WorldWideScience

Sample records for added hydrogen peroxide

  1. Hydrogen peroxide is a true first messenger.

    Science.gov (United States)

    Holmquist, L; Stuchbury, G; Steele, M; Münch, G

    2007-01-01

    Hydrogen peroxide has been shown to act as a second messenger mediating intracellular redox-sensitive signal transduction. Here we show that hydrogen peroxide is also able to transmit pro-inflammatory signals from one cell to the other and that this action can be inhibited by extracellularly added catalase. If these data can be further substantiated, hydrogen peroxide might become as important as nitric oxide as a small molecule intercellular (first) messenger.

  2. Electrochemical Hydrogen Peroxide Generator

    Science.gov (United States)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  3. Progress toward hydrogen peroxide micropulsion

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  4. 21 CFR 582.1366 - Hydrogen peroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  5. 21 CFR 529.1150 - Hydrogen peroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen...

  6. Hydrogen peroxide enteritis: the "snow white" sign.

    Science.gov (United States)

    Bilotta, J J; Waye, J D

    1989-01-01

    Hydrogen peroxide is a useful disinfectant that has achieved widespread utility in varied clinical settings. We report an epidemic of hydrogen peroxide enteritis that developed in seven patients in our gastrointestinal endoscopy unit during a 2-week period in early 1988. During endoscopy, using recently sterilized endoscopes that were flushed with 3% hydrogen peroxide after the glutaraldehyde cycle, instantaneous blanching (the "snow white" sign) and effervescence were noted on the mucosal surfaces when the water button was depressed. No patient subsequently suffered morbidity or mortality associated with this peroxide enteritis, and the biopsy specimens revealed nonspecific inflammation. The toxicity of hydrogen peroxide when used in enema form is reviewed, as well as the pathogenesis of peroxide enteritis.

  7. Hydrogen peroxide as a greenhouse soil amendment

    Science.gov (United States)

    There are anecdotal reports that hydrogen peroxide provides growth benefits beyond controlling plant infection and plant stress. The objective of this research was to determine the effect of soil applications of hydrogen peroxide solutions on plant growth and flowering. Nasturtium (Tropaeolum maju...

  8. 7 CFR 58.431 - Hydrogen peroxide.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  9. Vapor Hydrogen Peroxide Sterilization Certification

    Science.gov (United States)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  10. Detection of hydrogen peroxide with chemiluminescent micelles

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2008-08-01

    Full Text Available Dongwon Lee1, Venkata R Erigala1,3, Madhuri Dasari1, Junhua Yu2, Robert M Dickson2, Niren Murthy11The Wallace H. Coulter Department of Biomedical Engineering; 2Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; 3The Scripps Research Institute, La Jolla, CA, USAAbstract: The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona.Keywords: hydrogen peroixde, chemiluminescence, micelles, amphiphilic copolymer

  11. Membrane transport of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Schjoerring, Jan K; Jahn, Thomas P

    2006-08-01

    Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular level of H2O2 is likely to be subjected to tight regulation via processes involved in production, distribution and removal. Substantial progress has been made exploring the formation and scavenging of H2O2, whereas little is known about how this signal molecule is transported from its site of origin to the place of action or detoxification. From work in yeast and bacteria it is clear that the diffusion of H2O2 across membranes is limited. We have now obtained direct evidence that selected aquaporin homologues from plants and mammals have the capacity to channel H2O2 across membranes. The main focus of this review is (i) to summarize the most recent evidence for a signalling role of H2O2 in various pathways in plants and mammals and (ii) to discuss the relevance of specific transport of H2O2.

  12. Detection of interstellar hydrogen peroxide

    CERN Document Server

    Bergman, P; Liseau, R; Larsson, B; Olofsson, H; Menten, K M; Güsten, R

    2011-01-01

    The molecular species hydrogen peroxide, HOOH, is likely to be a key ingredient in the oxygen and water chemistry in the interstellar medium. Our aim with this investigation is to determine how abundant HOOH is in the cloud core {\\rho} Oph A. By observing several transitions of HOOH in the (sub)millimeter regime we seek to identify the molecule and also to determine the excitation conditions through a multilevel excitation analysis. We have detected three spectral lines toward the SM1 position of {\\rho} Oph A at velocity-corrected frequencies that coincide very closely with those measured from laboratory spectroscopy of HOOH. A fourth line was detected at the 4{\\sigma} level. We also found through mapping observations that the HOOH emission extends (about 0.05 pc) over the densest part of the {\\rho} Oph A cloud core. We derive an abundance of HOOH relative to that of H_2 in the SM1 core of about 1\\times10^(-10). To our knowledge, this is the first reported detection of HOOH in the interstellar medium.

  13. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  14. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  15. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  16. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  17. Electrolytic process for producing hydrogen peroxide

    International Nuclear Information System (INIS)

    An electrolytic process for producing hydrogen peroxide in an aqueous alkaline solution includes simultaneously passing an aqueous alkaline electrolyte and oxygen through a fluid permeable conductive cathode comprising reticulated vitreous carbon foam, separating the fluid permeable conductive cathode from an anode by a barrier and connecting the fluid permeable conductive electrode and the anode with an external power source to cause generation of hydrogen peroxide ion within the aqueous alkaline solution

  18. [Hydrogen peroxide in artificial photosynthesizing systems].

    Science.gov (United States)

    Lobanov, A V; Komissarov, G G

    2014-01-01

    From the point of view of the concepts of hydrogen peroxide as a source of photosynthetic oxygen (hydrogen) coordination and photochemical properties of chlorophyll and its aggregates towards hydrogen peroxide were considered. The binding energy of H2O and H2O2 with chlorophyll and chlorophyllide depending on their form (monomers, dimers and trimers) was estimated by quantum chemical calculations. It is shown that at an increase of the degree of the pigment aggregation binding energy of H2O2 was more than the energy of H2O. Analysis of experimental results of the photochemical decomposition of hydrogen peroxide using chlorophyll was carried out. Estimates of the thermodynamic parameters (deltaG degrees and deltaH degrees) of the formation of organic compounds from CO2 with water and hydrogen peroxide were compared. The interaction of CO2 with H2O2 requires much less energy consumption than with water for all considered cases. The formation of organic products (formaldehyde, alcohols, carboxylic and carbonylic compounds) and simultaneous production of O2 under the influence of visible light in the systems of inorganic carbon--hydrogen peroxide--chlorophyll (phthalocyanine) is detected by GC/MS method, FTIR spectroscopy, and chemical analysis. PMID:25702472

  19. Bactericidal and cytotoxic effects of hypothiocyanite-hydrogen peroxide mixtures.

    OpenAIRE

    Carlsson, J.; Edlund, M B; Hänström, L.

    1984-01-01

    Lactoperoxidase catalyzes the oxidation of thiocyanate by hydrogen peroxide into hypothiocyanite, a reaction which can protect bacterial and mammalian cells from killing by hydrogen peroxide. The present study demonstrates, however, that lactoperoxidase in the presence of thiocyanate can actually potentiate the bactericidal and cytotoxic effects of hydrogen peroxide under specific conditions, such as when hydrogen peroxide is present in the reaction mixtures in excess of thiocyanate. The toxi...

  20. Impact of hydrogen peroxide as a soil amendment on nasturtiums

    Science.gov (United States)

    Hydrogen peroxide, H2O2, is a highly reactive oxidizing agent naturally occurring in plants and animals. Plants produce hydrogen peroxide to destroy either their infected plant cells or the pathogens within their cells. Hydrogen peroxide also acts as a stress signal to plants. It is approved for c...

  1. Experimental investigation of hydrogen peroxide RF plasmas

    Science.gov (United States)

    Barni, R.; Decina, A.; Zanini, S.; D'Orazio, A.; Riccardi, C.

    2016-04-01

    This work reports a detailed experimental study of the plasma properties in low pressure RF discharges in hydrogen peroxide and a comparison with argon under the same operating conditions. H2O2 plasmas have been proposed for sterilization purposes. Electrical properties of the discharge were shown to be similar, as for the RF and DC voltages of the driving electrode. Bulk plasma volume remains stable, concentrated in an almost cylindrical region between the two facing electrodes. It was found that the electron temperature is almost uniform across the plasma and independent of the power level. This is higher than in argon discharges: T e  =  4.6  ±  0.9 eV versus T e  =  3.3  ±  1.1 eV. The plasma density increases almost linearly with the power level and a substantial negative ion component has been ruled out in hydrogen peroxide. Dissociation in the plasma gas phase was revealed by atomic hydrogen and hydroxyl radical emission in the discharge spectra. Emission from hydroxyl and atomic oxygen demonstrates that oxidizing radicals are produced by hydrogen peroxide discharges, revealing its usefulness for plasma processing other than sterilization, for instance to increase polymer film surface energy. On the other hand, argon could be considered as a candidate for the sterilization purposes due to the intense production of UV radiation.

  2. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  3. Hydrogen Peroxide Propulsion for Smaller Satellites

    OpenAIRE

    Whitehead, John

    1998-01-01

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable bench top propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  4. THE EFFECT OF TRANSITION METAL IONS-MANGANESE ON HYDROGEN PEROXIDE BLEACHING

    Institute of Scientific and Technical Information of China (English)

    ShuhuiYang; YumengZhao; BaokuWen; YonghaoNi

    2004-01-01

    In this investigation, the catalytic activities of Mn(II),Mn(III) and Mn(IV) towards decomposing hydrogenperoxide were compared. Among Mn (II), Mn (III)and Mn (IV), Mn (II) is not catalytically active indecomposing hydrogen peroxide. However, both Mn(113) and Mn (IV) are, and Mn (III) has a strongereffect than Mn(IV).In addition, we also studied the practical methods todecrease the Mn-induced decomposition of hydrogenperoxide. The results showed that sodium silicate andmagnesium sulfite in combination can effectivelydecrease the decomposition of hydrogen peroxide.The optimum dosage of sodium silicate was about0.5% (on solution). Adding chelants such as DTPAor EDTA simultaneously with stabilizers candecrease hydrogen peroxide decomposition. For Mn(IV), the EDTA is more effective than DTPA.Adding sodium thiosulfate simultaneously withmagnesium sulfate, sodium silicate and DTPA toalkaline peroxide solution can result in more residualhydrogen peroxide, and a higher pulp brightness.

  5. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    Science.gov (United States)

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (ppermeable than were the dentin and enamel surfaces. PMID:22621165

  6. HE EFFECT OF TRANSITION METAL IONS-IRON ON HYDROGEN PEROXIDE BLEACHING

    Institute of Scientific and Technical Information of China (English)

    Yumeng Zhao; Shuhui Yang; Liang Sheng; Yonghao Ni

    2004-01-01

    Hydrogen peroxide bleaching has been extensively used in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed under alkaline condition, especially when transition metal ions exit. Experiments show that the valence of transition metal ion is also responsible for the decomposition of hydrogen peroxide.Iron ions are present in two oxidation states, Fe2+ and Fe3+. They are both catalytically active to hydrogen peroxide decomposition. Because Fe3+ is brown, it can affect the brightness of pulp directly, it can also combine with phenol, forming complexes which not only are stable structures and are difficult to be removed from pulp, but also significantly affect the brightness of pulp because of their color.Sodium silicate and magnesium sulfate, when used together, can greatly decrease hydrogen peroxide decomposition. The optimum dosage of sodium silicate is about 0.1% (on solution) for Fe2+ and 0.25% (on solution) for Fe3+. Adding chelants such as DTPA or EDTA with stabilizers simultaneously can obviously improve pulp brightness. For iron ions, the chelate effect of DTPA is better than that of EDTA.Under acidic conditions, sodium hyposulfite and cellulose can reduce Fe3+ to Fe2+ effectively, and pulp brightness is improved greatly. Adding sodium thiosulfate simultaneously with magnesium sulfate,sodium silicate, and DTPA to alkaline peroxide solution can result in higher brightness of pulp.pH is a key parameter during hydrogen peroxide bleaching, the optimum pH value should be 10.5-12.

  7. THE EFFECT OF TRANSITION METAL IONS-MANGANESE ON HYDROGEN PEROXIDE BLEACHING

    Institute of Scientific and Technical Information of China (English)

    Shuhui Yang; Yumeng Zhao; Baoku Wen; Yonghao Ni

    2004-01-01

    In this investigation, the catalytic activities of Mn(Ⅱ),Mn(Ⅲ) and Mn(Ⅳ) towards decomposing hydrogen peroxide were compared. Among Mn (Ⅱ), Mn (Ⅲ)and Mn (Ⅳ), Mn (Ⅱ) is not catalytically active in decomposing hydrogen peroxide. However, both Mn (Ⅲ) and Mn (Ⅳ) are, and Mn (Ⅲ) has a stronger effect than Mn(Ⅳ).In addition, we also studied the practical methods to decrease the Mn-induced decomposition of hydrogen peroxide. The results showed that sodium silicate and magnesium sulfite in combination can effectively decrease the decomposition of hydrogen peroxide.The optimum dosage of sodium silicate was about 0.5% (on solution). Adding chelants such as DTPA or EDTA simultaneously with stabilizers can decrease hydrogen peroxide decomposition. For Mn (Ⅳ), the EDTA is more effective than DTPA.Adding sodium thiosulfate simultaneously with magnesium sulfate, sodium silicate and DTPA to alkaline peroxide solution can result in more residual hydrogen peroxide, and a higher pulp brightness.

  8. MODIFIED OPAL:A NOVEL STABILIZER FOR HYDROGEN PEROXIDE BLEACHING OF PULPS

    Institute of Scientific and Technical Information of China (English)

    Xueren Qian; Xianhui An; Wenbo Liu; Gang Yu; Zhanqian Song

    2004-01-01

    The possibility of modified opal as the stabilizer of hydrogen peroxide bleaching was investigated. The results showed that the modified opal in place of sodium silicate as the stabilizer of hydrogen peroxide bleaching is feasible. At the same dosage, above 3% ISO can be increased for both wheat straw pulp and deinked pulp. The stabilizing ability of the modified opal to hydrogen peroxide bleaching of pulp is improved markedly. It is favorable for bleaching to increase temperature and time within a permissive extent. The suitable process conditions are 10% of pulp consistency, 3% of hydrogen peroxide, 1.5% of sodium hydroxide, 3% of the modified opal, 70℃ and 60 min when the modified opal is used as the stabilizer of hydrogen peroxide bleaching. At these conditions, the brightness gain can reach about 16% ISO for wheat straw pulp. In addition, it is favorable for bleaching to add a little magnesium sulfate when the modified opal is used as the stabilizer of hydrogen peroxide bleaching, the brightness of pulp can increase I%ISO if0.05% of magnesium sulfate is added. The cost analysis indicated that the modified opal is superior to sodium silicate as the stabilizer of hydrogen peroxide bleaching in economical aspect and has further the potential of market development.

  9. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    Science.gov (United States)

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  10. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Anh, Dam Thi Van; Olthuis, W.; Bergveld, P.

    2005-01-01

    An increase in hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to the lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase toge

  11. A hydrogen peroxide sensor for exhaled breath measurement

    NARCIS (Netherlands)

    Anh, Dam T.V.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2004-01-01

    An increase in produced hydrogen peroxide concentration in exhaled breath (EB) of patients, who suffer from some diseases related to lung function, has been observed and considered as a reliable indicator of lung diseases. In the EB of these patients, hydrogen peroxide is present in the vapour phase

  12. Hydrogen Peroxide Storage in Small Sealed Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  13. Locating bomb factories by detecting hydrogen peroxide.

    Science.gov (United States)

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared.

  14. Hydrogen peroxide mediates higher order chromatin degradation.

    Science.gov (United States)

    Bai, H; Konat, G W

    2003-01-01

    Although a large body of evidence supports a causative link between oxidative stress and neurodegeneration, the mechanisms are still elusive. We have recently demonstrated that hydrogen peroxide (H(2)O(2)), the major mediator of oxidative stress triggers higher order chromatin degradation (HOCD), i.e. excision of chromatin loops at the matrix attachment regions (MARs). The present study was designed to determine the specificity of H(2)O(2) in respect to HOCD induction. Rat glioma C6 cells were exposed to H(2)O(2) and other oxidants, and the fragmentation of genomic DNA was assessed by field inversion gel electrophoresis (FIGE). S1 digestion before FIGE was used to detect single strand fragmentation. The exposure of C6 cells to H(2)O(2) induced a rapid and extensive HOCD. Thus, within 30 min, total chromatin was single strandedly digested into 50 kb fragments. Evident HOCD was elicited by H(2)O(2) at concentrations as low as 5 micro M. HOCD was mostly reversible during 4-8h following the removal of H(2)O(2) from the medium indicating an efficient relegation of the chromatin fragments. No HOCD was induced by H(2)O(2) in isolated nuclei indicating that HOCD-endonuclease is activated indirectly by cytoplasmic signal pathways triggered by H(2)O(2). The exposure of cells to a synthetic peroxide, i.e. tert-butyrylhydroperoxide (tBH) also induced HOCD, but to a lesser extent than H(2)O(2). Contrary to the peroxides, the exposure of cells to equitoxic concentration of hypochlorite and spermine NONOate, a nitric oxide generator, failed to induce rapid HOCD. These results indicate that rapid HOCD is not a result of oxidative stress per se, but is rather triggered by signaling cascades initiated specifically by H(2)O(2). Furthermore, the rapid and extensive HOCD was observed in several rat and human cell lines challenged with H(2)O(2), indicating that the process is not restricted to glial cells, but rather represents a general response of cells to H(2)O(2). PMID:12421592

  15. Efficient Electrochemical Hydrogen Peroxide Generation in Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical cell is proposed for the efficient generation of 3% hydrogen peroxide (H2O2) in pure water using only power, oxygen and water. H2O2 is an...

  16. A Novel Fluorescent Reagent for Analysis of Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    董素英; 苏美红; 聂丽华; 马会民

    2003-01-01

    8-(4,6-Dichloro-1,3,5-trazinoxy)quinoline(DTQ) was evaluated as a new fluorescent reagent for determining hydrogen peroxide.It was found that the fluorescence intensity of DTQ in alkaline medium could be dramatically enhanced upon addition of H2O2.Based on this effect,a simple and selective method for the spectrofluorimetric determination of hydrogen peroxide was estabhlished.The relative standard deviation of the method was found to be 1.1?for 9 replicate determinations of a 4.6×10-6mol/L hydrogen peroxide solution.The linear range was 2.3×10-7-2.3×10-5mol/L with a detection limit of 2.2×10-8mol/L(S/N=3).The ,method was attempted to determine hydrogen peroxide in synthetic human serum samples with satisfactory results.

  17. Localised hydrogen peroxide sensing for reproductive health

    Science.gov (United States)

    Purdey, Malcolm S.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; Thompson, Jeremy G.; Monro, Tanya M.; Abell, Andrew D.

    2015-05-01

    The production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos. Hydrogen peroxide (H2O2) an important reactive oxygen species, is also known to causes DNA damage and defective sperm function. Current techniques require incubating a developing embryo with an organic fluorophore which is potentially hazardous for the embryo. What we need is a localised ROS sensor which does not require fluorophores in solution and hence will allow continuous monitoring of H2O2 production without adversely affect the development of the embryo. Here we report studies on such a fibre-based sensor for the detection of H2O2 that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1). Optical fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions. Attempts to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings resulted in a limited signal and poor fluorescent response to H2O2 due to a low tip surface density of the fluorophore. To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer. The polyacrylamide containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor was found to effectively detect H2O2. Using this method, biologically relevant concentrations of H2O2 were detected, enabling remote sensing studies into ROS releases from embryos throughout early development.

  18. Different Modes of Hydrogen Peroxide Action During Seed Germination.

    Science.gov (United States)

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  19. Atmospheric hydrogen peroxide and methyl hydroperoxide in Yanbian, China

    Science.gov (United States)

    Kim, Y.; Ji, B.; Lee, M.; Kim, K.; Lee, G.

    2003-04-01

    Hydrogen peroxide and organic peroxides are photochemical byproducts. They are referred as the indicator of oxidizing capacity of the atmosphere. Further, they are related with the production and removal of ozone in photochemistry. To better understand the photochemical processes in the troposphere, it is essential to know the correct concentration of hydroperoxides. Hydrogen peroxide and methyl Hydroperoxide were measured from 24 Aug to 3 Sep in Yanbian, China. Measurements were made for continuously during the whole course of the experiments. After collected in aqueous solution using continuous scrubbing coil, hydroperoxides were separated by HPLC, and then quantified by fluorescence produced using postcolumn enzyme derivatization. Collection and analysis were done automatically Average concentration of hydrogen peroxide and methyl hydroperoxide were 0.9ppbc and 1.6 ppb, respectively. In general, hydroperoxides showed typical diurnal variations with the maximum concentration during day. It was the first study of air pollution conducted in Yanbian, China. Detailed results will be presented in the meeting.

  20. Hydrogen peroxide potentiates organophosphate toxicosis in chicks

    Directory of Open Access Journals (Sweden)

    Banan K. Al-Baggou

    2011-11-01

    Full Text Available Objective: The purpose of the present study was to examine the effect of hydrogen peroxide(H2O2 on the acute toxicity of organophosphate insecticides dichlorvos and diazinon and their inhibitoryactions on plasma, brain and liver cholinesterase activities. Material and Methods: H2O2 was given indrinking water (0.5% v/v for 2 weeks in unsexed day old chicks, a regimen known to induce oxidativestress in this species. A control group received drinking tap water. All experiments were conducted onthe chicks at the age of 15 days after exposure to H2O2. The acute (24 h oral LD50 values of dichlorvosand diazinon in the insecticidal preparations as determined by the up-and-down method in the controlchicks were 9.4 and 15.6 mg/kg, respectively. Results: The poisoned chicks manifested signs ofcholinergic toxicosis within one hour after the dosing including salivation, lacrimation, gasping, frequentdefecation, drooping of wings, tremors, convulsions and recumbency. The acute (24 h oral LD50 valuesof dichlorvos and diazinon in chicks provided with H2O2 were reduced to 3.5 and 6.5 mg/kg, by 63 and58%, respectively when compared to respective control LD50 values. The intoxicated chicks also showedcholinergic signs of toxicosis as described above. Plasma, brain and liver cholinesterase activities of thechicks exposed to H2O2 were significantly lower than their respective control (H2O values by 25, 28 and27%, respectively. Oral dosing of chicks with dichlorvos at 3 mg/kg significantly inhibited cholinesteraseactivities in the plasma, brain and liver of both control (42-67% and H2O2-treated (15-59% chicks.Diazinon at 5 mg/kg, orally also inhibited cholinesterase activities in the plasma, brain and liver of bothcontrol (36-66% and H2O2-treated (15-30% chicks. In the H2O2 groups, dichlorvos inhibition of livercholinesterase activity and diazinon inhibition of liver and brain cholinesterase activities weresignificantly lesser than those of the respective values of

  1. Improvement of adventitious root formation in flax using hydrogen peroxide.

    Science.gov (United States)

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting. PMID:26921706

  2. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zonios, George [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Dimou, Aikaterini [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Galaris, Dimitrios [Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina (Greece)

    2008-01-07

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H{sub 2}O{sub 2} solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  3. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    Science.gov (United States)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  4. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    International Nuclear Information System (INIS)

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo

  5. Environmentally acceptable effect of hydrogen peroxide on cave 'lamp-flora', calcite speleothems and limestones

    International Nuclear Information System (INIS)

    Hydrogen peroxide plus limestone fragments allows removal of organisms without corrosion of limestone and speleothem. - Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Katerinska Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77x10-3 and 1.81x10-3 mol m-2 h-1, respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00x10-2 and 2.21x10-2 mol m-2 h-1, respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application

  6. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    Science.gov (United States)

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  7. Selective electrochemical generation of hydrogen peroxide from water oxidation

    CERN Document Server

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  8. Oxidative desulfurization of Tufanbeyli coal by hydrogen peroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M.; Sarioz, B.V.; Cakanyildirim, C. [Gazi University, Ankara (Turkey). Dept. of Chemical Engineering

    2008-07-01

    It is becoming popular to use fossil fuels efficiently since the necessary energy is mostly supplied from fossil fuels. Altough there are high lignite reserves, high sulfur content limits the efficient use of them. In this article, we aimed to convert combustible sulfur in coal to non-combustible sulfate form in the ash by oxidizing it with a hydrogen peroxide solution. The parameters affecting the sulfur conversion were determined to be: hydrogen peroxide concentration, reaction time, mean particle size at constant room temperature and shaking rate. The maximum desulfurization efficiency reached was 74% of the original combustible sulfur with 15% (w/w) hydrogen peroxide solution, 12 hours of reaction time, and 0.25 mm mean particle size.

  9. Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis.

    Science.gov (United States)

    Zhang, Tianqi; Cheng, Long; Ma, Lin; Meng, Fanchao; Arnold, Robert G; Sáez, A Eduardo

    2016-10-01

    Hydrogen peroxide UV photolysis is among the most widely used advanced oxidation processes (AOPs) for the destruction of trace organics in waters destined for reuse. Previous kinetic models of hydrogen peroxide photolysis focus on the dynamics of hydroxyl radical production and consumption, as well as the reaction of the target organic with hydroxyl radicals. However, the rate of target destruction may also be affected by radical scavenging by reaction products. In this work, we build a predictive kinetic model for the destruction of p-cresol by hydrogen peroxide photolysis based on a complete reaction mechanism that includes reactions of intermediates with hydroxyl radicals. The results show that development of a predictive kinetic model to evaluate process performance requires consideration of the complete reaction mechanism, including reactions of intermediates with hydroxyl radicals. PMID:27448315

  10. Hydrogen Peroxide Gas Generator Cycle with a Reciprocating Pump

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2002-06-11

    A four-chamber piston pump is powered by decomposed 85% hydrogen peroxide. The performance envelope of the evolving 400 gram pump has been expanded to 172 cc/s water flow at discharge pressures near 5 MPa. A gas generator cycle system using the pump has been tested under similar conditions of pressure and flow. The powerhead gas is derived from a small fraction of the pumped hydrogen peroxide, and the system starts from tank pressures as low as 0.2 MPa. The effects of steam condensation on performance have been evaluated.

  11. Carbonate leaching of uranium and hydrogen peroxide stabilizer therefor

    International Nuclear Information System (INIS)

    In the carbonate leaching process for the solution mining of subterranean uranium containing formations in which an injection well is drilled and completed within the uranium formation; alkaline carbonate uranium leaching solution and sufficient hydrogen peroxide are injected through the injection wells into the formation whereby uranium values are produced from production wells, characterized by providing in the leaching solution a mixture of 1-hydroxyethylidene-1,1-diphosphonic acid and an alkali metal pyrophosphate in a weight ratio of from 1 to 10 to 10 to 1, the amount of said mixture being sufficient to inhibit decomposition of the hydrogen peroxide in said leaching solution

  12. On-site applicability of hydrogen peroxide producing microbial electrochemical cells (MECs) coupled with UV in wastewater disinfection study

    Science.gov (United States)

    Background: There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals wh...

  13. ON-SITE APPLICABILITY OF HYDROGEN PEROXIDE PRODUCING MICROBIAL ELECTROCHEMICAL CELLS COUPLED WITH UV IN WASTEWATER DISINFECTION STUDY

    Science.gov (United States)

    There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals when coupled w...

  14. Applications of hydrogen peroxide in electrochemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gallegos, Alberto Armando

    1998-12-01

    It is demonstrated that hydrogen peroxide can be produced with a current efficiency of 40-70% by the cathodic reduction of oxygen at a reticulated vitreous carbon electrode in a divided flow-cell using catholytes consisting of aqueous chloride or sulphate media, pH >>{sub 2}. The supporting electrolyte does not influence either the current efficiency for H{sub 2}O{sub 2} or its rate of production. The current efficiency for H{sub 2}O{sub 2} is not a strong function of the potential and this suggests that 2e- and 4e- reduction of oxygen occurs in parallel at different sites on the carbon surface. Voltammetry experiments showed that (a) the I-E response for oxygen reduction at pH >>{sub 2} is a function of the electrode surface and/or the supporting electrolyte; (b) both H{sub 2} evolution and oxygen reduction are retarded on carbon with increasing ionic strength; (c) the presence of ferrous ions lead to the homogeneous decomposition of H{sub 2}O{sub 2} away from the cathode surface but their effectiveness as a catalyst for this decomposition depends on their speciation in solution which changes during an electrolysis. The use of a three-dimensional electrode fabricated from reticulated vitreous carbon allows Fenton`s reagent to be electroproduced at a practical rate which makes possible the removal of organics in slightly acidic aqueous media. A wide range of highly toxic organic molecules (phenol, catechol, hydroquinone, p-benzoquinone, oxalic acid, aniline, cresol and amaranth) have been oxidised in mild conditions and a significant fraction of the organic carbon is evolved as CO{sub 2}. In all cases studied the initial chemical oxygen demand (COD) was depleted to levels higher than 85%, indicating a complete mineralisation of the organic pollutants. The life-time of the reticulated vitreous carbon cathode was demonstrated to be over 1000 hours during two and a half years of experiments. During this time the cathode performance was very good, leading to

  15. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    Directory of Open Access Journals (Sweden)

    Beijing K. Huang

    2014-01-01

    Full Text Available Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies.

  16. THE EFFECT OF TRANSITION METAL IONS-IRON ON HYDROGEN PEROXIDE BLEACHING

    Institute of Scientific and Technical Information of China (English)

    YumengZhao; ShuhuiYang; LiangSheng; YonghaoNi

    2004-01-01

    Hydrogen peroxide bleaching has been extensivelyused in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed underalkaline condition, especially when transition metalions exit. Experiments show that the valence oftransition metal ion is also responsible for thedecomposition of hydrogen peroxide.Iron ions are present in two oxidation states, Fe2+ andFe3+. They are both catalytically active to hydrogenperoxide decomposition. Because Fe3+ is brown, itcan affect the brightness of pulp directly, it can alsocombine with phenol, forming complexes which notonly are stable structures and are difficult to beremoved from pulp, but also significantly affect thebrightness of pulp because of their color.Sodium silicate and magnesium sulfate, when usedtogether, can greatly decrease hydrogen peroxidedecomposition. The optimum dosage of sodiumsilicate is about 0.1% (on solution) for Fe2~ and0.25% (on solution) for Fe3~. Adding chelants such asDTPA or EDTA with stabilizers simultaneously canobviously improve pulp brightness. For iron ions, thechelate effect of DTPA is better than that of EDTA.Under acidic conditions, sodium hyposulfite andcellulose can reduce Fe3+ to Fez+ effectively, and pulpbrightness is improved greatly. Adding sodiumthiosulfate simultaneously with magnesium sulfate,sodium silicate, and DTPA to alkaline peroxidesolution can result in higher brightness of pulp.pH is a key parameter during hydrogen peroxidebleaching, the optimum pH value should be 10.5-12.

  17. A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I

    Science.gov (United States)

    In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV).  Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...

  18. The basic chemistry and photochemistry behind hydrogen peroxide tooth whitening

    NARCIS (Netherlands)

    Young, N.D.; Fairley, P.D.; Mohan, V.; Jumeaux, C.

    2013-01-01

    Tooth whitening using hydrogen peroxide gel formulation is a complexprocess which involves both chemistry and physics, and there is still some controversy about the efficiency of whitening processes, particularly with respect to the roles of temperature and irradiation with light. In this work we av

  19. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.;

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine Pr...

  20. Computer Data Processing of the Hydrogen Peroxide Decomposition Reaction

    Institute of Scientific and Technical Information of China (English)

    余逸男; 胡良剑

    2003-01-01

    Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently.

  1. Antitumor effect of synergistic contribution of nitrite and hydrogen peroxide in the plasma activated medium

    Science.gov (United States)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumiaki; Kondo, Takashi; Mizuno, Masaaki; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-09-01

    Non-equilibrium atmospheric pressure plasmas (NEAPP) have been attracted attention in the noble application of cancer therapy. Although good effects of the Plasma-Activated-Medium (PAM) such as the selective antitumor effect and killing effect for the anticancer agent resistant cells were reported, a mechanism of this effect has not been still clarified yet. In this study, we have investigated a contribution of the reactive nitrogen and oxygen species (RNOS) generated in PAM such as hydrogen peroxide and nitrite. Those species generated in the PAM quantitatively measured by light absorbance of commercial regent. Moreover, viable cell count after cell culture with those RNOS intentionally added medium or PAM were also measured by MTS assay. Our NEAPP source generated hydrogen peroxide and nitrite with the generation ratio of 0.35 μM/s and 9.8 μM/s. In those RNOS, hydrogen peroxide has respective antitumor effect. On the other hands, nitrite has no antitumor effect singly. But, synergistically enhance the antitumor effect of hydrogen peroxide. Moreover, this effect of those RNOS also contribute for the selectively cancer killing effect of PAM.

  2. Hydrogen peroxide as a soil amendment for greenhouse nasturtium production (Tropaeolum majus L.)

    Science.gov (United States)

    Hydrogen peroxide, H2O2, is a highly reactive oxidizing agent naturally occurring in plants and animals. Plants produce hydrogen peroxide to destroy either infected plant cells or the pathogens within a plant. Hydrogen peroxide also acts as a stress signal to plants. It is approved for the contro...

  3. Catalytic hydrogen peroxide decomposition on La1-xSrxCo03-d perovskite oxides

    NARCIS (Netherlands)

    Dam, Van-Ahn. T.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  4. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  5. Embryotoxic effects of eight organic peroxides and hydrogen peroxide on three-day chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, A.; Hemminki, K.; Vainio, H.

    1984-02-01

    Nine peroxides used in rubber processing were tested for embryotoxicity in 3-day chicken embryos using the air chamber method. The potencies were expressed by the ED/sub 50/ for the total embryotoxic effect of the chemicals, including deaths and malformations, up to Day 14 of the incubation. The range of the ED/sub 50/'s was from 0.13 to 2.7 ..mu..moles per egg and the order of the potencies was as follows: cyclohexanoneperoxide > cumolhydroperoxide > ethylmethylketoneperoxide > dibenzoylperoxide > acetylacetoneperoxide > perbenzoic acid-tert-butylester > dicumylperoxide > dialauroylperoxide > hydrogen peroxide. All nine peroxides caused malformations at a moderate frequency. The maximum percentage of malformed embryos of the treated varied from the 16% of perbenzoic acid-tert-butylester to the 56% of dicumylperoxide. The high percentage caused by the latter could, however, result from slow diffusion of high lethal doses from the air chamber to the embryo.

  6. Cardiovascular responses to hydrogen peroxide into the nucleus tractus solitarius

    OpenAIRE

    Cardoso, Leonardo Máximo; Colombari, Débora Simões Almeida; Menani, José V; Toney, Glenn M.; Chianca, Deoclécio Alves; Colombari, Eduardo

    2009-01-01

    The nucleus tractus solitarius (NTS), a major hindbrain area involved in cardiovascular regulation, receives primary afferent fibers from peripheral baroreceptors and chemoreceptors. Hydrogen peroxide (H2O2) is a relatively stable and diffusible reactive oxygen species (ROS), which acting centrally, may affect neural mechanisms. In the present study, we investigated effects of H2O2 alone or combined with the glutamatergic antagonist kynurenate into the NTS on mean arterial pressure (MAP) and ...

  7. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    OpenAIRE

    Ilza Lobo; Caryna Januario Correr; Carmen Luisa Barbosa Guedes; Otavio Jorge Grigoli Abi-Saab

    2010-01-01

    The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS) and sodium lauryl sulphate (SDS) was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of ...

  8. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  9. Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide.

    Science.gov (United States)

    Mehrdad, Abbas; Hashemzadeh, Robab

    2010-01-01

    In this research, degradation of Rodamine B in the presence of (hydrogen peroxide), (hydrogen peroxide+ultrasound), (hydrogen peroxide+aluminum oxide), (hydrogen peroxide+aluminum oxide+ultrasound with different ultrasound power), (hydrogen peroxide+iron oxide) and (hydrogen peroxide+iron oxide+ultrasound with different ultrasound power) were investigated at 25 degrees C. The apparent rate constants for the examined systems were calculated by pseudo-first-order kinetics. The results indicate that the rate of degradation was accelerated by ultrasound. The rate of degradation was increased by increasing power ultrasound. The efficiency of the (hydrogen peroxide+iron oxide+ultrasound) system for degradation of Rodamine B was higher than the others examined.

  10. Luminescent probes for detection and imaging of hydrogen peroxide

    International Nuclear Information System (INIS)

    The relevance of hydrogen peroxide (H2O2) in biological processes has been underestimated for a long time. In recent years, various reports showed that H2O2 not only acts as a cytotoxic compound appearing in the course of oxidative stress, but also functions as an important signaling molecule. Fluorescent probes (or indicators) and nanoparticles that respond selectively to hydrogen peroxide can be applied for intracellular measurements or in vivo imaging, and are superior to electrochemical methods, e. g. in terms of spatial resolution. In contrast to previous reviews that concentrated on the adoption of different probes for certain applications, this survey highlights the basic principles of different probes in terms of their chemical design, structures and functionalities. Thus, the probes are classified according to the underlying reaction mechanism: oxidation, hydrolysis, photoinduced electron transfer, and lanthanide complexation. Other assays are based on fluorescent proteins and nanoparticles, and chemi-or bioluminescent reagents. We confine this review to probes that display a more or less distinct selectivity to hydrogen peroxide. Indicators responding to reactive oxygen species (ROS) in general, or to particular other ROS, are not covered. Finally, we briefly discuss future trends and perspectives of these luminescent reporters in biomedical research and imaging. (author)

  11. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

    DEFF Research Database (Denmark)

    Zong, Xu; Chen, Hongjun; Seger, Brian;

    2014-01-01

    A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H2S) to produce hydrogen peroxide (H2O2) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I−/I3...

  12. Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci.

    OpenAIRE

    Thomas, E L; Milligan, T W; Joyner, R E; Jefferson, M M

    1994-01-01

    In secreted fluids, the enzyme lactoperoxidase (LP) catalyzes the oxidation of thiocyanate ion (SCN-) by hydrogen peroxide (H2O2), producing the weak oxidizing agent hypothiocyanite (OSCN-), which has bacteriostatic activity. However, H2O2 has antibacterial activity in the absence of LP and thiocyanate (SCN-). Therefore, LP may increase antibacterial activity by using H2O2 to produce a more effective inhibitor of bacterial metabolism and growth, or LP may protect bacteria against the toxicity...

  13. The kinetic study of oxidation of iodine by hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantrel, L. [Institut de Protection et de Surete Nucleaire, IPNS, CEN Cadarache, Saint Paul lez Durance (France); Chopin, J. [Laboratoire d`Electrochimie Inorganique, ENSSPICAM, Marseille (France)

    1996-12-01

    Iodine chemistry is one of the most important subjects of research in the field of reactor safety because this element can form volatile species which represent a biological hazard for environment. As the iodine and the peroxide are both present in the sump of the containment in the event of a severe accident on a light water nuclear reactor, it can be important to improve the knowledge on the reaction of oxidation of iodine by hydrogen peroxide. The kinetics of iodine by hydrogen peroxide has been studied in acid solution using two different analytical methods. The first is a UV/Vis spectrophotometer which records the transmitted intensity at 460 nm as a function of time to follow the decrease of iodine concentration, the second is an amperometric method which permits to record the increase of iodine+1 with time thanks to the current of reduction of iodine+1 to molecular iodine. The iodine was generated by Dushman reaction and the series of investigations were made at 40{sup o}C in a continuous stirring tank reactor. The influence of the initial concentrations of iodine, iodate, hydrogen peroxide, H{sup +} ions has been determined. The kinetics curves comprise two distinct chemical phases both for molecular iodine and for iodine+1. The relative importance of the two processes is connected to the initial concentrations of [I{sub 2}], [IO{sub 3}{sup -}], [H{sub 2}O{sub 2}] and [H{sup +}]. A rate law has been determined for the two steps for molecular iodine. (author) figs., tabs., 22 refs.

  14. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.J. (Florida International Univ., Miami); Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  15. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    Science.gov (United States)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  16. BIOSORPTION OF CONGO RED BY HYDROGEN PEROXIDE TREATED TENDU WASTE

    Directory of Open Access Journals (Sweden)

    G. K. Nagda ، V. S. Ghole

    2009-07-01

    Full Text Available Solid wastes from agro-industrial operations can be recycled as non-conventional adsorbents if they are inert and harmless and reduce the cost of wastewater treatment. Tendu leaf Diospyros melanoxylon is the second largest forest product in India after timber and is exclusively used in making local cigarette called Bidi. Waste leaf cutting remaining after making cigarette was used in present study as a biosorbent for the removal of Congo red dye from aqueous solution. It was treated with hydrogen peroxide to obtain biosorbent with increased adsorption capacity. Batch type experiments were conducted to study the influence of different parameters such as pH, initial dye concentration and dosage of adsorbent on biosorption evaluated. The adsorption occured very fast initially and attains equilibrium within 60 min at pH= 6.2 and the equilibrium attained faster after hydrogen peroxide modification. Kinetic studies showed that the biosorption of Congo red on tendu waste followed pseudo-second-order rate equation. The data fitted well to Langmuir and Freundlich isotherm models. Comparison was done on the extent of biosorption between untreated and treated forms of the tendu waste. The maximum adsorption capacity for untreated tendu waste was found to be 46.95 mg/g, which was enhanced by 2.8 times after hydrogen peroxide treatment and was found to be 134.4 mg/g. The adsorption process was in conformity with Freundlich and Langmuir isotherms for Congo red adsorption from aqueous solution. The study demonstrated use of milder chemical treatment of tendu waste to obtain a biosorbent with enhanced dye removal capacity.

  17. At-home vital bleaching: a comparison of hydrogen peroxide and carbamide peroxide treatments.

    Science.gov (United States)

    Berga-Caballero, Amparo; Forner-Navarro, Leopoldo; Amengual-Lorenzo, José

    2006-01-01

    Tray bleaching of vital teeth performed at home by the patient under the dentist s supervision, whether alone or in combination with any of the in-office techniques, provides an interesting alternative to other methods employed in this type of dental treatment. This bleaching procedure applies low-concentration peroxides to the enamel by means of a custom-made mouth tray specifically designed for this purpose. The aim of this study is to examine and compare two commercially-available bleaching products, at equivalent concentrations, for use in this technique: VivaStyle (Vivadent) and FKD (Kin); the former is a 10% carbamide peroxide and the latter a 3.5% hydrogen peroxide formulation. It examines the parameters that must be monitored during the application of this type of procedure and presents 6 cases (3 treated with one of the above-mentioned products and the other 3 with the other), establishing the bleaching power of the products and the appearance and intensity of post-operatory hypersensitivity. The results obtained show that both products are effective for the purpose for which they were designed. In general, dental hypersensitivity was minimal. PMID:16388304

  18. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    OpenAIRE

    Barazesh, JM; Hennebel, T; Jasper, JT; Sedlak, DL

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low con...

  19. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  20. Hydrogen peroxide distribution, production, and decay in boreal lakes

    OpenAIRE

    Häkkinen, P J; Anesio, Alexandre Magno; Granéli, Wilhelm

    2004-01-01

    The distribution, production, and decay of hydrogen peroxide (H2O2) were studied in 10 boreal lakes of differing physical-chemical characteristics. Diurnal and vertical fluctuations in H2O2 concentration were followed in the lakes by sampling at six depths three times per day. In addition, incubations of water filtered through 0.2-mu mesh were made under artificial irradiation to study the abiotic production and decay of H2O2. H2O2 concentrations after 8 h of artificial irradiation were signi...

  1. Hydrogen Peroxide Produced by Oral Streptococci Induces Macrophage Cell Death

    OpenAIRE

    Okahashi, Nobuo; Nakata, Masanobu; Sumitomo, Tomoko; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 ...

  2. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  3. Detection of hydrogen peroxide by lactoperoxidase-mediated dityrosine formation.

    Science.gov (United States)

    Donkó, Agnes; Orient, Anna; Szabó, Pál T; Németh, Gábor; Vántus, Tibor; Kéri, György; Orfi, László; Hunyady, László; Buday, László; Geiszt, Miklós

    2009-05-01

    The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement.

  4. Hydrogen peroxide-based propulsion and power systems.

    Energy Technology Data Exchange (ETDEWEB)

    Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

    2004-04-01

    Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

  5. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    Science.gov (United States)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  6. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    Science.gov (United States)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  7. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  8. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M.; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A.; González, Maricruz; Lindahl, Anna M.; Cejudo, Francisco J.

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlle...

  9. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    OpenAIRE

    Lin, Vivian S.; Dickinson, Bryan C; Chang, Christopher J.

    2013-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity...

  10. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    OpenAIRE

    Leonor ePuerto-Galán; Juan Manuel Pérez-Ruiz; Julia eFerrández; Beatriz eCano; Belén eNaranjo; Victoria Armario Nájera; Maricruz eGonzález; Anna Marika eLindahl; Francisco Javier Cejudo

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS), including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly con...

  11. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species

    OpenAIRE

    Zubko, Elena I; Zubko, Mikhajlo K

    2013-01-01

    Background Hydrogen peroxide and iodine are powerful antimicrobials widely used as antiseptics and disinfectants. Their antimicrobial properties are known to be enhanced by combining them with other compounds. We studied co-operative inhibitory activities (synergism, additive effects and modes of growth inhibition) of hydrogen peroxide and iodine used concurrently against 3 bacterial and 16 yeast species. Results Synergistic or additive inhibitory effects were shown for hydrogen peroxide and ...

  12. Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet

    OpenAIRE

    Schoonen Martin A; Pak Aimee; Strongin Daniel; Cohn Corey A

    2005-01-01

    Hydrogen peroxide is present in many natural waters and wastewaters. In the presence of Fe(II), this species decomposes to form hydroxyl radicals, that are extremely reactive. Hence, in the presence of Fe(II), hydrogen peroxide is difficult to detect because of its short lifetime. Here, we show an expanded use of a hydrogen peroxide quantification technique using leuco crystal violet (LCV) for solutions of varying pH and iron concentration. In the presence of the biocatalyst peroxidase, LCV ...

  13. Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide

    OpenAIRE

    Garcez, Aguinaldo Silva; Núñez, Silvia Cristina; Baptista, Mauricio S.; Daghastanli, Nasser Ali; Itri, Rosangela; Hamblin, Michael R.; Ribeiro, Martha Simões

    2010-01-01

    This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H2O2) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H2O2 was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H2O2. It wa...

  14. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney

    Directory of Open Access Journals (Sweden)

    V. Shlyonsky

    2016-01-01

    Full Text Available Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function.

  15. Effect of Hydrogen Peroxide on the Antibacterial Substantivity of Chlorhexidine

    Directory of Open Access Journals (Sweden)

    Shahriar Shahriari

    2010-01-01

    Full Text Available The purpose of this in vitro study was to assess the effect of hydrogen peroxide on the antibacterial substantivity of chlorhexidine (CHX. Seventy-five dentine tubes prepared from human maxillary central and lateral incisor teeth were used. After contamination with Enterococcus faecalis for 14 days, the specimens were divided into five groups as follows: CHX, H2O2, CHX + H2O2, infected dentine tubes (positive control, and sterile dentine tubes (negative control. Dentine chips were collected with round burs into tryptic soy broth, and after culturing, the number of colony-forming units (CFU was counted. The number of CFU was minimum in the first cultures in all experimental groups, and the results obtained were significantly different from each other at any time period (<.05. At the first culture, the number of CFU in the CHX + H2O2 group was lower than other two groups. At the other experimental periods, the CHX group showed the most effective antibacterial action (<.05. Hydrogen peroxide group showed the worst result at all periods. In each group, the number of CFU increased significantly by time lapse (<.05. In conclusion, H2O2 had no additive effect on the residual antibacterial activity of CHX.

  16. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    Science.gov (United States)

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL. PMID:17196007

  17. Formation of complexes of hydrogen peroxide molecules with DNA

    International Nuclear Information System (INIS)

    A possibility for hydrogen peroxide molecules to form stable complexes with atomic groups in the DNA backbone under the irradiation of the cell medium with high-energy ions has been studied. The energy of complexes is estimated, by taking the electrostatic and van der Waals interactions into account in the framework of the atom-atom potential function method. The interaction with metal counterions, which neutralize the surface charge of a macromolecule under natural conditions, is also taken into consideration. Stable configurations are determined for various complexes consisting of the atoms belonging to a DNA phosphate group, H2O2 and H2O molecules, and a Na+ metal ion. The complexes of hydrogen peroxide molecules with DNA phosphate groups and a counterions are shown to be not less stable than their complexes with water molecules. The attachment of an H2O2 molecule to a phosphate group of the double helix backbone can block the processes of DNA biological functioning and can deactivate the genetic mechanism of a cell

  18. Alkaline peroxide processing of low-enriched uranium targets for 99Mo production -- Decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    The recent progress on the alkaline peroxide processing of low-enriched uranium targets for the production of 99Mo, a parent nuclide of the widely used medical isotope 99mTc, is reported. Kinetic studies were undertaken to investigate the decomposition of hydrogen peroxide in alkaline solution in contact with a uranium metal surface. It was found that the decomposition of hydrogen peroxide essentially follows the kinetic trend of uranium dissolution and can be classified into two regimes, depending on the hydroxide concentration. In the low-base regime (0.2 M), the rate of peroxide decomposition is independent of alkali concentration. When the acid/base equilibrium between H2O2 and O2H- is taken into account, the overall rate of hydrogen peroxide disappearance can be described as a 0.25th order reaction with respect to hydrogen peroxide concentration over NaOH concentrations ranging from 0.01 to 5 M. Empirical kinetics models are proposed and discussed

  19. Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide: A fluorescent sensor for hydrogen peroxide

    Science.gov (United States)

    Gan, Zhixing; Gui, Qingfeng; Shan, Yun; Pan, Pengfei; Zhang, Ning; Zhang, Lifa

    2016-09-01

    By cutting MoS2 microcrystals to quantum dots (QDs) of sizes below 10 nm, the photoluminescence (PL) at ca. 450 nm can be detected easily due to the quantum confinement effects across the 2D planes. The PL is stable under continuous irradiation of UV light but gradually quenches when treated with an increasing concentration of hydrogen peroxide. Time-resolved PL and Raman spectra imply that H2O2 causes the partial oxidation of MoS2 QDs. First-principles calculations reveal that the MoS2 QDs with oxygen impurity are of indirect bandgap structures showing no notable PL. And absorption spectra verify that the PL of MoS2 QDs quenched by H2O2 is attributed to the oxidation. The integrated PL intensity and H2O2 concentration show an exponential relationship in the range of 2-20 μM, suggesting that MoS2 QDs are potential fluorescent probes for hydrogen peroxide sensing in a physiological environment.

  20. Isolation of lactic acid bacteria exhibiting high scavenging activity for environmental hydrogen peroxide from fermented foods and its two scavenging enzymes for hydrogen peroxide.

    Science.gov (United States)

    Watanabe, Akio; Kaneko, Chiaki; Hamada, Yasuhiro; Takeda, Kouji; Kimata, Shinya; Matsumoto, Takashi; Abe, Akira; Tanaka, Naoto; Okada, Sanae; Uchino, Masataka; Satoh, Junichi; Nakagawa, Junichi; Niimura, Youichi

    2016-01-01

    To obtain lactic acid bacteria that scavenge environmental hydrogen peroxide, we developed a specialized enrichment medium and successfully isolated Pediococcus pentosaceus Be1 strain from a fermented food. This strain showed vigorous environmental hydrogen peroxide scavenging activity over a wide range of hydrogen peroxide concentrations. High Mn-catalase and NADH peroxidase activities were found in the cell-free extract of the P. pentosaceus Be1 strain, and these two hydrogen peroxide scavenging enzymes were purified from the cell-free extract of the strain. Mn-catalase has been purified from several microorganisms by several researchers, and the NADH peroxidase was first purified from the original strain in this report. After cloning the genes of the Mn-catalase and the NADH peroxidase, the deduced amino acid sequences were compared with those of known related enzymes. PMID:27118075

  1. Investigation of Iron Powder, Hydrogen Peroxide and Iron Hydrogen Peroxide for Removal of Acid Yellow Powder 36 Dye from Aqueous Solutions

    OpenAIRE

    Sardar, M.; A Sheikh Mohammadi; A.R Yazdanbakhsh; H Mohammad; M Zarabi

    2010-01-01

    "n "nBackgrounds and Objectives: A great part of organic compounds cause more pollution in natural  waters meet, are chemical dye material. Azo dyes have more usage in different industries. Azo dyes not only give undesirable dye to the water but also have mutation potential and carcinogenesis effects in human and cause the production of toxic substances in water environments.The purpose of this study is investigation of iron powder, hydrogen peroxide and iron powder-hydrogen peroxide pro...

  2. Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions

    Science.gov (United States)

    ... should never put hydrogen peroxide directly into your eyes or on your contact lenses,” Lepri says. That’s because this kind of solution ... for Solutions With Hydrogen Peroxide Talk to your eye-care provider ... for your contact lenses. Never change your lens-care system before consulting ...

  3. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Science.gov (United States)

    2010-04-01

    ... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silver nitrate and hydrogen peroxide solution. 172.167 Section 172.167 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  4. Kinetic release of hydrogen peroxide from different whitening products.

    Science.gov (United States)

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P tested (P tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations. PMID:22908081

  5. Determination of peracetic acid and hydrogen peroxide in the mixture

    Directory of Open Access Journals (Sweden)

    Bodiroga Milanka

    2002-01-01

    Full Text Available Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2 in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A. Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV=3.4% for peracetic acid, 0.6% for H2O2. The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV=2,5% for peracetic acid, 0,45% for H2O2.

  6. Production of zirconia powders by precipitation stripping with hydrogen peroxide

    International Nuclear Information System (INIS)

    This paper reports on an experimental study to obtain zirconia powders (ZrO2) from carboxylate zirconium solutions followed by hydrogen peroxide stripping and precipitation, that has been carried out. Zirconium carboxylate was prepared by solvent extraction from a chloride aqueous phase using magnesium carboxylate as organic phase. The variables examined in the precipitation were: Temp. 25-90 degrees C, H2O2 concentration: 0.3-5%, pH: 1-9. Organic/Aqueous ration (1/1) and reaction time (30 min.) were maintained at constant levels. The optimum results (98% of precipitation) were achieved at 25 degrees C, 5% H2O2 and pH 5. The precipitates were composed of large amorphous aggregates (2 with large variation of particle size (1-100 μm) was obtained

  7. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  8. Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers

    OpenAIRE

    Mostofa, Khan M. G.; Sakugawa, Hiroshi

    2009-01-01

    Hydrogen peroxide (H2O2) and organic peroxides (ROOH) were examined in water samples collected from the upstream and downstream sites of two Japanese rivers (the Kurose and the Ohta). H2O2 concentrations during monthly measurements varied between 6 and 213nM in the Kurose River and 33 and 188nM in the Ohta River. ROOH varied between 0 and 73nM in the Kurose River and 1 and 80nM in the Ohta. Concentrations of peroxides were higher during the summer months than in winter. H2O2 concentrations co...

  9. Natural manganese deposits as catalyst for decomposing hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    A. H. Knol

    2015-01-01

    Full Text Available Drinking water companies more and more implement Advanced Oxidation Processes (AOP in their treatment schemes to increase the barrier against organic micropollutants (OMPs. It is necessary to decompose the excessive hydrogen peroxide after applying AOP to avoid negative effects in the following, often biological, treatment steps. A drinking water company in the western part of the Netherlands investigated decomposition of about 5.75 mg L−1 hydrogen peroxide in pre-treated Meuse river water with different catalysts on pilot scale. In down flow operation, the necessary reactor Empty Bed Contact Time (EBCT with the commonly used Granulated Activated Carbon (GAC and waste ground water filter gravel (MCFgw were the same with 149 s, corresponding with a conversion rate constant r of 0.021 s−1. The EBCT of the fine coating of ground water filter gravel (MC was significantly shorter with a little more than 10 s (r = 0.30 s−1. In up flow operation, with a flow rate of 20 m h−1, the EBCT of coating MC increased till about 100 s (r = 0.031 s−1, from which can be concluded, that the performance of this waste material is better compared with GAC, in both up and down flow operation. The necessary EBCT at average filtration rate of full scale dual layer filter material (MCFsw amounted to 209 s (r = 0.015 s−1. Regarding the average residence time in the full scale filters of 700 s, applying AOP in front of the filters could be an interesting alternative which makes a separate decomposition installation superfluous, on the condition that the primary functions of the filters are not affected.

  10. Development of hydrogen peroxide technique for bioburden reduction

    Science.gov (United States)

    Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.

    In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.

  11. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Sibel Konyalioglu; Guliz Armagan; Ayfer Yalcin; Cigdem Atalayin; Taner Dagci

    2013-01-01

    Resveratrol, a natural phenolic compound, has been shown to prevent cardiovascular diseases and cancer and exhibit neuroprotective effects. In this study, we examined the neuroprotective and antioxidant effects of resveratrol against hydrogen peroxide in embryonic neural stem cells. Hydrogen peroxide treatment alone increased catalase and glutathione peroxidase activities but did not change superoxide dismutase levels compared with hydrogen peroxide + resveratrol treatment. Nitric oxide synthase activity and concomitant nitric oxide levels increased in response to hydrogen peroxide treatment. Conversely, resveratrol treatment decreased nitric oxide synthase activity and nitric oxide levels. Resveratrol also attenuated hydrogen peroxide-induced nuclear or mitochondrial DNA damage. We propose that resveratrol may be a promising agent for protecting embryonic neural stem cells because of its potential to decrease oxidative stress by inducing higher activity of antioxidant enzymes, decreasing nitric oxide production and nitric oxide synthase activity, and alleviating both nuclear and mitochondrial DNA damage.

  12. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Rui Chen

    2011-01-01

    Full Text Available Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs, which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource.

  13. Kinetics of dissolution of uranium metal foil by alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    To develop a new process for the production of 99Mo using low-enriched uranium targets, uranium dissolution in alkaline hydrogen peroxide was studied. Molybdenum-99 is a parent of the widely used medical isotope 99mTc. The rates of uranium dissolution in alkaline hydrogen peroxide solution were measured in an open, batch-type reactor and were found to be a 0.25th order reaction with respect to equilibrium hydrogen peroxide concentration. In general, uranium dissolution can be classified as a low-base (0.2 M hydroxide) process. In the low-base process, both the equilibrium hydrogen peroxide and the hydroxide concentrations affect the rate of uranium dissolution. In the high-base process, uranium dissolution is independent of alkali concentration; the presence of base affects only the equilibrium concentration of hydrogen peroxide. An empirical kinetics model is proposed and discussed

  14. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  15. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.

    Science.gov (United States)

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A; González, Maricruz; Lindahl, Anna M; Cejudo, Francisco J

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  16. Hydrogen peroxide generation in caco-2 cell culture medium by addition of phenolic compounds: effect of ascorbic acid.

    Science.gov (United States)

    Roques, Sylvie Cambon; Landrault, Nicolas; Teissèdre, Pierre-Louis; Laurent, Caroline; Besançon, Pierre; Rouane, Jean-Max; Caporiccio, Bertrand

    2002-05-01

    Phenolic compounds have recently attracted special attention due to their beneficial health effects; their intestinal absorption and bioavailability need, therefore, to be investigated and Caco-2 cell culture model appeared as a promising tool. We have shown herein that the addition of a grape seed extract (GSE) to Dulbecco's modified Eagle's medium (DMEM) used for Caco-2 cell culture leads to a substantial loss of catechin, epicatechin and B2 and B3 dimers from GSE in the medium after 24 h and to a production of hydrogen peroxide (H2O2). When 1420 microM ascorbic acid is added to the DMEM, such H2O2 production was prevented. This hydrogen peroxide generation substantially involves inorganic salts from the DMEM. We recommend that ascorbic acid be added to circumvent such a risk. PMID:12150547

  17. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Shuxiang L(u); Li Wang; Zhentao Mi; Yaquan Wang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide from organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  18. SIMULTANEOUS REACTION AND LIQUID-LIQUID EXTRACTION IN THE HYDROGEN PEROXIDE PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    ShuxiangLǖ; LiWang; ZhentaoMi; YaquanWang

    2004-01-01

    The gas-liquid-liquid reactive extraction system for preparing hydrogen peroxide via anthraquinone was investigated. The oxidation reaction of hydrogenated working solution was combined with the extraction of hydrogen peroxide from working solution in a sieve plate column. The reaction of 2-ethylanthrahydroquionone with oxygen and the liquid-liquid extraction of hydrogen peroxide take place simultaneously. The oxygen was introduced with hydrogenated working solution through a nozzle in the bottom of the column, which worked as agitated air as well as oxidation reagent. The results showed the oxidation and extraction do not hamper each other, on the contrary, the presence of oxidation gas in the column can promote the transfer of hydrogen peroxide fi'om organic phase to aqueous phase, thus the reaction efficiency and extraction efficiency increased with increasing gas superficial velocity. Furthermore, the oxidation efficiency is almost 100% and the extraction efficiency is higher than 90% in this process.

  19. Investigation of a novel electrocatalyst for hydrogen peroxide reduction and its application to sensing and biosensing.

    OpenAIRE

    Gonzalez Macia, Laura

    2011-01-01

    Hydrogen peroxide has, for many years, been shown to be a very important compound due to its wide and varied applications in many industrial processes as well as biological systems. Therefore, its detection and measurement represents an important analytical issue. Traditional methods such as titrimetry or spectrophotometry have more recently been displaced by electrochemical techniques, which have proven to be an inexpensive and effective means of hydrogen peroxide determination. Hydrogen ...

  20. Evaluation of Extraradicular Diffusion of Hydrogen Peroxide during Intracoronal Bleaching Using Different Bleaching Agents

    Directory of Open Access Journals (Sweden)

    Mohammad E. Rokaya

    2015-01-01

    Full Text Available Objectives. Extra radicular diffusion of hydrogen peroxide associated with intracoronal teeth bleaching was evaluated. Methods. 108 intact single rooted extracted mandibular first premolars teeth were selected. The teeth were instrumented with WaveOne system and obturated with gutta percha and divided into four groups (n=27 according to the bleaching materials used. Each main group was divided into three subgroups (n=9 according to the time of extra radicular hydrogen peroxide diffusion measurements at 1, 7, and 14 days: group 1 (35% hydrogen peroxide, group 2 (35% carbamide peroxide, group 3 (sodium perborate-30% hydrogen peroxide mixture, and group 4 (sodium perborate-water mixture. Four cemental dentinal defects were prepared just below the CEJ on each root surface. The amount of hydrogen peroxide that leached out was evaluated after 1, 7, and 14 days by spectrophotometer analysis. The results were analyzed using the ANOVA and Tukey’s test. Results. Group 1 showed highest extra radicular diffusion, followed by group 3 and group 2, while group 4 showed the lowest mean extra radicular diffusion. Conclusion. Carbamide peroxide and sodium perborate-water mixture are the most suitable bleaching materials used for internal bleaching due to their low extra radicular diffusion of hydrogen peroxide.

  1. Hydrogen peroxide in exhaled breath condensate: A clinical study

    Directory of Open Access Journals (Sweden)

    C Nagaraja

    2012-01-01

    Full Text Available Objectives: To study the ongoing inflammatory process of lung in healthy individuals with risk factors and comparing with that of a known diseased condition. To study the inflammatory response to treatment. Background: Morbidity and mortality of respiratory diseases are raising in trend due to increased smokers, urbanization and air pollution, the diagnosis of these conditions during early stage and management can improve patient′s lifestyle and morbidity. Materials and Methods: One hundred subjects were studied from July 2010 to September 2010; the level of hydrogen peroxide concentration in exhaled breath condensate was measured using Ecocheck. Results: Of the 100 subjects studied, 23 were healthy individuals with risk factors (smoking, exposure to air pollution, and urbanization; the values of hydrogen peroxide in smokers were 200-2220 nmol/l and in non-smokers 340-760 nmol/l. In people residing in rural areas values were 20-140 nmol/l in non-smokers and 180 nmol/l in smokers. In chronic obstructive pulmonary disease cases, during acute exacerbations values were 540-3040 nmol/l and 240-480 nmol/l following treatment. In acute exacerbations of bronchial asthma, values were 400-1140 nmol/l and 100-320 nmol/l following treatment. In cases of bronchiectasis, values were 300-340 nmol/l and 200-280 nmol/l following treatment. In diagnosed pneumonia cases values were 1060-11800 nmol/l and 540-700 nmol/l following treatment. In interstitial lung diseases, values ranged from 220-720 nmol/l and 210-510 nmol/l following treatment. Conclusion: Exhaled breath condensate provides a non-invasive means of sampling the lower respiratory tract. Collection of exhaled breath condensate might be useful to detect the oxidative destruction of the lung as well as early inflammation of the airways in a healthy individual with risk factors and comparing the inflammatory response to treatment.

  2. Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide

    International Nuclear Information System (INIS)

    The treatment of soil with pentachlorophenol, trifluralin, hexadecane, and dieldrin using catalyzed hydrogen peroxide [H2O and iron(II)] was investigated in a soil of low development with organic C ranging from 2,000 mg kg-1 to 16,000 mg kg-1. Soil treatment was conducted at pH 3 with 240 and 400 mg L-1 iron additions and 120,000 mg L-1 H2O2. Pentachlorophenol and trifluralin degradation rates decreased as a function of soil organic C content. However, soil organic C had no effect on the degradation rates of dieldrin and hexadecane. In addition, the four contaminant degraded at equal rates with soil containing organic C > 10,000 mg kg-1. The ratio of first-order rate constant for contaminant degradation to hydrogen peroxide consumption was used as an empirical measure of treatment efficiency. These ratios were sensitive to both the soil and organic C content and to the concentration of iron added during treatment. The efficiency ratios were highest for treatment with no iron addition; these data suggest that iron minerals and H2O2 provide a system in which Fenton-like oxidations pentachlorophenol was evaluated in goethite-, hematite-, and magnetite-silica sand at pH 3. Pentachlorophenol was degraded in the mineral-silica sand systems

  3. Photocatalytic Degradation of Pesticides in Natural Water: Effect of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natividad Miguel

    2012-01-01

    Full Text Available The aim of this paper is to evaluate the effectiveness of photocatalytic treatment with titanium dioxide in the degradation of 44 organic pesticides analyzed systematically in the Ebro river basin (Spain. The effect of the addition of hydrogen peroxide in this treatment is studied, and a monitoring of effectiveness of photocatalytic processes is carried out by measurements of physical-chemical parameters of water. The application of photocatalytic treatment with 1 g L−1 of TiO2 during 30 minutes achieves an average degradation of the studied pesticides of 48%. Chlorine demand, toxicity, and dissolved organic carbon (DOC concentration of water are reduced. If hydrogen peroxide is added with a concentration of 10 mM, the average degradation of pesticides increases up to 57%, although chlorine demand and toxicity of water increase while DOC concentration remains unchanged with this treatment. The application of either photocatalytic treatments does not produce variations in the physical-chemical parameters of water, such as pH, conductivity, colour, dissolved oxygen, and hardness. The pesticides which are best degraded by photocatalytic treatments are parathion methyl, chlorpyrifos, α-endosulphan, 3,4-dichloroaniline, 4-isopropylaniline, and dicofol while the worst degraded are HCHs, endosulphan-sulphate, heptachlors epoxide, and 4,4′-dichlorobenzophenone.

  4. Spectroscopic studies of europium-tetracyclines complexes and their applications in detection of hydrogen peroxide and urea peroxide; Estudos espectroscopicos dos complexos europio-tetraciclinas e suas aplicacoes na detecao de peroxido de hidrogenio e peroxido de ureia

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, Andrea Nastri

    2010-07-01

    In this work were studied the spectroscopic properties of trivalent europium ion complexed with components of tetracycline family, chlorotetracycline, oxytetracycline and metacycline, in the presence of hydrogen peroxide and urea peroxide. Optical parameters were obtained such as absorption, emission, lifetime and calibration curves were constructed for luminescence spectra. Experiments were carried out with both inorganic compounds and europium-tetracyclines complexes in order to verify possible interferences. Studies for glucose determination were also described using europium-tetracyclines complexes as biosensors. Results show that europium tetracyclines complexes emit a narrow band in the visible region and, in the presence of hydrogen peroxide or urea peroxide there is a greater enhancement in their luminescence and lifetime. Thus, europium-tetracyclines complexes studied can be used as biosensors for hydrogen and urea peroxides determination as a low cost and room temperature method. An indirect method for glucose determination was studied by adding glucose oxidase enzyme in europium-tetracyclines complex in the presence of glucose promoting as product hydrogen peroxide. (author)

  5. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    Science.gov (United States)

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  6. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Hydrogen peroxide (H2O2 produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.

  7. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    Science.gov (United States)

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  8. Electrochemical reduction of hydrogen peroxide on stainless steel

    Indian Academy of Sciences (India)

    S Patra; N Munichandraiah

    2009-09-01

    Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS) electrode in an aqueous solution of NaClO4. The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0.40 V versus standard calomel electrode (SCE). Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0.2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s-1. Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0.50 V vs SCE provides the detection limit of 5 M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 ≥ 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.

  9. Preliminary flight test of hydrogen peroxide retro-propulsion module

    Science.gov (United States)

    An, Sungyong; Jo, Sungkwon; Wee, Jeonghyun; Yoon, Hosung; Kwon, Sejin

    2010-09-01

    In this paper, we present the development of a retro-thruster, the design of a retro-propulsion module, and a preliminary flight of the module in a landing demonstration. First, a retro-monopropellant thruster with the maximum thrust of 350 N that employs hydrogen peroxide as a monopropellant was developed. It's thrust force, efficiency of characteristic velocity, and specific impulse were evaluated during the course of it's development. To control the thrust force, two solenoid valves and a pulse width modulation (PWM) flow control valve were incorporated into the thruster design. Second, a retro-propulsion module with a wet mass of 23 kg was designed and fabricated. All the required components including tanks, propellant tubes, a pressure regulator, valves, a retro-thruster, and support structure were integrated into the module. Finally, a preliminary flight test with thrust and altitude control was carried out successfully. In this test, the throttling of the thrust force and altitude control was performed manually for safety purposes.

  10. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  11. Simultaneous electroanalysis of peroxyacetic acid and hydrogen peroxide.

    Science.gov (United States)

    Awad, M I; Harnoode, C; Tokuda, K; Ohsaka, T

    2001-04-15

    The electrochemical behavior of peroxyacetic acid (PAA) in the presence of hydrogen peroxide (H2O2) has been investigated using cyclic voltammetry and hydrodynamic techniques [rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry]. The results have been analyzed aiming at simultaneous electroanalysis of both species. Glassy carbon and gold electrodes were used for this investigation. It was found that the reduction of PAA, as well as H2O2, is highly sensitive to the electrode material; for example, at 100 mV s-1, the reduction peak potentials of PAA were 0.2 and -1.1 V at gold and glassy carbon electrodes, respectively. The well-separated steady-state limiting currents were obtained using a gold electrode for the reduction of both PAA and H2O2 and also a well-defined one for the oxidation of H2O2. On the basis of the RDE experiments, good calibration curves were obtained for both species over a wide range of their concentrations, for PAA and H2O2 in the range of 0.36 to 110 and 0.11 to 34 mM, respectively. The simultaneous and selective electroanalysis of PAA and H2O2 in their coexistence is demonstrated for the first time.

  12. Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor

    Directory of Open Access Journals (Sweden)

    Shi-Gang Sun

    2013-04-01

    Full Text Available Several kinds of modified carbon screen printed electrodes (CSPEs for amperometric detection of hydrogen peroxide (H2O2 are presented in order to propose a methyl mercaptan (MM biosensor. Unmodified, carbon nanotubes (CNTs, cobalt phthalocyanine (CoPC, Prussian blue (PB, and Os-wired HRP modified CSPE sensors were fabricated and tested to detect H2O2, applying a potential of +0.6 V, +0.6 V, +0.4 V, −0.2 V and −0.1 V (versus Ag/AgCl, respectively. The limits of detection of these electrodes for H2O2 were 3.1 μM, 1.3 μM, 71 nM, 1.3 μM, 13.7 nM, respectively. The results demonstrated that the Os-wired HRP modified CSPEs gives the lowest limit of detection (LOD for H2O2 at a working potential as low as −0.1 V. Os-wired HRP is the optimum choice for establishment of a MM biosensor and gives a detection limit of 0.5 μM.

  13. Solvothermal method to prepare graphene quantum dots by hydrogen peroxide

    Science.gov (United States)

    Tian, Renbing; Zhong, Suting; Wu, Juan; Jiang, Wei; Shen, Yewen; Jiang, Wei; Wang, Tianhe

    2016-10-01

    Graphene quantum dots (GQDs) have been synthesized by different chemical methods in recent years. For conventional chemical methods, it is inevitable to introduce a large amount of impurities in the preparation process. Long time of dialysis process increases the time cost extremely. Herein, we report a one-step solvothermal method for synthesizing GQDs with the application of hydrogen peroxide in N, N-Dimethylformamide (DMF) environment, which completely avoids the use of concentrated sulphuric acid and nitric acid to treat raw material and introduces no impurity in whole preparation process simultaneously for the first time. Pure GQDs can be obtained after evaporation/redissolution and filtration process with a strong blue emission at 15% quantum yield. This solvothermal method, not requiring dialysis process and complicated equipments, exhibits simple, eco-friendly and low time-cost properties. Besides high quantum yields, the as-prepared GQDs also show good photoluminescence stability in different pH conditions. The optical properties, morphology and structure of GQDs were studied by various equipments, implying potential application in biomedical fields and electronic device.

  14. Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments

    International Nuclear Information System (INIS)

    Highlights: • The concept of diesel reforming using hydrogen peroxide was newly proposed. • Characteristics of hydrogen peroxide was experimentally investigated. • Thermodynamically possible operating conditions were analyzed. • Catalytic performance of Ni–Ru/CGO for various diesel compounds was evaluated. • Long-term testing was successfully conducted using Korean commercial diesel. - Abstract: To operate fuel cells effectively in low-oxygen environments, such as in submarines and unmanned underwater vehicles, a hydrogen source with high hydrogen storage density is required. In this paper, diesel autothermal reforming (ATR) with hydrogen peroxide as an alternative oxidant is proposed as a hydrogen production method. Diesel fuel has higher hydrogen density than metal hydrides or other hydrocarbons. In addition, hydrogen peroxide can decompose into steam and oxygen, which are required for diesel ATR. Moreover, both diesel fuel and hydrogen peroxide are liquid states, enabling easy storage for submarine applications. Hydrogen peroxide exhibited the same characteristics as steam and oxygen when used as an oxidant in diesel reforming when pre-decomposition method was used. The thermodynamically calculated operating conditions were a steam-to-carbon ratio (SCR) of 3.0, an oxygen-to-carbon ratio (OCR) of 0.5, and temperatures below 700 °C to account for safety issues associated with hydrogen peroxide use and exothermic reactions. Catalytic activity and stability tests over Ni–Ru (19.5–0.5 wt.%)/Ce0.9Gd0.1O2−x were conducted using various diesel compounds. Furthermore, long-term diesel ATR tests were conducted for 200 h using Korean commercial diesel. The degradation rate was 3.67%/100 h without the production of ethylene

  15. Addition versus radiolytic production effects of hydrogen peroxide on aqueous corrosion of UO2

    International Nuclear Information System (INIS)

    The effects of hydrogen peroxide, H2O2, on UO2 corrosion is investigated in aerated deionized water in two types of situations. The H2O2 species is either added to water or produced by radiolysis at UO2/H2O interfaces. The concentrations vary in the range 10-5-10-1 mol l-1. The radiolysis is induced by irradiating the UO2/H2O interfaces with a He2+-beam emerging from the UO2 discs into the solutions. Both the evolution of the aqueous solutions and the UO2 surfaces are characterised. In both types of experiments, the alteration of UO2 results in the formation of the same secondary phase, an hydrated uranium peroxide called studtite (UO2(O)2 . 4H2O). However, the uranium release at the interface differs strikingly. It is much higher when H2O2 is produced by irradiation than when it is simply added. Furthermore, it varies in opposite direction as a function of the H2O2 concentration. This gives evidence that the chemistry at the UO2 interface under irradiation differs significantly from the chemistry induced by simply adding H2O2 to the solution. Rutherford backscattering spectrometry is used to determine the growth rate of the corrosion layer. For H2O2 addition, the layer thickness increases with increasing leaching time, although as time increases, the U release tends towards zero. It is possible to establish the first empirical equation relating the corrosion rates to the added H2O2 concentrations. For H2O2 radiolytic production, the growth is continuous as irradiation time increases but the growth rate seems to decrease as the layer grows and to reach a limit

  16. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  17. MICROWAVE-EXPEDITED OLEFIN EPOXIDATION OVER HYDROTALCITES USING HYDROGEN PEROXIDE AND ACETONITRILE

    Science.gov (United States)

    An efficient microwave-assisted expoxidation of olefins is described over hydrotalcite catalysts in the presence of hydrogen peroxide and acetonitrile. This general and selective protocol is extremely fast and is applicable to a wide variety of subtrates.

  18. The contribution of rainwater to variability in surface ocean hydrogen peroxide

    OpenAIRE

    Cooper, William J.; SALTZMAN, ERIC S.; Zika, Rod G

    1987-01-01

    Hydrogen peroxide concentrations have been determined in marine rain from the Gulf of Mexico, the western Atlantic Ocean, and one rain event off the Florida Keys. In several cases, simultaneous measurements of the concentration of H2O2 in the surface ocean were also determined. These measurements were made with the ship under way using a continuous flow sampling system with the intake at the bow. In shallow stratified layers, rain events can increase the existing hydrogen peroxide concentrati...

  19. The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics

    Directory of Open Access Journals (Sweden)

    AMORIM ALEXANDRA M.

    2002-01-01

    Full Text Available Results of dyeing of cotton fabrics with a bifunctional reactive dye were significantly improved when the fabric after bleaching with hydrogen peroxide was treated with catalase for the elimination of hydrogen peroxide residues from the fabrics. Compared to processes with a varying number of washing steps, with and without commercial reducing agents, the consumption of water could be significantly reduced, without altering the final color shade.

  20. Natural manganese deposits as catalyst for decomposing hydrogen peroxide (discussion paper)

    OpenAIRE

    Knol, A.H.; Lekkerkerker-Teunissen, K.; Van Dijk, J. C.

    2015-01-01

    Drinking water companies more and more implement Advanced Oxidation Processes (AOP) in their treatment schemes to increase the barrier against organic micropollutants (OMPs). It is necessary to decompose the excessive hydrogen peroxide after applying AOP to avoid negative effects in the following, often biological, treatment steps. A drinking water company in the western part of the Netherlands investigated decomposition of about 5.75 mg L−1 hydrogen peroxide in pre-treated Meuse river water ...

  1. Oxidation of PAHs in water solutions by ultraviolet radiation combined with hydrogen peroxide

    OpenAIRE

    Dorota Olejnik; Jacek S. Miller; Stanisław Ledakowicz

    1999-01-01

    The destruction of three polycyclic aromatic hydrocarbons (PAHs): benzo[a]pyrene, chrysene and fluorene in aqueous solution using advanced oxidation process H2O2/UV was investigated. The influence of pH, initial hydrogen peroxide and radical scavenger concentrations on the reaction rate was studied. The oxidation reactions most rapidly run in neutral and acidic solution at optimal hydrogen peroxide concentration (ca. 0.01 M). The degradation of benzo[a]pyrene and chrysene follows radical reac...

  2. Measurements of the partitioning of hydrogen peroxide in a stratiform cloud

    OpenAIRE

    Noone, Kevin J.; OGREN, JOHN A.; NOONE, K. BIRGITTA; HALLBERG, ANNELI; Fuzzi, Sandro; Lind, John A.

    2011-01-01

    Simultaneous measurements of hydrogen peroxide in cloud droplets and in the air in which the droplets were suspended are presented. In addition, a description of the new technique used to make the measurements is also presented. The ratio of the measured cloudwater concentration to the equilibrium cloudwater concentration predicted using Henry's law and the measured gas-phase hydrogen peroxide was 0.64 (S.D = 0.32, n= 74). Analysis of both random and potential systematic errors indicate that ...

  3. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-05-01

    Full Text Available In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  4. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    OpenAIRE

    Ruslana Vasylkovska; Nadia Burdylyuk; Halyna Semchyshyn

    2015-01-01

    In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i) hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii) the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  5. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    Science.gov (United States)

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  6. Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems.

    Science.gov (United States)

    Lin, Vivian S; Dickinson, Bryan C; Chang, Christopher J

    2013-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application.

  7. Effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Qian Cai; Hong Zhou; Guang-Xia Xiao

    2002-01-01

    AIM: To study the effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells in in vitro model of hydrogen peroxide-stimulated SW-480 cells.METHODS: RNA of hydrogen peroxide-induced SW-480 cells was isolated, and reverse-transcriptional polymerase chain reaction was performed to study gene expression of ATPase subunit 6, ATPase subunit 8, cytochrome c oxidase subunit Ⅰ (COⅠ), cytochrome coxidase subuit Ⅱ (COⅡ) and cytochrome c oxidase subunit Ⅲ (COⅢ). Mitochondria were isolated and activities of mitochondrial cytochrome c oxidase and ATPase were also measured simultaneously.RESULTS: Hydrogen peroxide led to differential expression of mitochondrial genes with some genes up-regulated or down-regulated in a dose dependent manner. Differences were very obvious in expressions of mitochondrial genes of cells treated with hydrogen peroxide in a concentration of 400 μmol/L or 4 mmol/L. In general, differential expression of mitochondrial genes was characterized by up-regulation of mitochondrial genes in the concentration of 400 μmol/L and down-regulation in the concentration of 4 mmol/L. In consistence with changes in mitochondrial gene expressions, hydrogen peroxide resulted in decreased activities of cytochrome c oxidase and ATPase.CONCLUSIONS: The differential expression of mitochondrial genes encoding cytochrome c oxidase and ATPase is involved in apoptosis of intestinal epithelial cells by affecting activities of cytochorme c oxidase and ATPase.

  8. Shock initiation studies on high concentration hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L. Lee [Los Alamos National Laboratory; Bartram, Brian D. [Los Alamos National Laboratory

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  9. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2012-01-01

    Objective: To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods: Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results:Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions:The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  10. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  11. Production of uranium peroxide

    International Nuclear Information System (INIS)

    The process of recovering uranium values as uranium peroxide from an aqueous uranyl solution containing dissolved vanadium and sodium impurities, characterized by treating the uranyl solution with hydrogen peroxide in an amount sufficient to have an excess of at least 0.5 parts H2O2 per part vanadium (V2O5) above the stoichio-metric amount required to form the uranium peroxide, the hydrogen peroxide treatment being carried out in three sequential phases consisting of: 1) a precipitation phase in which the hydrogen peroxide is added to the uranyl solution to precipitate the uranium peroxide and the pH of the reaction media maintained in the range of 3.0 to 7.0 for a period of 5 to 180 60 minutes after the hydrogen peroxide addition; 2) a digestion phase in which the pH of the reaction medium is maintained in the range of 3.0 to 7.0 for a period of 5 to 180 minutes and 3) a final phase in which the pH of the reaction media is maintained in the range of 4.0 to 7.0 for a period of 1 to 60 minutes during which time the uranium peroxide is separated from the reaction solution containing the dissolved vanadium and sodium impurities, the excess hydrogen peroxide aforesaid being maintained until the uranium peroxide is separated from the reaction mixture

  12. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    Directory of Open Access Journals (Sweden)

    H. Susana Marinho

    2014-01-01

    Full Text Available The regulatory mechanisms by which hydrogen peroxide (H2O2 modulates the activity of transcription factors in bacteria (OxyR and PerR, lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4 and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1 are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1 synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for

  13. DISY. The direct synthesis of hydrogen peroxide, a bridge for innovative applications

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Perego, C. [Eni S.p.A., Novara (Italy). Research Center for Non-Conventional Energies

    2011-07-01

    Hydrogen peroxide is largely recognized as the green oxidant of choice for future sustainable processes. The current industrial production still goes through the old anthraquinone process, a complex, two-step process suffering from a low specific productivity. Following the development of TS-1/H{sub 2}O{sub 2} based selective oxidation processes e.g. propylene epoxidation, cyclohexanone ammoximation and the new benzene direct oxidation to phenol, there has been an incentive for the development of a new technology, simpler and with better economics. DISY process, based on direct synthesis of hydrogen peroxide from hydrogen and oxygen, is highly suitable to the design of integrated selective oxidation processes as well as for production of commercial-grade high concentration aqueous hydrogen peroxide solutions. Catalyst and process development up to pilot scale are described. (orig.)

  14. Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karolini Zuqui Nunes

    Full Text Available We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct and treatment with 100 ppm of lead (Pb, which was added to drinking water, for 30 days. Systolic blood pressure (BP was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM-100 mM. Following N-nitro-L arginine methyl ester (L-NAME administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD administration. Catalase, diethyldithiocarbamic acid (DETCA, and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.

  15. MODIFIED OPAL: A NOVEL STABILIZER FOR HYDROGEN PEROXIDE BLEACHING OF PULPS

    Institute of Scientific and Technical Information of China (English)

    XuerenQian; XianhuiAn; WenboLiu; GangYu; ZhanqianSong

    2004-01-01

    The possibility of modified opal as the stabilizer ofhydrogen peroxide bleaching was investigated. Theresults showed that the modified opal in place ofsodium silicate as the stabilizer of hydrogen peroxidebleaching is feasible. At the same dosage, above 3%ISO can be increased for both wheat straw pulp anddeinked pulp. The stabilizing ability of the modifiedopal to hydrogen peroxide bleaching of pulp isimproved markedly. It is favorable for bleaching toincrease temperature and time within a permissiveextent. The suitable process conditions are I0% ofpulp consistency, 3% of hydrogen peroxide, 1.5% ofsodium hydroxide, 3% of the modified opal, 70~"and 60 min when the modified opal is used as thestabilizer of hydrogen peroxide bleaching. At theseconditions, the brightness gain can reach about 16%ISO for wheat straw pulp. In addition, it is favorablefor bleaching to add a little magnesium sulfate whenthe modified opal is used as the stabilizer ofhydrogen peroxide bleaching, the brightness of pulpcan increase 1%ISO if0.05% of magnesium sulfate isadded. The cost analysis indicated that the modifiedopal is superior to sodium silicate as the stabilizer ofhydrogen peroxide bleaching in economical aspectand has further the potential of market development.

  16. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    Science.gov (United States)

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization. PMID:27093949

  17. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    Science.gov (United States)

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death. PMID:27672389

  18. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Hong Zhou; Qian Cai; Guang-Xia Xiao

    2003-01-01

    AIM: To study the role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells.METHODS: Hydrogen peroxide-induced apoptosis of human intestinal epithelial cell line SW-480 was established. Cell apoptosis was determined by Annexin-V and PI doublestained flow cytometry and DNA gel electrophoresis.Morphological changes were examined with light and electron microscopy. For other observations, mitochondrial function,cytochrome c release, mitochondrial translocation and membrane potential were determined simultaneously.RESULTS: Percentage of apoptotic cells induced with 400μ mol/L hydrogen peroxide increased significantly at I h or 3h after stimulation and recovered rapidly. Meanwhile percentage of apoptotic cells induced with 4 mmol/L hydrogen peroxide increased with time. In accordance with these changes, we observed decreased mitochondrial function in 400 μmol/L H2O2-stimualted cells at 1 h or 3 h and in 4 mmol/L H2O2-stimualted cells at times examined.Correspondingly, swelling cristae and vacuole-like mitochondria were noted. Release of cytochrome c,decreased mitochondrial membrane potential and mitochondrial translocation were also found to be the early signs of apoptosis.CONCLUSION: Dysfunctional mitochondria play a role in the apoptosis of SW-480 cell line induced by hydrogen peroxide.

  19. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    Science.gov (United States)

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells. PMID:24261122

  20. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Ya-Dan Wen

    Full Text Available BACKGROUND: Hydrogen sulfide (H₂S has been shown to have cytoprotective effects in models of hypertension, ischemia/reperfusion and Alzheimer's disease. However, little is known about its effects or mechanisms of action in atherosclerosis. Therefore, in the current study we evaluated the pharmacological effects of H₂S on antioxidant defenses and mitochondria protection against hydrogen peroxide (H₂O₂ induced endothelial cells damage. METHODOLOGY AND PRINCIPAL FINDINGS: H₂S, at non-cytotoxic levels, exerts a concentration dependent protective effect in human umbilical vein endothelial cells (HUVECs exposed to H₂O₂. Analysis of ATP synthesis, mitochondrial membrane potential (ΔΨm and cytochrome c release from mitochondria indicated that mitochondrial function was preserved by pretreatment with H₂S. In contrast, in H₂O₂ exposed endothelial cells mitochondria appeared swollen or ruptured. In additional experiments, H₂S was also found to preserve the activities and protein expressions levels of the antioxidants enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase in H₂O₂ exposed cells. ROS and lipid peroxidation, as assessed by measuring H₂DCFDA, dihydroethidium (DHE, diphenyl-l-pyrenylphosphine (DPPP and malonaldehyde (MDA levels, were also inhibited by H₂S treatment. Interestingly, in the current model, D, L-propargylglycine (PAG, a selective inhibitor of cystathionine γ-lyase (CSE, abolished the protective effects of H₂S donors. INNOVATION: This study is the first to show that H₂S can inhibit H₂O₂ mediated mitochondrial dysfunction in human endothelial cells by preserving antioxidant defences. SIGNIFICANCE: H₂S may protect against atherosclerosis by preventing H₂O₂ induced injury to endothelial cells. These effects appear to be mediated via the preservation of mitochondrial function and by reducing the deleterious effects of oxidative stress.

  1. Reaction kinetics of hydrogen peroxide in teeth for teeth whitening applications

    OpenAIRE

    Fang, Grace C.

    2013-01-01

    Clinical parameters for dental whitening such as peroxide concentration and treatment time have been empirically derived. However, limited quantitative analyses examine reactivity of hydrogen peroxide on in vivo tooth stains under various catalytic settings. The wide range of possible activators and stains are challenging in creating a standardized tooth model to isolate various effects for clinical applications. This study uses three model systems to determine the effects of heat, light, met...

  2. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling

    OpenAIRE

    Bao, Li; Avshalumov, Marat V.; Patel, Jyoti C.; Lee, Christian R.; Miller, Evan W.; Chang, Christopher J.; Rice, Margaret E.

    2009-01-01

    Hydrogen peroxide (H2O2) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H2O2 signaling, which activates ATP-sensitive potassium (KATP) channels to inhibit dopamine release. However, the origin of this modulatory H2O2 has been elusive. Here we add...

  3. Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey

    OpenAIRE

    Brudzynski, Katrina; Abubaker, Kamal; St-Martin, Laurent; Castle, Alan

    2011-01-01

    The aim of this study was to critically analyze the effects of hydrogen peroxide on growth and survival of bacterial cells in order to prove or disprove its purported role as a main component responsible for the antibacterial activity of honey. Using the sensitive peroxide/peroxidase assay, broth microdilution assay and DNA degradation assays, the quantitative relationships between the content of H2O2 and honey’s antibacterial activity was established. The results showed that: (A) the average...

  4. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  5. Investigation of the oxidation of hydrochloric acid in scrubbing solutions containing hydrogen peroxide

    International Nuclear Information System (INIS)

    Oxidation and absorption of nitrogen oxides by a solution containing sulphuric, nitric acids and hydrogen peroxide have been investigated. The oxidation of nitric oxide is dependent among others on hydrogen peroxide concentration total acidity and temperature. The absorption of N O2 by the scrubbing solution (H2 S O4,H N O3 and H2 O2) in all cases studied is not less than 98%. The oxidation of chloride into chlorine gas increases as the concentration of each of hydrochloric acid, nitric oxide and nitric acid increases. On the other hand as the concentration of hydrogen peroxide increases the amount of chlorine gas decreases. The results show that the oxidation of chloride into chlorine gas is mainly due to nitrogen dioxide. 7 fig., 2 tab

  6. Chemiluminescence assay for catechin based on generation of hydrogen peroxide in basic solution

    International Nuclear Information System (INIS)

    We have determined that the catechin group in basic solution efficiently produces hydrogen peroxide; moreover, a highly sensitive analysis methodology was developed to measure catechin employing a peroxalate chemiluminescence detection system. Identification of hydrogen peroxide generated by catechin was determined by ESR as well as peroxalate chemiluminescence using catalase and SOD. As a result, catechin-generated superoxide by electron reduction to dissolved oxygen in basic solution, followed by production of hydrogen peroxide through dismutation reaction. This method could measure several tea catechins, (+)-catechin (CC), (-)-epigallocatechin-3-gallate (EGCg), (-)-epicatechin-3-gallate (ECG) and gallic acid, with measurement range from 10-7 to 10-3 mol/l and sensitivity of 10-8 mol/l. This method was also applied to the determination of total catechin levels in green tea, black tea and roasted green tea

  7. Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling.

    Science.gov (United States)

    Cuddihy, Sarah L; Winterbourn, Christine C; Hampton, Mark B

    2011-07-01

    Hydrogen peroxide acts as a second messenger in growth factor signaling where it can oxidize and modify the function of redox-sensitive proteins. While selective thiol oxidation has been measured, there has been no global assessment of protein oxidation following growth factor activation. Significant changes to the abundant and widely distributed redox sensitive thiol proteins were observed in A431 epidermoid carcinoma cells exposed to hydrogen peroxide, but no changes were observed following treatment with epidermal growth factor (EGF). This included members of the peroxiredoxin family, which were also monitored in the presence of the thioredoxin reductase inhibitor auranofin to limit their capacity to recycle to the reduced form. We conclude that widespread thiol oxidation does not occur in cells during EGF signaling, and that hydrogen peroxide must act in a highly localized or selective manner.

  8. Influence of hydrogen peroxide bleaching gels on color, opacity, and fluorescence of composite resins.

    Science.gov (United States)

    Torres, C R G; Ribeiro, C F; Bresciani, E; Borges, A B

    2012-01-01

    The aim of the present study was to evaluate the effect of 20% and 35% hydrogen peroxide bleaching gels on the color, opacity, and fluorescence of composite resins. Seven composite resin brands were tested and 30 specimens, 3-mm in diameter and 2-mm thick, of each material were fabricated, for a total of 210 specimens. The specimens of each tested material were divided into three subgroups (n=10) according to the bleaching therapy tested: 20% hydrogen peroxide gel, 35% hydroxide peroxide gel, and the control group. The baseline color, opacity, and fluorescence were assessed by spectrophotometry. Four 30-minute bleaching gel applications, two hours in total, were performed. The control group did not receive bleaching treatment and was stored in deionized water. Final assessments were performed, and data were analyzed by two-way analysis of variance and Tukey tests (pColor changes were significant for different tested bleaching therapies (pcolor change observed for 35% hydrogen peroxide gel. No difference in opacity was detected for all analyzed parameters. Fluorescence changes were influenced by composite resin brand (pbrand Z350. It was concluded that 35% hydrogen peroxide bleaching gel generated the greatest color change among all evaluated materials. No statistical opacity changes were detected for all tested variables, and significant fluorescence changes were dependent on the material and bleaching therapy, regardless of the gel concentration. PMID:22433032

  9. Chemiluminescence behavior of sodium hydrogen carbonate in the potassium permanganate-hydrogen peroxide reaction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Chemiluminescence (CL) phenomenon of hydrogen peroxide with potassium permanganate in the presence of sodium hydrogen carbonate was reported.Effects of the surfactant on the CL system were investigated.Nonionic surfactants could effectively increase the CL signal.Radical scavengers and organic reagents such as nitro blue tetrazolium chloride (NBT),cytochrome c,sodium azide,ascorbic acid,thiourea,tert-butanol and dimethyl sulphoxide were used to study the emitting species.CL emission spectrum was recorded and the results showed that the maximal emission wavelengths of NaHCO3-H2O2-KMnO4 system were 440 and 634 nm.The mechanism was discussed based on electron spin resonance (ESR) spectra,fluorescence spectra and UV-vis absorption spectra.The addition of rhodamine B or uranine into this CL system enhanced the CL signal.It was due to part of the energy transfer from singlet oxygen and excited triplet dimers of two CO2 molecules to rhodamine B or uranine.The CL could be induced by excited rhodamine B or uranine.

  10. ECF BLEACHING WITH A FINAL HYDROGEN PEROXIDE STAGE: IMPACT ON THE CHEMICAL COMPOSITION OF Eucalyptus globulus KRAFT PULPS

    Directory of Open Access Journals (Sweden)

    Pedro E. G. Loureiro

    2010-11-01

    Full Text Available Two industrial elemental chlorine free (ECF bleaching sequences, D0(EOPD1(EPD2 and OQ(PODP, are compared with respect to the bulk content of lignin, carboxyl, hexeneuronic acids (HexA, and reducing groups after each bleaching stage. HexA groups contribute significantly to the total content of carboxyl groups, and their degradation during chlorine dioxide bleaching is reflected by a decrease of the carboxyl content. The higher degradation using an enhanced use of oxygen-based bleaching chemicals is associated with a higher fiber charge reduction, mainly due to xylan depletion. Additionally, the effect of process variables of a laboratory final hydrogen peroxide stage on the chemical composition of the fully bleached pulp (D0(EOPD1P and OQ(PODP is studied. The ability of final peroxide bleaching to raise the content of carboxyl groups is dependent on the operating conditions and pulp bleaching history. A balance between carbohydrate oxidation and dissolution of oxidized groups determines the effect on fiber charge. The effect of hydrogen peroxide stabilizers added into the final stage on the content of carboxyl groups is also reported.

  11. Efficient hydrogen peroxide decomposition to oxygen and water catalysed by a ruthenium pincer complex

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2016-01-01

    Hydrogen peroxide decomposition is a major issue in medicine, energy, and environmental sciences. For example, findings could lead to the development of efficient H2O2 removal systems to clean wastewaters. Here I tested several homogeneous catalysts for H2O2 decomposition. I found that a dihydride...... are necessary, further enhancing the potential scope of this system. By the use of the homogeneous catalyst Ru(H)2(PNPiPr)CO, it is possible to obtain turnover frequencies reaching 180,000 h−1 and turnover numbers more than 14,000 in a neutral hydrogen peroxide aqueous solution at 25 °C. Overall, findings...

  12. The Erosion Properties of Chlorine Dioxide and Hydrogen Peroxide on Bovine Teeth

    OpenAIRE

    Ablal MA; Jarad FD; Adeyemi AA

    2015-01-01

    Objectives: The aim of this study was to assess the erosion potential of chlorine dioxide and hydrogen peroxide on bovine teeth. Methods: Sixty bovine crowns were ground and polished to give flat surfaces. The crowns were subjected to heavy staining cycles then equally divided into 3 treatment groups; chlorine dioxide (ClO2), hydrogen peroxide (H2O2), and deionised water (H2O). Specimens in each group were immersed in 150 ml of the treatment for seven 2 min cycle in addition...

  13. A new process for preparing dialdehyde by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    YU, Hong-Kun; PANG, Zhen; HUANG, Zu-En; CAI, Rui-Fang

    2000-01-01

    A novel peroxo-nioboplosphate was synthesized for the first time and used as a catalyst in the oxidation reaction of cyclic olefins with aqueous hydrogen peroxide to prepare dialdehydes. The catalyst was characterized by elemental analysis,thermographic analyses, IR, UV/vis, 31P NMR and XPS ~ as [ π-C5H5N(CH2)i3CH3 ]2 [Nb406 (O2)2 (PO4)2] ·6H20 (PTNP). It showed high selectivity to glutaraldehyde in the catalytic oxidation of cyclopentene with aqueous hydrogen peroxide in ethanol.

  14. Kinetic study of hexavalent plutonium reduction by hydrogen peroxide in acid solution

    International Nuclear Information System (INIS)

    The kinetics of the reduction of hexavalent plutonium by hydrogen peroxide has been studied in perchloric, sulphuric and nitric acids. The rate of reduction is proportional to the initial concentrations of plutonium and of hydrogen peroxide and is inversely proportional to the acidity. The values of the proportionality constant k have been determined. They are very dependent on the temperature, on the ionic force and on the nature of the anion of the acid medium. An interpretation is put forward, based on the experimental results, attributing an important role to the hydrolysed species PuO2(OH)+ in the reduction kinetics. (author)

  15. Cell-death-mode switch from necrosis to apoptosis in hydrogen peroxide treated macrophages

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cell death is typically defined either as apoptosis or necrosis. Because the consequences of apoptosis and necrosis are quite different for an entire organism, the investigation of the cell-death-mode switch has considerable clinical significance. The existence of a necrosis-to-apoptosis switch induced by hydrogen peroxide in macrophage cell line RAW 264.7 cells was confirmed by using flow cytometry and fluorescence microscopy. With the help of computational simulations, this study predicted that negative feedbacks between NF-κB and MAPKs are implicated in converting necrosis into apoptosis in macrophages exposed to hydrogen peroxide, which has significant implications.

  16. Neutral water-chemical regime with hydrogen peroxide dosage at the AMB-200 unit

    International Nuclear Information System (INIS)

    Results of investigations related to estimation of erosion-corrosion process rates on feed water treatment with hydrogen peroxide at the Beloyarskaya NPP second unit are given. As follows from analysis, values of electric conductivity and iron oxide concentrations reduced two times as compared with correctionless regimes. Metal erosion rate in some feed water loop sections reduced 200-600 times. Hydrogen peroxide metering for feed water provides good condition and reliable operation of feed water loop equipment, reactor circuit and process tubes of the AMB-200 reactor unit

  17. Process Development and Design of Chlorine Dioxide Production Based on Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    陈赟; 江燕斌; 钱宇

    2004-01-01

    This paper presents a process development and design of chlorine dioxide production based on hydrogen peroxide. The process is characterized by cleaner production, high efficiency, and waste minimization. Optimization of process conditions, selection of equipment, and experiment of recycle of waste acid are carried out. The process design is realized in consideration of several aspects such as operation, material, equipment design and safety. An industrialized process flowsheet is developed according to experiment. A pilot testing is carried out to confirm the lab results. Process design of chlorine dioxide production based on hydrogen peroxide is realized.

  18. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    Science.gov (United States)

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  19. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-01-01

    Full Text Available Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast.

  20. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  1. Plutonium(IV) peroxide formation in nitric medium and kinetics Pu(VI) reduction by hydrogen peroxide

    International Nuclear Information System (INIS)

    Reduction of plutonium (VI) to Pu(IV) with hydrogen peroxide is a step in industrial processes used to purify plutonium nitrate solutions. This operation must be carefully controlled, in order to avoid any formation of the Pu(IV) peroxide green precipitate and to obtain exclusively Pu(IV). This led us to study the acidity and Pu and H2O2 concentrations influences on the precipitate appearance and to perform a Pu(VI) reduction kinetic study on a wide range of acidities ([HNO3]: 0.5 to 8 M), plutonium concentrations ([Pu(VI)]: 0.1 to 0.8 M) and [H2O2]/[Pu(VI)] ratio (from 1 to 8). Thus, the domain of Pu(IV) peroxide formation and the reactional paths were established. With the exception of 0.5 M nitric acid medium, the kinetic curves show two distinct regims: the first one corresponds to an induction period where the Pu(VI) concentration doesn't change, the second corresponds to a linear decrease of Pu(VI). An increase of the temperature greatly accelerates the Pu(VI) reduction rate while [H2O2]/[Pu(VI)] has almost no influence. The Pu(VI) total reduction time decreases when initial concentration of plutonium increases. By increasing nitric acid concentration from 0.5 M to 6 M, the total Pu(VI) reduction time decreases. This time increases when [HNO3] varies from 6 M to 8 M. (orig.)

  2. [The effect of cadmium chloride and hydrogen peroxide on the lipid peroxidation and fractional composition of lipids in hepatocytes of rats].

    Science.gov (United States)

    Borikov, O Iu; Kaliman, P A

    2004-01-01

    The isolated hepatocytes were incubated in the medium, containing cadmium chloride or hydrogen peroxide. Influence of the latter on the intensity of lipid peroxidation and contents of some lipids fractions, as well as viability of hepatocytes in these conditions has been studied. It is shown that under such cultivation conditions the activation of lipid peroxidation in the hepatocytes takes place. Its activation in presence of cadmium chloride was one of the factors of the membranes damage. The changes in the content of some fractions of lipids were similar both under the incubations of the cells with cadmium chloride and hydrogen peroxide. This allows one to suppose that cadmium chloride causes changes in the lipid composition of membranes as a result of intensification of lipid peroxidation. PMID:15915720

  3. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    Science.gov (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  4. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  5. Dissolution kinetics of U3Si2 particles in alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    Nonproliferation concerns leading to the conversion from high- to low-enriched uranium sparked interest in U3Si2 dispersion targets as an option for 99Mo production. Dissolution of irradiated targets is an important step in recovering fission-product 99Mo. Alkaline hydrogen peroxide solutions dissolved U3Si2 particles in an open batch reactor; samples were analyzed for total peroxide and uranium concentrations as functions of time and temperature. Dissolution rates are highest at 1 to 1.5 M NaOH and change little for initial base concentrations from 0.5 to 2.5 M NaOH, indicating relatively robust process conditions. Uranium dissolution rates depend most strongly on the equilibrium concentration of the peroxyl ion (O2H-), an equilibrium product of hydrogen peroxide (H2O2) and hydroxyl ion (OH-). Temperature and equilibrium concentrations of O2H- and OH- are included in a uranium dissolution rate model

  6. Use of hydrogen peroxide treatment and crystal violet agar plates for selective recovery of bacteriophages from natural environments

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, A.; Farrah, S.R.; Bitton, G. (Univ. of Florida, Gainesville (United States))

    1992-04-01

    Hydrogen peroxide inactivated bacteriophages and bacteria at different rates. A concentration of 0.1% hydrogen peroxide reduced the numbers of several bacteria by an average of 94% but caused an average of 25% inactivation in the numbers of bacteriophages tested. Treating natural samples with hydrogen peroxide selectively reduced the indigenous bacterial flora and permitted better visualization of plaques of lawns of Escherichia coli C-3000. In some cases indigenous gram-positive bacteria were relatively resistant to hydrogen peroxide, but their growth could be limited by incorporation of crystal violet into the bottom agar used for plaque assays. The use of hydrogen peroxide treatment and crystal violet-containing plates permitted recovery of more phages from natural samples than did other procedures, such as chloroform pretreatment or the use of selective plating agar such as EC medium.

  7. Rational Design of an α-Ketoamide-Based Near-Infrared Fluorescent Probe Specific for Hydrogen Peroxide in Living Systems.

    Science.gov (United States)

    Xie, Xilei; Yang, Xiu'e; Wu, Tianhong; Li, Yong; Li, Mengmeng; Tan, Qi; Wang, Xu; Tang, Bo

    2016-08-16

    Hydrogen peroxide, an important biomolecule, receives earnest attention because of its physiological and pathological functions. In this Article, we present the rational design, characterization, and biological application of a mitochondria-targetable NIR fluorescent sensor, Mito-NIRHP, for hydrogen peroxide visualization. Mito-NIRHP utilizes a unique reaction switch, α-ketoamide moiety, to turn on a highly specific, sensitive, and rapid fluorescence response toward hydrogen peroxide coupled with the intramolecular charge transfer strategy. Mito-NIRHP is competent to track endogenously produced hydrogen peroxide in both living cells and living animals. In addition, utilizing Mito-NIRHP, overgeneration of hydrogen peroxide during ischemia-reperfusion injury was directly visualized at both cell and organ levels.

  8. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide

    NARCIS (Netherlands)

    H.C.P. Matthijs; P.M. Visser; B. Reeze; J. Meeuse; P.C. Slot; G. Wijn; R. Talens; J. Huisman

    2012-01-01

    Although harmful cyanobacteria form a major threat to water quality, few methods exist for the rapid suppression of cyanobacterial blooms. Since laboratory studies indicated that cyanobacteria are more sensitive to hydrogen peroxide (H2O2) than eukaryotic phytoplankton, we tested the application of

  9. Solvent-dependent regioselective oxidation of trans-chalcones using aqueous hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wang; Jiabin, Yang; Lushen, Li, E-mail: jimin@seu.edu.cn [Southeast University, Nanjing (China). School of Biological Science and Medical Engineering; Jin, Cai; Chunlong, Sun; Min, Ji [Southeast University, Nanjing (China). School of Chemistry and Chemical Engineering

    2013-03-15

    A novel method for regioselective oxidation of trans-chalcones with hydrogen peroxide in acetonitrile to afford cinnamic acids is reported. Only trans-b-arylacrylic acids were observed. A wide range of functionalized products can be effectively produced from various chalcones in good to excellent yields. (author)

  10. Electrodeposited nanostructured MnO2 for non-enzymatic hydrogen peroxide sensing

    International Nuclear Information System (INIS)

    Electrodeposited MnO2 nanostructure was synthesized on indium tin oxide coated glass electrode by cyclic voltammetry. The as obtained samples were subsequently characterized by atomic force microscopy and their electro-catalytic response towards hydrogen peroxide in alkaline medium of 0.1M NaOH was studied using cyclic voltammetry and amperometry

  11. Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan

    International Nuclear Information System (INIS)

    Highlights: ► Glutaraldehyde was used as the bridge linking agent to covalently bonded thionine in chitosan, which is more stable and could effectively prevalent leakage of the electronic mediator. ► The effect of GNPs adsorbed HRP was first accurately characterized by bio-layer interferometry using the ForteBio Octer system. ► The application of self-assembly technology increases the biosensor stability. - Abstract: A novel hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan has been developed. Gold nanoparticles fixed with horseradish peroxidase were adsorbed on glassy carbon electrode by the chitosan which cross-linked with the electron mediator of horseradish peroxidase as the bridge linking agent. The assembly procedures were monitored by UV–visible spectral scanning, bio-layer interferometry, cyclic voltammetric and alternating current impedance. The chronoamperometry was used to measure hydrogen peroxide. The hydrogen peroxide biosensor linear range of detection is 1 × 10−7–1 × 10−4 mol/L, detection limit up to 5.0 × 10−8 mol/L. Moreover the stability, reproducibility and selectivity of the biosensor were also studied and the results confirmed that the biosensor exhibit fast response to hydrogen peroxide and possess high sensitivity, good reproducibility and long-term stability.

  12. Amperometric mediatorless hydrogen peroxide sensor with horseradish peroxidase encapsulated in peptide nanotubes

    Directory of Open Access Journals (Sweden)

    Hamid Feyzizarnagh

    2016-03-01

    Full Text Available A mediatorless sensor with horseradish peroxidase (HRP enzymes encapsulated inside peptide nanotubes (PNTs has been proposed for amperometric detection of hydrogen peroxide. PNTs not only encapsulate the enzymes to retain their activity and stability, but also can provide direct electron transfer between an electrode and the electroactive sites of HRP without mediators. Experimental results were compared with hydroquinone (HQ-mediated electron transfer results. The PNT/HRP sensor produced a current signal comparable to the HQ/HRP sensor in the entire range of hydrogen peroxide concentrations (0–60 mM. The amperometric signal was the greatest when PNT and HQ were used together. The current signal of the PNT/HQ/HRP system increased rapidly with the hydrogen peroxide concentration while the PNT/HRP and HQ/HRP systems showed a similar increase in the rate of current with hydrogen peroxide. The current-H2O2 concentration relations of the tested systems were analyzed using the Michaelis–Menten type equation. Using PNTs as immobilizing agents for enzymes may circumvent the drawbacks of chemical mediators such as HQ that may interfere with the redox reactions and may cause toxicity problems to enzymes.

  13. Stabilization of hydrogen peroxide using tartaric acids in Fenton and fenton-like oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyung Suk; Kim, Jeong-Jin; Kim, Young-Hun [Andong National University, Andong (Korea, Republic of)

    2016-03-15

    The stabilization of hydrogen peroxide is a key factor in the efficiency of a Fenton reaction. The stability of hydrogen peroxide was evaluated in a Fenton reaction and Fenton-like reactions in the presence of tartaric acid as a stabilizer. The interactions between ferrous or ferric iron and tartaric acid were observed through spectroscopic monitoring at variable pH around pKa{sub 1} and pKa{sub 2} of the stabilizer. Ferric iron had a strong interaction with the stabilizer, and the strong interaction was dominant above pKa{sub 2}. At a low pH, below pKa{sub 1}, the stabilizing effect was at its maximum and the prolonged life-time of hydrogen peroxide gave a higher efficiency to the oxidative degradation of nitrobenzene. In Fenton-like reactions with hematite, the acidic conditions caused dissolution of iron from an iron oxide, and an increase in iron species was the result. Tartaric acid showed a stabilizing effect on hydrogen peroxide in the Fentonlike system. The stabilization by tartaric acid might be due to an inhibition of catalytic activity of dissolved iron, and the stabilization strongly depends on the ionization state of the stabilizer.

  14. MINERALIZATION OF A SORBED POLYCYCLIC AROMATIC HYDROCARBON IN TWO SOILS USING CATALYZED HYDROGEN PEROXIDE. (R826163)

    Science.gov (United States)

    Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...

  15. A dissolution study of cobalt oxide by hydrogen peroxide in boric acid solution

    International Nuclear Information System (INIS)

    A dissolution study of CoO (cobaltous oxide) by hydrogen peroxide was carried out in boric acid solution at 60degC. The chemical species of dissolved cobalt are Co+2 and Co(OH)+, being equilibrated with Co(OH)2, and the concentration ratio of the both ion species is determined by pH of the solution. Hydrogen peroxide accelerates the dissolution of CoO, which occures during it is decomposed. In the case where the solution is oxygenated, Co(OH)2 in the solution and/or covering the CoO crystal surface as a layer becomes Co2O3 remarkably less soluble than CoO and the reaction rate becomes somewhat slow with decreasing pH. On the basis of the results, it could be concluded that, in order to decrease the radiation dose rate on the personnel and the Co58 inventory in primary coolant system at the minimum in the practical use, the Co58 removal procedures must be consisted of: 1) The first step in that addition of small amount of hydrogen peroxide and oxygen removal are consevtively performed several times for accelerating the dissolution of Co58 2) The second step in that only addition of relatively larger amount of hydrogen peroxide is performed for repressing the dissolution of Co58. (Author)

  16. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat

    NARCIS (Netherlands)

    Shetty, N.P.; Mehrabi, R.; Lütken, H.; Haldrup, A.; Kema, G.H.J.

    2007-01-01

    Hydrogen peroxide (H2O2) is reported to inhibit biotrophic but benefit necrotrophic pathogens. Infection by necrotrophs can result in a massive accumulation of H2O2 in hosts. Little is known of how pathogens with both growth types are affected (hemibiotrophs). The hemibiotroph, Septoria tritici, inf

  17. Epoxidation of Alkenes with Aqueous Hydrogen Peroxide and Quaternary Ammonium Bicarbonate Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kegnæs, Søren

    2013-01-01

    A range of solid and liquid catalysts containing bicarbonate anions were synthesised and tested for the epoxidation of alkenes with aqueous hydrogen peroxide. The combination of bicarbonate anions and quaternary ammonium cations opens up for new catalytic systems that can help to overcome challen...

  18. Electroactive gate materials for a hydrogen peroxide sensitive E-MOSFET

    NARCIS (Netherlands)

    Anh, Dam T.V.; Olthuis, W.; Bergveld, P.

    2002-01-01

    Describes the detection principle of a hydrogen peroxide sensor based on the electrolyte metal oxide semiconductor field effect transistor (EMOSFET) and possibilities of using different types of redox materials as the gate material for the sensor with respect to the sensitivity and detection limit.

  19. Effect of hydrogen peroxide and thiourea on fluorescence and tuberization of potato (Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Mani F.

    2012-08-01

    Full Text Available The aim of this study is to determine the effect of hydrogen peroxide and thiourea on potato crop (quantum yield (Fv/ Fm, chlorophyll content, tuber diameter, tuber number and total tuber yield. The concentrations of these two chemicals are hydrogen peroxide: 0, 20, 40, 60 and 80 mM, and thiourea : 0, 250, 500, 750 and 1000 mM. The experiment was conducted in the farm of Chott-Mariem Institute during three months using variety 'Spunta' and arranged in a completely randomized block with three replications. Results show that there is no significant difference in tuber diameter between treatments and among the same treatment. However, tuber yield is significantly increased by 20 % by thiourea (250 mM. Maximum total yield was obtained at this concentration (810 g/plant. In addition, application of thiourea (500 and 750 mM results in a significantly higher number of tubers number (5.7 and 5.2 respectively. In contrast, treatment with hydrogen peroxide brings about similar tuber yields. Although, application of hydrogen peroxide at low concentration (20 mM, decreases chlorophyll content and stresses plants, application of thiourea increases chlorophyll content, and improve quantum yield especially when it is applied at 250 mM.

  20. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    Science.gov (United States)

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  1. Environmental meticillin-resistant Staphylococcus aureus (MRSA) disinfection using dry-mist-generated hydrogen peroxide

    DEFF Research Database (Denmark)

    Bartels, M.D.; Kristoffersen, K.; Slotsbjerg, T.;

    2008-01-01

    Meticillin-resistant Staphylococcus aureus (MRSA) is a major problem in hospitals worldwide. Hand hygiene is recognised as crucial in limiting the spread of MRSA but less is known about the role of MRSA reservoirs in the inanimate hospital environment. We evaluated the effect of hydrogen peroxide...

  2. Explodability and detonability of mixtures of hydrogen peroxide and organic matter

    NARCIS (Netherlands)

    Heemskerk, A.H.; Scholtes, J.H.G.

    1995-01-01

    The explosive properties of mixtures of hydrogen peroxide and isopropanol were determined The mixtures appear to detonate in a well-defined range of concentrations and show extremely fast reactions in an adjacent range of concentrations if initiated by shock wave stimuli. The upper boundary of organ

  3. HYDROGEN PEROXIDE FORMATION FROM THE PHOTOOXIDATION OF FORMALDEHYDE AND ITS PRESENCE IN RAINWATER

    Science.gov (United States)

    The photooxidation of formaldehyde with sunlamps (E(max) = 3100 A) produces hydrogen peroxide (H2O2) at varying concentrations depending upon the amount of water vapor present. It is postulated that the variable production of H2O2 is a result of condensation on the reactor surfac...

  4. Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies

    International Nuclear Information System (INIS)

    The electrochemical reduction of oxygen on various catalysts was studied using the thin-layer rotating disk electrode (RDE) method. High-surface-area carbon was modified with an anthraquinone derivative and gold nanoparticles. Polytetrafluoroethylene (PTFE) and cationic polyelectrolyte (FAA) were used as binders in the preparation of thin-film electrodes. Our primary goal was to find a good electrocatalyst for the two-electron reduction of oxygen to hydrogen peroxide. All electrochemical measurements were carried out in 0.1 M KOH. Cyclic voltammetry was used in order to characterise the surface processes of the modified electrodes in O2-free electrolyte. The RDE results revealed that the carbon-supported gold nanoparticles are active catalysts for the four-electron reduction of oxygen in alkaline solution. Anthraquinone-modified high-area carbon catalyses the two-electron reduction at low overpotentials, which is advantageous for hydrogen peroxide production. In addition, the polymer electrolyte fuel cell technology was used for the generation of hydrogen peroxide. The cell was equipped with a bipolar membrane which consisted of commercial Nafion 117 as a cation-exchange layer and FT-FAA as an anion-exchange layer. The bipolar membranes were prepared by a hot pressing method. Use of the FAA ionomer as a binder for the anthraquinone-modified carbon catalyst resulted in production of hydrogen peroxide

  5. Functionalized Carbon Nanotubes with Gold Nanoparticles to Fabricate a Sensor for Hydrogen Peroxide Determination

    Directory of Open Access Journals (Sweden)

    Halimeh Rajabzade

    2012-01-01

    Full Text Available A highly sensitive electrode was prepared based on gold nanoparticles/nanotubes/ionic liquid for measurement of Hydrogen peroxide. Gold nanoparticles of 20–25 nm were synthesized on a nanotube carbon paste electrode by cyclic voltammetry technique while the coverage was controlled by applied potential and time. The gold nanoparticles were modified to form a monolayer on CNT, followed by decoration with ionic liquid for determination of hydrogen peroxide. The experimental conditions, applied potential and pH, for hydrogen peroxide monitoring were optimized, and hydrogen peroxide was determined amperometrically at 0.3 V vs. SCE at pH 7.0. Electrocatalytic effects of gold deposited CNT were observed with respect to unmodified one. The sensitivity obtained was 5 times higher for modified one. The presence of Au particles in the matrix of CNTs provides an environment for the enhanced electrocatalytic activities. The sensor has a high sensitivity, quickly response to H2O2 and good stability. The synergistic influence of MWNT, Au particles and IL contributes to the excellent performance for the sensor. The sensor responds to H2O2 in the linear range from 0.02 µM to 0.3 mM. The detection limit was down to 0.4 µM when the signal to noise ratio is 3.

  6. Nectar defense and hydrogen peroxide in floral nectar of Cucurbita pepo

    Directory of Open Access Journals (Sweden)

    Daniele Nocentini

    2015-03-01

    Full Text Available This study was carried out to investigate some similarities between the nectaries of Nicotiana sp. and Cucurbita pepo, such as starch accumulation in the nectary parenchyma, changes in nectary color during maturation, and the production of a large quantity of sucrose-dominant nectar. The concentration of hydrogen peroxide in C. pepo floral nectar was determined in order to verify the presence of a defense mechanism similar to that found in Nicotiana sp. which protects nectar from yeast and bacteria proliferation. We also tested the eventual accumulation of antioxidants in the nectary of C. pepo as a protection against oxidative stress caused by hydrogen peroxide. The level of hydrogen peroxide found in the floral nectar of C. pepo was much lower than that found in Nicotiana sp. and the male flowers of Cucurbita had a higher concentration than the female flowers. The low oxidative stress induced by this level of hydrogen peroxide caused the accumulation of a low amount of lutein inside the plastoglobules which were contained in amyloplasts. Plastids of the C. pepo nectary are specialized in the accumulation of starch rather than antioxidants.

  7. DNA polymerase III requirement for repair of DNA damage caused by methyl methanesulfonate and hydrogen peroxide

    International Nuclear Information System (INIS)

    The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide

  8. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    Science.gov (United States)

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. PMID:27132221

  9. Mouthwashes with hydrogen peroxide are carcinogenic, but are freely indicated on the internet: warn your patients!

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    2013-12-01

    Full Text Available It all began in Ancient Egypt where people used to bleach their teeth with antiseptic mouthwashes made of urea from human urine. Teeth harmony is promoted by expression of feelings, communication, a real window of the brain and its content! Tooth bleaching products are medicines, not cosmetics! Mouth washing with hydrogen peroxide is an illogical and dangerous procedure! Hydrogen peroxide must be used in one's mouth only when employed by a dentist who has been properly instructed to protect the mucosa, preventing it from receiving these products. How and for how long these products are going to be used require caution in order to avoid or decrease any adverse effects on the tissues. Many websites instruct people on how to purchase and prepare hydrogen peroxide so that it is used as an antiseptic mouthwash and tooth bleaching agent. Some websites even refer to dentists as "exploiters", accusing them of not instructing patients properly. In this article, we aim at providing evidence and information upon which dentists and assistants may base their thinking as well as their opinion and procedures regarding "the indiscriminate and free use of hydrogen peroxide in the mouth, on teeth and oral mucosa". Those websites, blogs and social network profiles trespass the limits of public trust and should be immediately sued by the government for committing a crime against public health.

  10. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii.

    Science.gov (United States)

    Jakubovics, Nicholas S; Gill, Steven R; Vickerman, M Margaret; Kolenbrander, Paul E

    2008-12-01

    In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque. PMID:18785881

  11. Phospholipase A2 activation by hydrogen peroxide during in vitro capacitation of buffalo spermatozoa.

    Science.gov (United States)

    Shit, Sanjoy; Atreja, S K

    2004-05-01

    Progressively motile, washed buffalo spermatozoa (50 x 10(6) cells in 0.5 ml) were in vitro capacitated in HEPES containing Bovine Gamete Medium 3 (BGM3) in presence of heparin (10 microg/ml), and different concentrations of hydrogen peroxide (10 to 100 microM). Spermatozoa (60%) were capacitated in presence of heparin compared to 56% in presence of 25 microM H2O2 (optimally found suitable for capacitation). The extent of capacitation was measured in terms of acrosome reaction (AR) induced by lysophosphatidyl choline (100 microg/ml). The acrosome reacted cells were counted after triple staining. Catalase (100 microg/ml) significantly reduced the sperm capacitation to 16-18% when added with H2O2, or alone in the capacitation medium. Phospholipase A2 activity of spermatozoa increased linearly up to 50 microM H2O2 concentration included in the assay system. Moreover, significant increase in phospholipase A2 activity was observed after capacitation by both, the heparin and 25 microM H2O2. The activity was always higher in acrosome reacted cells. PMID:15233473

  12. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  13. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests

    Science.gov (United States)

    Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

  14. Prostaglandins attenuate cardiac contractile dysfunction produced by free radical generation but not by hydrogen peroxide.

    Science.gov (United States)

    Zimmer, K M; Karmazyn, M

    1997-11-01

    The aim of this study was to examine and compare the potential influence of cyclooxygenase or lipoxygenase derived metabolites of arachidonic acid on myocardial injury produced either by a free radical generating system consisting of purine plus xanthine oxidase or that produced by hydrogen peroxide. A free radical generating system consisting of purine (2.3 mM) and xanthine oxidase (10 U/L) as well as hydrogen peroxide (75 microM) produced significant functional changes in the absence of either significant deficits in high energy phosphates or ultrastructural damage. Prostaglandin F2 alpha (30 nM) significantly attenuated both the negative inotropic effect of purine plus xanthine oxidase as well as the ability of the free radical generator to elevate diastolic pressure. An identical concentration of prostaglandin 12 (prostacyclin) significantly reduced diastolic pressure elevation only and had no effect on contractile depression. The salutary effects of the two PGs occurred in the absence of any inhibitory influence on superoxide anion generation produced by the purine and xanthine oxidase reaction. None of prostaglandins modulated the response to hydrogen peroxide. In addition, neither prostaglandin E2 nor leukotrienes exerted any effect on changes produced by either type of oxidative stress. A 5 fold elevation in the concentrations of free radical generators or hydrogen peroxide produced extensive injury as characterized by a virtual total loss in contractility, 400% elevation in diastolic pressure, ultrastructural damage and significant depletions in high energy phosphate content. None of these effects were modulated by eicosanoid treatment. Our results therefore demonstrate a selective ability of both prostaglandin F2 alpha and to a lesser extent prostacyclin, to attenuate dysfunction produced by purine plus xanthine oxidase but not hydrogen peroxide. It is possible that these eicosanoids may represent endogenous protective factors under conditions of enhanced

  15. Temperature response and durability characterization of an optical fiber sensor for the detection of hydrogen peroxide

    International Nuclear Information System (INIS)

    Hydrogen peroxide is a precursor to damage mechanisms in numerous applications; its monitoring is important and challenging. The effect of temperature on the performance and durability of a recently developed optical fiber sensors sensitive to the presence of hydrogen peroxide in low concentrations is investigated. The sensors are fabricated by immobilizing Prussian blue within a multilayer of electrostatically self-assembled polyelectrolytes. The sensing principle of this optical electrode relies on the change in the intensity of the reflected light when Prussian white is oxidized back to the blue state due to the presence of hydrogen peroxide. The amplitude of the intensity of the reflected light is found to vary with temperature in a quadratic fashion, but the characteristic response time which correlates with concentration remains constant. Thus the sensing device retains its abilities to determine and quantify the concentration of hydrogen peroxide in a liquid solution. Additionally, the degradation of these fiber sensors when subjected to high temperature is examined. Four optical fiber sensing devices were subjected to different testing conditions and a characterization protocol that included: measurement of the intensity of the cyanide stretch (2150 cm−1) via Raman micro spectroscopy; imaging with scanning electron microscopy; and measurement of the presence of iron ions using energy dispersive X-ray spectroscopy. The results show a gradual degradation of the sensing device as a result of progressive desorption of the polyelectrolyte multilayer structure that leads to leaching of the Prussian reagent. This degradation mechanism does not compromise the functionality of the device which is found sufficiently robust for multiple tests at high temperature. The simplicity of this sensing system combined with its relative robustness and reusability make it a good a good candidate for minimally intrusive and localized monitoring of hydrogen peroxide formation in

  16. Hydrogen peroxide mediates oxidant-dependent stimulation of arterial smooth muscle L-type calcium channels.

    Science.gov (United States)

    Chaplin, Nathan L; Amberg, Gregory C

    2012-05-01

    Changes in calcium and redox homeostasis influence multiple cellular processes. Dysregulation of these signaling modalities is associated with pathology in cardiovascular, neuronal, endocrine, and other physiological systems. Calcium and oxidant signaling mechanisms are frequently inferred to be functionally related. To address and clarify this clinically relevant issue in the vasculature we tested the hypothesis that the ubiquitous reactive oxygen molecule hydrogen peroxide mediates oxidant-dependent stimulation of cerebral arterial smooth muscle L-type calcium channels. Using a combinatorial approach including intact arterial manipulations, electrophysiology, and total internal reflection fluorescence imaging, we found that application of physiological levels of hydrogen peroxide to isolated arterial smooth muscle cells increased localized calcium influx through L-type calcium channels. Similarly, oxidant-dependent stimulation of L-type calcium channels by the vasoconstrictor ANG II was abolished by intracellular application of catalase. Catalase also prevented ANG II from increasing localized subplasmalemmal sites of increased oxidation previously associated with colocalized calcium influx through L-type channels. Furthermore, catalase largely attenuated the contractile response of intact cerebral arterial segments to ANG II. In contrast, enhanced dismutation of superoxide to hydrogen peroxide with SOD had no effect on ANG II-dependent stimulation of L-type calcium channels. From these data we conclude that hydrogen peroxide is important for oxidant-dependent regulation of smooth muscle L-type calcium channels and arterial function. These data also support the emerging concept of hydrogen peroxide as a biologically relevant oxidant second messenger in multiple cell types with a diverse array of physiological functions.

  17. Role of airway lactoperoxidase in scavenging of hydrogen peroxide damage in asthma

    Directory of Open Access Journals (Sweden)

    Al Obaidi Amina Hamed

    2007-01-01

    Full Text Available Hydrogen peroxide (H 2 O 2 that is mainly generated by neutrophils and eosinophils in asthma is known to be damaging to the airway and to contribute to airway inflammation. The purpose of the present study was to determine the contribution and the role of lactoperoxidase in scavenging airway hydrogen peroxide, in order to propose a therapeutic approach for asthma. The study was an open clinical trial. Twenty-five nonsmoking asthmatic patients were included in the study. Of them, 16 patients (64% were male and 9 (36% were female, with age ranging from 29 to 48 years (45.13 ± 4.6. Of the 25 patients included in the study, only 16 patients completed the study; and they were eligible for analyses. Exhaled breath condensate was collected from all patients at the time of entering the study; and 2, 4 and 8 weeks later. All patients received dapson as a lactoperoxidase inhibitor at a dose of 50 mg daily for 8 weeks. The study was conducted during the period from January 2006 to end of October 2006. H 2 O 2 concentration was determined by an enzymatic assay. Determination of exhaled breath condensate for hydrogen peroxide concentration after 8 weeks of dapson usage indicated an increase (1.05 ± 0.36 µM; 95% CI, 0.89-1.21 as compared to that at baseline ( P < 0.0001, 2 weeks ( P < 0.001 and 4 weeks ( P > 0.05. The increase in hydrogen peroxide concentration in exhaled breath condensate after inhibition of lactoperoxidase by dapson advocates a potential role for lactoperoxidase in scavenging of hydrogen peroxide in asthmatic airway.

  18. Hydrogen peroxide and the evolution of oxygenic photosynthesis

    Science.gov (United States)

    Mckay, C. P.; Hartman, H.

    1991-01-01

    Possible pathways for the evolution of oxygenic photosynthesis in the early reducing atmosphere of the earth are discussed. It is suggested that the abiotic production of atmospheric oxidants could have provided a mechanism by which locally oxidizing conditions were sustained within spatially confined habitats thus removing the available reductants and forcing photosynthetic organisms to utilize water (rather than ferrous or sulfide ions) as the electron donor. It is argued that atmospheric H2O2 played the key role in inducing oxygenic photosynthesis, because, as peroxide concentrations local environments increased, primitive organisms would not only be faced with a loss of a reductant, but would be also forced to develop a biochemical apparatus (such as catalase) that would protect them against the products of oxygenic photosynthesis. This scenario allows for the early evolution of oxygenic photosynthesis at the time when global conditions were still anaerobic.

  19. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    OpenAIRE

    Rong, Lei; Zhang, Chi; Lei, Qi; HU, MING-MING; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change...

  20. Solvent extraction of tungsten with tri-n-octylamine from hydrogen peroxide solutions

    International Nuclear Information System (INIS)

    Conditions for fast metallic tungsten dissolution in hydrogen peroxide solutions are found and regularities of its extraction by tri-n-octylamine in the form of peroxide compounds and isopolytungstates from hydrochloric, sulfuric acid nitric acid solutions are studied. W and TOA ratio in the formed organic complex is determined by studying extraction isotherms using equilibrium shift, saturation, isomolar series, IR spectrometry methods and this complex'es composition is assumed. Radiochemical circuit of extraction-chromatographic separation of tungsten and rhenium is developed and a method for fast isolation of rhenium-183, 184 radio nuclides from metallic tungsten, irradiated with charged particles is proposed

  1. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  2. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action

    International Nuclear Information System (INIS)

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counter-ion, were considered. The counter-ions have been taken into consideration in so far as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counter-ions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2- Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. (authors)

  3. Efficacy of hydrogen peroxide in controlling mortality associated with saprolegniasis on walleye, white sucker, and paddlefish eggs

    Science.gov (United States)

    Gaikowski, M.P.; Rach, J.J.; Drobish, M.; Hamilton, J.; Harder, T.; Lee, L.A.; Moen, C.; Moore, A.

    2003-01-01

    The efficacy of hydrogen peroxide in controlling saprolegniasis on eggs of walleye Stizostedion vitreum, white sucker Catostomus commersoni, and paddlefish Polyodon spathula was evaluated at four private, state, and federal production hatcheries participating in an Investigational New Animal Drug efficacy study (experiment 1; walleyes) and in a laboratory-based miniature egg jar incubation system (experiment 2; walleyes, white suckers, and paddlefish). Naturally occurring fungal infestations (saprolegniasis) were observed on eggs in both experiments. Confirmatory diagnosis of infested eggs from one hatchery in experiment 1 identified the pathogen as Saprolegnia parasitica. During experiment 1, eggs were treated daily for 15 min with either 0, 500, or 750 mg/L of hydrogen peroxide, and one trial compared a 500-mg/L hydrogen peroxide treatment with a formalin treatment at 1,667 mg/L. Saprolegniasis infestation was observed in control egg jars, whereas treatment with either formalin or hydrogen peroxide virtually eliminated the infestation. Hydrogen peroxide treatments of 500 mg/L either increased egg hatch or were as effective as physical removal of infested eggs in controlling mortality. Although treatment with formalin at 1,667 mg/L significantly increased the percent eye-up of walleye eggs compared with that of those treated with hydrogen peroxide at 500 mg/L, the difference was only 1.9-2.6%. In experiment 2, noneyed eggs were treated for 15 min every other day with 0, 283, 565, or 1,130 mg/L of hydrogen peroxide until the viable eggs hatched. Saprolegniasis infestation engulfed most control eggs, whereas infestation of treated eggs was either reduced or not visible. Hydrogen peroxide significantly increased egg hatch for all three species tested in experiment 2. Although hydrogen peroxide treatments as low as 283 mg/L significantly increased walleye and white sucker hatch, treatments between 500 and 1,000 mg/L are more likely to be effective in production egg

  4. Fluorescence enhancement of CdTe MPA-capped quantum dots by glutathione for hydrogen peroxide determination.

    Science.gov (United States)

    Rodrigues, S Sofia M; Ribeiro, David S M; Molina-Garcia, L; Ruiz Medina, A; Prior, João A V; Santos, João L M

    2014-05-01

    The manipulation of the surface chemistry of semiconductor nanocrystals has been exploited to implement distinct sensing strategies in many analytical applications. In this work, reduced glutathione (GSH) was added at reaction time, as an electron-donor ligand, to markedly increase the quantum yield and the emission efficiency of MPA-capped CdTe quantum dots. The developed approach was employed in the implementation of an automated flow methodology for hydrogen peroxide determination, as this can oxidize GSH preventing its surface passivating effect and producing a manifest fluorescence quenching. After optimization, linear working calibration curve for hydrogen peroxide concentrations between 0.0025% and 0.040% were obtained (n=6), with a correlation coefficient of 0.9975. The detection limit was approximately 0.0012%. The developed approach was employed in the determination of H₂O₂ in contact lens preservation solutions and the obtained results complied with those furnished by the reference method, with relative deviations comprised between -1.18 and 4.81%. PMID:24720978

  5. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Nancy L Martin

    Full Text Available Huwa-San peroxide (hydrogen peroxide; HSP is a NSF Standard 60 (maximum 8 mg/L(-1 new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP and sodium hypochlorite at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+ and divalent (Ca(+2 cations (0.005-0.05M reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent

  6. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  7. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    Science.gov (United States)

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. PMID:26086086

  8. Spinach Root-Tissue Based Amperometric Biosensor for the Determination of Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.G. [Chosun University, Kwangju (Korea); Yoon, K.J. [Chongju University, Chongju (Korea); Kwon, H.S. [Chungbuk National University, Chongju (Korea)

    2000-06-01

    The response characteristics of the bioelectrode developed by the co-immobilization of spinach root tissue and ferrocene in a carbon paste matrix for the amperometric determination of hydrogen peroxide were evaluated. In the range of electrode potential examined (-0.3{approx}0.0 V vs. Ag/AgCl), the response time was relatively short (t{sub 95%}=11.8 sec) and it responded in the wide range of pH. Also, its detection limit was 2.25*10{sup -6}M (S/N=3) and a relative standard deviation of the measurements which were repeated 15 times using 1.0*10{sup -3}M hydrogen peroxide was 1.87%. The bioelectrode sensitivity decreased to 40% of the original value in 19 days of continuous use. (author). 35 refs., 8 figs.

  9. Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.

    Science.gov (United States)

    Poux, T; Bonnefont, A; Ryabova, A; Kéranguéven, G; Tsirlina, G A; Savinova, E R

    2014-07-21

    Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2MnO3) which are considered as promising electrocatalytic materials for the cathode of liquid and solid alkaline fuel cells. The experimental findings, such as the higher activity of Mn-compared to that of Co-perovskites, the shape of RDE curves, and the influence of the H2O2 concentration, are rationalized with the help of a microkinetic model.

  10. Lichen metabolites modulate hydrogen peroxide and nitric oxide in mouse macrophages.

    Science.gov (United States)

    Carlos, Iracilda Z; Quilles, Marcela B; Carli, Camila B A; Maia, Danielle C G; Benzatti, Fernanda P; Lopes, Thiago I B; Gianini, Aline S; Brum, Rosenei L; Vilegas, Wagner; dos Santos, Lourdes C; Honda, Neli K

    2009-01-01

    The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and beta-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H2O2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. PMID:19957434

  11. Enamel susceptibility to red wine staining after 35% hydrogen peroxide bleaching

    Directory of Open Access Journals (Sweden)

    Sandrine Bittencourt Berger

    2008-06-01

    Full Text Available Concern has been expressed regarding the staining of enamel surface by different beverages after bleaching. This study investigated the influence of 35% hydrogen peroxide bleaching agents on enamel surface stained with wine after whitening treatments. Flat and polished bovine enamel surfaces were submitted to two commercially available 35% hydrogen peroxide bleaching agents or kept in 100% humidity, as a control group (n = 10. Specimens of all groups were immersed in red wine for 48 h at 37°C, immediately, 24 h or 1 week after treatments. All specimens were ground into powder and prepared for the spectrophotometric analysis. Data were subjected to two-way analysis of variance and Fisher's PLSD test at 5% significance level. The amount of wine pigments uptake by enamel submitted to bleaching treatments was statistically higher than that of control group, independently of the evaluation time. Results suggested that wine staining susceptibility was increased by bleaching treatments.

  12. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  13. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  14. Kinetics study on photochemical oxidation of polyacrylamide by ozone combined with hydrogen peroxide and ultraviolet radiation

    Institute of Scientific and Technical Information of China (English)

    REN Guang-meng; SUN De-zhi; CHUNG Jong Shik

    2006-01-01

    An investigation on the process of ozone combined with hydrogen peroxide and ultraviolet radiation has been carried out in order to establish the kinetics for photochemical oxidation of polyacrylamide (PAM) in aqueous solution. Effects of operating parameters, including initial PAM concentration, dosages of ozone and hydrogen peroxide, UV radiation and pH value on the photochemical oxidation of PAM, have been studied. There was an increase in photochemical oxidation rate of PAM with increasing of dosages of O3, H2O2 and ultraviolet radiation. Upon increasing of the initial PAM concentration, the photochemical oxidation rate of PAM decreased. Slight effect of pH value on the photochemical oxidation rate of PAM was observed in the experiments. The kinetics equation for the photochemical oxidation of PAM by the system has been established.

  15. Non-enzymatic hydrogen peroxide sensor based on Co3O4 nanocubes

    Indian Academy of Sciences (India)

    Guang Sheng Cao; Lei Wang; Pengfei Yuan; Chao Gao; Xiaojuan Liu; Tong Li; Tianmin Li

    2014-10-01

    The Co3O4 nanocubes were prepared by using hydrogen peroxide (H2O2) as oxidant, Co(NO3)2. 6H2O as a cobalt source. The products were characterized in detail by multiform techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The prepared Co3O4 nanocubes were applied to study the electrocatalytic reduction of hydrogen peroxide (H2O2) in 0.01 M pH 7.0 phosphate buffer medium. The Co3O4 nanocubes exhibit remarkable electrocatalytic activity for H2O2 reduction. Furthermore, the obtained Co3O4 nanocubes have been employed as electrode materials for electrochemical sensing H2O2.

  16. Synthesis of Kappa-carrageenan oligomers via synergistic action of gamma radiation and hydrogen peroxide

    International Nuclear Information System (INIS)

    In this study, the synthesis of k-carrageenan oligometers with the simultaneous action of gamma radiation and hydrogen peroxide was carried out. Effects on molecular weight and structure of k-carrageenan were assessed using GPC, UV-VIS and FT-IR. Radiation degradation yield (G(s)) and reaction rate constants (k) based on Mn values were also determined. The results showed that k-carrageenan oligomers with Mw of less than 10 kDa can be prepared easily at low doses (2.5-5 kGy) in the presence of low concentrations of hydrogen peroxide (0.25-0.5%). The G(s)) and k values increased significantly with the presence of H2O2. Structural changes in k-carrageenan treated by the degradation agents were accompanied by appearance of UV peak at 260 nm and characteristic FT-IR band at 1728 cm-1. (Author)

  17. Vanadium(5) peroxocomplexes in catalysis of hydrogen peroxide transformations in trifluoroacetic acid

    International Nuclear Information System (INIS)

    It is found that vanadium(5) complexes in trifluoroacetic acid catalyze effectively hydrogen peroxide decomposition with formation of considerable amounts of ozone (up to 15 %). It is also found that vanadium compounds in the course of interaction with peroxytrifluoroacetic acid catalyze not only its decomposition but also decarboxylation. It is ascertained by kinetic methods that in the system V(5)-H2O2-CF3COOH a series of vanadium(5) active complexes, responsible for oxidation of all the compounds studied and ozone evolution, are formed. It is shown that in the formation of the compounds both hydrogen peroxide and peroxytrifluoroacetic acid take part. All the regularities found are explained in the framework of the model, involving intrasphere regrouping of two peroxoligands into grouping (O32-). A mathematical model, which gives an adequate description of substrate oxidation and ozone formation, is plotted

  18. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.

    Science.gov (United States)

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Klímová, Kateřina; Macková, Anna; Pumera, Martin

    2014-07-22

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in the fields of energy generation and sensing. Metal-doped graphenes, where metal serves as the catalytic center and graphene as the high area conductor, have been used as electrocatalysts for such applications. In this paper, we investigated the use of uranium-graphene and thorium-graphene hybrids prepared by a simple and scalable method. The hybrids were synthesized by the thermal exfoliation of either uranium- or thorium-doped graphene oxide in various atmospheres. The synthesized graphene hybrids were characterized by high-resolution XPS, SEM, SEM-EDS, combustible elemental analysis, and Raman spectroscopy. The influence of dopant and exfoliation atmosphere on electrocatalytic activity was determined by electrochemical measurements. Both hybrids exhibited excellent electrocatalytic properties toward oxygen and hydrogen peroxide reduction, suggesting that actinide-based graphene hybrids have enormous potential for use in energy conversion and sensing devices.

  19. Electrochemical behavior of hydrogen peroxide sensor based on new methylene blue as mediator

    Institute of Scientific and Technical Information of China (English)

    MA Jie; WU Hai; ZHU Yaqi

    2007-01-01

    A novel amperometric hydrogen peroxide sensor was proposed by co-immobilizing new methylene blue (NMB) and Horseradish peroxidase (HRP) on glassy carbon electrode through covalent binding.The electrochemical behavior of the sensor was studied extensively in 0.1 mol/L phosphate buffering solution (pH = 7.0).The experiments showed NMB could effectively transfer electrons between hydrogen peroxide and glassy carbon electrode.The electron transfer coefficient and apparent reaction rate constant were determined to be 0.861 and 1.27 s-1.The kinetic characteristics and responses of sensor on HzO2 were investigated.The Michaelis constant is 8.27 mol/L and the linear dependence of current on H2O2 is in the range of 2.5-100 μmol/L.At the same time,the effects of solution pH,buffer capacity,and temperature on the sensor were examined.

  20. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  1. STUDY OF AZOSPIRILLUM LECTINS INFLUENCE ON HYDROGEN PEROXIDE PRODUCTION IN WHEAT-ROOTS

    Directory of Open Access Journals (Sweden)

    Alen’kina S.A.

    2009-12-01

    Full Text Available It was found that two cell-surface lectins isolated from the nitrogen-fixing soil bacterium Azospirillum brasilense Sp7 and from its mutant defective in lectin activity, A. brasilense Sp7.2.3 can stimulate rapid formation of hydrogen peroxide, associated with an increase in the activities of oxalate oxidase and peroxidase in the roots of wheat seedlings. The most advantageous and most rapidly induced pathway of hydrogen peroxide formation was the oxidation of oxalic acid by oxalate oxidase because in this case, a 10-min treatment of the roots with the lectins at 10 µg ml-1 was sufficient. The data from this study attest that the Azospirillum lectins can act as inducers of adaptation processes in the roots of wheat seedlings.

  2. Effect of menadione and hydrogen peroxide on catalase activity in Saccharomyces yeast strains

    Directory of Open Access Journals (Sweden)

    Nadejda EFREMOVA

    2013-05-01

    Full Text Available It has been studied the possibility of utilization of two important oxidant factors as regulators of catalase activity in Saccharomyces yeasts. In this paper results of the screening of some Saccharomyces yeast strains for potential producers of catalase are presented. Results of the screening for potential catalase producer have revealed that Saccharomyces cerevisiae CNMN-Y-11 strain possesses the highest catalase activity (2900 U/mg protein compared with other samples. Maximum increase of catalase activity with 50-60% compared to the reference sample was established in the case of hydrogen peroxide and menadione utilization in optimal concentrations of 15 and 10 mM. This research has been demonstrated the potential benefits of application of hydrogen peroxide and menadione as stimulatory factors of catalase activity in Saccharomyces yeasts.

  3. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.;

    2016-01-01

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product...... is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation...

  4. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    OpenAIRE

    Alireza Haghighat Mamaghani; Shohreh Fatemi; Mehrdad Asgari

    2013-01-01

    An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was ...

  5. Experimental evaluation of hydrogen peroxide catalysts for monopropellant attitude control thrusters

    OpenAIRE

    Palmer, Matthew James

    2014-01-01

    Currently the space community relies on propellants such as hydrazine and its derivatives in propulsion systems aboard satellites and spacecraft. However their highly toxic and carcinogenic nature results in significant costs in handling, storage and transport compared to less toxic propellants. It is due to this benefit that there is a renewed interest in ‘green’ or less toxic propellants. One such green propellant is hydrogen peroxide. This liquid propellant must be catalytically decomposed...

  6. Towards understanding a distinct hydrogen peroxide electrocatalytic enhancement using surfactant-based coatings on silver

    OpenAIRE

    Goodison, Alan; Gonzalez-Macia, Laura; Killard, Anthony J.; Morrin, Aoife

    2013-01-01

    The detection of hydrogen peroxide has been shown to be very important in recent years due to its relevant role in many industrial applications as well as biological reactions. We are interested in it as a quantitative marker for oxidase-based biosensor applications where it is produced when substrate (e.g., glucose, cholesterol) is catalysed by its respective oxidase enzyme. Previously, a commercial silver flake-based screen-printing ink (PF-410, Acheson®), when coated with surfactant and...

  7. CIDEX, SAVLON AND HYDROGEN PEROXIDE: WHICH OF THEM IS MORE EFFECTIVE IN DISINFECTION OF VENTILATOR TUBES

    Directory of Open Access Journals (Sweden)

    H SOLTANI NEZHAD

    2001-12-01

    Full Text Available Introduction: Nasocomial infections threat any hospitalized patient, specially in intensive care unit. Incidence of these infections has been reported from 1.9 to more than 25 percent. The most common nasocomial infection in intensive care units (ICU is pneumonia caused by endotraheal intubation and mechanical ventilation. The best procedure for pneumonia prevention in patients under mechanical ventilation is utilization of suitable and proper techniques for equipment sterilization: The goal of this study is determination and comparison of disinfectant materials (cidex, savlon and hydrogen peroxide about their effects on incidence and type of mechanical ventilators breathing tubes contamination in intensive care unit. Methods: This is an experimental trial which was done on three groups of mechanical ventilator breathing tubes. Each group contained 20 samples. These three groups of breathing tubes were disinfected with cidex, savlon and hydrogen peroxide. Samples were obtained from tubes for microbial culture berore and after disinfection. Samples were cultured on blood agar. The results of microbial culturing were compared between three groups. Results: There was no significant difference between three groups of breathing tubes about microbial types and number of colony counted before disinfection. There was no significant difference between cultured colony numbers in three groups before and after disinfection. Cidex, savlon and hydrogen peroxide could decrease incidence of contamination to 100, 98.09 and 100 percent, respectively. Discussion: All of tested chemical materials have the same results in disinfection. Hydrogen peroxide has less adverse effect on human and environment than cidex. It is less expensive than cidex. So, we recommend to use this material for disifection of mechanical ventilator berthing tubes.

  8. New considerations on hydrogen peroxide and related substances as food additives in view of carcinogenicity.

    Science.gov (United States)

    Ito, R

    1982-01-01

    The use of hydrogen peroxide as a labile and safe food preservative in fish cake and boiled noodles has recently been restricted by the Japanese government, since hyperplasia has been found in the duodenum of mice after long-term peroral study. The action of compounds with resembling mode of action, potassium bromate as an improving agent in bread, and sodium chlorate as a weed killer are discussed in this paper in view of developmental and environmental pharmacology. PMID:7078983

  9. Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes

    OpenAIRE

    Guo, Hengchang; Aleyasin, Hossein; Howard, Scott S.; Dickinson, Bryan C; Lin, Vivian S.; Haskew-Layton, Renee E.; Xu, Chris; Chen, Yu; Ratan, Rajiv R.

    2013-01-01

    Abstract. We present the application of two-photon fluorescence (TPF) imaging to monitor intracellular hydrogen peroxide (H2O2) production in brain cells. For selective imaging of H2O2 over other reactive oxygen species, we employed small-molecule fluorescent probes that utilize a chemoselective boronate deprotection mechanism. Peroxyfluor-6 acetoxymethyl ester detects global cellular H2O2 and mitochondria peroxy yellow 1 detects mitochondrial H2O2. Two-photon absorption cross sections for th...

  10. Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes

    OpenAIRE

    Guo, Hengchang; Aleyasin, Hossein; Howard, Scott S.; Dickinson, Bryan C; Lin, Vivian S.; Haskew-Layton, Renee E.; Xu, Chris; Chen, Yu; Ratan, Rajiv R.

    2013-01-01

    Abstract. We present the application of two-photon fluorescence (TPF) imaging to monitor intracellular hydrogen peroxide ( H 2 O 2 ) production in brain cells. For selective imaging of H 2 O 2 over other reactive oxygen species, we employed small-molecule fluorescent probes that utilize a chemoselective boronate deprotection mechanism. Peroxyfluor-6 acetoxymethyl ester detects global cellular H 2 O 2 and mitochondria peroxy yellow 1 detects mitochondrial H 2 O 2 . Two-photon absorption cross ...

  11. Patterns of hydrogen peroxide among lakes of the Mackenzie Delta and potential effects on bacterial production

    OpenAIRE

    Febria, Catherine Maria

    2005-01-01

    Lakes in the Mackenzie Delta have complex patterns of dissolved organic carbon (DOC) ranging from low levels of coloured DOC in lakes frequently flooded with riverwater to high levels of non-coloured DOC in infrequently flooded lakes. Hydrogen peroxide (H202) levels measured in 40 lakes at three times, ranging from summer solstice to late summer were highest around the solstice and in lakes of intermediate flood-frequency. Diurnal dynamics of H202, tracked for 40 hours during 24-hour sunlight...

  12. Oxidative stress markers in neurological diseases and disorders: electrochemical detection of hydrogen peroxide and nitric oxide

    OpenAIRE

    O'Riordan, Saidhbhe

    2013-01-01

    The aim of this thesis is to further demonstrate the electrochemical detection of nitric oxide (NO) and hydrogen peroxide (H2O2) in-vitro, to advance the previously demonstrated detection of brain NO and to demonstrate the novel in-vivo detection of H2O2 using a paired catalase-based biosensor. We have recently successfully demonstrated the real-time detection of brain NO using a previously characterised Nafion®-modified platinum (Pt) electrochemical sensor. Additionally, th...

  13. Photocatalytic degradation of Phenol Red using complexes of some transition metals and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SAVITRI LODHA

    2008-06-01

    Full Text Available The photocatalytic degradation of Phenol Red was investigated using thiocyanate complexes of iron, copper, cobalt and hydrogen peroxide. The rate of photocatalytic degradation of the dye was followed spectrophotometrically. The effect of the variation of different parameters, such as pH, concentration of the complexes and dye, amount of H2O2 and light intensity on the rate of photocatalytic degradation was also studied. A tentative mechanism for the photocatalytic degradation of Phenol Red is proposed.

  14. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  15. A Model of Redox Kinetics Implicates the Thiol Proteome in Cellular Hydrogen Peroxide Responses

    OpenAIRE

    Adimora, Nnenna J.; Jones, Dean P; Melissa L Kemp

    2010-01-01

    Hydrogen peroxide is appreciated as a cellular signaling molecule with second-messenger properties, yet the mechanisms by which the cell protects against intracellular H2O2 accumulation are not fully understood. We introduce a network model of H2O2 clearance that includes the pseudo-enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of thioredoxin and glutathione. Simulations repro...

  16. Spatial, Temporal, and Quantitative Manipulation of Intracellular Hydrogen Peroxide in Cultured Cells

    OpenAIRE

    Alim, Ishraq; Haskew-Layton, Renee E.; Aleyasin, Hossein; Guo, Hengchang; Ratan, Rajiv R.

    2014-01-01

    Hydrogen peroxide (H2O2) is produced endogenously in a number of cellular compartments, including the mitochondria, the endoplasmic reticulum, peroxisomes, and at the plasma membrane, and can play divergent roles as a second messenger or a pathological toxin. It is assumed that the tuned production of H2O2 within neuronal and non-neuronal cells regulates a discreet balance between survival and death. However, a major challenge in understanding the physiological versus pathological role of H2O...

  17. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide.

    Science.gov (United States)

    Pezzotti, Fabio; Okrasa, Krzysztof; Therisod, Michel

    2004-01-01

    Degradation of 2,6-dichlorophenol (2,6-DCP) was accomplished by oxidation catalyzed by Coprinus cinereus peroxidase. Immobilization of the enzyme in a polyacrylamide matrix enhanced DCP oxidation. Hydrogen peroxide, peroxidase's natural substrate, was produced enzymatically in situ to avoid peroxidase inactivation by its too high concentration. In the case of larger scale utilization, the method would also avoid direct handling of this hazardous reagent.

  18. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    OpenAIRE

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical ba...

  19. The Role of Hydrogen Peroxide in Environmental Adaptation of Oral Microbial Communities

    OpenAIRE

    Lin Zhu; Jens Kreth

    2012-01-01

    Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H2O2) as byproduct of aerobic metabolism. Several recent studies showed that the produced H2O2 is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H2O2 in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilizati...

  20. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  1. PROCESS OPTIMIZATION OF TETRA ACETYL ETHYLENE DIAMINE ACTIVATED HYDROGEN PEROXIDE BLEACHING OF POPULUS NIGRA CTMP

    OpenAIRE

    Qiang Zhao; Junwen Pu; Shulei Mao; Guibo Qi

    2010-01-01

    To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED) was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp con...

  2. Role for the oxyS Gene in Regulation of Intracellular Hydrogen Peroxide in Escherichia coli

    OpenAIRE

    González-Flecha, Beatriz; Demple, Bruce

    1999-01-01

    Intracellular hydrogen peroxide is regulated in Escherichia coli by OxyR in response to the metabolic production of H2O2. Here, we show that the untranslated oxyS RNA controlled by OxyR has a role in this regulation. The oxyS transcript appears to affect the metabolic output of H2O2 rather than the removal of H2O2 by catalases-hydroperoxidases.

  3. Photosensitized decomposition of hydrogen peroxide by the uranyl ion, production of hydroperoxide radicals

    International Nuclear Information System (INIS)

    The photosensitized decomposition of hydrogen peroxide by the uranyl ion in sulfuric acid media has been demonstrated and the kinetics of oxygen evolution have been measured as a function of the initial concentrations. The HO2 radical stabilized by complexation with UO22+ is an intermediate in this decomposition. This reaction can be employed in the photoassisted oxidation of diverse organic molecules using UO22+ as the sensitizer

  4. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    OpenAIRE

    Zhou, Aifen

    2010-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gen...

  5. Hydrogen peroxide mobilizes Ca2+ through two distinct mechanisms in rat hepatocytes

    OpenAIRE

    Sato, Hirohiko; Takeo, Teruko; Liu, Qiang; Nakano, Kyoko; Osanai, Tomohiro; Suga, Sechiko; Wakui, Makoto; Wu, Jie

    2008-01-01

    Aim: Hydrogen peroxide (H2O2) is produced during liver transplantation. Ischemia/reperfusion induces oxidation and causes intracellular Ca2+ overload, which harms liver cells. Our goal was to determine the precise mechanisms of these processes. Methods: Hepatocytes were extracted from rats. Intracellular Ca2+ concentrations ([Ca2+]i), inner mitochondrial membrane potentials and NAD(P)H levels were measured using fluorescence imaging. Phospholipase C (PLC) activity was detected using exogenous...

  6. Hydrogen peroxide and hydroxyl radical formation by methylene blue in the presence of ascorbic acid

    International Nuclear Information System (INIS)

    Using ESR we have demonstrated the formation of the ascorbate free radical from sodium ascorbate, methylene blue and light. In oxygen uptake experiments we have observed the production of hydrogen peroxide while spin trapping experiments have revealed the iron catalyzed production of the hydroxyl free radical in this system. The presence of this highly reactive radical suggests that it could be the radical that initiates free radical damage in this photodynamic system. (orig.)

  7. Hydrogen peroxide – production, fate and role in redox signaling of tumor cells

    OpenAIRE

    Lennicke, Claudia; Rahn, Jette; Lichtenfels, Rudolf; Wessjohann, Ludger A; Seliger, Barbara

    2015-01-01

    Hydrogen peroxide (H2O2) is involved in various signal transduction pathways and cell fate decisions. The mechanism of the so called “redox signaling” includes the H2O2-mediated reversible oxidation of redox sensitive cysteine residues in enzymes and transcription factors thereby altering their activities. Depending on its intracellular concentration and localization, H2O2 exhibits either pro- or anti-apoptotic activities. In comparison to normal cells, cancer cells are characterized by an in...

  8. Polymer Supported Heterogenous Catalysts for Direct Synthesis of Hydrogen Peroxide in Absence of Selectivity Enhancers

    OpenAIRE

    Sterchele, Stefano

    2013-01-01

    The research program developed during the Ph.D. School is focused on the study of metal catalysts supported on cross-linked functional polymers (CFPs) for the direct synthesis of hydrogen peroxide. In the last twenty years this compound has become a commodity with a constant increasing demand because of its strong oxidant properties and the formation of water as the reduction byproduct. In particular, H2O2 is widely employed as environmentally-friendly bleaching and cleaning agent. The...

  9. Improved sensing response of photo activated ZnO thin film for hydrogen peroxide detection.

    Science.gov (United States)

    Parthasarathy, S; Nandhini, V; Jeyaprakash, B G

    2016-11-15

    The nanostructured ZnO thin films were deposited using spray pyrolysis technique. Formation of polycrystalinity with hexagonal wurtzite structure was observed from the structural study. Highly dense spherical shaped nanoparticles with fine crystallites were observed from the surface morphological studies. The light induced hydrogen peroxide vapour sensing was done using chemi-resistive method and its effect on the sensing response was studied and reported. PMID:27491004

  10. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide.

    Science.gov (United States)

    Matthijs, Hans C P; Visser, Petra M; Reeze, Bart; Meeuse, Jeroen; Slot, Pieter C; Wijn, Geert; Talens, Renée; Huisman, Jef

    2012-04-01

    Although harmful cyanobacteria form a major threat to water quality, few methods exist for the rapid suppression of cyanobacterial blooms. Since laboratory studies indicated that cyanobacteria are more sensitive to hydrogen peroxide (H(2)O(2)) than eukaryotic phytoplankton, we tested the application of H(2)O(2) in natural waters. First, we exposed water samples from a recreational lake dominated by the toxic cyanobacterium Planktothrix agardhii to dilute H(2)O(2). This reduced the photosynthetic vitality by more than 70% within a few hours. Next, we installed experimental enclosures in the lake, which revealed that H(2)O(2) selectively killed the cyanobacteria without major impacts on eukaryotic phytoplankton, zooplankton, or macrofauna. Based on these tests, we introduced 2 mg L(-1) (60 μM) of H(2)O(2) homogeneously into the entire water volume of the lake with a special dispersal device, called the water harrow. The cyanobacterial population as well as the microcystin concentration collapsed by 99% within a few days. Eukaryotic phytoplankton (including green algae, cryptophytes, chrysophytes and diatoms), zooplankton and macrofauna remained largely unaffected. Following the treatment, cyanobacterial abundances remained low for 7 weeks. Based on these results, we propose the use of dilute H(2)O(2) for the selective elimination of harmful cyanobacteria from recreational lakes and drinking water reservoirs, especially when immediate action is urgent and/or cyanobacterial control by reduction of eutrophication is currently not feasible. A key advantage of this method is that the added H(2)O(2) degrades to water and oxygen within a few days, and thus leaves no long-term chemical traces in the environment. PMID:22112924

  11. Effect of catechins and tannins on hydroxyl radical formation in depleted uranium-hydrogen peroxide systems

    International Nuclear Information System (INIS)

    The effects of catechins and tannins on the uranyl ion (UO2+2)-hydrogen peroxide (H2O2) system were examined using the spin-trapping method. Epigallocatechin (EGC), having low ·OH-scavenging ability, significantly enhanced and accelerated the hydroxyl radical (·OH) formation in the UO2+2-H2O2 solution. Epigallocatechin gallate (EGCG), having high ·OH-scavenging ability, fairly enhanced and accelerated hydroxyl radical (·OH) formation in the UO2+2-H2O2 solution. These results indicate that the enhancement and acceleration of ·OH formation are caused by the reduction of UO2+2 to UO2+ by EGC and EGCG. The effects of tannins on ·OH formation in the UO2+2-H2O2 solution varied with tannins. Mimosa (MMT) and quebracho (QBT) tannins enhanced and accelerated ·OH formation, while chestnut (CNT), mylobaran (MBT) and Chinese gallo- (CGT) tannins heavily depressed it. In the solution containing persimmon (PST) and gambir (GBT) tannins, the depression of ·OH formation caused by the strong coupling with UO2+2 ion should be added to the enhancement caused by the reduction of UO2+2 to UO2+. MBT indicated the highest ability to scavenge ·OH in the UV-irradiated H2O2 solution, and MMT, the lowest. In summary, MMT and QBT, classified as condensed tannins, have very high abilities to reduce UO2+2 to UO2+, similarly to catechins such as EGC and EGCG, while MBT, a hydrolysable tannin, has higher abilities to scavenge ·OH. (author)

  12. Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment.

    Science.gov (United States)

    Milton, Nathaniel G N

    2004-01-01

    Hydrogen peroxide (H(2)O(2)) is a stable, uncharged and freely diffusable reactive oxygen species (ROS) and second messenger. The generation of H(2)O(2) in the brain is relatively high because of the high oxygen consumption in the tissue. Alzheimer's disease is a neurodegenerative disorder characterised by the appearance of amyloid-beta (Abeta)-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles. The pathology of Alzheimer's disease is also associated with oxidative stress and H(2)O(2) is implicated in this and the neurotoxicity of the Abeta peptide. The ability for Abeta to generate H(2)O(2), and interactions of H(2)O(2) with iron and copper to generate highly toxic ROS, may provide a mechanism for the oxidative stress associated with Alzheimer's disease. The role of heavy metals in Alzheimer's disease pathology and the toxicity of the H(2)O(2) molecule may be closely linked. Drugs that prevent oxidative stress include antioxidants, modifiers of the enzymes involved in ROS generation and metabolism, metal chelating agents and agents that can remove the stimulus for ROS generation. In Alzheimer's disease the H(2)O(2) molecule must be considered a therapeutic target for treatment of the oxidative stress associated with the disease. The actions of H(2)O(2) include modifications of proteins, lipids and DNA, all of which are effects seen in the Alzheimer's disease brain and may contribute to the loss of synaptic function characteristic of the disease. The effectiveness of drugs to target this component of the disease pathology remains to be determined; however, metal chelators may provide an effective route and have the added bonus in the case of clioquinol of potentially reducing the Abeta load. Future research and development of agents that specifically target the H(2)O(2) molecule or enzymes involved in its metabolism may provide the future route to Alzheimer's disease therapy.

  13. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    Science.gov (United States)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  14. Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism.

    Science.gov (United States)

    Wu, Mingzhu; Huang, Jingjing; Xu, Sheng; Ling, Tengfang; Xie, Yanjie; Shen, Wenbiao

    2011-01-01

    Haem oxygenase-1 (HO-1) confers protection against a variety of oxidant-induced cell and tissue injury in animals and plants. In this report, it is confirmed that programmed cell death (PCD) in wheat aleurone layers is stimulated by GA and prevented by ABA. Meanwhile, HO activity and HO-1 protein expression exhibited lower levels in GA-treated layers, whereas the hydrogen peroxide (H(2)O(2)) content was apparently increased. The pharmacology approach illustrated that scavenging or accumulating H(2)O(2) either delayed or accelerated GA-induced PCD. Furthermore, pretreatment with the HO-1 specific inhibitor, zinc protoporphyrin IX (ZnPPIX), before exposure to GA, not only decreased HO activity but also accelerated GA-induced PCD significantly. The application of the HO-1 inducer, haematin, and the enzymatic reaction product of HO, carbon monoxide (CO) aqueous solution, both of which brought about a noticeable induction of HO expression, substantially prevented GA-induced PCD. These effects were reversed when ZnPPIX was added, suggesting that HO in vivo played a role in delaying PCD. Meanwhile, catalase (CAT) and ascorbate peroxidase (APX) activities or transcripts were enhanced by haematin, CO, or bilirubin (BR), the catalytic by-product of HO. This enhancement resulted in a decrease in H(2)O(2) production and a delay in PCD. In addition, the antioxidants butylated hydroxytoluene (BHT), dithiothreitol (DTT), and ascorbic acid (AsA) were able not only to delay PCD but also to mimic the effects of haematin and CO on HO up-regulation. Overall, the above results suggested that up-regulation of HO expression delays PCD through the down-regulation of H(2)O(2) production.

  15. Amperometric determination of hydrogen peroxide by functionalized carbon nanotubes through EDC/NHS coupling chemistry.

    Science.gov (United States)

    Jeykumari, D R Shobha; Narayanan, S Sriman

    2007-06-01

    The electrochemistry of the redox mediator Toluidine blue (TB) which was covalently linked to the carboxyl group of the multiwalled carbon nanotubes (MWNTs) by coupling reactions, in which N-hydroxysuccinimide was used to assist 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride catalyzed amidation reaction is described. The results from cyclic voltammetry (CV) and amperometry suggested that the redox mediator is linked to the surface of the MWNTs and the nanotubes showed an obvious promotion for the direct electron-transfer between the redox mediator and the electrode. A couple of well-defined redox peak of TB was observed in a phosphate buffer solution (pH 7.0). The redox mediator immobilized to MWNTs exhibits remarkable electrocatalytic activity for the reduction of hydrogen peroxide (H2O2). The analytical applicability of the modified electrode for the determination of hydrogen peroxide was examined. A linear response in the concentration range of 6.8 x 10(-7)-3.4 x 10(-2) M (r = 0.9958) was obtained with detection limit of 3.4 x 10(-7) M for the determination of hydrogen peroxide. The modified electrode has advantages of being highly stable, sensitive, ease of construction and use. PMID:17654948

  16. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    Science.gov (United States)

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). PMID:24035719

  17. Protective effects of Rheum tanguticum polysaccharide against hydrogen peroxide-induced intestinal epithelial cell injury

    Institute of Scientific and Technical Information of China (English)

    Lin-Na Liu; Qi-Bing Mei; Li Liu; Feng Zhang; Zhen-Guo Liu; Zhi-Peng Wang; Ru-Tao Wang

    2005-01-01

    AIM: To describe the effect of Rheum tanguticum polysaccharide (RTP) on hydrogen peroxide-induced human intestinal epithelial cell injury.METHODS: Hydrogen peroxide (100 μmol/L) was introduced to induce human intestinal epithelial cell injury.Cells were pretreated with RTP (30,100,300 μg/mL) for 24 h before exposure to hydrogen peroxide. Cell viability was detected by MTr assay and morphological observation.Acridine orange staining and flow cytometry were performed to assess cell apoptosis. Lactate dehydrogenase (LDH) activity, production of malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured by spectrophotometry with corresponding assay kits.RESULTS: Following exposure to H2O2, a marked decrease in cell survival and SOD activity, increased production of MDA, LDH leakage and cell apoptosis were found.Pretreatment of the cells with RTP could significantly elevate cell survival, SOD activity and decrease the level of MDA, LDH activity and cell apoptosis.CONCLUSION: RTP may have cytoprotective and antioxidant effects against H2O2-induced intestinal epithelial cell injury by inhibiting cell apoptosis and necrosis. This might be one of the possible mechanisms of RTP for the treatment of ulcerative colitis in rats.

  18. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    Pehrman, R.; Amme, M. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, (Germany)); Cachoir, C. (SCK.CEN, Waste and Disposal Unit., Mol (Belgium))

    2010-03-15

    Full text: Disposal of spent nuclear fuel in underground repositories is being considered in many countries and for this purpose understanding of behaviour of radiolysis products is required. To study the effects of alpha radiolysis products of water on oxidation and dissolution of actinides, a method to analyse those products is needed. Chemiluminescence is generally considered a simple, sensitive and reasonably selective method to detect reactive oxygen species on low concentrations. Concentrations of interest for both hydrogen peroxide and hydroxyl radicals are 10-6 to 10-9 M. The aim of this study is to compare various chemiluminescence methods for detecting hydrogen peroxide and hydroxyl radicals. Four methods to analyse hydrogen peroxide were chosen based on the estimated suitability for radiolysis experiments. Two of these use luminol, catalyzed by either mu-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl) acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All methods were tested as batch systems in basic conditions. For hydroxyl radical detection luminophores tested were 3-hydroxyphthalic hydrazide (product of phthalic hydrazide and hydroxyl radical) and rutin. Both methods were tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed. (author)

  19. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.

    Science.gov (United States)

    Nagygyörgy, Emese D; Kovács, Barbara; Leiter, Eva; Miskei, Márton; Pócsi, István; Hornok, László; Adám, Attila L

    2014-06-01

    Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.

  20. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  1. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM)

    International Nuclear Information System (INIS)

    Highlights: • CDOM produces hydrogen peroxide in sunlit surface waters. • Quinone moieties have been proposed as the photo-active chromophore in CDOM. • Hydrogen peroxide is produced in irradiated aqueous quinone solutions. • Concentrations and production rates are comparable to humic and fulvic acids. • Optical properties post-irradiation were similar to CDOM. - Abstract: To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h−1); values ranged from 6.99 to 0.137 mM h−1 for quinones. Apparent quantum yields (Θapp; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM

  2. Hydrogen peroxide production by ion irradiation of thin water ice films

    International Nuclear Information System (INIS)

    In this paper we present the results of new experiments on ion irradiation of water ice performed on thin films to study the synthesis of the hydrogen peroxide molecule and discuss the possibility of detecting it in icy mantles on interstellar grains. The used experimental technique has been in situ infrared spectroscopy. We have irradiated thin films (i.e. the ice thickness was smaller than the penetration depth of the used ion) with three different ions, namely 200 keV of H+ and He+ and 400 keV of Ar++. The experiments were carried out at temperatures of 16 and 77 K. We have found that hydrogen peroxide is produced by all of the different ions at both temperatures. The detection of such a molecule has been possible from the study of its infrared feature centered at about 2850 cm-1 (3.5 μm). The obtained results also show that the produced H2O2/H2O(%) ratio is greater for the heaviest ion (∼6% for the case of Ar++) and that H+ is the ion that produces the smallest quantity (∼1%). These upper limits in the production of hydrogen peroxide constrain the quantity of H2O2 that can be formed after bombardment by cosmic particles on icy mantles of grains in the interstellar medium. (authors)

  3. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    Science.gov (United States)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  4. Electrodeposition of Silver Nanoparticles on MWCNT Film Electrodes for Hydrogen Peroxide Sensing

    Institute of Scientific and Technical Information of China (English)

    DING,Yan-Feng; JIN,Guan-Ping; YIN,Jun-Guang

    2007-01-01

    Silver (Ag) nanoparticles were directly electrodeposited on multi-walled carbon nanotubes (MWCNT) in AgNO3/LiNO3 containing EDTA (ethylenediaminetetraacetic acid). The structure and nature of the resulting Ag/MWNT composite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the distribution shape of Ag nanoparticles was found to be dependent on the presence of EDTA. The modified electrode showed excellent electrocatalytic activity to redox reaction of hydrogen peroxide and the mechanism of hydrogen peroxide was partly reversible procession with oxidation and reduction peaks at 0.77 and -0.83 V, respectively. The oxidation and reduction peak currents were linearly related to hydrogen peroxide concentration in the range of 1×10-6-3×10-4 and 1×10-8-7×10-4 mol·L-1 with correlation coefficients of 0.996 and 0.986, and 3s-detection limit of 9 × 10-7 and 7 × 10-9 mol·L-1.

  5. Effects of 15% carbamide peroxide and 40% hydrogen peroxide on the microhardness and color change of composite resins.

    Directory of Open Access Journals (Sweden)

    Sedighe Sadat Hashemi Kamangar

    2014-04-01

    Full Text Available The aim of this study was to determine the effects of 40% hydrogen peroxide and 15% carbamide peroxide on microhardness and color change of a silorane-based composite resin in comparison with two methacrylate-based composites.Fifty-four disc-shaped specimens (A3 shade were fabricated of Filtek P90 (P90, Filtek Z350XT Enamel (Z350 and Filtek Z250 (Z250 (3MESPE (n=18. The samples of each composite were randomly divided into three subgroups of 6. The control subgroups were immersed in distilled water; the test groups were exposed to Opalescence Boost (OB once; and Opalescence PF (OP (Ultradent for two weeks. Vickers microhardness testing and a spectrophotometric analysis of the color of samples were performed before and after each intervention.The baseline microhardness of P90 was significantly lower than that of the other two composites (P=0.001, but no difference was found between Z250 and Z350 in this respect (P=0.293. Bleaching treatments significantly decreased the microhardness of Z250 and Z350 (P 0.05. No significant difference was detected between the two types of bleaching (P>0.05. After bleaching with OB, ΔE value was measured to be 3.12(1.97, 3.31(1.84 and 3.7(2.11 for P90, Z250 and Z350, respectively. These values were 5.98(2.42, 4.66(2.85 and 4.90(2.78 after bleaching with OP with no significant difference.Bleaching decreased the microhardness of methacrylate-based but not silorane-based composites. Although no significant differences were found in ΔE of composites, ΔE of all groups did not remain in the clinically acceptable range after bleaching except for P90 after bleaching with 40% H2O2 (ΔE < 3.3.

  6. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions

    DEFF Research Database (Denmark)

    Olsen, S.M.; Kristensen, J.B.; Laursen, B.S.;

    2010-01-01

    Hydrogen peroxide (H2O2) may be considered an environmentally friendly antifouling alternative to common biocides such as Cu2O and various organic compounds. In this work, the efficiency of antifouling coatings releasing hydrogen peroxide via enzyme-mediated conversion of starch, under Mediterran......Hydrogen peroxide (H2O2) may be considered an environmentally friendly antifouling alternative to common biocides such as Cu2O and various organic compounds. In this work, the efficiency of antifouling coatings releasing hydrogen peroxide via enzyme-mediated conversion of starch, under...... formulated have been characterised in terms of common coating characteristics and immersed on rafts in seawater outside Singapore and Spain to monitor antifouling efficiency. The results have been compared to results previously reported from temperate waters in the North Sea outside The Netherlands. Using...

  7. Hydrogen peroxide concentrations in leaves under natural conditions.

    Science.gov (United States)

    Cheeseman, John M

    2006-01-01

    While H2O2 has been implicated in numerous plant environmental responses, normal levels and variabilities are poorly established, and estimates of leaf tissue concentrations span more than three orders of magnitude, even in a single species under similar conditions. Here, leaf tissue H2O2 contents under natural conditions are reported after determining (i) that H2O2 in extracts was stable with time, (ii) that H2O2 added to the extract was recovered quantitatively, and (iii) that the H2O2 calibration curve was unaffected (or quantifiably affected) by the extract. The broad applicability of the protocol and variability in leaf concentrations were demonstrated using tissue collected from several habitats in association with three, more extensive, experiments. The first involved nychthemeral studies of the mangrove, Rhizophora mangle L. Lowest H2O2 levels occurred in the early morning and near sunset, with higher levels both at midday and at night. Second, using five temperate species in Spring, concentrations were compared on a warm, sunny day and a cool, cloudy day. Higher concentrations were found on the warm day for Aesculus glabra Willd., Glechoma hederacea L., Plantago major L., and Viola soraria Willd., while there were no differences in Quercus macrocarpa Michx. Finally, the effects of elevated CO2 and ozone were examined in soybean, Glycine max L. Pioneer 93B15 under Free Air gas Concentration Enrichment (FACE) conditions. Both supplements led to elevated H2O2. Overall, mean leaf, midday, and mid-summer H2O2 concentrations ranged from 0.67 micromol (gFW)(-1) in mangrove to 3.6 micromol (gFW)(-1) in A. glabra Willd. Greatest within-species differences were only 2.5-fold in any of the studies.

  8. Hydrogen peroxide concentrations in leaves under natural conditions.

    Science.gov (United States)

    Cheeseman, John M

    2006-01-01

    While H2O2 has been implicated in numerous plant environmental responses, normal levels and variabilities are poorly established, and estimates of leaf tissue concentrations span more than three orders of magnitude, even in a single species under similar conditions. Here, leaf tissue H2O2 contents under natural conditions are reported after determining (i) that H2O2 in extracts was stable with time, (ii) that H2O2 added to the extract was recovered quantitatively, and (iii) that the H2O2 calibration curve was unaffected (or quantifiably affected) by the extract. The broad applicability of the protocol and variability in leaf concentrations were demonstrated using tissue collected from several habitats in association with three, more extensive, experiments. The first involved nychthemeral studies of the mangrove, Rhizophora mangle L. Lowest H2O2 levels occurred in the early morning and near sunset, with higher levels both at midday and at night. Second, using five temperate species in Spring, concentrations were compared on a warm, sunny day and a cool, cloudy day. Higher concentrations were found on the warm day for Aesculus glabra Willd., Glechoma hederacea L., Plantago major L., and Viola soraria Willd., while there were no differences in Quercus macrocarpa Michx. Finally, the effects of elevated CO2 and ozone were examined in soybean, Glycine max L. Pioneer 93B15 under Free Air gas Concentration Enrichment (FACE) conditions. Both supplements led to elevated H2O2. Overall, mean leaf, midday, and mid-summer H2O2 concentrations ranged from 0.67 micromol (gFW)(-1) in mangrove to 3.6 micromol (gFW)(-1) in A. glabra Willd. Greatest within-species differences were only 2.5-fold in any of the studies. PMID:16766599

  9. Oxidative stress response of Inonotus obliquus induced by hydrogen peroxide.

    Science.gov (United States)

    Zheng, Weifa; Zhao, Yanxia; Zhang, Meimei; Wei, Zhiwen; Miao, Kangjie; Sun, Weiguo

    2009-12-01

    While the medicinal fungus Inonotus obliquus produces polyphenols as one of its main metabolites in natural habitats, it accumulates less polyphenols under laboratory conditions. In this study we found that the continuous addition of 1 mM H(2)O(2) at a rate of 1.6 ml/h into a submerged culture of the fungus enhanced its production of mycelia, melanins, flavonoids and hispidin analogs (HA). Simultaneous exposure of the fungus to both H(2)O(2) and arbutin resulted in reduced production of mycelia, glycosylated flavonoids (GF) and HA, and inhibition of melanogenesis. However, superoxide dismutases (SOD) and catalase (CAT) activity were enhanced following the addition of H(2)O(2) or H(2)O(2) plus arbutin. The maximum levels of SOD and CAT activities reached 355.2 U/mg protein and 39.8 U/mg protein respectively in H(2)O(2)-added medium, and 264 U/mg protein and 35.9 U/mg protein respectively in H(2)O(2) plus arbutin medium. Thus, detoxification of H(2)O(2) is conducted mainly by polyphenols under normal physiological conditions, and by both polyphenols and antioxidant enzymes under oxidative stress when melanogenesis is inhibited. Although enhanced HA production occurred after melanogenesis inactivation, total extracellular polyphenol levels were reduced. These findings suggest that enzymatic activities convert superoxide to H(2)O(2), and non-enzymatic mechanisms are largely responsible for detoxifying H(2)O(2). Enhanced production of melanins is the most important non-enzymatic response of this fungus against oxidative stress. PMID:19184774

  10. A Hydrogen Peroxide Biosensor Combined HRP Doped Polypyrrole with Ferrocene Modified Sol-gel Derived Composite Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric biosensor for the detection of hydrogen peroxide is described.The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5×l0-7 mol · L-1(based on signal: noise=3). Linear range is up to 0.2 mmol · L-1.

  11. Introduction of Hydrogen Peroxide as an Oxidant in Flow Injection Analysis: Speciation of Cr(III) and Cr(VI)

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1998-01-01

    Hydrogen peroxide was used as an oxidant in Flow Injection Analysis (FIA). The formation of gaseous components during the analysis was suppressed by maintaining a concentration lower than 0.15% of hydrogen peroxide in 0.1 M NaOH. By this method Cr(III) was oxidised on-line to Cr(VI) which...... at concentrations above 6 mg/L which is suitable for on-line monitoring of e.g. waste waters....

  12. Oxidation of 2,4-dinitrophenol by hydrogen peroxide in the presence of basic oxygen furnace slag.

    Science.gov (United States)

    Li, Y S; You, Y H; Lien, E T

    1999-11-01

    A treatment process was developed when basic oxygen furnace slag (BOF slag) and hydrogen peroxide were used to oxidize 2, 4-dinitrophenol from an aqueous solution. BOF slag, final waste slurry from steel making plants, contains about 12.5% by weight of ferrous oxide. In an acid solution, BOF slag can be dissociated to produce ferrous ions and react with hydrogen peroxide to produce hydroxyl radicals and oxidize 2,4-dinitrophenol. The results of the research demonstrated that the process had a significant capacity for oxidation of 2,4-dinitrophenol from the aqueous phase. Various factors critical to the oxidation of 2,4-dinitrophenol were studied, including hydrogen peroxide concentration, concentration of BOF slag, initial concentration of 2,4-dinitrophenol, and pH value of solution. Experimental results proved that 100 mg/L 2, 4-dinitrophenol and its oxidation intermediate could be totally decomposed within 60 min by 10 g/L BOF slag, 0.18 g/L hydrogen peroxide and pH 2.8 +/- 0.2. The optimum hydrogen peroxide concentration for degradation of 100 mg/L of 2,4-dinitrophenol is between 0.09 g/L and 0.18 g/L as 10 g/L BOF slag in the solution of pH 2.8 +/- 0.2. A hydrogen peroxide concentration higher than 0.18 g/L is disadvantageous to the oxidation process. The oxidation efficiency increased with the increase of BOF slag concentration at 0.18 g/L hydrogen peroxide dose. The best pH value of the solution is in the vicinity of 2.8. An oxidation reaction mechanism was proposed for predicting the concentration changes of 2, 4-dinitrophenol, ferrous ion, and hydrogen peroxide.http://link. springer-ny.com/link/service/journals/00244/bibs/37n4p427.++ +html

  13. Shear Bond Strength of Resin Bonded to Bleached Enamel Using Different Modified 35% Hydrogen Peroxides

    Directory of Open Access Journals (Sweden)

    Moosavi H

    2015-12-01

    Full Text Available Statement of Problem: Bleaching systems with different concentrations and applications are widely used to improve the visual appearance of the teeth, but one of the complications of these materials is reduction of bond strength for immediately bonding to the bleached enamel. Objectives: The aim of this study was to evaluate the influence of using different modified hydrogen peroxide bleaching agents on the shear bond strength of composite resin bonded to the bleached enamel. Materials and Methods: Forty-eight sound extracted premolar teeth were collected, sectioned 1 mm below the CEJ to detach the root. The proximal surfaces of the teeth were flattened using diamond disks and silicon carbide papers to achieve flat homogeneous enamel surfaces without exposure to the dentin. The teeth were randomly divided into four groups as follows (n = 12: group 1: bleaching with 35% hydrogen peroxide gel; group 2: bleaching with 35% hydrogen peroxide gel contained (casein phosphopeptide-amorphous calcium phosphate (CPP-ACP; group 3: bleaching with 35% hydrogen peroxide gel combined with fluoride; and group 4: bleaching with 35% hydrogen peroxide applying one week before resin restoration placement. Composite resin, Clearfil AP-X (Kuraray, Tokyo, Japan, was bonded on each tooth in the mould (4 mm diameter × 3 mm height using Clearfil SE Bond (Kuraray, Tokyo, Japan. After 24 hours of storage and 1000 cycles of thermocycling, the shear bond strength of the specimens at a cross-head speed of 0.5 mm/min was measured in MPa. Data were analyzed using ANOVA and Tukey’s post-hoc test. Results: The minimum and maximum mean shear bond strength values were observed in groups 2 (15.82 ± 4.41 and 4 (21.00 ± 3.90, respectively. Multiple comparisons of groups revealed no significant differences among the groups except between group 4 and all the other groups. The most common type of failure was adhesive. Conclusions: Using modified bleaching agents decreased the bond

  14. The Inhibitory Effect of PIK-75 on Inflammatory Mediator Response Induced by Hydrogen Peroxide in Feline Esophageal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jun Yeong Jeong

    2014-01-01

    Full Text Available Isoform-selective inhibitors of phosphoinositide 3-kinase (PI3K activation have an anti-inflammatory effect by reducing proinflammatory cytokines. Cultured feline esophageal epithelial cells (EEC of passages 3~4 were treated with hydrogen peroxide and PIK-75. The cell viability was measured by a MTT incorporation assay. The distribution of PI3K isoforms, p-Akt, IL-1β, and IL-8 was inferred from Western blots. The release of IL-6 was determined by ELISA. The cell morphology was not considerably different from nontreated cells if the cells were pretreated with PIK-75 and treated with 300 μM hydrogen peroxide. The density of p110α of PI3K was increased, but that of other types was not affected after the treatment with hydrogen peroxide. The density of p-Akt, when the cells were exposed to PIK-75 and hydrogen peroxide, was diminished dose dependently more than that of hydrogen peroxide treatment only. The decrease of p-Akt showed an inhibition of PI3K by PIK-75. PIK-75 dose dependently reduced the expression of IL-1β, IL-8, and the level of IL-6 compared with hydrogen peroxide treatment only. These results suggest evidence that p110α mediates esophageal inflammation and that PIK-75 has an anti-inflammatory effect by reducing proinflammatory cytokines on feline esophageal epithelial cultured cells.

  15. Electric Response of Hydrogen Peroxide-doped Water Ices: an Analog Study for Positive Hole Currents in Rocks

    Science.gov (United States)

    Stockburger, C. C.; Keller, C. T.; Gray, A.; Sornette, J.; Udom, A.; Cruikshank, D. P.; Freund, F.

    2013-12-01

    Hydrogen peroxide-doped water ices can be viewed an analog system to igneous and high-grade metamorphic rocks, which invariably contain peroxy defects, typically Si-OO-Si, and generate positive hole charge carriers when subjected to stress. By preparing pure water ice and hydrogen peroxide-doped water ices, freezing them to -80°C, allows us to control the concentration of peroxy defects (here hydrogen peroxide molecules) and study the electrical response, when the ices are subjected to stress. Blocks of pure water ice and hydrogen peroxide-doped water ices, -80°C, were prepared. Two methods to activate peroxy bonds were used: (i) stressing one end of rectangular blocks in a hydraulic press, (ii) subjecting one part of a 2-chamber plastic tray to intense ultrasound to create a gradient of activated charge carriers. In the hydraulic press experiments the pure water ice samples produced vanishingly small currents except for occasional transients, mostly negative, during fracturing of the ice. By contrast, hydrogen peroxide-doped water ices led to significant currents, consistently positive, flowing down the stress gradients. Using ultrasound as an activation method avoids fracturing. Therefore the results are much 'cleaner', not contaminated by hard-to-control fracture-induced currents. The positive sign of the currents suggests defect electrons, generated by the break-up of peroxy bonds of hydrogen peroxide molecules embedded in the ice structure, analogous to positive hole charge carriers that are stress-activated in rocks.

  16. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    Science.gov (United States)

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  17. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Science.gov (United States)

    Shen, H.; Barakat, A. I.; Anastasio, C.

    2011-01-01

    Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM) and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS) - e.g., superoxide (•O2-), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) - followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5) generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm), primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15)% when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By measuring calibration curves of HOOH generation from copper, and quantifying copper

  18. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Directory of Open Access Journals (Sweden)

    H. Shen

    2010-09-01

    Full Text Available Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS – e.g., superoxide (•O2, hydrogen peroxide (HOOH, and hydroxyl radical (•OH – followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5 generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm, primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78±15% when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating that transition metals play a dominant role in HOOH generation. By

  19. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution

    Directory of Open Access Journals (Sweden)

    H. Shen

    2011-01-01

    Full Text Available Epidemiological studies have shown a correlation between exposure to ambient particulate matter (PM and adverse health effects. One proposed mechanism of PM-mediated health effects is the generation of reactive oxygen species (ROS – e.g., superoxide (O2, hydrogen peroxide (HOOH, and hydroxyl radical (OH – followed by oxidative stress. There are very few quantitative, specific measures of individual ROS generated from PM, but this information would help to more quantitatively address the link between ROS and the health effects of PM. To address this gap, we quantified the generation of HOOH by PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California during summer and winter from 2006 to 2009. HOOH was quantified by HPLC after extracting the PM in a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. Our results show that the urban PM generally generates much more HOOH than the rural PM but that there is no apparent seasonal difference in HOOH generation. In nearly all of the samples the addition of a physiologically relevant concentration of Asc greatly enhances HOOH formation, but a few of the coarse PM samples were able to generate a considerable amount of HOOH in the absence of added Asc, indicating the presence of unknown reductants. Normalized by air volume, the fine PM (PM2.5 generally makes more HOOH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm, primarily because the mass concentration of PM2.5 is much higher than that of PMcf. However, normalized by PM mass, the coarse PM typically generates more HOOH than the fine PM. The amount of HOOH produced by SJV PM is reduced on average by (78 ± 15% when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating that transition metals play a dominant role in HOOH

  20. Use of hydrogen peroxide in scrubbing towers for odor removal in wastewater treatment plants.

    Science.gov (United States)

    Charron, I; Féliers, C; Couvert, A; Laplanche, A; Patria, L; Requieme, B

    2004-01-01

    The aim of this work was to replace sodium hypochlorite (NaCIO) with hydrogen peroxide (H202) in chemical scrubbing towers, in order to avoid the formation of chlorinated species, harmful for human health. Some previous studies have already shown the ability of H2O2 to treat the hydrogen sulfide (H2S) pollution. However, an important decomposition of the oxidant was observed in the scrubbing solution (carbonates, transition metal and high pH are responsible for this decomposition) leading to high reactant consumption. Consequently, this study first focused on research into a compound able to reduce the hydrogen peroxide degradation. Experiments were conducted on a pilot unit (3,000 m3 h(-1)) in a wastewater treatment plant. The sodium silicate (Na2SiO3) proved to be a good scrubbing solution stabilizer. A very good removal of hydrogen sulfide (up to 98%) was also obtained. Finally, the study resulted in the determination of the best operating conditions to achieve both an efficient and economical process.

  1. COMPARATIVE STUDY OF ANTIBACTERIAL ACTIVITY OF PEROXYDISUCCINIC ACID, HYDROGEN PEROXIDE AND THEIR MIXTURE

    Directory of Open Access Journals (Sweden)

    Blazheyevskiy M.Ye.,

    2016-06-01

    Full Text Available Introduction. It is known that reactive oxygen species (ROS generated in vivo by cell aerobic metabolism cause multiple damage in different cell organelles and kill not only obligate anaerobes and microaerophilles, but also aerobes. ROS generated by phagocytes and representatives of normal microflora are an important component of macroorganism defense from most pathogens, which is explained by their ability to damage different biological structures. ROS have high reactivity and let us use them in vitro as effective biocides. Hydrogen peroxide is widely used in many industries, in particular, in medicine and veterinary as antiseptic and disinfectant agent due to its safety for environment and broad spectrum of antimicrobial activity including spore-forming bacteria. However, in the recent years certain decrease of background sensitivity of microorganisms to hydrogen peroxide and occurrence of resistant strains of pathogenic microorganisms to this agent has been noted. The aim of this work is to carry out a comparative study of antimicrobial activity of hydrogen peroxide, peroxydisuccinic acid (PDSA, monoperoxysuccinic acid (MPSA, and mixture of PDSA and hydrogen peroxide (Н2О2. Materials and methods. The substances of peroxydisuccinic acid (PDSA and monoperoxysuccinic acid (MPSA were prepared by well known methods. The following test-strains were used to assess antimicrobial activity of the agents: Staphylococcus aureus АТСС 25923, Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 27853, Pseudomonas aeruginosa АТСС 9027, Basillus сereus АТСС 10702, Basillus сereus АТСС 96, Basillus subtilis АТСС 6633, Proteus vulgaris ATCC 4636, Candida albicans АТСС 885/653, and Candida albicans АТСС 10231. All disinfectant agents were diluted in distilled water at 40 ºС and stirred. The microbial burden was 2∙109 CFU/ml of the medium, and for kinetic studies 105 CFU/ml of the medium, it was standardizing

  2. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  3. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Church, D.F. (Biodynamics Institute, Louisiana State University, Baton Rouge (United States))

    1991-01-01

    It is generally agreed that unsaturated fatty acids (UFA) are an important class of target molecule for reaction with ozone when polluted air is inhaled. Most discussions have implicated the UFA in cell membranes, but lung lining fluids also contain fatty acids that are from 20 to 40% unsaturated. Since UFA in lung lining fluids exist in a highly aquated environment, ozonation would be expected to produce aldehydes and hydrogen peroxide, rather than the Criegee ozonide. In agreement with this expectation, the authors find that ozonations of emulsions of fatty acids containing from one to four double bonds give one mole of H2O2 for each mole of ozone reacted. Ozonation of oleic acid emulsions and dioleoyl phosphatidyl choline gives similar results, with two moles of aldehydes and one mole of H2O2 formed per mole of ozone reacted. The net reaction that occurs when ozone reacts with pulmonary lipids is suggested to be given by equation 1. (formula: see text). From 5 to 10% yields of Criegee ozonides also appear to be formed. In addition, a direct reaction of unknown mechanism occurs between ozone and UFA in homogeneous organic solution, in homogeneous solutions in water, in aqueous emulsions, and in lipid bilayers to give organic radicals that can be spin trapped. These radicals are suggested to be responsible for initiating lipid peroxidation of polyunsaturated fatty acids. Thus, aldehydes, hydrogen peroxide, and directly produced organic radicals are suggested to be mediators of ozone-induced pathology.39 references.

  4. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.

  5. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.

  6. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    Science.gov (United States)

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  7. Hydrogen peroxide

    Science.gov (United States)

    The safety of fresh and fresh-cut produce available in salad-bar operations and supermarkets is a concern because of foodborne illness arising from consumption of fruits and vegetables that are surface contaminated with enteric pathogens. Field-packed produce are not generally washed because of the ...

  8. Stabilization of native amyloid β-protein oligomers by Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP).

    Science.gov (United States)

    Williams, Thomas L; Serpell, Louise C; Urbanc, Brigita

    2016-03-01

    Oligomeric assemblies are postulated to be proximate neurotoxic species in human diseases associated with aberrant protein aggregation. Their heterogeneous and transient nature makes their structural characterization difficult. Size distributions of oligomers of several amyloidogenic proteins, including amyloid β-protein (Aβ) relevant to Alzheimer's disease (AD), have been previously characterized in vitro by photo-induced cross-linking of unmodified proteins (PICUP) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Due to non-physiological conditions associated with the PICUP chemistry, Aβ oligomers cross-linked by PICUP may not be representative of in vivo conditions. Here, we examine an alternative Copper and Hydrogen peroxide Induced Cross-linking of Unmodified Proteins (CHICUP), which utilizes naturally occurring divalent copper ions and hydrogen peroxide and does not require photo activation. Our results demonstrate that CHICUP and PICUP applied to the two predominant Aβ alloforms, Aβ40 and Aβ42, result in similar oligomer size distributions. Thioflavin T fluorescence data and atomic force microscopy images demonstrate that both CHICUP and PICUP stabilize Aβ oligomers and attenuate fibril formation. Relative to noncross-linked peptides, CHICUP-treated Aβ40 and Aβ42 cause prolonged disruption to biomimetic lipid vesicles. CHICUP-stabilized Aβ oligomers link the amyloid cascade, metal, and oxidative stress hypotheses of AD into a more comprehensive understanding of the molecular basis of AD pathology. Because copper and hydrogen peroxide are elevated in the AD brain, CHICUP-stabilized Aβ oligomers are biologically relevant and should be further explored as a new therapeutic target.

  9. Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection

    OpenAIRE

    Guiomar, A. Jorge; Stephen D. Evans; Guthrie, James

    2001-01-01

    Phase inversion cellulose acetate propionate membranes showed lowpermeability to hydrogen peroxide aqueous solutions. Their permeability wasincreased by alkaline hydrolysis of the ester linking units. However, thepermeability remained lower than that of an unsubstituted cellulose membrane.The inclusion of hydroxypropyl cellulose in the membrane formulation, followedby an alkaline hydrolysis step, increased permeability to hydrogen peroxideaqueous solutions to 29% of that of an unsubstituted c...

  10. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation.

    Science.gov (United States)

    Reis, A C; Alessandri, A L; Athayde, R M; Perez, D A; Vago, J P; Ávila, T V; Ferreira, T P T; de Arantes, A C S; Coutinho, D de Sá; Rachid, M A; Sousa, L P; Martins, M A; Menezes, G B; Rossi, A G; Teixeira, M M; Pinho, V

    2015-01-01

    Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91(phox-/-) mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils. PMID:25675292

  11. Isothermal Microcalorimetric Evaluation of Compatibility of Proposed Injector Materials with High-Test Hydrogen Peroxide Propellant

    Science.gov (United States)

    Gostowski, Rudy

    2003-01-01

    High-test hydrogen peroxide (HTP) is receiving renewed interest as a monopropellant and as the oxidizer for bipropellant systems. HTP is hydrogen peroxide in concentrations ranging from 70 to 98%. All surfaces wetted by HTP must be evaluated for compatibility with the fluid. In the case of tanks, lines and valves compatibility is required to preserve the HTP oxygen and energy content and to avoid overpressurization due to decomposition. With injectors and regenerative cooling passages shorter exposure time reduces these concerns. However, phase changes from fluid to gas impact heat transfer and become the dominant compatibility concern. Isothermal microcalorimetry (IMC) provides a convenient and reproducible means to observe the decomposition of HTP when exposed to structural materials and therefore the compatibility of those materials'. The instrument provides heat flow values in terms of watts that may be converted to a reaction rate given the heat of reaction for the decomposition of hydrogen peroxide. These values are then converted to percent active oxygen loss per week (%AOL/wk) to preserve an earlier convention for quantifying HTP compatibility. Additionally, qualitative designations of compatibility have been assigned to these values. This scheme consists of four classes with Class 1 being the most compatible. While historical compatibility data is available its current applicability is in question due to subtle changes in the compositions of both HTP and structural materials. Trace levels of molecules can have significant influence on compatibility. Therefore representative samples of materials must be evaluated with current HTP formulations. In this work seven materials were selected for their strength characteristics at high temperature as expected in a HTP injector. The materials were then evaluated by IMC for HTP compatibility.

  12. Sliding discharges in steam: effects of dielectric surface and hydrocarbon additives on hydrogen, oxygen and hydrogen peroxide generation

    International Nuclear Information System (INIS)

    A sliding surface discharge was formed on a dielectric layer in steam at ∼100 °C and atmospheric pressure. The material properties and the thickness of the dielectric layer were found to strongly affect the energy deposition into the plasma. With a 0.32 cm thick dielectric the energy deposition was 1.4 times greater than with a 0.48 cm thick dielectric, and with window glass it was 1.3 times greater than with Macor of the same thickness. Product gases were H2 (73 ± 4%) and O2 (27 ± 1%), and H2O2 accumulated in the condensed water up to 0.4 g l−1. The energy yield for hydrogen was 1.2 ± 0.1 g H2 kWh−1 and independent of the input power and thickness or material of the dielectric. However, for hydrogen peroxide the energy yield, which varied between 0.61 and 3.2 g H2O2 kWh−1, was found to depend strongly on the thickness and material of the dielectric. The addition of benzene to the steam increased the energy efficiency of hydrogen to 2.3 g kWh−1, and decreased oxygen and hydrogen peroxide by about 3 and 6 times, respectively. It also caused the deposition of phenol and polymer-like layers on the dielectric. The results are explained on the basis of reactions of H and OH radicals adsorbed on the surface and/or in gas phase. (paper)

  13. Screen-printable silver nanoparticulate-based inks for the electrocatalysis of hydrogen peroxide

    OpenAIRE

    Goodison, Alan; Killard, Anthony J.; Morrin, Aoife

    2013-01-01

    The detection of hydrogen peroxide has been shown to be very important in recent years due to its relevant role in many industrial applications as well as biological reactions. We are interested in it as a quantitative marker for oxidase-based biosensor applications where it is produced when substrate (e.g., glucose, cholesterol) is catalysed by its respective oxidase enzyme. Previously, a commercial silver flake-based screen-printing ink (PF-410, Acheson®), when treated with surfactant and s...

  14. A rare case of portal vein gas: accidental hydrogen peroxide ingestion

    OpenAIRE

    Zengin, Suat; Al, Behcet; Genç, Sinan; Yarbil, Pınar; Yilmaz, Demet Ari; Gulsen, Murat Taner

    2012-01-01

    Hydrogen peroxide (H2O2) is a colourless and odourless liquid with oxidant characteristics used for various purposes. Whereas in lower concentrations (3%), H2O2 is used as a disinfectant in home cleaning products and wound care, in higher concentrations (35%) it is used in textile and paper industry as a bleaching agent and is diluted for use in lightening hair dyes. Like other caustic substances, direct injuries may develop if H2O2 is swallowed and systemic air embolisms may occur due to the...

  15. Visualization of Endogenous and Exogenous Hydrogen Peroxide Using A Lysosome-Targetable Fluorescent Probe

    Science.gov (United States)

    Kim, Dabin; Kim, Gyoungmi; Nam, Sang-Jip; Yin, Jun; Yoon, Juyoung

    2015-02-01

    Reactive oxygen species (ROS) play crucial roles in diverse physiological processes; therefore, the efficient detection of ROS is very crucial. In this study, we report a boronate-based hydrogen peroxide (H2O2) probe having naphthalimide fluorophore. This probe also contained a morpholine moiety as a directing group for lysosome. The recognition property indicated that the probe exhibited high selectivity towards H2O2 not only in the solution but also in the living cells. Furthermore, it was used to monitor the level of endogenous and exogenous H2O2. These results support that the probe can function as an efficient indicator to detect H2O2.

  16. The E-loop Is Involved in Hydrogen Peroxide Formation by the NADPH Oxidase Nox4*

    OpenAIRE

    Takac, Ina; Schröder, Katrin; Zhang, Leilei; Lardy, Bernard; Anilkumar, Narayana; Lambeth, J. David; Shah, Ajay M.; Morel, Francoise; Brandes, Ralf P.

    2011-01-01

    In contrast to the NADPH oxidases Nox1 and Nox2, which generate superoxide (O2˙̄), Nox4 produces hydrogen peroxide (H2O2). We constructed chimeric proteins and mutants to address the protein region that specifies which reactive oxygen species is produced. Reactive oxygen species were measured with luminol/horseradish peroxidase and Amplex Red for H2O2 versus L-012 and cytochrome c for O2˙̄. The third extracytosolic loop (E-loop) of Nox4 is 28 amino acids longer than that of Nox1 or Nox2. Dele...

  17. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    Science.gov (United States)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  18. Tricholoma matsutake fruit bodies secrete hydrogen peroxide as a potent inhibitor of fungal growth.

    Science.gov (United States)

    Takakura, Yoshimitsu

    2015-06-01

    Tricholoma matsutake is an ectomycorrhizal fungus that dominates the microbial communities in the soil of pine and spruce forests. The mycorrhizas of this fungus have antimicrobial activity, although factors responsible for the antimicrobial activity have not been fully elucidated. The present study shows that fruit bodies of T. matsutake secreted hydrogen peroxide (H2O2), which was produced by pyranose oxidase, and that the H2O2 thus secreted strongly inhibited the growth of mycelia of the phytopathological fungus Rhizoctonia solani. These findings suggest that fruit bodies of T. matsutake have antifungal activity and that the pyranose oxidase plays an important role in the antifungal activity. PMID:25803209

  19. Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process

    Institute of Scientific and Technical Information of China (English)

    YU Ying-hui; MA Jun; HOU Yan-jun

    2006-01-01

    This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O3/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H2O2/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.

  20. Low-dose hydrogen peroxide application in closed recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Good, C.; Pedersen, Per Bovbjerg

    2012-01-01

    The aim of the present work was to simulate water treatment practices with hydrogen peroxide (HP) in recirculating aquaculture systems (RAS). Six identical 1,700-L pilot-scale RAS were divided into two experimental groups based on daily feed allocation and operated under constant conditions...... and contradict prevailing notions that HP cannot be used safely in RAS that employ biofiltration. The development of effective new HP treatment protocols for recirculating aquaculture could reduce the current dependence on formalin to improve water quality and control parasitic loads...

  1. Low doses of ionizing radiation and hydrogen peroxide stimulate plant growth

    International Nuclear Information System (INIS)

    The present study shows that low-dose oxidative stress induced by ionizing radiation (10-20 cGy) and hydrogen peroxide (1-100 pmol per litre) stimulates germination of seeds and growth of sprouts and roots. The growth of seedlings can be stimulated by treatment of seeds as well as seedlings but in the latter case it needs lower doses. The stimulation effect is observed in a narrow dose interval which is the same for the plant species studied: barley, wheat, pea, maize and melon

  2. Green tea polyphenols protect spinal cord neurons against hydrogen peroxide-induced oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhao; Shiqiang Fang; Yajiang Yuan; Zhanpeng Guo; Jinhao Zeng; Yue Guo; Peifu Tang; Xifan Mei

    2014-01-01

    Green tea polyphenols are strong antioxidants and can reduce free radical damage. To investigate their neuroprotective potential, we induced oxidative damage in spinal cord neurons using hy-drogen peroxide, and applied different concentrations (50-200 µg/mL) of green tea polyphenol to the cell medium for 24 hours. Measurements of superoxide dismutase activity, malondial-dehyde content, and expression of apoptosis-related genes and proteins revealed that green tea polyphenol effectively alleviated oxidative stress. Our results indicate that green tea polyphenols play a protective role in spinal cord neurons under oxidative stress.

  3. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    Directory of Open Access Journals (Sweden)

    Chi-I Chang

    2014-03-01

    Full Text Available Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1, 7-methoxy-8-(3-methyl- 2,3-epoxy-1-oxobutylchromen-2-one (2, and 3'-O-methylvaginol (3, together with seven known compounds (4–10 were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide.

  4. Photocatalytic Degradation of Pesticides in Natural Water: Effect of Hydrogen Peroxide

    OpenAIRE

    Natividad Miguel; Ormad, María P.; Rosa Mosteo; José L. Ovelleiro

    2012-01-01

    The aim of this paper is to evaluate the effectiveness of photocatalytic treatment with titanium dioxide in the degradation of 44 organic pesticides analyzed systematically in the Ebro river basin (Spain). The effect of the addition of hydrogen peroxide in this treatment is studied, and a monitoring of effectiveness of photocatalytic processes is carried out by measurements of physical-chemical parameters of water. The application of photocatalytic treatment with 1 g L−1 of TiO2 during 30 min...

  5. Environmentally Benign Oxidation of Some Organic Sulfides with 34% Hydrogen Peroxide Catalyzed by Simple Heteropolyoxometalates

    Institute of Scientific and Technical Information of China (English)

    TAYEBEE,Reza; ALIZADEH,Moharnmad Hassan

    2007-01-01

    An environmentally benign oxygenation protocol was developed for selective oxidation of some types of aromatic and aliphatic sulfides in good to excellent yields utilizing 34% hydrogen peroxide catalyzed by simple heteropolyoxometalates in normal drinking water at room temperature. The catalysts could be recovered and reused for at least seven reaction cycles under the described reaction conditions without considerable loss of reactivity. This procedure introduced a new insight into the use of simple heteropolyanions as recoverable catalysts for the oxidation of organic sulfides by an environmentally acceptable protocol.

  6. ExoMol line lists XV: A new hot line list for hydrogen peroxide

    OpenAIRE

    Al-Refaie, Ahmed F.; Polyansky, Oleg L.; Ovsyannikov, Roman I.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-01-01

    A computed line list for hydrogen peroxide, H$_2{}^{16}$O$_2$, applicable to temperatures up to $T=1250$~K is presented. A semi-empirical high accuracy potential energy surface is constructed and used with an {\\it ab initio} dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-$A$ coefficients for rotational excitations up to $J=85$. The resulting APTY line list is complete for wavenumbers below 6~...

  7. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  8. A passive apparatus for controlled-flux delivery of biocides: hydrogen peroxide as an example

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, L.T.; Dam-Johansen, Kim;

    2010-01-01

    A new test method has been developed to estimate the required release rate of hydrogen peroxide (H2O2) to prevent marine biofouling. The technique exploits a well-defined concentration gradient of biocide across a cellulose acetate membrane. A controlled flux of H2O2, an environmentally friendly...... of approximately 2800 mu g cm(-2) day(-1) deterred biofouling efficiently. A H2O2 release rate of about 224 mu g cm(-2) day(-1) resulted in some slime formation, but it was less than that on the H2O2-free control. It appears that to obtain efficient resistance to biofouling in natural seawater requires much higher...

  9. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    International Nuclear Information System (INIS)

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials

  10. Microbicidal efficacy of an advanced oxidation process using ozone/hydrogen peroxide in water treatment.

    Science.gov (United States)

    Sommer, R; Pribil, W; Pfleger, S; Haider, T; Werderitsch, M; Gehringer, P

    2004-01-01

    The combined application of ozone and hydrogen peroxide represents a kind of advanced oxidation for water treatment. The radicals that are generated during the process are used for the degradation of organic pollutants from groundwater and industrial effluents. The aim of our study was to evaluate the possible microbicidal, and particularly virucidal, efficacy of such a process, since no substantial data were available. The investigations were performed at a pilot plant installed for the elimination of perchloroethylene from polluted groundwater (reduction efficacy for perchloroethylene from 26 microg/L to 5 microg/L). To enable a reliable evaluation of the microbicidal effect, a set of alternate test organisms was used. As model viruses we chose bacteriophages MS2 (F+ specific, single-stranded RNA), phiX174 (single-stranded DNA) and PRD-1 (coated, double-stranded DNA). Furthermore, spores of Bacillus subtilis were included as possible surrogates for protozoa and Escherichia coli as representative for traditional indicator bacteria used in water analysis. The microbicidal efficiency was compared to the inactivation by means of ozone under two standard conditions (20 degrees C): (a) 0.4 mg/L residual after 4 min and (b) 0.1 mg/L residual after 10 min. Surprisingly, a good microbicidal effect of the ozone/hydrogen peroxide process was found. This was somewhat unexpected, because we had assumed that the disinfection potential of ozone would have been interfered with by the presence of hydrogen peroxide. Escherichia coli and the three test viruses revealed a reduction of about 6-log. In contrast, spores of Bacillus subtilis showed after the total process a reduction of 0.4-log. These results matched the effect of the ozone treatment (a) with a residual of 0.4 mg/L after 4 min contact time (20 degrees C). The test condition (b) with a residual of 0.1 mg/L ozone after a contact time of 10 min at 20 degrees C gave a higher reduction of the B. subtilis spores (1.5-log

  11. Electrochemically Reduced Graphene Oxide-nafion/Au Nanoparticle Modified Electrode for Hydrogen Peroxide Sensing

    OpenAIRE

    Yajie Lv; Fang Wang; Hui Zhu; Xiaorong Zou; Cheng-an Tao; Jianfang Wang

    2016-01-01

    n this paper, a non-enzymatic hydrogen peroxide (H2O2) sensor, based on Au nanoparticles (AuNPs) electrodepos‐ ited on an electrochemically reduced graphene oxide(ER‐ GO)-Nafion modified glass carbon electrode (GCE), was reported. The graphene oxide-(GO-)Nafion nanocompo‐ sites were first assembled on the GCE surface to produce a GO-Nafion electrode. GO was then electrochemically reduced to produce an ERGO-Nafion modified GCE (to be subsequently denoted as GCE/ERGO-Nafion). Afterwards, AuNPs ...

  12. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V., E-mail: Vladimir.Scholtz@vscht.cz; Khun, J. [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic); Soušková, H. [Institute of Chemical Technology in Prague, Department of Computing and Control Engineering, Faculty of Chemical Engineering (Czech Republic); Čeřovský, M. [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic)

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  13. Treated domestic sewage: kinetics of Escherichia coli and total coliform inactivation by oxidation with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Gean Delise L. P. Vargas

    2013-01-01

    Full Text Available Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.

  14. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  15. Leaching performance of imidazolium based ionic liquids in the presence of hydrogen peroxide for recovery of metals from brass waste

    OpenAIRE

    Kilicarslan, Ayfer; Saridede, Muhlis N.

    2016-01-01

    The application of ionic liquids (ILs), 1-methylimidazolium hydrogen sulfate (HmimHSO4), 1-ethyl-3-methylimidazolium hydrogen sulfate (HmimHSO4) and 1-butyl-3-methylimidazolium chloride (BmimCl) as leaching agents was investigated in the leaching of copper and zinc from brass waste in the presence of an oxidant, hydrogen peroxide (H2O2). Factors that affect copper and zinc dissolution rates such as ionic liquid concentration, time and temperature were investigated. The results indicated that ...

  16. Micromorphology and microhardness of enamel after treatment with home-use bleaching agents containing 10% carbamide peroxide and 7.5% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Robson Tetsuo Sasaki

    2009-12-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the effect of home-use bleaching agents containing 10% carbamide peroxide and 7.5% hydrogen peroxide on enamel microhardness and surface micromorphology. MATERIAL AND METHODS: Enamel slabs (n=10 received the bleaching agents for 1 h/day and remained in artificial saliva solution for 23 h/day, during a total period of 21 days. Control group was composed of enamel slabs that were not subjected to treatment with the agents and were maintained in artificial saliva solution. Microhardness tests were performed before treatment application, 21 days of treatment and 14 days after the end of treatment. Scanning electron microscopy analyses were performed after 14 days after the end of bleaching treatment by 3 calibrated observers who attributed scores. RESULTS: The Tukey's test (α=0.05 showed no significant differences in microhardness values among bleaching agents, at 21 days of treatment and a significant increase in microhardness for different agents after 14 days from the end of treatment. Fisher's exact test showed differences in micromorphology of enamel between control and experimental groups (p=0.0342. CONCLUSIONS: Bleaching agents containing 10% carbamide peroxide and 7.5% hydrogen peroxide may change surface micromorphology of enamel, although no changes in microhardness were observed.

  17. Hydrogen Peroxide Stimulates the Ca2+-activated Big-Conductance K Channels (BK) Through cGMP Signaling Pathway in Cultured Human Endothelial Cells

    OpenAIRE

    Dong, De-Li; Yue, Peng; Yang, Bao-Feng; Wang, Wen-Hui

    2008-01-01

    We used the whole cell patch-clamp technique to examine the effect of hydrogen peroxide (H2O2) on the Ca2+-activated BK channels in human endothelial cells. We confirmed the previous finding that a 200 pS BK channel activity was detected when the cell membrane potential was clamped at 50 mV. Application of H2O2 or adding glucose oxidase (GO) stimulated BK channels. The stimulatory effect of H2O2 and GO was absent in cells treated with ebselen, a scavenger of reactive oxygen species (ROS). To ...

  18. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  19. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  20. Hydrogen: Adding Value and Flexibility to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    The objective of this study was to assess potential synergies between the hydrogen economy and nuclear energy options. Specifically: to provide a market analysis of advanced nuclear energy options for hydrogen production in growing hydrogen demand; to conduct an impact evaluation of nuclear-based hydrogen production on the economics of the energy system, environmental emissions, and energy supply security; and to identify competing technologies and challenges to nuclear options

  1. Investigation of Influential Parameters in Deep Oxidative Desulfurization of Dibenzothiophene with Hydrogen Peroxide and Formic Acid

    Directory of Open Access Journals (Sweden)

    Alireza Haghighat Mamaghani

    2013-01-01

    Full Text Available An effective oxidative system consisting of hydrogen peroxide, formic acid, and sulfuric acid followed by an extractive stage were implemented to remove dibenzothiophene in the simulated fuel oil. The results revealed such a great performance in the case of H2O2 in the presence of formic and sulfuric acids that led to the removal of sulfur compounds. Sulfuric acid was employed to increase the acidity of media as well as catalytic activity together with formic acid. The oxidation reaction was followed by a liquid-liquid extraction stage using acetonitrile as a polar solvent to remove produced sulfones from the model fuel. The impact of operating parameters including the molar ratio of formic acid to sulfur (, hydrogen peroxide to sulfur (, and the time of reaction was investigated using Box-Behnken experimental design for oxidation of the model fuel. A significant quadratic model was introduced for the sulfur removal as a function of effective parameters by the statistic analysis.

  2. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai; Rahman, Irman Abdul; Ahmad, Ainee Fatimah; Mohamad, Hur Munawar Kabir [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia)

    2014-09-03

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samples which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.

  3. Molecular and Cellular Effects of Hydrogen Peroxide on Human Lung Cancer Cells: Potential Therapeutic Implications

    Science.gov (United States)

    2016-01-01

    Lung cancer has a very high mortality-to-incidence ratio, representing one of the main causes of cancer mortality worldwide. Therefore, new treatment strategies are urgently needed. Several diseases including lung cancer have been associated with the action of reactive oxygen species (ROS) from which hydrogen peroxide (H2O2) is one of the most studied. Despite the fact that H2O2 may have opposite effects on cell proliferation depending on the concentration and cell type, it triggers several antiproliferative responses. H2O2 produces both nuclear and mitochondrial DNA lesions, increases the expression of cell adhesion molecules, and increases p53 activity and other transcription factors orchestrating cancer cell death. In addition, H2O2 facilitates the endocytosis of oligonucleotides, affects membrane proteins, induces calcium release, and decreases cancer cell migration and invasion. Furthermore, the MAPK pathway and the expression of genes related to inflammation including interleukins, TNF-α, and NF-κB are also affected by H2O2. Herein, we will summarize the main effects of hydrogen peroxide on human lung cancer leading to suggesting it as a potential therapeutic tool to fight this disease. Because of the multimechanistic nature of this molecule, novel therapeutic approaches for lung cancer based on the use of H2O2 may help to decrease the mortality from this malignancy. PMID:27375834

  4. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    Science.gov (United States)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-06-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg-1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  5. Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite

    International Nuclear Information System (INIS)

    A novel H2O2 biosensor based on horseradish peroxidase (HRP) immobilized into CoFe2O4–chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe2O4–chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H2O2 determination was from 3 × 10−2 to 8 mM, with a detection limit of 2 × 10−3 mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: ► HRP biosensor based on CoFe2O4–chitosan nanocomposite has been developed for H2O2 detection. ► The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. ► The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  6. Role of vanadium and pyridine in heteropolycompounds for selective oxidation of alcohols with hydrogen peroxide

    Indian Academy of Sciences (India)

    Valeria Palermo; Paula I Villabrille; Patricia G Vázquez; Carmen V Cáceres; Pietro Tundo; Gustavo P Romanelli

    2013-11-01

    This study describes the application of heteropolyacids H3PMo12O40,H4SiMo12O40, H4PMo11VO40, H5PMo10V2O40, H9PMo6V6O40, and a hybrid pyridine-modified heteropolyacid with Keggin structure for selective oxidation of alcohols to ketones or aldehydes using aqueous hydrogen peroxide and acetonitrile as solvent. Performance of these different catalysts in 1-phenylethanol oxidation was studied. Influence of reaction temperature, amount of catalyst and hydrogen peroxide and reaction time on the yield of acetophenone was investigated to obtain optimal reaction conditions. Oxidation ability of the catalyst depended on the number of vanadium atoms present in the Keggin ion and to a lesser extent on pyridine substitution in the Keggin secondary structure. In order to explore the applicability of the method for selective oxidation of alcohols to ketones or aldehydes, various alcohols were investigated according to the general procedure using hybrid pyridine-modified heteropolyacid.

  7. Study of the hydrogen peroxide bleaching agent effects on bovine enamel using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ruda F.; Calazans, Fernanda S.; Miranda, Mauro S.; Santos, Ramon S.; Anjos, Marcelino J.; Assis, Joaquim T. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Hydrogen Peroxide's a bleaching agent capable of oxidizing a wide range of colored organic, causing discoloration and hence bleaching of the substrate, but some authors related the occurrence of side effects related to bleaching of the tooth structure, such as changes in morphology superficial. It was used 6 bovine incisors, each tooth was initially evaluated six times in different areas to obtain the count of elements phosphorus and calcium using X-Ray Fluorescence. The teeth were randomly divided in two groups: both groups were submitted to bleaching in office with hydrogen peroxide 38%, once a week during three weeks. Group 1 was stored in distilled water and group 2 in artificial saliva, between the sessions. The measurements were repeated every seven days before the bleaching treatment. Besides that, changes in mineral levels were always assessed in the same area and using the same procedure. It was observed that the bleaching was not able to demineralize the tooth enamel studied. (author)

  8. Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition

    Directory of Open Access Journals (Sweden)

    Randi H. Gottfredsen

    2013-01-01

    Full Text Available Superoxide dismutase (EC-SOD controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163. These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.

  9. Microcalorimetric Investigation on the Kinetics of the Oxidation of Ascorbic Acid with Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    MENG,Xiang-Guang(孟祥光); KOU,Xing-Ming(寇兴明); XIE,Jia-Qing(谢家庆); DU,Juan(杜娟); ZENG,Xian-Cheng(曾宪诚)

    2004-01-01

    Based on the thermokinetic theory, a novel thermokinetic research method-self-function regression method,which could be used to determine the kinetic parameters k1, k2 and k 1 of the complex reaction:B+C(k1 k-1)Ik2→ P, was proposed in this paper. The kinetics of the reaction of ascorbic acid (H2A) with hydrogen peroxide was investigated at pH=5-7 and T=298.15 K, and the kinetic parameters k1, k 2 and k-1 were obtained with this method. The kinetics of the reaction was investigated in detail. The kinetic parameters of the oxidation of ascorbic monoanion (HA) and ascorbic dianion (A2-) with hydrogen peroxide were 3.33 × 10-3 s-1 and 25.48 s-1 at 298.15 K, respectively. The molar enthalpy change for the reaction was -554.64 kJ · mol-1 in phosphate buffer solution at pH 7 and at 298.15 K.

  10. Protection of Salvianolic Acid B for Human Endothelial Cells Against Hydrogen Peroxide-Induced Oxidative Damage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jungang; ZHAO Guangrong; LIU Jinling; JI Xiangwu

    2009-01-01

    Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was evaluated with human endothelial cells under oxidative stress. Human endothelial cells were pretreated with Sal B for 12 h followed by hydrogen peroxide for another 12 h. Production of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and concentration of glu-tathione were measured: Protective effect of Sal B on the endothelial cells from hydrogen peroxide-induced damage ' was observed, and ROS production in the cells was found significantly inhibited. Sal B remarkably enhanced the activities of antioxidant enzymes SOD, CAT and GPX. Furthermore, Sal B up-regulated the intracellular glutathione concentration. The results indicate that Sal B protected endothelial cells from oxidative stress by improving the redox status of the cells through enhancing the antioxidant enzyme activities and increasing the reductive glutathione concentration after the oxidative challenge.

  11. Solar energy conversion by green microalgae: a photosystem for hydrogen peroxide production.

    Science.gov (United States)

    de la Rosa, F F; Montes, O; Galván, F

    2001-09-20

    A photosystem for solar energy conversion, comprised of a culture of green microalgae supplemented with methyl viologen, is proposed. The capture of solar energy is based on the Mehler reaction. The reduction of methyl viologen by the photosynthetic apparatus and its subsequent reoxidation by oxygen produces hydrogen peroxide. This is a rich-energy compound that can be used as a nonpollutant and efficient fuel. Four different species of green microalgae, Chlamydomonas reinhardtii (21gr) C. reinhardtii (CW15), Chlorella fusca, and Monoraphidium braunii, were tested as a possible biocatalyst. Each species presented a different efficiency level in the transformation of energy. Azide was an efficient inhibitor of the hydrogen peroxide scavenging system while maintaining photosynthetic activity of the microalgae, and thus significantly increasing the production of the photosystem. The strain C. reinhardtii (21gr), among the species studied, was the most efficient with an initial production rate of 185 micromol H(2)O(2)/h x mg Chl and reaching a maximum of 42.5 micromol H(2)O(2)/mg Chl when assayed in the presence of azide inhibitor. PMID:11494222

  12. Three-dimensional electrode microbial fuel cell for hydrogen peroxide synthesis coupled to wastewater treatment

    Science.gov (United States)

    Chen, Jia-yi; Li, Nan; Zhao, Lin

    2014-05-01

    A three-dimensional electrode bioelectrochemical system for the cathodic production of hydrogen peroxide and the simultaneous treatment of wastewater is investigated. Three types of three-dimensional electrodes - activated carbon particle electrodes (ACPE), carbon black particle electrodes (CBPE) and graphite particle electrodes (GPE) - are made of activated carbon (AC), carbon black (CB) and graphite powders respectively with polytetrafluoroethene (PTFE) as the binder. The MFC using the GPE is shown to perform best for catalyzing H2O2 production, while the MFCs equipped with the CBPE and the ACPE achieve a 17-18% higher power output but a 2.5-4.4% lower H2O2 yield, due to the further cathodic reduction of H2O2. Furthermore, a relatively high current in the system is demonstrated to have a positive impact on both cathodic H2O2 generation and anodic organic degradation for each MFC. At an external resistance of 20 Ω, the MFC using the GPE achieves the H2O2 generation of 196.50 mg L-1 and 84% COD removal in 24 h, with Coulombic efficiency, Faradic efficiency and COD conversion efficiency of 29%, 70%, and 20%, respectively. This study shows that MFC with carbon three-dimensional electrode is a cost-effective energy-saving bioelectrochemical system for the simultaneous production of hydrogen peroxide and removal of COD.

  13. A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses.

    Science.gov (United States)

    Adimora, Nnenna J; Jones, Dean P; Kemp, Melissa L

    2010-09-15

    Hydrogen peroxide is appreciated as a cellular signaling molecule with second-messenger properties, yet the mechanisms by which the cell protects against intracellular H(2)O(2) accumulation are not fully understood. We introduce a network model of H(2)O(2) clearance that includes the pseudo-enzymatic oxidative turnover of protein thiols, the enzymatic actions of catalase, glutathione peroxidase, peroxiredoxin, and glutaredoxin, and the redox reactions of thioredoxin and glutathione. Simulations reproduced experimental observations of the rapid and transient oxidation of glutathione and the rapid, sustained oxidation of thioredoxin on exposure to extracellular H(2)O(2). The model correctly predicted early oxidation profiles for the glutathione and thioredoxin redox couples across a range of initial extracellular [H(2)O(2)] and highlights the importance of cytoplasmic membrane permeability to the cellular defense against exogenous sources of H(2)O(2). The protein oxidation profile predicted by the model suggests that approximately 10% of intracellular protein thiols react with hydrogen peroxide at substantial rates, with a majority of these proteins forming protein disulfides as opposed to protein S-glutathionylated adducts. A steady-state flux analysis predicted an unequal distribution of the intracellular anti-oxidative burden between thioredoxin-dependent and glutathione-dependent antioxidant pathways, with the former contributing the majority of the cellular antioxidant defense due to peroxiredoxins and protein disulfides.

  14. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway.

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-03-15

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  15. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via the SIRT1 pathway

    Science.gov (United States)

    Lee, Ju-Hee; Moon, Ji-Hong; Nazim, Uddin MD.; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), which is primarily synthesized in and secreted from the pineal gland, plays a pivotal role in cell proliferation as well as in the regulation of cell metastasis and cell survival in a diverse range of cells. The aim of this study is to investigate protection effect of melatonin on H2O2-induced cell damage and the mechanisms of melatonin in human keratinocytes. Hydrogen peroxide dose-dependently induced cell damages in human keratinocytes and co-treatment of melatonin protected the keratinocytes against H2O2-induced cell damage. Melatonin treatment activated the autophagy flux signals, which were identified by the decreased levels of p62 protein. Inhibition of autophagy flux via an autophagy inhibitor and ATG5 siRNA technique blocked the protective effects of melatonin against H2O2-induced cell death in human keratinocytes. And we found the inhibition of sirt1 using sirtinol and sirt1 siRNA reversed the protective effects of melatonin and induces the autophagy process in H2O2-treated cells. This is the first report demonstrating that autophagy flux activated by melatonin protects human keratinocytes through sirt1 pathway against hydrogen peroxide-induced damages. And this study also suggest that melatonin could potentially be utilized as a therapeutic agent in skin disease. PMID:26918354

  16. Preparation of Peracetic Acid from Acetic Acid and Hydrogen Peroxide: Experimentation and Modeling

    Institute of Scientific and Technical Information of China (English)

    赵雪冰; 张婷; 周玉杰; 刘德华

    2008-01-01

    Based on the kinetic equations and equilibrium constants, some mathematic models were developed for calculating peracetic acid (PAA) concentration, equilibrium conversion rate of hydrogen peroxide, etc. The effects of several parameters on PAA synthesis were investigated by experimentation and modeling. The equilibrium constants determined from the forward and reverse rate constants at 293, 303,313 and 323 K were 2.91, 2.81, 2.72 and 2.63, respectively. The models could predict the values of equilibrium concentration of PAA with average relative deviation of less than 10%. Both of the experimental and model-calculated results demonstrated that temperature and catalyst loading were the most important factors affecting the rate of PAA synthesis, but high temperature led to the decrease of equilibrium concentration of PAA. According to the model, the reaction could achieve equilibrium within 24 h when operated at 303 K with 1%~1.5%(ω) sulfuric acid as catalyst. Additionally, when using anhydrous acetic acid and 30% hydrogen peroxide to prepare PAA, the volumetric ratio of the two solutions should be in the range of 1.2~1.5 in order to obtain the highest equilibrium concentration of PAA. This study can serve as a step towards the further optimization of PAA synthesis and some other related investigations.

  17. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    Science.gov (United States)

    Chen, Bingyan; Zhu, Changping; Fei, Juntao; He, Xiang; Yin, Cheng; Wang, Yuan; Gao, Ying; Jiang, Yongfeng; Wen, Wen; Chen, Longwei

    2016-03-01

    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. supported by National Natural Science Foundation of China (Nos. 11274092, 11404092, 61401146), the Nantong Science and Technology Project, Nantong, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering, Nanjing, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities of China (No. 2014B11414)

  18. Au/CeO{sub 2}-chitosan composite film for hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Xie Guoming, E-mail: guomingxie@cqmu.edu.cn [Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Li Shenfeng; Lu Lingsong; Liu Bei [Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2012-08-01

    Au nanoparticles (AuNPs) were in situ synthesized at the cerium dioxide nanoparticles (CeO{sub 2}NPs)-chitosan (CS) composite film by one-step direct chemical reduction, and the resulting Au/CeO{sub 2}-CS composite were further modified for enzyme immobilization and hydrogen peroxide (H{sub 2}O{sub 2}) biosensing. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis spectra and electrochemical techniques have been utilized for characterization of the prepared composite. The stepwise assembly process and electrochemical performances of the biosensor were characterized by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and typical amperometric response (i-t). The Au/CeO{sub 2}-CS composite exhibited good conductibility and biocompatibility, and the developed biosensor exhibited excellent response to hydrogen peroxide in the linear range of 0.05-2.5 mM (r = 0.998) with the detection limit of 7 {mu}M (S/N = 3). Moreover, the biosensor presented high affinity (K{sub m}{sup app}=1.93mM), good reproducibility and storage stability. All these results demonstrate that the Au/CeO{sub 2}-CS composite film can provide a promising biointerface for the biosensor designs and other biological applications.

  19. Amperometric Biosensor for Hydrogen Peroxide Based on Electrodeposited Sub-micrometer Gold Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Shu-Qing(王树青); CHEN,Jun(陈峻); LIN,Xiang-Qin(林祥钦)

    2004-01-01

    A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles(sm-Au)on a glassy carbon electrode(GCE).Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface.The hydrogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue(MB)molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase(HRP)layer,labeled as HRP/MB/sm-Au/GCE.The characteristics of this biosensor were evaluated with respect to applied potential and pH.The amperometric response of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-6-1.11×10-2 mol/L.A detection limit(s/n=3)of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to-400 mV vs.SCE.The immobilized MB molecules shuttled electrons at(=0.77 and an apparent electron transfer rate constant of =0.053 s-1.Interference of ascorbic acid,dopamine and uric acid was investigated.This sensor has very good stability and reproducibility for long-term use.

  20. Amperometric hydrogen peroxide biosensor based on cobalt ferrite-chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yard Latin-Small-Letter-Dotless-I mc Latin-Small-Letter-Dotless-I , Feyza S.; Senel, Mehmet, E-mail: msenel@fatih.edu.tr; Baykal, Abduelhadi

    2012-02-01

    A novel H{sub 2}O{sub 2} biosensor based on horseradish peroxidase (HRP) immobilized into CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe{sub 2}O{sub 4}-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H{sub 2}O{sub 2} determination was from 3 Multiplication-Sign 10{sup -2} to 8 mM, with a detection limit of 2 Multiplication-Sign 10{sup -3} mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: Black-Right-Pointing-Pointer HRP biosensor based on CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for H{sub 2}O{sub 2} detection. Black-Right-Pointing-Pointer The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. Black-Right-Pointing-Pointer The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  1. The Effect of Hydrogen Peroxide 35% on Surface Roughness of Silorane and Methacrylate Based Composites

    Directory of Open Access Journals (Sweden)

    L. Rezaei Sofi

    2015-04-01

    Full Text Available Introduction & Objectives: Surface roughness affects beauty, hygiene, plaque retention and health of the gingival adjacent to the composite restoration. Many people use bleaching agents to beautify their teeth that may lead to changes in surface roughness. This study was designed to compare the silorane and methacrylate-based composites in bleached teeth. Materials & Methods: In this experimental study 48 composite resin disks were prepared and divided into 4 groups: P90, Z250, Z250XT and Z350XT (n=12. To determine the surface roughness, surface profile measurement of the samples was performed using profilometer. Samples of each diet group underwent 35% hydrogen peroxide in office whitening (Hpmax in three 45-minute sessions one week apart. The secondary instances of surface profile was then measured. The data collected by the Kolmogorov-Smirnov test, one-way ANOVA, Tukey test and paired t- test at a significance level of 0.05 were analyzed using spss16. Results: There was a significant difference (P<0.05 in the surface roughness after bleaching on composite Z350XT with P90 and Z350XT with Z250. The surface roughness of all groups before and after bleaching showed a significant difference (P<0.05. Conclusion: The use of hydrogen peroxide 35% causes a significant increase in the surface roughness of composite P90, Z250, Z250XT and Z350XT. (Sci J Hamadan Univ Med Sci 2015; 22 (1:23-29

  2. Efficiency of hydrogen peroxide production by ac capillary discharge in water solution

    International Nuclear Information System (INIS)

    Efficiency of hydrogen peroxide production by an ac driven underwater capillary discharge was investigated quantitatively. The concentration of formed hydrogen peroxide was measured by a colorimetric method using a specific reaction between H2O2 and a titanium reagent. The amount of formed H2O2 increases linearly during the first hour of the discharge duration. The initial rate and corresponding total energy yield of H2O2 formation by the capillary discharge were determined for initial electrical conductivity of aqueous solution in the range of 100-500 μS cm-1 and average applied power in the range 30-90 W. It comes out that the total energy yield of H2O2 formation, derived from the initial rate of H2O2 formation and the average applied power, increases linearly with average applied power and that solution conductivity has only a negligible effect on the energy yield. A maximum total energy yield of H2O2 formation of 0.9 g kWh-1 was obtained for a 500 μS cm-1 aqueous solution

  3. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step

  4. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma

    International Nuclear Information System (INIS)

    Objective was to estimate the predictive value of exhaled breath condensate (EBC) hydrogen peroxide (H2O2) concentration and pH as non-invasive markers in asthma. Fifty patients with unstable, steroid naive atopic asthma were included in this study, 25 with persistent asthma. Asthma diagnosis was according to the National Heart Lung and Blood Institute guidelines for the diagnosis and management of asthma. Forced expiratory volume in one second (FEV1) was measured by computerized spirometry. The EBC H2O2 assay was carried out using the colorimetric assay. The study was conducted from January to December 2005 in the Asthma and Allergy Center, Tikrit, Iraq. The EBC H2O2 concentration was higher in the asthmatic group (0.91mol) as compared with the control (0.23 mol). There was inverse correlation between EBC H2O2 concentration and FEV1 predicted percent for asthmatic patients. The mean EBC pH was lower in the asthmatic than the control group. There was a positive correlation between EBC pH and FEV 1 predicted percent for asthmatic patients. There was an inverse correlation between EBC H2O2 concentration and pH for all asthmatic patients, intermittent, and persistent asthmatic group. Exhaled breath condensate hydrogen peroxide concentration and pH was a good non-invasive marker for asthma, whether it was with a persistent or intermittent course. (author)

  5. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    Science.gov (United States)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  6. Activation of NF-κB and apoptosis of intestinal epithelial cells induced by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    李建明; 周红; 蔡黔; 肖光夏

    2002-01-01

    In vitro model of hydrogen peroxide induced apoptosis of SW-480 cells was used to investigate the role of NF-κB in the pathogenesis of reactive oxygen species induced apoptosis of intestinal epithelial cells. Methods: Ultra-structural changes were observed.Apoptosis of SW-480 cell line was determined by Annexin-V and PI double-stained flow cytometry. Nuclear translocation of NF-κB was determined by anti-NF-κB polyclonal antibody and EB double-staining. NF-κB activity was studied by electrophoretic mobility shift assays. RTPCR was performed to study expression of NF-κB mRNA. Results: Hydrogen peroxide led to apoptosis of SW-480 cells, condensed or semilunar chromatin even apoptotic bodies could be observed. Nuclear translocation of NF-κB,increase of NF-κB activity and expression of NF-κB mRNA were found simultaneously. Conclusions: Early activation of NF-κ B may be one of the mechanisms of apoptosis in intestinal epithelial cells by reactive oxygen species.

  7. Effects of hydrogen peroxide feeding strategies on the photochemical degradation of polyvinyl alcohol.

    Science.gov (United States)

    Hamad, Dina; Dhib, Ramdhane; Mehrvar, Mehrab

    2016-11-01

    The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent. PMID:27088453

  8. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    Science.gov (United States)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai; Rahman, Irman Abdul; Ahmad, Ainee Fatimah; Mohamad, Hur Munawar Kabir

    2014-09-01

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samples which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.

  9. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    International Nuclear Information System (INIS)

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper

  10. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    International Nuclear Information System (INIS)

    Full-text: The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1 % - 5 %. These chitosan-water mixtures were irradiated at 6 kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2 based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper. (author)

  11. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    Science.gov (United States)

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions. PMID:25243569

  12. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    Science.gov (United States)

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  13. [Influence of cadmium chloride and hydrogen peroxide on the content of phosphoinositides in isolated hepatocytes of rats].

    Science.gov (United States)

    Borikov, A Iu; Kaliman, P A

    2004-01-01

    Influence of cadmium chloride and hydrogen peroxide on the processes of lipid peroxidation and contents of polyphosphoinositides in isolated hepatocytes of rats was studied. It is shown that incubation of the cells with cadmium chloride or hydrogen peroxide already in 15 min results in the reinforcement of lipid peroxidation and increase of contents of phosphatidylinositol and phosphatidylinositoldiphosphate. Variations of the basal level of the latter, as is well known, plays an important messenger role. In case of more long incubation (60 min) one can observe the significant accumulation of intermediate and final products of lipid peroxidation, while the content of phosphatidylinositol and phosphatidylinositoldiphosphate did not differ from the control, but the content of phosphatidylinositolphosphate was increased. Changes in the content of separate fraction of polyphosphoinositides in the presence of cadmium chloride and hydrogen peroxide were similar. Allowing for all that it is, possible to draw a conclusion that the mechanism of cadmium influence on the content of polyphosphoinositides is based on its ability to cause development of the oxidative stress. PMID:19621747

  14. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide

    Indian Academy of Sciences (India)

    Shanmugam Manivannan; Ramasamy Ramaraj

    2009-09-01

    The electrocatalytic activity of core-shell Au100-Ag ( = 15, 27, 46, and 60) bimetallic nanoparticles embedded in methyl functionalized silicate MTMOS network towards the reduction of hydrogen peroxide was investigated by using cyclic voltammetry and chronoamperometric techniques. Core-shell Au/Ag bimetallic nanoparticles were characterized by absorption spectra and HRTEM. The MTMOS silicate sol-gel embedded Au73Ag27 core-shell nanoparticles modified electrode showed better synergistic electrocatalytic effect towards the reduction of hydrogen peroxide when compared to monometal MTMOS-Aunps and MTMOS-Agnps modified electrodes. These modified electrodes were studied without immobilizing any enzyme in the MTMOS sol-gel matrix. The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in comparison to monometal Au and Ag nanoparticles.

  15. Immobilization of redox mediators on functionalized carbon nanotube: A material for chemical sensor fabrication and amperometric determination of hydrogen peroxide

    Indian Academy of Sciences (India)

    D R Shobha Jeykumari; S Senthil Kumar; S Sriman Narayanan

    2005-10-01

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) on graphite electrode was achieved by gently rubbing the electrode surface on carbon nanotubes supported on a glass slide. The electrochemical behaviour of the modified electrodes was investigated by cyclic voltammetry. The SWNT-modified electrodes showed excellent electrocatalytic effect for the reduction of hydrogen peroxide. A decrease in overvoltage was observed as well as an enhanced peak current compared to a bare graphite electrode for the reduction of hydrogen peroxide. The catalytic current was found to be directly proportional to the amount of hydrogen peroxide taken.

  16. Kinetics of the decomposition and the estimation of the stability of 10% aqueous and non-aqueous hydrogen peroxide solutions

    Directory of Open Access Journals (Sweden)

    Zun Maria

    2014-12-01

    Full Text Available In this study, the stability of 10% hydrogen peroxide aqueous and non-aqueous solutions with the addition of 6% (w/w of urea was evaluated. The solutions were stored at 20°C, 30°C and 40°C, and the decomposition of hydrogen peroxide proceeded according to first-order kinetics. With the addition of the urea in the solutions, the decomposition rate constant increased and the activation energy decreased. The temperature of storage also affected the decomposition of substance, however, 10% hydrogen peroxide solutions prepared in PEG-300, and stabilized with the addition of 6% (w/w of urea had the best constancy.

  17. Microscale packed bed reactor for controlled hydrogen peroxide decomposition as a fuel cell oxidant aboard unmanned undersea vehicles

    Science.gov (United States)

    Lennon, E.; Burke, A. A.; Ocampo, M.; Besser, R. S.

    The multiphase catalytic decomposition of hydrogen peroxide into water and oxygen is notoriously susceptible to thermal runaway (heat of reaction: -98 kJ mol -1). The high surface area to volume ratio (S/ V) in a microscale packed bed (MPB) reactor (radius 0.5 mm) was investigated for reducing the risk of thermal runaway during hydrogen peroxide decomposition to oxygen intended as a fuel cell oxidant aboard an unmanned undersea vehicle (UUV). A microscale reactor channel with a S/ V of ∼2 × 10 3 m 2 m -3 simulated under convective cooling generated a significant heat rise (T rise ∼ 100 K), whereas a microreactor with a higher S/ V (∼200 × 10 3 m 2 m -3) achieved thermal control (T rise < 10 K) over the simulated reaction zone. Although thermal management was successfully accomplished using the higher S/ V, experimental conversions of hydrogen peroxide to oxygen (5-18%) measured from the outlet were lower than simulated conversions (38-63%). Simulation assumptions, such as homogeneously dispersed flow and perfect catalyst interaction among other factors, contributed to the discrepancies between the simulated and experimental degrees of peroxide conversion to oxygen. Even though thermal control of the MPB was achieved, this work indicates that mass transfer limitations are a factor in the MPB reactor during a multiphase reaction, like decomposition of hydrogen peroxide to oxygen and water, and suggests means to overcome them even on the microscale level.

  18. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system

    Science.gov (United States)

    Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.

    2008-01-01

    A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.

  19. Automatic dosage of hydrogen peroxide in solar photo-Fenton plants: Development of a control strategy for efficiency enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gomez, E. [Department of Chemical Engineering, University of Almeria, 04120 Almeria (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain); Moreno Ubeda, J.C. [Department of Language and Computation, University of Almeria, 04120 Almeria (Spain); Alvarez Hervas, J.D. [Department of Language and Computation, University of Almeria, 04120 Almeria (Spain); Department of Language and Computation, University of Sevilla, 41092 Sevilla (Spain); Casas Lopez, J.L.; Santos-Juanes Jorda, L. [Department of Chemical Engineering, University of Almeria, 04120 Almeria (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain); Sanchez Perez, J.A., E-mail: jsanchez@ual.es [Department of Chemical Engineering, University of Almeria, 04120 Almeria (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Dissolved oxygen monitoring is used for automatic dosage of H{sub 2}O{sub 2} in photo-Fenton. Black-Right-Pointing-Pointer PI with anti-windup minimises H{sub 2}O{sub 2} consumption. Black-Right-Pointing-Pointer The H{sub 2}O{sub 2} consumption was reduced up to 50% with respect to manual addition strategies. Black-Right-Pointing-Pointer Appropriate H{sub 2}O{sub 2} dosage is achieved by PI with anti-windup under disturbances. - Abstract: The solar photo-Fenton process is widely used for the elimination of pollutants in aqueous effluent and, as such, is amply cited in the literature. In this process, hydrogen peroxide represents the highest operational cost. Up until now, manual dosing of H{sub 2}O{sub 2} has led to low process performance. Consequently, there is a need to automate the hydrogen peroxide dosage for use in industrial applications. As it has been demonstrated that a relationship exists between dissolved oxygen (DO) concentration and hydrogen peroxide consumption, DO can be used as a variable in optimising the hydrogen peroxide dosage. For this purpose, a model was experimentally obtained linking the dynamic behaviour of DO to hydrogen peroxide consumption. Following this, a control system was developed based on this model. This control system - a proportional and integral controller (PI) with an anti-windup mechanism - has been tested experimentally. The assays were carried out in a pilot plant under sunlight conditions and with paracetamol used as the model pollutant. In comparison with non-assisted addition methods (a sole initial or continuous addition), a decrease of 50% in hydrogen peroxide consumption was achieved when the automatic controller was used, driving an economic saving and an improvement in process efficiency.

  20. Protective Effects of Minor Components of Curcuminoids on Hydrogen Peroxide-Treated Human HaCaT Keratinocytes.

    Science.gov (United States)

    Liu, Yuh-Hwa; Lin, Yin-Shiou; Huang, Yu-Wei; Fang, Sheng-Uei; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-05-11

    Hydrogen peroxide, one of the reactive oxygen species (ROS), can cause intracellular oxidative stress associated with skin aging and/or photoaging. Curcumin, a polyphenol in turmeric, has been reported to exhibit biological activity. In this study, five naturally occurring curcuminoids [curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), monohydroxy-DMC, and monohydroxy-BDMC] were used to investigate their protective roles against hydrogen peroxide-induced oxidative stress in the immortalized human keratinocyte cell lines (HaCaT cells). These five curcuminoids at 10 μM, but not at 5 μM, were shown to exhibit cytotoxicities toward HaCaT keratinocytes. Therefore, a 5 μM concentration of the five curcuminoids was selected for further investigations. Cells were pretreated with or without curcuminoids for 2.5 h before 24-h hydrogen peroxide (150 μM) treatments. Pretreatments with the minor components monohydroxy-DMC or monohydroxy-BDMC, but not curcumin, DMC, and BDMC, showed protective activity, elevating cell viability compared to cells with direct hydrogen peroxide treatments. Pretreatments with monohydroxy-DMC and monohydroxy-BDMC showed the best protective effects, reducing apoptotic cell populations and intracellular ROS, as demonstrated by flow cytometry, as well as reducing the changes of the mitochondrial membrane potential compared to cells with direct hydrogen peroxide treatments. The pretreatments with monohydroxy-DMC and monohydroxy-BDMC reduced c-jun and c-fos mRNA expression and p53 tumor suppressor protein expression and increased HO-1 protein expression and glutathione peroxidase (GPx) activity, respectively, compared to cells with direct hydrogen peroxide treatments. The five curcuminoids exhibited similar hydrogen peroxide-scavenging activity in vitro. It was proposed that monohydroxy-DMC and monohydroxy-BDMC could induce antioxidant defense systems better than curcumin, DMC, or BDMC could against hydrogen peroxide-induced oxidative

  1. Homolytic Cleavage of Both Heme-Bound Hydrogen Peroxide and Hydrogen Sulfide Leads to the Formation of Sulfheme.

    Science.gov (United States)

    Arbelo-Lopez, Hector D; Simakov, Nikolay A; Smith, Jeremy C; Lopez-Garriga, Juan; Wymore, Troy

    2016-08-01

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H2S to enter the solvent-excluded active site through a hydrophobic channel to ultimately form a hydrogen bond with H2O2 bound to Fe(III). Proton transfer from H2O2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H2S to the Fe(III)-H2O2 complex, results in homolytic cleavage of the O-O and S-H bonds to form a reactive thiyl radical (HS(•)), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS(•) to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer NB-Fe(III) bonds compared with other pyrrole nitrogen-Fe(III) bonds, which would lead to decreased oxygen binding. Overall, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H2S on cell signaling and reactivity. PMID:27357070

  2. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    Highlights: • The first report of the presence of both UO{sub 2} and polymeric UO{sub 2}{sup 2+} in the same electrodeposited U oxide sample. • The action of H{sub 2}O{sub 2} on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm{sup −3}. • At [H{sub 2}O{sub 2}] > 0.1 mmol dm{sup −3} dissolution is inhibited by formation of a studtite passivation layer. • At [H{sub 2}O{sub 2}] ⩾ 1 mol dm{sup −3} studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H{sub 2}O{sub 2}-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H{sub 2}O{sub 2}] ⩽ 100 μmol dm{sup −3} the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H{sub 2}O{sub 2} concentrations between 1 mmol dm{sup −3} and 0.1 mol dm{sup −3}, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H{sub 2}O{sub 2}] > 0.1 mol dm{sup −3} the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO{sub 2} films has not hitherto been observed or explored, either in terms

  3. Azide protection of bacteroides superoxide dismutases from inactivation by hydrogen peroxide

    International Nuclear Information System (INIS)

    The anaerobes Bacteroides fragilis, B. distasonis and B. thetaiotaomicron produce an iron-containing superoxide dismutase (FeSOD). These FeSODs are reversibly inhibited by 1 mM azide (NaN3) and are irreversibly inactivated upon incubation with hydrogen peroxide (H2O2). H2O2 inactivation of the enzyme likely depends on a Fenton type reaction with the production of hydroxyl radical (OH). Addition of NaN3 to the enzyme solution decreased the rate of inactivation by H2O2. After 20 minutes incubation of purified B. distasonis FeSOD with 2.5 mM H2O2, 61% of the initial enzymatic activity remained when 1 mM NaN3 was also present compared with 29% activity without NaN3. Similar results were seen with FeSOD from B. fragilis and B. thetaiotaomicron. Metal analyses of the native, peroxidized, and NaN3 protected samples are consistent with loss of Fe from the enzyme upon peroxidation, but retention of Fe and enzymatic activity in the NaN3 protected sample. Protection of FeSOD activity from H2O2 inactivation was dependent on NaN3 concentration. Anionic hydroxyl radical scavengers, such as urate and xanthine did not significantly protect the enzyme. The results are consistent with binding of azide to the active site either preventing entry of H2O2 or altering Fe redox potential, preventing OH production

  4. Evaluation of vaporized hydrogen peroxide, Citrox and pH neutral Ecasol for decontamination of an enclosed area: a pilot study.

    LENUS (Irish Health Repository)

    Galvin, S

    2012-01-01

    Hydrogen peroxide, Ecasol and Citrox aerosols were each tested for their ability to kill a range of nosocomial pathogens. Hydrogen peroxide had the broadest microbicidal activity but operational issues limit its use. Ecasol was effective against all micro-organisms, except Clostridium difficile, while Citrox aerosols were not effective against Gram-negative bacilli.

  5. Spatial, temporal, and quantitative manipulation of intracellular hydrogen peroxide in cultured cells.

    Science.gov (United States)

    Alim, Ishraq; Haskew-Layton, Renee E; Aleyasin, Hossein; Guo, Hengchang; Ratan, Rajiv R

    2014-01-01

    Hydrogen peroxide (H2O2) is produced endogenously in a number of cellular compartments, including the mitochondria, the endoplasmic reticulum, peroxisomes, and at the plasma membrane, and can play divergent roles as a second messenger or a pathological toxin. It is assumed that the tuned production of H2O2 within neuronal and nonneuronal cells regulates a discreet balance between survival and death. However, a major challenge in understanding the physiological versus pathological role of H2O2 in cells has been the lack of validated methods that can spatially, temporally, and quantitatively modulate H2O2 production. A promising means of regulating endogenous H2O2 is through the expression of peroxide-producing enzyme d-amino acid oxidase (DAAO from Rhodotorula gracilis lacking a peroxisomal targeting sequence). Using viral vectors to express DAAO in distinct cell types and using targeting sequences to target DAAO to distinct subcellular sites, we can manipulate H2O2 production by applying the substrate d-alanine or permeable analogs of d-alanine. In this chapter, we describe the use of DAAO to produce H2O2 in culture models and the real-time visual validation of this technique using two-photon microscopy and chemoselective fluorescent probes.

  6. Influence of Concentration and Activation on Hydrogen Peroxide Diffusion through Dental Tissues In Vitro

    Directory of Open Access Journals (Sweden)

    Carlos R. G. Torres

    2013-01-01

    Full Text Available This study evaluated the effect of physical and chemical activation on the diffusion time of different concentrations of hydrogen peroxide (HP bleaching agents through enamel and dentin. One hundred and twenty bovine cylindrical specimens were divided into six groups (n=20: 20% HP ; 20% HP with light activation; 20% HP with manganese gluconate; 35% HP; 35% HP with light activation; and 35% HP with manganese gluconate. The specimens were fixed over transparent epoxy wells with internal cavities to simulate a pulpal chamber. This chamber was filled with an enzymatic reagent to simulate pulpal fluid. The bleaching gels were applied on enamel surface and the image of the pulpal fluid was captured by a video camera to monitor the time of peroxide penetration in each specimen. ANOVA analysis showed that concentration and type of activation of bleaching gel significantly influenced the diffusion time of HP (P<0.05. 35% HP showed the lowest diffusion times compared to the groups with 20% HP gel. The light activation of HP decreased significantly the diffusion time compared to chemical activation. The highest diffusion time was obtained with 20% HP chemically activated. The diffusion time of HP was dependent on activation and concentration of HP. The higher concentration of HP diffused through dental tissues more quickly.

  7. Oxidative Desulfurization of Diesel Fuel with Hydrogen Peroxide Using Na2WO4 s Catalyst

    Institute of Scientific and Technical Information of China (English)

    Sun Xin; Long Jun; Xu Benjing; Xie Chaogang

    2009-01-01

    Oxidative desulfurization was performed on Na2WO4 catalyst in the presence of hydrogen peroxide and acetic acid under mild reaction conditions (atmospheric pressure and temperature range of 293-343 K). Different organic com-pounds including benzothiophene (BT), dibenzothiophene (DBT), 4, 6-dimethyl dibenzothiophene (4, 6-DMDBT) were used to investigate the reactivity of this catalyst, and the effect of various parameters, such as temperature, solvents and the amount of oxidant reagent used in oxidative desulfurization reaction, was also examined. The results showed that the Na2WO4-H2O2 system was very effective for oxidative desulfurization, and the oxidation of BT, DBT and 4, 6-DMDBT was influ-enced by different parameters.

  8. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water.

    Science.gov (United States)

    Shukla, Vineet K; Yadav, Raghvendra S; Yadav, Poonam; Pandey, Avinash C

    2012-04-30

    Present "green" synthesis is an efficient, easy-going, fast, renewable, inexpensive, eco-friendly and non-toxic approach for nanosilver formation, which offers numerous benefits over physiochemical approaches. The X-ray diffraction (XRD) pattern suggests the formation and crystallinity of nanosilver. The average particle size of silver nanoparticles was 8.25±1.37 nm as confirmed by transmission electron microscopy (TEM). The UV-vis absorption spectrum shows a characteristic absorption peak of silver nanoparticles at 410 nm. FTIR confirms Azadirachtin as reducing and stabilizing agent for nanosilver formation. In addition, the nanosilver modified electrode (Ag/GC) exhibited an excellent electro-catalytic activity toward the reduction of hydrogen peroxide (H(2)O(2)). The produced nanosilver is stable and comparable in size. These silver nanoparticles show potential applications in the field of sensors, catalysis, fuel cells and nanodevices.

  9. ITO electrode modified by a gold ion implantation technique for direct electrocatalytic sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    We report on a simple strategy for the fabrication of gold nanoparticles (AuNPs) on an indium tin oxide substrate using a modified ion implantation method. The morphology, structure and electrochemical features of AuNPs were characterized by atomic force microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode has a large electrochemically active surface and enables strong loading with cytochrome c (Cyt c) proteins. It undergoes enhanced electron transfer at uncompromised electrochemical activity, and also displays good stability and repeatability. The immobilized Cyt c exhibits good electrocatalytic activity towards hydrogen peroxide (H2O2), with a linear relationship between the catalytic current during differential pulse voltammetry and the concentration of H2O2 in the 0.05 μM to 0.2 μM range. The detection limit (S/N = 3) is 0. 01 μM. (author)

  10. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  11. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...... of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits...... which diffusion-mediated signaling is possible. We show that purely diffusive transmission of intracellular information by H(2)O(2) over a distance of 1 μm (typical distance between organelles, which may function as relay stations) is possible at frequencies well above 1 Hz, which is the highest...

  12. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian Lyngby; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    Amplitude- and frequency-modulated waves of Ca2+ ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...... of the physical and biochemical conditions in plant cells. As model system, we use a H2O2 signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits...... diffusion-mediated signaling is possible. We show that purely diffusive transmission of intracellular information by H2O2 over a distance of 1 μm (typical distance between organelles, which may function as relay stations) is possible at frequencies well above 1 Hz, which is the highest frequency observed...

  13. Well-controlled wet etching of ZnO films using hydrogen peroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuchao [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Wu, Tianzhun, E-mail: tz.wu@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Chen, Mingming; Su, Longxing; Zhang, Quanlin; Yuan, Lifang; Zhu, Yuan [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Zikang, E-mail: phzktang@ust.hk [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2014-02-15

    We propose hydrogen peroxide (H{sub 2}O{sub 2}) solution as a novel and promising etchant for ZnO thin film with well-controlled etching performances and enhanced ultraviolet (UV) luminescence, which is also facile, inexpensive and environmentally friendly. We have analyzed its etching mechanism and surface modification effect for ZnO. Using this etchant, fine patterns have been transferred to the ZnO single-crystal films with good fidelity. The etching performances have been comprehensively investigated using Raman spectroscopy, scanning electronic microscopy (SEM), atom force microscopy (AFM), surface profiler and photoluminescence (PL) spectrometer. The results have shown that ZnO films after the long-time etching exhibited linear etching rate, smooth profile and increased UV emission, which enables H{sub 2}O{sub 2} solution as an excellent wet etchant for various ZnO-based optoelectronic devices.

  14. A Possible Biogenic Origin for Hydrogen Peroxide on Mars: The Viking Results Reinterpreted

    CERN Document Server

    Houtkooper, J M; Houtkooper, Joop M.; Schulze-Makuch, Dirk

    2006-01-01

    The adaptability of extremophiles on Earth raises the question of what strategies putative life might have used to adapt to the present conditions on Mars. Here, we hypothesize that organisms might utilize a water-hydrogen peroxide (H2O-H2O2) mixture rather than water as an intracellular liquid. This adaptation would have the particular advantages in the martian environment of providing a low freezing point, a source of oxygen, and hygroscopicity. The findings by the Viking experiments are reinterpreted in the light of this hypothesis. Our conclusion is that the hitherto mysterious oxidant in the martian soil, which evolves oxygen when humidified, might be H2O2 of biological origin. This interpretation has consequences for site selection for future missions to search for life on Mars.

  15. Assessment of cell death studies by monitoring hydrogen peroxide in cell culture.

    Science.gov (United States)

    Hirsch, Irina; Prell, Erik; Weiwad, Matthias

    2014-07-01

    Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis. PMID:24747006

  16. Hydrogen peroxide generation by the Weissberger biogenic oxidative system during hyaluronan degradation.

    Science.gov (United States)

    Valachová, Katarina; Topoľská, Dominika; Mendichi, Raniero; Collins, Maurice N; Sasinková, Vlasta; Šoltés, Ladislav

    2016-09-01

    By applying the enzyme catalase, our study on hyaluronan degradation confirms the generation of hydrogen peroxide using the Weissberger biogenic oxidative system (WBOS), which is composed of ascorbate and cupric ions. Dynamic viscosities of hyaluronan (HA) solutions influenced by WBOS in the absence and presence of catalase were analysed by rotational viscometry. Molar masses of HAs were determined by size-exclusion chromatography with multi-angle laser-light scattering. Our results show that catalase dose-dependently inhibited the degradation of HA macromolecules, which presumably confirms the generation of H2O2 in the reaction system. This has implications in range of biomedical applications such as arthritic joint treatment, tissue engineering, ocular and cosmetic surgery. PMID:27185130

  17. Dissolution of Irradiated Commercial UO2 Fuels in Ammonium Carbonate and Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z.; Johnsen, Amanda M.; McNamara, Bruce K.; Hanson, Brady D.; Chenault, Jeffrey W.; Carson, Katharine J.; Peper, Shane M.

    2011-01-18

    We propose and test a disposition path for irradiated nuclear fuel using ammonium carbonate and hydrogen peroxide media. We demonstrate on a 13 g scale that >98% of the irradiated fuel dissolves. Subsequent expulsion of carbonate from the dissolver solution precipitates >95% of the plutonium, americium, curium, and substantial amounts of fission products, effectively partitioning the fuel at the dissolution step. Uranium can be easily recovered from solution by any of several means, such as ion exchange, solvent extraction, or direct precipitation. Ammonium carbonate can be evaporated from solution and recovered for re-use, leaving an extremely compact volume of fission products, transactinides, and uranium. Stack emissions are predicted to be less toxic, less radioactive, chemically simpler, and simpler to treat than those from the conventional PUREX process.

  18. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    Science.gov (United States)

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  19. Treatment of oil refinery wastewater using crude Coprinus cinereus peroxidase and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, K.; Buchanan, I. D.; Smith, D. W. [University of Alberta, Dept. of Civil and Environmental Engineering, Edmonton, AB (Canada)

    2003-11-01

    Enzymatic treatment of oil refinery wastewater was investigated using crude peroxidase derived from the fungus Coprinus cinereus (CIP), and hydrogen peroxide. Further objectives were to investigate the effects of residual organic compounds in the crude enzyme, and compare the performance of CIP to those of purified horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) in the treatment of a strong refinery wastewater. Phenols in the wastewater were converted to coloured polymeric products and then removed by coagulation with alum. As a result of the enzymatic treatment and alum coagulation of the wastewater containing 6.4 mM total phenol, the chemical oxygen demand and the 5-d biochemical oxygen demand were reduced by 52 per cent and 58 per cent, respectively. Reduction of the oxygen demands notwithstanding, the dissolved organic materials in the crude CIP were not affected by either of these processes and tended to remain in the treated wastewater. 31 refs., 1 tab., 7 figs.

  20. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching

    Science.gov (United States)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Pereira, T. M.; Andrade, M. F.

    2010-09-01

    This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups ( n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study.

  1. Effects of UV radiation on the preparation of polypyrrole in the presence of hydrogen peroxide

    Science.gov (United States)

    Zhang, Shihu; Lv, Guowei; Wang, Guolong; Zhu, Kaiming; Yu, Demei; Shao, Jinyou

    2015-10-01

    Conductive polypyrrole was synthesized with hydrogen peroxide (H2O2) as the oxidant. To promote the polymerization of pyrrole, UV radiation was employed. The effects of UV radiation on the preparation of polypyrrole were investigated. The polymerization of pyrrole was conducted with the H2O2 concentration in the range of 0.12-0.96 M and the H2SO4 concentration in the range of 6.8×10-4-0.19 M. The structure characterization indicated that the product polypyrrole was overoxidized partly depending on the concentrations of H2SO4 and H2O2. The increase in H2O2 concentration led to a slight increase in the oxidation and overoxidation of polypyrrole, simultaneously. However, the increase in H2SO4 concentration effectively suppressed the overoxidation of polypyrrole. The morphology, conductivity and thermal stability of the products were also characterized.

  2. ExoMol line lists XV: A new hot line list for hydrogen peroxide

    CERN Document Server

    Al-Refaie, Ahmed F; Ovsyannikov, Roman I; Tennyson, Jonathan; Yurchenko, Sergei N

    2016-01-01

    A computed line list for hydrogen peroxide, H$_2{}^{16}$O$_2$, applicable to temperatures up to $T=1250$~K is presented. A semi-empirical high accuracy potential energy surface is constructed and used with an {\\it ab initio} dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-$A$ coefficients for rotational excitations up to $J=85$. The resulting APTY line list is complete for wavenumbers below 6~000 cm$^{-1}$ ($\\lambda < 1.67$~$\\mu$m) and temperatures up to 1250~K. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN database and literature. Our rms with line positions from the literature is 0.152 \\cm\\ and our absolute intensities agree better than 10\\%. The full line list is available from the CDS databas

  3. Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite.

    Science.gov (United States)

    Langley, Cathryn E; Sljukić, Biljana; Banks, Craig E; Compton, Richard G

    2007-02-01

    The modification of carbon powder with manganese dioxide using a wet impregnation procedure with electrochemical characterisation of the modified powder is described. The process involves saturation of the carbon powder with manganese(II) nitrate followed by thermal treatment at ca. 773 K leading to formation of manganese(IV) oxide on the surface of the carbon powder. The construction of composite electrodes based on manganese dioxide modified carbon powder and epoxy resin is also described, including optimisation of the percentage of the modified carbon powder. Composite electrodes showed attractive performances for electroanalytical applications, proving to be suitable for the electrochemical detection of hydrogen peroxide, ascorbic acid and nitrite ions with limits of detection comparable to the detection limits achieved by other analytical techniques. The results obtained for detection of these analytes, together with composite electrodes flexible design and low cost offers potential application of composite electrodes in biosensors.

  4. ExoMol line lists - XV. A new hot line list for hydrogen peroxide

    Science.gov (United States)

    Al-Refaie, Ahmed F.; Polyansky, Oleg L.; Ovsyannikov, Roman I.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2016-09-01

    A computed line list for hydrogen peroxide, H216O2, applicable to temperatures up to T = 1250 K is presented. A semi-empirical high-accuracy potential energy surface is constructed and used with an ab initio dipole moment surface as input TROVE to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-A coefficients for rotational excitations up to J = 85. The resulting APTY line list is complete for wavenumbers below 6000 cm-1 (λ data currently available in the HITRAN data base and literature. Our rms with line positions from the literature is 0.152 cm-1 and our absolute intensities agree better than 10 per cent. The full line list is available from the CDS data base as well as at www.exomol.com.

  5. Touchless Technologies for Decontamination in the Hospital: a Review of Hydrogen Peroxide and UV Devices.

    Science.gov (United States)

    Doll, Michelle; Morgan, Daniel J; Anderson, Deverick; Bearman, Gonzalo

    2015-09-01

    Reduction of microbial contamination of the hospital environment is a challenge, yet has potential impacts on infection prevention efforts. Fumigation and UV light devices for environmental cleaning have expanded into the health care setting with the goal of decontamination of difficult to clean or overlooked surfaces. In an era of increased scrutiny of hospital-acquired infections, increasingly, health care centers are adopting these "touchless" cleaning techniques as adjuncts to traditional manual cleaning. The evidence for improved clinical outcomes is lacking; yet, the experience with these devices continues to accumulate in the literature. We review the recently published data related to the use of hydrogen peroxide and UV light-based decontamination systems for cleaning of hospital rooms. Touchless cleaning technologies may provide an incremental benefit to standard practices by limiting cross-transmission of pathogens via environmental surfaces, though evidence of prevention of infections remains limited. PMID:26252970

  6. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    Science.gov (United States)

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. PMID:27311789

  7. Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishimoto, Takuto; Watanabe, Takeru; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2016-01-01

    The roles of catalase and trehalose in Saccharomyces cerevisiae subject to hydrogen peroxide (H2O2) treatment were examined by measuring the catalase activity and intracellular trehalose levels in mutants lacking catalase or trehalose synthetase. Intracellular trehalose was elevated but the survival rate after H2O2 treatment remained low in mutants with deletion of the Catalase T gene. On the other hand, deletion of the trehalose synthetase gene increased the catalase activity in mutated yeast to levels higher than those in the wild-type strain, and these mutants exhibited some degree of tolerance to H2O2 treatment. These results suggest that Catalase T is critical in the yeast response to oxidative damage caused by H2O2 treatment, but trehalose also plays a role in protection against H2O2 treatment. PMID:27667523

  8. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Beibei; Liu, Changbing; Shi, Huaxia; Li, Chen; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Huang, Wei, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn; Dong, Xiaochen, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 (China)

    2014-06-16

    A facile strategy has been developed to synthesize sliver nanoparticles (Ag NPs) decorated three-dimensional graphene (3DG) through hydrothermal process. The AgNPs-3DG composites are directly fabricated into a free standing sensing electrode for electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}) in phosphate buffered solutions. Various techniques equipments including scanning electron microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphology and structure of the as-prepared composite. The electrochemical experiments reveal the AgNPs-3DG based biosensor exhibits fast amperometric sensing, low detection limitation, wide linear responding range, and perfect selectivity for non-enzyme H{sub 2}O{sub 2} detection, indicating the well synergistic effect of Ag NPs high electrocatalytic activity and 3DG high conductivity and large surface area.

  9. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2011-12-01

    Full Text Available Abstract Background The detection of hydrogen peroxide (H2O2 and nitrite ion (NO2- is of great important in various fields including clinic, food, pharmaceutical and environmental analyses. Compared with many methods that have been developed for the determination of them, the electrochemical detection method has attracted much attention. In recent years, with the development of nanotechnology, many kinds of micro/nano-scale materials have been used in the construction of electrochemical biosensors because of their unique and particular properties. Among these catalysts, copper oxide (CuO, as a well known p-type semiconductor, has gained increasing attention not only for its unique properties but also for its applications in many fields such as gas sensors, photocatalyst and electrochemistry sensors. Continuing our previous investigations on transition-metal oxide including cuprous oxide and α-Fe2O3 modified electrode, in the present paper we examine the electrochemical and electrocatalytical behavior of flower like copper oxide modified glass carbon electrodes (CuO/GCE. Results Flower like copper oxide (CuO composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM and X-ray diffraction (XRD. CuO modified glass carbon electrode (CuO/GCE was fabricated and characterized electrochemically. A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2 and nitrite (NO2- was reported. Conclusions Due to the large specific surface area and inner characteristic of the flower like CuO, the resulting electrode show excellent electrocatalytic reduction for H2O2 and oxidation of NO2-. Its sensitivity, low detection limit, fast response time and simplicity are satisfactory. Furthermore, this synthetic approach can also be applied for the synthesis of other inorganic oxides with improved performances and they can also be extended to

  10. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Vineet K., E-mail: vineet2shukla@gmail.com [Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002 (India); Department of Physics, Faculty of Science, University of Allahabad, Allahabad 211002 (India); Yadav, Raghvendra S. [Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002 (India); Yadav, Poonam [National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pandey, Avinash C. [Nanotechnology Application Centre, Faculty of Science, University of Allahabad, Allahabad 211002 (India)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Present 'green' synthesis is an efficient, easy-going, fast, renewable, inexpensive, eco-friendly and non-toxic approach. Black-Right-Pointing-Pointer TEM shows average particle size of 8.25 {+-} 1.37 nm of synthesized nanosilver, giving UV-vis absorption at 410 nm. Black-Right-Pointing-Pointer FTIR confirms Azadirachtin as reducing and stabilizing agent for nanosilver formation (stability up to three months). Black-Right-Pointing-Pointer The nanosilver modified electrode (Ag/GC) exhibited an excellent electro-catalytic activity toward the reduction of hydrogen peroxide (H{sub 2}O{sub 2}). Black-Right-Pointing-Pointer The recovery percentage of H{sub 2}O{sub 2} in water is 92-105%, which is applicable for sensors and water/waste water plants. - Abstract: Present 'green' synthesis is an efficient, easy-going, fast, renewable, inexpensive, eco-friendly and non-toxic approach for nanosilver formation, which offers numerous benefits over physiochemical approaches. The X-ray diffraction (XRD) pattern suggests the formation and crystallinity of nanosilver. The average particle size of silver nanoparticles was 8.25 {+-} 1.37 nm as confirmed by transmission electron microscopy (TEM). The UV-vis absorption spectrum shows a characteristic absorption peak of silver nanoparticles at 410 nm. FTIR confirms Azadirachtin as reducing and stabilizing agent for nanosilver formation. In addition, the nanosilver modified electrode (Ag/GC) exhibited an excellent electro-catalytic activity toward the reduction of hydrogen peroxide (H{sub 2}O{sub 2}). The produced nanosilver is stable and comparable in size. These silver nanoparticles show potential applications in the field of sensors, catalysis, fuel cells and nanodevices.

  11. A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds

    Energy Technology Data Exchange (ETDEWEB)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A. [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, Leipzig 04103 (Germany); Zuchner, Thole, E-mail: zuechner@rz.uni-leipzig.de [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, Leipzig 04103 (Germany); Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103 (Germany)

    2014-06-27

    Highlights: • We describe a novel probe for the sensitive detection of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} quenches the luminescence of a complex consisting of phthalic acid and terbium ions. • A stable fluorescence signal is generated immediately after mixing probe and sample. • The PATb probe detects H{sub 2}O{sub 2} over four orders of magnitude. - Abstract: Here, we present a fast and simple hydrogen peroxide assay that is based on time-resolved fluorescence. The emission intensity of a complex consisting of terbium ions (Tb{sup 3+}) and phthalic acid (PA) in HEPES buffer is quenched in the presence of H{sub 2}O{sub 2} and this quenching is concentration-dependent. The novel PATb assay detects hydrogen peroxide at a pH range from 7.5 to 8.5 and with a detection limit of 150 nmol L{sup −1} at pH 8.5. The total assay time is less than 1 min. The linear range of the assay can be adapted by a pH adjustment of the aqueous buffer and covers a concentration range from 310 nmol L{sup −1} to 2.56 mmol L{sup −1} in total which encompasses four orders of magnitude. The assay is compatible with high concentrations of all 47 tested inorganic and organic compounds. The PATb assay was applied to quantify H{sub 2}O{sub 2} in polluted river water samples. In conclusion, this fast and easy-to-use assay detects H{sub 2}O{sub 2} with high sensitivity and precision.

  12. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid [Malaysian Nuclear Agency, Radiation Technology Division, Bangi, 43000 Kajang, Selangor (Malaysia); Naziri, Muhammad Ihsan [University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-12

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  13. Effect of biosubstances on the depleted uranium-hydrogen peroxide system

    International Nuclear Information System (INIS)

    Recently the chemical toxicity of depleted uranium is in the center of wide interest, because of its military use. Hamilton et al. reported the formation of reactive oxygen species (ROS) in the uranium-hydrogen peroxide system. Miller et al. reported the DNA damage by depleted uranium, suggesting a little affect of alpha-decay. The effort should be, therefore, concentrated on the study of ROS formation by DU under various conditions. In the present study, the characteristics and the mechanism of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effects of anti-oxidants on the system were studied. Hydroxyl radical were produced both in UO22+ - H2O2 and UO2+ - H2O2 systems. Kinetic study of these systems indicated that the hydroxyl radical formation in the UO22+ - H2O2 system could be described as a stepwise reaction process including the reduction of UO22+ to UO2+ by H2O2 and the Fenton-type reaction of UO2+ with H2O2. Glucose and glucosamine, acting as ordinal radical scavengers in the UV-irradiated H2O2 system, indicated quite different behaviors each other in the UO22+ - H2O2 system. Amino acids and peptides little bit depressed the hydroxyl radical formation both in the UV-irradiated H2O2 and the UO22+ - H2O2 systems. These results indicated that the behavior of biosubstances in the UO22+ - H2O2 system could be explained by the direct elimination of hydroxyl radical and the coupling of UO22+ ion with these compounds. Both effects are possible to raise the chemical toxicity of depleted uranium.

  14. Detection of hydrogen peroxide in Photosystem II (PSII using catalytic amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Ankush ePrasad

    2015-10-01

    Full Text Available Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behaviour of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.

  15. Hydrogen peroxide induced cell death: One or two modes of action?

    Science.gov (United States)

    Uhl, Lionel; Gerstel, Audrey; Chabalier, Maialène; Dukan, Sam

    2015-12-01

    Imlay and Linn show that exposure of logarithmically growing Escherichia coli to hydrogen peroxide (H2O2) leads to two kinetically distinguishable modes of cell killing. Mode one killing is pronounced near 1 mM concentration of H2O2 and is caused by DNA damage, whereas mode-two killing requires higher concentration ([Formula: see text]). The second mode seems to be essentially due to damage to all macromolecules. This phenomenon has also been observed in Fenton in vitro systems with DNA nicking caused by hydroxyl radical ([Formula: see text]). To our knowledge, there is currently no mathematical model for predicting mode one killing in vitro or in vivo after H2O2 exposure. We propose a simple model, using Escherichia coli as a model organism and a set of ordinary differential equations. Using this model, we show that available iron and cell density, two factors potentially involved in ROS dynamics, play a major role in the prediction of the experimental results obtained by our team and in previous studies. Indeed the presence of the mode one killing is strongly related to those two parameters. To our knowledge, mode-one death has not previously been explained. Imlay and Linn (Imlay and Linn, 1986) suggested that perhaps the amount of the toxic species was reduced at high concentrations of H2O2 because hydroxyl (or other) radicals might be quenched directly by hydrogen peroxide with the concomitant formation of superoxide anion (a less toxic species). We demonstrate (mathematically and numerically) that free available iron decrease is necessary to explain mode one killing which cannot appear without it and that H2O2 quenching or consumption is not responsible for mode-one death. We are able to follow ROS concentration (particularly responsible for mode one killing) after exposure to H2O2. This model therefore allows us to understand two major parameters involved in the presence or not of the first killing mode. PMID:27441232

  16. Electrochemical determination of hydrogen peroxide using -dianisidine as substrate and hemoglobin as catalyst

    Indian Academy of Sciences (India)

    Wei Sun; Hong Jiang; Kui Jiao

    2005-07-01

    A new electrochemical method for the determination of microamounts of hydrogen peroxide utilizing -dianisidine (ODA) as substrate and hemoglobin (Hb) as catalyst is described in this paper. Hb can be used as mimetic peroxidase and it can catalyse the reduction of hydrogen peroxide with the subsequent oxidation of ODA. The oxidative reaction product is an azo compound, which is an electroactive substance and has a sensitive second-order derivative polarographic reductive peak at the potential of -0.58 V (vs. SCE) in pH 8.0 Britton-Robinson (B-R) buffer solution. The conditions of Hb-catalytic reaction and polarographic detection of the reaction product were carefully studied. By using this polarographic peak and under optimal conditions, the calibration curve for the H2O2 was constructed in the linear range of 2.0 × 10-7 ∼ 1.0 × 10-4 mol/l with the detection limit of 5.0 × 10-8 mol/l. This method can also be used to the determination of Hb content in the range of 2.0 × 10-9 ∼ 3.0 × 10-7 mol/l with a detection limit of 1.0 × 10-9 mol/l. The proposed method was further applied to the determination of the content of H2O2 in fresh rainwater with satisfactory results. The catalytic reaction mechanism and the electrode reductive process of the reaction product were carefully studied.

  17. Coordination Complexes as Catalysts: The Oxidation of Anthracene by Hydrogen Peroxide in the Presence of VO(acac)[subscript 2

    Science.gov (United States)

    Charleton, Kimberly D. M.; Prokopchuk, Ernest M.

    2011-01-01

    A laboratory experiment aimed at students who are studying coordination chemistry of transition-metal complexes is described. A simple vanadyl acetylacetonate complex can be used as a catalyst in the hydrogen peroxide oxidation of anthracene to produce anthraquinone. The reaction can be performed under a variety of reaction conditions, ideally by…

  18. Evaluation of different glutaryl hydolysis of acylase mutants to improve the cephalosporin C in the absence of hydrogen peroxide

    NARCIS (Netherlands)

    Lopez-Gallego, Fernando; Betancor, Lorena; Sio, Charles Frederik; Reis, Carlos R.; Jimenez, Pol Nadal; Guisan, Jose M.; Quax, Wim. J.; Fernandez-Lafuente, Roberto

    2008-01-01

    2-Oxoadipoyl-7-ACA is an intermediate in the conversion of cephalosporin C (CPC) to 7-aminocephalosporanic acid (7-ACA) when using a new route involving D-amino acid oxidase, catalase and glutaryl acylase. A key point in the reaction design is to avoid the accumulation of hydrogen peroxide in the re

  19. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor c

  20. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    Science.gov (United States)

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  1. FLUX DETERMINATION AND PHYSIOLOGICAL RESPONSE IN THE EXPOSURE OF RED SPRUCE TO GASEOUS HYDROGEN PEROXIDE, OZONE, AND SULFUR DIOXIDE

    Science.gov (United States)

    We report on the 3-week exposure of a branch of a forest-grown red spruce (Picea rubens) sapling to the combination of gaseous hydrogen peroxide. ozone, and sulfur dioxide. he exposure was conducted continuously using concentrations of H2O2, O3, and SO2 that have been observed du...

  2. Processing of LEU targets for 99Mo production - Dissolution of metal foil targets by alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    In FY 1995, we started studies on a new process for dissolution of low-enriched uranium (LEU) targets for 99Mo production. In this process, an LEU metal foil target is dissolved in a mixture of sodium hydroxide and hydrogen peroxide, then 99Mo is recovered from the dissolved solution. We focused on the dissolution kinetics to develop a mechanistic model for predicting the products and the rate of uranium dissolution under process conditions. We thoroughly studied the effects of hydrogen peroxide concentration, sodium hydroxide concentration, and temperature on the rate of uranium dissolution. It was found that uranium dissolution can be classified into a low-base (0.2M) process. In the low-base process, both the equilibrium hydrogen peroxide and hydroxide concentrations affect the rate of uranium dissolution; in the high base process, uranium dissolution is a 0.25th order reaction with respect to the equilibrium hydrogen peroxide. The dissolution activation energy was experimentally determined to be 48.8 kJ/mol. Generally, the rate of uranium dissolution increases to a maximum as the hydroxide concentration is increased from 0.01 to about 1.5M, then it decreases as the hydroxide concentration is further increased. The alkalinity of the dissolution solution is an important factor that affects not only the dissolution rate, but also the amount of radioactive waste. (author)

  3. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    2006-01-01

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of hepato

  4. The effects of hydrogen peroxide mouthwashes on the prevention of plaque and gingival inflammation: a systematic review.

    NARCIS (Netherlands)

    N. Hossainian; D.E. Slot; F. Afennich; G.A. van der Weijden

    2011-01-01

    Objectives: The purpose of this review was to describe systematically the effects of hydrogen peroxide mouthwashes as an adjunct to daily oral hygiene or as a mono-therapy in the prevention of plaque accumulation and gingival inflammation. Materials and methods: PubMed-MEDLINE and the Cochrane-CENTR

  5. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  6. White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells.

    Science.gov (United States)

    López, Víctor; Calvo, Maria Isabel

    2011-03-01

    Tea is a popular beverage whose consumption is associated with prevention of certain disorders. The objective of the study was to investigate the potential neuroprotective effect of white tea extract (WTE) on hydrogen peroxide induced toxicity in PC12 cells. Cells were treated with various doses of WTE (10-250 μg/ml) before exposition to 250 μM hydrogen peroxide and cell survival was determined through the MTT and LDH assays. Oxidative stress was quantified in the cells after treatments as intracellular reactive oxygen species (ROS) production and the antioxidant activity of the extract was assessed in a cell free system in terms of free radical scavenging capacity. Results showed that WTE has a significant protective effect in the PC12 cell line against hydrogen peroxide as cell survival was significantly superior in WTE-treated cells compared to hydrogen peroxide-treated cells. A reduction on intracellular oxidative stress as well as radical scavenging properties were produced by WTE. Results suggest that WTE protects PC12 cells against H(2)O(2)-induced toxicity, and that an antioxidant mechanism through ROS scavenging may be in part responsible for cells neuroprotection. PMID:21271291

  7. Using a Hands-On Hydrogen Peroxide Decomposition Activity to Teach Catalysis Concepts to K-12 Students

    Science.gov (United States)

    Cybulskis, Viktor J.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    A versatile and transportable laboratory apparatus was developed for middle and high school (6th-12th grade) students as part of a hands-on outreach activity to estimate catalytic rates of hydrogen peroxide decomposition from oxygen evolution rates measured by using a volumetric displacement method. The apparatus was constructed with inherent…

  8. Kinetic spectrophotometric determination of Bi(III based on its catalytic effect on the oxidation of phenylfluorone by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    SOFIJA M. RANČIĆ

    2009-08-01

    Full Text Available A new reaction was suggested and a new kinetic method was elaborated for determination of Bi(III in solution, based on its catalytic effect on the oxidation of phenyl-fluorone (PF by hydrogen peroxide in ammonia buffer. By application of spectrophotometric technique, a limit of quantification (LQ of 128 ng cm-3 was reached, and the limit of detection (LD of 37 ng cm-3 was obtained, where LQ was defined as the ratio signal:noise = 10:1 and LD was defined as signal 3:1 against the blank. The RSD value was found to be in the range 2.8–4.8 % for the investigated concentration range of Bi(III. The influence of some ions upon the reaction rate was tested. The method was confirmed by determining Bi(III in a stomach ulcer drug (“Bicit HP”, Hemofarm A.D.. The obtained results were compared to those obtained by AAS and good agreement of results was obtained.

  9. Effect of lactoperoxidase on the antimicrobial effectiveness of the thiocyanate hydrogen peroxide combination in a quantitative suspension test

    Directory of Open Access Journals (Sweden)

    Schwahn Ch

    2009-07-01

    Full Text Available Abstract Background The positive antimicrobial effects of increasing concentrations of thiocyanate (SCN- and H2O2 on the human peroxidase defence system are well known. However, little is known about the quantitative efficacy of the human peroxidase thiocyanate H2O2 system regarding Streptococcus mutans and sanguinis, as well as Candida albicans. The aim of this study was to evaluate the effect of the enzyme lactoperoxidase on the bactericidal and fungicidal effectiveness of a thiocyanate-H2O2 combination above the physiological saliva level. To evaluate the optimal effectiveness curve, the exposure times were restricted to 1, 3, 5, and 15 min. Results The bactericidal and fungicidal effects of lactoperoxidase on Streptococcus mutans and sanguinis and Candida albicans were evaluated by using two test mixtures of a 2.0% (w/v; 0.34 M thiocyanate and 0.4% (w/v; 0.12 M hydrogen peroxide solution, one without and one with lactoperoxidase. Following the quantitative suspension tests (EN 1040 and EN 1275, the growth of surviving bacteria and fungi in a nutrient broth was measured. The reduction factor in the suspension test without lactoperoxidase enzyme was Conclusion The tested thiocyanate and H2O2 mixtures showed no relevant antimicrobial effect. However, by adding lactoperoxidase enzyme, the mixtures became not only an effective bactericidal (Streptococcus mutans and sanguinis but also a fungicidal (Candida albicans agent.

  10. Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyltetrazolate Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Luísa Martins

    2015-10-01

    Full Text Available Microwave assisted synthesis of the Cu(I compound [Cu(µ4-4-ptz]n [1, 4-ptz = 5-(4-pyridyltetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II compounds [Cu3(µ3-4-ptz4(µ2-N32(DMF2]n∙(DMF2n (2 and [Cu(µ2-4-ptz2(H2O2]n (3 using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane with aqueous hydrogen peroxide, under very mild conditions (at room temperature, without any added solvent or additive. The most efficient system (2/H2O2 showed, for the oxidation of cyclohexane, a turnover number (TON of 396 (TOF of 40 h−1, with an overall product yield (cyclohexanol and cyclohexanone of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

  11. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co3O4. • Incorporating Co3O4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co3O4/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10−7–1.9 × 10−5 M with a detection limit of 7.4 × 10−7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  12. Development of a thermally self-sustaining kWe-class diesel reformer using hydrogen peroxide for hydrogen production in low-oxygen environments

    Science.gov (United States)

    Han, Gwangwoo; Lee, Kwangho; Ha, Sanghyeon; Bae, Joongmyeon

    2016-09-01

    A novel technology of a diesel reformer that uses hydrogen peroxide is developed to obtain the hydrogen required for fuel cell air-independent propulsion for underwater applications, such as submarines and unmanned underwater vehicles. Diesel fuel could be a promising hydrogen source for underwater applications due to its high hydrogen density and its globally well-equipped infrastructure. An alternative oxidant, hydrogen peroxide (H2O2), is applied to supply not only oxygen but also the water required for diesel autothermal (ATR) reforming. The proposed reformer does not require an additional heating device to supply heat for the vaporization of diesel or oxidant due to the exothermic nature of the ATR reaction and the heat of decomposition of H2O2. The effects of H2O2 on diesel reforming were confirmed based on operating the engineering-scale (kWe-class) diesel-H2O2 reformer. Undecomposed H2O2 caused an excessively high temperature in the mixing zone and a corrosion effect in the reformer wall. To overcome these phenomena, we introduced a catalytic H2O2 decomposer to fully decompose hydrogen peroxide into steam and oxygen. From this important step, we essentially eliminate side effects from undecomposed H2O2 and retain a high reforming efficiency by utilizing the heat of decomposition of H2O2.

  13. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel.

    Science.gov (United States)

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-01-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  14. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel

    Science.gov (United States)

    Mase, Kentaro; Yoneda, Masaki; Yamada, Yusuke; Fukuzumi, Shunichi

    2016-05-01

    Hydrogen peroxide (H2O2) in water has been proposed as a promising solar fuel instead of gaseous hydrogen because of advantages on easy storage and high energy density, being used as a fuel of a one-compartment H2O2 fuel cell for producing electricity on demand with emitting only dioxygen (O2) and water. It is highly desired to utilize the most earth-abundant seawater instead of precious pure water for the practical use of H2O2 as a solar fuel. Here we have achieved efficient photocatalytic production of H2O2 from the most earth-abundant seawater instead of precious pure water and O2 in a two-compartment photoelectrochemical cell using WO3 as a photocatalyst for water oxidation and a cobalt complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2. The concentration of H2O2 produced in seawater reached 48 mM, which was high enough to operate an H2O2 fuel cell.

  15. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    Science.gov (United States)

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  16. Simultaneous Removal of MTBE and Benzene from Contaminated Groundwater Using Ultraviolet-Based Ozone and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Bassam S. Tawabini

    2014-01-01

    Full Text Available Efficiency of ultraviolet-ozone (UV/O3 and ultraviolet-hydrogen peroxide (UV/H2O2 processes was investigated for simultaneous removal of methyl tertiary butyl ether (MTBE and benzene from contaminated ground water. The photoreactor employed housed 15-watt low pressure (LP and 150-watt medium pressure (MP mercury UV lamps. Oxidation of contaminants was studied at two different levels of ozone and hydrogen peroxide. Brackish groundwater samples were spiked with MTBE and benzene up to a concentration of 500 μg L−1. Removal potential was evaluated at different parameters such as UV type and intensity and peroxide and ozone dosages, as well as contact time. Results indicated that no removal of the contaminants was attained when treated with hydrogen peroxide or ozone alone. However, about 50% and 30% removal of MTBE were achieved in 30 minutes when irradiated with MP-UV and LP-UV lamps, respectively. On the other hand, UV/H2O2 process was found to be superior in removal of MTBE (90% in 10 min. and benzene (95% in 5 min. compared to UV/O3 process. Furthermore, removal of benzene was comparatively easier than MTBE in both approaches. It is hence concluded that higher UV intensities and elevated doses of H2O2 accelerate simultaneous removal of MTBE and benzene from water.

  17. Processing of LEU targets for 99Mo production - Dissolution of U3Si2 targets by alkaline hydrogen peroxide

    International Nuclear Information System (INIS)

    Low-enriched uranium silicide targets designed to recover fission product 99Mo were dissolved in alkaline hydrogen peroxide (H2O2 plus NaOH) at about 90 deg. C. Sintering of matrix aluminium powder during irradiation and heat treatment retarded aluminum dissolution and prevented silicide particle dispersion. Gas evolved during dissolution is suspected to adhere to particles and block hydroxide ion contact with aluminum. Reduction of base concentrations from 5M to 0.1M NaOH yielded similar silicide dissolution and peroxide destruction rates, simplifying later processing. Future work in particle dispersion enhancement, 99Mo separation, and waste disposal is also discussed. (author)

  18. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  19. Trace vapor detection of hydrogen peroxide: An effective approach to identification of improvised explosive devices

    Science.gov (United States)

    Xu, Miao

    Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a

  20. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  1. Sulfur mustard destruction using ozone, UV, hydrogen peroxide and their combination

    Energy Technology Data Exchange (ETDEWEB)

    Popiel, Stanislaw [Institute of Chemistry, Military University of Technology, 2, Kaliskiego-Street, 00-908 Warsaw (Poland)], E-mail: spopiel@wat.edu.pl; Witkiewicz, Zygfryd [Institute of Chemistry, Military University of Technology, 2, Kaliskiego-Street, 00-908 Warsaw (Poland); ' Jan Kochanowski' Swietokrzyska Academy, Institute of Chemistry, 5, Checinska-Street, 25-020 Kielce (Poland); Chrzanowski, Michal [Institute of Chemistry, Military University of Technology, 2, Kaliskiego-Street, 00-908 Warsaw (Poland)

    2008-05-01

    Numerous methods are used for destruction of sulfur mustard. Oxidation is one of those methods. There have been only limited data concerning application of the advanced oxidation technologies (AOTs) for mustard destruction available before. In this study sulfur mustard oxidation rate depending on kind of the oxidative system and process parameters used was assessed using selected AOT. The following were selected for mustard oxidation: ozone (O{sub 3}), UV light (UV), hydrogen peroxide (H{sub 2}O{sub 2}); double systems: UV/O{sub 3}, UV/H{sub 2}O{sub 2}, and O{sub 3}/H{sub 2}O{sub 2}; a triple system: O{sub 3}/H{sub 2}O{sub 2}/UV and Fenton reaction. Effectiveness of the selected AOT methods has been evaluated and the most suitable one for mustard destruction was chosen. Using ozone in various combinations with hydrogen peroxide and UV radiation mustard can be destroyed much quicker comparing to the classical oxidizers. Fast mustard oxidation (a few minutes) occurred in those systems where ozone alone was used, or in the following combinations: O{sub 3}/H{sub 2}O{sub 2}, O{sub 3}/UV and O{sub 3}/H{sub 2}O{sub 2}/UV. When those advanced oxidation technologies are used, mustard becomes destroyed mainly in course of the direct oxidation with ozone, and reactions of mustard with radicals formed due to ozone action play a secondary role. Rate of sulfur mustard oxidation in the above mentioned ozone-containing oxidative systems decreases with pH value increasing from 2 to 12. Only when pH value of reaction solutions is close to pH 5, mustard oxidation rate is minimal, probably due to 'disappearance' of radicals participating in oxidation in this pH. Sulfur mustard can be most effectively destroyed using just ozone in pH 7. In that case mustard destruction rate is only slightly lower than the rate achieved in optimal conditions, and the system is the simplest.

  2. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  3. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Science.gov (United States)

    Rocco-Machado, Nathália; Cosentino-Gomes, Daniela; Meyer-Fernandes, José Roberto

    2015-01-01

    Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite. PMID:26070143

  4. PEROXIDE BLEACHING OF LOW-FREENESS TMP

    Institute of Scientific and Technical Information of China (English)

    Zhong Liu; Y. Ni; Z. Li; G. Court

    2004-01-01

    Peroxide bleaching is an essential unit operation to produce value-added mechanical pulp-based paper grade. In this paper, we presented the results from peroxide bleaching of low-freeness TMP for the production of SC paper. Two aspects were addressed; the effect of pulp strength and the formation of anionic trashes. The strength properties,such as tensile, burst and zero-span tensile, are improved after the peroxide bleaching process. The amount of anionic trashes formed is almost proportional to the hydrogen peroxide charge.

  5. Direct electron transfer biosensor for hydrogen peroxide carrying nanocomplex composed of horseradish peroxidase and Au-nanoparticle – Characterization and application to bienzyme systems

    Directory of Open Access Journals (Sweden)

    Yusuke Okawa

    2015-09-01

    Full Text Available A reagentless electrochemical biosensor for hydrogen peroxide was fabricated. The sensor carries a monolayer of nanocomplex composed of horseradish peroxidase and Au-nanoparticle, and responds to hydrogen peroxide through the highly efficient direct electron transfer at a mild electrode potential without any soluble mediator. Formation of the nanocomplex was studied with visible spectroscopy and size exclusion chromatography. The sensor performance was analyzed based on a hydrodynamic electrochemical technique and enzyme kinetics. The sensor was applied to fabrication of sensors for glucose and uric acid through further modification of the nanocomplex-carrying electrode with the corresponding hydrogen peroxide-generating oxidases, glucose oxidase and urate oxidase, respectively.

  6. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino [Universidad Autnoma de Coahuila, Coahuila (Mexico). Facultad de Metalurgia

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  7. Effects of hydrogen peroxide treatment on thiol contents in fresh-cut asparagus (Asparagus officinalis) spears.

    Science.gov (United States)

    Demrkol, Omca

    2009-01-01

    In this work, the impact of hydrogen peroxide (H2O2) was investigated on the thiol content of asparagus. Fresh-cut asparagus was treated with H2O2 at varied oxidant concentrations and contact times. A significant decrease (alpha=0.05) was observed in N-acetylcysteine levels treated with 2.5% H2O2 for 10 min and with 5% H2O2 for 3, 5 and 10 min. Captopril and cysteine levels significantly decreased (alpha=0.05) in all and most treatment conditions, respectively. Glutathione levels only significantly decreased with 2.5% and 5% H2O2 for 10 min treatment. In order to determine whether asparagus undergoes oxidative stress, a well-known oxidative stress indicator-the glutathione/oxidized glutathione ratio-was calculated. This study showed that the common use of H2O2 as a disinfectant/sterilizer by the food industry could markedly diminish the important biothiols and develop oxidative stress in asparagus, and potentially in other vegetables as well.

  8. Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process.

    Science.gov (United States)

    Yang, Xuejuan; Bai, Jing; Wang, Yinhu; Jiang, Xiue; He, Xiaoying

    2012-09-21

    Silver nanowires synthesized through a polyol process using polyvinylpyrrolidone as protection (PVP-AgNWs) were used as a new electrode material for constructing a sensor. Hydrogen peroxide (H(2)O(2)) and glucose were used as analytes to demonstrate the sensor performance of the PVP-AgNWs. It is found that the PVP-AgNWs-modified glassy carbon electrode (PVP-AgNWs/GCE) exhibits remarkable catalytic performance toward H(2)O(2) reduction. This sensor has a fast amperometric response time of less than 2 s and the catalytic current is linear over the concentration of H(2)O(2) ranging from 20 μM to 3.62 mM (R = 0.998) with a detection limit of 2.3 μM estimated on a signal-to-noise ratio of 3. A glucose biosensor was constructed by immobilizing glucose oxidase (GOD) onto the surface of the PVP-AgNWs/GCE. The resultant glucose biosensor can be used for glucose detection in human blood serum with a sensitivity of 15.86 μA mM(-1) cm(-2) and good selectivity and stability. PMID:22858619

  9. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ogawa Yuzo

    2006-08-01

    Full Text Available Abstract Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1. Freely diffusible hydrogen peroxide (H2O2 is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.

  10. Major effect of hydrogen peroxide on bacterioplankton metabolism in the Northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    Full Text Available Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP and extracellular enzymatic activities (i.e., β-glucosidase [BGase], leucine aminopeptidase [LAPase] and alkaline phosphatase [APase] in the subtropical Atlantic. With increasing concentrations of H2O2 in the range of 100-1000 nM, LAPase, APase and BGase were reduced by up to 11, 23 and 62%, respectively, in the different water layers. Incubation experiments with subsurface waters revealed a strong inhibition of all measured enzymatic activities upon H2O2 amendments in the range of 10-500 nM after 24 h. H2O2 additions also reduced prokaryotic heterotrophic production by 36-100% compared to the rapid increases in production rates occurring in the unamended controls. Our results indicate that oxidative stress caused by H2O2 affects prokaryotic growth and hydrolysis of specific components of the organic matter pool. Thus, we suggest that oxidative stress may have important consequences on marine carbon and energy fluxes.

  11. Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging,gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.

  12. Normal Platelet Integrin Function in Mice Lacking Hydrogen Peroxide-Induced Clone-5 (Hic-5.

    Directory of Open Access Journals (Sweden)

    Michael Popp

    Full Text Available Integrin αIIbβ3 plays a central role in the adhesion and aggregation of platelets and thus is essential for hemostasis and thrombosis. Integrin activation requires the transmission of a signal from the small cytoplasmic tails of the α or β subunit to the large extracellular domains resulting in conformational changes of the extracellular domains to enable ligand binding. Hydrogen peroxide-inducible clone-5 (Hic-5, a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic tails. Previous studies suggested Hic-5 as a novel regulator of integrin αIIbβ3 activation and platelet aggregation in mice. To assess this in more detail, we generated Hic-5-null mice and analyzed activation and aggregation of their platelets in vitro and in vivo. Surprisingly, lack of Hic-5 had no detectable effect on platelet integrin activation and function in vitro and in vivo under all tested conditions. These results indicate that Hic-5 is dispensable for integrin αIIbβ3 activation and consequently for arterial thrombosis and hemostasis in mice.

  13. Oxidation of hydrogen peroxide by [NiIII(cyclam)]3+ in aqueous acidic media

    Indian Academy of Sciences (India)

    Sankaran Anuradha; Venkatapuram Ramanujam Vijayaraghavan

    2013-09-01

    The kinetics of oxidation of H2O2 by [NiIII(cyclam)]3+, [NiIIIL1], was studied in aqueous acidic media at 25°C and I = 0.5M (NaClO4). The [NiIIIL1] to [NiIIL1] reduction was found to be fast in the presence of Cu(II) ion than the oxidation of the cyclam ligand by ·OH. The rate constant showed an inverse acid dependence on H+ ion at the pH range 1-1.5. The presence of sulphate retards the reaction. Macrocylic ligand oxidation was followed spectrophotometrically by examining the oxidation of nickel(II) complexes of macrocyclic ligands such as 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane (L2), -5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L3), rac-Me6[14]-4,11-dieneN4 (L4) by reaction with hydrogen peroxide. The rate constant for the cross reaction is discussed in terms of Marcus relationship.

  14. Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2 produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts.

  15. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Epidermal bioassay demonstrated that benzylamine,a membrane-permeable weak base,can mimick hydrogen peroxide (H2O2) to induce stomatal closure,and butyric acid,a membrane-permeable weak acid,can partly abolish the H2O2-induced stomatal closure.Confocal pH mapping with the probe 5-(and-6)-carboxy seminaphthorhodafluor-1-acetoxymethylester (SNARF-1-AM) revealed that H2O2 leads to rapid changes in cytoplasmic and vacuolar pH in guard cells of Vicia faba L,i.e.alkalinization of cytoplasmic areas occur red in parallel with a decrease of the vacuolar pH,and that butyric acid pretreatment can abolish alkalinization of cytoplasmic areas and acidification of vacuolar areas of guard cells challenged with H2O2.These results imply that the alkalinization of cytoplasm via efflux of cytosol protons into the vacuole in guard cells challenged with H2O2 is important at an early stage in the signal cascade leading to stomatal closure.

  16. Melanin bleaching with dilute hydrogen peroxide: a simple and rapid method.

    Science.gov (United States)

    Liu, Chia-Hsing; Lin, Chih-Hung; Tsai, Min-Jan; Chen, Wan-Tzu; Chai, Chee-Yin; Huang, Ya-Chun; Tsai, Kun-Bow

    2013-05-01

    Melanins are naturally occurring pigments in both normal and pathologic tissues. Two common bleaching processes are potassium permanganate followed by oxalic acid treatment and dilute hydrogen peroxide (H2O2) process. The potassium permanganate/oxalic acid method is faster and more easily incorporated in conventional daily immunostaining protocols, whereas the dilute H2O2 method requires 24 hours. This study aimed to reduce melanin bleaching time by using a 10% H2O2 dilution. First, reaction time was reduced to 30 minutes by raising the temperature to 65°C. Second, containers with high thermal conductivity were used to improve bleaching effectiveness. Experimental comparisons of melanin treatments with H2O2 contained in an iron jar, a glass coplin jar, and a plastic steel jar obtained bleaching time of 20, 30, and 40 minutes, respectively. These modifications of the conventional bleaching method significantly improve the speed and efficiency of the procedure and are recommended when performing immunohistochemical studies. PMID:23060296

  17. A new enzymatic immobilization carrier based on graphene capsule for hydrogen peroxide biosensors

    International Nuclear Information System (INIS)

    Enzymatic loss and inactivation are two main problems which can affect the performance of the biosensor. In order to resolve these two problems, a new kind of enzymatic biosensor for the amperometric detection of hydrogen peroxide (H2O2) was developed using biomimetic graphene capsules (GRCAPS). Horseradish peroxidase was initially encapsulated in GRCAPS using porous CaCO3 as sacrificial templates to mimic the existence form of bio-enzymes in the organisms, and then GRCAPS and graphene-poly(sodium 4-styrenesulfonate) were alternatively assembled onto the substrate of indium tin oxide for constructing multilayer films of the biosensor. Transmittance electron microscopy and field-emission scanning electron microscopy analyses proved that the GRCAPS and multilayer films were prepared. Electrochemical experiment results indicated that easy, direct electrochemistry and good catalytic activity toward H2O2 oxidation can be achieved with this biosensor. The resulting biosensor presented a wide linear range of 0.01–12 mmol l−1, a low detection limit of 3.3 μmol l−1 (S/N = 3), excellent anti-interference ability, and long-term stability as well

  18. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings

    International Nuclear Information System (INIS)

    Cerium-based conversion coatings are progressing as an effective alternative to hazardous chromate-based systems used in the treatment of metal surfaces. However, there is still considerable debate over the mechanism by which these coatings are formed. Here, titrations of cerium-based conversion coating solutions were carried out in order to model the reactions that occur at the metal-solution interface during coating, with a particular emphasis on investigating the role of hydrogen peroxide (H2O2). The titration curves obtained support the proposed formation of Ce(III) peroxo complexes such as Ce(H2O2)3+ as an initial step, followed by deprotonation, oxidation and precipitation to form peroxo-containing Ce(IV) species such as Ce(IV)(O2)(OH)2. The precipitates resulting from titrations were characterised by Raman spectroscopy, X-ray diffraction and thermogravimetric analysis, confirming the presence of peroxo bonds, and nano-sized CeO2 crystallites that decreased in size with increasing H2O2 concentration. Characterisation of cerium conversion coatings on aluminium alloy surfaces confirmed the presence of peroxo species in the coatings, thereby supporting the titration model

  19. Enhanced defense against mitochondrial hydrogen peroxide attenuates age-associated cognition decline.

    Science.gov (United States)

    Chen, Liuji; Na, Ren; Ran, Qitao

    2014-11-01

    Increased mitochondrial hydrogen peroxide (H2O2) is associated with Alzheimer's disease and brain aging. Peroxiredoxin 3 (Prdx3) is the key mitochondrial antioxidant defense enzyme in detoxifying H2O2. To investigate the importance of mitochondrial H2O2 in age-associated cognitive decline, we compared cognition between aged (17-19 months) APP transgenic mice and APP/Prdx3 double transgenic mice (dTG) and between old (24 months) wild-type mice and Prdx3 transgenic mice (TG). Compared with aged APP mice, aged dTG mice showed improved cognition that was correlated with reduced brain amyloid beta levels and decreased amyloid beta production. Old TG mice also showed significantly increased cognitive ability compared with old wild-type mice. Both aged dTG mice and old TG mice had reduced mitochondrial oxidative stress and increased mitochondrial function. Moreover, CREB signaling, a signaling pathway important for cognition was enhanced in both aged dTG mice and old TG mice. Thus, our results indicate that mitochondrial H2O2 is a key culprit of age-associated cognitive impairment, and that a reduction of mitochondrial H2O2 could improve cognition by maintaining mitochondrial health and enhancing CREB signaling.

  20. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties.

    Science.gov (United States)

    Kumar, Vijay; Gundampati, Ravi Kumar; Singh, Devendra K; Bano, Daraksha; Jagannadham, Medicherla V; Hasan, Syed Hadi

    2016-09-01

    In this study, an eco-friendly and sustainable green route was employed for the synthesis of stable silver nanoparticles (AgNPs) using aqueous leaf extract of Euphorbia hirta (AEE) as both reducing as well as a stabilizing agent. The synthesis of AgNPs was confirmed by UV-visible spectroscopy which produced a prominent SPR band at λmax 425nm after 25min of sunlight exposure. The AgNPs thus synthesized were optimized using one factor at a time approach, and these optimized conditions were 25min of sunlight exposure time, 5.0% (v/v) of AEE inoculum dose and 3.0mM of AgNO3 concentration. The Field Emission Scanning Electron Microscopy (FE-SEM) and High Resolution Transmission Electron Microscopy (HRTEM) analysis confirmed the presence of spherical AgNPs with average size 15.5nm. The crystallinity was determined by X-ray Diffractometer (XRD) and Selected Area Electron Diffraction (SAED) pattern. Chemical and elemental compositions were determined by Fourier Transformed Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) respectively. The Atomic Force Microscopy (AFM) images with average roughness 1.15nm represented the lateral and 3D topological characteristic of AgNPs. The AgNPs thus synthesized showed effective antibacterial activity against gram negative and gram positive bacteria as well as hydrogen peroxide sensing property with a minimum detection limit of 10(-7)M. PMID:27424098

  1. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide* #

    Science.gov (United States)

    Ling, Yun-zhi; Li, Xiao-hong; Yu, Li; Zhang, Ye; Liang, Qi-sheng; Yang, Xiao-di; Wang, Hong-tao

    2016-01-01

    Objective: To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. Methods: All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. Results: Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. Conclusions: Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2. PMID:27604861

  2. Styrene epoxidation with hydrogen peroxide over calcium oxide catalysts prepared from various precursors

    Institute of Scientific and Technical Information of China (English)

    Qingming Gu; Dan Han; Lei Shi; Qi Sun

    2012-01-01

    A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate,carbonate,hydroxide and oxalate etc.CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile.To determine the influence of the physicochemical properties and surface basicity on the catalytic activity,the prepared CaO samples were characterized using thermogravimetry (TG),X-ray diffraction (XRD),scanning electron microscopy (SEM),N2-adsorption and temperature-programmed desorption of CO2 (CO2-TPD).The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance.In contrast,the surface area,porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity.CaO sample,obtained by the decomposition of Ca(OH)2,prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution,exhibits the highest amount of very strong basic sites and stronger strength of basic sites,and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples.Under the selected reaction conditions,the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.

  3. PROCESS OPTIMIZATION OF TETRA ACETYL ETHYLENE DIAMINE ACTIVATED HYDROGEN PEROXIDE BLEACHING OF POPULUS NIGRA CTMP

    Directory of Open Access Journals (Sweden)

    Qiang Zhao

    2010-02-01

    Full Text Available To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp consistency 10%, bleaching temperature 70oC, bleaching time 60 min when the charge of H2O2 was 4%, NaOH charge 2%, and molar ratio of TAED to H2O2 0.3. The pulp brightness gain reached 23.6% ISO with the optimized bleaching conditions. FTIR analysis indicated that the H2O2/TAED bleaching system can decrease carbonyl group further than that of conventional H2O2 bleaching, which contributed to the higher bleaching efficiency and final brightness. The H2O2/TAED bleaching had stronger oxidation ability on lignin than that of H2O2 bleaching.

  4. The effect of melanin on iron associated decomposition of hydrogen peroxide.

    Science.gov (United States)

    Pilas, B; Sarna, T; Kalyanaraman, B; Swartz, H M

    1988-01-01

    The effects of melanin on the iron-catalyzed decomposition of hydrogen peroxide to hydroxyl radicals and hydroxyl ions have been studied using electron spin resonance, spin trapping and visible light spectrophotometry. Melanin altered these reactions by several different mechanisms and consequently, depending on conditions, can significantly increase or decrease the yield of reactive products, including hydroxyl radicals. For low concentrations of ferrous ions, melanin decreased the yield of hydroxyl radicals due to binding of ferrous ions by melanin; ferrous ions bound to melanin did not decompose H2O2 efficiently. Melanins increased the rate of hydroxyl radical production if the predominant form of iron was ferric, due to the ability of melanin to reduce ferric to ferrous iron. Hydroxyl radical production in the presence of a strong chelator (e.g. EDTA) and melanin was greater than in the presence of a weak chelator (e.g. ADP) and melanin. Melanin also increased the rate of destruction of the DMPO-OH adduct. PMID:2834276

  5. A Modified Fluorimetric Method for Determination of Hydrogen Peroxide Using Homovanillic Acid Oxidation Principle

    Directory of Open Access Journals (Sweden)

    Biswaranjan Paital

    2014-01-01

    Full Text Available Hydrogen peroxide (H2O2 level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was ≥2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be >12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.

  6. Growth, photosynthesis, and antioxidant responses of Vigna unguiculata L. treated with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Syed Aiman Hasan

    2016-12-01

    Full Text Available Cowpea (Vigna unguiculata L. is an important legume well grown in semiarid and arid environment. Hydrogen peroxide solutions (0.1, 0.5, 1.0, and 1.5 mM have been used to optimize growth and photosynthetic performance of cowpea plant at two growth stages [30 and 45 DAS (days of sowing]. Foliar application of H2O2 at 0.5 > 1.0 mM solution at 29 DAS optimally promoted the photosynthetic attributes [leaf chlorophyll content, net photosynthetic rate (PN, water use efficiency, and maximum quantum yield of PSII (Fv/Fm] and growth performance [root and shoot length; fresh and dry weight] of plants where the responses were more significant at the later growth stage. It was favored by activity of enzymes as carbonic anhydrase [CA; E.C. 4.2.1.1] and nitrate reductase [NR, E.C. 1.6.6.1] and those of antioxidant enzymes viz. peroxidase [POX; EC 1.11.1.7], catalase [CAT; EC 1.11.1.6], and superoxide dismutase [SOD; EC 1.15.1.1] and leaf proline content. Strengthened root system and antioxidant activity, particularly leaf proline level appeared to be the key factor for efficient photosynthesis and growth responses.

  7. Catalase and sodium fluoride mediated rehabilitation of enamel bleached with 37% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ruchi Thakur

    2015-01-01

    Full Text Available Background: Bleaching agents bring about a range of unwanted changes in the physical structure of enamel which needs to be restored qualitatively and timely. Catalase being an antioxidant ensures the effective removal of free radicals and improvement in fluoride mediated remineralization from the enamel microstructure which if retained may harm the integrity and affect the hardness of enamel. Materials and Methods: Thirty freshly extracted incisors were sectioned to 6 slabs which were divided into 5 groups: Group A, control; Group B, treatment with 37% hydrogen peroxide (HP; Group C, treatment with 37% HP and catalase, Group D, treatment with 37% HP and 5% sodium fluoride application, Group E, treatment with 37% HP followed by catalase and 5% sodium fluoride. Scanning electron microscope and microhardness analysis were done for all slabs. One-way ANOVA test was applied among different groups. Results: Vicker′s microhardness number (VHN of Group B and C was significantly lower. No significant difference between VHN of Group B and C. VHN of Group D was significantly higher than Group A, B, and C; but significantly lower than Group E. VHN of Group E was significantly higher than any other experimental group. One-way ANOVA revealed a highly significant P value (P = 0.0001 and so Tukey′s post-hoc Test for the group comparisons was employed. Conclusion: Subsequent treatment of bleached enamel with catalase and fluoride varnish separately results in repairing and significantly increasing the microhardness.

  8. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells.

    Science.gov (United States)

    Cheong, Chong-Un; Yeh, Ching-Sheng; Hsieh, Yi-Wen; Lee, Ying-Ray; Lin, Mei-Ying; Chen, Chung-Yi; Lee, Chien-Hsing

    2016-01-01

    Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H₂O₂) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H₂O₂ exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H₂O₂ through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged. PMID:27409597

  9. Nitrogen-doped graphene-silver nanodendrites for the non-enzymatic detection of hydrogen peroxide

    International Nuclear Information System (INIS)

    Highlights: • N-graphene/Ag nanodendrities by electrophoretic and electrochemical deposition. • Support of N-graphene shows efficient electrocatalytic activity toward H2O2 reduction. • The fabricated non-enzymatic H2O2 electrochemical sensor improved in the presence of Ag. - Abstract: An organic-metal hybrid film based on nitrogen-doped graphene-silver nanodendrites (Ag-NG) was fabricated on an indium tin oxide (ITO) electrode using a simple electrophoretic and electrochemical sequential deposition approach. The microwave-assisted method was utilized for the synthesis of nitrogen-doped graphene. This method involves a three-step process consisting of graphite oxidation, exfoliation, and finally chemical reduction with the use of hydrazine as the reducing agent, which leads to the simultaneous reduction of graphene oxide and production of nitrogen-doped graphene. The morphology and structure of the as-fabricated electrode were determined by X-ray diffraction, field emission electron microscopy and transmission electron microscopy. The as-prepared Ag-NG-modified ITO electrode exhibited superior electrocatalytic activity toward hydrogen peroxide (H2O2) reduction, with a wide linear detection range of 100 μM to 80 mM (r = 0.9989) and a detection limit of 0.26 μM with a signal-to-noise ratio of 3. Furthermore, the fabricated non-enzymatic H2O2 electrochemical sensor exhibited excellent stability and reproducibility

  10. Salinity-Gradient Energy Driven Microbial Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Hydrogen peroxide (H2O2) is widely used in various chemical industries and environmental remediation. Recently, bioelectrochemical systems (BES) have gained increasing attention for synthesizing H2O2 with simultaneous wastewater treatment[1]. However, in order to get high-yield H2O2 requires...... production are air gas flow rate of 8-20 ml/min, cathode potential of -0.485 ± 0.025 V vs Ag/AgCl, the corresponding dissolved oxygen is 6.80 ± 0.30 mg/l in catholyte. Under the optimal conditions, a maximum H2O2 yield of 770 ± 18 mg/L could be obtained with corresponding H2O2 production rates of 0.44 ± 0.......04 g/m2/h and current density of 1.40 ± 0.13 A/m2. Results indicate the air gas flow rate and cathode potential are the key parameters for H2O2 production in MREC. This study indicate for the first time high yield synthesis of H2O2 from oxygen reduction in BES without external power supply, furthermore...

  11. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst

    Institute of Scientific and Technical Information of China (English)

    SUN Min; YAO Risheng; YOU Yahua; DENG Shengsong; GAO Wenxia

    2007-01-01

    This paper reports on the degradation of 4-aminophenol using hydrogen peroxide as oxidizer and the enzyme from Serratia marcescens AB 90027 as catalyst.The effecting factors during degradation and the degrading mechanism were studied.Also,the location of the enzyme in the cell,which could catalyze the degradation of 4-aminophenol,was analyzed.The results showed that to degrade 50 mL of 4-aminophenol whose concentration was 500 mg/L,the optimal conditions were:volume of H2O2=3 mL,temperature=40-60℃ and pH=9-10]In the degradation process,4-aminophenol was first converted to benzo quinone and NH3,then organic acids including maleic acid,fumaleic acid,and oxalic acid were formed,and then finally CO2 and H2O were generated as final products.The enzyme that could catalyze the degradation of 4-aminophenol was mainly extracellular enzyme.

  12. Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia.

    Science.gov (United States)

    Armogida, Marta; Nisticò, Robert; Mercuri, Nicola Biagio

    2012-06-01

    For many years after its discovery, hydrogen peroxide (H₂O₂) was viewed as a toxic molecule to human tissues; however, in light of recent findings, it is being recognized as an ubiquitous endogenous molecule of life as its biological role has been better elucidated. Indeed, increasing evidence suggests that H₂O₂ may act as a second messenger with a pro-survival role in several physiological processes. In addition, our group has recently demonstrated neuroprotective effects of H₂O₂ on in vitro and in vivo ischaemic models through a catalase (CAT) enzyme-mediated mechanism. Therefore, the present review summarizes experimental data supporting a neuroprotective potential of H₂O₂ in ischaemic stroke that has been principally achieved by means of pharmacological and genetic strategies that modify either the activity or the expression of the superoxide dismutase (SOD), glutathione peroxidase (GPx) and CAT enzymes, which are key regulators of H₂O₂ metabolism. It also critically discusses a translational impact concerning the role played by H₂O₂ in ischaemic stroke. Based on these data, we hope that further research will be done in order to better understand the mechanisms underlying H₂O₂ functions and to promote successful H₂O₂ signalling based therapy in ischaemic stroke.

  13. A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide.

    Science.gov (United States)

    Wen, Ying; Liu, Keyin; Yang, Huiran; Li, Yi; Lan, Haichuang; Liu, Yi; Zhang, Xinyu; Yi, Tao

    2014-10-01

    As a marker for oxidative stress and a second messenger in signal transduction, hydrogen peroxide (H2O2) plays an important role in living systems. It is thus critical to monitor the changes in H2O2 in cells and tissues. Here, we developed a highly sensitive and versatile ratiometric H2O2 fluorescent probe (NP1) based on 1,8-naphthalimide and boric acid ester. In response to H2O2, the ratio of its fluorescent intensities at 555 and 403 nm changed 1020-fold within 200 min. The detecting limit of NP1 toward H2O2 is estimated as 0.17 μM. It was capable of imaging endogenous H2O2 generated in live RAW 264.7 macrophages as a cellular inflammation response, and especially, it was able to detect H2O2 produced as a signaling molecule in A431 human epidermoid carcinoma cells through stimulation by epidermal growth factor. This probe contains an azide group and thus has the potential to be linked to various molecules via the click reaction. After binding to a Nuclear Localization Signal peptide, the peptide-based combination probe (pep-NP1) was successfully targeted to nuclei and was capable of ratiometrically detecting nuclear H2O2 in living cells. These results indicated that NP1 was a highly sensitive ratiometric H2O2 dye with promising biological applications.

  14. Methods to detect hydrogen peroxide in living cells: Possibilities and pitfalls.

    Science.gov (United States)

    Grisham, Matthew B

    2013-08-01

    Intracellular generation of reactive oxygen species (ROS) is an inescapable consequence of aerobic metabolism. Although some of these oxygen-derived metabolites are well-documented mediators of cell and tissue damage, others have been shown to be crucial for cell survival and homeostasis. One ROS that has been identified as a major second messenger in redox signaling is hydrogen peroxide (H2O2). This small, membrane-permeable oxidant is produced transiently in physiological (nontoxic) amounts by a variety of different enzymes residing within different subcellular compartments and organelles. There is an accumulating literature demonstrating that the reversible, H2O2-mediated oxidation of different signaling proteins is an important posttranslational mechanism that regulates a number of different biological processes including cell proliferation, differentiation, motility and apoptosis. Although several, well-characterized methods have been developed to quantify the generation of extracellular H2O2, the ability to unequivocally detect and quantify this important signaling molecule within living cells has been relatively limited. Fortunately, a great deal of progress has been made over the past few years in developing H2O2-selective probes that are capable of detecting physiological levels of this signaling molecule. This overview presents a critical evaluation of the established as well as the more recently developed methods to detect and quantify extracellular and intracellular H2O2 produced by living cells.

  15. Effects of hydrogen peroxide on in vitro infection of Cryptosporidium parvum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of hydrogen peroxide (H2O2) on Cryptosporidium parvum infection and the protective function of free radical scavengers were studied in cultured bovine fallopian tubes epithelial cells. H2O2 treatment at 500 μmol/L and 1 mmol/L significantly inhibited excystation of bleach-treated oocysts (p < 0. O1 ). At 48 h postinoculation,H2O2 at 500 and 750 μmol/L resulted in a significant (p < 0.01) decrease of C. parvum infection by 35.77% and 58.16% respectively in the cultured cells, when compared with the untreated control. Surprisingly, the infection was significantly increased from 22.21% to 39.33 % ( p < 0.05) with lower concentration of H2 O2 (50 ~ 200 μmol/L). The inhibitory and stimulatory effects of H2O2 treatment on C. parvum infection were, to a certain extent, abolished in the presence of reduced glutathione or mannitol. These observations indicate that reactive oxygen species, such as H2O2, may play an important role in C. parvum infection.

  16. Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Pu Zhang

    2016-07-01

    Full Text Available In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs with high quantum yield (QY, ~16%, excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H2O2 as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H2O2 could be achieved in wide concentration ranges over 805 nM–1.61 mM and 161 μM–19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H2O2 in the range of 0–3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics.

  17. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    Science.gov (United States)

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  18. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Chong-Un Cheong

    2016-07-01

    Full Text Available Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases. The scavenging of reactive oxygen species (ROS mediated by antioxidants may be a potential strategy for retarding the diseases’ progression. Costunolide (CS is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H2O2 and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H2O2 exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP, and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H2O2 through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK. These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.

  19. Response of Cytokines and Hydrogen Peroxide to Sporothrix schenckii Exoantigen in Systemic Experimental Infection.

    Science.gov (United States)

    Maia, Danielle Cardoso Geraldo; Gonçalves, Amanda Costa; Ferreira, Lucas Souza; Manente, Francine Alessandra; Portuondo, Deivys Leandro; Vellosa, José Carlos Rebuglio; Polesi, Marisa Campos; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2016-04-01

    The response of hydrogen peroxide (H2O2) and cytokines during an experimental sporotrichosis in male Swiss mice was assessed over a period of 10 weeks by monitoring macrophage activation challenged with exoantigen (ExoAg) from the fungus Sporothrix schenckii. The studied endpoints were: H2O2 production, fungal burden at spleen, apoptosis in peritoneal macrophages, and IL-1β, IL-6, IL-2, IL-10 production. During the two first weeks of infection was observed low burden of yeast in spleen and high response of H2O2, IL-2, and IL-1β. The weeks of highest fungal burden (fourth-sixth) coincided with major apoptosis in peritoneal macrophages, normal production of IL-6 and lower production of H2O2, IL-2, and IL-1β, suggesting a role for these three last in the early control of infection. On the other hand, IL-1β (but not IL-6) was recovered since the sixth week, suggesting a possible role in the late phase of infection, contributing to the fungal clearance in conjunction with the specific mechanisms. The IL-10 was elevated until the sixth, principally in the second week. These results evidences that ExoAg is involved in the host immune modulation, influencing the S. Schenckii virulence, and its role is related with the time of the infection in the model used.

  20. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Science.gov (United States)

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  1. Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide

    Science.gov (United States)

    Zhang, Pu; Wang, Yi; Yin, Yibing

    2016-01-01

    In this work, we present a simple and rapid method to synthesize red luminescent gold nanoclusters (AuNCs) with high quantum yield (QY, ~16%), excellent photostability and biocompatibility. Next, we fabricated a solid membrane by loading the as-prepared AuNCs in an agar matrix. Different from nanomaterials dispersed in solution, the AuNCs-based solid membrane has distinct advantages including convenience of transportation, while still maintaining strong red luminescence, and relatively long duration storage without aggregation. Taking hydrogen peroxide (H2O2) as a typical example, we then employed the AuNCs as a luminescent probe and investigated their sensing performance, either in solution phase or on a solid substrate. The detection of H2O2 could be achieved in wide concentration ranges over 805 nM–1.61 mM and 161 μM–19.32 mM in solution and on a solid membrane, respectively, with limits of detection (LOD) of 80 nM and 20 μM. Moreover, the AuNCs-based membrane could also be used for visual detection of H2O2 in the range of 0–3.22 mM. In view of the convenient synthesis route and attractive luminescent properties, the AuNCs-based membrane presented in this work is quite promising for applications such as optical sensing, fluorescent imaging, and photovoltaics. PMID:27447647

  2. Characterizing the chemical pathways for water formation -- A deep search for hydrogen peroxide

    CERN Document Server

    Parise, B; Menten, K

    2014-01-01

    In 2011, hydrogen peroxide (HOOH) was observed for the first time outside the solar system (Bergman et al., A&A, 2011, 531, L8). This detection appeared a posteriori quite natural, as HOOH is an intermediate product in the formation of water on the surface of dust grains. Following up on this detection, we present a search for HOOH in a diverse sample of sources in different environments, including low-mass protostars and regions with very high column densities, such as Infrared Dark Clouds (IRDCs). We do not detect the molecule in any other source than Oph A, and derive 3$\\sigma$ upper limits for the abundance of HOOH relative to H$_2$ lower than in Oph A for most sources. This result sheds a different light on our understanding of the detection of HOOH in Oph A, and shifts the puzzle to why this source seems to be special. Therefore we rediscuss the detection of HOOH in Oph A, as well as the implications of the low abundance of HOOH, and its similarity with the case of O$_2$. Our chemical models show th...

  3. All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, George W. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Procell, Lawrence R. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Sorrick, David C. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Lawson, Glenn E. [Naval Surface Warfare Center (NSWC), Dahlgren, VA (United States); Wells, Claire M. [Naval Surface Warfare Center (NSWC), Dahlgren, VA (United States); Reynolds, Charles M. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Ringelberg, D. B. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Foley, Karen L. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Blanchard, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-03-11

    A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes Cs-137 and Co-60; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant 60Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 °C), as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented.

  4. Fabrication of a novel electrochemical sensor for determination of hydrogen peroxide in different fruit juice samples

    Directory of Open Access Journals (Sweden)

    Navid Nasirizadeh

    2016-01-01

    Full Text Available A new hydrogen peroxide (H2O2 sensor is fabricated based on a multiwalled carbon nanotube-modified glassy carbon electrode (MWCNT-GCE and reactive blue 19 (RB. The charge transfer coefficient, α, and the charge transfer rate constant, ks, of RB adsorbed on MWCNT-GCE were calculated and found to be 0.44 ± 0.01 Hz and 1.9 ± 0.05 Hz, respectively. The catalysis of the electroreduction of H2O2 by RB-MWCNT-GCE is described. The RB-MWCNT-GCE shows a dramatic increase in the peak current and a decrease in the overvoltage of H2O2 electroreduction in comparison with that seen at an RB modified GCE, MWCNT modified GCE, and activated GCE. The kinetic parameters such as α and the heterogeneous rate constant, k', for the reduction of H2O2 at RB-MWCNT-GCE surface were determined using cyclic voltammetry. The detection limit of 0.27μM and three linear calibration ranges were obtained for H2O2 determination at the RB-MWCNT-GCE surface using an amperometry method. In addition, using the newly developed sensor, H2O2 was determined in real samples with satisfactory results.

  5. Effects of the action of hydrogen peroxide on the electrical properties of polyaniline-aluminium composites

    Energy Technology Data Exchange (ETDEWEB)

    Gmati, Fethi; Manaii, Aymen; Mohamed, Abdellatif Belhadj [Laboratory of Photovoltaic (LPV), Centre of Research and Technology of Energy (CRTEn), Technopole of Borj Cedria, Hammam Lif 2050 (Tunisia); Fattoum, Arbi, E-mail: gmati_fethi@yahoo.fr [Unit of Research: Materials Environment and Energy (06/UR/12-01), Faculty of Sciences Gafsa (Tunisia)

    2011-08-10

    The effects of the action of hydrogen peroxide (H{sub 2}O{sub 2}) as an oxidizing agent on the electrical properties of polyaniline-aluminium (PANI-Al) composites are studied. Direct current (dc) electrical conductivity is investigated in the temperature range 303-453 K. A decrease in the conductivity with attack time is observed. The results are compatible with UV-visible and infrared absorption measurements and scanning electron microscopy analysis. The experimental data show a transition from a negative temperature coefficient of resistivity (TCR) to a positive TCR. This transition becomes more pronounced when the attack time increases. Depending on the H{sub 2}O{sub 2} attack time, we found that the dc conductivity of the composites is described by two distinct models: the first is a series combination between the fluctuation-induced tunnelling (FIT) model with a metallic transport model, the second is a combination between Mott's three-dimensional variable range hopping with an intrinsic metallic model. The different FIT and Mott parameters are evaluated. The change in the conduction mechanism is attributed to the disorder and the localization effect caused by the action of H{sub 2}O{sub 2} on the PANI-Al composite.

  6. Removal of Polyvinyl Alcohol Using Photoelectrochemical Oxidation Processes Based on Hydrogen Peroxide Electrogeneration

    Directory of Open Access Journals (Sweden)

    Kai-Yu Huang

    2013-01-01

    Full Text Available This study investigates the removal efficiency of PVA from aqueous solutions using UV irradiation in combination with the production of electrogenerated hydrogen peroxide (H2O2 at a polyacrylonitrile-based activated carbon fiber (ACF cathode. Three cathode materials (i.e., platinum, graphite, and ACF were fed with oxygen and used for the electrogeneration of H2O2. The amount of electrogenerated H2O2 produced using the ACF cathode was five times greater than that generated using the graphite cathode and nearly 24 times greater than that from platinum cathode. Several parameters were evaluated to characterize the H2O2 electrogeneration, such as current density, oxygen flow rate, solution pH, and the supporting electrolyte used. The optimum current density, oxygen flow rate, solution pH, and supporting electrolyte composition were found to be 10 mA cm−2, 500 cm3 min−1, pH 3, and Na2SO4, respectively. The PVA removal efficiencies were achieved under these conditions 3%, 16%, and 86% using UV, H2O2 electrogeneration, and UV/H2O2 electrogeneration, respectively. A UV light intensity of 0.6 mW cm−2 was found to produce optimal PVA removal efficiency in the present study. A simple kinetic model was proposed which confirmed pseudo-first-order reaction. Reaction rate constant (kap was found to depend on the UV light intensity.

  7. Effects of hydrogen peroxide treatment on thiol contents in fresh-cut asparagus (Asparagus officinalis) spears.

    Science.gov (United States)

    Demrkol, Omca

    2009-01-01

    In this work, the impact of hydrogen peroxide (H2O2) was investigated on the thiol content of asparagus. Fresh-cut asparagus was treated with H2O2 at varied oxidant concentrations and contact times. A significant decrease (alpha=0.05) was observed in N-acetylcysteine levels treated with 2.5% H2O2 for 10 min and with 5% H2O2 for 3, 5 and 10 min. Captopril and cysteine levels significantly decreased (alpha=0.05) in all and most treatment conditions, respectively. Glutathione levels only significantly decreased with 2.5% and 5% H2O2 for 10 min treatment. In order to determine whether asparagus undergoes oxidative stress, a well-known oxidative stress indicator-the glutathione/oxidized glutathione ratio-was calculated. This study showed that the common use of H2O2 as a disinfectant/sterilizer by the food industry could markedly diminish the important biothiols and develop oxidative stress in asparagus, and potentially in other vegetables as well. PMID:18608548

  8. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  9. Pulsed electrodeposition of hydroxyapatite on titanium substrate in solution containing hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    CHEN Xing-yu; ZHAO Zhong-wei; CHEN Ai-liang; LI Hong-gui

    2007-01-01

    Hydroxyapatite(HAP) coatings were prepared on the titanium substrate in the electrolyte containing H2O2 by the pulse electrodeposition. The introduction of H2O2 restrains the evolution of H2 and improves the adhesive strength between coatings and substrate. The results of pulse electrodeposition show that the relaxation time of the pulse is beneficial to growth of HAP because it makes ions diffuse from bulk to the surface of electrode and reduces concentration polarization in the next pulse time. It is beneficial to the increase of the duty circle of the pulse for deposition of HAP, but the result is not good if it is increased excessively. With increasing potential, it is good for the growth of HAP coatings. If the potential is too high, it is easy for HAP coatings to drop off during the process of electrodeposition under too intensive polarization, such as -1.0 V (vs SCE), and there is not many coatings on the substrate. The combination of pulse electrodeposition and addition of hydrogen peroxide can assuredly improve the physico-chemical properties of hydroxyapatite coatings.

  10. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available Zinc oxide (ZnO nanorods (NRs have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2, based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD of 42 μM for the low range of H2O2 concentrations (first region, and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region. The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor.

  11. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase

    International Nuclear Information System (INIS)

    Oxidative base damage occurs spontaneously due to reactive oxygen species generated as byproducts of respiration and other pathological processes in mammalian cells. Many oxidized bases are mutagenic and/or toxic, and most are repaired through the base excision repair pathway. Human endonuclease VIII-like protein 1 (hNEIL1) is thought to play an important role during the S phase of the cell cycle by removing oxidized bases in DNA replication fork-like (bubble) structures, and the protein level of hNEIL1 is increased in S phase. Compared with hNEIL1, there is relatively little information on the properties of the mouse ortholog mNEIL1. Since mouse cell nuclei lack endonuclease III-like protein (NTH) activity, in contrast to human cell nuclei, mNEIL1 is a major DNA glycosylase for repair of oxidized pyrimidines in mouse nuclei. In this study, we made mNEIL1-knockdown cells using an shRNA expression vector and examined the cell cycle-related variation in hydrogen peroxide (H2O2) sensitivity. Hypersensitivity to H2O2 caused by mNEIL1 knockdown was more significant in S phase than in G1 phase, suggesting that mNEIL1 has an important role during S phase, similarly to hNEIL1

  12. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    Science.gov (United States)

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo

    2016-05-15

    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration. PMID:27093911

  13. Production of interstellar hydrogen peroxide (H2O2) on the surface of dust grains

    CERN Document Server

    Du, Fujun; Bergman, Per

    2011-01-01

    Context. The formation of water on the dust grains in the interstellar medium may proceed with hydrogen peroxide (H2O2) as an intermediate. Recently gas-phase H2O2 has been detected in {\\rho} Oph A with an abundance of ~1E-10 relative to H2. Aims. We aim to reproduce the observed abundance of H2O2 and other species detected in {\\rho} Oph A quantitatively. Methods. We make use of a chemical network which includes gas phase reactions as well as processes on the grains; desorption from the grain surface through chemical reaction is also included. We run the model for a range of physical parameters. Results. The abundance of H2O2 can be best reproduced at ~6E5 yr, which is close to the dynamical age of {\\rho} Oph A. The abundances of other species such as H2CO, CH3OH, and O2 can be reasonably reproduced also at this time. In the early time the gas-phase abundance of H2O2 can be much higher than the current detected value. We predict a gas phase abundance of O2H at the same order of magnitude as H2O2, and an abund...

  14. Sunscreens as a source of hydrogen peroxide production in coastal waters.

    Science.gov (United States)

    Sánchez-Quiles, David; Tovar-Sánchez, Antonio

    2014-08-19

    Sunscreens have been shown to give the most effective protection for human skin from ultraviolet (UV) radiation. Chemicals from sunscreens (i.e., UV filters) accumulate in the sea and have toxic effects on marine organisms. In this report, we demonstrate that photoexcitation of inorganic UV filters (i.e., TiO2 and ZnO nanoparticles) under solar radiation produces significant amounts of hydrogen peroxide (H2O2), a strong oxidizing agent that generates high levels of stress on marine phytoplankton. Our results indicate that the inorganic oxide nanoparticle content in 1 g of commercial sunscreen produces rates of H2O2 in seawater of up to 463 nM/h, directly affecting the growth of phytoplankton. Conservative estimates for a Mediterranean beach reveal that tourism activities during a summer day may release on the order of 4 kg of TiO2 nanoparticles to the water and produce an increment in the concentration of H2O2 of 270 nM/day. Our results, together with the data provided by tourism records in the Mediterranean, point to TiO2 nanoparticles as the major oxidizing agent entering coastal waters, with direct ecological consequences on the ecosystem. PMID:25069004

  15. Pretreatment of Rice Straw by Hydrogen Peroxide for Enhanced Methane Yield

    Institute of Scientific and Technical Information of China (English)

    SONG Zi-lin; YAG Gai-he; FENG Yong-zhong; REN Guang-xin; HAN Xin-hui

    2013-01-01

    A pretreatment process for hydrogen peroxide (H2O2) was optimized to enhance the biodegradation performance of rice straw and increase biogas yield. A determination experiment was conducted under predicted optimal conditions. Optimization was implemented using response surface methodology. The effects of biodegradation and the interactive effects of pretreatment time (PT), H2O2 concentration (HC), and substrate to inoculum ratio (S/I) on methane yield were investigated. The lignin, cellulose, and hemicellulose of rice straw were significantly degraded with increasing HC. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were a 6.18-d PT, 2.68%HC (w/w total solid), and 1.08 S/I;these conditions result in a methane yield of 288 mL g-1 volatile solids (VS). A determination coefficient of 95.2%was obtained, indicating that the model used to predict the anabolic digestion process has a favorable fit with the experimental parameters. The determination experiment resulted in a methane yield of 290 mL g-1 VS, 88.0%higher than that of untreated rice straw. Thus, H2O2 pretreatment of rice straw can be used to improve methane yields during biogas production.

  16. Applicability of hydrogen peroxide in brown tide control - culture and microcosm studies.

    Directory of Open Access Journals (Sweden)

    Varunpreet Randhawa

    Full Text Available Brown tide algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H(2O(2 for brown tide bloom control. Culture studies showed that H(2O(2 at 1.6 mg L(-1 effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2-3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown tide bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown tide bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses, particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H(2O(2 against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H(2O(2 application were discussed.

  17. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: a basis set and correlation study.

    Science.gov (United States)

    Kjaer, Hanna; Nielsen, Monia R; Pagola, Gabriel I; Ferraro, Marta B; Lazzeretti, Paolo; Sauer, Stephan P A

    2012-09-01

    In this article, we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the nuclear magnetic resonance (NMR) indirect nuclear spin-spin coupling constant with respect to an external electric field and play an important role for both chiral discrimination and solvation effects on NMR coupling constants. In this study, we illustrate the effects of one-electron basis sets and electron correlation both at the level of density functional theory as well as second-order polarization propagator approximation for the small molecule hydrogen peroxide, which allowed us to perform calculations with the largest available basis sets optimized for the calculation of NMR coupling constants. We find a systematic but rather slow convergence with the one-electron basis set and that augmentation functions are required. We observe also large and nonsystematic correlation effects with significant differences between the density functional and wave function theory methods. PMID:22618604

  18. The Role of Hydrogen Peroxide in Environmental Adaptation of Oral Microbial Communities

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2012-01-01

    Full Text Available Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H2O2 as byproduct of aerobic metabolism. Several recent studies showed that the produced H2O2 is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H2O2 in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H2O2, H2O2 compatible species associate with the producers. H2O2 production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H2O2 scavenging. Therefore, the effects of biofilm intrinsic H2O2 production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H2O2 on biofilm development and environmental adaptation might be under appreciated in current research.

  19. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato.

    Science.gov (United States)

    Shi, Kai; Li, Xin; Zhang, Huan; Zhang, Guanqun; Liu, Yaru; Zhou, Yanhong; Xia, Xiaojian; Chen, Zhixiang; Yu, Jingquan

    2015-10-01

    Climate change as a consequence of increasing atmospheric CO2 influences plant photosynthesis and transpiration. Although the involvement of stomata in plant responses to elevated CO2 has been well established, the underlying mechanism of elevated CO2 -induced stomatal movement remains largely unknown. We used diverse techniques, including laser scanning confocal microscopy, transmission electron microscopy, biochemical methodologies and gene silencing to investigate the signaling pathway for elevated CO2 -induced stomatal movement in tomato (Solanum lycopersicum). Elevated CO2 -induced stomatal closure was dependent on the production of RESPIRATORY BURST OXIDASE 1 (RBOH1)-mediated hydrogen peroxide (H2 O2 ) and NITRATE REDUCTASE (NR)-mediated nitric oxide (NO) in guard cells in an abscisic acid (ABA)-independent manner. Silencing of OPEN STOMATA 1 (OST1) compromised the elevated CO2 -induced accumulation of H2 O2 and NO, upregulation of SLOW ANION CHANNEL ASSOCIATED 1 (SLAC1) gene expression and reduction of stomatal aperture, whereas silencing of RBOH1 or NR had no effects on the expression of OST1. Our results demonstrate that as critical signaling molecules, RBOH1-dependent H2 O2 and NR-dependent NO act downstream of OST1 that regulate SLAC1 expression and elevated CO2 -induced stomatal movement. This information is crucial to deepen the understanding of CO2 signaling pathway in guard cells. PMID:26308648

  20. Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide

    Science.gov (United States)

    Jiang, Zhengdong

    2016-01-01

    Diabetes mellitus (DM) and pancreatic cancer are intimately related, as approximately 85% of patients diagnosed with pancreatic cancer have impaired glucose tolerance or even DM. Our previous studies have indicated that high glucose could promote the invasive and migratory abilities of pancreatic cancer cells. We therefore explored the underlying mechanism that hyperglycemia modulates the metastatic potential of pancreatic cancer. Our data showed that streptozotocin- (STZ-) treated diabetic nude mice exhibit larger tumor size than that of the euglycemic mice. The number of nude mice that develop liver metastasis or ascites is much more in the STZ-treated group than that in the euglycemic group. Hyperglycemic mice contain a higher plasma H2O2-level than that from euglycemic mice. The injection of polyethylene glycol-conjugated catalase (PEG-CAT), an H2O2 scavenger, may reverse hyperglycemia-induced tumor metastasis. In addition, hyperglycemia could also modulate the expression of epithelial-mesenchymal transition- (EMT-) related factors in pancreatic tumor tissues, as the E-cadherin level is decreased and the expression of mesenchymal markers N-cadherin and vimentin as well as transcription factor snail is strongly increased. The injection of PEG-CAT could also reverse hyperglycemia-induced EMT. These results suggest that the association between hyperglycemia and poor prognosis of pancreatic cancer can be attributed to the alterations of EMT through the production of hydrogen peroxide. PMID:27433288