WorldWideScience

Sample records for addendum eckechem equilibrium-conservation-kinetic

  1. STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.

    2012-04-03

    This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulator’s capabilities.

  2. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  3. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  4. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  5. Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws

    International Nuclear Information System (INIS)

    Botchorishvili, Ramaz; Pironneau, Olivier

    2003-01-01

    We develop here a new class of finite volume schemes on unstructured meshes for scalar conservation laws with stiff source terms. The schemes are of equilibrium type, hence with uniform bounds on approximate solutions, valid in cell entropy inequalities and exact for some equilibrium states. Convergence is investigated in the framework of kinetic schemes. Numerical tests show high computational efficiency and a significant advantage over standard cell centered discretization of source terms. Equilibrium type schemes produce accurate results even on test problems for which the standard approach fails. For some numerical tests they exhibit exponential type convergence rate. In two of our numerical tests an equilibrium type scheme with 441 nodes on a triangular mesh is more accurate than a standard scheme with 5000 2 grid points

  6. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    Science.gov (United States)

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  7. Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.

    Science.gov (United States)

    Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V

    2016-05-26

    The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.

  8. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  9. Tenancy and Soil Conservation in Market Equilibrium

    OpenAIRE

    Lichtenberg, Erik

    2001-01-01

    A theoretical analysis of equilibrium contracts between risk neutral landlords and tenants when tenants' soil exploitation is non-contractible indicates that landlords will overinvest in conservation structures. An empirical model using farm-level data provides evidence that investment in contractible soil conservation measures is greater on rental land.

  10. Non-equilibrium thermodynamics and physical kinetics

    CERN Document Server

    Bikkin, Halid

    2014-01-01

    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  11. Lateral interactions and non-equilibrium in surface kinetics

    Science.gov (United States)

    Menzel, Dietrich

    2016-08-01

    Work modelling reactions between surface species frequently use Langmuir kinetics, assuming that the layer is in internal equilibrium, and that the chemical potential of adsorbates corresponds to that of an ideal gas. Coverage dependences of reacting species and of site blocking are usually treated with simple power law coverage dependences (linear in the simplest case), neglecting that lateral interactions are strong in adsorbate and co-adsorbate layers which may influence kinetics considerably. My research group has in the past investigated many co-adsorbate systems and simple reactions in them. We have collected a number of examples where strong deviations from simple coverage dependences exist, in blocking, promoting, and selecting reactions. Interactions can range from those between next neighbors to larger distances, and can be quite complex. In addition, internal equilibrium in the layer as well as equilibrium distributions over product degrees of freedom can be violated. The latter effect leads to non-equipartition of energy over molecular degrees of freedom (for products) or non-equal response to those of reactants. While such behavior can usually be described by dynamic or kinetic models, the deeper reasons require detailed theoretical analysis. Here, a selection of such cases is reviewed to exemplify these points.

  12. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  13. Iteration scheme for implicit calculations of kinetic and equilibrium chemical reactions in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1995-01-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described. Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow. 10 refs., 2 figs

  14. Kinetic and equilibrium study for the sorption of Pb(II) ions from ...

    African Journals Online (AJOL)

    Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth ( Eichhornia crassipes ) ... Bulletin of the Chemical Society of Ethiopia ... Abstract. This paper reports the kinetic and equilibrium studies of Eichhornia crassipes root biomass as a biosorbent for Pb(II) ions from aqueous system.

  15. Out-of-equilibrium quantum fields with conserved charge

    International Nuclear Information System (INIS)

    Bedingham, D.J.

    2004-01-01

    We study the out-of-equilibrium evolution of an O(2)-invariant scalar field in which a conserved charge is stored. We apply a loop expansion of the 2-particle irreducible effective action to 3-loop order. Equations of motion are derived which conserve both total charge and total energy yet allow for the effects of scattering whereby charge and energy can transfer between modes. Working in 1+1 dimensions we solve the equations of motion numerically for a system knocked out of equilibrium by a sudden temperature quench. We examine the initial stages of the charge and energy redistribution. This provides a basis from which we can understand the formation of Bose-Einstein condensates from first principles

  16. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    Science.gov (United States)

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  17. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  18. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    Science.gov (United States)

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of

  19. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    Science.gov (United States)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  20. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom'and genrally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH, contact time, ...

  1. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  2. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  3. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  4. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    Science.gov (United States)

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  5. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    International Nuclear Information System (INIS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-01-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N_2 and 20% O_2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10"1"3" cm"−"3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the

  6. Biosorption of zinc (II) by Rhizopus arrhizus: equilibrium and kinetic ...

    African Journals Online (AJOL)

    ... in light of the Lagergren equation and the process followed a second order rate kinetics. The equilibrium data were analyzed using the Langmuir, Freundlich, ... All the isotherms provided the best correlation for zinc (II) onto the R. arrhizus.

  7. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Azouaou, N., E-mail: azouaou20@yahoo.fr [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Sadaoui, Z. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Djaafri, A. [Central laboratory, SEAAL, 97 Parc ben omar, Kouba, Algiers (Algeria); Mokaddem, H. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria)

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd{sup 2+} adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g{sup -1}. Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd{sup 2+} removal.

  8. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    International Nuclear Information System (INIS)

    Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.

    2010-01-01

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd 2+ adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g -1 . Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd 2+ removal.

  9. Nanostructured energy devices equilibrium concepts and kinetics

    CERN Document Server

    Bisquert, Juan

    2014-01-01

    Due to the pressing needs of society, low cost materials for energy devices have experienced an outstanding development in recent times. In this highly multidisciplinary area, chemistry, material science, physics, and electrochemistry meet to develop new materials and devices that perform required energy conversion and storage processes with high efficiency, adequate capabilities for required applications, and low production cost. Nanostructured Energy Devices: Equilibrium Concepts and Kinetics introduces the main physicochemical principles that govern the operation of energy devices. It inclu

  10. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    International Nuclear Information System (INIS)

    Yeh, G.T.; Iskra, G.A.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

  11. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    International Nuclear Information System (INIS)

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  12. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  13. Effects of energy conservation on equilibrium properties of hot asymmetric nuclear matter

    Science.gov (United States)

    Zhang, Zhen; Ko, Che Ming

    2018-01-01

    Based on the relativistic Vlasov-Uehling-Uhlenbeck transport model, which includes relativistic scalar and vector potentials on baryons, we consider an N -Δ -π system in a box with periodic boundary conditions to study the effects of energy conservation in particle production and absorption processes on the equilibrium properties of the system. The density and temperature of the matter in the box are taken to be similar to the hot dense matter formed in heavy ion collisions at intermediate energies. We find that to maintain the equilibrium numbers of N ,Δ , and π , which depend on the mean-field potentials of N and Δ , we must include these potentials in the energy conservation condition that determines the momenta of outgoing particles after a scattering or decay process. We further find that the baryon scalar potentials mainly affect the Δ and pion equilibrium numbers, while the baryon vector potentials have considerable effect on the effective charged pion ratio at equilibrium. Our results thus indicate that it is essential to include in the transport model the effect of potentials in the energy conservation of a scattering or decay process, which is ignored in most transport models, for studying pion production in heavy ion collisions.

  14. Multiplicity distributions and multiplicity correlations in sequential, off-equilibrium fragmentation process

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    A new kinetic fragmentation model, the Fragmentation - Inactivation -Binary (FIB) model is described where a dissipative process stops randomly the sequential, conservative and off-equilibrium fragmentation process. (K.A.)

  15. Investigation of Chemical Equilibrium Kinetics by the Electromigration Method

    CERN Document Server

    Bozhikov, G A; Bontchev, G D; Maslov, O D; Milanov, M V; Dmitriev, S N

    2002-01-01

    Measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the complex formation of Hf(IV) and DTPA is determined.

  16. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  17. Kinetic equilibrium for an asymmetric tangential layer with rotation of the magnetic field

    Science.gov (United States)

    Belmont, Gérard; Dorville, Nicolas; Aunai, Nicolas; Rezeau, Laurence

    2015-04-01

    Finding kinetic equilibria for tangential current layers is a key issue for modeling plasma phenomena such as magnetic reconnection instabilities, for which theoretical and numerical studies have to start from steady-state current layers. Until 2012, all theoretical models -starting with the most famous "Harris" one- relied on distribution functions built as mono-valued functions of the trajectories invariants. For a coplanar anti-symmetric magnetic field and in absence of electric field, these models were only able to model symmetric variations of the plasma, so precluding any modeling of "magnetopause-like'' layers, which separate two plasmas of different densities and temperatures. Recently, the "BAS" model was presented (Belmont et al., 2012), where multi-valued functions were taken into account. This new tool is made necessary each time the magnetic field reversal occurs on scales larger than the particle Larmor radii, and therefore guaranties a logical transition with the MHD modeling of large scales. The BAS model so provides a new asymmetric equilibrium. It has been validated in a hybrid simulation by Aunai et al (2013), and more recently in a fully kinetic simulation as well. For this original equilibrium to be computed, the magnetic field had to stay coplanar inside the layer. We present here an important generalization, where the magnetic field rotates inside the layer (although restricted to a 180° rotation hitherto). The tangential layers so obtained are thus closer to those encountered at the real magnetopause. This will be necessary, in the future, for comparing directly the theoretical profiles with the experimental ones for the various physical parameters. As it was done previously, the equilibrium is presently tested with a hybrid simulation. Belmont, G.; Aunai, N.; Smets, R., Kinetic equilibrium for an asymmetric tangential layer, Physics of Plasmas, Volume 19, Issue 2, pp. 022108-022118-10, 2012 Aunai, N.; Belmont, G.; Smets, R., First

  18. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  19. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  20. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  1. Kinetic and equilibrium study of uranium(VI) adsorption by Bacillus licheniformis

    International Nuclear Information System (INIS)

    Zheng-ji Yi; University of Science and Technology Beijing, Beijing; Jun Yao

    2012-01-01

    Uranium pollution is a severe problem worldwide. Biosorption has been proposed as one of the most promising technologies for the removal of uranyl cations. Here we report on the adsorption behavior of uranium(VI) [U(VI)] on Bacillus licheniformis biomass to explore the potentiality of its application in uranium contamination control. The adsorption equilibrium, adsorption kinetics, and effects of temperature, pH and initial biosorbent dosage on the adsorption equilibrium were investigated in detail through batch experiments. The adsorption process is pronouncedly affected by the solution pH and the optimum pH range should be 4.5-5.0.Temperature range from 25 to 45 deg C has a certain effect on the rate of biosorption, but little effect on the equilibrium adsorption capacity. The U(VI) percentage removal increased concurrently with increasing biomass dosage, whereas the adsorption capacity decreased. The process follows the Langmuir isotherm model. The adsorption kinetics data were fitted very well by the pseudo-first-order rate model. Finally, the calculation results of thermodynamic constant (ΔG a = 9.98 kJ/mol) reveal that the adsorption process can be identified as a spontaneous chemical process. The present results suggest that B. licheniformis has considerable potential for the removal of uranyl from aqueous solution. (author)

  2. 48 CFR 1352.239-70 - Software license addendum.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Software license addendum... Software license addendum. As prescribed in 48 CFR 1339.107, insert the following clause: Software License....S.C. Section 516). (h) Renewal of Support after Expiration of this Award: Service will not...

  3. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  4. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    Science.gov (United States)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  5. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  6. Removal of arsenic from simulated groundwater using GAC-Ca in batch reactor: kinetics and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasenjit; Mohanty, Bikash; Majumder, Chandrajit Balo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand (India)

    2012-05-15

    This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca{sup 2+} impregnated granular activated charcoal (GAC-Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after {proportional_to}24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC-Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (q{sub max}) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 {mu}g/g. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold*

    Science.gov (United States)

    Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico

    2015-01-01

    Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877

  8. Integrated thermal treatment system study. Phase 2. Addendum system A8

    International Nuclear Information System (INIS)

    Biagi, C.; Teheranian, B.; Quapp, W.J.; Schwinkendorf, W.E.

    1996-05-01

    This is an addendum to the Integrated Treatment System Study - Phase 2 Results report. This addendum describes the technology and the operation of System A-8, Rotary Kiln, Air Combustion Gas, Dry-Wet APC, and Grout Stabilization. A process flow diagram, functional allocation diagrams, and plan views and perspective views for this system are attached. Detailed cost information for this subsystem is reported in Appendix A of this addendum

  9. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin

    International Nuclear Information System (INIS)

    Hu Qinhai; Meng Yuanyuan; Sun Tongxi; Mahmood, Qaisar; Wu Donglei; Zhu Jianhang; Lu, George

    2011-01-01

    The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293 K. Various thermodynamic parameters such as free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

  10. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  11. Safe Handling of Radioisotopes. Medical Addendum

    International Nuclear Information System (INIS)

    Hercik, F.; Jammet, H.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains information necessary to medical officers concerned with the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the medical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  12. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments

    Science.gov (United States)

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984

  13. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    Science.gov (United States)

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  14. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  15. Equilibrium, kinetics and thermodynamics studies of textile dyes adsorption on modified Tunisian clay

    Directory of Open Access Journals (Sweden)

    naghmouchi nahed

    2016-04-01

    Full Text Available The adsorption capacity of two anionic textile dyes (RR120 and BB150 on DMSO intercalated Tunisian raw clay was investigated with respect to contact time, initial dye concentration, pH and Temperature. The equilibrium data were fitted into Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The kinetic parameters were calculated using pseudo-first order, pseudo second-order, intra-particle diffusion and Elovich kinetic models. The thermodynamic parameters (DH°, DS° and DG° of the adsorption process were also evaluated.

  16. Biosorption of lead ions on biosorbent prepared from plumb shells (spondias mombin): kinetics and equilibrium studies

    International Nuclear Information System (INIS)

    Adeogen, A.I.; Bello, O.S.; Adeboye, M.D.

    2010-01-01

    Plumb shell was used to prepare an adsorbent for biosorption of lead ions in aqueous solution at 25 degree C. The adsorption capacity of the adsorbent at equilibrium was found to increase from 2.8 to 49.0 mg/g with an increase in the initial lead ion concentration from 50 to 200 mg/L. Using the equilibrium and kinetics studies, isotherm of the lead ions on the biosorbent was determined and correlated with common isotherm equations. The equilibrium data for lead ion adsorption fitted well into the Freundlich equation, with a value of 0.76 (R2 = 0.9), with distribution coefficient of 4.90. The biosorption of lead ions on the adsorbent from plumb shells could best be described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed. (author)

  17. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  18. Kinetics of non-equilibrium carries in high-resistance materials

    International Nuclear Information System (INIS)

    Arkhipov, V.I.; Rudenko, A.I.

    1979-01-01

    The kinetics of equilibrium carriers of high-resistance material samples is analytically studied to investigate and control the parameters and properties of these materials. Nonequilibrium carriers were generated by electron beam in these samples near by one of the contacts. The carrier drift causes the transient current. The study of it permits to make a conclusion about carrier mobility, their capture and release times and also about zone structure of material. Both the model taking into account energy-level transitions and the model taking into account the conduction zone interaction with local energy- level are shown to have features of anomalous behaviour

  19. QUIC: a chemical kinetics code for use with the chemical equilibrium code QUIL

    International Nuclear Information System (INIS)

    Lunsford, J.L.

    1977-10-01

    A chemical rate kinetics code QUIC is described, along with a support code RATE. QUIC is designed to allow chemical kinetics calculations on a wide variety of chemical environments while operating in the overlay environment of the chemical equilibrium code QUIL. QUIC depends upon a rate-data library called LIBR. This library is maintained by RATE. RATE enters into the library all reactions in a standardized format. The code QUIC, operating in conjunction with QUIL, is interactive and written to be used from a remote terminal, with paging control provided. Plotted output is also available

  20. Safe Handling of Radioisotopes. Health Physics Addendum

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, G J; Krishnamoorthy, P N

    1960-07-15

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  1. Safe Handling of Radioisotopes. Health Physics Addendum

    International Nuclear Information System (INIS)

    Appleton, G.J.; Krishnamoorthy, P.N.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  2. Grinding kinetics and equilibrium states

    Science.gov (United States)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  3. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions.

    Science.gov (United States)

    Miah, Muhammed Yusuf; Volchek, Konstantin; Kuang, Wenxing; Tezel, F Handan

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L(-1) at room temperature (21°C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  4. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  5. Equilibrium amide hydrogen exchange and protein folding kinetics

    International Nuclear Information System (INIS)

    Bai Yawen

    1999-01-01

    The classical Linderstrom-Lang hydrogen exchange (HX) model is extended to describe the relationship between the HX behaviors (EX1 and EX2) and protein folding kinetics for the amide protons that can only exchange by global unfolding in a three-state system including native (N), intermediate (I), and unfolded (U) states. For these slowly exchanging amide protons, it is shown that the existence of an intermediate (I) has no effect on the HX behavior in an off-pathway three-state system (I↔U↔N). On the other hand, in an on-pathway three-state system (U↔I↔N), the existence of a stable folding intermediate has profound effect on the HX behavior. It is shown that fast refolding from the unfolded state to the stable intermediate state alone does not guarantee EX2 behavior. The rate of refolding from the intermediate state to the native state also plays a crucial role in determining whether EX1 or EX2 behavior should occur. This is mainly due to the fact that only amide protons in the native state are observed in the hydrogen exchange experiment. These new concepts suggest that caution needs to be taken if one tries to derive the kinetic events of protein folding from equilibrium hydrogen exchange experiments

  6. Equilibrium isotope exchange kinetics of native and site-specific mutant forms of E. coli aspartate transcarbamoylase

    International Nuclear Information System (INIS)

    Wedler, F.C.; Hsuanyu, Y.; Kantrowitz, E.R.

    1987-01-01

    Isotope exchange kinetics at equilibrium (EIEK) have been used to probe the kinetic and regulatory mechanisms of native aspartate transcarbamoylase (ATCase) from E. coli at pH 7.0, 30 0 . Substrate saturation patterns were most consistent with a preferred order random kinetic mechanism: C-P prior to L-Asp, C-Asp released before Pi, with the Asp ↔ C-Asp exchange rate 5X faster than C-P ↔ Pi. Computer simulations allow one to fit the EIEK experimental data and to arrive at the best set of kinetic constants for a given enzyme state. These approaches have been applied to modified ATCase. Bound CTP and ATP were observed, respectively, to inhibit and activate differentially Asp ↔ C-Asp, but not C-P ↔ Pi, indicating that these modifiers alter the association-dissociation rates of L-Asp and C-Asp but not of C-P or Pi. Low levels of PALA activated both exchange rates (due to shifting the T-R equilibrium), but higher [PALA] completely blocked both exchanges. The effects of a site-specific mutation of Tyr240 Phe have been similarly probed by EIEK methods. The Phe240 mutant enzyme exhibited kinetic properties markedly different from native ATCase: the data indicate that Phe240 ATCase is much closer to an R-state enzyme than is native enzyme

  7. Grøstl Addendum

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars R.; Matusiewicz, Krystian

    2009-01-01

    This document is an addendum to the submission document of Grøstl, which was selected for the second round of NIST’s SHA-3 competition [18]. We stress that we do not change the specification of Grøstl. In other words, Grøstl is defined exactly as specified in the original submission document [8]....

  8. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  9. Investigation of chemical equilibrium kinetics by the electromigration method

    International Nuclear Information System (INIS)

    Bozhikov, G.A.; Ivanov, P.I.; Maslov, O.D.; Dmitriev, S.N.; Bontchev, G.D.; Milanov, M.V.

    2003-01-01

    The measurement of the chemical reaction rates for complex formation as well as hydrolysis type reactions by the method of horizontal zone electrophoresis is outlined. The correlation between chemical equilibrium kinetics and electrodiffusion processes in a constant d.c. electric field is described. In model electromigration experiments the reaction rate constant of the formation a complex by Hf(IV) and diethylenetriaminepentaacetic acid (DTPA) is determined. The electrophoretic mobility, diffusion coefficient and stability constant of the [HfDTPA] - complex are calculated, taking into account experimental electrophoretic data obtained at 298.15±0.05 K and constant ionic strength. No-carrier-added 175 Hf radionuclide was used in electromigration experiments at concentrations of 10 -10 -10 -11 M. (orig.)

  10. EQUILIBRIUM AND KINETIC PARAMETERS FOR THE SEDIMENTATION OF TARTARIC SALTS IN YOUNG WINES

    Directory of Open Access Journals (Sweden)

    Ecaterina Covaci

    2015-06-01

    Full Text Available In young wines potassium hydrogen tartrate is always present in supersaturating concentration and crystallizes spontaneously. The aim of this study is to obtain kinetic parameters, which explain the stability of young wines during the stabilization treatments. The kinetic and equilibrium parameters were evaluated and discussed. The heating factor has a decisive influence on the reaction rate of potassium hydrogen tartrate precipitation in young wines. An increase of temperature leads to a decrease in efficiency of stabilization process and to an enhancement of the activation energy of the system. According to the obtained experimental results, the optimal regime for production and stabilization of young wines has been established.

  11. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  12. Equilibrium thermodynamics in modified gravitational theories

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji

    2010-01-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.

  13. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  14. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Conservation-dissipation structure of chemical reaction systems.

    Science.gov (United States)

    Yong, Wen-An

    2012-12-01

    In this Brief Report, we show that balanced chemical reaction systems governed by the law of mass action have an elegant conservation-dissipation structure. From this structure a number of important conclusions can be easily deduced. In particular, with the help of this structure we can rigorously justify the classical partial equilibrium approximation in chemical kinetics.

  17. Resonance transport and kinetic entropy

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.

    2000-01-01

    We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3

  18. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    Science.gov (United States)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  19. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    Science.gov (United States)

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    2017-01-01

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  20. Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2015-09-01

    Full Text Available First, this paper announces a seven-term novel 3-D conservative chaotic system with four quadratic nonlinearities. The conservative chaotic systems are characterized by the important property that they are volume conserving. The phase portraits of the novel conservative chaotic system are displayed and the mathematical properties are discussed. An important property of the proposed novel chaotic system is that it has no equilibrium point. Hence, it displays hidden chaotic attractors. The Lyapunov exponents of the novel conservative chaotic system are obtained as L1 = 0.0395,L2 = 0 and L3 = −0.0395. The Kaplan-Yorke dimension of the novel conservative chaotic system is DKY =3. Next, an adaptive controller is designed to globally stabilize the novel conservative chaotic system with unknown parameters. Moreover, an adaptive controller is also designed to achieve global chaos synchronization of the identical conservative chaotic systems with unknown parameters. MATLAB simulations have been depicted to illustrate the phase portraits of the novel conservative chaotic system and also the adaptive control results.

  1. Addendum to the 1996 Gunnison Monitoring Report for the Gunnison, Colorado Wetlands Mitigation Plan

    International Nuclear Information System (INIS)

    1997-10-01

    This document is an addendum to the 1996 Gunnison Monitoring Report for the Gunnison, Colorado, Wetlands Mitigation Report, dated July 1997. The purpose of this addendum is to: (1) modify how information on plant height and plant species criteria are presented; and (2) provide more detailed information regarding the evaluation of the bare ground criteria at the Camp Ketle site. The information in this addendum is provided at the request of the Bureau of Land Management to aid in future monitoring and evaluation of the wetland mitigation sites

  2. Addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation

    International Nuclear Information System (INIS)

    1994-03-01

    This document is an addendum to the Phase 2 Sampling and Analysis Plan for the Clinch River Remedial Investigation (DOE 1993). The Department of Energy--Oak Ridge Operations (DOE-ORO) is proposing this addendum to the US Envianmental Protection Agency, Region IV (EPA-IV), and the Tennessee Department of Environment and Conservation (TDEC) as a reduced sampling program on the Clinch River arm of Watts Bar Reservoir and on Poplar Creek. DOE-ORO is proposing to maximize the use of existing data and minimize the collection of new data for water, sediment, and biota during Phase 2 of the Clinch River Remedial Investigation. The existing data along with the additional data collected in Phase 2 would be used to perform a baseline risk assessment and make remedial decisions. DOE-ORO considers that the existing data, the additional data collected in Phase 2, and on-site remedial investigation data would be sufficient to understand the nature and extent of the contamination problem in the Clinch River, perform a baseline risk assessment,and make remedial decisions. This addendum is organized in three sections. The first section provides background information and describes a rationale for modifying the Phase 2 Sampling and Analysis Plan. Section 2 presents a summary of the existing data for the Clinch River arm of Watts Bar Reservoir and an evaluation of the sufficiency of this data for a baseline human health and ecological risk assessment. Section 3 describes the revised Phase 2 Sampling and Analysis Plan for surface water, sediment, and biota in the Clinch River OU and in the Poplar Creek OU

  3. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    Science.gov (United States)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  4. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Koelmans, A.A.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of

  5. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    Directory of Open Access Journals (Sweden)

    Xiliang Zheng

    2015-04-01

    Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  6. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies.

    Science.gov (United States)

    Iriel, Analia; Bruneel, Stijn P; Schenone, Nahuel; Cirelli, Alicia Fernández

    2018-03-01

    The use of natural sorbents to remove fluoride from drinking water is a promising alternative because of its low-cost and easy implementation. In this article, fluoride adsorption on a latosol soil from Misiones province (Argentina) was studied regarding kinetic and equilibrium aspects. Experiments were conducted in batch at room temperature under controlled conditions of pH 4-8) and ionic strength (1-10mM KNO 3 ). Experimental data indicated that adsorption processes followed a PSO kinetic where initial rates have showed to be influenced by pH solution. The necessary time to reach an equilibrium state had resulted approximately 30min. Equilibrium adsorption studies were performed at pH 8 which is similar to the natural groundwater. For that, fluoride adsorption data were successfully adjusted to Dubinin-Ataskhov model determining that the fluoride adsorption onto soil particles mainly followed a physical mechanism with a removal capacity of 0.48mgg -1 . Finally, a natural groundwater was tested with laterite obtaining a reduction close to 30% from initial concentration and without changing significantly the physicochemical properties of the natural water. Therefore, it was concluded that the use of lateritic soils for fluoride removal is very promising on a domestic scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PAT-1 safety analysis report addendum.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging with the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.

  8. Effects of the buffering capacity of the soil on the mobilization of heavy metals. Equilibrium and kinetics.

    Science.gov (United States)

    Villen-Guzman, Maria; Paz-Garcia, Juan M; Amaya-Santos, Gema; Rodriguez-Maroto, Jose M; Vereda-Alonso, Carlos; Gomez-Lahoz, Cesar

    2015-07-01

    Understanding the possible pH-buffering processes is of maximum importance for risk assessment and remediation feasibility studies of heavy-metal contaminated soils. This paper presents the results about the effect of the buffering capacity of a polluted soil, rich in carbonates, on the pH and on the leaching evolution of its main contaminant (lead) when a weak acid (acetic acid) or a strong one (nitric acid) are slowly added. In both cases, the behavior of lead dissolution could be predicted using available (scientifically verified freeware) models assuming equilibrium between the solid and the aqueous phase. However, the experimental results indicate that the dissolution of calcium and magnesium carbonates is kinetically controlled. These kinetic limitations affect the overall behavior, and should be considered to understand also the response of the metals under local equilibrium. The well-known BCR sequential extraction procedure was used before- and after-treatment, to fractionate the lead concentration in the soil according to its mobility. The BCR results were also in agreement with the predictions of the equilibrium model. This agreement allows new insights about the information that could be derived from the BCR fractionation analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Addendum to the 2015 Eastern Interconnect Baselining and Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    This report serves as an addendum to the report 2015 Eastern Interconnect Baselining and Analysis Report (Amidan, Follum, and Freeman, 2015). This addendum report investigates the following: the impact of shorter record lengths and of adding a daily regularization term to the date/time models for angle pair measurements, additional development of a method to monitor the trend in phase angle pairs, the effect of changing the length of time to determine a baseline, when calculating atypical events, and a comparison between quantitatively discovered atypical events and actual events.

  10. Batch study, equilibrium and kinetics of adsorption of naphthalene using waste tyre rubber granules

    Directory of Open Access Journals (Sweden)

    Felix A. Aisien

    2014-04-01

    Full Text Available The potential use of waste tyre rubber granules (WTRG for the batch adsorption of naphthalene from aqueous solutions was investigated. The effect of various operational variables such as contact time, initial naphthalene concentration, adsorbent dose, size of adsorbent particles, and temperature of solution on the adsorption capacity of WTRG was evaluated. The adsorption of naphthalene by WTRG was a fast kinetic process with an equilibrium contact time of 60 min. A low temperature (5°C, small adsorbent particle size (0.212 mm and higher adsorbent dosage favored the adsorption process. Results of isotherm studies revealed that adsorption of naphthalene was best described by the Langmuir isotherm equation (R2=0.997 while the kinetics of the process was best described by the Lagergren pseudofirst order kinetic equation (R2=0.998. This study has demonstrated the suitability of WTRG for the removal of naphthalene from aqueous solution.

  11. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chbassim@eng.usm.my

    2008-06-15

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 {sup o}C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy ({delta}H{sup o}), standard entropy ({delta}S{sup o}) and standard free energy ({delta}G{sup o}) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.

  12. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon

    International Nuclear Information System (INIS)

    Dai, Wei; Yu, Huijing; Ma, Na; Yan, Xiaoyang

    2015-01-01

    A new type of activated carbon, torreya-grandis-skin-based activated carbon (TAC), has been used to remove the harmful dyes (cationic dye crystal violet (CV) and anionic dye naphthol green (NG)) from contaminated water via batch adsorption. The effects of solution pH, adsorption time and temperature were studied. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and isotherm constant calculation. It was found that the maximum equilibrium adsorption capacities were 292mg/g and 545mg/g for CV and NG, respectively. Adsorption kinetics was verified by pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. Results indicated that the rate of dye adsorption followed pseudo-second-order kinetic model for the initial dye concentration range studied. Temperature-dependent adsorption behavior of CV and NG shows that the adsorption is spontaneous and endothermic, accompanying an entropy increase. This work indicates that TAC could be employed as a low-cost alternative for the removal of the textile dyes from effluents

  13. Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies.

    Science.gov (United States)

    Rawat, Anand P; Rawat, Monica; Rai, J P N

    2013-08-01

    The equilibrium sorption of Cr(VI) and Cu(II) from aqueous solution using Jatropha curcas deoiled cake, has been studied with respect to adsorbent dosage, contact time, pH, and initial metal concentration in batch mode experiments. Removal of Cu(II) by deoiled cake was greater than that of Cr(VI). The adsorbent chemical characteristics, studied by Fourier transform-infrared analysis, suggested that the presence of Cr(VI) and Cu(II) in the biomass influenced the bands corresponding to hydroxyl and carboxyl groups. Desorption studies revealed that maximum metals recovery was achieved by HNO3 followed by CH3COOH and HCl. The Freundlich isotherm model showed good fit to the equilibrium adsorption data. The adsorption kinetics followed the pseudo-second-order model, which provided the best correlation for the biosorption process, and suggested that J. curcas deoiled cake can be used as an efficient biosorbent over other commonly used sorbents for decontamination of Cr(VI)- and Cu(II)-containing wastewater.

  14. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study

    Science.gov (United States)

    Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika

    2017-10-01

    This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.

  15. Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory

    Science.gov (United States)

    Perez-Benito, Joaquin F.

    2017-01-01

    The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…

  16. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  17. Nonlinear wave-beam kinetic equilibrium in decelerating systems

    International Nuclear Information System (INIS)

    Grishin, V.K.; Shaposhnikova, E.N.

    1981-01-01

    The equilibrium state of the wave-beam system arising during the interaction of a particle beam and excited electromagnetic wave has been investigated on the basis of the analysis of the exact polution of a non-linear self-consistent linear equation using the complete system of conservation laws. A waveguide with a dielectric filler, into which a monoenergetic particle beam magnetized in a transverse plane is continuously injected, is used as a model of an decelerating system. A dispersion equation describing the system state and expression for the evaluation of efficiency of the beam energy conversion to the field energy have been obtained. It is concluded that larae fields and high efficiency of energy conversion are achieved during the marked beam reconstruction. States with different values of current and beam velocity but similar amplitudes of a longitudinal field are possible in the system considered [ru

  18. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    Science.gov (United States)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  19. Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp [Department of Physics, National University of Singapore, 2 Science Drive 3, S117542 Singapore (Singapore); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tok, Engsoon [Department of Physics, National University of Singapore, 2 Science Drive 3, S117542 Singapore (Singapore); Foo, Yonglim [Institute of Materials Research and Engineering, 3 Research Link, S117602 Singapore (Singapore)

    2013-09-01

    Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the same epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.

  20. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  1. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2007-01-01

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l -1 and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D h , are 3.6 x 10 -8 ; 6.1 x 10 -8 and 2.4 x 10 -8 cm 2 s -1 , respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium

  2. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Botelho, Cidalia M.S. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Boaventura, Rui A.R. [Laboratory of Separation and Reaction Engineering (LSRE), Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bventura@fe.up.pt

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mg l{sup -1} and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D {sub h}, are 3.6 x 10{sup -8}; 6.1 x 10{sup -8} and 2.4 x 10{sup -8} cm{sup 2} s{sup -1}, respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  3. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  4. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  5. Prediction of Non-Equilibrium Kinetics of Fuel-Rich Kerosene/LOX Combustion in Gas Generator

    International Nuclear Information System (INIS)

    Yu, Jung Min; Lee, Chang Jin

    2007-01-01

    Gas generator is the device to produce high enthalpy gases needed to drive turbo-pump system in liquid rocket engine. And, the combustion temperature in gas generator should be controlled below around 1,000K to avoid any possible thermal damages to turbine blade by using either fuel rich combustion or oxidizer rich combustion. Thus, nonequilibrium chemical reaction dominates in fuel-rich combustion of gas generator. Meanwhile, kerosene is a compounded fuel with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel rich kerosene/LOX combustion with detailed kinetics developed by Dagaut using PSR (Perfectly Stirred Reactor) assumption. In Dagaut's surrogate model for kerosene, chemical kinetics of kerosene consists of 1,592 reaction steps with 207 chemical species. Also, droplet evaporation time is taken into account in the PSR calculation by changing the residence time of droplet in the gas generator. Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux. The results could provide very reliable and accurate numbers in the prediction of combustion gas temperature,species fraction and material properties

  6. Focus on adsorptive equilibrium, kinetics and thermodynamic components of petroleum produced water biocoagulation using novel Tympanotonos Fuscatus extract

    Directory of Open Access Journals (Sweden)

    Matthew Menkiti

    2018-03-01

    Full Text Available Adsorptive component of produced water (PW coagulation using Tympanotonos Fuscatus coagulant (TFC was studied. Influence of the following parameters: pH, coagulant dose, settling time, and temperature were investigated. The functional group, crystalline nature, morphological observation and thermal characteristics of the sample were evaluated. Equilibrium data were analyzed using Langmuir, Freundlich, Temkin, Frumkin, and Dubinin-Radushkevich (D-R adsorption isotherms. The kinetics data were fitted to reversible first order, pseudo-first-order, pseudo-second-order, elovich, intra-particle diffusion and Boyd kinetic models. Adsorption Gibbs energy, enthalpy and entropy were evaluated. Equilibrium data best fitted the Langmuir isotherm (R2 > 0.99; X2 < 1.6; SSE < 1.6. Reversible first order model correlated best to the kinetics data. The values of process average Gibb's free energy, enthalpy and entropy were 30.35, 27.88 and 0.1891 kJ/mol, respectively. The process was spontaneous, feasible and endothermic in nature. The maximum efficiency of 83.1% was favored at pH 2.0. This study indicated significant adsorptive component, while using Tympanotonos Fuscatus extract as readily available, renewable, ecofriendly bio – coagulant for efficient treatments of PW.

  7. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  8. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  9. Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks

    OpenAIRE

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-01

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confi...

  10. Work plan addendum for David Witherspoon, Inc., 901 Site Building Characterization, Knoxville, Tennessee

    International Nuclear Information System (INIS)

    1997-01-01

    This building characterization plan was developed as an addendum to the existing site characterization work plan documents, which are in Appendix B of the David Witherspoon, Inc., (DWI) preliminary remedial investigation (RI)/feasibility study (FS). All building characterization activities will be conducted in accordance with the rules of the Hazardous Substance Remedial Action Program under the direction of the Tennessee Department of Environment and Conservation, Division of Superfund (TN Rules 1200-1-3) and its implementing regulations. Additional rules of the state of Tennessee, Comprehensive Environmental Response, Compensation, and Liability Act of 1980, and the U.S. Environmental Protection Agency guidance were consulted during development of this plan. Activities at the DWI site were concerned with scrap metal processing and scrap metal resale

  11. The oxygen-conserving potential of the diving response: A kinetic-based analysis.

    Science.gov (United States)

    Costalat, Guillaume; Coquart, Jeremy; Castres, Ingrid; Joulia, Fabrice; Sirost, Olivier; Clua, Eric; Lemaître, Frédéric

    2017-04-01

    We investigated the oxygen-conserving potential of the human diving response by comparing trained breath-hold divers (BHDs) to non-divers (NDs) during simulated dynamic breath-holding (BH). Changes in haemodynamics [heart rate (HR), stroke volume (SV), cardiac output (CO)] and peripheral muscle oxygenation [oxyhaemoglobin ([HbO 2 ]), deoxyhaemoglobin ([HHb]), total haemoglobin ([tHb]), tissue saturation index (TSI)] and peripheral oxygen saturation (SpO 2 ) were continuously recorded during simulated dynamic BH. BHDs showed a breaking point in HR kinetics at mid-BH immediately preceding a more pronounced drop in HR (-0.86 bpm.% -1 ) while HR kinetics in NDs steadily decreased throughout BH (-0.47 bpm.% -1 ). By contrast, SV remained unchanged during BH in both groups (all P > 0.05). Near-infrared spectroscopy (NIRS) results (mean ± SD) expressed as percentage changes from the initial values showed a lower [HHb] increase for BHDs than for NDs at the cessation of BH (+24.0 ± 10.1 vs. +39.2 ± 9.6%, respectively; P kinetic-based approach we used provides further credence to the concept of an "oxygen-conserving breaking point" in the human diving response.

  12. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  13. Addendum to Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Marcel P.; Freeman, Eugene J.; Wurstner, Signe K.; Kincaid, Charles T.; Coony, Mike M.; Strenge, Dennis L.; Aaberg, Rosanne L.; Eslinger, Paul W.

    2001-09-28

    This report summarizes efforts to complete an addendum analysis to the first iteration of the Composite Analysis for Low-Level Waste Disposal in the 200 Area Plateau of the Hanford Site (Composite Analysis). This document describes the background and performance objectives of the Composite Analysis and this addendum analysis. The methods used, results, and conclusions for this Addendum analysis are summarized, and recommendations are made for work to be undertaken in anticipation of a second analysis.

  14. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study

    International Nuclear Information System (INIS)

    Solgy, Mostafa; Taghizadeh, Majid; Ghoddocynejad, Davood

    2015-01-01

    Highlights: • Adsorption of uranium from sulphate solutions by an anion exchange resin. • The effects of pH, contact time and adsorbent dosage were investigated. • The adsorption equilibrium is well described by the Freundlich isotherm model. • The adsorption kinetics can be predicted by the pseudo second-order model. • The adsorption is a physical, spontaneous and endothermic process. - Abstract: In the present study, adsorption of uranium from sulphate solutions was evaluated using Amberlite IRA-402 resin. The variation of adsorption process was investigated in batch sorption mode. The parameters studied were pH, contact time and adsorbent dosage. Langmuir and Freundlich isotherm models were used in order to present a mathematical description of the equilibrium data at three different temperatures (25 °C, 35 °C and 45 °C). The final results confirmed that the equilibrium data tend to follow Freundlich isotherm model. The maximum adsorption capacity of Amberlite IRA-402 for uranium(VI) was evaluated to be 213 mg/g for the Langmuir model at 25 °C. The adsorption of uranium on the mentioned anion exchange resin was found to follow the pseudo-second order kinetic model, indicating that chemical adsorption was the rate limiting-step. The values of thermodynamic parameters proved that adsorption process of uranium onto Amberlite IRA-402 resin could be considered endothermic (ΔH > 0) and spontaneous (ΔG < 0)

  15. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  16. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  17. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  18. Equilibrium, Kinetic and Thermodynamic Study of Removal of Eosin Yellow from Aqueous Solution Using Teak Leaf Litter Powder.

    Science.gov (United States)

    Oyelude, Emmanuel O; Awudza, Johannes A M; Twumasi, Sylvester K

    2017-09-22

    Low-cost teak leaf litter powder (TLLP) was prepared as possible substitute for activated carbon. The feasibility of using the adsorbent to remove eosin yellow (EY) dye from aqueous solution was investigated through equilibrium adsorption, kinetic and thermodynamic studies. The removal of dye from aqueous solution was feasible but influenced by temperature, pH, adsorbent dosage and contact time. Variation in the initial concentration of dye did not influence the equilibrium contact time. Optimum adsorption of dye occurred at low adsorbent dosages, alkaline pH and high temperatures. Langmuir isotherm model best fit the equilibrium adsorption data and the maximum monolayer capacity of the adsorbent was 31.64 mg g -1 at 303 K. The adsorption process was best described by pseudo-second order kinetic model at 303 K. Boundary layer diffusion played a key role in the adsorption process. The mechanism of uptake of EY by TLLP was controlled by both liquid film diffusion and intraparticle diffusion. The values of mean adsorption free energy, E (7.91 kJ mol -1 ), and standard enthalpy, ΔH° (+13.34 kJ mol -1 ), suggest physical adsorption. The adsorption process was endothermic and spontaneous. Teak leaf litter powder is a promising low-cost adsorbent for treating wastewaters containing eosin yellow.

  19. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    Science.gov (United States)

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  20. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Hamdaoui, Oualid

    2008-01-01

    In this study, eucalyptus camaldulensis bark, a forest solid waste, is proposed as a novel material for the removal of mercury(II) from aqueous phase. The operating variables studied were sorbent dosage, ionic strength, stirring speed, temperature, solution pH, contact time, and initial metal concentration. Sorption experiments indicated that the sorption capacity was dependent on operating variables and the process was strongly pH-dependent. Kinetic measurements showed that the process was uniform and rapid. In order to investigate the mechanism of sorption, kinetic data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations, and intraparticle diffusion model. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The Langmuir model yields a much better fit than the Freundlich model. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. The maximum sorption capacity was 33.11 mg g -1 at 20 deg. C and the negative value of free energy change indicated the spontaneous nature of sorption. These results demonstrate that eucalyptus bark is very effective in the removal of Hg(II) from aqueous solutions

  1. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    Science.gov (United States)

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2015-01-01

    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  2. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay

    International Nuclear Information System (INIS)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-01-01

    The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 deg. C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics

  3. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    International Nuclear Information System (INIS)

    Aksakal, Ozkan; Ucun, Handan

    2010-01-01

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental data. Freundlich and Langmuir adsorption isotherms were used for the mathematical description of the biosorption equilibrium data. The activation energy of biosorption (Ea) was found to be 8.904 kJ/mol by using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the study also evaluated the thermodynamic constants of biosorption (ΔG o , ΔH o and ΔS). The results indicate that cone biomass can be used as an effective and low-cost biosorbent to remove reactive dyes from aqueous solution.

  4. Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We consider the electron transport properties through fully interacting nanoscale junctions beyond the linear-response regime. We calculate the current flowing through an interacting region connected to two interacting leads, with interaction crossing at the left and right contacts, by using a non-equilibrium Green function technique. The total current at one interface (the left one for example) is made of several terms which can be regrouped into two sets. The first set corresponds to a very generalized Landauer-like current formula with physical quantities defined only in the interacting central region and with renormalized lead self-energies. The second set characterizes inelastic scattering events occurring in the left lead. We show how this term can be negligible or even vanish due to the pseudo-equilibrium statistical properties of the lead in the thermodynamic limit. The expressions for the different Green functions needed for practical calculations of the current are also provided. We determine the constraints imposed by the physical condition of current conservation. The corresponding equation imposed on the different self-energy quantities arising from the current conservation is derived. We discuss in detail its physical interpretation and its relation with previously derived expressions. Finally several important key features are discussed in relation to the implementation of our formalism for calculations of quantum transport in realistic systems. (paper)

  5. Advancing Geographic Information Science—Proposal to NSF, with Addendum

    OpenAIRE

    National Center for Geographic Information and Analysis

    1995-01-01

    This document from 1995 and the addendum from 1996 represent NCGIA's proposal for Varenius—a program of research initiatives to advance geographic information science in the context of digitial worlds and the information society.

  6. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste

    International Nuclear Information System (INIS)

    Olgun, Asim; Atar, Necip

    2009-01-01

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73 mg g -1 , respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23 kJ/mol for BY 28 and 18.15 kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents

  7. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Asim [Department of Chemistry, Faculty of Arts and science, University of Dumlupinar, Kuetahya (Turkey)], E-mail: aolgun@dumlupinar.edu.tr; Atar, Necip [Department of Chemistry, Faculty of Arts and science, University of Dumlupinar, Kuetahya (Turkey)

    2009-01-15

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73 mg g{sup -1}, respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23 kJ/mol for BY 28 and 18.15 kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.

  8. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  9. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.

    Science.gov (United States)

    Malik, P K

    2004-09-10

    Mahogany sawdust was used to develop an effective carbon adsorbent. This adsorbent was employed for the removal of direct dyes from spent textile dyeing wastewater. The experimental data were analysed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The equilibrium adsorption capacity of the sawdust carbon was determined with the Langmuir equation as well as the pseudo-second-order rate equation and found to be >300 mg dye per gram of the adsorbent. The most ideal pH for adsorption of direct dyes onto sawdust carbon was found to be 3 and below. The results indicate that the Mahogany sawdust carbon could be employed as a low cost alternative to commercial activated carbon in the removal of dyes from wastewater.

  10. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  11. Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem

    Science.gov (United States)

    Cox, Carey F.

    2005-01-01

    Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.

  12. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  13. Adsorptive removal of Auramine-O: Kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Mall, Indra Deo; Srivastava, Vimal Chandra; Agarwal, Nitin Kumar

    2007-01-01

    Present study deals with the adsorption of Auramine-O (AO) dye by bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH 0 ), contact time, adsorbent dose and initial concentration (C 0 ) for the removal of AO. Optimum conditions for AO removal were found to be pH 0 ∼ 7.0 and equilibrium time ∼30 min for BFA and ∼120 min for activated carbons. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2 g/l, respectively. Adsorption of AO followed pseudo-second order kinetics with the initial sorption rate for adsorption on BFA being the highest followed by those on ACL and ACC. The sorption process was found to be controlled by both film and pore diffusion with film diffusion at the earlier stages followed by pore diffusion at the later stages. Equilibrium isotherms for the adsorption of AO on BFA, ACC and ACL were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin isotherm equations using linear correlation coefficient. Langmuir isotherm gave the best correlation of adsorption for all the adsorbents studied. Thermodynamic study showed that adsorption of AO on ACC (with a more negative Gibbs free energy value) is more favoured. BFA which was used without any pretreatment showed high surface area, pore volume and pore size exhibiting its potential to be used as an adsorbent for the removal of AO

  14. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  15. REMOVAL OF AN ACID DYE FROM AQUEOUS SOLUTIONS BY ADSORPTION ON A COMMERCIAL GRANULAR ACTIVATED CARBON: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    Marius Sebastian Secula

    2011-12-01

    Full Text Available The present paper approaches the study of the adsorption of an acid dye on a commercial granular activated carbon (GAC. Batch experiments were conducted to study the equilibrium isotherms and kinetics of Indigo Carmine on GAC. The kinetic data were analyzed using the Lagargren, Ho, Elovich, Weber-Morris and Bangham models in order to establish the most adequate model that describes this process, and to investigate the rate of IC adsorption. Equilibrium data were fitted to Langmuir and Freundlich isotherms. Langmuir isotherm equilibrium model and Ho kinetic model fitted best the experimental data.The effects of temperature (25 – 45 °C, initial concentration of dye (7.5 – 150 mg•L−1, GAC dose (0.02 – 1 g•L-1, particle size (2 – 7 mm in diameter, solution pH (3 – 11 on GAC adsorption capacity were established. The adsorption process is found to be favored by a neutral pH, high values of temperature and small particle sizes. The highest adsorption capacity (133.8 mg•g-1 of the GAC is obtained at 45 °C. The removal efficiency increases with GAC dose at relatively low initial concentrations of dye. Thermodynamic parameters such as standard enthalpy (H, standard entropy (S and standard free energy (G were evaluated. The adsorption of Indigo Carmine onto GAC is an endothermic process.

  16. A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium

    International Nuclear Information System (INIS)

    Beretta, G.P.

    1986-01-01

    This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications

  17. Lifshitz-Allen-Cahn domain-growth kinetics of Ising models with conserved density

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Mouritsen, Ole G.

    1988-01-01

    The domain-growth kinetics of p=fourfold degenerate (2×1) ordering in two-dimensional Ising models with conserved density is studied as a function of temperature and range of Kawasaki spin exchange. It is found by computer simulations that the zero-temperature freezing-in behavior for nearest-nei...

  18. A conservative multicomponent diffusion algorithm for ambipolar plasma flows in local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Peerenboom, Kim; Van Boxtel, Jochem; Janssen, Jesper; Van Dijk, Jan

    2014-01-01

    The usage of the local thermodynamic equilibrium (LTE) approximation can be a very powerful assumption for simulations of plasmas in or close to equilibrium. In general, the elemental composition in LTE is not constant in space and effects of mixing and demixing have to be taken into account using the Stefan–Maxwell diffusion description. In this paper, we will introduce a method to discretize the resulting coupled set of elemental continuity equations. The coupling between the equations is taken into account by the introduction of the concept of a Péclet matrix. It will be shown analytically and numerically that the mass and charge conservation constraints can be fulfilled exactly. Furthermore, a case study is presented to demonstrate the applicability of the method to a simulation of a mercury-free metal-halide lamp. The source code for the simulations presented in this paper is provided as supplementary material (stacks.iop.org/JPhysD/47/425202/mmedia). (paper)

  19. The management of radioactive wastes produced by radioisotope users. Technical addendum

    International Nuclear Information System (INIS)

    1966-01-01

    This Addendum contains detailed technical information on processes and procedures that are outlined in more general terms in the Code of Practice. The information is particularly relevant to the problem of handling the relatively small quantities of waste arising from the use of radionuclides in laboratories, hospitals and industry when no special facilities for radioactive waste treatment are available on site. The Addendum is directed toward providing the radioisotope user with the type and amount of information required for him to be able to assess the alternatives available to him in terms of his particular needs, develop a preliminary design of an optimum waste-handling system and get help and guidance in his search for more detailed information.

  20. 78 FR 57873 - 60-Day Notice of Proposed Information Collection: HUD-Owned Real Estate-Sales Contract and Addendums

    Science.gov (United States)

    2013-09-20

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5687-N-36] 60-Day Notice of Proposed Information Collection: HUD-Owned Real Estate--Sales Contract and Addendums AGENCY: Office of the Assistant... Information Collection Title of Information Collection: HUD-Owned Real Estate--Sales Contract and Addendums...

  1. Addendum to ''Test Plan: Small-Scale Seal Performance Tests (SSSPT)''

    International Nuclear Information System (INIS)

    Finley, R.E.

    1992-01-01

    This document describes activities that are intended to update the data base of fluid flow measurements made on expansive salt concrete (ESC) seals as part of the Small-Scale Seal Performance Tests (SSSPT). The original plans for the SSSPT experiments are described by Stormont (1985a and 1985b). These seals have previously been tested with brine and gas during the early stages (less than 450 days) after emplacement. The purpose of this Test Plan Addendum is to detail the activities necessary to, update the gas and brine measurements previously performed on the SSSPT Series A and Series B seals and to identify the key personnel responsible for implementing these activities. This addendum describes a limited undertaking and does NOT change the scope of the original test plan

  2. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    Science.gov (United States)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  3. Alcator C-MOD proposal addendum

    International Nuclear Information System (INIS)

    Bonoli, P.; Greenwald, M.; Gwinn, D.

    1986-04-01

    Since the design concept and overall purpose of the Alcator C-MOD device are similar to that proposed in October 1985, we have chosen in this document only to highlight areas where changes or additions have been made. Chapters in the Addendum correspond to those in the Proposal, except Chapter 9 which describes a number of toroidal improvement concepts which are being considered for inclusion in the Alcator C-MOD experimental program. A description of the redesign and a discussion of the objectives of the experimental program are given

  4. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  5. 78 FR 39763 - Recovery Plan Addendum; Thick-Billed Parrot

    Science.gov (United States)

    2013-07-02

    ... particular species. Species' History Historically the thick-billed parrot's range extended from Mexico into... and the Secretary of the Interior. This species is currently found in Mexico but has not been detected... included southern Arizona and possibly southwestern New Mexico. The recovery plan addendum includes...

  6. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    Science.gov (United States)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  7. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  8. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  9. Limiting processes in non-equilibrium classical statistical mechanics

    International Nuclear Information System (INIS)

    Jancel, R.

    1983-01-01

    After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr

  10. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    International Nuclear Information System (INIS)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-01-01

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation ≥0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g -1 . The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  11. Pb(II) adsorption by a novel activated carbon - alginate composite material. A kinetic and equilibrium study.

    Science.gov (United States)

    Cataldo, Salvatore; Gianguzza, Antonio; Milea, Demetrio; Muratore, Nicola; Pettignano, Alberto

    2016-11-01

    The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL -1 . Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (q m ) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., q m =15.7 and 10.5mgg -1 at I=0.25molL -1 , for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    Science.gov (United States)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  13. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  14. Combined equilibrium and non-equilibrium phosphorus segregation to grain boundaries in a 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.

    2003-01-01

    Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation

  15. Addendum: First injection technique recommendations for patients with diabetes, Forum for Injection Techniques India

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2013-01-01

    Full Text Available The forum for injection techniques, India recommendation, the first ever in the country on insulin injcetion techniques, have covered the science and the art of insulin injection technique in an exhaustive manner. However, a few gaps were identified in the document, which are addressed in the current addendum. This article focuses on insulin injection technique in special clinical situations, including geriatric people, women in pregnancy and those with dermatological or surgical disease who live with diabetes. The addendum also covers salient features of administration of insulin using the insulin pump.

  16. Final environmental statement. Final addendum to Part II: Manufacture of floating nuclear power plants by Offshore Power Systems. DOCKET-STN--50-437

    International Nuclear Information System (INIS)

    1978-06-01

    This Addendum to Part II of the Final Environmental Statement related to manufacture of floating nuclear power plants by Offshore Power Systems (OPS), NUREG-0056, issued September 1976, was prepared by the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation. The staff's basic evaluation is presented in NUREG-0056. The current Addendum provides further consideration of a number of topics discussed in NUREG-0056, particularly additional consideration of shore zone siting at estuarine and ocean regions. This Summary and Conclusions recapitulates and is cumulative for Part II of the FES and the current Addendum. Augmentations to the Summary and Conclusions presented in Part II of the FES and arising from the evaluations contained in this Addendum are italicized

  17. About positive, energy conservative and equilibrium state preserving schemes for the isotropic Fokker-Planck-Landau equation; Sur les schemas positifs, conservant l'energie et les etats d'equilibre pour l'equation de Fokker-Planck-Landau isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Buet, Ch. [CEA Bruyeres-le-Chatel, Dept. des Sciences de la Simulation et de l' Information, 91 (France); Le Thanh, K.C. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, 91 (France)

    2006-07-01

    The aim of this paper is to describe the discretization of the Fokker-Planck-Landau (FPL) collision term in the isotropic case which models the self collision for the electrons when they are totally isotropized by heavy particles background such as ions. The discussion focus on schemes which could preserve positivity, mass, energy and Maxwellian equilibrium. First, we analyze in detail the popular Chang and Cooper method for this non-linear collision term: derivation, conservation and positivity properties. We show that some variants of this method, based on the drift-diffusion form of the FPL operator, could not be positive or could not conserve the energy. We present a new variant of the Chang and Cooper method derived from the Landau form that is both positive and conservative. We also propose two new alternatives and simpler schemes for the FPL operator which show that the Chang and Cooper method is not the only way to construct positive, energy conservative and equilibrium state preserving schemes for this operator. For all these schemes, we explain clearly the properties of conservation of the density and the energy, the positivity of the solution and the conservation of the equilibrium states, or their lack. The case of Maxwellian and Coulombian potentials are emphasized. (authors)

  18. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  19. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaian, Kamal Aldin [Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sannandaj (Iran, Islamic Republic of); Amrane, Abdeltif [Ecole Nationale Supérieure de Chimie de Rennes, Université Rennes 1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7 (France); Kazemian, Hossein [Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada N6A 5B9 (Canada); Panahi, Reza [Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Zarrabi, Mansur, E-mail: mansor62@gmail.com [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj (Iran, Islamic Republic of)

    2013-11-01

    Natural and Mg{sup 2+} modified pumice were used for the removal of phosphorous. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. In the optimal conditions, namely at equilibrium time (30 min), for a phosphorus concentration of 15 mg/L and pH 6, 69 and 97% phosphorus removals were achieved using 10 g/L of natural and modified pumice adsorbents, respectively. Maximum adsorption capacities were 11.88 and 17.71 mg/g by natural and modified pumice, respectively. Pseudo-second order kinetic model was the most relevant to describe the kinetic of phosphorus adsorption. External mass transfer coefficient decreased for increasing phosphorous concentration and film diffusion was found to be the rate-controlling step. Only a very low dissolution of the adsorbent was observed, leading to a low increase in conductivity and turbidity. Removal efficiency decreased for increasing ionic strength. It also decreased in the presence of competing ions; however modified pumice remained effective, since 67% of phosphorus was removed, versus only 17% for the natural pumice. The efficiency of the modified pumice was confirmed during the regeneration tests, since 96% regeneration yield was obtained after 510 min experiment, while only 22% was observed for the raw pumice.

  20. Kinetics of spontaneous baryogenesis in non-stationary background

    Directory of Open Access Journals (Sweden)

    Arbuzova Elena

    2016-01-01

    Full Text Available Generation of the cosmological baryon asymmetry in frameworks of spontaneous baryogenesis is studied in detail. It is shown that the relation between baryonic chemical potential and the time derivative of the (pseudoGoldstone field essentially depends upon the representation chosen for the fermionic fields with non-zero baryonic number (quarks. Kinetic equation is modified and numerically solved in equilibrium for the case of time dependent external background or finite integration time to be applicable to the case when energy conservation law is formally violated.

  1. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  2. Trainees May Add Value to Patient Care by Decreasing Addendum Utilization in Radiology Reports.

    Science.gov (United States)

    Balthazar, Patricia; Konstantopoulos, Christina; Wick, Carson A; DeSimone, Ariadne K; Tridandapani, Srini; Simoneaux, Stephen; Applegate, Kimberly E

    2017-11-01

    The purpose of this study was to evaluate the impact of trainee involvement and other factors on addendum rates in radiology reports. This retrospective study was performed in a tertiary care pediatric hospital. From the institutional radiology data repository, we extracted all radiology reports from January 1 to June 30, 2016, as well as trainee (resident or fellow) involvement, imaging modality, patient setting (emergency, inpatient, or outpatient), order status (routine vs immediate), time of interpretation (regular work hours vs off-hours), radiologist's years of experience, and sex. We grouped imaging modalities as advanced (CT, MRI, and PET) or nonadvanced (any modality that was not CT, MRI, or PET) and radiologist experience level as ≤ 20 years or > 20 years. Our outcome measure was the rate of addenda in radiology reports. Statistical analysis was performed using multivariate logistic regression. From 129,033 reports finalized during the study period, 418 (0.3%) had addenda. Reports generated without trainees were 12 times more likely than reports with trainee involvement to have addenda (odds ratio [OR] = 12.2, p use (OR = 4.7, p use than those in an inpatient setting (OR = 1.5, p = 0.04; and OR = 1.3, p = 0.04, respectively). Routine orders had a slightly higher likelihood of addendum use compared with immediate orders (OR = 1.3, p = 0.01). We found no difference in addendum use by radiologist's sex, radiologist's years of experience, emergency versus outpatient setting, or time of interpretation. Trainees may add value to patient care by decreasing addendum rates in radiology reports.

  3. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  4. Kinetics and equilibrium models for the sorption of tributyltin to nZnO, activated carbon and nZnO/activated carbon composite in artificial seawater

    International Nuclear Information System (INIS)

    Ayanda, Olushola S.; Fatoki, Olalekan S.; Adekola, Folahan A.; Ximba, Bhekumusa J.

    2013-01-01

    Highlights: • Removal of tributyltin from artificial seawater using nZnO/activated carbon and its precursors was studied. • Detailed equilibrium and kinetic studies were reported. • Adsorption conditions were optimized and applied to natural seawater. • Higher removal efficiency of TBT was obtained for the composite and activated carbon except nZnO. • TBT concentration was determine by GC-FPD following derivatization. -- Abstract: The removal of tributyltin (TBT) from artificial seawater using nZnO, activated carbon and nZnO/activated carbon composite was systematically studied. The equilibrium and kinetics of adsorption were investigated in a batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R) isotherm models. Pseudo first- and second-order, Elovich, fractional power and intraparticle diffusion models were applied to test the kinetic data. Thermodynamic parameters such as ΔG°, ΔS° and ΔH° were also calculated to understand the mechanisms of adsorption. Optimal conditions for the adsorption of TBT from artificial seawater were then applied to TBT removal from natural seawater. A higher removal efficiency of TBT (>99%) was obtained for the nZnO/activated carbon composite material and for activated carbon but not for nZnO

  5. Fuel Receiving and Storage Station. License application, amendment 5, addendum

    International Nuclear Information System (INIS)

    1975-06-01

    This Addendum to AG-L105 addresses the utilization of the Service Concentrator for evaporation of low level wastes generated during fuel receiving and storage operations. The Service Concentrator is described from various viewpoints and necessary relevant data are included for adequate assessment of safety. (U.S.)

  6. Scavenging remazol brilliant blue R dye using microwave-assisted activated carbon from acacia sawdust: Equilibrium and kinetics studies

    Science.gov (United States)

    Yusop, M. F. M.; Aziz, H. A.; Ahmad, M. A.

    2017-10-01

    This work explores the feasibility of microwave-assisted acacia wood based activated carbon (AWAC) for remazol brilliant blue R (RBBR) dye removal from synthetic wastewater. Acacia wood (AW) was impregnated with potassium hydroxide (KOH) and heated using microwave, resulting tremendously high fixed carbon content, surface area, total pore volume and adsorption capacity of 81.14%, 1045.56m2/g, 0.535cm3/g and 263.16mg/g respectively. Batch study conducted divulged an increasing trend in RBBR uptake when initial RBBR concentration and contact time were increased. pH study revealed that RBBR adsorption was best at acidic condition. Langmuir isotherm model fitted well the adsorption equilibrium data while the adsorption kinetic was found to follow the pseudo-second-order kinetic model.

  7. The storage of liquid high level waste at BNFL, Sellafield. Addendum to February 2000 report

    International Nuclear Information System (INIS)

    2001-08-01

    On 18 February 2000 the Health and Safety Executive (HSE) published a report on the work of its Nuclear Installations Inspectorate (NIl) in regulating the storage of liquid high level waste at the BNFL Sellafield site. Within the report NIl gave two undertakings. One was to publish an addendum around 1 year later covering its assessment of the new safety case for the storage plant and the second was to publish a further addendum when progress had been made with options studies for reducing the stocks of liquid high level waste (HLW), also referred to as highly active liquor (HAL), to a buffer level. A progress report was published in February 2001 which included a summary of the assessment of the new safety case and NIl's regulatory action to enforce liquid HLW stock reductions. This addendum provides a more detailed update on the position reached based on consideration of BNFL's responses to the recommendations from the February 2000 HLW report since its publication. It embodies the two addenda referred to above integrated into a single document for publication

  8. Operation and maintenance manual addendum to Westinghouse OMM-051-00-005 for intermediate-size inducer pump (ISIP) Model 266

    International Nuclear Information System (INIS)

    1979-01-01

    This Addendum A to the Westinghouse Operation and Maintenance Manual OMM-051-00-005 contains additions, changes and deletions that modify data for the Liquid Metal Coolant Pump, Model LMP-1 to data applicable to the Rockwell International Intermediate-Size Inducer Pump (ISIP), Model 266. The major modifications on the ISIP are the new impeller/inducer assembly, diffuser vanes and new securing hardware. The paragraphs affected by Addendum A use the numbering system used in OMM-051-00-005 except each paragraph number is prefixed with an A preceding the paragraph number signifying that the paragraph is changed to conform with the ISIP configuration. Paragraphs within OMM-051-00-005 not identified in Addendum A remain unchanged with the data still valid and useable

  9. Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

    CERN Document Server

    Ódor, G; Odor, Geza; Menyhard, Nora

    1998-01-01

    The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated on the level of kinks and spins. On the level of spins the parity conservation is not satisfied and therefore studying these models provides a convenient tool to understand the dependence of DS properties on symmetries. For the model B the critical point and the DS transition point is well separated and directed percolation damage spreading transition universality was found for spin damage as well as for kink damage in spite of the conservation of damage variables modulo 2 in the latter case. For the A stochastic cellular automaton, and the NEKIM model the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition is continuous and shows regular PC class universality, the spin damage exhibits a discontinuous p...

  10. Convergence of a continuous BGK model for initial boundary-value problems for conservation laws

    Directory of Open Access Journals (Sweden)

    Driss Seghir

    2001-11-01

    Full Text Available We consider a scalar conservation law in the quarter plane. This equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook (BGK model. The convergence of the model towards the unique entropy solution is established in the space of functions of bounded variation, using kinetic entropy inequalities, without special restriction on the flux nor on the equilibrium problem's data. As an application, we establish the hydrodynamic limit for a $2imes2$ relaxation system with general data. Also we construct a new family of convergent continuous BGK models with simple maxwellians different from the $chi$ models.

  11. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  12. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  13. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Rathinam, Aravindhan; Zou, Linda

    2010-01-01

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH o and the negative value of ΔG o show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS o shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  14. Warm-fluid description of intense beam equilibrium and electrostatic stability properties

    International Nuclear Information System (INIS)

    Lund, S.M.; Davidson, R.C.

    1998-01-01

    A nonrelativistic warm-fluid model is employed in the electrostatic approximation to investigate the equilibrium and stability properties of an unbunched, continuously focused intense ion beam. A closed macroscopic model is obtained by truncating the hierarchy of moment equations by the assumption of negligible heat flow. Equations describing self-consistent fluid equilibria are derived and elucidated with examples corresponding to thermal equilibrium, the Kapchinskij endash Vladimirskij (KV) equilibrium, and the waterbag equilibrium. Linearized fluid equations are derived that describe the evolution of small-amplitude perturbations about an arbitrary equilibrium. Electrostatic stability properties are analyzed in detail for a cold beam with step-function density profile, and then for axisymmetric flute perturbations with ∂/∂θ=0 and ∂/∂z=0 about a warm-fluid KV beam equilibrium. The radial eigenfunction describing axisymmetric flute perturbations about the KV equilibrium is found to be identical to the eigenfunction derived in a full kinetic treatment. However, in contrast to the kinetic treatment, the warm-fluid model predicts stable oscillations. None of the instabilities that are present in a kinetic description are obtained in the fluid model. A careful comparison of the mode oscillation frequencies associated with the fluid and kinetic models is made in order to delineate which stability features of a KV beam are model-dependent and which may have general applicability. copyright 1998 American Institute of Physics

  15. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  16. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    Science.gov (United States)

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. 2011 Addendum to the SNL/NM SWEIS Supplemental Information Source Documents

    Energy Technology Data Exchange (ETDEWEB)

    Dimmick, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This document contains updates to the Supplemental Information Sandia National Laboratories/New Mexico Site-Wide Environmental Impact Statement Source Documents that were developed in 2010. In general, this addendum provides calendar year 2010 data, along with changes or additions to text in the original documents.

  18. 77 FR 7131 - Addendum to Environmental Technologies Trade Advisory Committee Public Meeting

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF COMMERCE International Trade Administration Addendum to Environmental Technologies... agenda of a meeting of the Environmental Technologies Trade Advisory Committee (ETTAC) will be changed to... & Environmental Industries, International Trade Administration, Room 4053, 1401 Constitution Avenue NW...

  19. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  20. Addendum Guidelines for the Prevention of Peanut Allergy in the United States

    Science.gov (United States)

    Togias, Alkis; Cooper, Susan F.; Acebal, Maria L.; Assa’ad, Amal; Baker, James R.; Beck, Lisa A.; Block, Julie; Byrd-Bredbenner, Carol; Chan, Edmond S.; Eichenfield, Lawrence F.; Fleischer, David M.; Fuchs, George J.; Furuta, Glenn T.; Greenhawt, Matthew J.; Gupta, Ruchi S.; Habich, Michele; Jones, Stacie M.; Keaton, Kari; Muraro, Antonella; Plaut, Marshall; Rosenwasser, Lanny J.; Rotrosen, Daniel; Sampson, Hugh A.; Schneider, Lynda C.; Sicherer, Scott H.; Sidbury, Robert; Spergel, Jonathan; Stukus, David R.; Venter, Carina; Boyce, Joshua A.

    2016-01-01

    Background Food allergy is an important public health problem because it affects children and adults, it may be severe and even life-threatening, and it may be increasing in prevalence. Beginning in 2008, the National Institute of Allergy and Infectious Diseases (NIAID), working with other organizations and advocacy groups, led the development of the first clinical guidelines for the diagnosis and management of food allergy. A recent landmark clinical trial and other emerging data suggest that peanut allergy can be prevented through introduction of peanut-containing foods beginning in infancy. Objectives Prompted by these findings, along with 25 professional organizations, federal agencies, and patient advocacy groups, NIAID facilitated development of Addendum Guidelines to specifically address the prevention of peanut allergy. Results The Addendum provides three separate guidelines for infants at various risk levels for development of peanut allergy and is intended for use by a wide variety of health care providers. Topics addressed include the definition of risk categories, appropriate use of testing (specific IgE, skin prick testing, and oral food challenge) and the timing and approaches for introduction of peanut-containing foods in the health care provider’s office or at home. The Addendum Guidelines provide the background, rationale, and strength of evidence for each recommendation. Conclusions Guidelines have been developed for early introduction of peanut-containing foods into the diets of infants at various risk levels for peanut allergy. PMID:28065278

  1. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  2. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon

    International Nuclear Information System (INIS)

    Abdel-Ghani, N. T.; Rawash, E. S. A.; El-Chaghaby, G. A.

    2016-01-01

    The present work was carried out to evaluate the removal of p-nitrophenol by adsorption onto olive cake based activated carbon having a BET surface area of 672 m²/g. The batch adsorption experimental results indicated that the equilibrium time for nitrophenol adsorption by olive cake-based activated carbon was 120 minutes. The adsorption data was modeled by equilibrium and kinetic models. The pseudo- first and second order as well as the Elovichkinetic models were applied to fit the experimental data and the intra particle diffusion model was assessed for describing the mechanism of adsorption. The data were found to be best fitted to the pseudo-second order model with a correlation coefficient (R2=0.986). The intra particle diffusion mechanism also showed a good fit to the experimental data, showing two distinct linear parts assuming that more than one step could be involved in the adsorption of nitrophenol by the activated carbon. The equilibrium study was performed using three models including Langmuir, Freundlich and Temkin. The results revealed that the Temkin equilibrium model is the best model fitting the experimental data (R2=0.944). The results of the present study proved the efficiency of using olive cake based activated carbon as a novel adsorbent for the removal of nitrophenol from aqueous solution.

  4. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  5. Diffusion kinetics and spinodal decay of quasi-equilibrium solid solutions

    International Nuclear Information System (INIS)

    Zakharov, M.A.

    2000-01-01

    Phenomenological theory for rearrangement of solid solutions with the hierarchy of the component atomic mobilities is elaborated in the approximation of the local equilibrium. The hydrodynamic stage of the evolution of these solutions is studied as a sequence of quasi-equilibrium states characterized by implementation of some conditions of the total equilibrium. On the basis of separation of fast and slow constituents of diffusion and on the basis of the method of reduced description one derived equation for evolution of separations of fast components in quasi-equilibrium solid solutions at the arbitrary stages of rearrangement in terms of the generalized lattice model taking account of the proper volumes of the components. The conditions of the stability of quasi-equilibrium solutions to the spinodal decomposition are determined and the equations of metastability boundaries of such systems are derived [ru

  6. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  7. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).

    Science.gov (United States)

    Bağda, Esra; Tuzen, Mustafa; Sarı, Ahmet

    2017-09-01

    Removal of toxic chemicals from environmental samples with low-cost methods and materials are very useful approach for especially large-scale applications. Green algae are highly abundant biomaterials which are employed as useful biosorbents in many studies. In the present study, an interesting type of green algae, Cladophora hutchinsiae (C. hutchinsiae) was used for removal of highly toxic chemical such as uranium. The pH, biosorbent concentration, contact time and temperature were optimized as 5.0, 12 g/L, 60 min and 20 °C, respectively. For the equilibrium calculations, three well known isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed. The maximum biosorption capacity of the biosorbent was calculated as about 152 mg/g under the optimum batch conditions. The mean energy of biosorption was calculated as 8.39 kJ/mol from the D-R biosorption isotherm. The thermodynamic and kinetic characteristics of biosorption were also investigated to explain the nature of the process. The kinetic data best fits the pseudo-second-order kinetic model with a regression coefficient of >0.99 for all studied temperatures. The calculated ΔH° and ΔG° values showed that the biosorption process is exothermic and spontaneous for temperatures between 293 and 333 K. Furthermore, after seven cycling process, the sorption and desorption efficiencies of the biosorbent were found to be 70, and 58%, respectively meaning that the biosorbent had sufficiently high reusability performance as a clean-up tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Addendum report of the JHPS expert committee on radiation protection of the lens of the eye (2). When and how should the dosimetry of beta H_p(3) be made?

    International Nuclear Information System (INIS)

    Akahane, Keiichi; Tatsuzaki, Hideo; Iimoto, Takeshi; Ichiji, Takeshi; Hamada, Nobuyuki; Iwai, Satoshi; Ohguchi, Hiroyuki; Ohno, Kazuko; Kawaura, Chiyo; Kurosawa, Tadahiro; Tsujimura, Norio; Hayashida, Toshiyuki; Hotta, Yutaka; Yamasaki, Tadashi; Yokoyama, Sumi

    2015-01-01

    In a mixed field of photon and beta radiations, the same dose assigned to skin is normally assigned to the dose to the lens of the eye as a conservative estimate of H_p(3). In exceptional cases where a very high beta dose might be imparted of the same order with the dose limit, however, the conservatively biased dose must be too limiting, and thereby an accurate estimate of beta H_p(3) is desirable. This addendum report of the Japan Health Physics Society Expert Committee on Radiation Protection of the Lens of the Eye presents a practical proposal of when and how the dosimetry of beta H_p(3) should be made. (author)

  9. Sierra/SolidMechanics 4.48 User's Guide: Addendum for Shock Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    This is an addendum to the Sierra/SolidMechanics 4.48 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export-control requirements. The ITAR enhancements to Sierra/SM in- clude material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. Since this is an addendum to the standard Sierra/SM user's guide, please refer to that document first for general descriptions of code capability and use.

  10. Addendum: Observables for general relativity related to geometry

    International Nuclear Information System (INIS)

    Duch, Paweł; Kamiński, Wojciech; Lewandowski, Jerzy; Świeżewski, Jędrzej

    2015-01-01

    In this addendum we clarify a point which strengthens one of the results from http://dx.doi.org/10.1007/JHEP05(2014)077. Namely, we show that the algebra of the observables F(r,θ) is yet simpler then it was described in http://dx.doi.org/10.1007/JHEP05(2014)077. This is an important point, because with this simplification an important subalgebra becomes canonical, allowing for a natural reduction of the phase space.

  11. Addendum: Observables for general relativity related to geometry

    Energy Technology Data Exchange (ETDEWEB)

    Duch, Paweł [Institute of Physics, Jagiellonian University,Reymonta 4, 30-059 Kraków (Poland); Kamiński, Wojciech [Faculty of Physics, University of Warsaw,Hoża 69, 00-681 Warszawa (Poland); Lewandowski, Jerzy [Faculty of Physics, University of Warsaw,Hoża 69, 00-681 Warszawa (Poland); Institute for Quantum Gravity (IQG), FAU Erlangen - Nurnberg,Staudtstr. 7, 91058 Erlangen (Germany); Świeżewski, Jędrzej [Faculty of Physics, University of Warsaw,Hoża 69, 00-681 Warszawa (Poland)

    2015-04-15

    In this addendum we clarify a point which strengthens one of the results from http://dx.doi.org/10.1007/JHEP05(2014)077. Namely, we show that the algebra of the observables F(r,θ) is yet simpler then it was described in http://dx.doi.org/10.1007/JHEP05(2014)077. This is an important point, because with this simplification an important subalgebra becomes canonical, allowing for a natural reduction of the phase space.

  12. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  13. Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2014-01-01

    Highlights: • Oil shales are sedimentary rocks containing a polymeric matter in a mineral matrix. • Sorption potential of bituminous shale (BS) for uranium recovery was investigated. • U(VI) sorption increased with decreasing pH and increasing temperature. • Kinetic data were analyzed based on single and two resistance diffusion models. • The results fit well to the McKay equation assuming film and intraparticle diffusion. - Abstract: Sorption of U(VI) onto a bituminous shale (BS) from a nuclear power plant project site in Black Sea region was investigated for potential risk assessment when it releases into the environment with contaminated ground and surface water. The sorption characteristics of the BS for U(VI) recovery were evaluated as a function of contact time, adsorbent dosage, initial concentration, pH and temperature. Kinetic results fit better with pseudo-second-order model rather than pseudo-first-order. The possibility of diffusion process was analyzed based on Weber–Morris intra-particle diffusion model. The McKay equation assuming film- and intraparticle diffusion better predicted the data than the Vermeulen approximation presuming surface diffusion. Equilibrium sorption data were modeled according to the Langmuir, Dubinin–Radushkevich (D–R) and Freundlich isotherm equations. Sorption capacity increased from 0.10 to 0.15 mmol g −1 in 298–318 K temperature range. FT-IR analysis and pH dependent sorption studies conducted in hydroxide and carbonate media revealed that U(VI) species were sorbed in uranyl and its hydroxo forms on the BS. Desorption studies showed that U(VI) leaching with Black Sea water was negligible from the loaded BS. The activation parameters (E a , ΔH ∗ and ΔG ∗ ) estimated from diffusion coefficients indicated the presence of an energy barrier in the sorption system. However, thermodynamic functions derived from sorption equilibrium constants showed that overall sorption process was spontaneous in nature

  14. Adsorption of Acid Red 18 by Activated Carbon Prepared from Cedar Tree: Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi

    2012-10-01

    Full Text Available Introduction: Textile effluents are one of the main environmental pollution sources and contain toxic compounds which threat the environment. For that reason, the activated carbon prepared from Cedar Tree was used for removal of Acid Red 18 as an Azo Dye. Material and Methods: Activated carbon was prepared by chemical activation and was used in batch system for dye removal. Effect of various experimental parameters such as pH (3 to11, initial dye concentration (50, 75 and 100 mg/L, contact time (1 to 120 min and adsorbent dosage (2 to 10 g/L were investigated. Equilibrium data was fitted onto Langmuir and Freundlich isotherm model. In addition, pseudo first order and pseudo second order models were used to investigate the kinetic of adsorption process. Results: Results shows that dye removal was increase with increase in adsorbent dosage, contact time and initial dye concentration. In addition, higher removal efficiency was observed in low pH (pH=3. At 120 min contact time, pH=3, 6 g/L adsorbent dosage and 100 mg/L of initial dye concentration, more than 95% of dye was removed. Equilibrium data was best fitted onto Freundlich isotherm model. According to Langmuir constant, maximum sorption capacity was observed to be 51/28 mg/L. in addition pseudo second order model best describe the kinetic of adsorption of Acid Red 18 onto present adsorbent. Conclusion: The results of present work well demonstrate that prepare activated carbon from Pine Tree has higher adsorption capacity toward Acid Red 18 Azo dye and can be used for removal of dyes from textile effluents.

  15. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal

    2014-01-01

    Highlights: • Colloidal Zr nanoparticles, synthesized using Aloe vera extract were entrapped in chitosan beads. • Zr loaded beads were employed for removal of F − ion and showed excellent removal efficiency. • Zr and chitosan are cost effective materials hence can be a good adsorbent for removal of fluoride. - Abstract: The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV–vis absorption peak at 420 nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18 nm to 42 nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like -NH, -C=O, -C=N and -C=C were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R 2 value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F − onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water

  16. Removal of cobalt from lubricant oil by the use of bentonite: equilibrium, kinetic and adsorption preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Seles, Sandro R.N.; Ladeira, Ana Cláudia Queiroz, E-mail: vc@cdtn.br, E-mail: seless@cdtn.br, E-mail: acql@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Radionuclides may contaminate lubricant oils in nuclear power plants. In Brazil, this kind of waste has been stored in the generator's facilities, awaiting treatment alternatives. This work intends to investigate a process to treat it for final deposition, using bentonite as sorbent material. This process will result in decontaminated oil, free from radiological control, and radioactive loaded sorbent, with considerable volume reduction of the radioactive waste. The study focuses in cobalt removal from a simulated oil waste (non-active). The production of the simulated waste is described. Bentonite was used for equilibrium time determination, kinetic and adsorption studies. Cobalt adsorption equilibrium was rapidly attained after 30 minutes. The data was used for modelling the system's kinetic, applying the pseudo first and pseudo second order equation models. Experimental data fitted to pseudo second order model, supporting the assumption that the adsorption is due to chemisorption. Batch sorption tests were conducted and the results fitted to Langmuir and Freundlich sorption models. Both isotherm models chosen for this work did not fit to the experimental data. Thus, these are preliminary results and the studies must be repeated to evaluate data variability and better statistical inference. Other isotherm models must be evaluated to choose the best fitted one and describe the sorption of cobalt on bentonite in oil matrix. Even though, bentonite has considerable potential as sorbent for the removal of cobalt from lubricant oil. Finally, the results might be extended to other kinds of radioactive oils and radioactive organic wastes. (author)

  17. Batch Removal of Acid Blue 292dye by Biosorption onto Lemna minor: Equilibrium and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Ali Joghataei

    2016-12-01

    Full Text Available Background: Recently, there has been a great concern about the consumption of dyes because of their toxicity, mutagenicity, carcinogenicity, and persistence in the aquatic environment. Therefore, the aim of this study was to determine the feasibility of using Lemna minor for Acid Blue 292 (AB292 dye removal from aqueous solution and to determine the optimal conditions. Methods: This experimental study was conducted in the batch systems to investigate the effects of parameters such as contact time, initial concentration of dye, pH and Lemna minor biomass dose. Isotherms and kinetic studies of dye adsorption were performed using equilibrium data. Results: According to the results, a maximum removal efficiency of 98.5% was obtained at pH of 3 and the contact time of 90 min; initial dye concentration 10 mg/L and adsorbent dose 3g/L. The adsorption data was best fitted to the Langmuir isotherm and pseudo-second order kinetic model. Conclusion: The results showed that Lemna minor could be used as a cost-effective adsorbent for removing AB292 dye from textile wastewater efficiently.

  18. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: a kinetic and equilibrium study.

    Science.gov (United States)

    Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan

    2011-10-15

    The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (ΔH(0)), Gibbs' free energy (ΔG(0)) and entropy (ΔS(0)) were calculated for natural and MnO(2) modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Adsorption capacity of Curcuma longa for the removal of basic green 1 dye--equilibrium, kinetics and thermodynamic study.

    Science.gov (United States)

    Roopavathi, K V; Shanthakumar, S

    2016-09-01

    In the present study, Curcuma longa (turmeric plant) was used as an adsorbent to remove Basic Green 1 (BG) dye. Batch study was carried out to evaluate the adsorption potential of C. longa and influencing factors such as pH (4-10), adsorbent dose (0.2-5 g l-1), initial dye concentration (50-250 mg l-1) and temperature (30-50°C) on dye removal were analysed. The characterisation of adsorbent was carried out using fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) method. Isotherm models that included Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich, and kinetic models such as pseudo first order, pseudo second-order, Elovich and intraparticle diffusion models were studied. A maximum removal percentage (82.76%) of BG dye from aqueous solution was obtained with optimum conditions of pH 7, 1g l-1 adsorbent dose and 30°C temperature, for 100 mg l-1 initial dye concentration. The equilibrium and kinetic study revealed that the experimental data fitted suitably the Freundlich isotherm and Pseudo second order kinetic model. Thermodynamic analysis proved that adsorption system in this study was spontaneous, feasible and endothermic in nature.

  20. Dictionary of minor planet names addendum to 6th edition 2012-2014

    CERN Document Server

    Schmadel, Lutz D

    2015-01-01

    The quantity of numbered minor planets is now approaching half a million. Together with this Addendum, the sixth edition of the Dictionary of Minor Planet Names, which is the IAU's official reference for the field, now covers more than 19,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This Addendum to the 6th edition of the Dictionary of Minor Planet Names adds approximately 2200 entries. It also contains many corrections, revisions and updates to the entries published in earlier editions. This work is an abundant source of information for anyone interested in minor planets and who enjoys reading about the ...

  1. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramaswamy

    2011-01-01

    Full Text Available Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM or fluorescence-correlation spectroscopy (FCS to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  2. An equilibrium-conserving taxation scheme for income from capital

    Science.gov (United States)

    Tempere, Jacques

    2018-02-01

    Under conditions of market equilibrium, the distribution of capital income follows a Pareto power law, with an exponent that characterizes the given equilibrium. Here, a simple taxation scheme is proposed such that the post-tax capital income distribution remains an equilibrium distribution, albeit with a different exponent. This taxation scheme is shown to be progressive, and its parameters can be simply derived from (i) the total amount of tax that will be levied, (ii) the threshold selected above which capital income will be taxed and (iii) the total amount of capital income. The latter can be obtained either by using Piketty's estimates of the capital/labor income ratio or by fitting the initial Pareto exponent. Both ways moreover provide a check on the amount of declared income from capital.

  3. Statement of Agreements Registered with the Agency. Addendum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-10-24

    This addendum is divided into two parts. Part I contains supplementary information on certain agreements which were registered with the Agency up to 30 June 1960; part II is a statement of all agreements so registered between July 1960 and 30 June 1961. In compliance with Article VI of the Regulations for the Registration of Agreements this document is hereby transmitted to all Members of the Agency for their information. A copy is also being sent to the Secretary-General of the United Nations.

  4. Statement of Agreements Registered with the Agency. Addendum

    International Nuclear Information System (INIS)

    1961-01-01

    This addendum is divided into two parts. Part I contains supplementary information on certain agreements which were registered with the Agency up to 30 June 1960; part II is a statement of all agreements so registered between July 1960 and 30 June 1961. In compliance with Article VI of the Regulations for the Registration of Agreements this document is hereby transmitted to all Members of the Agency for their information. A copy is also being sent to the Secretary-General of the United Nations

  5. Addendum to 'Half coalescence of the m=1, n=1 magnetic island in tokamaks'

    International Nuclear Information System (INIS)

    Bussac, M.N.; Pellat, R.

    1985-01-01

    As an addendum to our previous work concerning the half-coalescence instability of an m=1, n=1 magnetic island in tokamaks, the potential energy is given for an arbitrary shape of the separatrix. (orig.)

  6. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: Kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Biotechnology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, 388121 Gujarat (India); Amin, Yesha, E-mail: yesha_2879@yahoo.co.in [Department of Environmental Biotechnology, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, 388121 Gujarat (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune 411008 (India)

    2014-07-15

    Highlights: • Colloidal Zr nanoparticles, synthesized using Aloe vera extract were entrapped in chitosan beads. • Zr loaded beads were employed for removal of F{sup −} ion and showed excellent removal efficiency. • Zr and chitosan are cost effective materials hence can be a good adsorbent for removal of fluoride. - Abstract: The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV–vis absorption peak at 420 nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18 nm to 42 nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like -NH, -C=O, -C=N and -C=C were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R{sup 2} value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F{sup −} onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water.

  7. Pre-equilibrium plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)

  8. Pre-equilibrium plasma dynamics

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs

  9. ION KINETIC ENERGY CONSERVATION AND MAGNETIC FIELD STRENGTH CONSTANCY IN MULTI-FLUID SOLAR WIND ALFVÉNIC TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)

    2015-03-20

    We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.

  10. A conserved residue cluster that governs kinetics of ATP-dependent gating of Kir6.2 potassium channels

    DEFF Research Database (Denmark)

    Zhang, Roger S; Wright, Jordan; Pless, Stephan Alexander

    2015-01-01

    modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp68, Lys170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp68...... or Lys170 markedly slow the kinetics of channel opening (500 ms and 700 ms for Trp68Leu and Lys170Asn, respectively), while increasing channel open probability. Examining the functional effects of these residues using phi-value analysis revealed a steep negative slope. This finding implies...

  11. Removing polycyclic aromatic hydrocarbons from water using granular activated carbon: kinetic and equilibrium adsorption studies.

    Science.gov (United States)

    Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2018-05-01

    Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.

  12. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    Science.gov (United States)

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion.

  13. Universality in equilibrium and away from it: A personal perspective

    International Nuclear Information System (INIS)

    Munoz, Miguel A.

    2011-01-01

    In this talk/paper I discuss the concept of universality in phase transitions and the question of whether universality classes are more robust in equilibrium than away from it. In both of these situations, the main ingredients determining universality are symmetries, conservation laws, the dimension of the space and of the order-parameter and the presence of long-range interactions or quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes severe constraints on equilibrium systems, allowing to define universality classes in a very robust way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium universality classes have been identified in the last decades. Here, I discuss some examples in which (i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe different genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous changes (namely: presence or absence of an underlying lattice, parity conservation in the overall number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered, making the case for lack of robustness. However, it will be argued that in all these examples, there is an underlying good reason (in terms of general principles) for universality to be altered. The final conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium; (ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more variability (i

  14. Addendum to 'Reconciling grand unification with strings by anisotropic compactifications'

    International Nuclear Information System (INIS)

    Dundee, Ben; Raby, Stuart; Wingerter, Akin

    2009-01-01

    In this brief addendum, we clarify a point which we left unaddressed in a previous publication [Phys. Rev. D 78, 066006 (2008)]. In particular, we show that a specific vacuum configuration constructed in one of our models satisfies the condition D=0. In the previous publication, we only showed F=0. Both D=0 and F=0 are necessary to ensure that supersymmetry survives to the weak scale.

  15. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey); Koyuncu, Huelya, E-mail: hkoyuncu@yyu.edu.tr [Forensic Medicine Foundation, Felek Street No. 45, 06300 Kecioren, Ankara (Turkey)

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol{sup -1} for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R{sub L} separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy ({Delta}G), the enthalpy ({Delta}H) and the entropy change of sorption ({Delta}S) were determined as about -5.06, 10.29 and 0.017 kJ mol{sup -1} K{sup -1}, respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  16. Addendum to the Composite Analysis for the E-Area Vaults and Saltstone Disposal Facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    2002-01-01

    Revision 1 of the Composite Analysis (CA) Addendum has been prepared to respond to the U.S. Department of Energy (DOE) Low-Level Waste Disposal Facilities Federal Review Group review of the CA. This addendum to the composite analysis responds to the conditions of approval. The composite analysis was performed on the two active SRS low-level radioactive waste disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of the Savannah River Site and contains all of the waste disposal facilities, the chemical separation facilities and associated high-level waste storage facilities, as well as numerous other sources of radioactive material

  17. Telon Blue AGLF Adsorption by NiO Based Nanomaterials:Equilibrium, Kinetic And Thermodynamic Approach

    Directory of Open Access Journals (Sweden)

    Gizem Biçer

    2017-06-01

    Full Text Available In this study, the effects of adsorption parameters such as initial pH, initial dye concentration, temperature and adsorbent dosage on the colour removal from aqueous solution containing Telon Blue AGLF(TB AGLF textile dye were investigated by NiO based nanomaterials and then the compliance of the equilibrium data with the different isotherm models in the literature was evaluated. In the next step, the adsorption sytem was analyzed in terms of kinetics and thermodynamics. At the end of the study, XRD, SEM and FTIR analysis methods were used for the particle characterization. As a result of the experimental studies, it was detected the successful use of NiO based nanomaterials synthesized by aqueous solution method rarely seen in literature for colour removal. Through this study, it is believed that the additional contributions are provided to the scientific investigations about the recovery of the water resources.

  18. Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China.

    Science.gov (United States)

    Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun

    2015-01-01

    Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.

  19. Adsorptioin performance of modified nkalagu bentonite in dye removal: kinetics, equilibrium, thermodynamics and structureal properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2015-01-01

    The adsorption performance of modified Nkalagu bentonite in removing Congo red (CR) from solution was investigated. The raw bentonite was modified by three different physicochemical methods: thermal activation (TA), acid activation (AA), and combined acid and thermal activation (ATA). The Congo red adsorption increased with increase in contact time, initial dye concentration, adsorbent dosage, temperature, and pH change. The results of the kinetics analysis of the adsorption data revealed that adsorption follows pseudo second-order kinetics. Analysis of the equilibrium data showed that Langmuir isotherm provided a better fit to the data. Evaluation of the thermodynamic parameters revealed that adsorption process is spontaneous and endothermic. The results from this study suggest that a combination of thermal and acid activation is an effective modification method to improve adsorption capacity of bentonite and makes the bentonite as low-cost adsorbent for removal of water pollutants. (author)

  20. Equilibrium and kinetics of Sin Nombre hantavirus binding at DAF/CD55 functionalized bead surfaces.

    Science.gov (United States)

    Buranda, Tione; Swanson, Scarlett; Bondu, Virginie; Schaefer, Leah; Maclean, James; Mo, Zhenzhen; Wycoff, Keith; Belle, Archana; Hjelle, Brian

    2014-03-10

    Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)₂-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 10⁵ M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)₂-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.

  1. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    Science.gov (United States)

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  2. Equilibrium Kinetics and Thermodynamic Studies of the Adsorption of Tartrazine and Sunset Yellow

    Directory of Open Access Journals (Sweden)

    F. O. Okeola

    2017-04-01

    Full Text Available Batch adsorption experiment was carried out on freema (combination of Tartrazine and Sunset Yellow an adsorbent prepared from moringa pod. The adsorption capacity of the adsorbent was determined. Effect of such factors as initial concentration of the adsorbate solution, contact time with the adsorbent, pH of the dye solution, and temperature of the dye solution on the adsorption capacity of the absorbent was determined. The result showed that the optimum adsorption was attained at pH of 3, adsorption equilibrium was attained within 60 min. The adsorption capacity increases with increase in initial concentration of the dye solution. The result of the kinetics study showed that the adsorption process was better described by the pseudo-second order rate equation. The adsorption process fitted well with both Freundlich (R2 = 0.983 and Langmuir (R2 = 0.933 models. Thermodynamic result showed ΔH and ΔS were all negative. Gibbs free energy change (ΔG increases with increase in temperature of the dye solution.

  3. Algorithm For Hypersonic Flow In Chemical Equilibrium

    Science.gov (United States)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  4. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available Zeolite X/activated carbon composite material (X/AC was prepared from elutrilithe, by a process consisting of carbonization, activation, and subsequent hydrothermal transformation of aluminosilicate in alkaline solution, which was used for the removal of ammoniacal nitrogen from aqueous solutions. Adsorption kinetics, equilibrium, and thermodynamic were studied and fitted by various models. The adsorption kinetics is best depicted by pseudosecond-order model, and the adsorption isotherm fits the Freundlich and Redlich-Peterson model. This explains the ammoniacal nitrogen adsorption onto X/AC which was chemical adsorption in nature. Thermodynamic properties such as ΔG, ΔH, and ΔS were determined for the ammoniacal nitrogen adsorption, and the positive enthalpy confirmed that the adsorption process was endothermic. It can be inferred that ammoniacal nitrogen removal by X/AC composite is attributed to the ion exchange ability of zeolite X. Further, as a novel sorbent, this material has the potential application in removing ammoniacal nitrogen coexisting with other organic compounds from industrial wastewater.

  5. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  6. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  7. Thermodynamic, kinetic and mechanistic investigations of ...

    Indian Academy of Sciences (India)

    with respect to the rate determining step and the thermodynamic quantities with respect to the equilibrium steps were evaluated and ... are, (1) to establish a rate law through kinetic measure- ments, (2) to ..... second and third equilibrium steps.

  8. Tracer disposition kinetics in the determination of local cerebral blood flow by a venous equilibrium model, tube model, and distributed model

    International Nuclear Information System (INIS)

    Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M.

    1987-01-01

    Tracer distribution kinetics in the determination of local cerebral blood flow (LCBF) were examined by using three models, i.e., venous equilibrium, tube, and distributed models. The technique most commonly used for measuring LCBF is the tissue uptake method, which was first developed and applied by Kety. The measurement of LCBF with the 14 C-iodoantipyrine (IAP) method is calculated by using an equation derived by Kety based on the Fick's principle and a two-compartment model of blood-tissue exchange and tissue concentration at a single data point. The procedure, in which the tissue is to be in equilibrium with venous blood, will be referred to as the tissue equilibration model. In this article, effects of the concentration gradient of tracer along the length of the capillary (tube model) and the transverse heterogeneity in the capillary transit time (distributed model) on the determination of LCBF were theoretically analyzed for the tissue sampling method. Similarities and differences among these models are explored. The rank order of the LCBF calculated by using arterial blood concentration time courses and the tissue concentration of tracer based on each model were tube model (model II) less than distributed model (model III) less than venous equilibrium model (model I). Data on 14 C-IAP kinetics reported by Ohno et al. were employed. The LCBFs calculated based on model I were 45-260% larger than those in models II or III. To discriminate among three models, we propose to examine the effect of altering the venous infusion time of tracer on the apparent tissue-to-blood concentration ratio (lambda app). A range of the ratio of the predicted lambda app in models II or III to that in model I was from 0.6 to 1.3

  9. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    DEFF Research Database (Denmark)

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  10. Boundary conditions for open quantum systems driven far from equilibrium

    Science.gov (United States)

    Frensley, William R.

    1990-07-01

    This is a study of simple kinetic models of open systems, in the sense of systems that can exchange conserved particles with their environment. The system is assumed to be one dimensional and situated between two particle reservoirs. Such a system is readily driven far from equilibrium if the chemical potentials of the reservoirs differ appreciably. The openness of the system modifies the spatial boundary conditions on the single-particle Liouville-von Neumann equation, leading to a non-Hermitian Liouville operator. If the open-system boundary conditions are time reversible, exponentially growing (unphysical) solutions are introduced into the time dependence of the density matrix. This problem is avoided by applying time-irreversible boundary conditions to the Wigner distribution function. These boundary conditions model the external environment as ideal particle reservoirs with properties analogous to those of a blackbody. This time-irreversible model may be numerically evaluated in a discrete approximation and has been applied to the study of a resonant-tunneling semiconductor diode. The physical and mathematical properties of the irreversible kinetic model, in both its discrete and its continuum formulations, are examined in detail. The model demonstrates the distinction in kinetic theory between commutator superoperators, which may become non-Hermitian to describe irreversible behavior, and anticommutator superoperators, which remain Hermitian and are used to evaluate physical observables.

  11. Reaction of plutonium with water kinetic and equilibrium behavior of binary and ternary phases in the Pu + O + H system

    International Nuclear Information System (INIS)

    Haschke, J.M.; Hodges, A.E. III; Bixby, G.E.; Lucas, R.L.

    1983-01-01

    The kinetic and equilibrium behavior of the Pu + O + H system has been studied by measuring the production of hydrogen gas formed by a sequence of hydrolysis reactions. The kinetic dependence of the Pu + H 2 O reaction on salt concentration and temperature has been defined. The metal is quantitatively converted to a fine black powder which has been identified as plutonium monoxide monohydride, PuOH. Other hydrolysis products formed in aqueous media include a second oxide hydride, Pu 7 O 9 H 3 , and the oxides Pu 2 O 3 , Pu 7 O 12 , Pu 9 O 16 , Pu 10 O 18 , Pu 12 O 22 , and PuO 2 . Thermal decomposition products of PuOH include Pu 2 O 2 H and PuO. A tentative phase diagram for Pu + O + H is presented and structural relationships of the oxide hydrides and oxides are discussed. 10 figures, 5 tables

  12. Theory of kinetics and equilibrium of ion exchange-adsorption and mechanism of extracting uranium from sea-water with titanic gel

    International Nuclear Information System (INIS)

    Ai Hongtao

    1989-01-01

    An isothermal equation for ion exchange-adsorption is derived by mass action law. The equation can be used to sum up empirical and semiempirical formulas of the exchange adsorption, such as Gapon Equation, Sips Formula, Langmuir Equation and Freundlich Formula. In this paper, by adopting the ion exchange reaction to act as the determining step of the ion exchange adsorption kinetics, and exchange-adsorption kinetics equation is derived. It is verified by he results of a series of experiments in which uranium is extracted form enriched sea-water and natural sea-water with hydrous titanium oxide (titanic gel). This equation can be used to explain not only the results of test which have been applied to prove fast intraparticle diffusion of liquid film deffusion mechanism, but also test data which can be expalined by the co-controlling fast intraparticle and liquid film diffusion, and the kinetic data which can not be clarified by diffusion mechanism. It is proposed that the mechanism of the exchange adsorption of uranium from sea-water with titanic gel is a cationic exchange reaction. A method for calculating the quantity of exchange-adsorption at equilibrium is also given

  13. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  14. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method

    Directory of Open Access Journals (Sweden)

    El-Khamsa Guechi

    2016-09-01

    Full Text Available Potato peel (PP was used as a biosorbent to remove malachite green (MG from aqueous solution under various operating conditions. The effect of the experimental parameters such as initial dye concentration, biosorbent dose, initial pH, stirring speed, temperature, ionic strength and biosorbent particle size was investigated through a number of batch sorption experiments. The sorption kinetic uptake for MG by PP at various initial dye concentrations was analyzed by non-linear method using pseudo-first, pseudo-second and pseudo-nth order models. It was found that the pseudo-nth order kinetic model was the best applicable model to describe the sorption kinetic data and the order n of sorption reaction was calculated in the range from 0.71 to 2.71. Three sorption isotherms namely the Langmuir, Freundlich and Redlich–Peterson isotherms in their non-linear forms were applied to the biosorption equilibrium data. Both the Langmuir and Redlich–Peterson models were found to fit the sorption isotherm data well, but the Redlich–Peterson model was better. Thermodynamic parameters show that the sorption process of MG is endothermic and more effective process at high temperatures. The results revealed that PP is very effective for the biosorption of MG from aqueous solutions.

  15. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    Science.gov (United States)

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater

  16. Isochronous Cyclotron Closed Equilibrium Orbit Calculation Program Description

    CERN Document Server

    Kian, I N; Tarashkevich, R

    2003-01-01

    The Equilibrium Orbit Research Program - EORP, written in C++ with the use of Visual C++ is described. The program is intended for the calculation of the particle rotation frequency and particle kinetic energy in the closed equilibrium orbits of an isochronous cyclotron, where the closed equilibrium orbits are described through the radius and particle momentum angle: r_{eo}(\\theta) and \\varphi_{p}(\\theta). The program algorithm was developed on the basis of articles, lecture notes and original analytic calculations. The results of calculations by the EORP were checked and confirmed by using the results of calculations by the numerical methods. The discrepancies between the EORP results and the numerical method results for the calculations of the particle rotation frequency and particle kinetic energy are within the limits of \\pm1\\cdot10^{-4}. The EORP results and the numerical method results for the calculations of r_{eo}(\\theta) and \\varphi_{p}(\\theta) practically coincide. All this proves the accuracy of ca...

  17. Partial chemical equilibrium in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1980-01-01

    An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly

  18. Water sorption kinetics of damaged beans: GAB model

    Directory of Open Access Journals (Sweden)

    Fernanda M. Baptestini

    Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.

  19. The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping

    International Nuclear Information System (INIS)

    Qian, Hong

    2014-01-01

    We propose a mathematical formulation of the zeroth law of thermodynamics and develop a stochastic dynamical theory, with a consistent irreversible thermodynamics, for systems possessing sustained conservative stationary current in phase space while in equilibrium with a heat bath. The theory generalizes underdamped mechanical equilibrium: dx=gdt+{−D∇ϕdt+√(2D)dB(t)}, with ∇⋅g=0 and {⋯} respectively representing phase-volume preserving dynamics and stochastic damping. The zeroth law implies stationary distribution u ss (x)=e −ϕ(x) . We find an orthogonality ∇ϕ⋅g=0 as a hallmark of the system. Stochastic thermodynamics based on time reversal (t,ϕ,g)→(−t,ϕ,−g) is formulated: entropy production e p # (t)=−dF(t)/dt; generalized “heat” h d # (t)=−dU(t)/dt, U(t)=∫ R n ϕ(x)u(x,t)dx being “internal energy”, and “free energy” F(t)=U(t)+∫ R n u(x,t)lnu(x,t)dx never increases. Entropy follows (dS)/(dt) =e p # −h d # . Our formulation is shown to be consistent with an earlier theory of P. Ao. Its contradistinctions to other theories, potential-flux decomposition, stochastic Hamiltonian system with even and odd variables, Klein–Kramers equation, Freidlin–Wentzell's theory, and GENERIC, are discussed.

  20. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  1. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  2. Kinetic, Thermodynamic and Equilibrium Studies on Uptake of Rhodamine B onto ZnCl2 Activated Low Cost Carbon

    Directory of Open Access Journals (Sweden)

    N. Bhadusha

    2012-01-01

    Full Text Available A carbonaceous adsorbent prepared from biomass waste like wood apple outer shell (Limonia acidissima by ZnCl2 treatment was investigated for its efficiency in removing Rhodamine B (RDB. Influence of agitation time, adsorbent dose, dye concentration, pH and temperature were explored. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Qo was found to be 46.7 mg/g and the equilibrium parameter (RL values indicate favourable adsorption. The experimental data were well fitted with Langmuir isotherm model and pseudo second order kinetic model. Desorption studies showed that ion exchange mechanism might be involved in the adsorption process.

  3. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Wang Yiping; Liu Zhirong; Huang Qunwu

    2009-01-01

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg 2+ , Cu 2+ , and Ni 2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3 mg/g for Hg 2+ , Cu 2+ , and Ni 2+ ions, respectively. TMCS displayed higher adsorption capacity for Hg 2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1 M ethylendiamine tetraacetic acid (EDTA)

  4. Adsorption of Nile Blue A from Wastewater Using Magnetic Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Mehrnaz Ghoochian

    2016-04-01

    Full Text Available Background: Synthetic dyes are serious pollutants and wide ranges of methods have been employed for their removal from aquatic systems. We studied the adsorption of "Nile blue A" (NBA, an anionic dye, from aqueous solution by oxidized multi-walled carbon nanotubes (MWCNTs. Methods: Scanning electron microscope and Fourier transform infrared spectroscopy were used to characterize function groups produced at MWCNTs surface. Kinetics and adsorption isotherms of NBA, the effect of temperature, pH, contact time and initial dosage of nanotubes on the adsorption capacity were also assessed. The experimental data were analyzed by Langmuir and Freundlich models. Results: Most of the dye was removed in the first 5 min and best adsorption percentage was at pH 7.0. The equilibrium reached at 45 min. The experimental data were analyzed by Langmuir and Freundlich models and the results fitted well with the Freundlich model. The adsorption kinetic data were analyzed using first-order and the pseudo-second order model and the adsorption kinetic data of NBA dye onto MWCNTs fitted the pseudo-second order model. The maximum adsorption capacity was obtained as 169.49 mg g-1. Conclusion: Freundlich model suggested that the adsorption process followed heterogeneous distribution onto MWCNTs and pseudo-second model of adsorption implied that chemical processes controlled the rate-controlling step. Oxidized MWCNTs could be used as an effective adsorbent for the removal of "Nile Blue A" dye. Oxidization of MWCNTs by nitric acid, improves the efficiency of NBA removal due to increases in functional groups and total number of adsorption sites.

  5. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Directory of Open Access Journals (Sweden)

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  6. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  7. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    Science.gov (United States)

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  8. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations.

    Science.gov (United States)

    Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia

    2015-11-01

    Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    Science.gov (United States)

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.

  10. Scaling studies of spheromak formation and equilibrium

    International Nuclear Information System (INIS)

    Geddes, C.G.; Kornack, T.W.; Brown, M.R.

    1998-01-01

    Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d small =0.16 m) and large (d large =3d small =0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, μ 0 I gun /Φ gun ) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition ∇xB=λB (λ=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function λ=λ(ψ). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. copyright 1998 American Institute of Physics

  11. Equilibrium calculations, ch. 6

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van

    1976-01-01

    A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)

  12. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-12-15

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g{sup -1}. Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R{sup 2} > 0.99). Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 {sup o}C.

  13. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Ozdes, Duygu; Gundogdu, Ali; Duran, Celal; Soylak, Mustafa

    2009-01-01

    A natural bentonite modified with a cationic surfactant, cetyl trimethylammonium bromide (CTAB), was used as an adsorbent for removal of phenol from aqueous solutions. The natural and modified bentonites (organobentonite) were characterized with some instrumental techniques (FTIR, XRD and SEM). Adsorption studies were performed in a batch system, and the effects of various experimental parameters such as solution pH, contact time, initial phenol concentration, organobentonite concentration, and temperature, etc. were evaluated upon the phenol adsorption onto organobentonite. Maximum phenol removal was observed at pH 9.0. Equilibrium was attained after contact of 1 h only. The adsorption isotherms were described by Langmuir and Freundlich isotherm models, and both model fitted well. The monolayer adsorption capacity of organobentonite was found to be 333 mg g -1 . Desorption of phenol from the loaded adsorbent was achieved by using 20% acetone solution. The kinetic studies indicated that the adsorption process was best described by the pseudo-second-order kinetics (R 2 > 0.99). Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) were also calculated. These parameters indicated that adsorption of phenol onto organobentonite was feasible, spontaneous and exothermic in the temperature range of 0-40 o C.

  14. Dictionary of Minor Planet Names Addendum to Fifth Edition: 2006 - 2008

    CERN Document Server

    Schmadel, Lutz

    2009-01-01

    The second Addendum to the Dictionary of Minor Planet Names, fifth edition, which is the IAU's official reference for the field, contains all newly published names from the period 2006-2008 as well as corrections and amendments to earlier editions. In total the Dictionary of Minor Planet Names now covers some 15000 named minor planets. It provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to more prosaic constructions.

  15. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    International Nuclear Information System (INIS)

    Crow, S.R.

    1996-01-01

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown

  16. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  17. Dependence of equilibrium properties of channeled particles on transverse quasi temperature

    International Nuclear Information System (INIS)

    Kashlev, Yu.A.

    2006-01-01

    Quasi-equilibrium and kinetic characteristics of channeled particles are investigated by methods of nonequilibrium statistical thermodynamics. The equilibrium equation of the transverse energy of fast particles and the equilibrium equation of the transverse momentum of particles are derived. It is shown that equilibrium equations solution permits to obtain the expression for the transverse quasi-temperature of the channeled particle subsystem. The quasi-equilibrium angular distribution of particles after transmission through a thin monocrystal and the angular distribution at backscattering are studied. The evaluated data of the transverse quasi-temperature are presented for the case of iodine ion channeling through silver crystals [ru

  18. Thermalization and out-of-equilibrium dynamics in open quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Buchhold, Michael

    2015-06-30

    In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermis golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate σ{sup R}=ImΣ{sup R}, determined by the self-energy at equilibrium. However, for long times τ, it also reveals the presence of dynamical slow

  19. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  20. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  1. Adsorption equilibrium and kinetics of Immunoglobulin G on a mixed-mode adsorbent in batch and packed bed configuration.

    Science.gov (United States)

    Gomes, Pedro Ferreira; Loureiro, José Miguel; Rodrigues, Alírio E

    2017-11-17

    It is commonly accepted that efficient protein separation and purification to the desired level of purity is one bottleneck in pharmaceutical industries. MabDirect MM is a new type of mixed mode adsorbent, especially designed to operate in expanded bed adsorption (EBA) mode. In this study, equilibrium and kinetics experiments were carried out for the adsorption of Human Immunoglobulin G (hIgG) protein on this new adsorbent. The effects of ionic strength and pH are assessed. Langmuir isotherms parameters are obtained along with the estimation of the effective pore diffusion coefficient (D pe ) by fitting the batch adsorption kinetics experiments with the pore diffusion model. The maximum adsorption of the IgG protein on the MabDirect MM adsorbent, 149.7±7.1mg·g dry -1 , was observed from a pH 5.0 buffer solution without salt addition. Adding salt to the buffer solution, and/or increasing pH, decreases the adsorption capacity which is 4.7±0.4mg·g dry -1 for pH 7.0 with 0.4M NaCl in solution. Regarding the D pe estimation, a value of 15.4×10 -6 cm 2 ·min -1 was obtained for a pH 5.0 solution without salt. Increasing the salt concentration and/or the pH value will decrease the effective pore diffusion, the lowest D pe (0.16×10 -6 cm 2 ·min -1 ) value being observed for an IgG solution at pH 7.0 with 0.4M NaCl. Fixed bed experiments were conducted with the purpose to validate the equilibrium and kinetic parameters obtained in batch. For a feed concentration of 0.5 g·L -1 of IgG in pH 5.0 buffer solution with 0.4M NaCl, a dynamic binding capacity at 10% of breakthrough of 5.3mg·g wet -1 (15.4mg IgG ·mL resin -1 ) was obtained, representing 62% of the saturation capacity. As far as the authors know, this study is the first one concerning the adsorption of hIgG on this type of mixed mode chromatography adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On solutions to equilibrium problems for systems of stiffened gases

    OpenAIRE

    Flåtten, Tore; Morin, Alexandre; Munkejord, Svend Tollak

    2011-01-01

    We consider an isolated system of N immiscible fluids, each following a stiffened-gas equation of state. We consider the problem of calculating equilibrium states from the conserved fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases; in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equilibrium. For both cases, we address the issues of existence, uniqueness, and physical validity of equilibrium soluti...

  3. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanhui, E-mail: liyanhui@tsinghua.org.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Yanzhi, E-mail: xiayzh@qdu.edu.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Linhua; Wang, Zonghua [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai [Key Laboratory for Advanced Manufacturing by Material Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  4. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    International Nuclear Information System (INIS)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-01-01

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m 2 /g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  5. Empiricism or self-consistent theory in chemical kinetics?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2007-01-01

    To give theoretical background for mechanochemical kinetics, we need first of all to find a possibility to predict the kinetic parameters for real chemical processes by determining rate constants and reaction orders without developing strictly specialized and, to a great extent, artificial models, i.e. to derive the kinetic law of mass action from 'first principles'. However, the kinetic law of mass action has had only an empirical basis from the first experiments of Gulberg and Waage until now, in contrast to the classical law of mass action for chemical equilibrium rigorously derived in chemical thermodynamics from equilibrium condition. Nevertheless, in this paper, an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Gulberg and Waage's time

  6. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    Science.gov (United States)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  7. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which contains additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.

  8. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon

    Directory of Open Access Journals (Sweden)

    Aseel M. Aljeboree

    2017-05-01

    Full Text Available The preparation of activated carbon from coconut husk with H2SO4 activation (CSAC and its ability to remove textile dyes (maxilon blue GRL, and direct yellow DY 12, from aqueous solutions were reported in this study. The adsorbent was characterized with Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. Various physiochemical parameters such as, contact time, initial dye concentration, adsorbent dosage, particle size, pH of dye solution and temperature were investigated in a batch-adsorption technique. Result showed that the adsorption of both GRL and DY 12 dyes was favorable at acidic pH. The adsorption uptake was found to increase with increase in initial dye concentration, and contact time but decreases with the amount of adsorbent, particle size, and temperature of the system. The chemisorption, intra-particle diffuse, pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second order exhibited the best fit for the kinetic studies, which indicates that adsorption of (GRL, and DY 12 is limited by chemisorption process. The equilibrium data were evaluated using Langmuir, Freundlich, Temkin and Fritz–Schlunder isotherms. The Fritz–Schlunder model best describes the uptake of (GRL and DY 12 dye, which implies that the adsorption of textiles dyes in this study onto coconut husk activated carbon is heterogeneous with multi-layers. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that (GRL and DY 12 dye adsorption was spontaneous and endothermic.

  9. Compilation of kinetic data for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Savage, D.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Kinetic data, including rate constants, reaction orders and activation energies, are compiled for 34 hydrolysis reactions involving feldspars, sheet silicates, zeolites, oxides, pyroxenes and amphiboles, and for similar reactions involving calcite and pyrite. The data are compatible with a rate law consistent with surface reaction control and transition-state theory, which is incorporated in the geochemical software package EQ3/6 and GWB. Kinetic data for the reactions noted above are strictly compatible with the transition-state rate law only under far-from-equilibrium conditions. It is possible that the data are conceptually consistent with this rate law under both far-from-equilibrium and near-to-equilibrium conditions, but this should be confirmed whenever possible through analysis of original experimental results. Due to limitations in the availability of kinetic data for mine-water reactions, and in order to simplify evaluations of geochemical models of groundwater evolution, it is convenient to assume local-equilibrium in such models whenever possible. To assess whether this assumption is reasonable, a modeling approach accounting for couple fluid flow and water-rock interaction is described that can be use to estimate spatial and temporal scale of local equilibrium. The approach is demonstrated for conditions involving groundwater flow in fractures at JNC's Kamaishi in-situ tests site, and is also used to estimate the travel time necessary for oxidizing surface waters to migrate to the level of a HLW repository in crystalline rock. The question of whether local equilibrium is a reasonable assumption must be addressed using an appropriate modeling approach. To be appropriate for conditions at the Kamaishi site using the modeling approach noted above, the fracture fill must closely approximate a porous mine, groundwater flow must be purely advective and diffusion of solutes across the fracture-host rock boundary must not occur. Moreover, the mineralogical and

  10. Irradiated uranium reprocessing, Final report I-VI, Part VI - Separation of uranium, plutonium and fission products from HNO3 solution on the zirconium phosphate (part I), Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Gal, I.; Ruvarac, A.

    1961-12-01

    Separation of uranium, plutonium and long-lived fission products was investigated on a inorganic ion exchanger. Zirconium phospate was chosen for this purpose because its ion exchanger properties were well known. This report deals with the study of equilibrium and kinetics of the adsorption

  11. Wave propagation in a quasi-chemical equilibrium plasma

    Science.gov (United States)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  12. Adsorptive Removal of Methylene Blue onto ZnCl2 Activated Carbon from Wood Apple Outer Shell: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    N. Bhadusha

    2011-01-01

    Full Text Available Methylene blue dye removal from aqueous solution was investigated using ZnCl2 activated carbon prepared from wood apple outer shell (Limonia acidissima, biomass waste. Influence of agitation time, adsorbent dose, dye concentration, pH and temperature were explored. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Qo was found to be 35.1 mg/g and the equilibrium parameter (RL values indicate favourable adsorption. The experimental data were well fitted with Langmuir isotherm model and pseudo second order kinetic model. Desorption studies showed that ion exchange mechanism might be involved in the adsorption process.

  13. On the forces and fluxes in non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Kitahara, Kazuo

    1986-01-01

    A formulation of non-equilibrium thermodynamics of continuum systems based on local equilibrium assumption is reported. Thermodynamic forces are defined from a generalized local entropy and irreversible fluxes are defined as non-advective parts of fluxes of conservative quantities. The validity of the general evolution criterion and its generalization is discussed. (author)

  14. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  15. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  16. Removal of Cr(VI Ions from Aqueous Solutions Using Nickel Ferrite Nanoparticles: Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    Raziyeh Zandi Pak

    2017-01-01

    Full Text Available Background & Aims of the Study: Heavy metals are the most important and main pollutants because of their accumulation and high toxicity even at very low dose and cause serious hazards to ecological system as well as human health. Thus, their removal has been challenged from drinking water and industrial waters with different technologies. The purpose of this work is to investigate the removal of Cr(VI from aqueous solutions. Materials & Methods: NiFe2O4 nanoparticles was prepared by the co-precipitation method and then applied for adsorption of Cr(VI ions from water. Characterization of nanoparticles was carried out via TEM, EDX, XRD and BET analysis. Various physico-chemical parameters like the effect of contact time, pH and adsorbent dose were studied, using batch process to optimize conditions for maximum adsorption. Results: The results demonstrated that the size of the NiFe2O4 nanoparticles was about 12 nm and had selectivity for Cr(VI adsorption. Also, adsorption process was found to be fast with equilibrium time of 55 min. Optimum pH was found to be 3. Maximum adsorption capacity (qm as calculated from Langmuir isotherm was found to be 294.1 mg g-1. Analysis of adsorption kinetics indicated better applicability of pseudo-second-order kinetic model. Conclusions: The results of this study represented that the synthesized NiFe2O4 nanoparticles could be useful for the simultaneous removal of anionic ions from wastewaters.

  17. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  18. Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface

    International Nuclear Information System (INIS)

    Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.

    1983-01-01

    The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)

  19. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S.

    2008-01-01

    Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100-500 mg/l), pH (2-8), particle size (45-112.5 μm) and temperature (293-323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135-180 and 15-34 mg/g for RB, 47-86 and 1.9-3.7 mg/g for RR and 37-61 and 3.0-3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature

  20. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    Science.gov (United States)

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  1. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Murat; Apaydin-Varol, Esin [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey); Puetuen, Ayse E., E-mail: aeputun@anadolu.edu.tr [Department of Chemical Engineering, Anadolu University, Eskisehir 26470 (Turkey)

    2011-05-15

    This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K{sub 2}CO{sub 3} and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K{sub 2}CO{sub 3} and 75 wt.% of KOH as 1635 and 1474 m{sup 2}/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions.

  2. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  3. Kinetics, Equilibrium, and Thermodynamic Studies on Adsorption of Methylene Blue by Carbonized Plant Leaf Powder

    Directory of Open Access Journals (Sweden)

    V. Gunasekar

    2013-01-01

    Full Text Available Carbon synthesized from plant leaf powder was employed for the adsorption of methylene blue from aqueous effluent. Effects of pH (2, 4, 6, 8, and 9, dye concentration (50, 100, 150, and 200 mg/dm3, adsorbent dosage (0.5, 1.0, 1.5, and 2.0 g/dm3, and temperature (303, 313, and 323 K were studied. The process followed pseudo-second-order kinetics. Equilibrium data was examined with Langmuir and Freundlich isotherm models and Langmuir model was found to be the best fitting model with high R2 and low chi2 values. Langmuir monolayer adsorption capacity of the adsorbent was found to be 61.22 mg/g. From the thermodynamic analysis, ΔH, ΔG, and ΔS values for the adsorption of MB onto the plant leaf carbon were found out. From the values of free energy change, the process was found out to be feasible process. From the magnitude of ΔH, the process was found to be endothermic physisorption.

  4. In Vitro Osteoblast Model for Bone Wound Infections and Antimicrobial Therapy (Addendum)

    Science.gov (United States)

    2012-01-01

    n=2). Previous investigations on bacterial arthritis induced by S . aureus and S . agalactiae have suggested that TNFα, interleukin1β, and IL6, are...REPOR PREPARED FOR DISTRIBUTION S Approved fo The views, opinio should not be con unless so designa January 2012 T: Addendum to Final : U.S...contained in this report are those of the author( s ) and strued as an official Department of the Army position, policy or decision ted by other

  5. Addendum 6 to CSAR 79-038 out-of-hood plutonium storage (burial box)

    International Nuclear Information System (INIS)

    Chiao, T.

    1995-01-01

    The Addendum considered an increase in the limit of fissile material in a stacked container array to 500 grams. In other words, the sum of fissile material in an array of containers is limited to 500 grams, regardless of whether the containers are stacked or not. The results of this evaluation indicates that with the modification of the fissile limits described, the system of a container array will stay sub-critical

  6. Transport and equilibrium in field-reversed mirrors

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior

  7. ARIADNE: Beam Time and Resources Request - Addendum

    CERN Document Server

    Hollywood, D; Mavrokoridis, K; McCormick, KJ; Philippou, B; Roberts, A; Stavrakis, G; Touramanis, C; Vann, J

    2017-01-01

    This addendum provides additional information and clarification requested by the SPS Committee in response to our previously submitted Beam Time Request (CERN-SPSC-2017-031 [SPSC-P-356]). The ARIADNE research programme is based around developing an optical readout system for use in LAr TPC detectors, which could potentially have a number of benefits over the currently used segmented anode planes - particularly in matters of scalability for future kilo-tonne scale detectors, ease of installation, use and maintenance, and reconstruction resolution. As detailed in our previously submitted Letter of Intent (CERN-SPSC-2016-008 [SPSC-I-244]), ARIADNE itself is a 1-tonne, two-phase LAr TPC detector, designed and built at the University of Liverpool, which uses an array of EMCCD cameras as its optical readout system, alongside PMTs for scintillation light observation and a segmented THGEM for charge readout.

  8. Isochronous cyclotron closed equilibrium orbit calculation program description

    International Nuclear Information System (INIS)

    Kiyan, I.N.; Vorozhtsov, S.B.; Tarashkevich, R.

    2003-01-01

    The Equilibrium Orbit Research Program - EORP, written in C++ with the use of Visual C++ is described. The program is intended for the calculation of the particle rotation frequency and particle kinetic energy in the closed equilibrium orbits of an isochronous cyclotron, where the closed equilibrium orbits are described through the radius and particle momentum angle: r eo (θ) and φ p (θ). The program algorithm was developed on the basis of articles, lecture notes and original analytic calculations. The results of calculations by the EORP were checked and confirmed by using the results of calculations by the numerical methods. The discrepancies between the EORP results and the numerical method results for the calculations of the particle rotation frequency and particle kinetic energy are within the limits of ±1·10 -4 . The EORP results and the numerical method results for the calculations of r eo (θ) and φ p (θ) practically coincide. All this proves the accuracy of calculations by the EORP for the isochronous cyclotrons with the azimuthally varied fields. As is evident from the results of calculations, the program can be used for the calculations of both straight - sector and spiral-sector isochronous cyclotrons. (author)

  9. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  10. Equilibrium, kinetics and thermodynamics studies of chitosan-based solid phase nanoparticles as sorbent for lead (II) cations from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shaker, Medhat A., E-mail: drmashaker@yahoo.com [Current address: Chemistry Department, Faculty of Science, University of Jeddah, Jeddah (Saudi Arabia); Permanent address: Chemistry Department, Faculty of Science, Damanhour University, Damanhour (Egypt)

    2015-07-15

    Ternary nanoparticles of chitosan, non-viable biomass (Pseudomonas sp.) and gelatin, CPG were synthesized by chemical crosslinking method and applied as a novel and cost-effective solid phase to adsorb Pb(II) cations from aqueous solution. Characterization of the fabricated CPG nanoparticles and their complexation behavior were extensively interrogated by dynamic light scattering (DLS), FTIR, TGA, XRD and SEM techniques. The extent of adsorption was found to be a function of medium pH, contact time, initial Pb(II) concentration and temperature. The Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson models were used to illustrate the isotherms of the adsorption system. The adsorption of Pb(II) cations onto CPG best-fits the Langmuir isotherm model which predicts two stoichiometric temperature-independent adsorption sites, A and B with variable capacities, 35.4 and 91.1 mg g{sup −1}, respectively and removal capacity above 90%. Thermodynamic studies revealed that the adsorption process was physical, spontaneous, and endothermic. The adsorption rate is influenced by temperature and the adsorption kinetic is well confirmed with pseudo-second-order equation compared with three other investigated kinetic models. Present study indicated potential applications of CPG nanoparticles as excellent natural and promising solid phase for Pb(II) extraction in wastewater treatment. - Graphical abstract: Display Omitted - Highlights: • Kinetics and thermodynamics of Pb{sup 2+} biosorption onto CPG nanoparticles are studied. • Adsorption kinetic data are best modeled using second-order rate equations. • The Pb{sup 2}adsorption onto CPG was physical diffusion controlled reaction. • The experimental equilibrium results well fit the Langmuir model. • The thermodynamics show endothermic, favorable and spontaneous adsorption processes.

  11. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Abdolali, Atefeh [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Lu, Shaoyong [Chinese Research Academy of Environmental Science, Beijing 100012 (China); Chen, Shiao-Shing; Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan (China); Zhang, Xinbo [Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384 (China); Wang, Jie; Wu, Yun [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-15

    A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. - Highlights: • A novel multi-metal binding biosorbent (MMBB) was studied. • The biosorption of Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+} and Zn{sup 2+} on MMBB was evaluated. • Hydroxyl, carbonyl and amine groups are involved in metal binding of MMBB. • Equilibrium data were presented and the best fitting models were identified. • The obtained results recommend this MMBB as potentially low-cost biosorbent.

  12. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  13. 78 FR 76889 - Proposed Addendum to the Interagency Policy Statement on Income Tax Allocation in a Holding...

    Science.gov (United States)

    2013-12-19

    .... Please use the title ``Proposed Addendum to the Interagency Policy Statement on Income Tax Allocation in... to the Interagency Policy Statement on Income Tax Allocation in a Holding Company Structure'' to... for the Institution. Any tax refund attributable to income earned, taxes paid, and losses incurred by...

  14. Temperature relaxation in collisional non equilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)

  15. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  16. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Necla, E-mail: ncaliskan7@hotmail.com [Department of Physical Chemistry, Faculty of Science, Yuezuencue Yil University, Van 65080 (Turkey); Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan [Department of Physical Chemistry, Faculty of Science, Yuezuencue Yil University, Van 65080 (Turkey)

    2011-10-15

    Highlights: {center_dot}The removal of Zn(II) ions from aqueous solution was studied using natural and MnO{sub 2} modified diatomite samples at different temperatures. {center_dot} The sorption of Zn(II) on the natural and modified diatomite was an endothermic processes, controlled by physical mechanisms and spontaneously. {center_dot} Adsorption of zinc metal ion on diatomite samples is more or less a two step process. {center_dot} Adsorption of Zn(II) on natural and modified diatomite could be explained by the mechanism of pseudo-second-order. - Abstract: The removal of Zn(II) ions from aqueous solution was studied using natural and MnO{sub 2} modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol{sup -1}, indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy ({Delta}H{sup 0}), Gibbs' free energy ({Delta}G{sup 0}) and entropy ({Delta}S{sup 0}) were calculated for natural and MnO{sub 2} modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously.

  17. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    Science.gov (United States)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the

  18. 75 FR 35786 - White River Minimum Flows-Addendum to Final Determination of Federal and Non-Federal Hydropower...

    Science.gov (United States)

    2010-06-23

    ... a revised discount rate selection for calculation of the present value of the losses for both the... determination rather than the discount rate selection proposed in the June 2009 draft addendum. Therefore, no change is required to the final determination related to the discount rate. The discount rate change...

  19. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl

  20. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  1. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Initial concentration of Cu(II) ions = 20 mg/l, adsorbent dose = 1.0 g. Table 2 Experiment Data of ... diffusivity of the metal ion would be independent of the extent of sorption .... exchange and adsorption. Equilibrium parameter.

  2. Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics

    Science.gov (United States)

    Beretta, Gian Paolo; Rivadossi, Luca; Janbozorgi, Mohammad

    2018-04-01

    Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides acceptable accuracies with much fewer differential equations than for the fully Detailed Kinetic Model (DKM). Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automatable, systematic procedure to identify the constraints that most effectively warrant a desired level of approximation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identification has been recently proposed. Given a DKM with S species, E elements, and R reactions, the procedure starts by running a probe DKM simulation to compute an S-vector that we call overall degree of disequilibrium (ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichiometric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD traces obtained from the probe DKM numerical simulation and compute its singular value decomposition (SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we obtain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE approximate model reduces the number of independent differential equations related to species, mass, and energy balances from S+2 to C+E+2, with substantial computational savings when C ≪ S-E.

  3. Kinetic theory of Jeans instability

    NARCIS (Netherlands)

    Trigger, S.A.; Ershkovic, A.I.; Heijst, van G.J.F.; Schram, P.P.J.M.

    2004-01-01

    Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is

  4. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite

    International Nuclear Information System (INIS)

    Yusof, Alias Mohd; Keat, Lee Kian; Ibrahim, Zaharah; Majid, Zaiton Abdul; Nizam, Nik Ahmad

    2010-01-01

    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g -1 for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH 4 + ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite.

  5. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  6. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  7. Kinetics of particle ensembles with variable charges

    International Nuclear Information System (INIS)

    Ivlev, A. V.; Zhdanov, S.; Klumov, B.; Morfill, G.; Tsytovich, V. N.; Angelis, U. de

    2005-01-01

    One of the remarkable features distinguishing complex (dusty) plasmas from usual plasmas is that charges on the grains are not constant, but fluctuate in time around some equilibrium value which, in then, is some function of spatial coordinates. Generally, ensembles of particles with variable charges are non-Hamiltonian systems where the mutual collisions do not conserve energy. Therefore, the use of thermodynamic potentials to describe such systems is not really valid. An appropriate way to investigate their evolution is to employ the kinetic approach. We studied (both analytical and numerically) two cases: (a) inhomogeneous charge-it depends on the particle coordinate but does not change in time, and (b)fluctuating charge-it changes in time around the equilibrium value, which is constant in space. For both cases we used the Fokker-Planck approach to derive the collision integral which describes the momentum and energy transfer in mutual particle collisions as well as in the collisions with neutrals. We obtained that the mean particle energy grows in time when the neutral friction is below a certain threshold (as shown in Fig. 1). In case (a) the energy changes as ∞(t c r-t)''2, in case (b) it scales as ∞(t c r-t)''-1, exhibiting the explosion-like growth with t c r a critical time scale. The obtained solutions can be of significant importance for laboratory dusty plasmas as well as for space plasma environments, where inhomogeneous charge distributions are often present. For instance, the instability can cause dust heating in low-pressure complex plasma experiments, it can be responsible for the melting of plasma crystals, it might operate in protoplanetary disks and effect the kinetics of the planet formation, etc. (Author)

  8. Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies.

    Science.gov (United States)

    Achak, M; Hafidi, A; Ouazzani, N; Sayadi, S; Mandi, L

    2009-07-15

    The aim of this work is to determine the potential of application of banana peel as a biosorbent for removing phenolic compounds from olive mill wastewaters. The effect of adsorbent dosage, pH and contact time were investigated. The results showed that the increase in the banana peel dosage from 10 to 30 g/L significantly increased the phenolic compounds adsorption rates from 60 to 88%. Increase in the pH to above neutrality resulted in the increase in the phenolic compounds adsorption capacity. The adsorption process was fast, and it reached equilibrium in 3-h contact time. The Freundlich and Langmuir adsorption models were used for mathematical description of the adsorption equilibrium and it was found that experimental data fitted very well to both Freundlich and Langmuir models. Batch adsorption models, based on the assumption of the pseudo-first-order, pseudo-second-order and intraparticle diffusion mechanism, showed that kinetic data follow closely the pseudo-second-order than the pseudo-first-order and intraparticle diffusion. Desorption studies showed that low pH value was efficient for desorption of phenolic compounds. These results indicate clearly the efficiency of banana peel as a low-cost solution for olive mill wastewaters treatment and give some preliminary elements for the comprehension of the interactions between banana peel as a bioadsorbent and the very polluting compounds from the olive oil industry.

  9. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  10. Effect of surfactant on kinetics of thinning of capillary bridges

    Science.gov (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  11. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  12. Reply to the SPSC questions on Addendum CERN-SPSC-2018-008 entitled Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans

    CERN Document Server

    Aduszkiewicz, A

    2018-01-01

    This document presents answers of the NA61/SHINE Collaborations to the SPSC questions on the addendum CERN-SPSC-2018-008 (referred to as ''Addendum'') to the NA61/SHINE proposal. Addendum requests an extension of the NA61/SHINE measurements beyond the Long Shutdown 2 and approval of the first physics data taking in 2022. The SPSC requested NA61/SHINE to consider a possibility to start the first physics data taking in 2021. NA61/SHINE concludes that this is possible and requests beam time in 2021 for detector commissioning and tests as well as for data taking with hadron (for neutrino physics) and Pb (for open charm measurements in Pb+Pb collisions) beams. The critical issue is timely flow of financial resources needed for the hardware of the detector upgrade.

  13. 78 FR 66040 - 30-Day Notice of Proposed Information Collection: HUD-Owned Real Estate-Sales Contract and Addendums

    Science.gov (United States)

    2013-11-04

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5683-N-91] 30-Day Notice of Proposed Information Collection: HUD-Owned Real Estate--Sales Contract and Addendums AGENCY: Office of the Chief... published a 30 day notice of proposed information collection entitled HUD-Owned Real Estate-Sales Contract...

  14. Removal of Hexavalent Chromium from Aqueous Solution by Modified Holly Sawdust: A Study of Equilibrium and Kinetics

    Directory of Open Access Journals (Sweden)

    S. Azizian

    2010-01-01

    Full Text Available Introduction & Objective: Industrial wastewaters including heavy metals, are among the important sources of environmental pollution. Heavy metals such as chromium are found in plating wastewater and is harmful for human health and environment. The purpose of the present study was to investigate the absorption of heavy metals such as chromium onto modified holly sawdust as an cheaper absorbent. Materials & Methods: This study was a fundamental- application study done in Hamadan University of Medical Sciences, hygiene faculty water and wastewater chemistry laboratory. This study investigated the removal of hexavalent chromium by using modified holly sawdust with pH changes ,contact time ,absorbent dose and Cr(VI concentrations in batch system. Then the result was analyzed by Excel software.Results: The results showed that the removal efficiency decrease is accompanied by the increase of pH and initial chromium concentration. pH increase from 2 to 12(equilibrium time= 180 min, adsorbent dose= 0.6g/100CC, Cr(VI concentrations= 60 mg/L,leaded to the removal efficiency decrease from 99.67 % to 29.78 %. Also removal efficiency decreased from 99.37 % to 40.24 % after increasing the initial chromium concentrations from 20 mg/L to 100 mg/L. Moreover the results showed the removal efficiency increased after increasing the adsorbent dose and contact time. By increasing adsorbent dose from 0.2 g/100CC to 1 g/100CC, the removal efficiency increased from 34.65 % to 99.76 %.Additionally, the removal efficiency increased from 48.53%to 99.76% by increasing contact time from 5 mins to 180 mins. Experimental isotherms and kinetics models were assessed by Langmuir and Freundlich isotherms and pseudo-first-order and pseudo-second-order kinetics models. The results showed that the data were acceptably explained acceptably by Langmuir isotherms and pseudo-second-order kinetics models respectively.Conclusion: The results showed that the removal of hexavalent chromium

  15. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition

    International Nuclear Information System (INIS)

    Likozar, Blaž; Levec, Janez

    2014-01-01

    Graphical abstract: Modelling of chemical equilibrium, reaction kinetics and mass transfer for triglyceride transesterification with different alcohols based on fatty acid composition. - Highlights: • Catalysed transesterification to biodiesel with various oils, alcohols and catalysts. • Analysis of components and reactivity based on fatty acid composition of all species. • Simultaneous modelling of mass transfer, reaction kinetics and chemical equilibrium. • Diffusivities, distribution and mass transfer coefficients for individual components. • Correlation of kinetic parameters with molecular structure of reactants and products. - Abstract: Mechanism of alcoholysis (e.g. methanolysis) using different oils, alcohols and homogeneous base catalysts was utilized to devise chemical kinetics and thermodynamics based on fatty acid composition, differentiating among triglycerides, diglycerides, monoglycerides and fatty acid alkyl esters (e.g. fatty acid alkyl esters, FAME) with bonded gadoleic, linoleic, linolenic, oleic, palmitic and stearic acid-originating substituents. Their concentrations were measured using an optimized high-performance liquid chromatography (HPLC) method. Hydrodynamics and diffusion limitations in emulsion were considered in overall model by determining diffusivities, distribution coefficients, molar volumes, boiling points and viscosities of individual components. Pre-exponential factors and activation energies were related with structure of reactants, intermediates and products acknowledging number of carbons, double bonds and alkyl branches by linear and mixed response surface methodology. Developed model may be used with batch and continuous flow reactors, e.g. for novel micro-structured or industrial-scale process intensification, different vegetable or non-edible oils (waste cooking Jatropha or microalgae lipids)

  16. Addendum to: Derivation of in situ opalinus clay porewater compositions from experimental and geochemical modelling studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens; Pearson, F.J.; Berner, U.

    1998-01-01

    As part of the synthesis of water chemistry studies within the hydrochemical program at Mont Terri (Switzerland), a reexamination of the modelling method showed that it should lead to a range of water compositions rather than to a single composition. The single composition resulted from two compensating oversights, a theoretical one and a modelling one. These are discussed in this Addendum. (author)

  17. Kinetics of transformation of deformation processed gold-matrix composite

    Science.gov (United States)

    Wongpreedee, Kageeporn

    Gold matrix Ḏeformation-processed M&barbelow;etal M&barbelow;etal C&barbelow;omposites (DMMC) have been developed that have better strength and conductivity than conventional gold alloys. However, DMMC possess metastable two-phase microstructures, and their strength and conductivity decrease after prolonged exposure to elevated temperatures. The kinetics of the transformation from the metastable two-phase microstructure to the equilibrium single-phase solid solution is of interest. This document describes a study of the elevated temperature stability of Au DMMC's and the relationship between microstructure and resistivity of three compositions: Au-7 vol %Ag, Au-14 vol %Ag, and Au-vol 7%Pt. DMMC samples were prepared by a powder metallurgy technique and mechanical processes. The smallest final diameter of these wires was 120 mum. Avrami and Arrhenius relations were used to evaluate the kinetic transformation. The extensive deformation used to produce these composites reshaped the initially equi-axed powder particles into a nanofilamentary composite. Electrical resistivity measurements were used to determine the degree of transformation from the initial metastable nano-filamentary composite to the equilibrium solid solution condition. These measurements indicated that this transformation in Au-14 at%Ag, Au-7 at %Ag Au and Au-7 at %Pt DMMC wires proceeded with activation energies of 141, 156, and 167 kJ/mol, respectively. It is thought that these empirically determined activation energies differ from those determined in single crystal, planar interface Au-Ag and Au-Pt diffusion couples due to chemical potential, surface curvature, and strain effects. The DMMC systems reach the equilibrium solid solution condition faster than single crystal, planar interface systems for two reasons: (1) far more defects (dislocations, grain boundaries, vacancies from non-conservative dislocation motion, etc.) are present in the Au-Ag and Au-Pt DMMC composites, and (2) the small

  18. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    Batch equilibration studies were conducted to determine the nature of adsorption of Zn (II) and Cu (II) onto dyed coconut pollens. The nature of adsorption of metal ions was explained using the Langmuir equation. The calculated values of equilibrium parameter indicated favourable adsorption by the adsorbents. Also the ...

  19. Equilibrium and kinetic study on chromium (VI removal from simulated waste water using gooseberry seeds as a novel biosorbent

    Directory of Open Access Journals (Sweden)

    J. Aravind

    2015-07-01

    Full Text Available Gooseberry seed (Phyllanthus acidus was used as an adsorbent to determine its feasibility for the removal of Cr(VI. Various parameters such as pH, temperature, contact time, initial metal concentration and adsorbent dosage were investigated to determine the biosorption performance. Equilibrium was attained within 60 minutes and maximum removal of 96% was achieved under the optimum conditions at pH 2. The adsorption phenomenon demonstrated here was monolayer represented by Langmuir isotherm with R2 value of 0.992 and the Langmuir constants k and q0 was found to be 0.0061 (L/mg and 19.23 (mg/g. The adsorption system obeyed Pseudo second order kinetics with R2 value of 0.999. The results of the present study indicated that gooseberry seed powder can be employed as adsorbent for the effective removal of hexavalent chromium economically.

  20. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Nouri, Loubna; Hamdaoui, Oualid; Chiha, Mahdi

    2008-01-01

    The efficiency of eucalyptus bark as a low cost sorbent for removing cadmium ions from aqueous solution has been investigated in batch mode. The equilibrium data could be well described by the Langmuir isotherm but a worse fit was obtained by the Freundlich model. The five linearized forms of the Langmuir equation as well as the non-linear curve fitting analysis method were discussed. Results show that the non-linear method may be a better way to obtain the Langmuir parameters. Maximum cadmium uptake obtained at a temperature of 20 deg. C was 14.53 mg g -1 . The influence of temperature on the sorption isotherms of cadmium has been also studied. The monolayer sorption capacity increased from 14.53 to 16.47 when the temperature was raised from 20 to 50 deg. C. The ΔG o values were negative, which indicates that the sorption was spontaneous in nature. The effect of experimental parameters such as contact time, cadmium initial concentration, sorbent dose, temperature, solution initial pH, agitation speed, and ionic strength on the sorption kinetics of cadmium was investigated. Pseudo-second-order model was evaluated using the six linear forms as well as the non-linear curve fitting analysis method. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model using the non-linear method. The pseudo-second-order model parameters were function of the initial concentration, the sorbent dose, the solution pH, the agitation speed, the temperature, and the ionic strength

  1. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  2. Review of the equilibrium fitting for non-circular tokamak

    International Nuclear Information System (INIS)

    Luo Jiarong

    2002-01-01

    As the equilibrium fitting code (EFIT) is developing to perform the magnetic and the kinetic-magnetic analysis for tokamak device operation, it can be not only run in either the fitting mode or the equilibrium mode but also control operation of modern experimental fusion device. The history of EFIT code and its capabilities are described in section 2. A brief description of the off-line EFIT code and the development of the real-time EFIT (RTEFIT) code is shown in section 3 and 4 respectively. In the last section the summary is given

  3. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  4. Fluid dynamics of out of equilibrium boost invariant plasmas

    Science.gov (United States)

    Blaizot, Jean-Paul; Yan, Li

    2018-05-01

    By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.

  5. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: hqhu@mail.hzau.edu.cn [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)

    2009-02-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  6. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    International Nuclear Information System (INIS)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie; Hu Hongqing; Chen Shouwen; Sa Tongmin

    2009-01-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1 . The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy (Δ r G m θ ) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy (Δ r H m θ ) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  7. Kinetic isotope effect in the thermolysis of methylenecyclobutane

    International Nuclear Information System (INIS)

    Chickos, J.S.

    1979-01-01

    The intramolecular kinetic isotope effect for the thermolysis of equilibrated methylenecyclobutane-d 2 was investigated at 515 0 C as a function of pressure. A high-pressure value of k/sub H/k/sub D/ (ethylene/ethylene-d 2 ) = 0.9 was obtained at 13 cm of N 2 pressure. This value decreased to 0.86 at 70 μm total pressure. No intermolecular kinetic isotope effect was measured for the formation of ethylene from labeled and unlabeled methylenecyclobutane. The pressure and temperature dependence of the intramolecular kinetic isotope effect was used as evidence in establishing the inverse nature of the effect. The isotope effect observed was explained in terms of competing equilibrium and kinetic isotope effects in which the equilibrium isotope effects dominate. It was concluded on the bases of these results that an acyclic intermediate is involved in the fragmentation of methylenecyclobutane to ethylene and allene. The results also support the notion that deuterium prefers to accumulate at the methylene group with the greatest p character in the carbon--hydrogen bond. 1 figure, 4 tables

  8. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    Science.gov (United States)

    Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-01-01

    Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation

  9. Kinetics and equilibrium studies on removal of methylene blue and methyl orange by adsorption onto activated carbon prepared from date pits-A comparative study

    International Nuclear Information System (INIS)

    Mahmoudi, Khaled; Hosni, Khaled; Hamdi, Noureddine; Srasra, Ezzeddine

    2015-01-01

    The adsorption of Methylene blue and Methyl orange by date pits carbon was carried out by varying parameters such as agitation time, pH and dye concentration. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. Adsorption followed second-order rate kinetics. The adsorption capacity was found to be 434 and 455mg of methyl orange and methylene blue, respectively, per g of the date pits carbon. Acidic pH is favorable for the adsorption of methyl orange against a basic medium which is favorable for the adsorption of MB. An opposite result was found for the methylene blue adsorption

  10. Kinetic theory of two-temperature polyatomic plasmas

    Science.gov (United States)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  11. Equilibrium vertical field in the TBR Tokamak

    International Nuclear Information System (INIS)

    Ueta, A.Y.

    1985-01-01

    An experimental study on the influence of the vertical magnetic field of the TBR tokamak on the stability and equilibrium of plasma column, was done. Magnetic pick-up coils were built to measure plasma current and position, together with active networks, necessary fo the electronic processing of signals. Some measurements were on the space configuration of the vertical field, and on the influence due to the toroidal vessel. From the data obtained it was possible to discuss the influence of the currents induced on the vessel surface, on plasma equilibrium. Theoretical and experimental results of the vertica field, as a function of plasma current were compared, and allowed an evaluation of the plasma kinetic pressure and temperature. (Author) [pt

  12. Equilibrium and stability of a rotating plasma

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1979-01-01

    The author considers the equilibrium and stability of a rotating plasma. The kinetic equations for ions and electrons supplemented with the Maxwell equations and the appropriate boundary conditions are used. Two different models for the rotating plasma are considered: the equilibrium of a 'fast' rotating plasma (Magneto Hydrodynamic ordering) and the stability of a slowly rotating, 'weakly' unstable plasma (Finite Larmor Radius ordering). A striking difference between these orderings is the fact that, regarding the stability of the plasma, for a F.L.R. plasma viscosity effects due to the finite Larmor radius are important, whereas in a M.H.D. plasma they are negligible (at least to the required order). (Auth.)

  13. Addendum report of the JHPS expert committee on radiation protection of the lens of the eye (3). Recent related overseas activities

    International Nuclear Information System (INIS)

    Akahane, Keiichi; Tatsuzaki, Hideo; Iimoto, Takeshi; Ichiji, Takeshi; Hamada, Nobuyuki; Iwai, Satoshi; Ohguchi, Hiroyuki; Ohno, Kazuko; Kawaura, Chiyo; Tsujimura, Norio; Hotta, Yutaka; Yamasaki, Tadashi; Yokoyama, Sumi

    2015-01-01

    Following the Statement on Tissue Reaction issued by the International Commission on Radiological Protection (ICRP), revisions and discussions are underway in various international organizations about the standards, guidelines and methods for the eye dosimetry. We have previously discussed these issues in six interim reports, followed by two addendum reports on lens dosimetry. This addendum report reviews ongoing overseas discussion and work in relation to research on radiogenic cataracts and implementation of the new eye lens dose limit, such as those in the European Commission, Low Dose Research towards Multidisciplinary Integration (DoReMi), Open Project for European Radiation Research Area (OPERRA), and the Unite Sates National Council on Radiation Protection and Measurements (NCRP). This report serves as the last part of a series of reports by the Japan Health Physics Society Expert Committee on Radiation Protection of the Lens of the Eye. (author)

  14. A Fokker-Planck based kinetic model for diatomic rarefied gas flows

    Science.gov (United States)

    Gorji, M. Hossein; Jenny, Patrick

    2013-06-01

    A Fokker-Planck based kinetic model is presented here, which also accounts for internal energy modes characteristic for diatomic gas molecules. The model is based on a Fokker-Planck approximation of the Boltzmann equation for monatomic molecules, whereas phenomenological principles were employed for the derivation. It is shown that the model honors the equipartition theorem in equilibrium and fulfills the Landau-Teller relaxation equations for internal degrees of freedom. The objective behind this approximate kinetic model is accuracy at reasonably low computational cost. This can be achieved due to the fact that the resulting stochastic differential equations are continuous in time; therefore, no collisions between the simulated particles have to be calculated. Besides, because of the devised energy conserving time integration scheme, it is not required to resolve the collisional scales, i.e., the mean collision time and the mean free path of molecules. This, of course, gives rise to much more efficient simulations with respect to other particle methods, especially the conventional direct simulation Monte Carlo (DSMC), for small and moderate Knudsen numbers. To examine the new approach, first the computational cost of the model was compared with respect to DSMC, where significant speed up could be obtained for small Knudsen numbers. Second, the structure of a high Mach shock (in nitrogen) was studied, and the good performance of the model for such out of equilibrium conditions could be demonstrated. At last, a hypersonic flow of nitrogen over a wedge was studied, where good agreement with respect to DSMC (with level to level transition model) for vibrational and translational temperatures is shown.

  15. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  16. Equilibrium and non-equilibrium conformations of peptides in lipid bilayers.

    Science.gov (United States)

    Boden, N; Cheng, Y; Knowles, P F

    1997-04-22

    A synthetic, hydrophobic, 27-amino-acid-residue peptide 'K27', modelled on the trans-membrane domain of the slow voltage-gated potassium channel, IsK, has been incorporated into a lipid bilayer and its conformational properties studied using FT-IR spectroscopy. The conformation following reconstitution is found to be dependent on the nature of the solvent employed. When the reconstitution is conducted by solvent evaporation from a methanol solution, aggregates comprised of beta-strands are stabilised and their concentration is essentially invariant with time. By contrast, when trifluoroethanol is used, the initial conformation of the peptide is alpha-helical. This then relaxes to an equilibrium state between alpha-helices and beta-strands. The alpha-helix-to beta-strand conversion rate is relatively slow, and this allows the kinetics to be studied by FT-IR spectroscopy. The reverse process is much slower but again can be demonstrated by FT-IR. Thus, it appears that a true equilibrium structure can only be achieved by starting with peptide in the alpha-helical conformation. We believe this result should be of general validity for hydrophobic peptide reconstitution. The implications for conformational changes in membrane proteins are discussed.

  17. Current conserving theory at the operator level

    Science.gov (United States)

    Yuan, Jiangtao; Wang, Yin; Wang, Jian

    The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.

  18. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    Science.gov (United States)

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.

  19. Is local equilibrium a useful concept in hadronic interactions

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Aspects of multiparticle production phenomena are reviewed, which bear on the existence of local equilibrium in all or part of a collision event. Several universal features of purely hadronic events, such as the p/sub perpendicular/ distribution of secondaries, the independence of multiplicities and multiplicity distributions on the quantum numbers of the colliding particles are easily interpreted by postulating the existence of local thermodynamic equilibrium for the dominant nondiffractive events. Except in the case of the multiplicity distribution, other interpretations often do not exist. Equilibration mechanisms which might establish local equilibrium are examined. We point out that several mechanisms besides the usual kinetic relaxation have not been seriously studied. These include collective instabilities, turbulence and chaos, which could be more effective in establishing equilibrium. Developments in the use of the hydrodynamic model are reviewed, with particular attention to the initial conditions appropriate to hadronic and nuclear collisions. We conclude that local equilibrium is indeed a useful concept but that much effort is needed to assess its accuracy and domain of applicability

  20. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    Science.gov (United States)

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  1. Kinetic theory of gases and plasmas

    International Nuclear Information System (INIS)

    Schram, P.P.J.M.

    1991-01-01

    Kinetic theory provides the link between the non-equilibrium statistical mechanics of many-particle systems and macroscopic or phenomenological physics. This volume deals with the derivation of kinetic equations, their limitations and generalizations,and with the applications of kinetic theory to physical phenomena and the calculation of transport coefficients. This book is divided in 12 chapters which discuss a wide range of topics such as balanced equations, the Klimontovich, Vlasov-Maxwell, and Boltzmann equations, Chapman-Enskog theory, the kinetic theory of plasmas, B.G.K. models, linear response theory, Brownian motion and renormalized kinetic theory. Each chapter is concluded with exercises, which not only enable the readers to test their understanding of the theory, but also present additional examples which complement the text. 151 refs.; 35 figs.; 5 tabs

  2. Comparative kinetic and equilibrium investigations on the extraction of U(IV) in nitric acid/Tbp or TLA-Kerosene systems

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, J A; Khalifa, S M; Abdel Rahman, N; Aly, H F [Hot laboratories center, Atomic energy authority post code 13758, (Egypt)

    1995-10-01

    The extraction equilibrium of U(IV) by tributyl-phosphate (Tbp) or trilaurylamine (TLA) in kerosene from nitric acid media was investigated. The effect of the different parameters affecting the extraction was separately studied and compared. The kinetics of extraction of U(IV) by Tbp or TLA was also investigated using a stirred lewis cell. The data showed that the rate of extraction of U(IV) by Tbp is controlled by chemical reactions at the interface. In the TLA system, the extraction of U(IV) is controlled by chemical reactions at the interface and bulk phase. Rate equations show that the extraction of U(IV) is first order dependent on Tbp concentration while it is of fractional negative order with respect to TLA. The effect of temperature on the rate of extraction was also studied and the thermodynamic functions were evaluated for the two systems. 5 figs.

  3. TU-D-201-03: Results of a Survey On the Implementation of the TG-51 Protocol and Associated Addendum On Reference Dosimetry of External Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G [University of California, San Diego, La Jolla, CA (United States); Muir, B [National Research Council, Ottawa, AB (Canada); Culberson, W [University of Wisconsin Madison, Madison, WI (United States); Davis, S [McGill University Health Center, Montreal, QC (Canada); Huang, Y [Henry Ford Health System, West Bloomfield, MI (United States); Lee, S [University of Maryland School of Medicine, Columbia, MD (United States); Lowenstein, J [UT MD Anderson Cancer Center, Houston, TX (United States); Sarfehnia, A [Sunnybrook Health Science Center, Toronto, ON (Canada); Tolani, N [Michael E. DeBakey VA Medical Center, Sugarland (United States); Siebers, J [University of Virginia Health System, Charlottesville, VA (United States)

    2016-06-15

    Purpose: The working group on the review and extension of the TG-51 protocol (WGTG51) collected data from American Association of Physicists in Medicine (AAPM) members with respect to their current TG-51 and associated addendum usage in the interest of considering future protocol addenda and guidance on reference dosimetry best practices. This study reports an overview of this survey on dosimetry of external beams. Methods: Fourteen survey questions were developed by WGTG51 and released in November 2015. The questions collected information on reference dosimetry, beam quality specification, and ancillary calibration equipment. Results: Of the 190 submissions completed worldwide (U.S. 70%), 83% were AAPM members. Of the respondents, 33.5% implemented the TG-51 addendum, with the maximum calibration difference for any photon beam, with respect to the original TG-51 protocol, being <1% for 97.4% of responses. One major finding is that 81.8% of respondents used the same cylindrical ionization chamber for photon and electron dosimetry, implying that many clinics are foregoing the use of parallel-plate chambers. Other evidence suggests equivalent dosimetric results can be obtained with both cylindrical and parallel-plate chambers in electron beams. This, combined with users comfort with cylindrical chambers for electrons will likely impact recommendations put forward in an upcoming electron beam addendum to the TG-51 protocol. Data collected on ancillary equipment showed 58.2% (45.0%) of the thermometers (barometers) in use for beam calibration had NIST traceable calibration certificates, but 48.4% (42.7%) were never recalibrated. Conclusion: This survey provides a snapshot of TG-51 external beam reference dosimetry practice in radiotherapy centers. Findings demonstrate the rapid take-up of the TG-51 photon beam addendum and raise issues for the WGTG51 to focus on going forward, including guidelines on ancillary equipment and the choice of chamber for electron beam

  4. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  5. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    Science.gov (United States)

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  6. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange

    International Nuclear Information System (INIS)

    Helgstrand, Magnus; Haerd, Torleif; Allard, Peter

    2000-01-01

    The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants

  7. SU-G-TeP2-03: Comparison of Standard Dosimetry Protocol in Japan and AAPM TG-51 Addendum in Order to Establish Optimal Dosimetry for FFF Beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, T; Adachi, Y [Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka (Japan); Hayashi, N [Graduate School of Health Sciences, Fujita Health University, Tayoake, Aichi (Japan); Nozue, M [Department of Radiation Oncology, Seirei Hamamtsu General Hospital, Hamamatsu, Shizuoka (Japan)

    2016-06-15

    Purpose: Japan Standard Dosimetry of Absorbed dose to water in external beam radiotherapy (JSDP12) is widely used to measure radiation dose in radiotherapy. However, JSDP12 does not take flattening-filter-free (FFF) beam into consideration. In addition, JSDP12 applied TPR20,10 for dose quality index for photon beam. The purpose of this study is to compare JSDP12 with AAPM TG-51 addendum in order to establish optimal dosimetry procedure for FFF beam. Method: We evaluated the ion-recombination factor (ks) and the correction factor of radial beam profile (Prp) in FFF beam dosimetry. The ks was introduced by 2 voltages method and verified by Jaffe’s plot. The Prp was given by both film measurement and calculation of treatment planning system, and compared them. Next, we compared the dose quality indexes (kQ) between TPR20,10 method and PDD(10)x method. Finally we considered optimal dosimetry protocol for FFF photon beam using JSDP12 with referring TG-51 addendum protocols. The FFF photon beams of 6 MV (6X-FFF) and 10 MV (10X-FFF) from TrueBeam were investigated in this study. Results: The ks for 6X-FFF and 10X-FFF beams were 1.005 and 1.010, respectively. The Prp of 0.6 cc ionization chamber for 6X-FFF and 10X-FFF beams (Film, TPS) were (1.004, 1.008) and (1.005, 1.008), respectively. The kQ for 6X-FFF and 10X-FFF beams (JSDP12, TG-51 addendum) were (0.9950, 0.9947) and (0.9851, 0.9845), respectively. The most effective factor for uncertainty in FFF photon beam measurement was Prp for JSDP12 formalism. Total dosimetric differences between JSDP12 and TG-51 addendum for 6X-FFF and 10X-FFF were -0.47% and -0.73%, respectively. Conclusion: The total dosimetric difference between JSDP12 and TG-51 addendum was within 1%. The introduction of kQ given by JSDP is feasible for FFF photon beam dosimetry. However, we think Prp should be considered for optimal dosimetry procedure even if JSDP12 is used for FFF photon beam dosimetry.

  8. Kinetic and equilibrium studies of Pb(II and Cd(II adsorption on African wild mango (Irvingia gabonensis shell

    Directory of Open Access Journals (Sweden)

    F. A. Adekola

    2016-08-01

    Full Text Available The adsorption behavior of NaOH-activated African wild mango (Irvingia gabonensis shell with respect to Pb2+ and Cd2+ has been studied in order to consider its application to purify metal finishing waste water. The optimum conditions of adsorption were determined by investigating the initial metal ions concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. The extent of adsorption of metal ions was investigated by batch method using metal concentrations in solution ranging from 5-200 mg/L. The adsorption efficiencies were found to be pH dependent, with maximum metals uptake recorded at pH of 5. The equilibrium adsorption capacity for lead and cadmium ions were obtained from Freundlich, Langmuir, Temkin and DRK isotherms and the experimental data were found to fit best the Langmuir isotherm with values of 21.28 and 40.00 mg/g for Cd(II and Pb(II ions, respectively. The Pseudo-second order kinetics model had the best fitting for lead and cadmium adsorption kinetic data. The thermodynamic investigation showed that the adsorption processes of both metals are exothermic. An optimum concentration of 0.05 M HCl was found to be adequate for the regeneration of the spent adsorbent with recovery values of 78% and 71% for Pb2+ and Cd2+ respectively from the spent adsorbent. The results revealed that lead and cadmium are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  9. Analytical Model of Inlet Growth and Equilibrium Cross-Sectional Area

    Science.gov (United States)

    2016-04-01

    classic Escoffier (1940) inlet stability analysis to produce a new quadratic formula derived from simplified momentum and conservation equations ...neglecting time dependence and taking the maximum current gives the following quadratic equation : 2 0 0 d b d ghagAhU U c LA c Lω + − = (5) with the...or quadratic approach as the equilibrium area can be determined through Equation 9. As an alternative, cross- sectional equilibrium is expressed in

  10. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    International Nuclear Information System (INIS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2011-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  11. Gyrokinetic statistical absolute equilibrium and turbulence

    International Nuclear Information System (INIS)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  12. Reaction kinetics in open reactors and serial transfers between closed reactors

    Science.gov (United States)

    Blokhuis, Alex; Lacoste, David; Gaspard, Pierre

    2018-04-01

    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.

  13. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  14. Attainment of chemical equilibrium in effusive beam sources of the heterogeneous reaction type

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1979-01-01

    Effusive beam sources derived from gas-solid reactions provide a very important pathway for widening the scope of high temperature thermodynamic studies, but the attainment of chemical equilibrium within these sources is problematical. Some of the underlying kinetic factors associated with the use of these sources are discussed. As one might expect, it is important to maximize the ratio of reactive surface area to exit orifice area. Equilibrium seems to be achieved more readily among the products of gas-solid reactions than among reactant and products, as suggested by the quasi-equilibrium model. Some experiences with the use of heterogeneous reaction sources are described, and two definitive tests for the establishment of equilibrium are outlined

  15. The detection and settlement of VAT fraud in four countries : Addendum to the report value-added tax fraud in the European Union

    NARCIS (Netherlands)

    Aronowitz, A.A.; Laagland, D.C.G.; Paulides, G.

    1996-01-01

    This addendum to the report 'Value-added tax fraud in the European Union' gives additional information on the detection and settlement of VAT fraud in Belgium, Germany, the United Kingdom and the Netherlands. See link to the report at: More information.

  16. Equilibrium, kinetic and reactive transport models for Pu: employing numerical methods to uncover the nature of the intrinsic colloid

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Batchelor, Bill

    2000-01-01

    Future missions for the Department of Defense include processing plutonium for vitrification and conversion to mixed oxide fuels for commercial use. Such processing could result in the production of Pu-containing waste and unplanned releases of Pu to the environment. Some releases related to plutonium processing have occurred in the past. However, scientists are currently not able to explain the observed behavior of plutonium in natural systems. For example, classical filtration theory predicts that plutonium transport within groundwater should be limited to a few tens of meters. Experimental observations, however, show that plutonium is present in groundwater at distances orders of magnitude farther away from its source than predicted. Before adequate disposal practices can be designed for plutonium, its behavior in these systems must be better understood. The overall goal of this project is to develop equilibrium, kinetic and reactive transport models that describe the behavior of Pu in aqueous systems and to apply these models to natural and engineered systems

  17. Application of novel nanobiocomposites for removal of nickel(II) from aqueous environments: Equilibrium, kinetics, thermodynamics and ex-situ studies

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Lina Rose; Das, Devlina; Das, Nilanjana [VIT University, Tamil Nadu (India)

    2016-01-15

    The current study presents a novel approach for the removal of Ni(II) from aqueous environments using plant gum-based (PG) and clay-based (CL) nanobiocomposite (NBC) composed of ZnO nanoparticles and chitosan. Parameters like pH, contact time, temperature, initial metal concentration and adsorbent dosage were optimized. Under optimized conditions, maximum removal of Ni(II) was noted as 90.1% and 95.5% in the case of PG-NBC and CLNBC, respectively. Equilibrium studies suggested a homogeneous mode of adsorption. Good linearity was observed for the pseudo-first order kinetic model, suggesting a physical mode of adsorption. Thermodynamic studies showed an endothermic and spontaneous nature of adsorption. The mechanism was further elucidated using SEM, EDX, AFM and FT-IR analysis. Ex-situ studies showed a maximum Ni(II) removal of 87.34% from electroplating wastewater using CL-NBC in column mode. Regeneration studies suggested that CL-NBC could be consistently reused up to 4 cycles.

  18. Interacting systems far from equilibrium quantum kinetic theory

    CERN Document Server

    Morawetz, Klaus

    2018-01-01

    This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.

  19. Investigation of binary solid phases by calorimetry and kinetic modelling

    OpenAIRE

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...

  20. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  1. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Directory of Open Access Journals (Sweden)

    Natalie Baddour

    2018-02-01

    Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  2. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    Science.gov (United States)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  3. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    International Nuclear Information System (INIS)

    Spatz, R.

    2000-01-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington

  4. Test Plan Addendum No. 1: Waste Isolation Pilot Plant bin-scale CH TRU waste tests

    International Nuclear Information System (INIS)

    Molecke, M.A.; Lappin, A.R.

    1990-12-01

    This document is the first major revision to the Test Plan: WIPP Bin-Scale CH TRU Waste Tests. Factors that make this revision necessary are described and justified in Section 1, and elaborated upon in Section 4. This addendum contains recommended estimates of, and details for: (1) The total separation of waste leaching/solubility tests from bin-scale gas tests, including preliminary details and quantities of leaching tests required for testing of Levels 1, 2, and 3 WIPP CH TRU wastes; (2) An initial description and quantification of bin-scale gas test Phase 0, added to provide a crucial tie to pretest waste characterization representatives and overall test statistical validation; (3) A revision to the number of test bins required for Phases 1 and 2 of the bin gas test program, and specification of the numbers of additional bin tests required for incorporating gas testing of Level 2 wastes into test Phase 3. Contingencies are stated for the total number of test bins required, both positive and negative, including the supporting assumptions, logic, and decision points. (4) Several other general test detail updates occurring since the Test Plan was approved and published in January, 1990. Possible impacts of recommended revisions included in this Addendum on WIPP site operations are called out and described. 56 refs., 12 tabs

  5. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    Science.gov (United States)

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  6. The Economic and Workforce Development Program (ED>Net) Annual Report, 2001-02 [and] Addendum to FY 01-02 Annual Report.

    Science.gov (United States)

    California Community Colleges, Sacramento. Economic Development Coordination Network (EDNet).

    This document contains an annual report and its addendum from the Economic and Workforce Development Program of California Community Colleges. The annual report provides an overview of the Program's evaluation processes, regional centers, short-term projects, legislation, strategic plan, etc. It also provides vital facts about the program such as…

  7. Addendum to the health and safety plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Burman, S.N.; Wilson, K.A.

    1995-08-01

    There are three purposes for this addendum to the health and safety plan for Waste Area Grouping 6. The first purpose is to provide record of a corrective action response concerning an occurrence on WAG 6 in October 1994 (ORO-MMES-ENVRES-1994-0016.) This occurrence involved a precautionary evacuation of subcontractor field crews due to malfunctioning monitor alarms for organic vapors. The corrective action is to revise the WAG 6 Site health and safety plan to improve communications during emergency events. The second purpose is to incorporate any outstanding health and safety issues not addressed in the original health and safety plan for WAG 6 document (ORNL/ER-183). The only variance of note is tritium air monitoring in the Tumulus building. The tritium air monitor is added in this addendum as monitoring equipment for WAG 6 with description of action level and calibration. The third purpose of this addendum is to satisfy a condition of approval for the pending Nuclear Criticality Safety Assessment (NCSA) pertaining to KEMA fuel storage at WAG 6. This approval condition requires the following: ''The location of the KEMA burial shall be recorded and maintained in a controlled document that identifies the quantity and the general physical conditions at the time of the entombment with an admonishment to obtain nuclear criticality safety guidance before altering the burial condition.'' In order to satisfy the approval, this document must be controlled. The predecessor to the pending NCSA is NSR No. 0002WM22001

  8. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  9. Kinetic and equilibrium properties of regulatory Ca(2+)-binding domains in sodium-calcium exchangers 2 and 3.

    Science.gov (United States)

    Tal, Inbal; Kozlovsky, Tom; Brisker, Dafna; Giladi, Moshe; Khananshvili, Daniel

    2016-04-01

    In mammals, three sodium-calcium exchanger (NCX) protein isoforms (NCX1, NCX2, and NCX3) mediate Ca(2+) fluxes across the membrane to maintain cellular Ca(2+) homeostasis. NCX isoforms and their splice variants are expressed in a tissue-specific manner to meet physiological demands. NCX1 is ubiquitously expressed, NCX2 is expressed in the brain and spinal cord, and NCX3 is expressed in the brain and skeletal muscle. Eukaryotic NCXs contain two cytosolic regulatory Ca(2+)-binding domains, CBD1 and CBD2, which form a two-domain tandem (CBD12) through a short linker. Ca(2+) binding to the CBDs underlies allosteric regulation of NCX. Previous structural and functional studies in NCX1 have shown that the CBDs synergistically interact, where their interactions are modulated in a splice variant-specific manner by splicing segment at CBD2. Here, we analyze the equilibrium and kinetic properties of Ca(2+) binding to purified preparations of CBD1, CBD2, and CBD12 from NCX2 and from NCX3 splice variants. We show that CBD1 interacts with CBD2 in the context of the CBD12 tandem in all NCX isoforms, where these interactions specifically modulate Ca(2+) sensing at the primary sensor of CBD1 to meet the physiological requirements. For example, the rate-limiting slow dissociation of "occluded" Ca(2+) from the primary allosteric sensor of variants expressed in skeletal muscle is ∼10-fold slower than that of variants expressed in the brain. Notably, these kinetic differences between NCX variants occur while maintaining a similar Ca(2+) affinity of the primary sensor, since the resting [Ca(2+)]i levels are similar among different cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conditions of equilibrium of a rotating ideal fluid in the parametrized post-Newtonian formalism

    International Nuclear Information System (INIS)

    Bondarenko, N.P.

    1986-01-01

    Conditions of equilibrium of a rotating ideal fluid in parametrized post-Newtonian hydrodynamics are obtained by the variational method. They generalize the analogous equilibrium conditions in the post-Newtonian approximation of the general theory of relativity. A conservation law for the total energy is obtained by integrating the equations of motion

  11. 3-D rod ejection analysis using a conservative methodology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Ho; Park, Jin Woo; Park, Guen Tae; Um, Kil Sup; Ryu, Seok Hee; Lee, Jae Il; Choi, Tong Soo [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    The point kinetics model which simplifies the core phenomena and physical specifications is used for the conventional rod ejection accident analysis. The point kinetics model is convenient to assume conservative core parameters but this simplification loses large amount of safety margin. The CHASER system couples the three-dimensional core neutron kinetics code ASTRA, the sub-channel analysis code THALES and the fuel performance analysis code FROST. The validation study for the CHASER system is addressed using the NEACRP three-dimensional PWR core transient benchmark problem. A series of conservative rod ejection analyses for the APR1400 type plant is performed for both hot full power (HFP) and hot zero power (HZP) conditions to determine the most limiting cases. The conservative rod ejection analysis methodology is designed to properly consider important phenomena and physical parameters.

  12. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    International Nuclear Information System (INIS)

    Holm, D.D.

    1987-01-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions

  13. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    Science.gov (United States)

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  14. One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet

    International Nuclear Information System (INIS)

    Harrison, Michael G.; Neukirch, Thomas

    2009-01-01

    In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet

  15. Quasilocal equilibrium condition for black ring

    International Nuclear Information System (INIS)

    Astefanesei, Dumitru; Rodriguez, Maria J.; Theisen, Stefan

    2009-01-01

    We use the conservation of the renormalized boundary stress-energy tensor to obtain the equilibrium condition for a general (thin or fat) black ring solution. We also investigate the role of the spatial stress in the thermodynamics of deformation within the quasilocal formalism of Brown and York and discuss the relation with other methods. In particular, we discuss the quantum statistical relation for the unbalanced black ring solution.

  16. Selected readings in chemical kinetics

    CERN Document Server

    Back, Margaret H

    2013-01-01

    Selected Readings in Chemical Kinetics covers excerpts from 12 papers in the field of general and gas-phase kinetics. The book discusses papers on the laws of connexion between the conditions of a chemical change and its amount; on the reaction velocity of the inversion of the cane sugar by acids; and the calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. The text then tackles papers on simple gas reactions; on the absolute rate of reactions in condensed phases; on the radiation theory of chemical action; and on the theory of unimolecular reacti

  17. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  18. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-01-01

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g -1 for 10 g L -1 of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 o C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  19. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g{sup -1} for 10 g L{sup -1} of a-WM concentration. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 {sup o}C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  20. Determination of in vivo RNA kinetics using RATE-seq.

    Science.gov (United States)

    Neymotin, Benjamin; Athanasiadou, Rodoniki; Gresham, David

    2014-10-01

    The abundance of a transcript is determined by its rate of synthesis and its rate of degradation; however, global methods for quantifying RNA abundance cannot distinguish variation in these two processes. Here, we introduce RNA approach to equilibrium sequencing (RATE-seq), which uses in vivo metabolic labeling of RNA and approach to equilibrium kinetics, to determine absolute RNA degradation and synthesis rates. RATE-seq does not disturb cellular physiology, uses straightforward normalization with exogenous spike-ins, and can be readily adapted for studies in most organisms. We demonstrate the use of RATE-seq to estimate genome-wide kinetic parameters for coding and noncoding transcripts in Saccharomyces cerevisiae. © 2014 Neymotin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Addendum to "Increasing Early Childhood Educators' Use of Communication-Facilitating and Language-Modelling Strategies: Brief Speech and Language Therapy Training"

    Science.gov (United States)

    McDonald, David; Proctor, Penny; Gill, Wendy; Heaven, Sue; Marr, Jane; Young, Jane

    2015-01-01

    The purpose of this addendum is to include within our discussion the findings of Girolametto et al. (2007), a randomized controlled trial of Teacher Talk training, an adapted version of Learning Language and Loving It (LLLI) (Weitzman and Greenberg, 2002). Teacher Talk does not include the coaching and video feedback elements of LLLI. Girolametto…

  2. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-01-01

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed

  3. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  4. Collision integral and equilibrium distributions for a bounded plasma

    International Nuclear Information System (INIS)

    Zagorodnij, A.G.; Usenko, A.S.; Yakimenko, I.P.

    1985-01-01

    A kinetic equation of Balesku-Lennard type for multicomponent system of charged particle limited by two flat-parallel surfaces is derived on the basis of the general theory of electromagnetic fluctuations in plasma. Equilibrium values of collision integral for a plasma with arbitrary configuration boundaries are calculated and general ratios describing charged particles density profiles in such systems are obtained

  5. Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (Ⅵ) from aqueous solution: Equilibrium, kinetics, thermodynamics and desorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Gorzin, Fatemeh; Ghoreyshi, Ali Asghar [Babol University of Technology, Babol (Iran, Islamic Republic of)

    2013-08-15

    Elimination of Cr (Ⅵ) from aqueous solution was investigated by a new low cost activated carbon developed from aerobically digested activated sludge (ADAS). The adsorbent demonstrated remarkable characteristics such as high surface area of 760m{sup 2}·g{sup −1} and large total pore volume of 0.8383 cm{sup 3}·g{sup −1}. The maximum equilibrium uptake of Cr (Ⅵ) was 70.15 mg·g{sup −1} at optimum pH 2.0. Interpretation of equilibrium data revealed that the best description was provided by the Freundlich isotherm. The kinetics of Cr (Ⅵ) adsorption was well described by the pseudo-second order equation. Calculation of thermodynamic parameters revealed that the adsorption process was endothermic, spontaneous and feasible.. The adsorbent was regenerated using NaOH and it was found to be suitable for reuse in successive adsorption-desorption cycles. The desorption efficiency of Cr (Ⅵ) ion was up to 78%. Finally, comparison of Cr (Ⅵ) adsorption capacity of the developed adsorbent with commercial activated carbon demonstrated its higher performance.

  6. Super-GCA connection with tensionless strings: Addendum to “Super-GCA from N=(2,2 super-Virasoro” [Phys. Lett. B 754 (2016 195–200

    Directory of Open Access Journals (Sweden)

    Ipsita Mandal

    2016-09-01

    Full Text Available In this addendum, we consider the connection between certain 2d super-GCA, obtained from the parametric contractions of 2d SCFTs, which can describe the constraint algebra of null spinning strings.

  7. Game-theoretic equilibrium analysis applications to deregulated electricity markets

    Science.gov (United States)

    Joung, Manho

    This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators' ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator's capacity procurement, the higher the risk of exaggerated capacity offers.

  8. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  9. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  10. Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): Parametric, kinetic, equilibrium and thermodynamic aspects

    International Nuclear Information System (INIS)

    Lataye, D.H.; Mishra, I.M.; Mall, I.D.

    2008-01-01

    The present study deals with the adsorption of pyridine (Py) from synthetic aqueous solutions by rice husk ash (RHA) and commercial grade granular activated carbon (GAC) and reports on the kinetic, equilibrium and thermodynamic aspects of Py sorption. Batch sorption studies were carried out to evaluate the effect of various parameters, such as adsorbent dose (m), initial pH (pH 0 ), contact time (t), initial concentration (C 0 ) and temperature (T) on the removal of Py. The maximum removal of Py is found to be ∼96% and ∼97% at lower concentrations ( -3 ) and ∼79.5% and ∼84% at higher concentrations (600 mg dm -3 ) using 50 kg m -3 and 30 kg m -3 of RHA and GAC dosage, respectively, at 30 ± 1 o C. Adsorption of Py is found to be endothermic in nature and the equilibrium data can be adequately represented by Toth and Redlich-Peterson isotherm equations. Py can be recovered from the spent adsorbents by using acidic water and 0.1 N H 2 SO 4 . The overall adsorption of Py on RHA and GAC is found to be in the order of GAC > RHA. Comparative assessment of adsorbents used by various investigators available in literature showed the effectiveness of BFA and RHA over other adsorbents. Spent RHA can simply be filtered, dried and used in the boiler furnaces/incinerators. Thus, its heating value can be recovered

  11. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  12. MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE

    Directory of Open Access Journals (Sweden)

    VEACESLAV ZELENTSOV

    2017-03-01

    Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.

  13. Thermodynamic and kinetic modelling: creep resistant materials

    DEFF Research Database (Denmark)

    Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson

    2008-01-01

    The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase part...

  14. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  15. Entropy and baryon number conservation in the deconfinement phase transition

    International Nuclear Information System (INIS)

    Leonidov, A.; Redlich, K.; Satz, H.; Suhonen, E.; Weber, G.

    1994-01-01

    The conservation of entropy and baryon number in the deconfinement phase transition is studied in the framework of the bag model. In the standard construction of the equilibrium phase transition from a quark-gluon plasma into a hadron gas a subsequent dilution and reheating of the system on the phase boundary is necessary to preserve the entropy and baryon number conservation. We propose modifying the bag pressure to depend explicitly on temperature and baryon chemical potential. It is shown that this modification is sufficient to construct a model in agreement with the Gibbs equilibrium criteria for a phase transition, while simultaneously assuring entropy and baryon number conservation on the phase boundary. Within this model the quark-gluon plasma hadronizes at a fixed temperature and chemical potential

  16. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  17. Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II. Modeling

    DEFF Research Database (Denmark)

    Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover

    2014-01-01

    the computational implementation of a Nernst–Planck–Poisson (NPP) model to represent and interpret conductivity-relaxation measurements. Defect surface chemistry is represented with both equilibrium and finite-rate kinetic models. The experiments and the models are capable of representing relaxations from strongly......A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...... provide sufficient information from which to derive material properties, it is found that uniquely establishing properties is difficult. Augmenting equilibrium measurements with conductivity relaxation significantly improves the evaluation of needed physical properties. This paper develops and applies...

  18. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Vettori, Irene; Ruiz-Agudo, Encarnacion

    2016-05-24

    Nanolimes are alcohol dispersions of Ca(OH)2 nanoparticles used in the conservation of cultural heritage. Although it was believed that Ca(OH)2 particles were inert when dispersed in short-chain alcohols, it has been recently shown that they can undergo transformation into calcium alkoxides. Little is known, however, about the mechanism and kinetics of such a phase transformation as well as its effect on the performance of nanolimes. Here we show that Ca(OH)2 particles formed after lime slaking react with ethanol and isopropanol and partially transform (fractional conversion, α up to 0.08) into calcium ethoxide and isopropoxide, respectively. The transformation shows Arrhenius behavior, with apparent activation energy Ea of 29 ± 4 and 37 ± 6 kJ mol(-1) for Ca-ethoxide and Ca-isopropoxide conversion, respectively. High resolution transmission electron microscopy analyses of reactant and product phases show that the alkoxides replace the crystalline structure of Ca(OH)2 along specific [hkl] directions, preserving the external hexagonal (platelike) morphology of the parent phase. Textural and kinetic results reveal that this pseudomorphic replacement involves a 3D diffusion-controlled deceleratory advancement of the reaction front. The results are consistent with an interface-coupled dissolution-precipitation replacement mechanism. Analysis of the carbonation of Ca(OH)2 particles with different degree of conversion into Ca-ethoxide (α up to 0.08) and Ca-isopropoxide (α up to 0.04) exposed to air (20 °C, 80% relative humidity) reveals that Ca-alkoxides significantly reduce the rate of transformation into cementing CaCO3 and induce the formation of metastable vaterite, as opposed to stable calcite which forms in untransformed Ca(OH)2 samples. Similar effects are obtained when a commercial nanolime partially transformed into Ca-ethoxide is subjected to carbonation. Such effects may hamper/delay the strengthening or consolidation effects of nanolimes, thus having

  19. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  20. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    Energy Technology Data Exchange (ETDEWEB)

    Avlyanov, Zh K; Kabanov, N M; Zezin, A B

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coincides with the value obtained by the potentiometric method.

  1. Investigation of complexing equilibrium of polyacrylate-anion with cadmium ions by polarographic method

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.

    1985-01-01

    Polarographic investigation of cadmium complex with polyacrylate-anion in aqueous KCl solution is carried out. It is shown that the polarographic method allows one to define equilibrium constants of polymer metallic complex (PMC) formation even in the case, when current magnitudes are defined by PMC dissociation reaction kinetic characteristics. The obtained equilibrium constants of stepped complexing provide the values of mean coordination PAAxCd complex number of approximately 1.5, that coinsides with the value obtained by the potentiometric method

  2. Kinetics of a new phase formation in supersaturated solid solutions. 1. Dilute one-component systems

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1991-07-01

    A complete set of kinetic equations describing the diffusion decay of supersaturated solutions, as well as the formation of new-phase fluctuations in equilibrium systems, is derived. A novel method of determining forward and backward reaction rates entering the master equation is proposed which does not require the use of any reference cluster size distribution, either the constrained or the true equilibrium one, employed in all modifications of the classical nucleation theory. Instead, this reference distribution can be obtained as an equilibrium solution of the present master equation. The main advantage of this method is the possibility to take into account various factors affecting the diffusion decay, such as the reaction kinetics at the precipitate surfaces and the diffusion kinetics in the mother phase with account of elastic interaction between nucleating species and their clusters. The latter is of a key importance in the irradiation environment considered in the forthcoming second part of the article. (author). 3 refs

  3. Extension of CE/SE method to non-equilibrium dissociating flows

    KAUST Repository

    Wen, C.Y.

    2017-12-08

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  4. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Initial state dependence of nonlinear kinetic equations: The classical electron gas

    International Nuclear Information System (INIS)

    Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.

    1985-01-01

    The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated

  6. Addendum Guidelines for the Prevention of Peanut Allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases-Sponsored Expert Panel.

    Science.gov (United States)

    Togias, Alkis; Cooper, Susan F; Acebal, Maria L; Assa'ad, Amal; Baker, James R; Beck, Lisa A; Block, Julie; Byrd-Bredbenner, Carol; Chan, Edmond S; Eichenfield, Lawrence F; Fleischer, David M; Fuchs, George J; Furuta, Glenn T; Greenhawt, Matthew J; Gupta, Ruchi S; Habich, Michele; Jones, Stacie M; Keaton, Kari; Muraro, Antonella; Plaut, Marshall; Rosenwasser, Lanny J; Rotrosen, Daniel; Sampson, Hugh A; Schneider, Lynda C; Sicherer, Scott H; Sidbury, Robert; Spergel, Jonathan; Stukus, David R; Venter, Carina; Boyce, Joshua A

    Food allergy is an important public health problem because it affects children and adults, can be severe and even life-threatening, and may be increasing in prevalence. Beginning in 2008, the National Institute of Allergy and Infectious Diseases, working with other organizations and advocacy groups, led the development of the first clinical guidelines for the diagnosis and management of food allergy. A recent landmark clinical trial and other emerging data suggest that peanut allergy can be prevented through introduction of peanut-containing foods beginning in infancy. Prompted by these findings, along with 25 professional organizations, federal agencies, and patient advocacy groups, the National Institute of Allergy and Infectious Diseases facilitated development of addendum guidelines to specifically address the prevention of peanut allergy. The addendum provides 3 separate guidelines for infants at various risk levels for the development of peanut allergy and is intended for use by a wide variety of health care providers. Topics addressed include the definition of risk categories, appropriate use of testing (specific IgE measurement, skin prick tests, and oral food challenges), and the timing and approaches for introduction of peanut-containing foods in the health care provider's office or at home. The addendum guidelines provide the background, rationale, and strength of evidence for each recommendation. Guidelines have been developed for early introduction of peanut-containing foods into the diets of infants at various risk levels for peanut allergy. Published by Elsevier Inc.

  7. Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, A. Bert M.; Versteeg, Geert F.; Pangarkar, Vishwas G.

    2002-01-01

    Lactic acid is an important commercial product and extracting this from aqueous solution is a growing requirement in fermentation-based industries. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid–amine (solvent) system used. The equilibrium

  8. Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol

    NARCIS (Netherlands)

    Wasewar, Kailas L.; Heesink, Albertus B.M.; Versteeg, Geert; Pangarkar, Vishwas G.

    2002-01-01

    Lactic acid is an important commercial product and extracting this from aqueous solution is a growing requirement in fermentation-based industries. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid-amine (solvent) system used. The equilibrium

  9. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  10. Theoretical study of thin metallic deposit layers: from electronic structure to kinetics

    International Nuclear Information System (INIS)

    Senhaji, Abdelali

    1993-01-01

    We have studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A (or B) deposited on a B (or A) substrate. We used an energetic model derived from the electronic structure (T.B.I.M.) allowing us to study the surface segregation both in disordered and in ordered alloys. Moreover we have developed a kinetic model (K.T.B.I.M.) consistent with the TBIM energetic model to study the kinetics both of segregation and dissolution. This process has been applied to the Cu-Pt system for which Auger, LEED and photoemission experiments are in progress at L.U.R.E. Concerning the equilibrium surface segregation in the ordered state we have studied all the possible terminations for the (111) and (100) faces in the various ordered structures occurring on the F.C.C. lattice (L1 0 , L1 1 - L1 2 and L'). In particular we have determined the domain of (meta)stability of each termination, which is very useful to understand the competition between single and double steps in ordered alloys. Studying the kinetics of dissolution of a few layers of Cu (or Pt) deposited on the (111) or (100) face of a Pt (or Cu) substrate, we have shown the formation of surface compounds with a great variety of behaviours depending on the face or on the temperature. All these behaviours can be rationalized with the local equilibrium concept, which we have defined accurately within our model and which allows to connect the dissolution mode with the equilibrium segregation. (author) [fr

  11. Addendum to Technical Proposal: A Facility to Search for Hidden Particles (SHiP) at the CERN SPS

    CERN Document Server

    SHiP Collaboration

    2015-01-01

    With the Technical Proposal submitted to the SPSC committee in April 2015, the SHiP collaboration declared its interest in proceeding towards a Comprehensive Design Study phase with the aim of preparing for the Technical Design Reports pending an approval by the CERN committees. Following the recommendation by the SPSC, it has been decided to complement the TP with this addendum that provides an update of the key aspects for the review of the SHiP project.

  12. The market for conservation and other hostages

    OpenAIRE

    Harstad, Bård

    2016-01-01

    A conservation good, such as the rainforest, is a hostage: it is possessed by S who may prefer to consume it, but B receives a larger value from continued conservation. A range of prices would make trade mutually beneficial. So, why doesn't B purchase conservation, or the forest, from S? If this were an equilibrium, S would never consume, anticipating a higher price at the next stage. Anticipating this, B prefers to deviate and not pay. The Markov-perfect equilibria are in mixed strategies, i...

  13. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  14. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  15. Equilibrium isotherm and kinetic studies for the simultaneous removal of phenol and cyanide by use of S. odorifera (MTCC 5700) immobilized on coconut shell activated carbon

    Science.gov (United States)

    Singh, Neetu; Balomajumder, Chandrajit

    2017-10-01

    In this study, simultaneous removal of phenol and cyanide by a microorganism S. odorifera (MTCC 5700) immobilized onto coconut shell activated carbon surface (CSAC) was studied in batch reactor from mono and binary component aqueous solution. Activated carbon was derived from coconut shell by chemical activation method. Ferric chloride (Fecl3), used as surface modification agents was applied to biomass. Optimum biosorption conditions were obtained as a function of biosorbent dosage, pH, temperature, contact time and initial phenol and cyanide concentration. To define the equilibrium isotherms, experimental data were analyzed by five mono component isotherm and six binary component isotherm models. The higher uptake capacity of phenol and cyanide onto CSAC biosorbent surface was 450.02 and 2.58 mg/g, respectively. Nonlinear regression analysis was used for determining the best fit model on the basis of error functions and also for calculating the parameters involved in kinetic and isotherm models. The kinetic study results revealed that Fractal-like mixed first second order model and Brouser-Weron-Sototlongo models for phenol and cyanide were capable to offer accurate explanation of biosorption kinetic. According to the experimental data results, CSAC with immobilization of bacterium S. odorifera (MTCC 5700) seems to be an alternative and effective biosorbent for the elimination of phenol and cyanide from binary component aqueous solution.

  16. Kinetic investigation of uranyl-uranophile complexation. 1. Macrocyclic kinetic effect and macrocyclic protection effect

    International Nuclear Information System (INIS)

    Tabushi, I.; Yoshizawa, A.

    1986-01-01

    Equilibria and rates of ligand-exchange reactions between uranyl tricarbonate and dithiocarbamates and between uranyl tris-(dithiocarbamates) and carbonate were studied under a variety of conditions. The dithiocarbamates used were acyclic diethyl-dithiocarbamate and macrocyclic tris(dithiocarbamate). The acyclic ligand showed a triphasic (successive three-step) equilibrium with three different equilibrium constants while the macrocyclic ligand showed a clear monophasic (one-step) equilibrium with a much larger stability constant for the dithiocarbamate-uranyl complex. The macrocyclic ligand showed the S/sub N/2-type ligand-exchange rate in the forward as well as reverse process, while the first step of the acyclic ligand-exchange reaction proceeded via the S/sub N/1-type mechanism. This kinetic macrocyclic effect on molecularity is interpreted as the result of a unique topological requirement of uranyl complexation. The macrocyclic ligand also exhibited a clear protection effect, leading to the large stability constant. 19 references, 10 figures, 2 tables

  17. Equilibrium and stability of the Los Alamos spheromak

    International Nuclear Information System (INIS)

    Marklin, G.

    1984-01-01

    The open mesh flux conserver (MFC) on the Los Alamos spheromak (CTX) has been equipped with a large number of Rogowski loops measuring the current in the individual segments of the MFC, providing a complete picture of the surface current pattern induced by the equilibrium and oscillations of the confined plasma. An analysis was made of the data from these Rogowski loops

  18. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  19. Conservative interacting particles system with anomalous rate of ergodicity

    OpenAIRE

    Brzeźniak, Zdzislaw; Flandoli, Franco; Neklyudov, Misha; Zegarliński, Boguslaw

    2010-01-01

    We analyze certain conservative interacting particle system and establish ergodicity of the system for a family of invariant measures. Furthermore, we show that convergence rate to equilibrium is exponential. This result is of interest because it presents counterexample to the standard assumption of physicists that conservative system implies polynomial rate of convergence.

  20. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal

    Science.gov (United States)

    Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.

    2014-06-01

    The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.

  1. Kinetic coefficients for quark-antiquark plasma with quantal treatment of color

    International Nuclear Information System (INIS)

    Dyrek, A.; Florkowski, W.

    1986-07-01

    We discuss the near-equilibrium state of the q-bar q plasma treated as a system of classical particles with quantized color charges. The matrix of the kinetic coefficients is calculated (in the relaxation approximation of the transport equation) and compared with its classical version. The color Ohm law is recovered but the structure of the kinetic matrix is different. 5 refs. (author)

  2. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B.; Mishra, I.M.; Wasewar, K.L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  3. Reduced energy conservation law for magnetized plasma

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1994-01-01

    A global energy conservation law for a magnetized plasma is studied within the context of a quasiparticle description. A reduced energy conservation law is derived for low-frequency, as compared to the gyromagnetic frequency, plasma motions with regard to both non-uniform mean flows and fluctuations in the plasma. The mean value of plasma energy is calculated and sufficient stability conditions for non-equilibrium plasmas are derived. (orig.)

  4. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates

    Science.gov (United States)

    Uchikawa, Joji; Zeebe, Richard E.

    2012-10-01

    Interpretations of the primary paleoceanographic information recorded in stable oxygen isotope values (δ18O) of biogenic CaCO3 can be obscured by disequilibrium effects. CaCO3 is often depleted in 18O relative to the δ18O values expected for precipitation in thermodynamic equilibrium with ambient seawater as a result of vital effects. Vital effects in δ18O have been explained in terms of the influence of fluid pH on the overall δ18O of the sum of dissolved inorganic carbon (DIC) species (often referred to as "pH model") and in terms of 18O depletion as a result of the kinetic effects associated with CO2 hydration (CO2 + H2O ↔ H2CO3 ↔ HCO3- + H+) and CO2 hydroxylation (CO2 + OH- ↔ HCO3-) in the calcification sites (so-called "kinetic model"). This study addresses the potential role of an enzyme, carbonic anhydrase (CA), that catalyzes inter-conversion of CO2 and HCO3- in relation to the underlying mechanism of vital effects. We performed quantitative inorganic carbonate precipitation experiments in order to examine the changes in 18O equilibration rate as a function of CA concentration. Experiments were performed at pH 8.3 and 8.9. These pH values are comparable to the average surface ocean pH and elevated pH levels observed in the calcification sites of some coral and foraminiferal species, respectively. The rate of uncatalyzed 18O exchange in the CO2-H2O system is governed by the pH-dependent DIC speciation and the kinetic rate constant for CO2 hydration and hydroxylation, which can be summarized by a simple mathematical expression. The results from control experiments (no CA addition) are in agreement with this expression. The results from control experiments also suggest that the most recently published kinetic rate constant for CO2 hydroxylation has been overestimated. When CA is present, the 18O equilibration process is greatly enhanced at both pH levels due to the catalysis of CO2 hydration by the enzyme. For example, the time required for 18O

  5. Kinetics and thermodynamics of first-order Markov chain copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, P.; Andrieux, D. [Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels (Belgium)

    2014-07-28

    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.

  6. Sampling the equilibrium kinetic network of Trp-cage in explicit solvent

    NARCIS (Netherlands)

    Du, W.; Bolhuis, P.G.

    2014-01-01

    We employed the single replica multiple state transition interface sampling (MSTIS) approach to sample the kinetic (un) folding network of Trp-cage mini-protein in explicit water. Cluster analysis yielded 14 important metastable states in the network. The MSTIS simulation thus resulted in a full 14

  7. Systems engineering functions and requirements for the Hanford cleanup mission. First issue, Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, J.J.

    1994-01-01

    This addendum provides the technical detail of a systems engineering functional analysis for the Hanford cleanup mission. Details of the mission analysis including mission statement, scope, problem statement, initial state definition, and final state definition are provided in the parent document. The functional analysis consists of Input Computer Automated Manufacturing Definition (IDEFO) diagrams an definitions, which will be understood by systems engineers, but which may be difficult for others to comprehend. For a more complete explanation of this work, refer to the parent document. The analysis covers the total Hanford cleanup mission including the decomposition levels at which the various Hanford programs or integrated activities are encountered.

  8. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  9. Fine kinetics of natural physical ageing in glassy As10Se90

    International Nuclear Information System (INIS)

    Balitska, V.; Golovchak, R.; Kozdras, A.; Shpotyuk, O.

    2014-01-01

    Sigmoid behavior of natural physical ageing in glassy As 10 Se 90 reveals multi-step-wise growing kinetics of enthalpy losses. Phenomenological description of this kinetics can be adequately developed in terms of first-order relaxation processes, tending atomic structure from initial towards more thermodynamically equilibrium state. This kinetics is shown to obey characteristic stretched exponential behavior originated from a number of growing steps, attributed to the interconnected processes of chalcogen chain alignment and cooperative shrinkage of glass network

  10. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.

    Science.gov (United States)

    Sharma, Ajeet K; O'Brien, Edward P

    2018-04-01

    Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  12. 3D nozzle flow simulations including state-to-state kinetics calculation

    Science.gov (United States)

    Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.

    2014-12-01

    In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.

  13. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  14. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon

    International Nuclear Information System (INIS)

    Kennedy, L. John; Vijaya, J. Judith; Sekaran, G.; Kayalvizhi, K.

    2007-01-01

    Investigations were conducted in batch mode to study the adsorption behaviour of m-cresol on a porous carbon prepared from rice husk (RHAC) by varying the parameters such as agitation time, m-cresol concentration (50-300 mg/l), pH (2.5-10) and temperature (293-323 K). Studies showed that the adsorption decreased with increase in pH and temperature. The isotherm data were fitted to Langmuir, Freundlich, and Dubinin-Radushkevic (D-R) models. The kinetic models such as pseudo-first-order, pseudo-second-order and intraparticle diffusion models were selected to understand the reaction pathways and mechanism of adsorption process. The thermodynamic equilibrium coefficients obtained at different temperatures were used to evaluate the thermodynamic constants ΔG o , ΔH o and ΔS o . The sorption process was found to be exothermic in nature (ΔH o : -23.46 to -25.40 kJ/mol) with a decrease in entropy (ΔS o : -19.44 to -35.87 J/(mol K)). The negative value of Gibbs free energy, ΔG o indicates that the adsorption occurs via a spontaneous process. The decrease in the value of -ΔG o from 17.70 to 13.54 kJ/mol with increase in pH and temperature indicates that the adsorption of m-cresol onto activated carbon is less favourable at higher temperature and pH range. The influence of mesopore and a possible mechanism of adsorption is also suggested

  15. Multi-equilibrium property of metabolic networks: SSI module

    Directory of Open Access Journals (Sweden)

    Chen Luonan

    2011-06-01

    Full Text Available Abstract Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  16. Kinetics of the subtransition in dipalmitoylphosphatidylcholine

    International Nuclear Information System (INIS)

    Tristram-Nagle, S.; Wiener, M.C.; Yang, C.P.; Nagle, J.F.

    1987-01-01

    The kinetics of the interconversions of the subgel and gel phases in dipalmitoylphosphatidylcholine have been studied by using differential dilatometry, differential scanning calorimetry (DSC), and neutral buoyancy centrifugation as a function of incubation temperature and deuteriation of the solvent. As seen by others, DSC scans show two peaks in the subgel transition region for incubation temperatures below 1 0 C. After incubation at 0.1 0 C, the DSC peak that occurs at the lower scanning temperature appears with an incubation half-time of 0.5 day and eventually converts into a peak at higher scanning temperature with an incubation half-time of 18 days. By varying the scanning rate, the authors show that these two peaks merge into one at slow scanning rates with a common equilibrium transition temperature of 13.8 0 C, in agreement with equilibrium calorimetry and dilatometry. For incubation temperatures above 4.6 0 C, only one peak appears in both scanning dilatometry and calorimetry. While the initial rate of subgel conversion is smaller at the higher incubation temperatures, after 300 h a higher percentage of the sample has converted to subgel than at the lower incubation temperatures. They suggest that higher incubation temperatures (near 5 0 C) are preferable for forming the stable subgel phase, and they present a colliding domain picture that indicates why this may be so. The results in D 2 O and the similarity of the kinetics of volume decrease with the kinetics of wide-angle diffraction lines also support the suggestion that the partial loss of interlamellar water plays a kinetic role in subgel formation

  17. Kinetics of the subtransition in dipalmitoylphosphatidylcholine.

    Science.gov (United States)

    Tristram-Nagle, S; Wiener, M C; Yang, C P; Nagle, J F

    1987-07-14

    The kinetics of the interconversions of the subgel and gel phases in dipalmitoylphosphatidylcholine have been studied by using differential dilatometry, differential scanning calorimetry (DSC), and neutral buoyancy centrifugation as a function of incubation temperature and deuteriation of the solvent. As seen by others, DSC scans show two peaks in the subgel transition region for incubation temperatures below 1 degree C. After incubation at 0.1 degree C, the DSC peak that occurs at the lower scanning temperature appears with an incubation half-time of 0.5 day and eventually converts into a peak at higher scanning temperature with an incubation half-time of 18 days. By varying the scanning rate, we show that these two peaks merge into one at slow scanning rates with a common equilibrium transition temperature of 13.8 degrees C, in agreement with equilibrium calorimetry and dilatometry (delta V = 0.017 +/- 0.001 mL/g). For incubation temperatures above 4.6 degrees C, only one peak appears in both scanning dilatometry and calorimetry. While the initial rate of subgel conversion is smaller at the higher incubation temperatures, after 300 h a higher percentage of the sample has converted to subgel than at the lower incubation temperatures. We suggest that higher incubation temperatures (near 5 degrees C) are preferable for forming the stable subgel phase, and we present a colliding domain picture that indicates why this may be so. Our results in D2O and the similarity of the kinetics of volume decrease with the kinetics of wide-angle diffraction lines also support the suggestion that the partial loss of interlamellar water plays a kinetic role in subgel formation.

  18. Extension of the quantum-kinetic model to lunar and Mars return physics

    Energy Technology Data Exchange (ETDEWEB)

    Liechty, D. S. [Aerothermodynamics Branch, NASA Langley Research Center, Hampton, Virginia 23681 (United States); Lewis, M. J. [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-02-15

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aim to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.

  19. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  20. Kinetic modelling and thermodynamic studies on purification of ...

    African Journals Online (AJOL)

    Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.

  1. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  2. Hanford Tank Farms Vadose Zone, Addendum to the T Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, Robert

    2000-07-01

    This addendum to the T Tank Farm Report (GJO-99-101-TARA, GJO-HAN-27) published in September 1999 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the T Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the T Tank Farm at the DOE Hanford Site in the state of Washington.

  3. Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus.

    Science.gov (United States)

    Das, Devlina; Das, Nilanjana; Mathew, Lazar

    2010-12-15

    Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g(-1) of biomass at pH 6.0 in the presence of 200 mg L(-1) Ag(I) at 20°C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption (ΔG, ΔH and ΔS) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Separation of aflatoxin B1 from synthetic physiological fluids using talc and diatomite: Kinetic and isotherm aspects.

    Science.gov (United States)

    Sprynskyy, Myroslav; Krzemień-Konieczka, Iwona; Gadzała-Kopciuch, Renata; Buszewski, Bogusław

    2018-01-01

    The objective of the study was to examine adsorption of the aflatoxin B1 from synthetic gastric fluid and synthetic intestinal fluid by talc, raw and calcined diatomite. The kinetic and equilibrium adsorption processes were studied in the batch adsorption experiments applying high performance liquid chromatography for the aflatoxin B1 determination. The kinetic study showed a very fast adsorption of the aflatoxin B1 onto the selected adsorbents from the both physiological fluids with reaching equilibrium within 1-15min. The aflatoxin B1 was almost completely adsorbed in initial linear step of the kinetic process that can be described well by the zero-order kinetics model. The experimental data of the equilibrium adsorption were characterized using the Langmuir and Freundlich isotherm models. The high adsorption effectiveness was found in a range of 90%-100% and 60%-100% for the diatomite samples and the talc respectively at the initial concentrations of the aflatoxin B1 as 31-300ng/mL. The possible mechanisms of the aflatoxin adsorption onto the used mineral adsorbents are also discussed in the work. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    Science.gov (United States)

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  6. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  7. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  8. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The non-equilibrium Green's function method for nanoscale device simulation

    CERN Document Server

    Pourfath, Mahdi

    2014-01-01

    For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies, and scattering self-energie...

  10. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    International Nuclear Information System (INIS)

    Amin, Nevine Kamal

    2009-01-01

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R 2 > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG o ), standard enthalpy (ΔH o ), standard entropy (ΔS o ), and the activation energy (E a ) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  11. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nevine Kamal, E-mail: nkamalamin@yahoo.com [Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2009-06-15

    The use of cheap, high efficiency and ecofriendly adsorbent has been studied as an alternative source of activated carbon for the removal of dyes from wastewater. This study investigates the use of activated carbons prepared from pomegranate peel for the removal of direct blue dye from aqueous solution. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, temperature, initial dye concentration adsorbent dosage and contact time. The results showed that the adsorption of direct blue dye was maximal at pH 2, as the amount of adsorbent increased, the percentage of dye removal increased accordingly but it decreased with the increase in initial dye concentration and solution temperature. The adsorption kinetics was found to follow pseudo-second-order rate kinetic model, with a good correlation (R{sup 2} > 0.99) and intra-particle diffusion as one of the rate determining steps. Langmuir, Freundlich, Temkin, Dubinin-RadushKevich (D-R) and Harkins-Jura isotherms were used to analyze the equilibrium data at different temperatures. In addition, various thermodynamic parameters, such as standard Gibbs free energy ({Delta}G{sup o}), standard enthalpy ({Delta}H{sup o}), standard entropy ({Delta}S{sup o}), and the activation energy (E{sub a}) have been calculated. The adsorption process of direct blue dye onto different activated carbons prepared from pomegranate peel was found to be spontaneous and exothermic process. The findings of this investigation suggest that the physical sorption plays a role in controlling the sorption rate.

  12. Hungarian University Students' Misunderstandings in Thermodynamics and Chemical Kinetics

    Science.gov (United States)

    Turanyi, Tamas; Toth, Zoltan

    2013-01-01

    The misunderstandings related to thermodynamics (including chemical equilibrium) and chemical kinetics of first and second year Hungarian students of chemistry, environmental science, biology and pharmacy were investigated. We demonstrated that Hungarian university students have similar misunderstandings in physical chemistry to those reported in…

  13. alfa-Deuterium kinetic isotope effects in reactions of methyllithium. Is better aggregation the cause of lower reactivity?

    DEFF Research Database (Denmark)

    Holm, Torkil

    1996-01-01

    The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium......The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium...

  14. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Kinetic Evaluation of Naphthalene Removal using Acid - Modified ...

    African Journals Online (AJOL)

    Kinetic evaluation of naphthalene onto acid – modified and unmodified bentonite clay mineral was investigated by means of the effects of concentration, contact time and pH. The amount of naphthalene adsorbed was determined spectrophotometrically. The optimum pH value and equilibrium contact time for the adsorption ...

  16. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  17. Addendum to ‘Understanding risks in the light of uncertainty: low-probability, high-impact coastal events in cities’

    Science.gov (United States)

    Galarraga, Ibon; Sainz de Murieta, Elisa; Markandya, Anil; María Abadie, Luis

    2018-02-01

    This addendum adds to the analysis presented in ‘Understanding risks in the light of uncertainty: low-probability, high-impact coastal events in cities’ Abadie et al (2017 Environ. Res. Lett. 12 014017). We propose to use the framework developed earlier to enhance communication and understanding of risks, with the aim of bridging the gap between highly technical risk management discussion to the public risk aversion debate. We also propose that the framework could be used for stress-testing resilience.

  18. Reduced Order Modeling for Non-equilibrium Radiation Hydrodynamics of Base Flow and Wakes: Enabling Manned Missions to Mars

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding non-equilibrium chemical kinetics and its interaction with radiation and fluid mechanics in hypersonic flows remains one of the largest obstacles to...

  19. The role of high temperature heterogeneous reaction kinetics in the rate of radionuclide vaporisation during core-concrete interactions

    International Nuclear Information System (INIS)

    Raymond, D.P.; Clough, P.N.

    1989-09-01

    Heterogeneous reactions may cause enhanced release of radionuclides during the core-concrete interaction (CCl) stage of a PWR severe accident. The VANESA computer code models these CCI releases using chemical equilibrium assumptions; however, the possibility that chemical kinetics could prevent equilibrium from being achieved is considered in this report. Direct experimental evidence is lacking on these reactions. Therefore, some analogues studies are reviewed, including examples of Eyring's surface reaction rate theory; sequential vaporisation-oxidation processes; iron and steelmaking chemistry; radionuclide evaporation from solid UO 2 . This circumstantial evidence appeared to agree with the current assumptions, in VANESA and some UK modelling studies, that mass transfer, rather than chemical kinetics will limit the rate at which equilibrium is attained. (author)

  20. Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC-MS/MS: equilibrium, kinetics and thermodynamics studies.

    Science.gov (United States)

    Naushad, Mu; Alothman, Z A; Khan, M R

    2013-10-15

    In the present study, De-Acidite FF-IP resin was used to remove a highly toxic and persistent organophosphorus pesticide (malathion) from the aqueous solution. Batch experiments were performed as a function of various experimental parameters such as effect of pH (2-10), contact time (10-120 min), resin dose (0.05-0.5 g), initial malathion concentration (0.5-2.5 µg mL(-1)) and temperature (25-65°C). The concentration of malathion was determined using a sensitive, selective and rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The uptake rate of malathion on De-Acidite FF-IP resin was rapid and equilibrium established within 40 min. Kinetics studies showed better applicability for pseudo-second-order model. The equilibrium data was fitted to Langmuir and Freundlich isotherm models and the isotherm constants were calculated for malathion. The values of thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) were computed from the Van't Hoff plot of lnKC vs. 1/T which showed that the adsorption of malathion was feasible, endothermic and spontaneous. The regeneration studies were carried out which demonstrated a decrease in the recovery of malathion from 95% to 68% after five consecutive cycles. Breakthrough and exhaustive capacities of malathion were found to be 1.25 mg g(-1) and 3.5 mg g(-1), respectively. © 2013 Elsevier B.V. All rights reserved.

  1. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  2. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    Science.gov (United States)

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution

    International Nuclear Information System (INIS)

    Mazeliauskas, Aleksas

    2017-01-01

    We use leading order effective kinetic theory to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations of the energy-momentum tensor to a time when hydrodynamics becomes applicable. With this map, the pre-thermal evolution from saturated nuclei to hydrodynamics can be modeled in the framework of weakly coupled QCD. (paper)

  4. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution

    CERN Document Server

    Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek

    2016-01-01

    We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.

  5. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  6. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    Science.gov (United States)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  7. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael

    2011-04-01

    Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.

  8. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  9. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    Science.gov (United States)

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  10. Dual kinetic curves in reversible electrochemical systems.

    Directory of Open Access Journals (Sweden)

    Michael J Hankins

    Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.

  11. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  12. On the kinetic theory of a fully ionized gas

    International Nuclear Information System (INIS)

    Bezerra Junior, A.G.; Rodbard, M.G.; Kremer, G.M.

    1993-01-01

    An alternative method for kinetic theory recently proposed, that combines the features of the Chapman-Enskog and Grad methods, neither using a solution of the integral equation nor the field equations of the moments, is applied to ionized gases. Like in the Grad method, the deviation from equilibrium of the moments are used. Like in the method of Grad, the deviation from equilibrium of the distribution function is written in terms of the moments of the distribution function, but the constitutive equations follow direct from the Boltzmann equation through the Chapman-Enskog method. (author)

  13. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  14. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    Science.gov (United States)

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  15. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  16. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin`s Building 100 facility in Valley Forge, PA, which is detailed in Part B.

  17. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1-December 31, 1998

    International Nuclear Information System (INIS)

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin's Building 100 facility in Valley Forge, PA, which is detailed in Part B

  18. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  19. Evaluation of Lagergren Kinetics Equation by Using Novel Kinetics Expression of Sorption of Zn2+ onto Horse Dung Humic Acid (HD-HA

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2016-12-01

    Full Text Available Extraction and purification of humic acid from dry horse dung powder (HD-HA was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994 under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka and desorption rate constant (kd, Langmuir (monolayer and Freundlich (multilayer sorption capacities, and energy (E of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b and energy (E were determined according to Langmuir isotherm model, and multilayer sorption capacity (B was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a, Langmuir sorption capacity (b, and sorbed Zn2+ at equilibrium (xe.

  20. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Science.gov (United States)

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  1. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  2. Adsorption removal of tartrazine by chitosan/polyaniline composite: Kinetics and equilibrium studies.

    Science.gov (United States)

    Sahnoun, Sousna; Boutahala, Mokhtar

    2018-02-24

    The present work focused on the performance of chitosan/polyaniline (Cht-PANI) composite for removing tartrazine dye from aqueous solutions. The adsorbent was characterized using SEM, XRD, FTIR, and TGA/DTA techniques. The effects of pH, initial dye concentration, contact time, and temperature on azo dye removal were studied. The kinetics and isotherm of tartrazine removal follow pseudo-second-order kinetics and the Freundlich isotherm, respectively. The Langmiur isotherm model exhibted a maximum adsorption capacity of 584.0 mg/g. The thermodynamic parameters were calculated and the negative values of ΔG° and positive value of ΔH° indicate that the adsorption processes are spontaneous and endothermic in nature. In addition, the resulting adsorbent reusability was demonstrated over four cycles, indicating that the Cht-PANI is a very promising adsorbent for removal of toxic pollutants from aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research

    Science.gov (United States)

    Fegley, Bruce, Jr.

    1990-01-01

    A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.

  4. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    Science.gov (United States)

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  5. Evolutions and equilibrium parameters of foam films from individual solutions of Bovine serum albumin, n-dodecyl-β-D-maltoside and from their mixed solutions

    Science.gov (United States)

    Gerasimova, Anelia Tsvetanova; Angarska, Jana Krumova; Tachev, Krasimir Dimov

    2017-03-01

    The evolutions of thinning of films from individual solutions of BSA, C12G2 and from their mixed solutions with molar ratios 1:1, 1:7.5, 1:50 and 1:100 with pH = 4.9 were recorded by modified (with video camera) interferometric method. Based on them the stages through which the film goes from its formation to the equilibrium state were distinguished. It was shown that: (i) the difference between the kinetic of drainage of films stabilized by high and low molecular surfactants is drastic; (ii) only the change of the pH solution under or above isoelectric point strongly retards the film drainage; (iii) the transition of the kinetic of thinning of films from mixed solutions from a kinetic typical for high molecular substances towards a kinetic for low substances depends on the molar ratio between the components in the solution. From the picture of film corresponding to its equilibrium state the type of film was determined. From the analysis of this picture the equilibrium thickness and contact angle were calculated. It was found that the criterion for Newtonium black films (based on the values of film thickness and contact angle) is not directly applicable for films from protein solutions or mixed solutions with the participation of proteins.

  6. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  7. Solvent effect on the rate and equilibrium of reaction between 10-phenylphenoxarsine and methyl iodide

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1990-01-01

    Effect of solvent nature on nucleophilic capacity of three-coordinated arsenic and the equilibrium state of 10-phenylphenoxarsine (PA) reaction with methyl iodide are studied. Kinetic investigations are carried out by the conductometry at 24,35,45 deg C. It is established that quaternization of PA with methyl iodide when substituting a solvent (ketone for alcohol) increases 3-14 times with simultaneous growth of the activation energy value. When transforming from aprotic solvents to protic ones PA interaction equilibrium with methyl iodide shifts to the side of arsonic salt formation

  8. Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs

    International Nuclear Information System (INIS)

    Rao, Riccardo; Peliti, Luca

    2015-01-01

    The high accuracy exhibited by biological information transcription processes is due to kinetic proofreading, i.e. by a mechanism which reduces the error rate of the information-handling process by driving it out of equilibrium. We provide a consistent thermodynamic description of enzyme-assisted assembly processes involving competing substrates, in a master equation framework. We introduce and evaluate a measure of the efficiency based on rigorous non-equilibrium inequalities. The performance of several proofreading models are thus analyzed and the related time, dissipation and efficiency versus error trade-offs exhibited for different discrimination regimes. We finally introduce and analyze in the same framework a simple model which takes into account correlations between consecutive enzyme-assisted assembly steps. This work highlights the relevance of the distinction between energetic and kinetic discrimination regimes in enzyme-substrate interactions. (paper)

  9. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  10. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  11. X-ray scattering studies of non-equilibrium ordering processes: Progress report, November 1, 1988--October 31, 1989

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1989-01-01

    We report on the progress of our project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' In-house time-resolved x-ray scattering has been used to investigate ordering kinetics in single crystal thin films of Cu 3 Au. Scaling analysis of the results shows that two dimensional kinetic behavior is observed in 260 /angstrom/ thick films. Significant improvements have been made in the local capabilities for fast time resolved measurements and data analysis. Measurements of microphase separation and ordering kinetics have been made in block-co-polymers, and experiments on Au-Cd martensitic material are continuing. 15 refs., 7 figs

  12. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  13. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    Science.gov (United States)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  14. Nonlinear equilibrium in Tokamaks including convective terms and viscosity

    International Nuclear Information System (INIS)

    Martin, P.; Castro, E.; Puerta, J.

    2003-01-01

    MHD equilibrium in tokamaks becomes very complex, when the non-linear convective term and viscosity are included in the momentum equation. In order to simplify the analysis, each new term has been separated in type gradient terms and vorticity depending terms. For the special case in which the vorticity vanishes, an extended Grad-Shafranov type equation can be obtained. However now the magnetic surface is not isobars or current surfaces as in the usual Grad-Shafranov treatment. The non-linear convective terms introduces gradient of Bernoulli type kinetic terms . Montgomery and other authors have shown the importance of the viscosity terms in tokamaks [1,2], here the treatment is carried out for the equilibrium condition, including generalized tokamaks coordinates recently described [3], which simplify the equilibrium analysis. Calculation of the new isobar surfaces is difficult and some computation have been carried out elsewhere for some particular cases [3]. Here, our analysis is extended discussing how the toroidal current density, plasma pressure and toroidal field are modified across the midplane because of the new terms (convective and viscous). New calculations and computations are also presented. (Author)

  15. Advanced path sampling of the kinetic network of small proteins

    NARCIS (Netherlands)

    Du, W.

    2014-01-01

    This thesis is focused on developing advanced path sampling simulation methods to study protein folding and unfolding, and to build kinetic equilibrium networks describing these processes. In Chapter 1 the basic knowledge of protein structure and folding theories were introduced and a brief overview

  16. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    Science.gov (United States)

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  17. Numerical study of rotating interstellar clouds: equilibrium and collapse

    International Nuclear Information System (INIS)

    Norman, M.L.

    1980-06-01

    Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole

  18. Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Lee, Song Hi

    2004-01-01

    Green and Kubo showed that the phenomenological coefficients describing many transport processes and time dependent phenomena in general could be written as integrals over a certain type of function called a time correlation function. The Green-Kubo formulas are the formal expressions for hydrodynamic field variables and some of the thermodynamic properties in terms of the microscopic variables of an N-particle system. The identification of microscopic expressions for macroscopic variables is made by a process of comparison of the conservation equations of hydrodynamics with the microscopic equations of change for conserved densities. The importance of these formulas is three-fold: they provide an obvious method for calculating transport coefficients using computer simulation, a convenient starting point for constructing analytic theories for non-equilibrium processes, and an essential information for designing non-equilibrium molecular dynamics (NEMD) algorithm.

  19. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  20. Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-12-01

    Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.