamics and, in particular, rates of trench retreat. For all numerical models tested, we find that a power-law rheology results in reduced rates of trench retreat, and elevated slab dip angles, relative to the equivalent isoviscous mantle model. We analyse the asthenospheric pressure distribution and the style of mantle flow, which exhibits only limited variability as a function of mantle rheology, in order to compute estimates of the mantle forces associated with subduction. The inclusion of a power-law rheology reduces the mantle shear force (which resists subducting plate motion) to a greater degree than it reduces the dynamic pressure gradient across the slab (which resists trench retreat). Therefore, the inclusion of a power-law mantle rheology favours a shift towards a subduction mode with a reduced trench retreat component, typically a relative reduction of order 25 per cent in our 3-D models. We suggest that this mechanism may be of importance for reducing the high trench retreat rates observed in many previous models to levels more in line with the average subduction partitioning observed on Earth at present (i.e. trench velocity ≤ plate velocity), for most absolute plate motion reference frames.
Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer
T.Hayat; S.Hina; Awatif A.Hendi
2011-01-01
@@ The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated.The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained.The axial velocity, temperature and mass concentration are studied for different emerging parameters.
Point Processes Modeling of Time Series Exhibiting Power-Law Statistics
Kaulakys, B; Gontis, V
2010-01-01
We consider stochastic point processes generating time series exhibiting power laws of spectrum and distribution density (Phys. Rev. E 71, 051105 (2005)) and apply them for modeling the trading activity in the financial markets and for the frequencies of word occurrences in the language.
Power-Law Scattering Models and Nonlinear Parametric Estimation for Super-Resolution Radar
2010-08-26
multiplicities. This is the decomposition, Eq. 3, where P is any matrix. That is, the JNF is the result of a nonunique similarity transform taking A into upper...important feature in the system engineering of real-time systems. - Because it addresses the problem of power law models directly, it is not subject to
Is it a power law distribution? The case of economic contractions
Pueyo, Salvador
2013-01-01
One of the first steps to understand and forecast economic downturns is identifying their frequency distribution, but it remains uncertain. This problem is common in phenomena displaying power-law-like distributions. Power laws play a central role in complex systems theory; therefore, the current limitations in the identification of this distribution in empirical data are a major obstacle to pursue the insights that the complexity approach offers in many fields. This paper addresses this issue by introducing a reliable methodology with a solid theoretical foundation, the Taylor Series-Based Power Law Range Identification Method. When applied to time series from 39 countries, this method reveals a well-defined power law in the relative per capita GDP contractions that span from 5.53% to 50%, comprising 263 events. However, this observation does not suffice to attribute recessions to some specific mechanism, such as self-organized criticality. The paper highlights a set of points requiring more study so as to d...
Fitting Power-laws in empirical data with estimators that work for all exponents
Hanel, Rudolf; Liu, Bo; Thurner, Stefan
2016-01-01
It has been repeatedly stated that maximum likelihood (ML) estimates of exponents of power-law distributions can only be reliably obtained for exponents smaller than minus one. The main argument that power laws are otherwise not normalizable, depends on the underlying sample space the data is drawn from, and is true only for sample spaces that are unbounded from above. Here we show that power-laws obtained from bounded sample spaces (as is the case for practically all data related problems) are always free of such limitations and maximum likelihood estimates can be obtained for arbitrary powers without restrictions. Here we first derive the appropriate ML estimator for arbitrary exponents of power-law distributions on bounded discrete sample spaces. We then show that an almost identical estimator also works perfectly for continuous data. We implemented this ML estimator and discuss its performance with previous attempts. We present a general recipe of how to use these estimators and present the associated com...
Carrano, Charles S.; Rino, Charles L.
2016-06-01
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.
PLNoise: a package for exact numerical simulation of power-law noises
Milotti, Edoardo
2006-08-01
Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1algorithm has a well-behaved computational complexity, it produces a nearly perfect Gaussian noise, and its computational efficiency depends on the required degree of noise Gaussianity. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J
Petersen, Alexander; Yang, Jae-Suk; Stanley, H Eugene
2008-01-01
We provide a simple and intuitive stochastic process that accounts for the observed probability density functions governing career longevity in several professional sports leagues in various countries. Our mechanism characterizes the probability density functions governing career longevity with two parameters, \\alpha and \\tau . The exponent \\alpha < 1 characterizes the scaling in the power-law regime, which is followed by an exponential cutoff after a critical value \\tau, representing the mean lifetime in each sport. In addition, we also show that the probability density functions of career statistical metrics within each sport follow directly from the density functions of career longevity. Thus, our process is a universal mechanism describing longevity in a competitive environment, with the exponent \\alpha representing the role of experience and reputation in career development. Because net career tallies of in-game success ultimately serve as a metric for classifying careers, our findings provide a robus...
Power laws and self-organized criticality in theory and nature
Marković, Dimitrije; Gros, Claudius
2014-03-01
Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real
Sato, Haruo
2016-01-01
Peak delay and envelope broadening of an S-wavelet with travel distance increasing are seen in short-period seismograms of small earthquakes. Those phenomena are results of scattering by random velocity inhomogeneities in the earth medium. As shown in sonic well-log data we may suppose that random velocity fluctuation has power-law spectra even in the seismic spectral range. As a simple mathematical model, we study how the envelope of a scalar wavelet varies in von Kármán-type random media, which have power-law spectra at large wavenumbers. Since the centre wavenumber of a wavelet is a unique scale in the power-law spectral range, using it as a reference, we divide the random media into the low-wavenumber spectral (long-scale) component and the high-wavenumber spectral (short-scale) component. For the wave propagation through the long-scale component of random media, we may apply the parabolic approximation to the wave equation. Using the Markov approximation, which is a stochastic extension of the phase screen method, we directly synthesize the energy density, which is the mean-square (MS) envelope of a wavelet in a given frequency band. The envelope duration increases according to the second power of travel distance. There is an additional factor, the wandering effect which increases the envelope duration according to the traveltime fluctuation. Wide angle scattering caused by the short-scale component of random media attenuates wave amplitude with travel distance increasing. We use the total scattering coefficient of the short-scale component as a measure of scattering attenuation per distance, which is well described by the Born approximation. Multiplying the exponential scattering attenuation factor by the MS envelope derived by the Markov approximation, we can synthesize the MS envelope reflecting all the spectral components of random media. When the random medium power spectra have a steep role-off at large wavenumbers, the envelope broadening is small and
A. Guadagnini
2012-09-01
Full Text Available We analyze the scaling behaviors of two field-scale log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along three horizontal transects on a 21 m long and 6 m high outcrop of the Upper Cretaceous Straight Cliffs Formation, including lower-shoreface bioturbated and cross-bedded sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power ξ(q of separation scale or lag, s, over limited ranges of s. A procedure known as extended self-similarity (ESS extends this range to all lags and yields a nonlinear (concave functional relationship between ξ(q and q. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian truncated (additive, self-affine, monofractal fractional Brownian motion (tfBm, the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm or truncated fractional Gaussian noise (tfGn, stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm or tfGn and (ii provide maximum likelihood estimates of parameters characterizing the
Umansky, Moti; Weihs, Daphne
2012-08-01
parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.
Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit
2016-04-01
The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both
Kristoufek, Ladislav
2015-06-01
We study power-law correlations properties of the Google search queries for Dow Jones Industrial Average (DJIA) component stocks. Examining the daily data of the searched terms with a combination of the rescaled range and rescaled variance tests together with the detrended fluctuation analysis, we show that the searches are in fact power-law correlated with Hurst exponents between 0.8 and 1.1. The general interest in the DJIA stocks is thus strongly persistent. We further reinvestigate the cross-correlation structure between the searches, traded volume and volatility of the component stocks using the detrended cross-correlation and detrending moving-average cross-correlation coefficients. Contrary to the universal power-law correlations structure of the related Google searches, the results suggest that there is no universal relationship between the online search queries and the analyzed financial measures. Even though we confirm positive correlation for a majority of pairs, there are several pairs with insignificant or even negative correlations. In addition, the correlations vary quite strongly across scales.
Giorgi M.C.C.; Aguiar F.H.B.; Soares L.E.S.; Martin A.A.; Liporoni P.C.S.; Paulillo L.A.M.S.
2012-01-01
Objective: The purpose of this study was to evaluate the degree of conversion (DC) using FT-Raman spectroscopy and the Knoop hardness (KHN) of composites cured by second and third-generation LED light curing-units (LCU), Radii Cal and Ultralume 5. Methods: Three composites (Filtek Supreme XT, Filtek Z350, and Esthet X) were selected for this study. KHN testing (n=10) was performed with 10 indentations for the top (T) and bottom (B) surfaces. For DC (n=10), both the T and B surfaces were analy...
Ayadim, A; Amokrane, S [Physique des Liquides et Milieux Complexes, Faculte des Sciences et Technologie, Universite Paris-Est (Creteil), 61 Avenue du General de Gaulle, 94010 Creteil Cedex (France)
2010-01-27
The accuracy of the structural data obtained from the recently proposed generalization to non-additive hard-spheres (Schmidt 2004 J. Phys.: Condens. Matter 16 L351) of Rosenfeld's functional is investigated. The radial distribution functions computed from the direct correlation functions generated by the functional, through the Ornstein-Zernike equations, are compared with those obtained from the density profile equations in the test-particle limit, without and with test-particle consistency. The differences between these routes and the role of the optimization of the parameters of the reference system when the functional is used to obtain the reference bridge functional are discussed in the case of symmetric binary mixtures of non-additive hard-spheres. The case of highly asymmetric mixtures is finally briefly discussed.
The Distance-Decay Function of Geographical Gravity Model: Power Law or Exponential Law?
Chen, Yanguang
2015-01-01
The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be explained with the ideas from Euclidean geometry. This results in what is called dimension dilemma. In particular, the gravity model based on power law could not be derived from general principles by traditional ways. Consequently, a negative exponential function substituted for the inverse power function to serve for a distance-decay function for the gravity model. However, the exponential-based gravity model goes against the first law of geography. This paper is devoted to solve these kinds of problems by mathematical reasoning and empirical analysis. First, it can be proved that the distance exponent of the gravity model is essentially a fractal dimension. Thus the dimensional dilemma of the power-based gravity model can be resolved using the concepts from fractal geometry. Second, the exponential fun...
Scalar field reconstruction of power-law entropy-corrected holographic dark energy
Ebrahimi, Esmaeil [Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Sheykhi, Ahmad, E-mail: eebrahimi@uk.ac.ir, E-mail: sheykhi@uk.ac.ir [Department of Physics, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of)
2011-10-15
A so-called 'power-law entropy-corrected holographic dark energy' (PLECHDE) was recently proposed to explain the dark energy (DE)-dominated universe. This model is based on the power-law corrections to black hole entropy that appear when dealing with the entanglement of quantum fields between the inside and the outside of the horizon. In this paper, we suggest a correspondence between the interacting PLECHDE and the tachyon, quintessence, K-essence and dilaton scalar field models of DE in a non-flat Friedmann-Robertson-Walker universe. Then, we reconstruct the potential terms accordingly, and present the dynamical equations that describe the evolution of the scalar field DE models.
Power law behavior for the zigzag transition in a Yukawa cluster
Sheridan, T E
2010-01-01
We provide direct experimental evidence that the one-dimensional (1D) to two-dimensional (2D) zigzag transition in a Yukawa cluster exhibits power law behavior. Configurations of a six-particle dusty (complex) plasma confined in a biharmonic potential well are characterized as the well anisotropy is reduced. When the anisotropy is large the particles are in a 1D straight line configuration. As the anisotropy is decreased the cluster undergoes a zigzag transition to a 2D configuration. The measured dependence of cluster width on anisotropy is well described by a power law. A second transition from the zigzag to an elliptical configuration is also observed. The results are in very good agreement with a model for particles interacting through a Yukawa potential.
Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling
Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E
2014-01-01
This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...
Treeby, Bradley E; Cox, B T
2010-05-01
The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.
Sliding friction in the hydrodynamic lubrication regime for a power-law fluid
Warren, P. B.
2017-02-01
A scaling analysis is undertaken for the load balance in sliding friction in the hydrodynamic lubrication regime, with a particular emphasis on power-law shear-thinning typical of a structured liquid. It is argued that the shear-thinning regime is mechanically unstable if the power-law index n < 1/2, where n is the exponent that relates the shear stress to the shear rate. Consequently the Stribeck (friction) curve should be discontinuous, with possible hysteresis. Further analysis suggests that normal stress and flow transience (stress overshoot) do not destroy this basic picture, although they may provide stabilising mechanisms at higher shear rates. Extensional viscosity is also expected to be insignificant unless the Trouton ratio is large. A possible application to shear thickening in non-Brownian particulate suspensions is indicated.
Power-law decay exponents: A dynamical criterion for predicting thermalization
Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.
2017-01-01
From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic behavior ∝t-γ of the survival probability at long times. We show that the value of the power-law exponent γ depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are explored in detail: γ ≥2 and γ energy distribution of the initial state is ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the power-law behavior is caused by bounds in the energy spectrum. Decays with γ energy eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due to strong onsite disorder and are found also in clean integrable systems.
Statefinder Parameters for Coupled Quintessence Scenario in a Power Law Case
无
2005-01-01
We investigate a coupled quintessence scenario, which can provide a natural solution to the cosmic coincidence problem. We assume that the mass of dark matter particles depends on a power law function of the scalar field associated to dark energy and meanwhile the scalar field evolves in a power law potential. Since the dynamics of this system is dominated by an attractor solution, the mass of dark matter particles is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy becomes a constant at late times,and one thus solves the cosmic coincidence problem naturally. We then apply a statefinder diagnostic to this coupled quintessence scenario. It is shown that the evolving trajectory of this scenario in the s-r diagram is quite different from those of other dark energy models.
Liu, W J; Ding, M D; Fang, C
2008-01-01
The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However, in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test particle simulations of electron acceleration in reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of the reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that t...
Zhu, Chen-Ping; Yang, Hui-Jie; Xiong, Shi-Jie; Gu, Zhi-Ming; Shi, Da-Ning; He, Da-Ren; Wang, Bing-Hong
2007-01-01
Competitive exclusion, a key principle of ecology, can be generalized to understand many other complex systems. Individuals under surviving pressure tend to be different from others, and correlations among them change correspondingly to the updating of their states. We show with numerical simulation that these aptitudes can contribute to group formation or speciation in social fields. Moreover, they can lead to power-law topological correlations of complex networks. By coupling updating states of nodes with variation of connections in a network, structural properties with power-laws and functions like multifractality, spontaneous ranking and evolutionary branching of node states can emerge out simultaneously from the present self-organized model of coevolutionary process.
Speed-invariant encoding of looming object distance requires power law spike rate adaptation.
Clarke, Stephen E; Naud, Richard; Longtin, André; Maler, Leonard
2013-08-13
Neural representations of a moving object's distance and approach speed are essential for determining appropriate orienting responses, such as those observed in the localization behaviors of the weakly electric fish, Apteronotus leptorhynchus. We demonstrate that a power law form of spike rate adaptation transforms an electroreceptor afferent's response to "looming" object motion, effectively parsing information about distance and approach speed into distinct measures of the firing rate. Neurons with dynamics characterized by fixed time scales are shown to confound estimates of object distance and speed. Conversely, power law adaptation modifies an electroreceptor afferent's response according to the time scales present in the stimulus, generating a rate code for looming object distance that is invariant to speed and acceleration. Consequently, estimates of both object distance and approach speed can be uniquely determined from an electroreceptor afferent's firing rate, a multiplexed neural code operating over the extended time scales associated with behaviorally relevant stimuli.
Deviations from uniform power-law scaling due to exposure to high altitude
Posiewnik, A.
2002-12-01
A major challenge in biological physics is the analysis of time series that are typically highly nonstationary. Viswanathan et al. (Phys. Rev. E 55 (1) (1997) 845-899) using techniques based on the Fano factor and the Allan factor functions, as well as on detrended fluctuation analysis showed that the scaling properties of the dynamics of healthy physiological systems in normal conditions are more stable than those of pathological systems-there is underlying loss of uniform power-law scaling in disease. Here we test, using the same techniques as Viswanathan et al. (1997), the hypothesis that deviations from uniform power-law scaling, similar to those seen in heart failure and deep apnea syndrome occur also for healthy subjects under pathological conditions (hypoxaemic stress during exposure to high altitude, over 6000 m).
Injection to the pick-up ion regime from high energies and induced ion power laws
Fahr, H -J; Verscharen, D
2008-01-01
Though pick-up ions (PUIs) are a well known phenomenon in the inner heliosphere, their phase-space distribution nevertheless is a theoretically unsettled problem. Especially the question of how pick-up ions form their suprathermal tails, extending to far above their injection energies, still now is unsatistactorily answered. Though Fermi-2 velocity diffusion theories have revealed that such tails are populated, they nevertheless show that resulting population densities are much less than seen in observations showing power-laws with a velocity index of ``-5''. We first investigate here, whether or not observationally suggested power-laws can be the result of a quasi-equilibrium state between suprathermal ions and magnetohydrodynamic turbulences in energy exchange with eachother. We demonstrate that such an equilibrium cannot be established. We furthermore show that Fermi-2 type energy diffusion in the outer heliosphere is too inefficient to determine the shape of the distribution function there. As we can show...
A power-law distribution for tenure lengths of sports managers
Aidt, Toke S.; Leong, Bernard; Saslaw, William C.; Sgroi, Daniel
2006-10-01
We show that the tenure lengths for managers of sport teams follow a power law distribution with an exponent between 2 and 3. We develop a simple theoretical model which replicates this result. The model demonstrates that the empirical phenomenon can be understood as the macroscopic outcome of pairwise interactions among managers in a league, threshold effects in managerial performance evaluation, competitive market forces, and luck at the microscopic level.
An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid
2008-01-01
This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.
The Fractional Power Law of Wind Wave Growth in Deep Water for Short Fetch
GUAN Changlong; SUN Qun; Philippe Fraunie
2002-01-01
Combining the 3/2 power law proposed by Toba with the significant wave energy balance equation for windwaves, wave growth in deep water for short fetch is investigated. It is found that the variations of wave height and periodwith fetch have the form of power function with fractional exponents 3/8 and 1/4 respectively. Using these exponents in thepower functions and through data fitting, the concise wind wave growth relations for short fetch are obtained.
NEW METHOD TO ESTIMATE SCALING OF POWER-LAW DEGREE DISTRIBUTION AND HIERARCHICAL NETWORKS
YANG Bo; DUAN Wen-qi; CHEN Zhong
2006-01-01
A new method and corresponding numerical procedure are introduced to estimate scaling exponents of power-law degree distribution and hierarchical clustering func tion for complex networks. This method can overcome the biased and inaccurate faults of graphical linear fitting methods commonly used in current network research. Furthermore, it is verified to have higher goodness-of-fit than graphical methods by comparing the KS (Kolmogorov-Smirnov) test statistics for 10 CNN (Connecting Nearest-Neighbor)networks.
Multistage Random Growing Small-World Networks with Power-Law Degree Distribution
LIU Jian-Guo; DANG Yan-Zhong; WANG Zhong-Tuo
2006-01-01
@@ We present a simple rule which could generate scale-free networks with very large clustering coefficient and very small average distance. These networks, called the multistage random growing networks (MRGNs), are constructed by a two-stage adding process for each new node. The analytic results of the power-law exponentγ = 3 and the clustering coefficient C = 0.81 are obtained, which agree with the simulation results approximately.
Logarithmic and power law input-output relations in sensory systems with fold-change detection.
Adler, Miri; Mayo, Avi; Alon, Uri
2014-08-01
Two central biophysical laws describe sensory responses to input signals. One is a logarithmic relationship between input and output, and the other is a power law relationship. These laws are sometimes called the Weber-Fechner law and the Stevens power law, respectively. The two laws are found in a wide variety of human sensory systems including hearing, vision, taste, and weight perception; they also occur in the responses of cells to stimuli. However the mechanistic origin of these laws is not fully understood. To address this, we consider a class of biological circuits exhibiting a property called fold-change detection (FCD). In these circuits the response dynamics depend only on the relative change in input signal and not its absolute level, a property which applies to many physiological and cellular sensory systems. We show analytically that by changing a single parameter in the FCD circuits, both logarithmic and power-law relationships emerge; these laws are modified versions of the Weber-Fechner and Stevens laws. The parameter that determines which law is found is the steepness (effective Hill coefficient) of the effect of the internal variable on the output. This finding applies to major circuit architectures found in biological systems, including the incoherent feed-forward loop and nonlinear integral feedback loops. Therefore, if one measures the response to different fold changes in input signal and observes a logarithmic or power law, the present theory can be used to rule out certain FCD mechanisms, and to predict their cooperativity parameter. We demonstrate this approach using data from eukaryotic chemotaxis signaling.
Kowser Md. A.
2014-11-01
Full Text Available In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering
DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM
Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)
2016-04-10
A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.
Arita, Ken-ichiro
2014-01-01
Shell structures in single-particle energy spectra are investigated against regular tetrahedral type deformation using radial power-law potential model. Employing a natural way of shape parametrization which interpolate sphere and regular tetrahedron, we find prominent shell effects at rather large tetrahedral deformations, which bring about shell energies much larger than the cases of spherical and quadrupole type shapes. We discuss the semiclassical origin of these anomalous shell structures using periodic orbit theory.
Endoscope effects on MHD peristaltic flow of a power-law fluid
T. Hayat
2006-01-01
Full Text Available To understand the influence of an inserted endoscope and magnetohydrodynamic (MHD power-law fluid on peristaltic motion, an attempt has been made for flow through tubes. The magnetic field of uniform strength is applied in the transverse direction to the flow. The analysis has been performed under long wavelength at low-Reynolds number assumption. The velocity fields and axial pressure gradient have been evaluated analytically. Numerical results are also presented and discussed.
Typical rank of coin-toss power-law random matrices over GF(2)
2010-01-01
Random linear systems over the Galois Field modulo 2 have an interest in connection with problems ranging from computational optimization to complex networks. They are often approached using random matrices with Poisson-distributed or finite column/row-sums. This technical note considers the typical rank of random matrices belonging to a specific ensemble wich has genuinely power-law distributed column-sums. For this ensemble, we find a formula for calculating the typical rank in the limit of...
Bose-Einstein condensation with a finite number of particles in a power-law trap
Jaouadi, A.; Telmini, M.; Charron, E.
2011-02-01
Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a finite number N of particles trapped in a generic three-dimensional power-law potential. We derive an analytical expression for the condensation temperature Tc in terms of a power series in x0=ɛ0/kBTc, where ɛ0 denotes the zero-point energy of the trapping potential. This expression, which applies in Cartesian, cylindrical, and spherical power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as an expansion in powers of x0 up to the second order. We show that, for a harmonic trap, the well-known first-order shift of the critical temperature ΔTc/Tc∝N-1/3 is inaccurate when N⩽105, the next order (proportional to N-1/2) being significant. We also show that finite-size effects on the condensation temperature cancel out in a cubic trapping potential, e.g., V(r)∝r3. Finally, we show that in a generic power-law potential of higher order, e.g., V(r)∝rα with α>3, the shift of the critical temperature becomes positive. This effect provides a large increase of Tc for relatively small atom numbers. For instance, an increase of about +40% is expected with 104 atoms in a V(r)∝r12 trapping potential.
AC losses in superconductors with a power-law constitutive relation
Agassi, Y.D., E-mail: yehoshua.agassi@navy.mil
2015-10-15
Highlights: • Derivation of power-law constitutive-relation from distributed Anderson–Kim theory. • The electric-field for HTS constitutive-relation satisfies nonlinear heat-equation. • For slab, AC losses scale as B{sub 0}{sup m}, m = 3–4 and I{sup 3} with field-amplitude and current, respectively. • Calculated pinning potential, AC-losses scaling is consistent with BSCCO data. - Abstract: The observed constitutive relation between the electrical field and current density in cuprates high temperature superconductors is a power-law of the current. This functional dependence is presumably related to the giant flux-creep domain. It is shown that this constitutive relation reflects the statistical spread of the pinning potential associated with creep motion of vortex bundles. The AC losses emanating from a power-law constitutive relation are calculated in an approach focused on the superconductor’s electric field. For a slab geometry in the presence of a parallel AC magnetic field or transport current, the calculated AC-loss scaling laws are consistent with BSCCO data and the critical state model. Extensions of the approach are briefly discussed.
Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.
2014-09-01
We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
Furey, Peter R.; Gupta, Vijay K.
2007-11-01
Observations from the Goodwin Creek experimental watershed (GCEW), Mississippi show that peak-discharge Q( A) and drainage area A are related, on average, by a power law or scaling relationship, Q( A) = αAθ, during single rainfall-runoff events. Observations also show that α and θ change between events, and, based on a recent analysis of 148 events, observations indicate that α and θ change because of corresponding changes in the depth, duration, and spatial variability of excess-rainfall. To improve our physical understanding of these observations, a 5-step framework for diagnosing observed power laws, or other space-time patterns in a basin, is articulated and applied to GCEW using a combination of analysis and numerical simulations. Diagnostic results indicate how the power laws are connected to physical conditions and processes. Derived expressions for α and θ show that if excess-rainfall depth is fixed then there is a decreasing concave relationship between α and excess-rainfall duration, and an increasing and slightly convex relationship between θ and excess rainfall duration. These trends are consistent with observations only when hillslope velocity vh is given a physically realistic value near 0.1 m/s. If vh ≫ 0.1 m/s, then the predicted trends deviate from observed trends. Results also suggest that trends in α and θ can be impacted by the dependence of vh and link velocity vl on excess-rainfall rate.
Excessive loss of information by the power-law ansatz for complex systems
Tsai, Sun-Ting; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming
2015-01-01
Physicists love simple laws and uncovering common causes among seemingly unrelated phenomena. An example is the connection between earthquakes and crumpling of a paper, built through the simple power law (SPL) believed to exist between the occurrence rate of their crackling noise and the pulse intensity. We provide, however, evidence to weaken such a link by showing that both systems in fact obey different and more complex laws. Our analyses are based on the Akaike information criterion (AIC) that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. AIC found that a shifted power law retains more information than SPL in the cases of crumpling sound, duration-time frequency of solar flare, web link, protein-domain frequency, and stock-market fluctuations. In the mean time, double power laws (DPL) should replace the Gutenberg-Richter law for earthquake, and the scale-free model for brain functional network, two-dimensional sandpile...
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
Experimental research on breakup of 2D power law liquid film☆
Lixing Xu; Zhenyan Xia; Mengzheng Zhang; Qing Du; Fuqiang Bai
2015-01-01
On account of limited knowledge of the breakup of power law liquid film, the process of its disintegration and atomization was studied by using a planar liquid film. A linear stability analysis was adopted to predict the breakup characteristics of the power law film. The predicting formulas of stripping breakup length and diameter of ligament were put forward presently. Through high-speed photography and laser light sheet illumination, different breakup characteristics of flat power law film under different conditions were derived. The characteristic dimension of breakup regimes were defined and extracted. The effects of several parameters (injection pressure, ambient pressure, nozzle structure and fluid property) on the stripping breakup length and spray angle were investigated. The results revealed that increasing both the velocity of liquid film and the ambient pressure facilitated the breakup of film, reduced the stripping breakup length and enlarged the spray angle in different extents. The comparison between theoretical and experimental results was conducted to validate the feasibility of the linear stability theory.
Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC
A. Tzanis
2003-01-01
Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location
Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions
Corral, Alvaro
2012-01-01
Power-law distributions contain precious information about a large variety of processes in geoscience and elsewhere. Although there are sound theoretical grounds for these distributions, the empirical evidence in favor of power laws has been traditionally weak. Recently, Clauset et al. have proposed a systematic method to find over which range (if any) a certain distribution behaves as a power law. However, their method has been found to fail, in the sense that true (simulated) power-law tails are not recognized as such in some instances, and then the power-law hypothesis is rejected. Moreover, the method does not work well when extended to power-law distributions with an upper truncation. We explain in detail a similar but alternative procedure, valid for truncated as well as for non-truncated power-law distributions, based in maximum likelihood estimation, the Kolmogorov-Smirnov goodness-of-fit test, and Monte Carlo simulations. An overview of the main concepts as well as a recipe for their practical implem...
Non-linear power law approach for spatial and temporal pattern analysis of salt marsh evolution
Taramelli, A.; Cornacchia, L.; Valentini, E.; Bozzeda, F.
2013-11-01
Many complex systems on the Earth surface show non-equilibrium fluctuations, often determining the spontaneous evolution towards a critical state. In this context salt marshes are characterized by complex patterns both in geomorphological and ecological features, which often appear to be strongly correlated. A striking feature in salt marshes is vegetation distribution, which can self-organize in patterns over time and space. Self-organized patchiness of vegetation can often give rise to power law relationships in the frequency distribution of patch sizes. In cases where the whole distribution does not follow a power law, the variance of scale in its tail may often be disregarded. To this end, the research aims at how changes in the main climatic and hydrodynamic variables may influence such non-linearity, and how numerical thresholds can describe this. Since it would be difficult to simultaneously monitor the presence and typology of vegetation and channel sinuosity through in situ data, and even harder to analyze them over medium to large time-space scales, remote sensing offers the ability to analyze the scale invariance of patchiness distributions. Here, we focus on a densely vegetated and channelized salt marsh (Scheldt estuary Belgium-the Netherlands) by means of the sub-pixel analysis on satellite images to calculate the non-linearity in the values of the power law exponents due to the variance of scale. The deviation from power laws represents stochastic conditions under climate drivers that can be hybridized on the basis of a fuzzy Bayesian generative algorithm. The results show that the hybrid approach is able to simulate the non-linearity inherent to the system and clearly show the existence of a link between the autocorrelation level of the target variable (i.e. size of vegetation patches), due to its self-organization properties, and the influence exerted on it by the external drivers (i.e. climate and hydrology). Considering the results of the
Kotan, Hasan, E-mail: hkotan@konya.edu.tr [Department of Metallurgical Engineering and Materials Science, Necmettin Erbakan University, Dere Aşıklar Mah. Demet Sokak, Meram, Konya 42140 (Turkey); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Scattergood, Ronald O.; Koch, Carl C. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27695-7907 (United States)
2014-12-05
The motivation of this work was driven to improve the thermal stability in systems where polymorphic transformations can result in an additional driving force, upsetting the expected thermodynamic stability. In this study, Fe{sub 92}Ni{sub 8} alloys with Zr and nano-Y{sub 2}O{sub 3} additions were produced by ball milling and then annealed at high temperatures. Emphasis was placed on understanding the effects of dispersed nano-Y{sub 2}O{sub 3} particle additions and their effect on microstructural stability at and above the bcc-to-fcc transformation occurring at 700 °C in Fe–Ni systems. Results reveal that microstructural stability and hardness can be promoted by a combination of Zr and Y{sub 2}O{sub 3} additions, that being mostly effective for stability before and after phase transition, respectively. The mechanical strength of these alloys is achieved by a unique microstructure comprised a ultra-fine grain Fe base matrix, which contains dispersions of both nano-scale in-situ formed Zr base intermetallics and ex-situ added Y{sub 2}O{sub 3} secondary oxide phases. Both of these were found to be essential for a combination of high thermal stability and high mechanical strength properties. - Highlights: • Polymorphic transformations can limit the processing of nanostructured powders. • It causes a rapid grain growth and impairs the improved mechanical properties. • We aim to improve the hardness and thermal stability above the phase transformation. • Thermal stability is achieved by a combination of Zr and Y{sub 2}O{sub 3} additions. • Hardness is promoted by in-situ formed and ex-situ added secondary nano phases.
On the interplay between short and long term memory in the power-law cross-correlations setting
Kristoufek, Ladislav
2015-03-01
We focus on emergence of the power-law cross-correlations from processes with both short and long term memory properties. In the case of correlated error-terms, the power-law decay of the cross-correlation function comes automatically with the characteristics of separate processes. Bivariate Hurst exponent is then equal to an average of separate Hurst exponents of the analyzed processes. Strength of short term memory has no effect on these asymptotic properties. Implications of these findings for the power-law cross-correlations concept are further discussed.
Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.
2016-12-01
This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.
Hannula, A M; Marvola, M; Rajamaeki, M; Ojantakanen, S
1991-01-01
In our previous study the reasons for fast absorption of ibuprofen from sodium bicarbonate based hard gelatin capsules stayed unclear. These were not investigated using pH regulators (aluminium hydroxide, calcium carbonate, tartaric acid) with different chemical and physical properties. Ibuprofen absorption was much slower with aluminium hydroxide capsules (MRT 5.3, Tmax 3.1 h, Cmax 25.6 mg l-1, lag time 37.5 min) than with sodium bicarbonate capsules of the previous study (MRT 2.6 h, tmax 0.4 h, Cmax 51.4 mg l-1), lag time 0 min). The corresponding values for calcium carbonate and tartaric acid capsules were: MRT 3.7 h and 3.9 h, Tmax 1.7 h and 2.0 h, Cmax 32.2 mg l-1 and 30.8 mg l-1 and lag time 3.1 min and 7.6 min. No differences were noted in the AUC values. A rank order correlation existed between dissolution parameters and the in vivo parameters reflecting the rate of bioavailability. It was concluded that the rapid absorption of ibuprofen from capsules containing sodium carbonate is due to enhanced in vivo disintegration of the capsule, enhanced in vivo dissolution of the drug and enhanced gastric emptying rate.
Mn对6061合金组织和硬度的影响%The effects of Mn addition on microstructure and hardness in 6061 aluminium alloy
文忠; 建塬; 王彬; 曾建民
2013-01-01
The effects of Mn addition on the microstructure and hardness of 6061 aluminum alloy were studied by means of scanning electron microscope (SEM) , energy dispersive X-Ray analysis (EDX), X-ray diffraction (XRD) and hardness tester in this work. The results show that rod and fishbone AlSiFeMn phase will be formed in the alloy with Mn addition in 6061 aluminium alloy, by the mean of XRD, the Mn12Si7Al5 phase is found in the 6061 aluminium alloy with 0.7%Mn. The hardness increases with the increasing of Mn contents both for as-cast and for T6 heat treatment. However, the hardness growth rate for as-cast is much more than that for T6 heat treatment at the same Mn addition in the 6061 alloy. Mn has a little effect on the hardness for T6 heat treatment in 6061 alloy.%通过扫描电镜/能谱仪、X射线衍射仪以及硬度计，研究了在6061合金中添加少量的 Mn，对6061合金的微观组织和硬度的影响。研究表明：在6061合金中添加微量的Mn，合金的微观组织中出现白色的鱼骨状和条块状的AlSiFeMn结晶相。在对含Mn量为0.7%的6061合金进行XRD分析时发现有Mn12Si7Al5相的衍射峰。对比6061合金的铸态硬度和时效硬度随Mn含量的变化趋势，发现添加微量的Mn对合金的铸态硬度的提高较明显，而对合金的时效硬度的提高所起的所用较小。
邓永菊; 郑华; 杨纯斌
2012-01-01
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is mapped to a first-return random- walk process in a one-dimensional lattice. In order to understand the reason of variant exponents for the power-law distributions in different self-organized critical systems, we introduce the correlations among evolution steps. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. It is found that the longer the correlation length, the smaller values of the exponents for the power-law distributions.
On the interplay between short and long term memory in the power-law cross-correlations setting
Kristoufek, Ladislav
2014-01-01
We focus on emergence of the power-law cross-correlations from processes with both short and long term memory properties. In the case of correlated error-terms, the power-law decay of the cross-correlation function comes automatically with the characteristics of the separate processes. The bivariate Hurst exponent is then equal to an average of the separate Hurst exponents of the analysed processes. Strength of the short term memory has no effect on these asymptotic properties.
Power-Law Modeling of Cancer Cell Fates Driven by Signaling Data to Reveal Drug Effects
Zhang, Fan; Wu, Min; Kwoh, Chee Keong; Zheng, Jie
2016-01-01
Extracellular signals are captured and transmitted by signaling proteins inside a cell. An important type of cellular responses to the signals is the cell fate decision, e.g., apoptosis. However, the underlying mechanisms of cell fate regulation are still unclear, thus comprehensive and detailed kinetic models are not yet available. Alternatively, data-driven models are promising to bridge signaling data with the phenotypic measurements of cell fates. The traditional linear model for data-driven modeling of signaling pathways has its limitations because it assumes that the a cell fate is proportional to the activities of signaling proteins, which is unlikely in the complex biological systems. Therefore, we propose a power-law model to relate the activities of all the measured signaling proteins to the probabilities of cell fates. In our experiments, we compared our nonlinear power-law model with the linear model on three cancer datasets with phosphoproteomics and cell fate measurements, which demonstrated that the nonlinear model has superior performance on cell fates prediction. By in silico simulation of virtual protein knock-down, the proposed model is able to reveal drug effects which can complement traditional approaches such as binding affinity analysis. Moreover, our model is able to capture cell line specific information to distinguish one cell line from another in cell fate prediction. Our results show that the power-law data-driven model is able to perform better in cell fate prediction and provide more insights into the signaling pathways for cancer cell fates than the linear model. PMID:27764199
Keil, Petr; Herben, Tomás; Rosindell, James; Storch, David
2010-07-07
There has recently been increasing interest in neutral models of biodiversity and their ability to reproduce the patterns observed in nature, such as species abundance distributions. Here we investigate the ability of a neutral model to predict phenomena observed in single-population time series, a study complementary to most existing work that concentrates on snapshots in time of the whole community. We consider tests for density dependence, the dominant frequencies of population fluctuation (spectral density) and a relationship between the mean and variance of a fluctuating population (Taylor's power law). We simulated an archipelago model of a set of interconnected local communities with variable mortality rate, migration rate, speciation rate, size of local community and number of local communities. Our spectral analysis showed 'pink noise': a departure from a standard random walk dynamics in favor of the higher frequency fluctuations which is partly consistent with empirical data. We detected density dependence in local community time series but not in metacommunity time series. The slope of the Taylor's power law in the model was similar to the slopes observed in natural populations, but the fit to the power law was worse. Our observations of pink noise and density dependence can be attributed to the presence of an upper limit to community sizes and to the effect of migration which distorts temporal autocorrelation in local time series. We conclude that some of the phenomena observed in natural time series can emerge from neutral processes, as a result of random zero-sum birth, death and migration. This suggests the neutral model would be a parsimonious null model for future studies of time series data.
Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.
2016-07-01
The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).
On the power-law distributions of X-ray fluxes from solar flares observed with GOES
Li, You-Ping; Feng, Li; Zhang, Ping; Liu, Si-Ming; Gan, Wei-Qun
2016-10-01
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law distribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.
Power laws and self-similar behaviour in negative ionization fronts
Arrayas, Manuel [Departamento de Matematicas y Fisica Aplicadas y Ciencias de la Naturaleza, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Fontelos, Marco A [Departamento de Matematicas, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain); Trueba, Jose L [Departamento de Matematicas y Fisica Aplicadas y Ciencias de la Naturaleza, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)
2006-06-09
We study anode-directed ionization fronts in curved geometries. An electric shielding factor determines the behaviour of the electric field and the charged particle densities. From a minimal streamer model, a Burgers type equation which governs the dynamics of the electric shielding factor is obtained when electron diffusion is neglected. A Lagrangian formulation is then derived to analyse the ionization fronts. Power laws for the velocity and the amplitude of streamer fronts are found numerically and calculated analytically by using the shielding factor formulation. The phenomenon of geometrical diffusion is explained and clarified, and a universal self-similar asymptotic behaviour is derived.
Thermodynamics of ideal Fermi gas under generic power law potential in $d$-dimension
Faruk, Mir Mehedi; Bhuiyan, G. M.
2015-01-01
Thermodynamics of ideal Fermi gas trapped in an external generic power law potential $U=\\sum_{i=1} ^d c_i |\\frac{x_i}{a_i}|^{n_i}$ are investigated systematically from the grand thermodynamic potential in $d$ dimensional space. These properties are explored deeply in the degenerate limit ($\\mu>> K_BT$), where the thermodynamic properties are greatly dominated by Pauli exclusion principle. Pressure and energy along with the isothermal compressibilty is non zero at $T=0K$, denoting trapped Ferm...
Chakraborty, B.; Kodagali, V.N.
, the application of the theory for deep seafloor quantitative backscatter model using multibeam echosounder was initiated [5-7] In the composite roughness model, Jackson et al [9] had applied power law properties of the seafloor roughness spectrum to a H...-K formulation at steep 'angles i.e , angles of incidences in the range 020 The mathematical aspects ot the composite toughness theory are given elsewhere For a small-scale part ofthe seafloor the composite roughness model uses the Rayieigh-Ricc perturbation...
An explanation for the universal 3.5 power-law observed in currency markets
Johnson, Nicholas A.; Johnson, Neil F.
We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013) in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α ∼ 3.5 . This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.'s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents.
Crossover of two power laws in the anomalous diffusion of a two lipid membrane
Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it [Dipartimento di Chimica “G. Ciamician”, Universita’ di Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Venturini, Alessandro [Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Via Gobetti 101, 40129 Bologna (Italy)
2015-06-07
Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
Sensitivity of Exponents of Three-Power Laws to Hybrid Ratio in Weighted HUHPM
FANG Jin-Qing; BI Qiao; LI Yong; LU Xin-Biao; LIU Qiang
2007-01-01
@@ The sensitivity of exponents of three-power laws for node degree, node strength and edged weight to hybrid ratio are studied analytically and numerically in the weighted harmonious unifying hybrid preferential model (HUHPM), which is extended from un-weighted hybrid preferential attachment model we proposed previously [Chin. Phys. Lett. 22 (2005)719]. Our weighted HUHPMs plus the Barrat-Barthelemy-Vespignani model and the traffic-driven evolution model, respectively, are taken as two typical examples for demonstration and application of the HUHPM.
Note on Power-Law Inflation in Noncommutative Space-Time
Feng, Chao-Jun; Liu, Dao-Jun
2014-01-01
In this paper, we propose a new method to calculate the mode functions in the noncommutative power-law inflation model. In this model, all the modes created when the stringy space-time uncertainty relation is satisfied are generated inside the Hubble horizon during inflation. It turns out that a linear term describing the noncommutative space-time effect contributes to the power spectra of the scalar and tensor perturbations. Confronting this model with latest results from \\textit{Planck} and BICEP2, we constrain the parameters in this model and we find it is well consistent with observations.
Anisotropic Power-law Inflation: A counter example to the cosmic no-hair conjecture
Soda, Jiro
2014-01-01
It is widely believed that anisotropy in the expansion of the universe will decay exponentially fast during inflation. This is often referred to as the cosmic no-hair conjecture. However, we find a counter example to the cosmic no-hair conjecture in the context of supergravity. As a demonstration, we present an exact anisotropic power-law inflationary solution which is an attractor in the phase space. We emphasize that anisotropic inflation is quite generic in the presence of anisotropic sources which couple with an inflaton.
The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media
宋付权; 刘慈群
2002-01-01
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
Apparent Power Law Scaling of Variable Range Hopping Conduction in Carbonized Polymer Nanofibers
Kim, Kyung Ho; Lara-Avila, Samuel; Kang, Hojin; He, Hans; Eklӧf, Johnas; Hong, Sung Ju; Park, Min; Moth-Poulsen, Kasper; Matsushita, Satoshi; Akagi, Kazuo; Kubatkin, Sergey; Park, Yung Woo
2016-11-01
We induce dramatic changes in the structure of conducting polymer nanofibers by carbonization at 800 °C and compare charge transport properties between carbonized and pristine nanofibers. Despite the profound structural differences, both types of systems display power law dependence of current with voltage and temperature, and all measurements can be scaled into a single universal curve. We analyze our experimental data in the framework of variable range hopping and argue that this mechanism can explain transport properties of pristine polymer nanofibers as well.
Waters; Hughes; Mobley; Brandenburger; Miller
2000-08-01
In the recent literature concern has been raised regarding the validity of Kramers-Kronig relations for media with ultrasonic attenuation obeying a frequency power law. It is demonstrated, however, that the Kramers-Kronig dispersion relations for application to these types of media are available. The developed dispersion relations are compared with measurements on several liquids, and agreement is found to better than 1 m/s over the experimentally available bandwidth. A discussion regarding the validity of these dispersion relations, in particular how the dispersion relations relate to the so-called Paley-Wiener conditions, forms the conclusion.
Hysteresis and creep: Comparison between a power-law model and Kuhnen's model
Oliveri, Alberto; Stellino, Flavio; Parodi, Mauro; Storace, Marco, E-mail: marco.storace@unige.it
2016-04-01
In this paper we analyze some properties of a recently proposed model of hysteresis and creep (related to a circuit model, whose only nonlinear element is based on a power law) and compare it with the well-known Kuhnen's model. A first qualitative comparison relies on the analysis of the behavior of the elementary cell of each model. Their responses to step inputs (which allow to better evidence the creep effect) are analyzed and compared. Then, a quantitative comparison is proposed, based on the fitting performances of the two models on experimental data measured from a commercial piezoelectric actuator.
Evidence for Power-law tail of the Wealth Distribution in India
Sitabhra Sinha
2005-01-01
The higher-end tail of the wealth distribution in India is studied using recently published lists of the wealth of richest Indians between the years 2002-4. The resulting rank distribution seems to imply a power-law tail for the wealth distribution, with a Pareto exponent between 0.81 and 0.92 (depending on the year under analysis). This provides a comparison with previous studies of wealth distribution, which have all been confined to Western advanced capitalist economies. We conclude with a...
Power Law of Shear Viscosity in Einstein-Maxwell-Dilaton-Axion model
Ling, Yi; Zhou, Zhenhua
2016-01-01
We construct charged black hole solutions with hyperscaling violation in the infrared(IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is testified numerically at low temperature $T$, namely, $\\eta/s\\sim T^\\kappa$, where the values of exponent $\\kappa$ coincide with the analytical results. We also find that the exponent $\\kappa$ is not affected by irrelevant current, but is reduced by the relevant current.
VISCOUS FORCES BETWEEN TWO SPHERES COLLIDING THROUGH INTERSTITIAL POWER-LAW FLUID
Yong; Xu; Hongyan; Li; Wenbin; Huang
2005-01-01
Interaction between two spheres with an interstitial fluid is essential in Discrete Element modeling for simulating the behaviors of ‘wet' particulate materials. In this paper the interaction between two spheres with an interstitial Power-law fluid was approximately resolved as normal and tangential interactive models respectively, for which the governing equations were simplified on the basis of Reynolds approximation. These equations were then solved analytically together with the boundary conditions to obtain the pressure distributions for each individual model, and event ually solutions of the viscous squeeze force and the tangential viscous resistance were obtained, which provide a set of solutions for implementing into DEM code or other purposes.
Analytical approximation for AC losses in thin power-law superconductors
Sokolovsky, V; Meerovich, V [Physics Department, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva, 84105 (Israel)
2007-08-15
AC losses in the superconducting parts of tapes and multifilamentary coated conductors that are subjected to AC magnetic fields are an important component of the total losses in such composites. The analytical expression for AC losses in a thin superconducting strip with a power-law voltage-current characteristic and critical current depending on a magnetic field is obtained for the case of asymptotically high perpendicular magnetic fields. The losses caused by closure currents are estimated. The results show that the Bean model gives significantly understated values for coated conductors. The applicability of the obtained expressions is analyzed.
The Anderson-Darling test of fit for the power law distribution from left censored samples
Coronel-Brizio, H F
2010-01-01
Maximum likelihood estimation and a test of fit based on the Anderson-Darling statistic is presented for the case of the power law distribution when the parameters are estimated from a left-censored sample. Expressions for the maximum likelihood estimators and tables of asymptotic percentage points for the A^2 statistic are given. The technique is illustrated for data from the Dow Jones Industrial Average index, an example of high theoretical and practical importance in Econophysics, Finance, Physics, Biology and, in general, in other related Sciences such as Complexity Sciences.
Taguchi, Y; Hideki Takayasu
1994-01-01
Distribution functions of relative velocities among particles in a vibrated bed of powder are studied both numerically and theoretically. In the solid phase where granular particles remain around their local stable states, the probability distribution obeys Gaussian. On the other hand in the fluidized phase where the particles can exchange their positions the distribution clearly deviates from Gaussian. The non-Gaussian distribution is approximated nicely by the t-distribution which is derived theoretically by considering the effect of clustering by inelastic collisions.
Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping
2016-05-01
The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.
HEXTE Detections of Hard X-Ray Tails in Sco X-1
D'Amico, F; Rothschild, R E; Gruber, D
2000-01-01
We report the detection of a non-thermal hard X-ray component from Sco X-1 based upon the analysis of 20-220 keV spectra obtained with the HEXTE experiment onboard the RXTE satellite. We find that the addition of a power-law component to a thermal bremsstrahlung model is required to achieve a good fit in 5 of 16 observations analyzed. Using PCA data we were able to track the movement of the source along the Z diagram, and we found that the presence of the hard X-ray tail is not confined to a specific Z position. However, we do observe an indication that the power law index hardens with increasing mass accretion rate, as indicated from the position on the Z diagram. We find that the derived non-thermal luminosities are about 10% of that derived for the brightest of the atoll sources. These observations provide firm evidence for non-thermal X-ray activity in a Z source.
A generalized power-law scaling law for a two-phase imbibition in a porous medium
El-Amin, Mohamed
2013-11-01
Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.
New version of PLNoise: a package for exact numerical simulation of power-law noises
Milotti, Edoardo
2007-08-01
In a recent paper I have introduced a package for the exact simulation of power-law noises and other colored noises [E. Milotti, Comput. Phys. Comm. 175 (2006) 212]: in particular, the algorithm generates 1/f noises with 0law spectrum for any arbitrary sequence of sampling intervals, i.e. the sampling times may be unevenly spaced. Program summaryTitle of program: PLNoise Catalogue identifier:ADXV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXV_v2_0.html Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler RAM: The code of the test program is very compact (about 60 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell: ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, second ed., Cambridge Univ. Press., Cambridge, 1992, pp. 274-290]. Notice that ranlib requires a pair of routines from the linear algebra package LINPACK, and that the distribution of ranlib includes the C source of these routines, in case LINPACK is not
Power law scaling and ``Dragon-Kings'' in distributions of intraday financial drawdowns
Filimonov, Vladimir; Sornette, Didier
2015-05-01
We investigate the distributions of epsilon-drawdowns and epsilon-drawups of the most liquid futures financial contracts of the world at time scales of 30 seconds. The epsilon-drawdowns (resp. epsilon- drawups) generalise the notion of runs of negative (resp. positive) returns so as to capture the risks to which investors are arguably the most concerned with. Similarly to the distribution of returns, we find that the distributions of epsilon-drawdowns and epsilon-drawups exhibit power law tails, albeit with exponents significantly larger than those for the return distributions. This paradoxical result can be attributed to (i) the existence of significant transient dependence between returns and (ii) the presence of large outliers (dragon-kings) characterizing the extreme tail of the drawdown/drawup distributions deviating from the power law. The study of the tail dependence between the sizes, speeds and durations of drawdown/drawup indicates a clear relationship between size and speed but none between size and duration. This implies that the most extreme drawdown/drawup tend to occur fast and are dominated by a few very large returns. We discuss both the endogenous and exogenous origins of these extreme events.
Analysis of Grassland Vegetation of the Southwest Heilongjiang Steppe (China) Using the Power Law
Mikinori TSUIKI; Yu-Sheng WANG; Yiruhan; Michio TSUTSUMI; Masae SHIYOMI
2005-01-01
In 1997, we conducted a vegetation survey in three semi-arid natural grasslands (steppes) withdifferent livestock grazing intensities in Southwest Heilongjiang Province, China. The dominant grasslandspecies was the grass Stipa baicalensis Roshev. Grasslands with light, intermediate, and heavy grazingintensities were located 10, 5, and 2 km from a village, respectively. Villagers use the steppe to raise cattle,horses, sheep, and goats. Each of the three grasslands was surveyed by placing 100 quadrats (50 cm×50 cm)along a 50 m line transect. Each quadrat was divided into four equal areas (25 cm×25 cm; S-quadrats) and allplant species occurring in each of these smaller areas were identified and recorded. These data were summa-rized into frequency distributions and the percentage of S-quadrats containing a given species and thevariance of each species were estimated. The power law was applied to these estimates. The power law wasused to evaluate the spatial heterogeneity and frequency of occurrence for each species in the grasslandcommunity. The lightly grazed grassland exhibited high spatial heterogeneity (caused by large plant size),the highest species diversity, and a high occurrence of S. baicalensis. In contrast, the heavily grazedgrassland exhibited high spatial heterogeneity (caused by patchy populations of small plant size), lowspecies diversity, and a low occurrence of S. baicalensis. We judged that the heavily grazed grassland wasovergrazed and exclusion of livestock from the degraded areas is necessary for recovery.
Universal correlations and power-law tails in financial covariance matrices
Akemann, G.; Fischmann, J.; Vivo, P.
2010-07-01
We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.
Random walks with fractally correlated traps: Stretched exponential and power-law survival kinetics
Plyukhin, Dan; Plyukhin, Alex V.
2016-10-01
We consider the survival probability f (t ) of a random walk with a constant hopping rate w on a host lattice of fractal dimension d and spectral dimension ds≤2 , with spatially correlated traps. The traps form a sublattice with fractal dimension dawa which may be finite (imperfect traps) or infinite (perfect traps). Initial coordinates are chosen randomly at or within a fixed distance of a trap. For weakly absorbing traps (wa≪w ), we find that f (t ) can be closely approximated by a stretched exponential function over the initial stage of relaxation, with stretching exponent α =1 -(d -da) /dw , where dw is the random walk dimension of the host lattice. At the end of this initial stage there occurs a crossover to power-law kinetics f (t ) ˜t-α with the same exponent α as for the stretched exponential regime. For strong absorption wa≳w , including the limit of perfect traps wa→∞ , the stretched exponential regime is absent and the decay of f (t ) follows, after a short transient, the aforementioned power law for all times.
Emergence of power-law in a market with mixed models
Ali Saif, M.; Gade, Prashant M.
2007-10-01
We investigate the problem of wealth distribution from the viewpoint of asset exchange. Robust nature of Pareto's law across economies, ideologies and nations suggests that this could be an outcome of trading strategies. However, the simple asset exchange models fail to reproduce this feature. A Yardsale (YS) model in which amount put on the bet is a fraction of minimum of the two players leads to condensation of wealth in hands of some agent while theft and fraud (TF) model in which the amount to be exchanged is a fraction of loser's wealth leads to an exponential distribution of wealth. We show that if we allow few agents to follow a different model than others, i.e., there are some agents following TF model while rest follow YS model, it leads to distribution with power-law tails. Similar effect is observed when one carries out transactions for a fraction of one's wealth using TF model and for the rest YS model is used. We also observe a power-law tail in wealth distribution if we allow the agents to follow either of the models with some probability.
Ma'zoozeh E. Abu-Amra
2008-04-01
Full Text Available In this paper we derive close form for the matrix elements for $hat H=-Delta +V$, where $V$ is a pure power-law potential. We use trial functions of the form $$ psi _n(r= sqrt{{frac{2eta ^{gamma/2}(gamma _n} {n!Gamma(gamma }}} r^{gamma - 1/2} e^{-frac{sqrt{eta }}{2}r^q} _pF_1 ( -n,a_2,ldots ,a_p;gamma;sqrt {eta } r^q, $$ for $eta, q,gamma >0$ to obtain the matrix elements for $hat H$. These formulas are then optimized with respect to variational parameters $eta ,q$ and $gamma $ to obtain accurate upper bounds for the given nonsolvable eigenvalue problem in quantum mechanics. Moreover, we write the matrix elements in terms of the generalized hypergeomtric functions. These results are generalization of those found earlier in [2], [8-16] for power-law potentials. Applications and comparisons with earlier work are presented.
The US business cycle: power law scaling for interacting units with complex internal structure
Ormerod, Paul
2002-11-01
In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.
Nonuniversal power law scaling in the probability distribution of scientific citations.
Peterson, George J; Pressé, Steve; Dill, Ken A
2010-09-14
We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations ("classics") are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The "tipping point" at which a paper becomes a classic is about 25 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 31 for Physical Review D papers published from 1975-1994, and 37 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a systematically smaller exponent than individuals who are less cited.
Ruling out the power-law form of the scalar primordial spectrum
Hazra, Dhiraj Kumar; Shafieloo, Arman [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Smoot, George F. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Starobinsky, Alexei A., E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: gfsmoot@lbl.gov, E-mail: alstar@landau.ac.ru [Landau Institute for Theoretical Physics RAS, Moscow, 119334 (Russian Federation)
2014-06-01
Combining Planck CMB temperature [1] and BICEP2 B-mode polarization data [2,3] we show qualitatively that, assuming inflationary consistency relation, the power-law form of the scalar primordial spectrum is ruled out at more than 3σ CL. This is an important finding, since the power-law form of the scalar primordial spectrum is one of the main assumptions of concordance model of cosmology and also a direct prediction of many inflationary scenarios. We show that a break or step in the form of the primordial scalar perturbation spectrum, similar to what we studied recently analyzing Planck data [4], can address both Planck and BICEP2 results simultaneously. Our findings also indicate that the data may require more flexibilities than what running of scalar spectral index can provide. Finally we show that an inflaton potential, originally appeared in [5], can generate both the step and the break model of scalar primordial spectrum in two different limits. The discussed potential is found to be favored by Planck data but marginally disfavored by BICEP2 results as it produces slightly lower amplitude of tensor primordial spectrum. Hence, if the tensor-to-scalar ratio (r) quoted by BICEP2 persists, it is of importance that we generate inflationary models with large r and at the same time provide suppression in scalar primordial spectrum at large scales.
Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales
Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.
2006-01-01
The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.
Garanina, O S
2016-01-01
A multi-parametric family of stretch exponential distributions with various power law tails is introduced and is shown to describe adequately the empirical distributions of scientific citation of individual authors. The four-parametric families are characterized by a normalization coefficient in the exponential part, the power exponent in the power-law asymptotic part, and the coefficient for the transition between the above two parts. The distribution of papers of individual scientist over citations of these papers is studied. Scientists are selected via total number of citations in three ranges: 102-103, 103-104, and 104-105 of total citations. We study these intervals for physicists in ISI Web of Knowledge. The scientists who started their scientific publications after 1980 were taken into consideration only. It is detected that the power coefficient in the stretch exponent starts from one for low-cited authors and has to trend to smaller values for scientists with large number of citation. At the same tim...
Cyclotron maser emission from power-law electrons with strong pitch-angle anisotropy
Zhao, G Q; Wu, D J; Chen, L; Tang, J F; Liu, Q
2016-01-01
Energetic electrons with power-law spectrum are most commonly observed in astrophysics. This paper investigates electron cyclotron maser emission (ECME) from the power-law electrons, in which strong pitch-angle anisotropy is emphasized. The electron distribution function proposed in this paper can describe various types of pitch-angle anisotropy. Results show that the emission properties of ECME, including radiation growth, propagation, and frequency properties, depend considerably on the types of electron pitch-angle anisotropy, and different wave modes show different dependences on the pitch angle of electrons. In particular, the maximum growth rate of X2 mode rapidly decreases with respect to the electron pitch-angle cosine $\\mu_0$ at which the electron distribution peaks, while the growth rates for other modes (X1, O1, O2) initially increase before decreasing as $\\mu_0$ increases. Moreover, the O mode as well as the X mode can be the fastest growth mode, in terms of not only the plasma parameter but also ...
Effective power-law dependence of Lyapunov exponents on the central mass in galaxies
Delis, N; Kalapotharakos, C
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation $L\\propto m^p$ between the mean Lyapunov exponent $L$ of stellar orbits chaotically scattered by a supermassive black hole in the center of a galaxy and the mass parameter $m$, i.e. ratio of the mass of the black hole over the mass of the galaxy. The exponent $p$ is found numerically to obtain values in the range $p \\approx 0.3$--$0.5$. We propose a theoretical interpretation of these exponents, based on estimates of local `stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the black hole's sphere of influence. We thus predict $p=2/3-q$ with $q\\approx 0.1$--$0.2$. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power law scaling of $L$ with $m$ holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show...
Pressure falloff behavior in vertically fractured wells: Non-Newtonian power-law fluids
Vongvuthipornchai, S.; Raghauan, R.; Reynolds, A.C.
1984-09-01
This paper examines pressure falloff behavior in fractured wells following the injection of a non-Newtonian power-law fluid. Results are presented in a form suitable for field application. Responses at wells intercepting infinite-conductivity and uniformflux fractures are considered. Procedures to identify flow regimes are discussed. The solutions presented here are new and to our knowledge not available in the literature. The consequences of neglecting the non-Newtonian characteristics of the injected fluid are examined. The results of this work were obtained by a finite difference model. Procedures to compute the apparent viscosity of power-law fluids for twodimensional flow through porous media are discussed. The formulation given here avoids numerical problems (multiple solutions, cross over, etc.) reported in other studies. Although, the main objective of the work is to examine pressure falloff behavior at fractured wells, the authors also examine responses at unfractured wells. The main objective of this part of a study is to examine the validity of using the superposition principle to analyze pressure falloff data. (The pressure distribution for this problem is governed by a nonlinear partial differential equation.) If the solutions given in the literature are used, then correction factors are needed to analyze pressure falloff data. The results of this phase of the work can also be used to analyze data in fractured wells provided that pseudoradial flow conditions exist.
Nonuniversal power law scaling in the probability distribution of scientific citations
Peterson, G J; Dill, K A; 10.1073/pnas.1010757107
2010-01-01
We develop a model for the distribution of scientific citations. The model involves a dual mechanism: in the direct mechanism, the author of a new paper finds an old paper A and cites it. In the indirect mechanism, the author of a new paper finds an old paper A only via the reference list of a newer intermediary paper B, which has previously cited A. By comparison to citation databases, we find that papers having few citations are cited mainly by the direct mechanism. Papers already having many citations (`classics') are cited mainly by the indirect mechanism. The indirect mechanism gives a power-law tail. The `tipping point' at which a paper becomes a classic is about 25 citations for papers published in the Institute for Scientific Information (ISI) Web of Science database in 1981, 31 for Physical Review D papers published from 1975-1994, and 37 for all publications from a list of high h-index chemists assembled in 2007. The power-law exponent is not universal. Individuals who are highly cited have a system...
Fertility Heterogeneity as a Mechanism for Power Law Distributions of Recurrence Times
Saichev, A
2012-01-01
We study the statistical properties of recurrence times in the self-excited Hawkes conditional Poisson process, the simplest extension of the Poisson process that takes into account how the past events influence the occurrence of future events. Specifically, we analyze the impact of the power law distribution of fertilities with exponent \\alpha, where the fertility of an event is the number of aftershocks of first generation that it triggers, on the probability distribution function (pdf) f(\\tau) of the recurrence times \\tau between successive events. The other input of the model is an exponential Omori law quantifying the pdf of waiting times between an event and its first generation aftershocks, whose characteristic time scale is taken as our time unit. At short time scales, we discover two intermediate power law asymptotics, f(\\tau) ~ \\tau^{-(2-\\alpha)} for \\tau << \\tau_c and f(\\tau) ~ \\tau^{-\\alpha} for \\tau_c << \\tau << 1, where \\tau_c is associated with the self-excited cascades of aft...
Thermodynamics of (2 +1 )-dimensional charged black holes with power-law Maxwell field
Dehghani, M.
2016-11-01
In this work, the three-dimensional nonlinearly charged black holes have been considered with a power-law modified electromagnetic theory. The black hole solutions to Einstein's three-dimensional field equations with a negative cosmological constant have been constructed in the presence of power-law nonlinear electrodynamics. Through the physical and mathematical interpretation of the solutions, a new class of asymptotically anti-de Sitter (AdS) black hole solutions has been introduced. The area law, surface gravity, and Gauss's law are utilized to obtain the entropy, temperature, and electric charge of the new AdS black holes, respectively. The quasilocal mass of the solutions has been calculated based on the counterterm method. A Smarr-type formula for the mass as a function of entropy and charge has been obtained. It has been shown that the thermodynamical quantities satisfy the first law of thermodynamics for the new AdS black holes. Also, it has been found that in order for the Smarr mass formula to be compatible with the first law of black hole thermodynamics, the cosmological parameter Λ should be treated as a thermodynamical variable and the generalized first law of thermodynamics has been introduced. Through the canonical ensemble method, the black hole remnant or phase transitions have been investigated regarding the black hole heat capacity. It has been found that the AdS black hole solutions we just obtained are thermodynamically stable.
Entropy and the Cosmic Ray Particle Energy Distribution Power Law Exponent
Widom, A; Srivastava, Y N
2014-01-01
We consider the hypothesis that cosmic rays are emitted from the surfaces of neutron stars by a process of evaporation from an internal nuclear liquid to a dilute external gas which constitutes the "vacuum". On this basis, we find an inverse power in the energy distribution with a power law exponent of 2.701178 in excellent agreement with the experimental value of 2.7. The heat of nuclear matter evaporation via the entropy allows for the computation of the exponent. The evaporation model employed is based on the entropy considerations of Landau and Fermi that have been applied to the liquid drop model of evaporation in a heavy nucleus excited by a collision. This model provides a new means of obtaining power law distributions for cosmic ray energy distributions and, remarkably, an actual value for the exponent which is in agreement with experiment and explains the otherwise puzzling smoothness of the cosmic ray energy distribution over a wide range of energies without discontinuities due to contributions from...
Effective non-Coulombic power-law potential for the study of light and heavy mesons
Barik, N.; Jena, S.N.
1982-08-01
From purely phenomenological considerations we have shown that it is possible to describe successfully the heavy meson spectra of cc-bar and bb-bar systems in the framework of an effective non-Coulombic power-law potential in the form V(r) = V/sub 0/+ar/sup ..nu../ (with a,..nu..>0). The nonsingular short-distance behavior of this potential, which is in apparent contradiction with the predictions of quantum- chromodynamics, does not pose any problem in explaining the fine-hyperfine splitting, if we prescribe the spin dependence to be generated through this static confining potential in the form of an approximately equal admixture of scalar and vector parts with no contributions from the anomalous quark magnetic moments. This nonrelativistic formalsm, when extended to a unified study of the entire meson spectra including the ordinary light and the heavy mesons, gives a very good account of the meson masses, fine-hyperfine splittings, electromagnetic transition rates, and leptonic decay widths without reflecting any inadequacy in the short- and long-range behavior of this simple effective power-law potential.
Detection of two power-law tails in the probability distribution functions of massive GMCs
Schneider, N; Girichidis, P; Rayner, T; Motte, F; Andre, P; Russeil, D; Abergel, A; Anderson, L; Arzoumanian, D; Benedettini, M; Csengeri, T; Didelon, P; Francesco, J D; Griffin, M; Hill, T; Klessen, R S; Ossenkopf, V; Pezzuto, S; Rivera-Ingraham, A; Spinoglio, L; Tremblin, P; Zavagno, A
2015-01-01
We report the novel detection of complex high-column density tails in the probability distribution functions (PDFs) for three high-mass star-forming regions (CepOB3, MonR2, NGC6334), obtained from dust emission observed with Herschel. The low column density range can be fit with a lognormal distribution. A first power-law tail starts above an extinction (Av) of ~6-14. It has a slope of alpha=1.3-2 for the rho~r^-alpha profile for an equivalent density distribution (spherical or cylindrical geometry), and is thus consistent with free-fall gravitational collapse. Above Av~40, 60, and 140, we detect an excess that can be fitted by a flatter power law tail with alpha>2. It correlates with the central regions of the cloud (ridges/hubs) of size ~1 pc and densities above 10^4 cm^-3. This excess may be caused by physical processes that slow down collapse and reduce the flow of mass towards higher densities. Possible are: 1. rotation, which introduces an angular momentum barrier, 2. increasing optical depth and weaker...
Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media
Haid, Sebastian; Naab, Thorsten; Seifried, Daniel; Mackey, Jonathan; Gatto, Andrea
2016-01-01
Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media with uniform (and with stellar wind blown bubbles), power-law, and turbulent density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with $n(r) \\sim$ $r^{-2}$ (for $n(r) > n_{_{\\rm floor}}$) the amount of momentum injection is solely r...
Hong, S. Lee; Bodfish, James W.; Newell, Karl M.
2006-03-01
We investigated the relationship between macroscopic entropy and microscopic complexity of the dynamics of body rocking and sitting still across adults with stereotyped movement disorder and mental retardation (profound and severe) against controls matched for age, height, and weight. This analysis was performed through the examination of center of pressure (COP) motion on the mediolateral (side-to-side) and anteroposterior (fore-aft) dimensions and the entropy of the relative phase between the two dimensions of motion. Intentional body rocking and stereotypical body rocking possessed similar slopes for their respective frequency spectra, but differences were revealed during maintenance of sitting postures. The dynamics of sitting in the control group produced lower spectral slopes and higher complexity (approximate entropy). In the controls, the higher complexity found on each dimension of motion was related to a weaker coupling between dimensions. Information entropy of the relative phase between the two dimensions of COP motion and irregularity (complexity) of their respective motions fitted a power-law function, revealing a relationship between macroscopic entropy and microscopic complexity across both groups and behaviors. This power-law relation affords the postulation that the organization of movement and posture dynamics occurs as a fractal process.
So You Think the Crab is Described by a Power-Law Spectrum
Weisskopf, Martin C.
2008-01-01
X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.
Birth and death of protein domains: A simple model of evolution explains power law behavior
Berezovskaya Faina S
2002-10-01
Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational
Beskardes, G. D.; Weiss, C. J.; Everett, M. E.
2016-11-01
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a "rough geology" exhibiting multi-scale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modeling results of the electromagnetic responses of textured and spatially-correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modeling results show that these electromagnetic responses due to spatially-correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behavior of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modeling.
Beskardes, G. D.; Weiss, C. J.; Everett, M. E.
2017-02-01
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a `rough geology' exhibiting multiscale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modelling results of the electromagnetic responses of textured and spatially correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modelling results show that these electromagnetic responses due to spatially correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behaviour of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modelling.
Akiba, M.; Tsujino, K.
2016-08-01
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.
Wavelet-based analysis and power law classification of C/NOFS high-resolution electron density data
Rino, C. L.; Carrano, C. S.; Roddy, Patrick
2014-08-01
This paper applies new wavelet-based analysis procedures to low Earth-orbiting satellite measurements of equatorial ionospheric structure. The analysis was applied to high-resolution data from 285 Communications/Navigation Outage Forecasting System (C/NOFS) satellite orbits sampling the postsunset period at geomagnetic equatorial latitudes. The data were acquired during a period of progressively intensifying equatorial structure. The sampled altitude range varied from 400 to 800 km. The varying scan velocity remained within 20° of the cross-field direction. Time-to-space interpolation generated uniform samples at approximately 8 m. A maximum segmentation length that supports stochastic structure characterization was identified. A two-component inverse power law model was fit to scale spectra derived from each segment together with a goodness-of-fit measure. Inverse power law parameters derived from the scale spectra were used to classify the scale spectra by type. The largest category was characterized by a single inverse power law with a mean spectral index somewhat larger than 2. No systematic departure from the inverse power law was observed to scales greater than 100 km. A small subset of the most highly disturbed passes at the lowest sampled altitudes could be categorized by two-component power law spectra with a range of break scales from less than 100 m to several kilometers. The results are discussed within the context of other analyses of in situ data and spectral characteristics used for scintillation analyses.
On the Power-Law Distributions of X-ray Fluxes from Solar Flares Observed with GOES
Li, You-ping; Zhang, Ping; Liu, Siming; Gan, Weiqun
2016-01-01
Power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system of self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power-law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES. The temperature ($T$) distribution, on the other hand, approaches a ...
An optimized framework for degree distribution in LT codes based on power law
Asim; Muhammad; Choi; GoangSeog
2013-01-01
LT codes are practical realization of digital fountain codes, which provides the concept of rateless coding. In this scheme, encoded symbols are generated infinitely from k information symbols. Decoder uses only(1+α)k number of encoded symbols to recover the original information. The degree distribution function in the LT codes helps to generate a random graph also referred as tanner graph. The artifact of tanner graph is responsible for computational complexity and overhead in the LT codes. Intuitively, a well designed degree distribution can be used for an efficient implementation of LT codes. The degree distribution function is studied as a function of power law, and LT codes are classified into two different categories: SFLT and RLT codes. Also, two different degree distributions are proposed and analyzed for SFLT codes which guarantee optimal performance in terms of computational complexity and overhead.
Makinde, O. D.
2014-12-01
In this paper, the steady generalized axial Couette flow of Ostwald-de Waele power law reactive fluids between concentric cylindrical pipes is investigated. It is assumed that the outer cylinder is stationary and exchanges heat with the ambient surrounding following Newton's law of cooling, while the inner cylinder with isothermal surface is set in motion in the axial direction. The model nonlinear differential equations for the momentum and energy balance are obtained and tackled numerically using the shooting method coupled with the Runge-Kutta-Fehlberg integration technique. The effects of various embedded thermophysical parameters on the velocity and temperature fields including skin friction, Nusselt number and thermal criticality conditions are presented graphically and discussed quantitatively.
Origins of power-law degree distribution in the heterogeneity of human activity in social networks
Muchnik, Lev; Parra, Lucas C; Reis, Saulo D S; Andrade,, Jose S; Havlin, Shlomo; Makse, Hernan A
2013-01-01
The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a "maximum entropy attachment" model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people.
Mass transport in a thin layer of power-law mud under surface waves
Liu, Jie; Bai, Yuchuan; Xu, Dong
2017-02-01
The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.
The Power (Law) of Indian Markets: Analysing NSE and BSE trading statistics
Sinha, S; Sinha, Sitabhra; Pan, Raj Kumar
2006-01-01
The nature of fluctuations in the Indian financial market is analyzed in this paper. We have looked at the price returns of individual stocks, with tick-by-tick data from the National Stock Exchange (NSE) and daily closing price data from both NSE and the Bombay Stock Exchange (BSE), the two largest exchanges in India. We find that the price returns in Indian markets follow a fat-tailed cumulative distribution, consistent with a power law having exponent $\\alpha \\sim 3$, similar to that observed in developed markets. However, the distributions of trading volume and the number of trades have a different nature than that seen in the New York Stock Exchange (NYSE). Further, the price movement of different stocks are highly correlated in Indian markets.
A comment on power-law inflation with a dark radiation component
Di Valentino, Eleonora; Bouchet, François R.
2016-10-01
Tram et al. 2016 recently pointed out in [1] that power-law inflation in presence of a dark radiation component may relieve the 3.3 σ tension which exists within standard ΛCDM between the determination of the local value of the Hubble constant by Riess et al. (2016) [2] and the value derived from CMB anisotropy data [3] by the Planck collaboration. In this comment, we simply point out that this interesting proposal does not help in solving the σ8 tension between the Planck data and, e.g., the weak lensing measurements. Moreover, when the latest constraints on the reionization optical depth obtained from Planck HFI data [4] are included in the analysis, the H0 tension reappears and this scenario looses appeal.
On the Power-Law Tails of Vote Distributions in Proportional Elections
Palombi, Filippo
2016-01-01
In proportional elections with open lists the excess of preferences received by candidates with respect to the list average is known to follow a universal lognormal distribution. We show that lognormality is broken provided preferences are conditioned to lists with many candidates. In this limit power-law tails emerge. We study the large-list limit in the framework of a quenched approximation of the word-of-mouth model introduced by Fortunato and Castellano (Phys.Rev.Lett.99(13):138701,2007), where the activism of the agents is mitigated and the noise of the agent-agent interactions is averaged out. Then we argue that our analysis applies mutatis mutandis to the original model as well.
Biswas, Sunil Kumar; Ghosh, Amar Chandra Das; Bhattacharyya, Subrata; 10.4236/ojm.2012.21001
2012-01-01
Studies on `strange' particle production have always occupied a very important space in the domain of Particle Physics. This was and is so, just because of some conjectures about specially abundant or excess production of `strange' particles, at certain stages and under certain conditions arising out of what goes by the name of `Standard' model in Particle Physics. With the help of Hagedornian power laws we have attempted to understand and interpret here the nature of the $p_T$-spectra for the strange particle production in a few high energy nuclear collisions, some interesting ratio-behaviours and the characteristics of the nuclear modification factors that are measured in laboratory experiments. After obtaining and analysing the final results we do not confront any peculiarities or oddities or extraneous excesses in the properties of the relevant observables with no left-over problems or puzzles. The model(s) used by us work(s) quite well for explaining the measured data.
Howell, L W
2002-01-01
The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate bro...
Power-Law Behavior in Signal Scattering Process in Vertical Granular Chain with Light Impurities
XU Ai-Guo
2001-01-01
We investigate the scattering process of impulse in vertical granular chain with light impurities. When the perturbation is weak, the quantities describing the reflection rate exhibit power-law behavior with the impurity depth. The exponent is nearly independent of vi. When the perturbation is very strong, the vertical chain shows similar behavior to that of the horizontal chain, so the exponent is nearly zero. Our numerical investigation begins from the weak perturbation region and extends to the nonlinear region and found a peak of the exponent. The difficulty in extending the numerical investigation to a stronger perturbation region is analyzed.PACS numbers: 45.70.-n, 43.25.+y, 46.40.Cd
Mobility of Power-law and Carreau Fluids through Fibrous Media
Shahsavari, Setareh
2015-01-01
The flow of generalized Newtonian fluids with a rate-dependent viscosity through fibrous media is studied with a focus on developing relationships for evaluating the effective fluid mobility. Three different methods have been used here: i) a numerical solution of the Cauchy momentum equation with the Carreau or power-law constitutive equations for pressure-driven flow in a fiber bed consisting of a periodic array of cylindrical fibers, ii) an analytical solution for a unit cell model representing the flow characteristics of a periodic fibrous medium, and iii) a scaling analysis of characteristic bulk parameters such as the effective shear rate, the effective viscosity, geometrical parameters of the system, and the fluid rheology. Our scaling analysis yields simple expressions for evaluating the transverse mobility functions for each model, which can be used for a wide range of medium porosity and fluid rheological parameters. While the dimensionless mobility is, in general, a function of the Carreau number an...
Particle capture in axial magnetic filters with power law flow model
Abbasov, T; Koksal, M
1999-01-01
A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature. (author)
Particle capture in axial magnetic filters with power law flow model
Abbasov, T.; Herdem, S.; Köksal, M.
1999-05-01
A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature.
Particle capture in axial magnetic filters with power law flow model
Abbasov, T.; Herdem, S.; Koksal, M. [Inonu University, Engineering Faculty, Department of Electrical and Electronics, Malatya (Turkey)
1999-05-21
A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature. (author)
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Gat, Amir; Boyko, Evgeniy; Bercovici, Moran
2016-11-01
We study the fluid-structure interaction dynamics of non-Newtonian flow through a slender linearly elastic cylinder at the creeping flow regime. Specifically, considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a non-homogeneous p-Laplacian equation governing the viscous-elastic dynamics. We obtain exact solutions for the pressure and deformation fields for various initial and boundary conditions, for both shear thinning and shear thickening fluids. In particular, impulse or a step in inlet pressure yield self-similar solutions, which exhibit a compactly supported propagation front solely for shear thinning fluids. Applying asymptotic expansions, we provide approximations for weakly non-Newtonian behavior showing good agreement with the exact solutions sufficiently far from the front.
The flow of power law fluids in elastic networks and porous media
Sochi, Taha
2015-01-01
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major non-linearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation and performance indicate that the...
OBTAINING THE CRITICAL DRAW RATIO OF DRAW RESONANCE IN MELT SPINNING FOR POWER LAW POLYMER FLUIDS
无
2007-01-01
A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning,and to determine the critical draw ratio for draw resonance.The results show that for shear thin fluids,the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning.When the power index approaches zero,the critical draw ratio points at unity,indicating no melt spinning can be processed stably for such fluids.For shear thick fluids.the critical draw ratio increases in a more rapid Way with increasing the power index.
Liu, Chao; Li, Rong
2016-09-01
An evolutionary prisoner's dilemma game (PDG) with players located on Barabási-Albert scale-free networks is studied. The impact of players' heterogeneous temporal activity pattern on the evolution of cooperation is investigated. To this end, the normal procedure that players update their strategies immediately after a round of game is discarded. Instead, players update strategies according to their assigned reproduction time, which follows a power-law distribution. We find that the temporal heterogeneity of players' activities facilitates the prosperity of cooperation, indicating the important role of hubs in the maintenance of cooperation on scale-free networks. When the reproduction time is assigned to individuals negatively related to their degrees, a fluctuation of the cooperation level with the increase of the exponent β is observed.
Evidence for power-law tail of the wealth distribution in India
Sinha, Sitabhra
2006-01-01
The higher-end tail of the wealth distribution in India is studied using recently published lists of the wealth of richest Indians between the years 2002-2004. The resulting rank distribution seems to imply a power-law tail for the wealth distribution, with a Pareto exponent between 0.81 and 0.92 (depending on the year under analysis). This provides a comparison with previous studies of wealth distribution, which have all been confined to Western advanced capitalist economies. We conclude with a discussion on the appropriateness of multiplicative stochastic process as a model for asset accumulation, the relation between the wealth and income distributions (we estimate the Pareto exponent for the latter to be around 1.5 for India), as well as possible sources of error in measuring the Pareto exponent for wealth.
Earthquake Size Distribution: Power-Law with Exponent Beta = 1/2 ?
Kagan, Yan Y
2009-01-01
We propose that the widely observed and universal Gutenberg-Richter relation is a mathematical consequence of the critical branching nature of earthquake process in a brittle fracture environment. These arguments, though preliminary, are confirmed by recent investigations of the seismic moment distribution in global earthquake catalogs and by the results on the distribution in crystals of dislocation avalanche sizes. We consider possible systematic and random errors in determining earthquake size, especially its seismic moment. These effects increase the estimate of the parameter beta of the power-law distribution of earthquake sizes. In particular we find that the decrease in relative moment uncertainties with earthquake size causes inflation in the beta-value by about 1-3%. Moreover, earthquake clustering greatly influences the beta-parameter. If clusters (aftershock sequences) are taken as the entity to be studied, then the exponent value for their size distribution would decrease by 5-10%. The complexity ...
Anomalous Power Law Distribution of Total Lifetimes of Branching Processes Relevant to Earthquakes
Saichev, A
2004-01-01
We consider a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks''). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (``productivity'' or ``fertility''), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the distribution of fertilities $\\mu$ is characterized by a power law $\\sim 1/\\mu^{1+\\gamma}$ and the bare Omori law for the memory of previous triggering mothers decays slowly as $\\sim 1/t^{1+\\theta}$, with $0 < \\theta <1$ relevant for earthquakes. Using the tool of generating probability functions and a quasistatic approximation which is shown to be exact asymptotically for large durations, we show that the density distribution of to...
A Closed-Form Method for LRU Replacement under Generalized Power-Law Demand
Laoutaris, Nikolaos
2007-01-01
We consider the well known \\emph{Least Recently Used} (LRU) replacement algorithm and analyze it under the independent reference model and generalized power-law demand. For this extensive family of demand distributions we derive a closed-form expression for the per object steady-state hit ratio. To the best of our knowledge, this is the first analytic derivation of the per object hit ratio of LRU that can be obtained in constant time without requiring laborious numeric computations or simulation. Since most applications of replacement algorithms include (at least) some scenarios under i.i.d. requests, our method has substantial practical value, especially when having to analyze multiple caches, where existing numeric methods and simulation become too time consuming.
Power law of shear viscosity in Einstein-Maxwell-Dilaton-Axion model
Ling, Yi; Xian, Zhuoyu; Zhou, Zhenhua
2017-02-01
We construct charged black hole solutions with hyperscaling violation in the infrared (IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is verified numerically at low temperature T, namely, η/s ∼ T κ , where the values of exponent κ coincide with the analytical results. We also find that the exponent κ is not affected by irrelevant current, but is reduced by the relevant current. Supported by National Natural Science Foundation of China (11275208, 11575195), Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700) and Jiangxi Young Scientists (JingGang Star) Program and 555 Talent Project of Jiangxi Province
A comment on power-law inflation with a dark radiation component
Di Valentino, Eleonora
2016-01-01
Tram et al. 2016 recently pointed out that power-law inflation in presence of a dark radiation component may relieve the 3.3 sigma tension which exists within standard LCDM between the determination of the local value of the Hubble constant by Riess et al. (2016) and the value derived from CMB anisotropy data by the Planck collaboration. In this comment, we simply point out that this interesting proposal does not help in solving the $\\sigma_8$ tension between the Planck data and, e.g., the weak lensing measurements. Moreover, when the latest constraints on the reionization optical depth obtained from Planck HFI data are included in the analysis, the $H_0$ tension reappears and this scenario looses appeal.
On energy boundary layer equations in power law non-Newtonian fluids
郑连存; 张欣欣
2008-01-01
The hear transfer mechanism and the constitutive models for energy boundary layer in power law fluids were investigated.Two energy transfer constitutive equations models were proposed based on the assumption of similarity of velocity field momentum diffusion and temperature field heat transfer.The governing systems of partial different equations were transformed into ordinary differential equations respectively by using the similarity transformation group.One model was assumed that Prandtl number is a constant,and the other model was assumed that viscosity diffusion is analogous to thermal diffusion.The solutions were presented analytically and numerically by using the Runge-Kutta formulas and shooting technique and the associated transfer characteristics were discussed.
Modified Anderson orthogonality catastrophe power law in the presence of shell structure
Bandopadhyay, Swarnali; Hentschel, Martina
2011-01-01
We study Anderson orthogonality catastrophe (AOC) for parabolic quantum dots and focus on the effects of degeneracies, realized through the inherent shell structure of their energy levels that can be lifted through an external magnetic field, on the Anderson overlap. We find rich and interesting behaviors as a function of the strength and position of the perturbation, the system size, and the applied magnetic field. In particular, even for weak perturbations, we observe a pronounced AOC that is related to the degeneracy of energy levels. Most importantly, the power-law decay of the Anderson overlap as a function of the number of particles is modified in comparison to the metallic case due to the rearrangement of the energy-level shell structure. We support our analytical results by numerical calculations and also study the distribution of Anderson overlaps.
Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system
刘洁; 白玉川
2016-01-01
The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed.
Hard electronics; Hard electronics
NONE
1997-03-01
Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.
Undersampling power-law size distributions: effect on the assessment of extreme natural hazards
Geist, Eric L.; Parsons, Thomas E.
2014-01-01
The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.
Musical rhythm spectra from Bach to Joplin obey a 1/f power law.
Levitin, Daniel J; Chordia, Parag; Menon, Vinod
2012-03-06
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.
Beets, I A M; Rösler, F; Fiehler, K
2010-09-01
Few studies have reported direct effects of motor learning on visual perception, especially when using novel movements for the motor system. Atypical motor behaviors that violate movement constraints provide an excellent opportunity to study action-to-perception transfer. In our study, we passively trained blindfolded participants on movements violating the 2/3 power law. Before and after motor training, participants performed a visual discrimination task in which they decided whether two consecutive movements were same or different. For motor training, we randomly assigned the participants to two motor training groups or a control group. The motor training group experienced either a weak or a strong elliptic velocity profile on a circular trajectory that matched one of the visual test stimuli. The control group was presented with linear trajectories unrelated to the viewed movements. After each training session, participants actively reproduced the movement to assess motor learning. The group trained on the strong elliptic velocity profile reproduced movements with increasing elliptic velocity profiles while circular geometry remained constant. Furthermore, both training groups improved in visual discrimination ability for the learned movement as well as for highly similar movements. Participants in the control group, however, did not show any improvements in the visual discrimination task nor did participants who did not acquire the trained movement. The present results provide evidence for a transfer from action to perception which generalizes to highly related movements and depends on the success of motor learning. Moreover, under specific conditions, it seems to be possible to acquire movements deviating from the 2/3 power law.
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
El Boustani, Sami; Marre, Olivier; Béhuret, Sébastien; Baudot, Pierre; Yger, Pierre; Bal, Thierry; Destexhe, Alain; Frégnac, Yves
2009-09-01
Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m) activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m) reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population signals measured
Network-state modulation of power-law frequency-scaling in visual cortical neurons.
Sami El Boustani
2009-09-01
Full Text Available Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network state it could be used to characterize the functional impact of the connectivity. In intracellularly recorded neurons of cat primary visual cortex in vivo, the power spectral density of V(m activity displays a power-law structure at high frequencies with a fractional scaling exponent. We show that this exponent is not constant, but depends on the visual statistics used to drive the network. To investigate the determinants of this frequency-scaling, we considered a generic recurrent model of cortex receiving a retinotopically organized external input. Similarly to the in vivo case, our in computo simulations show that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the frequency-scaling exponent of the V(m reflects stimulus-driven correlations in the cortical network activity. Therefore, we propose that the scaling exponent could be used to read-out the "effective" connectivity responsible for the dynamical signature of the population
Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies
Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.
2015-01-01
Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.
From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law
Levitin, Daniel J.; Chordia, Parag; Menon, Vinod
2012-03-01
Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.
Saichev, A; Sornette, D
2004-10-01
We consider a general stochastic branching process, which is relevant to earthquakes, and study the distributions of global lifetimes of the branching processes. In the earthquake context, this amounts to the distribution of the total durations of aftershock sequences including aftershocks of arbitrary generation number. Our results extend previous results on the distribution of the total number of offspring (direct and indirect aftershocks in seismicity) and of the total number of generations before extinction. We consider a branching model of triggered seismicity, the epidemic-type aftershock sequence model, which assumes that each earthquake can trigger other earthquakes ("aftershocks"). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake ("productivity" or "fertility"), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the distribution of fertilities mu is characterized by a power law approximately 1/ mu(1+gamma) and the bare Omori law for the memory of previous triggering mothers decays slowly as approximately 1/ t(1+theta;) , with 0aftershock lifetimes scales as approximately 1/ t(1+theta;/gamma) when the average branching ratio is critical (n=1) . The coefficient 1aftershocks with mainshock magnitude m (productivity), with 0.5
Postglacial isostatic adjustment in a self-gravitating spherical earth with power-law rheology
Wu, Patrick; Wang, Hansheng
2008-10-01
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology ( n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A ˜ 10 -35 Pa -3 s -1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.
Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)
2005-05-01
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)
Lin Yanhai
2016-01-01
Full Text Available This paper presents an investigation on the MHD thin film flow and heat transfer of a power law fluid over an unsteady stretching sheet. The effects of power law viscosity on a temperature field are taken into account with a modified Fourier’s law Proposed by Zheng by assuming that the temperature field is similar to the velocity field. The governing equations are reduced to a system of nonlinear ordinary differential equations. The numerical solutions are obtained by using the shooting method coupled with the Runge-Kutta method. The influence of the Hartmann number, the power law exponent, the unsteadiness parameter, the thickness parameter and the generalized Prandtl number on the velocity and temperature fields are presented graphically and analyzed. Moreover, the critical formula for parameters are derived which indicated that the magnetic field has no effect on the critical value.
Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field
Zangeneh, M Kord; Sheykhi, A
2015-01-01
In this paper, we present a new class of higher dimensional exact topological black hole solutions of the Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal transformation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy. We find that the entropy does not respect the area law, and also the conserved and thermodynamic quantities are invariant under conformal transformation. Using these thermodynamic and conserv...
Zhou, Yanjun; Yin, Cangtao
2016-12-01
The Fokker-Planck equation (FPE) of the unimolecular reaction with Tsallis distribution is established by means of approximation to the master equation. The memory effect, taken into transition probability, is relevant and important for lots of anomalous phenomena. The Taylor expansion for large volume is applied to derive the power-law FPE. The steady-state solution of FPE and microscopic dynamics Ito-Langevin equation of concentration variables are therefore obtained and discussed. Two unimolecular reactions are taken as examples and the concentration distributions with different power-law parameters are analyzed, which may imply strong memory effect of hopping process.
Viet, Dao Xuan; Kawamura, Hikaru
2010-08-27
We study the issue of the spin-chirality decoupling or coupling in the ordering of the Heisenberg spin glass by performing large-scale Monte Carlo simulations on a one-dimensional Heisenberg spin-glass model with a long-range power-law interaction up to large system sizes. We find that the spin-chirality decoupling occurs for an intermediate range of the power-law exponent. Implications to the corresponding d-dimensional short-range model are discussed.
Almond, D. P.; Bowen, C. R.
2004-04-01
The frequency dependent ac conductivity and permittivity of porous lead zirconate titanate ceramic with the pore volume filled with water are shown to match the simulated electrical response of a large network of randomly positioned resistors and capacitors. Anomalous power law dispersions in conductivity and permittivity are shown to be an electrical response characteristic of the microstructural network formed by the porous lead zirconate titanate pore structure. The anomalous power law dispersions of a wide range of materials are also suggested to be microstructural network characteristics.
SU Xiao-hong; ZHENG Lian-cun; JIANG Feng
2008-01-01
This paper presents a theoretical analysis for laminar boundary layer flow in a power law non-Newtonian fluids.The Adomian analytical decomposition technique is presented and an approximate analytical solution is obtained.The approximate analytical solution can be expressed in terms of a rapid convergent power series with easily computable terms.Reliability and efficiency of the approximate solution are verified by comparing with numerical solutions in the literature.Moreover,the approximate solution can be successfully applied to provide values for the skin friction coefficient of the laminar boundary layer flow in power law non-Newtonian fluids.
Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.
Michiya Sugimori
Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous
Medhat M. Helal
2013-10-01
Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 0.5.
A simple marriage model for the power-law behaviour in the frequency distributions of family names
Wu, Hao-Yun; Chou, Chung-I.; Tseng, Jie-Jun
2011-01-01
In many countries, the frequency distributions of family names are found to decay as a power law with an exponent ranging from 1.0 to 2.2. In this work, we propose a simple marriage model which can reproduce this power-law behaviour. Our model, based on the evolution of families, consists of the growth of big families and the formation of new families. Preliminary results from the model show that the name distributions are in good agreement with empirical data from Taiwan and Norway.
Grabski, Jakub Krzysztof; Kołodziej, Jan Adam
2016-06-01
In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.
Hard electronics; Hard electronics
NONE
1998-03-01
In the fields of power conversion devices and broadcasting/communication amplifiers, high power, high frequency and low losses are desirable. Further, for electronic elements in aerospace/aeronautical/geothermal surveys, etc., heat resistance to 500degC is required. Devices which respond to such hard specifications are called hard electronic devices. However, with Si which is at the core of the present electronics, the specifications cannot fully be fulfilled because of the restrictions arising from physical values. Accordingly, taking up new device materials/structures necessary to construct hard electronics, technologies to develop these to a level of IC were examined and studied. They are a technology to make devices/IC of new semiconductors such as SiC, diamond, etc. which can handle higher temperature, higher power and higher frequency than Si and also is possible of reducing losses, a technology to make devices of hard semiconducter materials such as a vacuum microelectronics technology using ultra-micro/high-luminance electronic emitter using negative electron affinity which diamond, etc. have, a technology to make devices of oxides which have various electric properties, etc. 321 refs., 194 figs., 8 tabs.
Cusp-latitude Pc3 spectra: band-limited and power-law components
P. V. Ponomarenko
Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a f ^{-4} . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | B_{IMF} | [nT], and its power maximizes around IMF cone angles q_{xB} ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward B_{z} and remains nearly constant for northward B_{z} . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V ^{5.71}_{sw} and a V ^{4.12}_{sw}, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing V_{sw}. The observations suggest that the noise generation is associated with reconnection processes.
Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions
Burkhart, Blakesley; Stalpes, Kye; Collins, David C.
2017-01-01
We derive an analytic expression for the transitional column density value ({η }t) between the lognormal and power-law form of the probability distribution function (PDF) in star-forming molecular clouds. Our expression for {η }t depends on the mean column density, the variance of the lognormal portion of the PDF, and the slope of the power-law portion of the PDF. We show that {η }t can be related to physical quantities such as the sonic Mach number of the flow and the power-law index for a self-gravitating isothermal sphere. This implies that the transition point between the lognormal and power-law density/column density PDF represents the critical density where turbulent and thermal pressure balance, the so-called “post-shock density.” We test our analytic prediction for the transition column density using dust PDF observations reported in the literature, as well as numerical MHD simulations of self-gravitating supersonic turbulence with the Enzo code. We find excellent agreement between the analytic {η }t and the measured values from the numerical simulations and observations (to within 1.2 AV). We discuss the utility of our expression for determining the properties of the PDF from unresolved low-density material in dust observations, for estimating the post-shock density, and for determining the H i–H2 transition in clouds.
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
Huang, Qing-Guo
2016-01-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(\\phi)~\\phi^n. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
Gupta, S.; Potters, M.G.; Ruffo, S.
2012-01-01
We study synchronization in a system of phase-only oscillators residing on the sites of a one-dimensional periodic lattice. The oscillators interact with a strength that decays as a power law of the separation along the lattice length and is normalized by a size-dependent constant. The exponent α of
Jørgensen, Bent; Demétrio, Clarice G.B.; Kristensen, Erik
2011-01-01
Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating...
Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X
Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie
2011-01-01
Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the...
Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi
2014-01-01
Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.
Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model
Ito, Yuta; Nishimura, Jun; Tsuchiya, Asato
2015-11-01
Recent studies on the Lorentzian version of the type IIB matrix model show that (3+1)D expanding universe emerges dynamically from (9+1)D space-time predicted by superstring theory. Here we study a bosonic matrix model obtained by omitting the fermionic matrices. With the adopted simplification and the usage of a large-scale parallel computer, we are able to perform Monte Carlo calculations with matrix size up to N = 512, which is twenty times larger than that used previously for the studies of the original model. When the matrix size is larger than some critical value N c ≃ 110, we find that (3+1)D expanding universe emerges dynamically with a clear large- N scaling property. Furthermore, the observed increase of the spatial extent with time t at sufficiently late times is consistent with a power-law behavior t 1/2, which is reminiscent of the expanding behavior of the Friedmann-Robertson-Walker universe in the radiation dominated era. We discuss possible implications of this result on the original supersymmetric model including fermionic matrices.
Exact, E = 0, classical and quantum solutions for general power-law oscillators
Nieto, Michael Martin; Daboul, Jamil
1995-01-01
For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.
Can log-periodic power law structures arise from random fluctuations?
Wosnitza, Jan Henrik; Leker, Jens
2014-05-01
Recent research has established log-periodic power law (LPPL) patterns prior to the detonation of the German stock index (DAX) bubble in 1998. The purpose of this article is to explore whether a Langevin equation extracted from real world data can generate synthetic time series with comparable LPPL structures. To this end, we first estimate the stochastic process underlying the DAX log-returns during the period from mid-1997 until end-2003. The employed data set contains about 3.93ṡ106 intraday DAX quotes at a sampling rate of 15 s. Our results indicate that the DAX log-returns can be described as a Markov process. As a consequence, a Langevin equation is derived. Based on this model equation, we run extensive simulations in order to generate 100 synthetic DAX trajectories each covering 3000 trading days. We find LPPL behavior in ten artificial time series. Moreover, we can establish a link between LPPL patterns and ensuing bubble bursts in seven synthetic 600-week windows. However, the LPPL components in most synthetic trajectories differ fundamentally from those LPPL structures that have previously been detected in real financial time series. Summarized, this paper demonstrates that LPPL structures are not necessarily the signature of imitative behavior among investors but can also stem from noise, even though the likelihood of this is extremely low. Thus, our findings confirm with high statistical confidence that the LPPL structures in the DAX development are rooted deeper than only in the random fluctuations of the German stock market.
Low prevalence, quasi-stationarity and power-law distribution in a model of spreading
Montakhab, Afshin
2012-01-01
Understanding how contagions (information, infections, etc) are spread on complex networks is important both from practical as well as theoretical point of view. Considerable work has been done in this regard in the past decade or so. However, most models are limited in their scope and as a result only capture general features of spreading phenomena. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local (probabilistic) dynamics occurring at various nodes. Transmission occurs only after the quality-based fitness of the contagion has been evaluated by the local agent. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. Low prevalence is seen for a wide range of contagion quality for arbitrary large networks. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. Our results are consi...
Xie, Yi
2011-01-01
The observed correlations, between the characteristic ages and dipole surface magnetic field strengths of all pulsars, can be well explained by magnetic field decay with core temperatures of $~2\\times10^{8}$ K, $\\sim2\\times10^{7}$ K, and $\\sim10^{5}$ K, for magnetars, normal radio pulsars, and millisecond pulsars, respectively; assuming that their characteristic ages are about two orders of magnitude larger than their true ages, the required core temperatures may be reduced by about a factor of 10. The magnetic decay follows a power-law and is dominated by the solenoidal component of the ambipolar diffusion mode. In this model, all NSs are assumed to have the same initial magnetic field strength, but different core temperature which do not change as the magnetic field decays. This suggests that the key distinguishing property between magnetars and normal pulsars is that magnetars were born much hotter than normal pulsars, and thus have much longer magnetic field decay time scales, resulting in higher surface ...
Adjustment to Subtle Time Constraints and Power Law Learning in Rapid Serial Visual Presentation.
Shin, Jacqueline C; Chang, Seah; Cho, Yang Seok
2015-01-01
We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP) task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1) varied at three levels (70, 98, and 126 ms) randomly between trials or fixed within blocks of trials. Practice over 3 consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB), a decrement in target (T2) identification when presented 200-400 ms after another target (T1). Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal "power law" learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.
Analysis of log-periodic power law singularity patterns in time series related to credit risk
Wosnitza, Jan Henrik; Sornette, Didier
2015-04-01
The log-periodic (super-exponential) power law singularity (LPPLS) has become a promising tool for predicting extreme behavior of self-organizing systems in natural sciences and finance. Some researchers have recently proposed to employ the LPPLS on credit risk markets. The review article at hand summarizes four papers in this field and shows how they are linked. After structuring the research questions, we collect the corresponding answers from the four articles. This eventually gives us an overall picture of the application of the LPPLS to credit risk data. Our literature review begins with grounding the view that credit default swap (CDS) spreads are hotbeds for LPPLS patterns and it ends up with drawing attention to the recently proposed alarm index for the prediction of institutional bank runs. By presenting a new field of application for the LPPLS, the reviewed strand of literature further substantiates the LPPLS hypothesis. Moreover, the results suggest that CDS spread trajectories belong to a different universality class than, for instance, stock prices.
Common Origin of Power-law Tails in Income Distributions and Relativistic Gases
Modanese, G
2016-01-01
Power-law tails are ubiquitous in income distributions and in the energy distributions of diluted relativistic gases. We analyze the conceptual link between these two cases. In economic interactions fat tails arise because the richest individuals enact some protection mechanisms ("saving propensity") which allow them to put at stake, in their interactions, only a small part of their wealth. In high-energy particle collisions something similar happens, in the sense that when particles with very large energy collide with slow particles, then as a sole consequence of relativistic kinematics (mass dilation), they tend to exchange only a small part of their energy; processes like the frontal collision of two identical particles, where the exchanged energy is 100%, are very improbable, at least in a diluted gas. We thus show how in two completely different systems, one of socio-economic nature and one of physical nature, a certain feature of the binary microscopic interactions leads to the same consequence in the m...
Friction losses in valves and fittings for power-law fluids
M.A. Polizelli
2003-10-01
Full Text Available Data on pressure drop were obtained in stainless steel, sanitary fittings and valves during laminar and turbulent flow of aqueous solutions of sucrose and xanthan gum, which were selected as model fluids. The rheological properties of these solutions were determined and the power-law model provided the best fit for experimental data. Friction losses were measured in fully and partially open butterfly and plug valves, bends and unions. Values of loss coefficients (k f were calculated and correlated as a function of the generalized Reynolds number by the two-k method. The model adjustment was satisfactory and was better in the laminar flow range (0.976 < r² < 0.999 than in the turbulent flow range (0.774 < r² < 0.989. In order to test the adequacy of the results for predicting loss coefficients during flow of real fluids, experiments were conducted with coffee extract. Comparison between experimental and predicted loss coefficients showed very good agreement.
Study of the Power-Law Fluctuations in the Email Size
Matsubara, Yoshitsugu
2016-01-01
In a previous study, we investigated the frequency distribution of the email size in the system log data of the main email server for the staff on a campus network. We found that the frequencies of email sizes followed a power-law distribution and discovered two inflection points in the distribution. After analyzing these results, we collected new system log data for both staff and students for the period from April 1, 2009 to March 31, 2015 and analyzed the frequency distributions per academic year. The results of the earlier investigation were replicated for each of these distributions. Then, we disaggregated the system log data for the staff for the period from May 1, 2015 to July 31, 2015 using the email header "Content-Type" and created four subdistributions. Frequency distributions were calculated for the disaggregated data. We then proposed and evaluated a model to explain the overall frequency distribution as a sum of the four subdistributions. The correlation coefficient between the observed frequenc...
Adjustment to subtle time constraints and power law learning in rapid serial visual presentation
Jacqueline Chakyung Shin
2015-11-01
Full Text Available We investigated whether attention could be modulated through the implicit learning of temporal information in a rapid serial visual presentation (RSVP task. Participants identified two target letters among numeral distractors. The stimulus-onset asynchrony immediately following the first target (SOA1 varied at three levels (70, 98, and 126 ms randomly between trials or fixed within blocks of trials. Practice over three consecutive days resulted in a continuous improvement in the identification rate for both targets and attenuation of the attentional blink (AB, a decrement in target (T2 identification when presented 200-400 ms after another target (T1. Blocked SOA1s led to a faster rate of improvement in RSVP performance and more target order reversals relative to random SOA1s, suggesting that the implicit learning of SOA1 positively affected performance. The results also reveal power law learning curves for individual target identification as well as the reduction in the AB decrement. These learning curves reflect the spontaneous emergence of skill through subtle attentional modulations rather than general attentional distribution. Together, the results indicate that implicit temporal learning could improve high level and rapid cognitive processing and highlights the sensitivity and adaptability of the attentional system to subtle constraints in stimulus timing.
Titus Ntow Ofei
2016-01-01
Full Text Available Narrow annular drilling such as casing-while-drilling technique is gaining popularity due to its ability to mitigate nonproductive time during oil and gas drilling operations. However, very little is known about the flow dynamics in narrow annular drilling. In this study, the Eulerian-Eulerian two-fluid model was used to examine the influence of Yield Power Law fluid rheological properties on cuttings transport in eccentric horizontal narrow annulus. The flow was assumed as fully developed, laminar, and transient state. The present simulation model was validated against experimental data, where a mean percent error of −1.2% was recorded. Results revealed an increase in the radial distribution of cuttings transport velocity in the wide annular region as the consistency index, K, and the flow behavior index, n, increase. Nonetheless, increasing the yield stress, τo, had insignificant effect on the cuttings transport velocity. Three-dimensional profiles showed how cuttings preferred to travel in less resistant flow area, whereas cuttings concentration builds up in the narrow annular region. Furthermore, annular frictional pressure losses also increased as K, n, and τo increased. This study serves as a guide to properly optimize drilling fluid rheological properties for efficient cuttings transport and equivalent circulating density (ECD management in narrow annular drilling.
Observation of a power-law energy distribution in atom-ion hybrid system
Meir, Ziv; Akerman, Nitzan; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee
2016-05-01
Understanding atom-ion collision dynamics is at the heart of the growing field of ultra-cold atom-ion physics. The naive picture of a hot ion sympathetically-cooled by a cold atomic bath doesn't hold due to the time dependent potentials generated by the ion Paul trap. The energy scale of the atom-ion system is determined by a combination of the atomic bath temperature, the ion's excess micromotion (EMM) and the back action of the atom-ion attraction on the ion's position in the trap. However, it is the position dependent ion's inherent micromotion which acts as an amplifier for the ion's energy during random consecutive collisions. Due to this reason, the ion's energy distribution deviates from Maxwell-Boltzmann (MB) characterized by an exponential tail to one with power-law tail described by Tsallis q-exponential function. Here we report on the observation of a strong deviation from MB to Tsallis energy distribution of a trapped ion. In our experiment, a ground-state cooled 88 Sr+ ion is immersed in an ultra-cold cloud of 87 Rb atoms. The energy scale is determined by either EMM or solely due to the back action on the ion position during a collision with an atom in the trap. Energy distributions are obtained using narrow optical clock spectroscopy.
Supersonic flow about cone eith ijection of gas through its surface described by power law
Antonov, A. M.; Zakrevskiy, V. A.
1986-01-01
The influence of intensive mass transfer on the supersonic flow of gas about a cone of finite length is investigated. The mathematical model describing the interaction of the primary flow and the transverse flow formed by injection is the boundary problem for a system of equations presented with boundary conditions on the cone and on the contact discontinuity. It is found that the contact surface is nonrectilinear when the injected gas is described by a power law and that the thickness of the layer coming in contact with the cone increases as the intensity of the injection becomes higher. The distribution of the pressure coefficient along a finite cone is calculated as a function of the parameter(s) associated with the injection flow rate, and the Mach number of the oncoming stream. It is found that the pressure coefficient drops off along the generatrix of a cone for all velocities of injection and oncoming stream when the injection is distributed. As the injection intensity increases, the pressure coefficient on the surface increases.
Power-law creep of powder-metallurgy grade molybdenum sheet
Ciulik, J. [University of Texas at Austin, Mechanical Engineering Department, 1 University Station, C2200, Austin, TX 78712-0292 (United States)], E-mail: jciulik@mail.utexas.edu; Taleff, E.M. [University of Texas at Austin, Mechanical Engineering Department, 1 University Station, C2200, Austin, TX 78712-0292 (United States)
2007-08-15
Creep behavior of commercial-purity, powder-metallurgy grade molybdenum (Mo) sheet has been investigated at temperatures between 1300 and 1600 deg. C (0.56-0.63 T{sub m}) using tensile testing at controlled strain rates. Strain-rate-change tests were performed at constant-temperatures over true-strain rates from 1.0 x 10{sup -6} to 5.0 x 10{sup -4} s{sup -1}. Results agree with previously published data indicating that Mo follows power-law creep with a stress exponent of about 5; however, the present results address a temperature range not previously documented. The activation energy for creep was determined to be 240 kJ/mol within this temperature range, which is lower than previously published values and approximately half the value reported for self-diffusion, indicating that diffusion mechanisms faster than lattice diffusion are active. It is shown that Mo creep data from a variety of investigations converge closely to a single line on a master plot of strain rate normalized using an activation energy of 240 kJ/mol when plotted against stress normalized by the temperature-dependent elastic modulus. This activation energy for creep is attributed to an effective diffusivity that fits the creep data obtained during this study as well as from previously published creep data from commercial-purity molybdenum.
Developing flow of a power-law liquid film on an inclined plane
Weinstein, Steven J.; Ruschak, Kenneth J.; Ng, Kam C.
2003-10-01
Developing flow of a liquid film along a stationary inclined wall is analyzed for a power-law constitutive equation. For films with appreciable inertia and therefore small interfacial slopes, the boundary-layer approximation may be used. The boundary-layer equations are solved numerically through the von Mises transformation that gives a partial differential equation over a semi-infinite strip and approximately by the method of von Kármán and Polhausen that gives an ordinary differential equation for the film thickness, called a film equation. Film equations derived from self-similar velocity profiles fail when the film thickens and the flow undergoes a supercritical to subcritical transition; a nonremovable singularity arises at the critical point, the location of the flow transition. A film equation is developed that accommodates this transition. Predictions exhibit a standing wave where hydrostatic pressure becomes important and opposes inertia. This thickening effect is accentuated for small angles of inclination at moderate Reynolds numbers. In the limit of small film thickness in which gravitational effects are negligible, the thickness profile is nonlinear in agreement with an independent and new similarity solution. This result contrasts with the established linear thickness profile for a Newtonian liquid. The circumstances in which the film equation gives results close to the full boundary layer equation are identified.
Contact processes on random graphs with power law degree distributions have critical value 0
Chatterjee, Shirshendu; 10.1214/09-AOP471
2009-01-01
If we consider the contact process with infection rate $\\lambda$ on a random graph on $n$ vertices with power law degree distributions, mean field calculations suggest that the critical value $\\lambda_c$ of the infection rate is positive if the power $\\alpha>3$. Physicists seem to regard this as an established fact, since the result has recently been generalized to bipartite graphs by G\\'{o}mez-Garde\\~{n}es et al. [Proc. Natl. Acad. Sci. USA 105 (2008) 1399--1404]. Here, we show that the critical value $\\lambda_c$ is zero for any value of $\\alpha>3$, and the contact process starting from all vertices infected, with a probability tending to 1 as $n\\to\\infty$, maintains a positive density of infected sites for time at least $\\exp(n^{1-\\delta})$ for any $\\delta>0$. Using the last result, together with the contact process duality, we can establish the existence of a quasi-stationary distribution in which a randomly chosen vertex is occupied with probability $\\rho(\\lambda)$. It is expected that $\\rho(\\lambda)\\sim ...
Stochastic models with power-law tails the equation X = AX + B
Buraczewski, Dariusz; Mikosch, Thomas
2016-01-01
In this monograph the authors give a systematic approach to the probabilistic properties of the fixed point equation X=AX+B. A probabilistic study of the stochastic recurrence equation X_t=A_tX_{t-1}+B_t for real- and matrix-valued random variables A_t, where (A_t,B_t) constitute an iid sequence, is provided. The classical theory for these equations, including the existence and uniqueness of a stationary solution, the tail behavior with special emphasis on power law behavior, moments and support, is presented. The authors collect recent asymptotic results on extremes, point processes, partial sums (central limit theory with special emphasis on infinite variance stable limit theory), large deviations, in the univariate and multivariate cases, and they further touch on the related topics of smoothing transforms, regularly varying sequences and random iterative systems. The text gives an introduction to the Kesten-Goldie theory for stochastic recurrence equations of the type X_t=A_tX_{t-1}+B_t. It provides the c...
Wosnitza, Jan Henrik; Denz, Cornelia
2013-09-01
We employ the log-periodic power law (LPPL) to analyze the late-2000 financial crisis from the perspective of critical phenomena. The main purpose of this study is to examine whether LPPL structures in the development of credit default swap (CDS) spreads can be used for default classification. Based on the different triggers of Bear Stearns’ near bankruptcy during the late-2000 financial crisis and Ford’s insolvency in 2009, this study provides a quantitative description of the mechanism behind bank runs. We apply the Johansen-Ledoit-Sornette (JLS) positive feedback model to explain the rise of financial institutions’ CDS spreads during the global financial crisis 2007-2009. This investigation is based on CDS spreads of 40 major banks over the period from June 2007 to April 2009 which includes a significant CDS spread increase. The qualitative data analysis indicates that the CDS spread variations have followed LPPL patterns during the global financial crisis. Furthermore, the univariate classification performances of seven LPPL parameters as default indicators are measured by Mann-Whitney U tests. The present study supports the hypothesis that discrete scale-invariance governs the dynamics of financial markets and suggests the application of new and fast updateable default indicators to capture the buildup of long-range correlations between creditors.
Wright, Christopher K
2010-07-01
Although habitat networks show promise for conservation planning at regional scales, their spatiotemporal dynamics have not been well studied, especially in climate-sensitive landscapes. Here I use satellite remote sensing to compile wetland habitat networks from the Prairie Pothole Region (PPR) of North America. An ensemble of networks assembled across a hydrologic gradient from deluge to drought and a range of representative dispersal distances exhibits power-law scaling of important topological parameters. Prairie wetland networks are "meso-worlds" with mean topological distance increasing faster with network size than small-world networks, but slower than a regular lattice (or "large world"). This scaling implies rapid dispersal through wetland networks without some of the risks associated with "small worlds" (e.g., extremely rapid propagation of disease or disturbance). Retrospective analysis of wetland networks establishes a climatic envelope for landscape connectivity in the PPR, where I show that a changing climate might severely impact metapopulation viability and restrict long-distance dispersal and range shifts. More generally, this study demonstrates an efficient approach to conservation planning at a level of abstraction addressing key drivers of the global biodiversity crisis: habitat fragmentation and climatic change.
Robust Statistical Tests of Dragon-Kings beyond Power Law Distributions
Pisarenko, V F
2011-01-01
We ask the question whether it is possible to diagnose the existence of "Dragon-Kings" (DK), namely anomalous observations compared to a power law background distribution of event sizes. We present two new statistical tests, the U-test and the DK-test, aimed at identifying the existence of even a single anomalous event in the tail of the distribution of just a few tens of observations. The DK-test in particular is derived such that the p-value of its statistic is independent of the exponent characterizing the null hypothesis. We demonstrate how to apply these two tests on the distributions of cities and of agglomerations in a number of countries. We find the following evidence for Dragon-Kings: London in the distribution of city sizes of Great Britain; Moscow and St-Petersburg in the distribution of city sizes in the Russian Federation; and Paris in the distribution of agglomeration sizes in France. True negatives are also reported, for instance the absence of Dragon-Kings in the distribution of cities in Ger...
Common origin of power-law tails in income distributions and relativistic gases
Modanese, G.
2016-01-01
Power-law tails are ubiquitous in income distributions and in the energy distributions of diluted relativistic gases. We analyze the conceptual link between these two cases. In economic interactions fat tails arise because the richest individuals enact some protection mechanisms ("saving propensity") which allow them to put at stake, in their interactions, only a small part of their wealth. In high-energy particle collisions something similar happens, in the sense that when particles with very large energy collide with slow particles, then as a sole consequence of relativistic kinematics (mass dilation), they tend to exchange only a small part of their energy; processes like the frontal collision of two identical particles, where the exchanged energy is 100%, are very improbable, at least in a diluted gas. We thus show how in two completely different systems, one of socio-economic nature and one of physical nature, a certain feature of the binary microscopic interactions leads to the same consequence in the macroscopic distribution for the income or respectively for the energy.
Emergence of power-law scalings in shock-driven mixing transition
Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay
2016-11-01
We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.
Inertial migration of elastic particles in a pressure-driven power-law fluid
Bowie, Samuel; Alexeev, Alexander
2016-11-01
Using three-dimensional computer simulations, we study the cross-stream migration of deformable particles in a channel filled with a non-Newtonian fluid driven by a pressure gradient. Our numerical approach integrates lattice Boltzmann method and lattice spring method in order to model fluid structural interactions of the elastic particle and the surrounding power fluid in the channel. The particles are modeled as elastic shells filled with a viscous fluid that are initially spherical. We focus on the regimes where the inertial effects cannot be neglected and cause cross-stream drift of particles. We probe the flow with different power law indexes including both the shear thickening and thinning fluids. We also examine migration of particles of with different elasticity and relative size. To isolate the non-Newtonian effects on particle migration, we compare the results with the inertial migration results found in the case where the channel is filled with a simple Newtonian fluid. The results can be useful for applications requiring high throughput separation, sorting, and focusing of both synthetic particles and biological cells in microfluidic devices. Financial support provided by National Science Foundation (NSF) Grant No. CMMI1538161.
The logarithmic and power law behaviors of the accelerating, turbulent thermal boundary layer
Castillo, Luciano; Hussain, Fazle
2017-02-01
Direct numerical simulation of spatially evolving thermal turbulent boundary layers with strong favorable pressure gradient (FPG) shows that the thermal fluctuation intensity, θ' + and the Reynolds shear stress, u'v'¯+ exhibit a logarithmic behavior spanning the meso-layer (e.g., 50 ≤y+≤170 ). However, the mean thermal profile is not logarithmic even in the zero pressure gradient (ZPG) region; instead, it follows a power law. The maxima of u' 2 ¯+ and v'θ'¯+ change little with the strength of acceleration, while v'+, w'+, and u'v'¯+ continue to decay in the flow direction. Furthermore, θ'+ and u'θ'¯+ surprisingly experience changes from constants in ZPG to sharp rises in the FPG region. Such behavior appears to be due to squashing of the streaks which decreases the streak flank angle below the critical value for "transient growth" generation of streamwise vortices, shutting down production [W. Schoppa and F. Hussain, "Coherent structure generation near-wall turbulence," J. Fluid Mech. 453, 57-108 (2002)]. The streamwise vortices near the wall, although shrink because of stretching, simultaneously, also become weaker as the structures are progressively pushed farther down to the more viscous region near the wall. While the vortical structures decay rapidly in accelerating flows, the thermal field does not—nullifying the myth that both the thermal and velocity fields are similar.
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A.; Dehghani, M.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O.Box 55134-441, Maragha (Iran, Islamic Republic of)
2015-10-15
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)
Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field
Zangeneh, M Kord; Dehghani, M H
2015-01-01
In this paper, we construct a new class of charged rotating dilaton black brane solutions, with complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the casual structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and grand canonical ensembles and disclose the effects of the dilaton field on the thermal stability of the solutions. We find that for $\\alpha \\leq 1$, charged rotating black brane solutions are thermally stable independent of the value of the other parameters. For $\\alpha>1$, the solutions can encounter an unstable phase...
Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids
Banik, Indranil
2013-01-01
We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...
Power Law and Logarithmic Ricci Dark Energy Models in Horava-Lifshitz Cosmology
Pasqua, Antonio; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes
2014-01-01
In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Ho\\v{r}ava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density parameter. Moreover, we obtained the expressions of the deceleration parameter $q$ and, using a parametrization of the equation of state (EoS) parameter $\\omega_D$ as $\\omega_D\\left(z\\right)=\\omega_0+\\omega_1 z$, we derived the expressions of both $\\omega_0$ and $\\omega_1$. We interestingly found that the expression of $\\omega_0$ is the same for both non-interacting and interacting case. The expression of $\\omega_1$ for the interacting case has strong dependence from the interacting parameter $b^2$. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of th...
Tamás Sándor Biró
2014-12-01
Full Text Available Certain fluctuations in particle number, \\(n\\, at fixed total energy, \\(E\\, lead exactly to a cut-power law distribution in the one-particle energy, \\(\\omega\\, via the induced fluctuations in the phase-space volume ratio, \\(\\Omega_n(E-\\omega/\\Omega_n(E=(1-\\omega/E^n\\. The only parameters are \\(1/T=\\langle \\beta \\rangle=\\langle n \\rangle/E\\ and \\(q=1-1/\\langle n \\rangle + \\Delta n^2/\\langle n \\rangle^2\\. For the binomial distribution of \\(n\\ one obtains \\(q=1-1/k\\, for the negative binomial \\(q=1+1/(k+1\\. These results also represent an approximation for general particle number distributions in the reservoir up to second order in the canonical expansion \\(\\omega \\ll E\\. For general systems the average phase-space volume ratio \\(\\langle e^{S(E-\\omega}/e^{S(E}\\rangle\\ to second order delivers \\(q=1-1/C+\\Delta \\beta^2/\\langle \\beta \\rangle^2\\ with \\(\\beta=S^{\\prime}(E\\ and \\(C=dE/dT\\ heat capacity. However, \\(q \
Navigation on Power-Law Small World Network with Incomplete Information
CHEN Jian-Zhen; ZHU Jian-Yang
2007-01-01
We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N × N square lattice sends out a long-range link with probability p. The other end of the link falls on a randomly chosen vertex with probability proportional to r-α, where r is the lattice distance between the two vertices, and α ≥ 0. The average actual path length,i.e. the expected number of steps for passing messages between randomly chosen vertex pairs, is found to scale as a power-law function of the network size Nβ, except when α is close to a specific value αmin, which gives the highest efficiency of message navigation. For a finite network, the exponent β depends on both α and p, and αmin drops to zero at a critical value of p which depends on N. When the network size goes to infinity,β depends only on α, and αmin is equal to the network dimensionality.
Evidence for Power Law in the Spectrum of the Coronal Ly-alpha Line
Telloni, Daniele; Antonucci, Ester; Bruno, Roberto; D'Amicis, Raffaella
Long time series of the intensity of the hydrogen Lyα line revealed the existence of f-2 power spectra in the corona at low and mid latitudes and very close to the Sun, at 1.7 solar radii. These observations are performed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SoHO). A preliminary analysis indicates that this scaling extends for more than a decade and terminates at higher frequencies with a flat spectrum indicating the presence of white-noise fluctuations. The frequency corresponding to the knee which separates these two different spectral regimes moves to lower and lower values for observations performed at higher and higher heliographic latitudes. Low-frequency power spectra with a f-2 dependence may be due rapid changes (jumps) in the time series. If these coherent structures are removed from the time series, hydrogen coronal intensity power spectra seem to show a power law following the f-1 scaling which would suggest that 1/f interplanetary noise originates in corona.
Onset of power-law scaling behavior in idiotypic random and scale-free networks
Claudino, Elder S.; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Campos, Paulo R.A. [Departamento de Física, Universidade Federal de Pernambuco, 52171-900 Recife, PE (Brazil); Bertrand, Delvis [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)
2012-10-01
We numerically study the dynamics of model immune networks with random and scale-free topologies. We observe that a memory state is reached when the antigen is attached to the most connected sites of the network, whereas a percolation state may occur when the antigen attaches to the less connected sites. For increasing values of the connectivity of the antibody directly binded to the antigen, its population converges exponentially to the asymptotic value of the memory state. On the other hand, the next-nearest populations evolve slowly as power-laws towards the virgin-like state. -- Highlights: ► We investigate the outcome of a model for B-cell clonal dynamics. ► The model follows Jerne's idiotypic theory. ► The response of the immune system to different network topologies is addressed. ► Complex scaling behavior is observed in the idiotypic network. ► We analyze the possibility of local versus spread out (possibly autoimmune) response of the immune system.
Heat Transfer of Non-Newtonian Dilatant Power Law Fluids in Square and Rectangular Cavities
I. Vinogradov
2011-01-01
Full Text Available Steady two-dimensional natural convection in fluid filled cavities is numerically investigated for the case of non- Newtonian shear thickening power law liquids. The conservation equations of mass, momentum and energy under the assumption of a Newtonian Boussinesq fluid have been solved using the finite volume method for Newtonian and non-Newtonian fluids. The computations were performed for a Rayleigh number, based on cavity height, of 105 and a Prandtl number of 100. In all of the numerical experiments, the channel is heated from below and cooled from the top with insulated side-walls and the inclination angle is varied. The simulations have been carried out for aspect ratios of 1 and 4. Comparison between the Newtonian and the non-Newtonian cases is conducted based on the dependence of the average Nusselt number on angle of inclination. It is shown that despite significant variation in heat transfer rate both Newtonian and non-Newtonian fluids exhibit similar behavior with the transition from multi-cell flow structure to a single-cell regime.
Spectro-timing study of GX 339-4 in a hard intermediate state
Fuerst, F; Tomsick, J A; Bachetti, M; Boggs, S E; Brightman, M; Christensen, F E; Craig, W W; Gandhi, P; Grefenstette, B; Hailey, C J; Harrison, F A; Madsen, K K; Parker, M L; Pottschmidt, K; Stern, D; Walton, D J; Wilms, J; Zhang, W W
2016-01-01
We present an analysis of NuSTAR energy and power spectra of the transient accreting black hole GX 339-4 taken in January 2015. The observations took place during a hard intermediate state and the source softened significantly over the course of the 1.3 d-long observation. We perform time-resolved spectral analysis by splitting the data into 21 sub-sets and find that the energy spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from ~1.69 to ~1.77 over the course of the observation. We find that the best-fit model requires a harder power-law incident on the reflector than that observed as primary continuum. The accretion disk is truncated at around 9 gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which changes in frequency from ~0.68 to ~1.05 Hz over the course of the observation. Th...
MatthiasBuschmann
2000-01-01
The paper presents an analysis of two-dimensional zero pressure gradient(ZPG) turbulent boundary layers(TBL) with regard to the application of power laws,only TBL with low Reynolds number 300
What if the power-law model did not apply for the prediction of very large rockfall events?
Rohmer, J.; Dewez, T.
2012-04-01
Extreme events are of primary importance for risk management in a variety of natural phenomena, and more particularly for landslides and rockfalls, because they might be associated with huge losses. Numerous research works have addressed this problem based on the same paradigm: if events exhibit the same statistical properties across a broad range of sizes, the probability of extreme events can be evaluated by extrapolating the frequency-size distribution. Considering landslides' areas or rockfalls' volumes, the frequency distribution has been found to be heavy-tailed and the well-known power law distribution has been proposed to model it. Yet, the vision of very large extreme event (catastrophic) frequency being an extrapolation of the power laws fitted on small and intermediate events has been challenged in various contexts, in particular by Sornette and co-authors, who proposed viewing such catastrophic events as "outliers" from the power-law model, i.e. they deviate by an abnormal large distance from the extrapolated prediction. In this study, we address such an issue considering a rockfall inventory, containing >8500 events spanning 8 orders of magnitudes of volume and collated from 2.5 years of high-accuracy repeated terrestrial laser scanning (TLS) surveys on a coastal chalk cliff in Normandy (France). This inventory contains a particularly large event of 70,949 m3 which occurred some time between February 1 and 7 April 2008. It is the second largest cliff failure reported in Normandy, and is larger than those collated in historical cliff failure inventories across various geological and geomorphological coastal settings. Is this event an outlier of the power-law volume-frequency distribution ? And if so, why? This largest event recorded appears to stand out of the rest of the sample. We use it to revisit the techniques to fit power-law distribution with robust techniques (robust weighted maximum likelihood estimator), rarely used in rockfall studies, and
Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
Sardar, Tridip; Saha, Bapi
2017-03-06
In the last few years, fractional order derivatives have been used in epidemiology to capture the memory phenomena. However, these models do not have proper biological justification in most of the cases and lack a derivation from a stochastic process. In this present manuscript, using theory of a stochastic process, we derived a general time dependent single strain vector borne disease model. It is shown that under certain choice of time dependent transmission kernel this model can be converted into the classical integer order system. When the time-dependent transmission follows a power law form, we showed that the model converted into a vector borne disease model with fractional order transmission. We explicitly derived the disease-free and endemic equilibrium of this new fractional order vector borne disease model. Using mathematical properties of nonlinear Volterra type integral equation it is shown that the unique disease-free state is globally asymptotically stable under certain condition. We define a threshold quantity which is epidemiologically known as the basic reproduction number (R0). It is shown that if R0 > 1, then the derived fractional order model has a unique endemic equilibrium. We analytically derived the condition for the local stability of the endemic equilibrium. To test the model capability to capture real epidemic, we calibrated our newly proposed model to weekly dengue incidence data of San Juan, Puerto Rico for the time period 30th April 1994 to 23rd April 1995. We estimated several parameters, including the order of the fractional derivative of the proposed model using aforesaid data. It is shown that our proposed fractional order model can nicely capture real epidemic.
Eracleous, M; Eracleous, Michael; Halpern, Jules P.
1998-01-01
We present the X-ray spectrum of the broad-line radio galaxy Pictor A as observed by ASCA in 1996. The main objective of the observation was to detect and study the profiles of the Fe~K$\\alpha$ lines. The motivation was the fact that the Balmer lines of this object show well-separated displaced peaks, suggesting an origin in an accretion disk. The 0.5-10 keV X-ray spectrum is described very well by a model consisting of a power law of photon index 1.77 modified by interstellar photoelectric absorption. We find evidence for neither a soft nor a hard (Compton reflection) excess. More importantly, we do not detect an Fe K-alpha line, in marked contrast with the spectra of typical Seyfert galaxies and other broad-line radio galaxies observed by ASCA. The 99%-confidence upper limit on the equivalent width of an unresolved line at a rest energy of 6.4 keV is 100 eV, while for a broad line (FWHM of approximately 60,000 km/s) the corresponding upper limit is 135 eV. We discuss several possible explanations for the we...
CHEN Wen
2005-01-01
@@ Absorption of acoustic wave propagation in a large variety of lossy media is characterized by an empirical power law function of frequency, αo|ω|y. It has long been noted that the exponent y ranges from 0 to 2 for diverse media. Recently, the present author [J. Acoust. Soc. Am. 115 (2004) 1424] developed a fractional Laplacian wave equation to accurately model the power law dissipation, which can be further reduced to the fractional Laplacian diffusion equation. The latter is known underlying the Lévy stable distribution theory. Consequently,the parameters y is found to be the Lévy stability index, which is known to be bounded within 0 ＜ y ≤ 2. This finding first provides a theoretical explanation of empirical observations y ∈ [0, 2]. Statistically, the frequencydependent absorption can thus be understood a Lévy stable process, where the parameter y describes the fractal nature of attenuative media.
Hirose, H
1997-01-01
This paper proposes a new treatment for electrical insulation degradation. Some types of insulation which have been used under various circumstances are considered to degrade at various rates in accordance with their stress circumstances. The cross-linked polyethylene (XLPE) insulated cables inspected by major Japanese electric companies clearly indicate such phenomena. By assuming that the inspected specimen is sampled from one of the clustered groups, a mixed degradation model can be constructed. Since the degradation of the insulation under common circumstances is considered to follow a Weibull distribution, a mixture model and a Weibull power law can be combined. This is called The mixture Weibull power law model. By using the maximum likelihood estimation for the newly proposed model to Japanese 22 and 33 kV insulation class cables, they are clustered into a certain number of groups by using the AIC and the generalized likelihood ratio test method. The reliability of the cables at specified years are assessed.
Michelitsch, Thomas; Riascos, Alejandro; Nowakowski, Andrzej F; Nicolleau, Franck C G A
2016-01-01
We introduce positive elastic potentials in the harmonic approximation leading by Hamilton's variational principle to fractional Laplacian matrices having the forms of power law matrix functions of the simple local Bornvon Karman Laplacian. The fractional Laplacian matrices are well defined on periodic and infinite lattices in $n=1,2,3,..$ dimensions. The present approach generalizes the central symmetric second differenceoperator (Born von Karman Laplacian) to its fractional central symmetric counterpart (Fractional Laplacian matrix).For non-integer powers of the Born von Karman Laplacian, the fractional Laplacian matrix is nondiagonal with nonzero matrix elements everywhere, corresponding to nonlocal behavior: For large lattices the matrix elements far from the diagonal expose power law asymptotics leading to continuum limit kernels of Riesz fractional derivative type. We present explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractio...
A H Bokhari; F D Zaman; K Fakhar; A H Kara
2011-01-01
@@ First,we studied the invariance properties of the Kadomstev-Petviashvili equation with power law nonlinearity.Then,we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation.The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows.%First, we studied the invariance properties of the Kadomstev-Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved Bows.
Control of Beam Halo-Chaos by Fraction Power-Law Function in Hackle Periodic-Focusing Channel
YU Hai-Jun; BAI Long; WENG Jia-Qiang; LUO Xiao-Shu; FANG Jin-Qing
2008-01-01
The Kapehinsky-Vladimirsky (K-V) beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and an idea of fraction power-law function controller is proposed based on the mechanism of halo formation and the strategy of controlling halo-chaos. The method is applied to the multi-particle simulation to control the halo. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively by using the fraction power-law function control method. At the same time, the radial particle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.
唐立强; 李永东; 刘长海
2004-01-01
A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.
Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)
2015-10-26
We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.
Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M
2016-01-01
Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.
Azeem SHAHZAD
2013-02-01
Full Text Available In this article, we study the power law model of steady state, viscous, incompressible MHD flow over a vertically stretching sheet. Furthermore, heat transfer is also addressed by using the convective boundary conditions. The coupled partial differential equations are transformed into ordinary differential equations (ODEs using similarity transformations. The transformed highly non-linear ODEs are solved by using the Homotopy Analysis Method (HAM. The influence of different parameters on the velocity and temperature fields are analyzed and discussed.
An Envelope Soliton in a Nonlinear Chain with the Power-Law Dependence of Long-Range Interaction
王登龙; 颜晓红; 唐翌
2003-01-01
We study the Fermi-Pasta-Ulam lattice model in the presence ora power-law dependence of long-range interaction by virtue of the method of multiple scales. Our results show that an envelope soliton still appears, but it is of different property for the group velocity compared with that of the soliton in the model when long-range interaction is absent.
FENG Shun-Xin; FU Song
2007-01-01
The effects of inner cylinder orbital motion on Taylor vortex flow of Newtonian and power-law fluid are studied numerically. The results demonstrate that when the eccentricity is not small, the orbital motion influences the stability of the flow in a non-monotonic manner. The variations of the flow-induced forces on the inner cylinder versus orbital motion are also different from the cases in which the flow is two-dimensional and laminar.
Cao, Shuo; Yao, Meng; Zhu, Zong-Hong
2016-01-01
We use 118 strong gravitational lenses observed by the SLACS, BELLS, LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light-tracers) in elliptical galaxies up to redshift $z \\sim 1$. Assuming power-law density profiles for the total mass density, $\\rho=\\rho_0(r/r_0)^{-\\alpha}$, and luminosity density, $\
On the extent of size range and power law scaling for particles of natural carbonate fault cores
Billi, Andrea
2007-09-01
To determine the size range and both type and extent of the scaling laws for particles of loose natural carbonate fault rocks, six granular fault cores from Mesozoic carbonate strata of central Italy were sampled. Particle size distributions of twelve samples were determined by combining sieving and sedimentation methods. Results show that, regardless of the fault geometry, kinematics, and tectonic history, the size of fault rock particles respects a power law distribution across approximately four orders of magnitude. The fractal dimension ( D) of the particle size distribution in the analysed samples ranges between ˜2.0 and ˜3.5. A lower bound to the power law trend is evident in all samples except in those with the highest D-values; in these samples, the smallest analysed particles (˜0.0005 mm in diameter) were also included in the power law interval, meaning that the lower size limit of the power law distribution decreases for increasing D-values and that smallest particles start to be comminuted with increasing strain (i.e. increasing fault displacement and D-values). For increasing D-values, also the largest particles tends to decrease in number, but this evidence may be affected by a censoring bias connected with the sample size. Stick-slip behaviour is suggested for the studied faults on the basis of the inferred particle size evolutions. Although further analyses are necessary to make the results of this study more generalizable, the preliminary definition of the scaling rules for fault rock particles may serve as a tool for predicting a large scale of fault rock particles once a limited range is known. In particular, data from this study may result useful as input numbers in numerical models addressing the packing of fault rock particles for frictional and hydraulic purposes.
Barik, N.; Jena, S.N.
1982-11-01
We show here that the relativistic consistency of an effective power-law potential V(r) = Ar/sup ..nu../+V/sub 0/ (with A, ..nu..>0) (used successfully to describe the heavy-meson spectra) in generating Dirac bound states of QQ-bar and Qq-bar systems implies, and also at the same time is implied by, an equally mixed vector-scalar Lorentz structure which was observed phenomenologically in the fine-hyperfine splittings of meson spectra.
Howard, Robert W
2014-09-01
The power law of practice holds that a power function best interrelates skill performance and amount of practice. However, the law's validity and generality are moot. Some researchers argue that it is an artifact of averaging individual exponential curves while others question whether the law generalizes to complex skills and to performance measures other than response time. The present study tested the power law's generality to development over many years of a very complex cognitive skill, chess playing, with 387 skilled participants, most of whom were grandmasters. A power or logarithmic function best fit grouped data but individuals showed much variability. An exponential function usually was the worst fit to individual data. Groups differing in chess talent were compared and a power function best fit the group curve for the more talented players while a quadratic function best fit that for the less talented. After extreme amounts of practice, a logarithmic function best fit grouped data but a quadratic function best fit most individual curves. Individual variability is great and the power law or an exponential law are not the best descriptions of individual chess skill development.
Sazuka, Naoya; Inoue, Jun-Ichi
2007-03-01
A Weibull distribution with power-law tails is confirmed as a good candidate to describe the first passage time process of foreign currency exchange rates. The Lorentz curve and the corresponding Gini coefficient for a Weibull distribution are derived analytically. We show that the coefficient is in good agreement with the same quantity calculated from the empirical data. We also calculate the average waiting time which is an important measure to estimate the time for customers to wait until the next price change after they login to their computer systems. By assuming that the first passage time distribution might change its shape from the Weibull to the power-law at some critical time, we evaluate the averaged waiting time by means of the renewal-reward theorem. We find that our correction of tails of the distribution makes the averaged waiting time much closer to the value obtained from empirical data analysis. We also discuss the deviation from the estimated average waiting time by deriving the waiting time distribution directly. These results make us conclude that the first passage process of the foreign currency exchange rates is well described by a Weibull distribution with power-law tails.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.
2014-01-29
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
A C$^{18}$O study of the origin of the power-law nature in the IMF
Ikeda, Norio
2009-01-01
We have performed C$^{18}$O ($J$=1--0) mapping observations of a $20'\\times20'$ area of the OMC-1 region in the Orion A cloud. We identified 65 C$^{18}$O cores, which have mean radius, velocity width in FWHM, and LTE mass of 0.18$\\pm$0.03 pc, 0.40$\\pm$0.15 km s$^{-1}$, and 7.2$\\pm$4.5 $M_\\odot$, respectively. All the cores are most likely to be gravitationally bound by considering the uncertainty in the C$^{18}$O abundance. We derived a C$^{18}$O core mass function, which shows a power-law-like behavior above 5 $M_\\odot$. The best-fit power-law index of $-2.3\\pm0.3$ is consistent with those of the dense core mass functions and the stellar initial mass function (IMF) previously derived in the OMC-1 region. This agreement strongly suggests that the power-law form of the IMF has been already determined at the density of $\\sim10^{3}$ cm$^{-3}$, traced by the C$^{18}$O ($J$=1--0) line.
Global analysis of the stream power law parameters based on worldwide 10Be denudation rates
Harel, M.-A.; Mudd, S. M.; Attal, M.
2016-09-01
The stream power law, expressed as E = KAmSn - where E is erosion rate [LT - 1], K is an erodibility coefficient [T - 1L (1 - 2m)], A is drainage area [L 2], S is channel gradient [L/L], and m and n are constants - is the most widely used model for bedrock channel incision. Despite its simplicity and limitations, the model has proved useful for topographic evolution, knickpoint migration, palaeotopography reconstruction, and the determination of rock uplift patterns and rates. However, the unknown parameters K, m, and n are often fixed arbitrarily or are based on assumptions about the physics of the erosion processes that are not always valid, which considerably limits the use and interpretation of the model. In this study, we compile a unique global data set of published basin-averaged erosion rates that use detrital cosmogenic 10Be. These data (N = 1457) enable values for fundamental river properties to be empirically constrained, often for the first time, such as the concavity of the river profile (m/n ratio or concavity index), the link between channel slope and erosion rate (slope exponent n), and substrate erodibility (K). These three parameters are calculated for 59 geographic areas using the integral method of channel profile analysis and allow for a global scale analysis in terms of climatic, tectonic, and environmental settings. In order to compare multiple sites, we also normalize n and K using a reference concavity index m/n = 0.5. A multiple regression analysis demonstrates that intuitive or previously demonstrated local-scale trends, such as the correlation between K and precipitation rates, do not appear at a global scale. Our results suggest that the slope exponent is generally > 1, meaning that the relationship between erosion rate and the channel gradient is nonlinear and thus support the hypothesis that incision is a threshold controlled process. This result questions the validity of many regional interpretations of climate and/or tectonics where
Tendulkar, Shriharsh P.; Bachetti, Matteo; Tomsick, J.
2014-01-01
frequencies. The Lorentzian has a width of 2 Hz and a fractional rms of 25+/-3%. The hard power-law index, the high energy of the cutoff, and the level of variability all are consistent with properties expected for an accreting black hole in the hard state. While we cannot completely rule out the possibility...... of a low magnetic field neutron star, a black hole is more likely....
Slip Development and Instability on a Heterogeneously Loaded Fault with Power-Law Slip-Weakening
Rice, J. R.; Uenishi, K.
2002-12-01
We consider slip initiation and rupture instability on planar faults that follow a non-linear slip-weakening relation and are subjected to a locally peaked loading stress, the level of which changes quasi-statically in time. For the case in which strength weakens linearly with slip, Uenishi and Rice [2002] (http://esag.harvard.edu/uenishi/research/nl/nl.html) have shown there exists a universal length of the slipping region at instability, independent of any length scales entering into the description of the shape of the loading stress distribution. Here we study slip development and its (in)stability for a power-law slip-weakening relation, giving fault strength as τ = τ p - Aδn where τ p is the peak strength at which slip initiates, δ is the slip, and A is a constant. Such a form with n ≈ 0.2-0.4 has been inferred, for slips from 1 to 500 mm, as an interpretation of seismological observations on the scaling of radiated energy with slip [Abercrombie and Rice, EOS, 2001; SCEC, 2002]. It is also consistent with laboratory experiments involving large rotary shear [Chambon et al., GRL, 2002]. We first employed an energy approach to give a Rayleigh-Ritz approximation for the dependence of slipping length and maximum slip on the level and shape of the loading stress distribution. That was done for a loading stress distribution τ p + Rt - κ x2 / 2 where x is distance along the fault, κ is a constant, and Rt is the stress change from that for which the peak in the loading stress distribution equals the strength τ p. Results show there is no longer a universal nucleation length, independent of κ , when n != 1, and that qualitative features of the slip development are significantly controlled by n. We also obtained full numerical solutions for the slip development. Remarkably, predictions of the simple energy approach are in reasonable quantitative agreement with them and give all qualitative features correctly. Principal results are as follows: If n > 2/3, the
Richardson, Magnus J E; Flash, Tamar
2002-09-15
The movements of the human arm have been extensively studied for a variety of goal-directed experimental tasks. Analyses of the trajectory and velocity of the arm have led to many hypotheses for the planning strategies that the CNS might use. One family of control hypotheses, including minimum jerk, snap and their generalizations to higher orders, comprises those that favor smooth movements through the optimization of an integral cost function. The predictions of each order of this family are examined for two standard experimental tasks: point-to-point movements and the periodic tracing of figural forms, and compared both with experiment and the two-thirds power law. The aim of the analyses is to generalize previous numerical observations as well as to examine movement segmentation. It is first shown that contrary to recent statements in the literature, the only members of this family of control theories that match reaching movement experiments well are minimum jerk and snap. Then, for the case of periodic drawing, both the ellipse and cloverleaf are examined and the experimentally observed power law is derived from a first-principles approach. The results for the ellipse are particularly general, representing a unification of the two-thirds power law and smoothness hypotheses for ellipses of all reasonable eccentricities. For complex shapes it is shown that velocity profiles derived from the cost-function approach exhibit the same experimental features that were interpreted as segmented control by the CNS. Because the cost function contains no explicit segmented control, this result casts doubt on such an interpretation of the experimental data.
The flow of a power-law fluid in the near-wake of a flat plate
Zhou, Min; Ladeinde, Foluso; Bluestein, Danny
2006-08-01
The analysis of the near-wake flow downstream of a flat plate is reported in this paper for the case of a non-Newtonian (power-law) constitutive model. To our knowledge, the present paper is the first to address this problem, as previous work on near-wakes has been limited to the use of a Newtonian model. The motivation for this work comes from the biomedical engineering problem of blood flow around the bileaflet of a mechanical heart valve. In the present paper, the series method has been used to calculate the flow near the centerline of the wake, while an asymptotic method has been used for larger distances from the centerline. The effects of power-law inlet conditions on the wake flow are reported for various values of the power-law index n, within the range 0.7≤n ≤1.3. The present analysis has been successfully validated by comparing the results for n =1 to the near-wake results by Goldstein [Proc. Cambridge Philos. Soc. 26, 1 (1930)]. We generalized the equations for arbitrary values of n, without any special considerations for n =1. Therefore, the accurate results observed for n =1 validate our procedure as a whole. The first major finding is that a fluid with smaller n develops faster downstream, such that decreasing n leads to monotonically increasing velocities compared to fluids with large n values. Another finding is that the non-Newtonian effects become more significant as the downstream distance increases. Finally, these effects tend to be more pronounced in the vicinity of the wake centerline compared to larger y locations.
C. Di Cristo
2017-01-01
Full Text Available The paper investigates the influence of the inlet boundary condition on the spatial evolution of natural roll-waves in a power-law fluid flowing in steep slope channels. The analysis is carried out numerically, by solving the von Kármán depth-integrated mass and momentum conservation equations, in the long-wave approximation. A second-order accurate scheme is adopted and a small random white-noise is superposed to the discharge at the channel inlet to generate the natural roll-waves train. Both shear-thinning and shear-thickening power-law fluids are investigated, considering uniform, accelerated and decelerated hypercritical profiles as the unperturbed condition. Independently of the unperturbed profile and of the fluid rheology, numerical simulations clearly enlighten the presence of coalescence, coarsening and overtaking processes, as experimentally observed. All the considered statistical parameters indicate that the natural roll-waves spatial evolution is strongly affected by the unperturbed profile. Compared with the uniform condition, at the beginning of roll-waves development an accelerated profile reduces the growth of the roll-waves with a downstream shift of the non-linear wave interaction. The opposite behavior is observed if the roll wave train develops over a decelerated profile. The comparison with the theoretical outcomes of the linearized near wave-front analysis allows the interpretation of this result in terms of stability of the base flow. It is shown that once the coarsening process starts to take place, the roll-waves spatial growth rate is independent of the unperturbed profile. Present results suggest that an appropriate selection of the flow depth at the channel inlet may contribute to control, either enhancing or inhibiting, the formation of a roll-waves train in power-law fluids.
Hard X-ray Tail Discovered in the Clocked Burster GS 1826-238
Rodi, James; Roques, Jean-Pierre
2015-01-01
The LMXB NS GS 1826-238 was discovered by Ginga in 1988 September. Due to the presence of quasi-periodicity in the type I X-ray burst rate, the source has been a frequent target of X-ray observations for almost 30 years. Though the bursts were too soft to be detected by INTEGRAL/SPI, the persistent emission from GS 1826-238 was detected over 150 keV during the ~10 years of observations. Spectral analysis found a significant high-energy excess above a Comptonization model that is well fit by a power law, indicating an additional spectral component. Most previously reported spectra with hard tails in LMXB NS have had an electron temperature of a few keV and a hard tail dominating above ~50 keV with an index of \\Gamma ~ 2-3. GS 1826-238 was found to have a markedly different spectrum with $ kT_e \\sim 20 $ keV and a hard tail dominating above ~150 keV with an index of \\Gamma ~ 1.8, more similar to BHXRB. We report on our search for long-term spectral variability over the 25-370 keV energy range and on a compariso...
D'Huys, Elke; Seaton, Daniel B; Poedts, Stefaan
2016-01-01
Many natural processes exhibit power-law behavior. The power-law exponent is linked to the underlying physical process and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition to solve the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this paper we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods and show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections an...
Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.
2016-02-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.
Faruk, Mir Mehedi; Hossain, Md Sazzad; Rahman, Md. Muktadir
2015-01-01
The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential $U=\\sum_{i=1} ^d c_i |\\frac{x_i}{a_i}|^{n_i}$ are studied carefully. Detailed calculation of Kim $et$ $al.$ (S. H. Kim, C. K. Kim and K. Nahm, J Phys. Condens. Matter 11 10269 (1999).) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume $C_V$ are presented. Carefu...
Freltoft, T.; Kjems, Jørgen; Sinha, S. K.
1986-01-01
Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ.......34±0.1 for the water-suspended samples. The intensity of scattering was found to scale with the correlation length in the manner expected for a fractal system...
MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate
Mirzaei Nejad, Mehrzad; Javaherdeh, K.; Moslemi, M.
2015-09-01
Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors.
Power law specific heat divergence in Sr{sub 3}Ru{sub 2}O{sub 7}
Rost, A.W.; Berridge, A.M.; Mercure, J.F.; Mackenzie, A.P. [Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews (United Kingdom); Perry, R.S. [SUPA, School of Physics, University of Edinburgh (United Kingdom); Grigera, S.A. [Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata (Argentina)
2010-03-15
We present measurement and analysis of field-dependent specific heat measurements on Sr{sub 3}Ru{sub 2}O{sub 7}, showing that, at low temperatures, an incipient divergence is cut off by the formation of a new phase previously identified to show the transport properties of an electronic nematic. We discuss how to interpret a specific heat divergence in a system with van Hove singularities, and caution against a simple-minded comparison of experimentally determined power laws with the predictions of quantum critical theories. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Armstrong, R. W.; Balasubramanian, N.
2017-02-01
There is continuing research interest in the development and use of constitutive relations for assistance with description and optimization of higher temperature metal and alloy processing conditions and desired mechanical property performances, particularly in the latter case for nanopolycrystalline materials under creep-type loading deformations. Here, we focus on the plastic flow stress dependence on strain rate, temperature, and especially, on material grain size. Connection is established between, on the one hand, relatively recent thermal-activation-based relations for dislocation motion and, on the other hand, comparative power law expressions.
Digilov, Rafael M
2008-12-02
The impact of non-Newtonian behavior and the dynamic contact angle on the rise dynamics of a power law liquid in a vertical capillary is studied theoretically and experimentally for quasi-steady-state flow. An analytical solution for the time evolution of the meniscus height is obtained in terms of a Gaussian hypergeometric function, which in the case of a Newtonian liquid reduces to the Lucas-Washburn equation modified by the dynamic contact angle correction. The validity of the solution is checked against experimental data on the rise dynamics of a shear-thinning cmc solution in a glass microcapillary, and excellent agreement is found.
SOLUTION OF THE RAYLEIGH PROBLEM FOR A POWER-LAW NON-NEWTONIAN CONDUCTING FLUID VIA GROUP METHOD
Mina B.Abd-el-Malek; Nagwa A.Badran; Hossam S.Hassan
2002-01-01
An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion and thereafter moves with constant velocity in a nonNewtonian power law fluid of infinite extent. The solution of this highly non-linear problem is obtained by means of the transformation group theoretic approach. The one-parameter group transformation reduces the number of independent variables by one and the governing partial differential equation with the boundary conditions reduce to an ordinary differential equation with the appropriate boundary conditions. Effect of the some parameters on the velocity u ( y, t) has been studied and the results are plotted.
Barik, N.; Das, M. (Utkal Univ., Bhubaneswar (India). Dept. of Physics)
1983-01-13
Several properties of octet baryons such as (i) the magnetic moment, (ii) (Gsub(A)/Gsub(v))sub(n) for neutron ..beta..-decay and (iii) the charge radius of the proton have been calculated in a simple independent-quark model under the assumption that the individual constituent quarks are confined, in first approximation, by a relativistic power-law potential Vsub(q)(r)=(1+..beta..) (asup(..nu..+1)rsup(..nu..)+V/sub 0/) with a, ..nu..>0. In view of the simplicity of the model, the results obtained are quite encouraging.
Free volume distribution of nearly jammed hard sphere packings
Maiti, Moumita; Sastry, Srikanth
2014-07-01
We calculate the free volume distributions of nearly jammed packings of monodisperse and bidisperse hard sphere configurations. These distributions differ qualitatively from those of the fluid, displaying a power law tail at large free volumes, which constitutes a distinct signature of nearly jammed configurations, persisting for moderate degrees of decompression. We reproduce and explain the observed distribution by considering the pair correlation function within the first coordination shell for jammed hard sphere configurations. We analyze features of the equation of state near jamming, and discuss the significance of observed asphericities of the free volumes to the equation of state.
Ebrahimi, Farzad; Salari, Erfan
2016-09-01
In the present study, thermo-electro-mechanical vibration characteristics of both sigmoid and power-law functionally graded piezoelectric (FGP) nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier-type solution for the first time. Three kinds of thermal loading, namely uniform, linear and nonlinear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness according to power-law and sigmoid distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. In following a parametric study is accompanied to examine the effects of the several parameters such as various temperature distributions, external electric voltage, different material compositions, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams. The results should be relevant to the design and application of the piezoelectric nanodevices.
Feng Guo-Lin; Gong Zhi-Qiang; Zhi Rong; Zhang Da-Quan
2008-01-01
Precipitation sequence is a typical nonlinear and chaotic observational series, and studies on precipitation forecasts are restricted to the use of traditional linear statistical methods, especially when analysing the regional characteristics of precipitation. In the context of 20 stations' daily precipitation series (from 1956 to 2000) in South China (SC) and North China (NC), we divide each precipitation series into many self-stationary segments by using the heuristic segmentation algorithm (briefly BG algorithm). For each station's precipitation series, we calculate the exponent of power-law tail (EPT) of the cumulative probability distribution of segments with a length larger than l for precipitation and temperature series. Our results show that the power-law decay of the cumulative probability distribution of stationary segments might be a common attribution for precipitation and other nonstationary time series; the EPT somewhat indicates the precipitation duration and its spatial distribution that might be different from area to area. The EPT in NC is larger than in SC; Meanwhile, EPT might be another effective way to study the abrupt changes in nonlinear and nonstationary time series.
Yasuhiro Tsubo
Full Text Available The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI, which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.
AlMuhammad, Anwar
2016-01-01
We use the $f^{2}FF$ model to study the generation of primordial magnetic fields (PMF) in the context of large field inflation (LFI), described by the potential, $V \\sim M \\phi^{p}$. We compute the magnetic and electric spectra for all possible values of the model parameters under de Sitter and power law expansion. We show that scale invariant PMF are not obtained in LFI to first order in the slow roll approximation, if we impose the constraint $V(\\phi=0)\\sim 0$. Alternatively, if these constraints are relaxed, the scale invariant PMF can be generated. The associated electric field energy can fall below the energy density of inflation, $\\rho_{\\rm{Inf}}$ for the ranges of comoving wavenumbers, $ k > 8 \\times 10^{-7} \\rm{Mpc^{-1}}$ and $ k > 4 \\times 10^{-6} \\rm{Mpc^{-1}}$ in de Sitter and power law (PL) expansion. Further, it can drop below $\\rho_{\\rm{Inf}}$ on the ranges, e-foldings $N > 51$, $p2.03$, $l_0 > 3 \\times 10^5 {M_{\\rm{Pl}}}^{-1} (H_i 2.8 \\times 10^{-3} M_{\\rm{Pl}}$. All of the above ranges fit wi...
Non-power law scaling for access to the H-mode in tokamaks via symbolic regression
Murari, A.; Lupelli, I.; Gelfusa, M.; Gaudio, P.
2013-04-01
The power threshold (PThresh) to access the H-mode in tokamaks remains a subject of active research, because up to now no theoretical relation has proved to be general enough to reliably interpret the L-H transition. Over the last few decades, much effort has therefore been devoted to deriving empirical scalings, assuming ‘a priori’ a power-law model structure. In this paper, an empirical scaling of PThresh without any a priori assumption about the model structure, i.e. about the functional form, is derived. Symbolic regression via genetic programming is applied to the latest version multi-machine International Tokamak Physics Activity International Global Power Threshold Data Base of validated ITER-like discharges. The derived model structure of the scaling for the global database is not in a power law form and includes a term that indicates saturation of PThresh with the strength of the toroidal field, plasma density and elongation. Furthermore, the single machine analysis of the database for the most representative machines of the international fusion scientific program demonstrates that the model structures are similar but the model parameters are different. The better extrapolation capability of the identified model structures with the proposed methodology is verified with a specific analysis of JET data at two different current regimes. The PThresh values extrapolated to ITER using the derived empirical model structures are a factor of two lower than those of traditional scaling laws and are predicted with a significantly better confidence.
Selvam, A. M.
2017-01-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference
Selvam, A. M.
2016-09-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference
The Power-Law Distribution of Flare Kernels and Fractal Current Sheets in a Solar Flare
Nishizuka, N; Takasaki, H; Kurokawa, H; Shibata, K; 10.1088/0004-637X/694/1/L74
2013-01-01
We report a detailed examination of the fine structure inside flare ribbons and the temporal evolution of this fine structure during the X2.5 solar flare that occurred on 2004 November 10. We examine elementary bursts of the C IV (1550{\\AA}) emission lines seen as local transient brightenings inside the flare ribbons in the ultraviolet (1600{\\AA}) images taken with Transition Region and Coronal Explorer, and we call them C IV kernels. This flare was also observed in Ha with the Sartorius 18 cm Refractor telescope at Kwasan observatory, Kyoto University, and in hard X-rays (HXR) with Reuven Ramaty High Energy Solar Spectroscopic Imager. Many C IV kernels, whose sizes were comparable to or less than 2", were found to brighten successively during the evolution of the flare ribbon. The majority of them were well correlated with the Ha kernels in both space and time, while some of them were associated with the HXR emission. These kernels were thought to be caused by the precipitation of nonthermal particles at the...
Chatterjee, Biplab K.; Ghosh, C. K.; Chattopadhyay, K. K.
2014-10-01
The thermal variation of magnetic anisotropy (K) and saturation magnetization (MS) for uniaxial nickel ferrite (NiFe2O4) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5-280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoretical equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of MS is observed. Remarkably, K is linearly proportional to MS2.6 in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe2O4 uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.
Chatterjee, Biplab K.; Ghosh, C. K. [School of Materials Science and Nanotechnology, Jadavpur University, Jadavpur, Kolkata 700032 (India); Chattopadhyay, K. K., E-mail: kalyan-chattopadhyay@yahoo.com [School of Materials Science and Nanotechnology, Jadavpur University, Jadavpur, Kolkata 700032 (India); Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032 (India)
2014-10-21
The thermal variation of magnetic anisotropy (K) and saturation magnetization (M{sub S}) for uniaxial nickel ferrite (NiFe₂O₄) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5–280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoretical equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of M{sub S} is observed. Remarkably, K is linearly proportional to M{sub S}₂.₆ in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe₂O₄ uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.
Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X
Katsuda, Satoru; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie
2011-01-01
Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.
Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X
Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie
2011-01-01
Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.
Noa Slater
2015-04-01
Full Text Available Measures of allele and haplotype diversity, which are fundamental properties in population genetics, often follow heavy tailed distributions. These measures are of particular interest in the field of hematopoietic stem cell transplant (HSCT. Donor/Recipient suitability for HSCT is determined by Human Leukocyte Antigen (HLA similarity. Match predictions rely upon a precise description of HLA diversity, yet classical estimates are inaccurate given the heavy-tailed nature of the distribution. This directly affects HSCT matching and diversity measures in broader fields such as species richness. We, therefore, have developed a power-law based estimator to measure allele and haplotype diversity that accommodates heavy tails using the concepts of regular variation and occupancy distributions. Application of our estimator to 6.59 million donors in the Be The Match Registry revealed that haplotypes follow a heavy tail distribution across all ethnicities: for example, 44.65% of the European American haplotypes are represented by only 1 individual. Indeed, our discovery rate of all U.S. European American haplotypes is estimated at 23.45% based upon sampling 3.97% of the population, leaving a large number of unobserved haplotypes. Population coverage, however, is much higher at 99.4% given that 90% of European Americans carry one of the 4.5% most frequent haplotypes. Alleles were found to be less diverse suggesting the current registry represents most alleles in the population. Thus, for HSCT registries, haplotype discovery will remain high with continued recruitment to a very deep level of sampling, but population coverage will not. Finally, we compared the convergence of our power-law versus classical diversity estimators such as Capture recapture, Chao, ACE and Jackknife methods. When fit to the haplotype data, our estimator displayed favorable properties in terms of convergence (with respect to sampling depth and accuracy (with respect to diversity
Universal power-law scaling of water diffusion in human brain defines what we see with MRI
Veraart, Jelle; Novikov, Dmitry S
2016-01-01
Development of successful therapies for neurological disorders depends on our ability to diagnose and monitor the progression of underlying pathologies at the cellular level. Physics and physiology limit the resolution of human MRI to millimeters, three orders of magnitude coarser than the cell dimensions of microns. A promising way to access cellular structure is provided by diffusion-weighted MRI (dMRI), a modality which exploits the sensitivity of the MRI signal to micron-level Brownian motion of water molecules strongly hindered by cell walls. By analyzing diffusion of water molecules in human subjects, here we demonstrate that biophysical modeling has the potential to break the intrinsic MRI resolution limits. The observation of a universal power-law scaling of the dMRI signal identifies the contribution from water specifically confined inside narrow impermeable axons, validating the overarching assumption behind models of diffusion in neuronal tissue. This scaling behavior establishes dMRI as an in vivo...
Šibalić, Nikola; Adams, Charles S; Weatherill, Kevin J; Pohl, Thomas
2015-01-01
We investigate the non-equilibrium dynamics of a driven-dissipative spin ensemble with competing power-law interactions. Contrary to previous work on pure van der Waals systems, we demonstrate that the emergence of a dynamical phase transition and bistable steady states critically relies on the presence of a finite dipolar potential-core. Upon introducing random particle motion, we show that a finite gas temperature can drive a phase transition with regards to the spin degree of freedom and eventually leads to mean-field behaviour in the high-temperature limit. Our work reconciles contrasting observations of recent experiments with Rydberg atoms in the cold-gas and hot-vapour domain, and establishes an efficient theoretical framework in the latter regime.
Determining the power-law wind-profile exponent under near-neutral stability conditions at sea
Hsu, S. A.; Meindl, Eric A.; Gilhousen, David B.
1994-01-01
On the basis of 30 samples from near-simultaneous overwater measurements by pairs of anemometers located at different heights in the Gulf of Mexico and off the Chesapeake Bay, Virginia, the mean and standard deviation for the exponent of the power-law wind profile over the ocean under near-neutral atmospheric stability conditions were determined to be 0.11 +/- 0.03. Because this mean value is obtained from both deep and shallow water environments, it is recommended for use at sea to adjust the wind speed measurements at different heights to the standard height of 10 m above the mean sea surface. An example to apply this P value to estimate the momentum flux or wind stress is provided.
Spatial Heterogeneity and Variability of a Large-Scale Vegetation Community Using a Power-Law Model
SONG Zhiyuan; HUANG Daming; SHIYOMI Masae; WANG Yusheng; TAKAHASHI Shigeo; YOSHIMICHI Hori; YAMAMURU Yasuo; CHEN Jun
2005-01-01
Spatial heterogeneity and stability are fundamental indices for describing vegetation communities. The spatial distribution characteristics of the vegetation in Nenjiang region of northeastern China were evaluated using a variance power-law model. The data fits the model well with estimates given for the levels of heterogeneity for not only single species but also the community as a whole. The linear regression indicates that the species in the community exhibit a consistently organized spatial pattern, as is often discovered in field surveys but rarely seen in artificial systems. The species deviations from the regression line, which exhibit a leptokurtic distribution, may reflect the variability of the community. Thus, the model provides a general tool for management and regulation of ecosystems, especially where there is human disturbances.
Bellingeri, Michele
2014-01-01
A better understanding of the optical properties of random photonic structures is beneficial for many applications, such as random lasing, optical imaging and photovoltaics. Here we investigated the light transmission properties of disordered photonic structures in which the high refractive index layers are aggregated in clusters. We sorted the size of the clusters from a power law distribution tuning the exponent a of the distribution function. The sorted high refractive layer clusters are randomly distributed within the low refractive index layers. We studied the total light transmission, within the photonic band gap of the corresponding periodic crystal, as a function of the exponent in the distribution. We observed that, for a within the interval [0,3.5], the trend can be fitted with a sigmoidal function.
Geert Verdoolaege
2015-07-01
Full Text Available In regression analysis for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS is the most popular. In many situations, the assumptions underlying OLS are not fulfilled, and several other approaches have been proposed. However, most techniques address only part of the shortcomings of OLS. We here discuss a new and more general regression method, which we call geodesic least squares regression (GLS. The method is based on minimization of the Rao geodesic distance on a probabilistic manifold. For the case of a power law, we demonstrate the robustness of the method on synthetic data in the presence of significant uncertainty on both the data and the regression model. We then show good performance of the method in an application to a scaling law in magnetic confinement fusion.
Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong
2016-09-01
We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.
El-Amin, Mohamed
2010-11-27
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.
Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J I
2015-01-01
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined.
Suzaku observations of the hard X-ray spectrum of Vela Jr
Takeda, Sawako; Terada, Yukikatsu; Tashiro, Makoto S; Katsuda, Satoru; Yamazaki, Ryo; Ohira, Yutaka; Iwakiri, Wataru
2016-01-01
We report the results of Suzaku observations of the young supernova remnant, Vela Jr.\\ (RX J0852.0$-$4622), which is known to emit synchrotron X-rays, as well as TeV gamma-rays. Utilizing 39 Suzaku mapping observation data from Vela Jr., a significant hard X-ray emission is detected with the hard X-ray detector (HXD) from the north-west TeV-emitting region. The X-ray spectrum is well reproduced by a single power-law model with the photon index of 3.15$^{+1.18}_{-1.14}$ in the 12--22 keV band. Compiling this with the soft X-ray spectrum simultaneously observed with the X-ray imaging spectrometer (XIS) onboard Suzaku, we find that the wide-band X-ray spectrum in the 2--22 keV band is reproduced with a single power-law or concave broken power-law model, which are statistically consistent with each other. Whichever the model of a single or broken power-law is appropriate, clearly the spectrum has no rolloff structure. Applying this result to the method introduced in \\citet{yama2014}, we find that one-zone synchro...
Hard X-ray Spectrum of Mkn 421 during the Active Phase
R. K. Manchanda
2001-06-01
Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.
T. Hayat; M. Mustafa; S. Obaidat
2011-01-01
Magnetohydrodynamic (MHD) mixed convection stagnation-point flow and heat transfer of power-law fluids towards a stretching surface is investigated.The homotopy analysis method (HAM) is used in finding the series solution for a nonlinear problem.Closed form solutions for velocity and temperature fields are presented in the limiting cases.Graphical results are shown.It is found that velocity and temperature are decreasing functions of power law index.Numerical computations for shear stress coefficient and local Nusselt number are reported.The present results are also compared with the existing numerical solution in a limiting sense.
Kristensen, Erik; Delefosse, Matthieu; Quintana, Cintia Organo
2013-01-01
The lack of a common statistical approach describing the distribution and dispersion pattern of marine benthic animals has often hampered the comparability among studies. The purpose of this study is therefore to apply an alternative approach, Taylor's power law, to data on spatial and temporal...... that this relationship is an inherent characteristic of Taylor's power law, and that b as a dispersion index may be biased by e.g. sampling errorswhen this relationship is weak. The correlation strength between b and log(a) could therefore be envisioned as a data quality check....
A mechanistic model for depth-dependent hardness of ion irradiated metals
Xiao, Xiazi; Chen, Qianying; Yang, Hui; Duan, Huiling; Qu, Jianmin
2017-03-01
A mechanistic model was developed for modeling the depth-dependent hardness in ion irradiated metallic materials. The model is capable of capturing the indentation size effect, ion irradiation induced damage gradient effect, and effect of unirradiated region acting as a soft substrate. A procedure was developed and described in detail to parametrize the model based on experimentally obtained hardness vs. indentation depth curves. Very good agreement was observed between our model predictions and experimental data of several different stainless steels subjected to various ion irradiation conditions. In addition, two hardening mechanisms are revealed in the new model. One is the well-known indentation size effect arising from the creation of geometrically necessary dislocations as the indenter pierces into the materials. The other is the irradiation hardening due to the presence of irradiation-induced defects. As a function of indentation depth h, the hardening due to indentation size effect is described by hbar∗ / h , while the hardening due to irradiation first follows a power law form Phn , then changes to Z / h - Q /h3 , where hbar∗ , P, n, Z and Q > 0 are constants. This transition occurs at the indentation depth when the plastic zone reaches the end of the irradiated layer.
Multivariate power-law models for streamflow prediction in the Mekong Basin
Guillaume Lacombe
2014-11-01
New hydrological insights for the region: A combination of 3–6 explanatory variables – chosen among annual rainfall, drainage area, perimeter, elevation, slope, drainage density and latitude – is sufficient to predict a range of flow metrics with a prediction R-squared ranging from 84 to 95%. The inclusion of forest or paddy percentage coverage as an additional explanatory variable led to slight improvements in the predictive power of some of the low-flow models (lowest prediction R-squared = 89%. A physical interpretation of the model structure was possible for most of the resulting relationships. Compared to regional regression models developed in other parts of the world, this new set of equations performs reasonably well.
Fast power law-like decay for a diffusive system with absorbing borders
Droz, Michel; Pȩkalski, Andrzej
2017-03-01
Using a simple, one dimensional, model of diffusing particles which are absorbed at the ends of the system, we compare two ways of updating in the Monte Carlo simulations. In the first one particles at each Monte Carlo step are chosen randomly, while in the second one we follow at each Monte Carlo Step a list of particles made at the beginning of simulations, in which there is no correlation between the position of a particle on the list and its spatial location. We show that although the final state is the same-the empty state, the two approaches follow quite different ways to the final state. In the first one the density of particles decreases exponentially with time, while in the second one it has a power-type character. An additional feature which is different in the two approaches is the direction of the average movements of the particles. In the first case they are moving away from the edges, towards the centre, while in the second case the average jumps are towards the edges. We have no good explanation for the observed differences and leave them as open questions.
Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs
Caginalp, Gunduz; DeSantis, Mark
2017-02-01
Whether efficiency increases with increasing volume is an important issue that may illuminate trader strategies and distinguish between market theories. This relationship is tested using 124,236 daily observations comprising 68 large and liquid U.S. equity exchange traded funds (ETFs). ETFs have the advantage that efficiency can be measured in terms of the deviation between the trading price and the underlying net asset value that is reported each day. Our findings support the hypothesis that the relationship between volume and efficiency is nonlinear. Indeed, efficiency increases as volume increases from low to moderately high levels, but then decreases as volume increases further. The first part tends to support the idea that higher volume simply facilitates transactions and maintains efficiency, while the latter part, i.e., even higher volumes, supports the ansatz that increased volume is associated with increased speculation that ignores valuation and decreases efficiency. The results are consistent with the hypothesis that valuation is only part of the motivation for traders. Our methodology accounts for fund heterogeneity and contemporaneous correlations. Similar results are obtained when daily price volatility is introduced as an additional independent variable.
Zhang, Kai; Fan, Meng; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.
2015-11-01
When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate Rc, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. Rc (or the corresponding critical casting thickness dc) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small Rc alloys are typically poor glass-formers with large Rc > 1010 K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with Rc approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness.
Quigley, Matthew R; Holliday, Emma B; Fuller, Clifton D; Choi, Mehee; Thomas, Charles R
2012-06-01
Leaders of academic institutions evaluate academic productivity when deciding to hire, promote, or award resources. This study examined the distribution of the h-index, an assessment of academic standing, among radiation oncologists. The authors collected h-indices for 826 US academic radiation oncologists from a commercial bibliographic database (SCOPUS, Elsevier B.V., NL). Then, logarithmic transformation was performed on h-indices and ranked h-indices, and results were compared to estimates of a power law distribution. The h-index frequency distribution conformed to both the log-linear variation of a power law (r (2) = .99) and the beta distribution with the same fitting exponents as previously described in a power law analysis of the productivity of neurosurgeons. Within radiation oncology, as in neurosurgery, there are exceedingly more faculty with an h-index of 1-2. The distribution fitting the same variation of a power law within two fields suggests applicability to other areas of academia.
Xu, Dandan; Schneider, Peter; Springel, Volker; Vogelsberger, Mark; Nelson, Dylan; Hernquist, Lars
2015-01-01
The combination of dynamical and strong gravitational lensing studies of massive galaxies shows that their total density profile in the central region (i.e. up to a few half-light radius) can be described by a power law, $\\rho(r)\\propto r^{-\\gamma}$. Therefore, such a power-law model is employed for a large number of strong-lensing applications, including the so-called time-delay technique used to infer the Hubble constant $H_0$. However, since the radial scale at which strong lensing features are formed (i.e., the Einstein radius) corresponds to the transition from the dominance of baryonic matter to dark matter, there is no known reason why galaxies should follow a power law in density. The assumption of a power law artificially breaks the mass-sheet degeneracy, a well-known invariance transformation in gravitational lensing which affects the product of Hubble constant and time delay and can therefore cause a bias in the determination of $H_0$ from the time-delay technique. In this paper, we use the Illustr...
Kumar, S. S.; Roy, D. P.; Boschetti, L.; Kremens, R.
2011-10-01
Instantaneous estimates of the power released by fire (fire radiative power, FRP) are available with satellite active fire detection products. The temporal integral of FRP provides an estimate of the fire radiative energy (FRE) that is related linearly to the amount of biomass burned needed by the atmospheric emissions modeling community. The FRE, however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires. Satellite FRPs derived over individual burned areas and fires have been observed to exhibit power law distributions. This property is exploited to develop a new way to derive FRE, as the product of the fire duration and the expected FRP value derived from the FRP power law probability distribution function. The method is demonstrated and validated by the use of FRP data measured with a dual-band radiometer over prescribed fires in the United States and by the use of FRP data retrieved from moderate resolution imaging spectroradiometer (MODIS) active-fire detections over Brazilian deforestation and Australian savanna fires. The biomass burned derived using the conventional FRP temporal integration and power law FRE estimation methods is compared with biomass burned measurements (prescribed fires) and available fuel load information reported in the literature (Australian and Brazilian fires). The results indicate that the FRE power law derivation method may provide more reliable burned biomass estimates under sparse satellite FRP sampling conditions and correct for satellite active-fire detection omission errors if the FRP power law distribution parameters and the fire duration are known.
Kastner, Michael
2011-03-01
The stationary points of the potential energy function V of the classical XY chain with power-law pair interactions (i.e., interactions decaying like r{-α} with the distance) are analyzed. For a class of "spinwave-type" stationary points, the asymptotic behavior of the Hessian determinant of V is computed analytically in the limit of large system size. The computation is based on the Toeplitz property of the Hessian and makes use of a Szegö-type theorem. The results serve to illustrate a recently discovered relation between phase transitions and the properties of stationary points of classical many-body potentials. In agreement with this relation, the exact phase transition potential energy of the model can be read off from the behavior of the Hessian determinant for exponents α between zero and one. For α between one and two, the phase transition is not manifest in the behavior of the determinant, and it might be necessary to consider larger classes of stationary points.
Haji-Saeed, Bahareh; Woods, Charles L; Kierstead, John; Khoury, Jed
2008-06-01
Synthetic radar image recognition is an area of interest for military applications including automatic target recognition, air traffic control, and remote sensing. Here a dynamic range compression two-beam-coupling joint transform correlator for detecting synthetic aperture radar targets is utilized. The joint input image consists of a prepower-law, enhanced scattering center of the input image and a linearly synthesized power-law-enhanced scattering center template. Enhancing the scattering center of both the synthetic template and the input image furnishes the conditions for achieving dynamic range compression correlation in two-beam coupling. Dynamic range compression (a) enhances the signal-to-noise ratio, (b) enhances the high frequencies relative to low frequencies, and (c) converts the noise to high frequency components. This improves the correlation-peak intensity to the mean of the surrounding noise significantly. Dynamic range compression correlation has already been demonstrated to outperform many optimal correlation filters in detecting signals in severe noise environments. The performance is evaluated via established metrics such as peak-to-correlation energy, Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power increased.
Abdel-Khalek, S.; Berrada, K.; Alkhateeb, Sadah A.
2016-09-01
In this paper, we propose a useful quantum system to perform different tasks of quantum information and computational technologies. We explore the required optimal conditions for this system that are feasible with real experimental realization. We present an active way to control the variation of some measures of nonclassicality considering the time-dependent coupling and photon transition effects under a model that closely describes a realistic experimental scenario. We investigate qualitatively the quantum measures for a two-level atom system interacting with a quantum field initially defined in a coherent state in the framework of power-law potentials (PLPCSs). We study the nonlocal correlation in the whole system state using the negativity as a measure of entanglement in terms of the exponent parameter, number of photon transition, and phase damping effect. The influences of the different physical parameters on the statistical properties and purity of the field are also demonstrated during the time evolution. The results indicate that the preservation and enhancement of entanglement greatly benefit from the combination of the choice of the physical parameters. Finally, we explore an interesting relationship between the different quantum measures of non-classicality during the time evolution in the absence and presence of time-dependent coupling effect.
Xue-Wei Sun; Jie Peng; Ke-Qin Zhu
2012-01-01
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number.The interface between the two fluids is populated with an insoluble surfactant.The analytic solution for the growth rate of perturbation is obtained with long wave approximation.We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability.The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number.For a clean interface,the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall.The converse is true when the interface is close to the pipe centerline.For shear-thickening fluids,the situation is reversed.When the interface is close to the pipe centerline,the capillary instability can be restrained due to the influence of surfactant.A parameter set can be found under which the flow is linearly stable.
Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian
2016-09-01
Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.
Li, Guang-Xing; Burkert, Andreas
2017-02-01
Gravity plays a determining role in the evolution of the molecular ISM. In 2016, we proposed a measure called gravitational energy spectrum to quantify the importance of gravity on multiple physical scales. In this paper, using a wavelet-based decomposition technique, we derive the gravitational energy spectra of the Orion A and the Orion B molecular cloud from observational data. The gravitational energy spectra exhibit power-law-like behaviours. From a few parsec down to ˜0.1 pc scale, the Orion A and Orion B molecular cloud have Ep(k) ˜ k-1.88 and Ep(k) ˜ k-2.09, respectively. These scaling exponents are close to the scaling exponents of the kinetic energy power spectrum of compressible turbulence (where E ˜ k-2), with a near-equipartition of turbulent versus gravitational energy on multiple scales. This provides a clear evidence that gravity is able to counteract effectively against turbulent motion for these length-scales. The results confirm our earlier analytical estimates. For the Orion A molecular cloud, gravity inevitably dominates turbulence inside the cloud. Our results provide a clear observational proof that gravity is playing a determining role in the evolution these molecular clouds from the cloud scale down to ˜ 0.1 pc. However, turbulence is likely to dominate in clouds such as California. The method is general and should be applicable to all the astrophysical problems where gravity plays a role.
Zhang, Qun; Zhang, Qunzhi; Sornette, Didier
2016-01-01
We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.
Zilany, Muhammad S A; Carney, Laurel H
2010-08-04
Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics of the stimulus, partially alleviating the so-called "dynamic-range problem." However, the mechanism and source of this adaptation along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell (IHC)-auditory nerve (AN) synapse successfully explained neural adaptation to sound-level statistics, including the time course of adaptation of the mean firing rate and changes in the dynamic range observed in AN responses. A direct comparison between model responses to a dynamic stimulus and to an "inversely gated" static background suggested that AN dynamic-range adaptation largely results from the adaptation produced by the response history. These results support the hypothesis that the potential mechanism underlying the dynamic-range adaptation observed at the level of the auditory nerve is located peripheral to the spike generation mechanism and central to the IHC receptor potential.
Noble, Pascal
2012-01-01
In this paper we derive consistent shallow water equations for thin films of power law fluids down an incline. These models account for the streamwise diffusion of momentum which is important to describe accurately the full dynamic of the thin film flows when instabilities like roll-waves arise. These models are validated through a comparison with Orr Sommerfeld equations for large scale perturbations. We only consider laminar flow for which the boundary layer issued from the interaction of the flow with the bottom surface has an influence all over the transverse direction to the flow. In this case the concept itself of thin film and its relation with long wave asymptotic leads naturally to flow conditions around a uniform free surface Poiseuille flow. The apparent viscosity diverges at the free surface which, in turn, introduces a singularity in the formulation of the Orr-Sommerfeld equations and in the derivation of shallow water models. We remove this singularity by introducing a weaker formulation of Cauc...
Pandian, Arun; Swisher, Nora C.; Abarzhi, S. I.
2017-01-01
Rayleigh-Taylor (RT) mixing occurs in a variety of natural and man-made phenomena in fluids, plasmas and materials, from celestial event to atoms. In many circumstances, RT flows are driven by variable acceleration, whereas majority of existing studies have considered only sustained acceleration. In this work we perform detailed analytical and numerical study of RT mixing with a power-law time-dependent acceleration. A set of deterministic nonlinear non-homogeneous ordinary differential equations and nonlinear stochastic differential equations with multiplicative noise are derived on the basis of momentum model. For a broad range of parameters, self-similar asymptotic solutions are found analytically, and their statistical properties are studied numerically. We identify two sub-regimes of RT mixing dynamics depending on the acceleration exponent—the acceleration-driven mixing and dissipation-driven mixing. Transition between the sub-regimes is studied, and it is found that each sub-regime has its own characteristic dimensionless invariant quantity.
Biham, O; Lévy, M; Solomon, S; Biham, Ofer; Malcai, Ofer; Levy, Moshe; Solomon, Sorin
1998-01-01
The dynamics of generic stochastic Lotka-Volterra (discrete logistic) systems of the form \\cite{Solomon96a} $w_i (t+1) = \\lambda(t) w_i (t) + a {\\bar w (t)} - b w_i (t) {\\bar w(t)}$ is studied by computer simulations. The variables $w_i$, $i=1,...N$, are the individual system components and ${\\bar w (t)} = {1\\over N} \\sum_i w_i (t)$ is their average. The parameters $a$ and $b$ are constants, while $\\lambda(t)$ is randomly chosen at each time step from a given distribution. Models of this type describe the temporal evolution of a large variety of systems such as stock markets and city populations. These systems are characterized by a large number of interacting objects and the dynamics is dominated by multiplicative processes. The instantaneous probability distribution $P(w,t)$ of the system components $w_i$, turns out to fulfill a (truncated) Pareto power-law $P(w,t) \\sim w^{-1-\\alpha}$. The time evolution of ${\\bar w (t)} $ presents intermittent fluctuations parametrized by a truncated distribution of the $w...
Mobley, Joel
2010-01-01
The Kramers-Kronig (KK) relations are a large class of integral transformations that exploit the broad principle of simple causality in order to link the physical properties of matter and materials. In applications to the complex-valued wavenumber for acoustic propagation, the method of subtractions is used to form convergent integral relations between the phase velocity and the attenuation coefficient. When the method of subtractions is applied in the usual manner, the integrands in the relations become unnecessarily complicated. In this work, an expanded form of the subtracted relations is presented, which is essentially a truncated Taylor series expansion of the Hilbert transforms. The implementation of the relations only requires the explicit evaluation of two simply expressed integrals involving the Hilbert transform kernel. These two integrals determine the values of the other terms in the subtracted relations, demonstrating the computational efficiency of the technique. The method is illustrated analytically through its application to power-law attenuation coefficients and its associated dispersion, which are observed in a wide variety of materials. This approach explicitly shows the central role of the Hilbert transform kernel in the KK relations, which can become obscured in other formulations.