WorldWideScience

Sample records for adaptor membrane fusion

  1. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  2. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  3. Fusion of biological membranes

    Indian Academy of Sciences (India)

    K Katsov; M Müller; M Schick

    2005-06-01

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent field theory is applied to examine the free energy barriers in the different scenarios.

  4. Alphavirus Entry and Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Margaret Kielian

    2010-03-01

    Full Text Available The study of enveloped animal viruses has greatly advanced our understanding of the general properties of membrane fusion and of the specific pathways that viruses use to infect the host cell. The membrane fusion proteins of the alphaviruses and flaviviruses have many similarities in structure and function. As reviewed here, alphaviruses use receptor-mediated endocytic uptake and low pH-triggered membrane fusion to deliver their RNA genomes into the cytoplasm. Recent advances in understanding the biochemistry and structure of the alphavirus membrane fusion protein provide a clearer picture of this fusion reaction, including the protein’s conformational changes during fusion and the identification of key domains. These insights into the alphavirus fusion mechanism suggest new areas for experimental investigation and potential inhibitor strategies for anti-viral therapy.

  5. Membrane fusion during poxvirus entry.

    Science.gov (United States)

    Moss, Bernard

    2016-12-01

    Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.

  6. A Model for Membrane Fusion

    Science.gov (United States)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  7. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    Science.gov (United States)

    Holm, Christian K; Jensen, Søren B; Jakobsen, Martin R; Cheshenko, Natalia; Horan, Kristy A; Moeller, Hanne B; Gonzalez-Dosal, Regina; Rasmussen, Simon B; Christensen, Maria H.; Yarovinsky, Timur O; Rixon, Frazer J; Herold, Betsy C; Fitzgerald, Katherine A; Paludan, Søren R

    2012-01-01

    The innate immune system senses infection by detecting evolutionarily conserved molecules essential for microbial survival or abnormal location of molecules. Here we demonstrate the existence of a novel innate detection mechanism, which is induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon (IFN) response with expression of IFN-stimulated genes (ISGs), in vivo recruitment of leukocytes, and potentiation of Toll-like receptor 7 and 9 signaling. The fusion dependent response was dependent on stimulator of interferon genes (STING) but independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant cell formation. PMID:22706339

  8. Mechanisms of influenza viral membrane fusion.

    Science.gov (United States)

    Blijleven, Jelle S; Boonstra, Sander; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M

    2016-12-01

    Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.

  9. Analysis of Arf1 GTPase-dependent membrane binding and remodeling using the exomer secretory vesicle cargo adaptor

    Science.gov (United States)

    Paczkowski, Jon E.; Fromme, J. Christopher

    2016-01-01

    Summary Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  10. Deployment of membrane fusion protein domains during fusion.

    Science.gov (United States)

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  11. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    NARCIS (Netherlands)

    Holm, C.K.; Jensen, S.B.; Jakobsen, M.R.; Cheshenko, N.; Horan, K.A.; Moeller, H.B.; Gonzalez-Dosal, R.; Rasmussen, S.B.; Christensen, M.H.; Yarovinsky, T.O.; Rixon, F.J.; Herold, B.C.; Fitzgerald, K.A.; Paludan, S.R.

    2012-01-01

    The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelope

  12. Dissipative Particle Dynamics of tension-induced membrane fusion

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Recent studies of tension-induced membrane fusion using dissipative particle dynamics (DPD) simulations are briefly reviewed. The stochastic nature of the fusion process makes it necessary to simulate a large number of fusion attempts in order to obtain reliable fusion statistics and to extract...

  13. Peptides and membrane fusion : Towards an understanding of the molecular mechanism of protein-induced fusion

    NARCIS (Netherlands)

    Pecheur, EI; Sainte-Marie, J; Bienvenue, A; Hoekstra, D

    1999-01-01

    Processes such as endo- or exocytosis, membrane recycling, fertilization and enveloped viruses infection require one or more critical membrane fusion reactions. A key feature in viral and cellular fusion phenomena is the involvement of specific fusion proteins. Among the few well-characterized fusio

  14. Visualization of membrane fusion, one particle at a time.

    Science.gov (United States)

    Otterstrom, Jason; van Oijen, Antoine M

    2013-03-12

    Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysical techniques. Recently, a number of single-particle fluorescence microscopy-based assays that allow researchers to obtain highly quantitative data about the fusion process by observing individual fusion events in real time have been developed. These assays depend upon changes in the acquired fluorescence signal to provide a direct readout for transitions between the various fusion intermediates. The resulting data yield meaningful and detailed kinetic information about the transitory states en route to productive membrane fusion. In this review, we highlight recent in vitro and in vivo studies of membrane fusion at the single-particle level in the contexts of viral membrane fusion and SNARE-mediated synaptic vesicle fusion. These studies afford insight into mechanisms of coordination between fusion-mediating proteins as well as coordination of the overall fusion process with other cellular processes. The development of single-particle approaches to investigate membrane fusion and their successful application to a number of model systems have resulted in a new experimental paradigm and open up considerable opportunities to extend these methods to other biological processes that involve membrane fusion.

  15. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  16. Characterization of a structural intermediate of flavivirus membrane fusion.

    Directory of Open Access Journals (Sweden)

    Karin Stiasny

    2007-02-01

    Full Text Available Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.

  17. Single-particle kinetics of influenza virus membrane fusion

    NARCIS (Netherlands)

    Floyd, Daniel L.; Ragains, Justin R.; Skehel, John J.; Harrison, Stephen C.; Oijen, Antoine M. van; Harrison, Stephen C.

    2008-01-01

    Membrane fusion is an essential step during entry of enveloped viruses into cells. Conventional fusion assays are generally limited to observation of ensembles of multiple fusion events, confounding more detailed analysis of the sequence of the molecular steps involved. We have developed an in vitro

  18. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    Science.gov (United States)

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  19. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  20. The Hemifused State on the Pathway to Membrane Fusion

    Science.gov (United States)

    Warner, Jason M.; O'Shaughnessy, Ben

    2012-04-01

    Fusion of compartments enclosed by membrane bilayers enables secretion and other vital cellular processes and is widely studied in model synthetic membrane systems. Experiments suggest the fusion pathway passes through a hemifused intermediate where only outer monolayers are fused. Here we show membrane tension and divalent cations drive vesicles to hemifused equilibrium with expanded hemifusion diaphragms (HDs) where inner monolayers engage. Predicted HD sizes agree with recent measurements of Nikolaus [Biophys. J. 98, 1192 (2010).BIOJAU0006-349510.1016/j.bpj.2009.11.042]. The fusion pathway is completed by HD lysis provided HD tension is sufficiently high.

  1. The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Hidekata Yasuoka

    Full Text Available Systemic sclerosis (SSc is characterized by excessive fibrosis of the skin and internal organs due to fibroblast proliferation and excessive production of extracellular matrix (ECM. We have shown that insulin-like growth factor binding protein (IGFBP-5 plays an important role in the development of fibrosis in vitro, ex vivo, and in vivo. We identified a membrane-associated adaptor protein, downstream of tyrosine kinase/docking protein (DOK5, as an IGFBP-5-regulated target gene using gene expression profiling of primary fibroblasts expressing IGFBP-5. DOK5 is a tyrosine kinase substrate associated with intracellular signaling. Our objective was to determine the role of DOK5 in the pathogenesis of SSc and specifically in IGFBP-5-induced fibrosis. DOK5 mRNA and protein levels were increased in vitro by endogenous and exogenous IGFBP-5 in primary human fibroblasts. DOK5 upregulation required activation of the mitogen-activated protein kinase (MAPK signaling cascade. Further, IGFBP-5 triggered nuclear translocation of DOK5. DOK5 protein levels were also increased in vivo in mouse skin and lung by IGFBP-5. To determine the effect of DOK5 on fibrosis, DOK5 was expressed ex vivo in human skin in organ culture. Expression of DOK5 in human skin resulted in a significant increase in dermal thickness. Lastly, levels of DOK5 were compared in primary fibroblasts and lung tissues of patients with SSc and healthy donors. Both DOK5 mRNA and protein levels were significantly increased in fibroblasts and skin tissues of patients with SSc compared with those of healthy controls, as well as in lung tissues of SSc patients. Our findings suggest that IGFBP-5 induces its pro-fibrotic effects, at least in part, via DOK5. Furthermore, IGFBP-5 and DOK5 are both increased in SSc fibroblasts and tissues and may thus be acting in concert to promote fibrosis.

  2. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu

    2013-12-01

    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  3. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  4. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  5. Conflicting views on the membrane fusion machinery and the fusion pore

    DEFF Research Database (Denmark)

    Sørensen, Jakob B

    2009-01-01

    of the assembly of the fusogenic SNARE-complex. Here, I review conflicting views on the function of the core fusion machinery consisting of the SNAREs, Munc18, complexin, and synaptotagmin. Munc18 controls docking of vesicles to the plasma membrane and initial SNARE-complex assembly, whereas complexin...... and synaptotagmin cooperate in holding the SNARE complex in an intermediate release-ready or cocked state. Different effects of complexin and synaptotagmin shape the energy landscape for fusion and make final fusion calcium triggered. The final steps are fusion pore formation and expansion, which allow release...

  6. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    Science.gov (United States)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  7. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    Science.gov (United States)

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  8. On the mechanism of intracellular membrane fusion : In search of the genuine fusion factor

    NARCIS (Netherlands)

    Pecheur, EI; Maier, O; Hoekstra, D

    2000-01-01

    Intracellular membrane Fusion events require a general protein machinery that functions in vesicular traffic and in assembly and maintenance of organelles. An array of cytosolic and integral membrane proteins are currently identified, and in conjunction with ongoing detailed structural studies, rapi

  9. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  10. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  11. Induction of Androgen Formation in the Male by a TAT-VDAC1 Fusion Peptide Blocking 14-3-3ɛ Protein Adaptor and Mitochondrial VDAC1 Interactions

    Science.gov (United States)

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-01-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production. PMID:24947306

  12. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    Science.gov (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  13. Trafficking of Intracellular Membranes: Mass action model of virus fusion

    NARCIS (Netherlands)

    Nir, Shlomo; Duzgunes, Nejat; Hoekstra, Dick; Ramalho-Santos, Joao; Pedroso de Lima, Maria C

    1995-01-01

    :Shlomo Nir, Nejat Düzgüneş, Dick Hoekstra, João Ramalho-Santos, Maria C. Pedroso de Lima The purpose of this presentation is to describe procedures of analysis of final extents and kinetics of virus fusion with target membranes. The presentation of results will focus on deductions from studies of f

  14. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    NARCIS (Netherlands)

    Pannuzzo, Martina; De Jong, Djurre H.; Raudino, Antonio; Marrink, Siewert J.

    2014-01-01

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca2+ by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membr

  15. Slow fusion of liposomes composed of membrane-spanning lipids

    NARCIS (Netherlands)

    Elferink, MGL; vanBreemen, J; Konings, WN; Driessen, AJM; Wilschut, J; Elferink, Marieke G.L.

    1997-01-01

    The fusion characteristics of large unilamellar liposomes composed of bipolar tetraether lipids extracted from the thermophilic archaeon Sulfolobus acidocaldarius, was investigated. These lipids span the entire membrane and form single monolayer liposomes in aqueous media [Elferink, M.G.L., de Wit,

  16. Differential association of the Na+/H+ exchanger regulatory factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3

    NARCIS (Netherlands)

    A. Sultan (Ayesha); M. Luo (Ma); Q. Yu (Qingbao); B. Riederer (Beat Michel); W. Xia (Weiliang); M. Chen (Mingmin); S. Lissner (Simone); J.E. Gessner (Johannes); M. Donowitz (Mark); C. Chris Yun (C.); H. deJonge (Hugo); G. Lamprecht (Georg); U. Seidler (Ursula)

    2013-01-01

    textabstractBackground/Aims: Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is uncl

  17. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  18. Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins▿

    OpenAIRE

    Hasegawa, Kosei; Hu, Chunling; Nakamura, Takafumi; Marks, James D.; Russell, Stephen J.; Peng, Kah-Whye

    2007-01-01

    Enveloped viruses trigger membrane fusion to gain entry into cells. The receptor affinities of their attachment proteins vary greatly, from 10−4 M to 10−9 M, but the significance of this is unknown. Using six retargeted measles viruses that bind to Her-2/neu with a 5-log range in affinity, we show that receptor affinity has little impact on viral attachment but is nevertheless a key determinant of infectivity and intercellular fusion. For a given cell surface receptor density, there is an aff...

  19. Plant cytokinesis: a tale of membrane traffic and fusion.

    Science.gov (United States)

    Jürgens, Gerd; Park, Misoon; Richter, Sandra; Touihri, Sonja; Krause, Cornelia; El Kasmi, Farid; Mayer, Ulrike

    2015-02-01

    Cytokinesis separates the forming daughter cells. Higher plants have lost the ability to constrict the plasma membrane (PM) in the division plane. Instead, trans-Golgi network (TGN)-derived membrane vesicles are targeted to the centre of the division plane and generate, by homotypic fusion, the partitioning membrane named cell plate (CP). The CP expands in a centrifugal fashion until its margin fuses with the PM at the cortical division site. Mutant screens in Arabidopsis have identified a cytokinesis-specific syntaxin named KNOLLE and an interacting Sec1/Munc18 (SM) protein named KEULE both of which are required for vesicle fusion during cytokinesis. KNOLLE is only made during M-phase, targeted to the division plane and degraded in the vacuole at the end of cytokinesis. Here we address mechanisms of KNOLLE trafficking and interaction of KNOLLE with different soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) partners and with SM-protein KEULE, ensuring membrane fusion in cytokinesis.

  20. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  1. Investigation of SNARE-Mediated Membrane Fusion Mechanism Using Atomic Force Microscopy

    Science.gov (United States)

    Abdulreda, Midhat H.; Moy, Vincent T.

    2009-01-01

    Membrane fusion is driven by specialized proteins that reduce the free energy penalty for the fusion process. In neurons and secretory cells, soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) mediate vesicle fusion with the plasma membrane during vesicular content release. Although, SNAREs have been widely accepted as the minimal machinery for membrane fusion, the specific mechanism for SNARE-mediated membrane fusion remains an active area of research. Here, we summarize recent findings based on force measurements acquired in a novel experimental system that uses atomic force microscope (AFM) force spectroscopy to investigate the mechanism(s) of membrane fusion and the role of SNAREs in facilitating membrane hemifusion during SNARE-mediated fusion. In this system, protein-free and SNARE-reconstituted lipid bilayers are formed on opposite (trans) substrates and the forces required to induce membrane hemifusion and fusion or to unbind single v-/t-SNARE complexes are measured. The obtained results provide evidence for a mechanism by which the pulling force generated by interacting trans-SNAREs provides critical proximity between the membranes and destabilizes the bilayers at fusion sites by broadening the hemifusion energy barrier and consequently making the membranes more prone to fusion. PMID:20228892

  2. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    Science.gov (United States)

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  3. An Ion Switch Regulates Fusion of Charged Membranes

    Science.gov (United States)

    Siepi, Evgenios; Lutz, Silke; Meyer, Sylke; Panzner, Steffen

    2011-01-01

    Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way. PMID:21575575

  4. Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer.

    Science.gov (United States)

    Acuña, Rodrigo; Bignon, Eduardo A; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2015-11-01

    The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.

  5. Pathway of membrane fusion with two tension-dependent energy barriers

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2007-01-01

    Fusion of bilayer membranes is studied via dissipative particle dynamics (DPD) simulations. A new set of DPD parameters is introduced which leads to an energy barrier for flips of lipid molecules between adhering membranes. A large number of fusion events is monitored for a vesicle in contact...

  6. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    +/calmodulin controls this terminal process in many intracellular fusion events. Here we identify V0, the membrane-integral sector of the vacuolar H+-ATPase, as a target of calmodulin on yeast vacuoles. Between docking and bilayer fusion, V0 sectors from opposing membranes form complexes. V0 trans...

  7. FUSION OF ARTIFICIAL MEMBRANES WITH MAMMALIAN SPERMATOZOA - SPECIFIC INVOLVEMENT OF THE EQUATORIAL SEGMENT AFTER ACROSOME REACTION

    NARCIS (Netherlands)

    ARTS, EGJM; KUIKEN, J; JAGER, S; HOEKSTRA, D

    1993-01-01

    The fusogenic properties of bovine and human spermatozoa membranes were investigated, using phospholipid bilayers (liposomes) as target membranes. Fusion was monitored by following lipid mixing, as revealed by an assay based on resonance-energy transfer. In addition, fusion was visualized by fluores

  8. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  9. Enhanced Membrane Fusion in Sterol-enriched Vacuoles Bypasses the Vrp1p RequirementD⃞

    OpenAIRE

    Tedrick, Kelly; Trischuk, Tim; Lehner, Richard; Eitzen, Gary

    2004-01-01

    Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Δ growth defect selective for vacuol...

  10. Enhanced Membrane Fusion in Sterol-enriched Vacuoles Bypasses the Vrp1p RequirementD⃞

    OpenAIRE

    Tedrick, Kelly; Trischuk, Tim; Lehner, Richard; Eitzen, Gary

    2004-01-01

    Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Δ growth defect selective for vacuol...

  11. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  12. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. (State Univ. of New York, Buffalo (USA))

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  13. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    Directory of Open Access Journals (Sweden)

    Susan Daniel

    2012-07-01

    Full Text Available Hemagglutinin (HA is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future.

  14. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    Science.gov (United States)

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  15. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems.

    OpenAIRE

    1996-01-01

    Bolaform lipid vesicles were used to study the effect of physical constraints on membrane fusion. In these vesicles the membrane is organized in a single monolayer, because of the presence of covalent bonds in its middle plane. Therefore, the formation of fusion intermediates is subject to higher energy barriers and greater geometrical constraints than is usual in bilayer membranes. Bolaform lipids were extracted from the thermophilic archaeon Sulfolobus solfataricus. These lipids can be divi...

  16. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.

    Science.gov (United States)

    Harel, Amnon; Chan, Rene C; Lachish-Zalait, Aurelie; Zimmerman, Ella; Elbaum, Michael; Forbes, Douglass J

    2003-11-01

    Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.

  17. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  18. Interaction of HIV-1 fusion peptide and its mutant with lipid membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    HIVWT and HIVV2E represent the 23 amino acids fusion peptide of HIV-1 gp41 N terminus and its position 2 mutant (Val→Glu). We have studied the structure-function relationship of HIVWT and HIVV2E when they interact with acidic and neutral lipid membranes. The results show that HIVWT and HIVV2E have the same conformational characteristics and tendencies of conformational transition but definitely different functions: HIVWT destabilizes membrane and induces fusion by adopting predominant a-helix conformation when interacting with acidic POPG membrane, its phenylalanine residues can penetrate into the hydrophobic core of POPG bilayer; HIVV2E also adopts predominant a-helix when interacting with POPG membrane, but it cannot destabilize POPG membrane and induce fusion, the phenylalanine residues of it are located near the surface of POPG bilayer. HIVWT and HIVV2E both adopt predominant a-sheet conformation to interact with neutral POPC membrane, and cannot destabilize POPC membrane and induce fusion, the position of phenylalanine residues of both HIVWT and HIVV2E are close to the surface of POPC bilayer. These results demonstrate that the N terminal hydrophobicity of fusion peptide and the secondary structure when interacting with lipid membrane play important roles for fusion peptide exerting its function.

  19. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions.

    Directory of Open Access Journals (Sweden)

    Victor Buzon

    2010-05-01

    Full Text Available The HIV-1 envelope glycoprotein (Env composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 A resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR and the membrane proximal external region (MPER form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR, bends in a 90 degrees-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly

  20. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein.

    Science.gov (United States)

    Kim, Irene S; Jenni, Simon; Stanifer, Megan L; Roth, Eatai; Whelan, Sean P J; van Oijen, Antoine M; Harrison, Stephen C

    2017-01-03

    The glycoproteins (G proteins) of vesicular stomatitis virus (VSV) and related rhabdoviruses (e.g., rabies virus) mediate both cell attachment and membrane fusion. The reversibility of their fusogenic conformational transitions differentiates them from many other low-pH-induced viral fusion proteins. We report single-virion fusion experiments, using methods developed in previous publications to probe fusion of influenza and West Nile viruses. We show that a three-stage model fits VSV single-particle fusion kinetics: (i) reversible, pH-dependent, G-protein conformational change from the known prefusion conformation to an extended, monomeric intermediate; (ii) reversible trimerization and clustering of the G-protein fusion loops, leading to an extended intermediate that inserts the fusion loops into the target-cell membrane; and (iii) folding back of a cluster of extended trimers into their postfusion conformations, bringing together the viral and cellular membranes. From simulations of the kinetic data, we conclude that the critical number of G-protein trimers required to overcome membrane resistance is 3 to 5, within a contact zone between the virus and the target membrane of 30 to 50 trimers. This sequence of conformational events is similar to those shown to describe fusion by influenza virus hemagglutinin (a "class I" fusogen) and West Nile virus envelope protein ("class II"). Our study of VSV now extends this description to "class III" viral fusion proteins, showing that reversibility of the low-pH-induced transition and architectural differences in the fusion proteins themselves do not change the basic mechanism by which they catalyze membrane fusion.

  1. Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes.

    Directory of Open Access Journals (Sweden)

    Reagan G Cox

    2015-12-01

    Full Text Available Human metapneumovirus (HMPV, a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments.

  2. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Natalie K. Garcia

    2016-01-01

    Full Text Available The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system.

  3. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    Directory of Open Access Journals (Sweden)

    Cécile Sauvanet

    Full Text Available Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA. We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP or to maternally inherited Leigh Syndrome (MILS in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from

  4. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    Science.gov (United States)

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  5. Biochemical reconstitution of hemorrhagic-fever arenavirus envelope glycoprotein-mediated membrane fusion.

    Directory of Open Access Journals (Sweden)

    Celestine J Thomas

    Full Text Available The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.

  6. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion

    Directory of Open Access Journals (Sweden)

    Kuo Szu-Cheng

    2012-04-01

    Full Text Available Abstract Background Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV. E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. Methods A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230 in membrane fusion activity. Results Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only was greater than that of cells bearing 26S-based constructs (expressing all structural proteins, the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds

  7. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Directory of Open Access Journals (Sweden)

    Mônica S Freitas

    Full Text Available The Ebola fusion peptide (EBO₁₆ is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM, a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs, but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  8. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  9. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao, E-mail: hk228@med.kyushu-u.ac.jp

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  10. The fifth adaptor protein complex.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2011-10-01

    Full Text Available Adaptor protein (AP complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.

  11. The structural dynamics of the flavivirus fusion peptide-membrane interaction.

    Directory of Open Access Journals (Sweden)

    Ygara S Mendes

    Full Text Available Membrane fusion is a crucial step in flavivirus infections and a potential target for antiviral strategies. Lipids and proteins play cooperative roles in the fusion process, which is triggered by the acidic pH inside the endosome. This acidic environment induces many changes in glycoprotein conformation and allows the action of a highly conserved hydrophobic sequence, the fusion peptide (FP. Despite the large volume of information available on the virus-triggered fusion process, little is known regarding the mechanisms behind flavivirus-cell membrane fusion. Here, we evaluated the contribution of a natural single amino acid difference on two flavivirus FPs, FLA(G ((98DRGWGNGCGLFGK(110 and FLA(H ((98DRGWGNHCGLFGK(110, and investigated the role of the charge of the target membrane on the fusion process. We used an in silico approach to simulate the interaction of the FPs with a lipid bilayer in a complementary way and used spectroscopic approaches to collect conformation information. We found that both peptides interact with neutral and anionic micelles, and molecular dynamics (MD simulations showed the interaction of the FPs with the lipid bilayer. The participation of the indole ring of Trp appeared to be important for the anchoring of both peptides in the membrane model, as indicated by MD simulations and spectroscopic analyses. Mild differences between FLA(G and FLA(H were observed according to the pH and the charge of the target membrane model. The MD simulations of the membrane showed that both peptides adopted a bend structure, and an interaction between the aromatic residues was strongly suggested, which was also observed by circular dichroism in the presence of micelles. As the FPs of viral fusion proteins play a key role in the mechanism of viral fusion, understanding the interactions between peptides and membranes is crucial for medical science and biology and may contribute to the design of new antiviral drugs.

  12. Membrane pumping technology for helium and hydrogen isotope separation in the fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pistunovich, V.I. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Pigarov, A.Yu. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Busnyuk, A.O. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Livshits, A.I. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Notkin, M.E. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Samartsev, A.A. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Borisenko, K.L. [Efremov Institute, St. Petersburg (Russian Federation); Darmogray, V.V. [Efremov Institute, St. Petersburg (Russian Federation); Ershov, B.D. [Efremov Institute, St. Petersburg (Russian Federation); Filippova, L.V. [Efremov Institute, St. Petersburg (Russian Federation); Mudugin, B.G. [Efremov Institute, St. Petersburg (Russian Federation); Odintsov, V.N. [Efremov Institute, St. Petersburg (Russian Federation); Saksagansky, G.L. [Efremov Institute, St. Petersburg (Russian Federation); Serebrennikov, D.V. [Efremov Institute, St. Petersburg (Russian Federation)

    1995-03-01

    A gas pumping system for ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. A study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been performed.Monte Carlo simulations of gas behaviour for the experimental facility and fusion reactor have been done.The scheme of the ITER pumping system with the membranes and membrane pumping technology was considered. The conceptual study the membrane pump for the ITER was done. This work gives good prospects for the membrane pumping use in ITER to reduce the total inventory of tritium necessary for reactor operation. (orig.).

  13. Visualization of Membrane Fusion, One Particle at a Time

    NARCIS (Netherlands)

    Otterstrom, Jason; van Oijen, Antoine M.

    2013-01-01

    Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysi

  14. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Nikolai I Kiskin

    Full Text Available Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP and the VWF-propolypeptide-EGFP (Pro-EGFP were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean. In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.

  15. Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    Science.gov (United States)

    Kiskin, Nikolai I; Babich, Victor; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2014-01-01

    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis.

  16. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol...

  17. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  18. Low energy cost for optimal speed and control of membrane fusion.

    Science.gov (United States)

    François-Martin, Claire; Rothman, James E; Pincet, Frederic

    2017-02-07

    Membrane fusion is the cell's delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

  19. Probe transfer with and without membrane fusion in a fluorescence fusion assay

    NARCIS (Netherlands)

    Ohki, S; Flanagan, TD; Hoekstra, D

    1998-01-01

    An analysis of the R(18) fusion assay was made during the fusion of the Sendai virus with erythrocyte ghosts. The increase in R(18) fluorescence, reflecting the interaction process, was evaluated in terms of the different processes that in principle may contribute to this increase, that is, monomeri

  20. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane

    Directory of Open Access Journals (Sweden)

    Juan Fontana

    2017-08-01

    Full Text Available All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV, a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i mutagenesis to insert fluorescent proteins at specific positions, (ii coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.

  1. Fusion of membranes during fertilization. Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm

    OpenAIRE

    1992-01-01

    The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal rela...

  2. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.

    Science.gov (United States)

    Heidrich, Jennifer; Thurotte, Adrien; Schneider, Dirk

    2017-04-01

    The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg(2+) is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  3. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.

    2011-01-01

    reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 105 FomA proteins could be incorporated......Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We...... establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein...

  4. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  5. Antibodies against analogous heptad repeat peptide HR212 of Newcastle Disease Virus inhibit virus-cell membrane fusion

    Institute of Scientific and Technical Information of China (English)

    LI Ying; TIEN Po

    2007-01-01

    Membrane fusion is a key step in enveloped virus entry. Highly conserved heptad repeat regions (HR1 and HR2) of Newcastle disease virus (NDV) fusion protein (F) are critical functional domains for viral membrane fusion. They display different conformations in the membrane fusion states and are viewed as candidate targets for neutralizing antibody responses. We previously reported that an analog of heptad repeat peptides HR2-HR1-HR2(HR212) and HR2 could inhibit NDV induced cell-cell membrane fusion. Here, we show that HR212 can induce the production of highly potent antibody in immunized rabbits, which could recognize full length peptides of both HR1 and HR2, and inhibit NDV hemagglutination and NDV entry. These suggest that either HR212 or its antibody could be an inhibitor of virus-induced cell-cell membrane fusion.

  6. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes

    DEFF Research Database (Denmark)

    Ries, Oliver; Löffler, Philipp M. G.; Vogel, Stefan

    2015-01-01

    Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers. Membrane-anchor modified oligonucleotides are applicable in biomedicine leading to new delivery strategies as well as in biophysical investigations towards assembly and fusion of liposom...

  7. Fusion of artificial membranes with mammalian spermatozoa. Specific involvement of the equatorial segment after acrosome reaction.

    Science.gov (United States)

    Arts, E G; Kuiken, J; Jager, S; Hoekstra, D

    1993-11-01

    The fusogenic properties of bovine and human spermatozoa membranes were investigated, using phospholipid bilayers (liposomes) as target membranes. Fusion was monitored by following lipid mixing, as revealed by an assay based on resonance-energy transfer. In addition, fusion was visualized by fluorescence microscopy, using fluorescent lipid vesicles. Cryopreserved bovine sperm fused with liposomes before induction of the acrosome reaction, fluorescence being located in essentially all spermatozoa membrane domains. Fresh bovine and human spermatozoa fused with liposomes only after the induction of the acrosome reaction, as triggered by calcium ionophore A23187 or zonae pellucidae (proteins), while the fluorescence distribution was mainly restricted to the equatorial segment (ES). However, with spermatozoa that had undergone a freeze/thawing cycle, domains other than ES also became labeled. Hence, the redistribution of the lipid probes over the entire membrane occurring during lipid mixing with cryopreserved bovine sperm is probably related to membrane perturbations caused by long-term cryopreservation. Fusion with liposomes was governed by spermatozoa factors and required the presence of acidic phospholipids like cardiolipin and phosphatidylserine in the liposomal bilayer. Incorporation of the zwitterionic lipid phosphatidylcholine in the vesicles inhibited the fusion reaction. Fusion was pH dependent. The results indicate that the ES is the primary domain of spermatozoa membranes that harbours the fusogenic capacity of sperm. Liposomes appear a valuable tool in further characterizing the properties of this domain, which has been claimed [Yanagimachi, R. (1988) in The physiology of reproduction (Knobil, E. & Neill, J., eds) pp. 135-185, Raven Press, New York] to represent the putative, initial fusion site for the oocyte.

  8. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

    Science.gov (United States)

    Zhang, Cuilin; Shi, Zhun; Zhang, Lingzhi; Zhou, Zehua; Zheng, Xiaoyuan; Liu, Guiying; Bu, Guojun; Fraser, Paul E; Xu, Huaxi; Zhang, Yun-Wu

    2016-03-01

    Mitochondrial morphology is regulated by fusion and fission machinery. Impaired mitochondria dynamics cause various diseases, including Alzheimer's disease. Appoptosin (encoded by SLC25A38) is a mitochondrial carrier protein that is located in the mitochondrial inner membrane. Appoptosin overexpression causes overproduction of reactive oxygen species (ROS) and caspase-dependent apoptosis, whereas appoptosin downregulation abolishes β-amyloid-induced mitochondrial fragmentation and neuronal death during Alzheimer's disease. Herein, we found that overexpression of appoptosin resulted in mitochondrial fragmentation in a manner independent of its carrier function, ROS production or caspase activation. Although appoptosin did not affect levels of mitochondrial outer-membrane fusion (MFN1 and MFN2), inner-membrane fusion (OPA1) and fission [DRP1 (also known as DNM1L) and FIS1] proteins, appoptosin interacted with MFN1 and MFN2, as well as with the mitochondrial ubiquitin ligase MITOL (also known as MARCH5) but not OPA1, FIS1 or DRP1. Appoptosin overexpression impaired the interaction between MFN1 and MFN2, and mitochondrial fusion. By contrast, co-expression of MFN1, MITOL and a dominant-negative form of DRP1, DRP1(K38A), partially rescued appoptosin-induced mitochondrial fragmentation and apoptosis, whereas co-expression of FIS1 aggravated appoptosin-induced apoptosis. Together, our results demonstrate that appoptosin can interact with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

  9. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Directory of Open Access Journals (Sweden)

    Erik Ronzone

    Full Text Available Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  10. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Science.gov (United States)

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  11. Fusion and fission: membrane trafficking in animal cytokinesis.

    Science.gov (United States)

    Finger, Fern P; White, John G

    2002-03-22

    Cytokinesis is the physical act of separating daughter cells, allowing them to become separate entities. Recent studies have revealed that membrane insertion for furrowing and scission of the residual bridge is a key aspect of animal cytokinesis.

  12. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF Family of Adaptor Proteins with the Raft- and the Non-Raft Brush Border Membrane Fractions of NHE3

    Directory of Open Access Journals (Sweden)

    Ayesha Sultan

    2013-11-01

    Full Text Available Background/Aims: Trafficking, brush border membrane (BBM retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50, NHERF2 (E3KARP, and NHERF3 (PDZK1 with lipid rafts in murine small intestinal BBM. Methods: Detergent resistant membranes (“lipid rafts” were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3- mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results: NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions: The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.

  13. Septal membrane fusion--a pivotal event in bacterial spore formation?

    Science.gov (United States)

    Higgins, M L; Piggot, P J

    1992-09-01

    Formation of the asymmetrically located septum divides sporulating bacilli into two distinct cells: the mother cell and the prespore. The rigidifying wall material in the septum is subsequently removed by autolysis. Examination of published electron micrographs indicates that the two septal membranes then fuse to form a single membrane. Membrane fusion would be expected to have profound consequences for subsequent development. For example, it is suggested that fusion activates processing of pro-sigma E to sigma E in the cytoplasm by exposing it to a membrane-bound processing enzyme. Asymmetry of the fused membrane could restrict processing to one face of the membrane and hence explain why sigma E is associated with transcription in the mother cell but not in the prespore. Asymmetry of the fused membrane might also provide a mechanism for restricting the activity of another factor, sigma F, to the prespore. Attachment of the flexible fused septal membrane to the condensing prespore nucleoid could help drive the engulfment of the prespore by the mother cell.

  14. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Shuhei; Shinoda, Wataru, E-mail: w.shinoda@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Klein, Michael L. [Institute for Computational Molecular Science, Temple University, SERC Building 1925 North 12th Street, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle–vesicle, vesicle–planar, and planar–planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  15. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism.

    Science.gov (United States)

    Kawamoto, Shuhei; Klein, Michael L; Shinoda, Wataru

    2015-12-28

    The effects of membrane curvature on the free energy barrier for membrane fusion have been investigated using coarse-grained molecular dynamics (CG-MD) simulations, assuming that fusion takes place through a stalk intermediate. Free energy barriers were estimated for stalk formation as well as for fusion pore formation using the guiding potential method. Specifically, the three different geometries of two apposed membranes were considered: vesicle-vesicle, vesicle-planar, and planar-planar membranes. The free energy barriers for the resulting fusion were found to depend importantly on the fusing membrane geometries; the lowest barrier was obtained for vesicular membranes. Further, lipid sorting was observed in fusion of the mixed membranes of dimyristoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine (DOPE). Specifically, DOPE molecules were found to assemble around the stalk to support the highly negative curved membrane surface. A consistent result for lipid sorting was observed when a simple continuum model (CM) was used, where the Helfrich energy and mixing entropy of the lipids were taken into account. However, the CM predicts a much higher free energy barrier than found using CG-MD. This discrepancy originates from the conformational changes of lipids, which were not considered in the CM. The results of the CG-MD simulations reveal that a large conformational change in the lipid takes place around the stalk region, which results in a reduction of free energy barriers along the stalk mechanism of membrane fusion.

  16. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  17. Structural and metal binding characterization of the C-terminal metallochaperone domain of membrane fusion protein SilB from Cupriavidus metallidurans CH34.

    Science.gov (United States)

    Bersch, Beate; Derfoufi, Kheiro-Mouna; De Angelis, Fabien; Auquier, Vanessa; Ekendé, Elisabeth Ngonlong; Mergeay, Max; Ruysschaert, Jean-Marie; Vandenbussche, Guy

    2011-03-29

    Detoxification of heavy metal ions in Proteobacteria is tightly controlled by various systems regulating their sequestration and transport. In Cupriavidus metallidurans CH34, a model organism for heavy metal resistance studies, the sil determinant is potentially involved in the efflux of silver and copper ions. Proteins SilA, SilB, and SilC form a resistance nodulation cell division (RND)-based transport system in which SilB is the periplasmic adaptor protein belonging to the membrane fusion protein (MFP) family. In addition to the four domains typical of known MFPs, SilB has a fifth additional C-terminal domain, called SilB(440-521), which is characterized here. Structure and backbone dynamics of SilB(440-521) have been investigated using nuclear magnetic resonance, and the residues of the metal site were identified from (15)N- and (13)C-edited HSQC spectra. The solution structure and additional metal binding experiments demonstrated that this C-terminal domain folds independently of the rest of the protein and has a conformation and a Ag(+) and Cu(+) binding specificity similar to those determined for CusF from Escherichia coli. The small protein CusF plays a role in metal trafficking in the periplasm. The similarity with CusF suggests a potential metallochaperone role for SilB(440-521) that is discussed in the context of simultaneous expression of different determinants involved in copper resistance in C. metallidurans CH34.

  18. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging

    Directory of Open Access Journals (Sweden)

    Pedroso de Lima Maria C.

    1999-01-01

    Full Text Available It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity. By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  19. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging.

    Science.gov (United States)

    Ramalho-Santos, João; Pedroso De Lima, Maria C.

    1999-03-16

    It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH) or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity). By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

  20. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    Science.gov (United States)

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  1. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    Science.gov (United States)

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules.

    Directory of Open Access Journals (Sweden)

    Jennine M Dawicki-McKenna

    Full Text Available In adipocytes, vesicles containing glucose transporter-4 (GLUT4 redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin, preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.

  4. Sphingolipid and cholesterol dependence of alphavirus membrane fusion - Lack of correlation with lipid raft formation in target liposomes

    NARCIS (Netherlands)

    Waarts, BL; Bittman, R; Wilschut, J

    2002-01-01

    Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped viruses that infect their host cells by receptor-mediated endocytosis and subsequent fusion from within acidic endosomes. Fusion of the viral envelope requires the presence of both cholesterol and sphingolipids in the target membrane.

  5. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus.

    Directory of Open Access Journals (Sweden)

    Annarita Falanga

    Full Text Available The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.

  6. Membrane-transferring regions of gp41 as targets for HIV-1 fusion inhibition and viral neutralization.

    Science.gov (United States)

    Huarte, Nerea; Lorizate, Maier; Pérez-Payá, Enrique; Nieva, José L

    2011-12-01

    The fusogenic function of HIV-1 gp41 transmembrane Env subunit relies on two different kinds of structural elements: i) a collapsible ectodomain structure (the hairpin or six-helix bundle) that opens and closes, and ii) two membrane- transferring regions (MTRs), the fusion peptide (FP) and the membrane-proximal external region (MPER), which ensure coupling of hairpin closure to apposition and fusion of cell and viral membranes. The isolation of naturally produced short peptides and neutralizing IgG-s, that interact with FP and MPER, respectively, and block viral infection, suggests that these conserved regions might represent useful targets for clinical intervention. Furthermore, MTR-derived peptides have been shown to be membrane-active. Here, it is discussed the potential use of these molecules and how the analysis of their membrane activity in vitro could contribute to the development of HIV fusion inhibitors and effective immunogens.

  7. Role of adaptor proteins in secretory granule biogenesis and maturation

    Directory of Open Access Journals (Sweden)

    Mathilde L Bonnemaison

    2013-08-01

    Full Text Available In the regulated secretory pathway, secretory granules (SGs store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network (TGN and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins, which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by PACS-1 (Phosphofurin Acidic Cluster Sorting protein 1, a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The GGA (Golgi-localized, -ear containing, ADP-ribosylation factor binding family of adaptor proteins serve a similar role. We review the functions of AP-1A, PACS-1 and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by adaptor proteins.

  8. Effects of ionic liquids on membrane fusion and lipid aggregation of egg-PC liposomes.

    Science.gov (United States)

    Galletti, Paola; Malferrari, Danilo; Samorì, Chiara; Sartor, Giorgio; Tagliavini, Emilio

    2015-01-01

    In this study we have explored the effects of different groups of ionic liquids (ILs) on membrane fusion. The ILs used contain different head groups: N-methylimidazolium, 3-methylpyridinium and N-methylpyrrolidinium; short alkyl or ether functionalized side chains (with one or two ethoxy functionalities), paired with chloride anion. These ILs have been compared with 1-dodecyl-3-methylimidazolium bromide as example of a highly lipophilic IL. The effect of ILs on membrane fusion was investigated through pyrene steady state fluorescence probing, using the IE factor and excimer/monomer ratio (IE/IM) as parameters. The ratio between the vibronic bands of pyrene (I1/I3 ratio) has been used to monitor the effect of ILs on the aggregation properties of egg-PC liposomes. The effect of different ILs' families was evident; the pyridinium ILs induced a greater extent of fusion than pyrrolidinium and imidazolium ILs having the same side chain. Marginal effect could be attributed to different anions. ILs with short alkyl chains were usually more effective than ether functionalized ones. The aggregation behaviors of ILs having dioxygenated chains have been measured in buffer solution.

  9. Time Resolved Neutron Reflectivity During Supported Membrane Formation by Vesicle Fusion.

    Science.gov (United States)

    Koutsioubas, Alexandros; Appavou, Marie-Sousai; Lairez, Didier

    2017-09-05

    The formation of supported lipid bilayers (SLB) on hydrophilic substrates through the method of unilamelar vesicle fusion is used routinely in a wide range of biophysical studies. In an effort to control and better understand the fusion process on the substrate, many experimental studies employing different techniques have been devoted to the elucidation of the fusion mechanism. In the present work we follow the kinetics of membrane formation using time-resolved (TR) neutron reflectivity, focussing at the structural changes near the solid/liquid interface. A clear indication of stacked bilayer structure is observed during the intermediate phase of SLB formation. Adsorbed lipid mass decrease is also measured at the final stage of the process. We have found that it is essential for the analysis of the experimental results to treat theoretically the shape of adsorbed lipid vesicles on an attractive substrate. The overall findings are discussed in relation to proposed fusion mechanisms from previous literature, while we argue that our observations favour a model involving enhanced adhesion of incoming vesicles on the edges of already formed bilayer patches.

  10. Role of a Putative gp41 Dimerization Domain in Human Immunodeficiency Virus Type 1 Membrane Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Deng, Y; Li, Q; Dey, A; Moore, J; Lu, M

    2010-01-01

    The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal {alpha}-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.

  11. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.

    Directory of Open Access Journals (Sweden)

    Axel Hollmann

    Full Text Available Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC, C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.

  12. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect.

  13. Conformation of trimeric envelope glycoproteins: the CD4-dependent membrane fusion mechanism of HIV-1.

    Science.gov (United States)

    Yingliang, Wu; Hong, Yi; Zhijian, Cao; Wenxin, Li

    2007-08-01

    The HIV-1 envelope glycoproteins are assembled by the trimeric gp120s and gp41s proteins. The gp120 binds sequentially to CD4 and coreceptor for initiating virus entry. Because of noncovalent interaction and heavy glycosylation for envelope glycoproteins, it is highly difficult to determine entire envelope glycoproteins structure now. Such question extremely limits our good understanding of HIV-1 membrane fusion mechanism. Here, a novel and reasonable assembly model of trimeric gp120s and gp41s was proposed based on the conformational dynamics of trimeric gp120-gp41 complex and gp41, respectively. As for gp41, the heptad repeat sequences in the gp41 C-terminal is of enormous flexibility. On the contrary, the heptad repeat sequences in the gp41 N-terminal likely present stable three-helical bundle due to strong nonpolar interaction, and they were predicted to associate three alpha1 helixes from the non-neutralizing face of the gp120 inner domain, which is quite similar to gp41 fusion core structure. Such interaction likely leads to the formation of noncovalent gp120-gp41 complex. In the proposed assembly of trimeric gp120-gp41 complex, three gp120s present not only perfectly complementary and symmetrical distribution around the gp41, but also different flexibility degree in the different structural domains. Thus, the new model can well explain numerous experimental phenomena, present plenty of structural information, elucidate effectively HIV-1 membrane fusion mechanism, and direct to further develop vaccine and novel fusion inhibitors.

  14. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  15. NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion.

    Science.gov (United States)

    Mahajan, Mukesh; Bhattacharjya, Surajit

    2015-02-01

    Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell-cell fusion. The N-terminal fusion peptide (FP, residues 770-788), an internal fusion peptide (IFP, residues 873-888) and the pre-transmembrane region (PTM, residues 1185-1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix-loop-helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Prokaryotic expression of S2 extracellular domain of SARS coronavirus spike protein and its fusion with Hela cell membrane].

    Science.gov (United States)

    Liu, Yun; Liu, Ai-Hua; Deng, Peng; Wu, Xiang-Ling; Li, Tao; Liu, Ya-Wei; Xu, Jia; Jiang, Yong

    2009-03-01

    To construct the expression plasmid of S2 extracellular domain (S2ED) of SARS-coronavirus (SARS- Cov) spike protein (S protein) and enhanced green fluorescent protein (EGFP) to obtain the fusion protein expressed in prokaryotic cells. S2ED based on bioinformatics prediction and EGFP sequence were amplified by PCR and inserted into pET-14b plasmid. The recombinant protein His-S2ED-EGFP was expressed in E. coli by IPTG induction. After purification by Ni-NTA agarose beads, the soluble fractions of the fusion protein were collected and identified by SDS-PAGE and Western blotting. The fusion of S2ED with Hela cell membranes was observed with fluorescent microscope. The pET-14b-S2ED-EGFP plasmid was correctly constructed and highly expressed in BL21 (DE3). When incubated with Hela cells, the purified protein could not internalize through membrane fusion. The expression plasmid containing S2ED of SARS-Cov S protein and EGFP sequence is constructed successfully. Although the recombinant protein obtained has not shown the expected fusion effect with Hela cell membrane, this work may enrich the understanding of the process of membrane fusion mediated by S2 protein and lay the foundation for future study of targeting cell transport system based on cell-specific binding peptide.

  17. Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2015-01-01

    Full Text Available Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.

  18. Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro.

    Directory of Open Access Journals (Sweden)

    Fiona M Brandie

    Full Text Available BACKGROUND: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. METHODOLOGY/PRINCIPAL FINDINGS: Here we have used biochemical approaches to characterise the interaction(s of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. CONCLUSION/SIGNIFICANCE: Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion.

  19. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  20. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components.

    Directory of Open Access Journals (Sweden)

    Jason P Laliberte

    2011-12-01

    Full Text Available For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry.

  1. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair.

    Science.gov (United States)

    Lek, Angela; Evesson, Frances J; Sutton, R Bryan; North, Kathryn N; Cooper, Sandra T

    2012-02-01

    Ferlins are a family of multiple C2 domain proteins with emerging roles in vesicle fusion and membrane trafficking. Ferlin mutations are associated with muscular dystrophy (dysferlin) and deafness (otoferlin) in humans, and infertility in Caenorhabditis elegans (Fer-1) and Drosophila (misfire), demonstrating their importance for normal cellular functioning. Ferlins show ancient origins in eukaryotic evolution and are detected in all eukaryotic kingdoms, including unicellular eukaryotes and apicomplexian protists, suggesting origins in a common ancestor predating eukaryotic evolutionary branching. The characteristic feature of the ferlin family is their multiple tandem cytosolic C2 domains (five to seven C2 domains), the most of any protein family, and an extremely rare feature amongst eukaryotic proteins. Ferlins also bear a unique nested DysF domain and small conserved 60-70 residue ferlin-specific sequences (Fer domains). Ferlins segregate into two subtypes based on the presence (type I ferlin) or absence (type II ferlin) of the DysF and FerA domains. Ferlins have diverse tissue-specific and developmental expression patterns, with ferlin animal models united by pathologies arising from defects in vesicle fusion. Consistent with their proposed role in vesicle trafficking, ferlin interaction partners include cytoskeletal motors, other vesicle-associated trafficking proteins and transmembrane receptors or channels. Herein we summarize the research history of the ferlins, an intriguing family of structurally conserved proteins with a preserved ancestral function as regulators of vesicle fusion and receptor trafficking.

  2. A GALA lipopeptide mediates pH- and membrane charge dependent fusion with stable giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Etzerodt, Thomas P.; Trier, Sofie; Henriksen, Jonas R.

    2012-01-01

    ,2-diamino propanoic acid (Dap) moiety, yielding the lipopeptide dimyristoyl-Dap-GALA (DMDGALA). We have investigated DMDGALA as a component in large unilamellar vesicles (LUVs) and demonstrate pH-triggered fusion of peptide containing LUVs with stable target giant unilamellar vesicles (GUVs), which were...... used as simple mimics of cell membranes. The number of fusion events was large at pH 5.0, which is a physiologically relevant pH-range for a drug delivery system....

  3. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc

    Science.gov (United States)

    Stettner, Eva; Jeffers, Scott Allen; Pérez-Vargas, Jimena; Pehau-Arnaudet, Gerard; Tortorici, M. Alejandra; Jestin, Jean-Luc; England, Patrick; Tischler, Nicole D.; Rey, Félix A.

    2016-01-01

    Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single “fusion loop”. We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal “tail” that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens. PMID:27783711

  4. A comparison of coarse-grained and continuum models for membrane bending in lipid bilayer fusion pores.

    Science.gov (United States)

    Yoo, Jejoong; Jackson, Meyer B; Cui, Qiang

    2013-02-19

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The hr1 and fusion peptide regions of the subgroup B avian sarcoma and leukosis virus envelope glycoprotein influence low pH-dependent membrane fusion.

    Directory of Open Access Journals (Sweden)

    Angeline Rose Babel

    Full Text Available The avian sarcoma and leukosis virus (ASLV envelope glycoprotein (Env is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1 region of the surface (SU EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation.

  6. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion.

    Science.gov (United States)

    Messina, Emily L; York, Joanne; Nunberg, Jack H

    2012-06-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.

  7. Effect of Amphipathic HIV Fusion Inhibitor Peptides on POPC and POPC/Cholesterol Membrane Properties: A Molecular Simulation Study

    Directory of Open Access Journals (Sweden)

    Luís M. S. Loura

    2013-07-01

    Full Text Available T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC (liquid disordered, ld and POPC/cholesterol (1:1 (POPC/Chol (liquid ordered, lo bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD, T-20 lacks a pocket binding domain (PBD, which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249’s adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.

  8. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Michael R.; Jones, Lynden [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada); Eitzen, Gary, E-mail: gary.eitzen@ualberta.ca [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada)

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  9. Early Events in Chikungunya Virus Infection-From Virus Cell Binding to Membrane Fusion.

    Science.gov (United States)

    van Duijl-Richter, Mareike K S; Hoornweg, Tabitha E; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2015-07-07

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.

  10. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Montanez, Cecilia [Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies (CINVESTAV), IPN, Mexico City 07360 (Mexico); Wong, Carlos [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Baeza, Isabel, E-mail: ibaeza@encb.ipn.mx [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico)

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  11. Early Events in Chikungunya Virus Infection—From Virus Cell Binding to Membrane Fusion

    Science.gov (United States)

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research. PMID:26198242

  12. Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Mareike K. S. van Duijl-Richter

    2015-07-01

    Full Text Available Chikungunya virus (CHIKV is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.

  13. Acid phosphatase 2 (ACP2) is required for membrane fusion during influenza virus entry

    Science.gov (United States)

    Lee, Jihye; Kim, Jinhee; Son, Kidong; d’Alexandry d’Orengiani, Anne-Laure Pham Humg; Min, Ji-Young

    2017-01-01

    Influenza viruses exploit host factors to successfully replicate in infected cells. Using small interfering RNA (siRNA) technology, we identified six human genes required for influenza A virus (IAV) replication. Here we focused on the role of acid phosphatase 2 (ACP2), as its knockdown showed the greatest inhibition of IAV replication. In IAV-infected cells, depletion of ACP2 resulted in a significant reduction in the expression of viral proteins and mRNA, and led to the attenuation of virus multi-cycle growth. ACP2 knockdown also decreased replication of seasonal influenza A and B viruses and avian IAVs of the H7 subtype. Interestingly, ACP2 depletion had no effect on the replication of Ebola or hepatitis C virus. Because ACP2 is known to be a lysosomal acid phosphatase, we assessed the role of ACP2 in influenza virus entry. While neither binding of the viral particle to the cell surface nor endosomal acidification was affected in ACP2-depleted cells, fusion of the endosomal and viral membranes was impaired. As a result, downstream steps in viral entry were blocked, including nucleocapsid uncoating and nuclear import of viral ribonucleoproteins. Our results established ACP2 as a necessary host factor for regulating the fusion step of influenza virus entry. PMID:28272419

  14. New chemical method of viral inactivation for vaccine development based on membrane fusion inhibition.

    Science.gov (United States)

    Stauffer, Fausto; De Miranda, Joari; Schechter, Marcos C; Queiroz, Fernando A; Santos, Nathalia O; Alves, Ada M B; Da Poian, Andrea T

    2007-11-14

    Membrane fusion is an essential step in the entry of enveloped viruses into their host cells. This process is triggered by conformational changes in viral surface glycoproteins. We have demonstrated previously that modification of vesicular stomatitis virus (VSV) with diethylpyrocarbonate (DEPC) abolished the conformational changes on VSV glycoprotein and the fusion reaction induced by the virus. Moreover, we observed that viral treatment with DEPC inactivates the virus, preserving the conformational integrity of its surface proteins. In the present work, we evaluated the potential use of DEPC as a viral inactivating chemical agent for the development of useful vaccines. Pathogenicity and viral replication in Balb/c mice were abolished by viral treatment with 0.5mM DEPC. In addition, antibodies elicited in mice after intraperitoneal immunization with DEPC-inactivated VSV mixed with adjuvants were able to recognize and neutralize the native virus and efficiently protected animals against the challenge with lethal doses of VSV. These results together suggest that viral inactivation with DEPC seems to be a suitable method for the development of safe vaccines.

  15. DNA Duplexes with Hydrophobic Modifications Inhibit Fusion between HIV-1 and Cell Membranes

    Science.gov (United States)

    Xu, Liang; Cai, Lifeng; Chen, Xueliang; Jiang, Xifeng; Chong, Huihui; Zheng, Baohua; Wang, Kun; He, Junlin; Chen, Wei; Zhang, Tao; Cheng, Maosheng; He, Yuxian

    2013-01-01

    Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers. PMID:23896466

  16. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis

    Science.gov (United States)

    York, Joanne

    2016-01-01

    ABSTRACT Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. IMPORTANCE Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact

  17. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  18. The influenza fusion peptide promotes lipid polar head intrusion through hydrogen bonding with phosphates and N-terminal membrane insertion depth.

    Science.gov (United States)

    Légaré, Sébastien; Lagüe, Patrick

    2014-09-01

    Influenza infection requires fusion between the virus envelope and a host cell endosomal membrane. The influenza hemagglutinin fusion peptide (FP) is essential to viral membrane fusion. It was recently proposed that FPs would fuse membranes by increasing lipid tail protrusion, a membrane fusion transition state. The details of how FPs induce lipid tail protrusion, however, remain to be elucidated. To decipher the molecular mechanism by which FPs promote lipid tail protrusion, we performed molecular dynamics simulations of the wild-type (WT) FP, fusogenic mutant F9A, and nonfusogenic mutant W14A in model bilayers. This article presents the peptide-lipid interaction responsible for lipid tail protrusion and a related lipid perturbation, polar head intrusion, where polar heads are sunk under the membrane surface. The backbone amides from the four N-terminal peptide residues, deeply inserted in the membrane, promoted both perturbations through H bonding with lipid phosphates. Polar head intrusion correlated with peptides N-terminal insertion depth and activity: the N-termini of WT and F9A were inserted deeper into the membrane than nonfusogenic W14A. Based on these results, we propose that FP-induced polar head intrusion would complement lipid tail protrusion in catalyzing membrane fusion by reducing repulsions between juxtaposed membranes headgroups. The presented model provides a framework for further research on membrane fusion and influenza antivirals.

  19. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  20. Crystal Structure of the Membrane Fusion Protein CusB from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia; Yang, Feng; Long, Feng; Reyon, Deepak; Routh, Mathew D.; Kuo, Dennis W.; Mokhtari, Adam K.; Van Ornam, Jonathan D.; Rabe, Katherine L.; Hoy, Julie A.; Lee, Young Jin; Rajashankar, Kanagalaghatta R.; Yu, Edward W.; (Cornell); (Iowa State)

    2010-03-29

    Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes belonging to the resistance-nodulation-division family to expel diverse toxic compounds from the cell. These systems contain a periplasmic membrane fusion protein (MFP) that is critical for substrate transport. We here present the x-ray structures of the CusB MFP from the copper/silver efflux system of E. coli. This is the first structure of any MFPs associated with heavy-metal efflux transporters. CusB bridges the inner-membrane efflux pump CusA and outer-membrane channel CusC to mediate resistance to Cu{sup +} and Ag{sup +} ions. Two distinct structures of the elongated molecules of CusB were found in the asymmetric unit of a single crystal, which suggests the flexible nature of this protein. Each protomer of CusB can be divided into four different domains, whereby the first three domains are mostly {beta}-strands and the last domain adopts an entirely helical architecture. Unlike other known structures of MFPs, the {alpha}-helical domain of CusB is folded into a three-helix bundle. This three-helix bundle presumably interacts with the periplasmic domain of CusC. The N- and C-termini of CusB form the first {beta}-strand domain, which is found to interact with the periplasmic domain of the CusA efflux pump. Atomic details of how this efflux protein binds Cu{sup +} and Ag{sup +} were revealed by the crystals of the CusB-Cu(I) and CusB-Ag(I) complexes. The structures indicate that CusB consists of multiple binding sites for these metal ions. These findings reveal novel structural features of an MFP in the resistance-nodulation-division efflux system and provide direct evidence that this protein specifically interacts with transported substrates.

  1. Effect of viral membrane fusion activity on antibody induction by influenza H5N1 whole inactivated virus vaccine.

    Science.gov (United States)

    Geeraedts, Felix; ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2012-10-05

    Whole inactivated virus (WIV) influenza vaccines are more immunogenic in unprimed individuals than split-virus or subunit vaccines. In mice, this superior immunogenicity has been linked to the recognition of the viral ssRNA by endosomal TLR7 receptors in immune cells, leading to IFNα production and Th1-type antibody responses. Recent data suggest that viral membrane fusion in target cell endosomes is necessary for TLR7-mediated IFNα induction. If so, virus inactivation procedures that compromise the fusion activity of WIV vaccines, like formaldehyde (FA) treatment, could potentially harm vaccine efficacy. Therefore, we measured the effect of fusion inactivation of H5N1 WIV on TLR7 activation in vitro, and on antibody isotype responses in vivo. Fusion inactivation of WIV reduced, but did not block, TLR7-dependent IFNα induction in murine dendritic cells in vitro. In vivo, fusion-inactive WIV was as potent as fusion-active WIV in inducing total H5N1-specific serum IgG and IgG2c subtype antibodies in unprimed mice. Both vaccines induced only small amounts of IgG1. However, FA treatment of WIV did reduce the capacity of the vaccine to induce hemagglutination-inhibiting (HI) antibodies. This possibly relates to modification of epitopes that are targets for HI antibodies rather than to loss of fusion activity. Antibody affinity maturation was not negatively affected by fusion inactivation. In conclusion, fusion activity of H5N1 WIV does not play a major role in Th1-type antibody induction. Yet, to preserve the full immunogenicity of WIV, or possibly also other inactivated influenza vaccines, harsh treatment with formaldehyde should be avoided. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of transmembrane potential and pH gradient on the cytochrome c-promoted fusion of mitochondrial mimetic membranes.

    Science.gov (United States)

    Kawai, Cintia; Pessoto, Felipe S; Graves, Catharine V; Carmona-Ribeiro, Ana Maria; Nantes, Iseli L

    2013-08-01

    The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pH(out)) of PCPECL liposomes, with an internal pH (pH(in)) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK(a) ~ 6.9). Conversely, ΔpH generated by enhanced pH(in) of PCPECL at a pH(out) of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pH(in) at a pH(out) of 8.0. At bulk acidic pH, ΔΨ generated by Na⁺ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pH(out), the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨ(M) blocks inner mitochondrial membrane fusion during apoptosis.

  3. Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains.

    Science.gov (United States)

    Malinowsky, Katharina; Luksza, Julia; Dittmar, Matthias T

    2008-06-20

    The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxPhi domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1(NL4.3) compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of

  4. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B. [Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal); Santos, Nuno C., E-mail: nsantos@fm.ul.pt [Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisboa (Portugal)

    2010-12-17

    Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  5. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion.

    Science.gov (United States)

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S

    2017-03-15

    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  6. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    Science.gov (United States)

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  7. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  8. Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bitler, Arkady, E-mail: arkady.bitler@weizmann.ac.il [Department of Chemical Research Support (Israel); Lev, Naama; Fridmann-Sirkis, Yael; Blank, Lior [Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel); Cohen, Sidney R. [Department of Chemical Research Support (Israel); Shai, Yechiel [Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-15

    One of the most important steps in the process of viral infection is a fusion between cell membrane and virus, which is mediated by the viral envelope glycoprotein. The study of activity of the glycoprotein in the post-fusion state is important for understanding the progression of infection. Here we present a first real-time kinetic study of the activity of gp41 (the viral envelope glycoprotein of human immunodeficiency virus-HIV) and its two mutants in the post-fusion state with nanometer resolution by atomic force microscopy (AFM). Tracking the changes in the phosphatidylcholine (PC) and phosphatidylcholine-phosphatidylserine (PC:PS) membrane integrity over one hour by a set of AFM images revealed differences in the interaction of the three types of protein with zwitterionic and negatively charged membranes. A quantitative analysis of the slow kinetics of hole formation in the negatively charged lipid bilayer is presented. Specifically, analysis of the rate of roughness change for the three types of proteins suggests that they exhibit different types of kinetic behavior.

  9. The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling

    OpenAIRE

    Carty, Michael; Goodbody, Rory; Schröder, Michael; Stack, Julianne; Moynagh, Paul N.; Bowie, Andrew G.

    2006-01-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll–interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signalin...

  10. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.

    Science.gov (United States)

    Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé

    2017-01-15

    Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes.

  11. Chloroquine Increases Glucose Uptake via Enhancing GLUT4 Translocation and Fusion with the Plasma Membrane in L6 Cells

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-05-01

    Full Text Available Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM, GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor and U73122 (PLC inhibitor. However, 2-APB (IP3R blocker only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.

  12. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.

    Science.gov (United States)

    Olson, Mark A; Lee, Michael S; Yeh, In-Chul

    2017-01-28

    This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc.

  13. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    Science.gov (United States)

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  14. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain); Biomol-Informatics SL, Parque Cientifico de Madrid, C/ Faraday, 7, Cantoblanco, 28049 Madrid (Spain); Gomez-Puertas, Paulino, E-mail: pagomez@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' (CSIC/UAM), C/ Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  15. Development of new cloning vectors for the production of immunogenic outer membrane fusion proteins in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Cornelis, P.; Sierra, J.C.; Lim, A. Jr.; Malur, A. [Vrije Universiteit Brussel, Paardenstraat (Belgium)] [and others

    1996-02-01

    The Pseudomonas aeruginosa lipoprotein gene (oprI) was modified by cloning an in-frame polylinker in both orientations at the end of oprI. The resulting plasmids pVUBI and pVUB2 allow high lipoprotein production in E. coli after IPTG induction. The modified lipoproteins are present in the outer membrane and surface-exposed. Outer membrane-bound fusion proteins of different sizes were produced and used to generate antibodies without use of adjuvant. An 87 bp DNA fragment from the vp72 capsid protein gene of African Swine Fever virus (ASFV) and the entire Leishmania major glycoprotein gp63 gene were expressed in this system. Finally, a fusion lipoprotein containing a 16 amino acid epitope from the preS2b region of Hepatitis B virus (HBV) was presented by an antigen-presenting cell line to a T-cell hybridoma while the corresponding cross-linked S2b peptide was not. The results suggest that OprI-based fusion proteins can be used to generate both humoral and cellular immune responses. 44 refs., 7 figs.

  16. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    Science.gov (United States)

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  17. Adaptor Protein CD2AP and L-type Lectin LMAN2 Regulate Exosome Cargo Protein Trafficking through the Golgi Complex.

    Science.gov (United States)

    Kwon, Sang-Ho; Oh, Sekyung; Nacke, Marisa; Mostov, Keith E; Lipschutz, Joshua H

    2016-12-02

    Exosomes, 40-150-nm extracellular vesicles, transport biological macromolecules that mediate intercellular communications. Although exosomes are known to originate from maturation of endosomes into multivesicular endosomes (also known as multivesicular bodies) with subsequent fusion of the multivesicular endosomes with the plasma membrane, it remains unclear how cargos are selected for exosomal release. Using an inducible expression system for the exosome cargo protein GPRC5B and following its trafficking trajectory, we show here that newly synthesized GPRC5B protein accumulates in the Golgi complex prior to its release into exosomes. The L-type lectin LMAN2 (also known as VIP36) appears to be specifically required for the accumulation of GPRC5B in the Golgi complex and restriction of GPRC5B transport along the exosomal pathway. This may occur due to interference with the adaptor protein GGA1-mediated trans Golgi network-to-endosome transport of GPRC5B. The adaptor protein CD2AP-mediated internalization following cell surface delivery appears to contribute to the Golgi accumulation of GPRC5B, possibly in parallel with biosynthetic/secretory trafficking from the endoplasmic reticulum. Our data thus reveal a Golgi-traversing pathway for exosomal release of the cargo protein GPRC5B in which CD2AP facilitates the entry and LMAN2 impedes the exit of the flux, respectively. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes

    Science.gov (United States)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.

    2016-10-01

    An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.

  19. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner.

    Science.gov (United States)

    Yu, Haijia; Rathore, Shailendra S; Davis, Eric M; Ouyang, Yan; Shen, Jingshi

    2013-04-01

    The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca(2+). The stimulatory activity of Doc2b requires intact Ca(2+)-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca(2+)- and membrane bending-dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca(2+) sensors may possess divergent mechanisms in regulating vesicle fusion.

  20. DNAX-activating Protein 10 (DAP10) Membrane Adaptor Associates with Receptor for Advanced Glycation End Products (RAGE) and Modulates the RAGE-triggered Signaling Pathway in Human Keratinocytes*

    Science.gov (United States)

    Sakaguchi, Masakiyo; Murata, Hitoshi; Aoyama, Yumi; Hibino, Toshihiko; Putranto, Endy Widya; Ruma, I. Made Winarsa; Inoue, Yusuke; Sakaguchi, Yoshihiko; Yamamoto, Ken-ichi; Kinoshita, Rie; Futami, Junichiro; Kataoka, Ken; Iwatsuki, Keiji; Huh, Nam-ho

    2014-01-01

    The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes. PMID:25002577

  1. The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion.

    Science.gov (United States)

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S; Longnecker, Richard

    2014-10-01

    The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion

  2. Interactive, Computer-Assisted Tracking of Speckle Trajectories in Fluorescence Microscopy: Application to Actin Polymerization and Membrane Fusion

    Science.gov (United States)

    Smith, Matthew B.; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios

    2011-01-01

    Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm2/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. PMID:21961607

  3. Characterization of the pH-induced fusion of liposomes with the plasma membrane of rye protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Arvinte , T.; Steponkus, P.L.

    1988-07-26

    The authors present evidence that at acidic pH, liposomes composed of soybean lipids fuse with the plasma membrane of protoplasts isolated from rye leaves. Using the resonance energy transfer assay (RET), they determined the rate and extent of liposome and protoplast plasma membrane lipid mixing. The fluorescent donor-acceptor pair was N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidyl-ethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE). Fusion was substantial below pH 5, and the half-time of lipid mixing was fast (t/sub 1/2/ on the order of minutes) and pH, concentration, and temperature dependent. The extent of liposome and protoplast fusion from the total amount of liposomes associated with the protoplasts was also determined by the RET assay. Protoplasts were incubated with fluorescent-labeled liposomes (5 min at 30/sup 0/C) at different pH values and then washed twice by centrifugation. The fluorescence spectra of the protoplast suspension permitted determination of the ratio of N-NBD-PE emission at 530 nm to the N-Rh-PE emission at 590 nm, which is a measure of the degree of lipid mixing. The amount of liposomes associated (fused and unfused) with protoplasts at pH 3.9 was approximately 9 times greater than that at pH 5.6. The transfer of liposome contents to the protoplast interior was studied with a method based on the fluorescence enhancement of a solution of calcein, initially confined in the liposomes at self-quenching concentrations. The kinetics of calcein release were very similar to those of lipid mixing. Fluorescence microscopy showed that after fusion with liposomes containing calcein, the protoplasts exhibited a strong diffuse fluorescence in the interior.

  4. DNA Duplexes with Hydrophobic Modifications Inhibit Fusion between HIV-1 and Cell Membranes

    OpenAIRE

    Xu, Liang; Cai, Lifeng; Chen, Xueliang; Jiang, Xifeng; Chong, Huihui; Zheng, Baohua; Wang, Kun; He, Junlin; Chen, Wei; ZHANG, Tao; Cheng, Maosheng; He, Yuxian; Liu, Keliang

    2013-01-01

    Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 an...

  5. The Transmembrane Adaptor Protein SIT Inhibits TCR-Mediated Signaling

    Science.gov (United States)

    Arndt, Börge; Krieger, Tina; Kalinski, Thomas; Thielitz, Anja; Reinhold, Dirk; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2011-01-01

    Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance. PMID:21957439

  6. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  7. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    Science.gov (United States)

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  8. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that it...

  9. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    Science.gov (United States)

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  10. Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion.

    Science.gov (United States)

    Kwok, Michael C M; Holopainen, Juha M; Molday, Laurie L; Foster, Leonard J; Molday, Robert S

    2008-06-01

    The outer segment is a specialized compartment of vertebrate rod and cone photoreceptor cells where phototransduction takes place. In rod cells it consists of an organized stack of disks enclosed by a separate plasma membrane. Although most proteins involved in phototransduction have been identified and characterized, little is known about the proteins that are responsible for outer segment structure and renewal. In this study we used a tandem mass spectrometry-based proteomics approach to identify proteins in rod outer segment preparations as an initial step in defining their roles in photoreceptor structure, function, renewal, and degeneration. Five hundred and sixteen proteins were identified including 41 proteins that function in rod and cone phototransduction and the visual cycle and most proteins previously shown to be involved in outer segment structure and metabolic pathways. In addition, numerous proteins were detected that have not been previously reported to be present in outer segments including a subset of Rab and SNARE proteins implicated in vesicle trafficking and membrane fusion. Western blotting and immunofluorescence microscopy confirmed the presence of Rab 11b, Rab 18, Rab 1b, and Rab GDP dissociation inhibitor in outer segments. The SNARE proteins, VAMP2/3, syntaxin 3, N-ethylmaleimide-sensitive factor, and Munc 18 detected in outer segment preparations by mass spectrometry and Western blotting were also observed in outer segments by immunofluorescence microscopy. Syntaxin 3 and N-ethylmaleimide- sensitive factor had a restricted localization at the base of the outer segments, whereas VAMP2/3 and Munc 18 were distributed throughout the outer segments. These results suggest that Rab and SNARE proteins play a role in vesicle trafficking and membrane fusion as part of the outer segment renewal process. The data set generated in this study is a valuable resource for further analysis of photoreceptor outer segment structure and function.

  11. TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88.

    Directory of Open Access Journals (Sweden)

    Hidenori Ohnishi

    Full Text Available MyD88, a Toll/interleukin-1 receptor homology (TIR domain-containing adaptor protein, mediates signals from the Toll-like receptors (TLR or IL-1/IL-18 receptors to downstream kinases. In MyD88-dependent TLR4 signaling, the function of MyD88 is enhanced by another TIR domain-containing adaptor, Mal/TIRAP, which brings MyD88 to the plasma membrane and promotes its interaction with the cytosolic region of TLR4. Hence, Mal is recognized as the "sorting adaptor" for MyD88. In this study, a direct interaction between MyD88-TIR and another membrane-sorting adaptor, TRAM/TICAM-2, was demonstrated in vitro. Cell-based assays including RNA interference experiments and TRAM deficient mice revealed that the interplay between MyD88 and TRAM in cells is important in mediating IL-18 signal transduction. Live cell imaging further demonstrated the co-localized accumulation of MyD88 and TRAM in the membrane regions in HEK293 cells. These findings suggest that TRAM serves as the sorting adaptor for MyD88 in IL-18 signaling, which then facilitates the signal transduction. The binding sites for TRAM are located in the TIR domain of MyD88 and actually overlap with the binding sites for Mal. MyD88, the multifunctional signaling adaptor that works together with most of the TLR members and with the IL-1/IL-18 receptors, can interact with two distinct sorting adaptors, TRAM and Mal, in a conserved manner in a distinct context.

  12. Membrane pumping technology, helium and hydrogen isotopes separation in the fusion hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A.Yu.; Pistunovich, V.I. [NFI RRC-Kurchatov Institute, Moscow (Russian Federation); Busnyuk, A.O. [Bonch-Bruyevich Electrotechnical Inst. of Communications, St. Petersburg (Russian Federation)] [and others

    1994-12-31

    A gas pumping system for the ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. The study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been fulfilled. The membrane superpermeability can be only realized for atomic hydrogen. Helium does not pass through the membrane, and its presence does not affect the hydrogen pumping. A detailed Monte Carlo simulation of gas behavior for the experimental facility has been done. The probability of permeation for a hydrogen atom for one collision with the membrane is {approximately}0.1; the same probability of molecule permeation is {approximately}10{sup {minus}5}. The probability for atomization, i.e. re-emission of an atomizer is {approximately}0.2; the probability of recombination of an atom is {approximately}0.2.

  13. pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion.

    Science.gov (United States)

    Batishchev, O V; Shilova, L A; Kachala, M V; Tashkin, V Y; Sokolov, V S; Fedorova, N V; Baratova, L A; Knyazev, D G; Zimmerberg, J; Chizmadzhev, Y A

    2015-10-14

    Influenza virus is taken up from a pH-neutral extracellular milieu into an endosome, whose contents then acidify, causing changes in the viral matrix protein (M1) that coats the inner monolayer of the viral lipid envelope. At a pH of ~6, M1 interacts with the viral ribonucleoprotein (RNP) in a putative priming stage; at this stage, the interactions of the M1 scaffold coating the lipid envelope are intact. The M1 coat disintegrates as acidification continues to a pH of ~5 to clear a physical path for the viral genome to transit from the viral interior to the cytoplasm. Here we investigated the physicochemical mechanism of M1's pH-dependent disintegration. In neutral media, the adsorption of M1 protein on the lipid bilayer was electrostatic in nature and reversible. The energy of the interaction of M1 molecules with each other in M1 dimers was about 10 times as weak as that of the interaction of M1 molecules with the lipid bilayer. Acidification drives conformational changes in M1 molecules due to changes in the M1 charge, leading to alterations in their electrostatic interactions. Dropping the pH from 7.1 to 6.0 did not disturb the M1 layer; dropping it lower partially desorbed M1 because of increased repulsion between M1 monomers still stuck to the membrane. Lipid vesicles coated with M1 demonstrated pH-dependent rupture of the vesicle membrane, presumably because of the tension generated by this repulsive force. Thus, the disruption of the vesicles coincident with M1 protein scaffold disintegration at pH 5 likely stretches the lipid membrane to the point of rupture, promoting fusion pore widening for RNP release. Influenza remains a top killer of human beings throughout the world, in part because of the influenza virus's rapid binding to cells and its uptake into compartments hidden from the immune system. To attack the influenza virus during this time of hiding, we need to understand the physical forces that allow the internalized virus to infect the cell. In

  14. Crystal Structure of Dengue Virus Type 1 Envelope Protein in the Postfusion Conformation and Its Implications for Membrane Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Vinod; Dessau, Moshe; Kucera, Kaury; Anthony, Karen; Ledizet, Michel; Modis, Yorgo; (Yale); (L2 Diagnostics)

    2009-07-31

    Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the 'pH sensor' that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.

  15. Membrane-on-a-Chip : Microstructured Silicon/Silicon-Dioxide Chips for High-Throughput Screening of Membrane Transport and Viral Membrane Fusion

    NARCIS (Netherlands)

    Kusters, Ilja; van Oijen, Antoine M.; Driessen, Arnold J. M.

    2014-01-01

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physio

  16. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling.

    Science.gov (United States)

    Pertl-Obermeyer, Heidi; Wu, Xu Na; Schrodt, Jens; Müdsam, Christina; Obermeyer, Gerhard; Schulze, Waltraud X

    2016-09-01

    Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.

  17. Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.

    Science.gov (United States)

    Lin, Dejun; Grossfield, Alan

    2015-08-18

    Antimicrobial lipopeptides (AMLPs) are antimicrobial drug candidates that preferentially target microbial membranes. One class of AMLPs, composed of cationic tetrapeptides attached to an acyl chain, have minimal inhibitory concentrations in the micromolar range against a range of bacteria and fungi. Previously, we used coarse-grained molecular dynamics simulations and free energy methods to study the thermodynamics of their interaction with membranes in their monomeric state. Here, we extended the study to the biologically relevant micellar state, using, to our knowledge, a novel reaction coordinate based on hydrophobic contacts. Using umbrella sampling along this reaction coordinate, we identified the critical transition states when micelles insert into membranes. The results indicate that the binding of these AMLP micelles to membranes is thermodynamically favorable, but in contrast to the monomeric case, there are significant free energy barriers. The height of these free energy barriers depends on the membrane composition, suggesting that the AMLPs' ability to selectively target bacterial membranes may be as much kinetic as thermodynamic. This mechanism highlights the importance of considering oligomeric state in solution as criterion when optimizing peptides or lipopeptides as antibiotic leads.

  18. A high throughput Cre–lox activated viral membrane fusion assay identifies pharmacological inhibitors of HIV entry

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Anthony M. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Cheung, Pamela [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Swartz, Talia H.; Li, Hongru [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Tsibane, Tshidi [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Durham, Natasha D. [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States); Basler, Christopher F. [Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Felsenfeld, Dan P. [Integrated Screening Core, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Chen, Benjamin K., E-mail: benjamin.chen@mssm.edu [Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY (United States)

    2016-03-15

    Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes. - Highlights: • Cre recombinase viral fusion assay screens cell-free or cell–cell entry inhibitors. • This Gag-iCre based assay is specific for the entry step of HIV replication. • Screened a library of known pharmacologic compounds for HIV fusion antagonists. • Many top hits were previously noted as HIV inhibitors, but here are classified as entry antagonists. Many top hits were previously noted as HIV inhibitors, but not as entry antagonists. • The assay is compatible with pseudotyping with HIV and heterologous viruses.

  19. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Maria Zwiewka; Elena Feraru; Barbara M(o)ller; Inhwan Hwang; Mugurel I Feraru; Jürgen Kleine-Vehn; Dolf Weijers; Ji(n) Friml

    2011-01-01

    Subcellular trafficking is required for a multitude of functions in eukaryotic cells.It involves regulation of cargo sorting,vesicle formation,trafficking and fusion processes at multiple levels.Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated.Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex.pat4 and pat2,a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β,as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development,but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures.All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs.Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits.Furthermore,both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries.Taken together,these results demonstrate that AP complexes,similar to those in other eukaryotes,exist in plants,and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells.

  20. Fusion of liposomes with the plasma membrane of epithelial cells: Fate of incorporated lipids as followed by freeze fracture and autoradiography of plastic sections

    NARCIS (Netherlands)

    Knoll, G.; Burger, K.N.J.; Bron, R.; van Meer, G.; Verkleij, A.J.

    1988-01-01

    The fusion of liposomes with the plasma membrane of influenza virus-infected monolayers of an epithelial cell line, Madin-Darby canine kidney cells (van Meer et al., 1985. Biochemistry, 24: 3593-3602), has been analyzed by morphological techniques. The distribution of liposomal lipids over the apica

  1. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity

    NARCIS (Netherlands)

    Smit, JM; Bittman, R; Wilschut, J

    2001-01-01

    The envelope glycoproteins E1 and E2 of Sindbis virus are palmitoylated at cysteine residues within their transmembrane domains (E1 at position 430, and E2 at positions 388 and 390), Here, we investigated the in vitro membrane fusion activity of Sindbis virus variants (derived from the Tote 1101 inf

  2. In Vivo Efficacy of Measles Virus Fusion Protein-Derived Peptides Is Modulated by the Properties of Self-Assembly and Membrane Residence.

    Science.gov (United States)

    Figueira, T N; Palermo, L M; Veiga, A S; Huey, D; Alabi, C A; Santos, N C; Welsch, J C; Mathieu, C; Horvat, B; Niewiesk, S; Moscona, A; Castanho, M A R B; Porotto, M

    2017-01-01

    Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. Copyright © 2016 American Society for Microbiology.

  3. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+.

    Directory of Open Access Journals (Sweden)

    Leopoldo de Meis

    Full Text Available Brown adipose tissue (BAT mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1, GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER membrane with the mitochondrial outer membrane of rats BAT. Ca(2+-ATPase (SERCA 1 was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca(2+ effect in BAT mitochondria thermogenesis. We found that Ca(2+ increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca(2+ concentration needed for half-maximal activation varied between 0.08 and 0.11 microM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca(2+ strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca(2+ activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver.

  4. A minimal phycobilisome: fusion and chromophorylation of the truncated core-membrane linker and phycocyanin.

    Science.gov (United States)

    Tang, Kun; Zeng, Xiao-Li; Yang, Yi; Wang, Zhi-Bin; Wu, Xian-Jun; Zhou, Ming; Noy, Dror; Scheer, Hugo; Zhao, Kai-Hong

    2012-07-01

    Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, consist of an allophycocyanin core that is attached to the membrane via a core-membrane linker, and rods comprised of phycocyanin and often also phycoerythrin or phycoerythrocyanin. Phycobiliproteins show excellent energy transfer among the chromophores that renders them biomarkers with large Stokes-shifts absorbing over most of the visible spectrum and into the near infrared. Their application is limited, however, due to covalent binding of the chromophores and by solubility problems. We report construction of a water-soluble minimal chromophore-binding unit of the red-absorbing and fluorescing core-membrane linker. This was fused to minimal chromophore-binding units of phycocyanin. After double chromophorylation with phycocyanobilin, in E. coli, the fused phycobiliproteins absorbed light in the range of 610-660nm, and fluoresced at ~670nm, similar to phycobilisomes devoid of phycoerythr(ocyan)in. The fused phycobiliprotein could also be doubly chromophorylated with phycoerythrobilin, resulting in a chromoprotein absorbing around 540-575nm, and fluorescing at ~585nm. The broad absorptions and the large Stokes shifts render these chromoproteins candidates for imaging; they may also be helpful in studying phycobilisome assembly.

  5. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Cynthia L. [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Connolly, Sarah A. [Department of Health Sciences, DePaul University, Chicago, IL 60614 (United States); Chen, Jia [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Jardetzky, Theodore S. [Department of Structural Biology, Stanford University School of Medicine, 371 Serra Mall, Stanford, CA 94305 (United States); Longnecker, Richard, E-mail: r-longnecker@northwestern.edu [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States)

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  6. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion.

    Science.gov (United States)

    Rowe, Cynthia L; Connolly, Sarah A; Chen, Jia; Jardetzky, Theodore S; Longnecker, Richard

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  7. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  8. Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes.

    Science.gov (United States)

    Cheung, Giselle; Cousin, Michael A

    2012-04-25

    Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.

  9. Investigation of the adaptor protein PLIC-2 in multiple pathways

    Directory of Open Access Journals (Sweden)

    Khiem Nguyen

    2017-03-01

    Full Text Available PLIC, Protein Linking IAP (CD47 to Cytoskeleton, have long since been implicated in connecting the extracellular membrane to the intracellular cell cytoskeleton. This phenomenon is supposedly achieved by bridging a receptor protein CD47 to vimentin, an intermediate filament, which in turn regulates integrin dependent cell spreading. Since the discovery of these proteins, the molecular details of the above-mentioned interactions and the underlying complexes are yet to be characterized. Several independent studies have together emphasized PLIC/Ubiquilin’s role in the proteasomal degradation pathway. This seems to be in contrast to the purported initial discovery of PLIC as a cytoskeletal adaptor protein. In an effort to reconcile the different roles associated with the ubiquitous PLIC proteins, we tested the involvement of PLIC-2 both in the proteasomal degradation pathway and as a protein linking the cell cytoskeleton to the cytoplasmic tail of CD47. This was achieved thorough an in vitro investigation of their binding interface using a combination of biophysical techniques. Our results show that the two terminal domains of PLIC-2 interact weakly with each other, while the C-terminal UBA domain interacts strongly with ubiquitin. Interestingly, no perceptible interaction was observed for PLIC-2 with the cytoplasmic tail of CD47 questioning its role as a “PLIC” protein linking the cell membrane to the cytoskeleton.

  10. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yasuzaki, Yukari; Yamada, Yuma [Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  11. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion.

    Science.gov (United States)

    Madu, Ikenna G; Belouzard, Sandrine; Whittaker, Gary R

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  12. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  13. Role for membrane fusion in the activation of the respiratory burst in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Manara-Shediac, F.S.

    1986-01-01

    Components of the respiratory burst oxidase reside in intracellular membranes of the tertiary granules in resting cells, yet oxidase activity in the activated cells occurs at the neutrophil surface. The role of degranulation in activation of the neutrophil respiratory burst was therefore investigated. Surface labeling experiments were carried out on resting and activated neutrophils using three impermeant labeling methods. Activated neutrophils labeled with (/sup 35/S) diazobenzene sulfonic acid showed a fourfold higher specific radioactivity than resting neutrophils. Similar results were obtained with the pyridoxal phosphate/borotritide labeling method. On the other hand, little difference in labeling was seen using the periodate/borotritide method which detects the carbohydrate of glycoproteins. These results suggest that either a large amount of protein, or a highly reactive protein becomes exposed upon activation. Resting, activated, and enucleated cells were labeled using the (/sup 125/I) lactoperoxidase method, then subjected to polyacrylamide gel electrophoresis. Autoradiograms of these gels showed that two proteins of about 75 and 45 kD, are labeled at the external surface of enucleated and activated cells but not resting cells.

  14. The interaction between the membrane-proximal external region and the N-trimer region of HIV- 1 gp41: Involvement in viral fusion

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LU Lu; WU Fan; CHEN Xi; NIU Ben; JIANG ShiBo; CHEN YingHua

    2009-01-01

    The membrane proximal external region (MPER) of gp41 is extremely conserved among diverse HIV-1 variants, implying its important role in viral infection. Interestingly, two of the most broadly neutralizing antibodies, 2F5 and 4E10, specifically recognize this region. Our previous study demonstrated that the antigenicity and immunogenicity of 4E10 epitope are affected by remodeling gp41 fusion core, sug-gesting that the MPER may be associated with gp41 core and involved in gp41-mediated membrane fusion. Here we measured the binding activity of 4E10 epitope peptide (D4E10P) with various gp41 core-derived peptides and found that the N-trimer region in a construct designated N-trimer-6HB in-teracted significantly with D4E10P. Using N-trimer-6HB to screen a phage library, we identified a motif (WF) located in 4E10 epitope that may play a certain role in the interaction of gp41 MPER with the N-trimer in gp41 fusion core and, we thus speculated upon the potential involvement of MPER in the usion process between viral envelope and target cell membrane.

  15. A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH.

    Science.gov (United States)

    Estepa, A M; Rocha, A I; Mas, V; Pérez, L; Encinar, J A; Nuñez, E; Fernandez, A; Gonzalez Ros, J M; Gavilanes, F; Coll, J M

    2001-12-07

    The fusion-related properties of segments p9, p3, p4, and p9 + p2 surrounding the p2 phospholipid-binding domain of the protein G (pG) of the salmonid rhabdovirus of viral hemorrhagic septicemia (VHS) (Nuñez, E., Fernandez, A. M., Estepa, A., Gonzalez-Ros, J. M., Gavilanes, F., and Coll, J. M. (1998) Virology 243, 322-330; Estepa, A., and Coll, J. M. (1996) Virology 216, 60-70), have been studied at neutral and fusion (low) pH values by using its derived peptides. Cell-to-cell fusion, translocation of phosphatidylserine, and inhibition of fusion of pG-transfected cells defined the p9 + p2 (fragment 11, sequence 56-110) as a fragment with higher specific activity for anionic phospholipid aggregation than the previously reported p2. While fragment 11, p2, and p3 showed interactions with anionic phospholipids, p9 and p4 showed no interactions with any phospholipids. When added to a cell monolayer model at low pH, fragment 11 induced pH-dependent cell-to-cell fusion and translocated phosphatidylserine from the inner to the outer leaflet of the membrane. At low pH and in the presence of anionic phospholipids, fragment 11 showed more than 80% beta-sheet conformation (IR and CD spectroscopies). Finally, anti-fragment 11 antibodies inhibited low pH-dependent pG-transfected cell-to-cell fusion. All of the data support the conclusion that fragment 11 is a primary determinant of some of the viral cell fusion events in VHSV.

  16. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  17. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER

    Directory of Open Access Journals (Sweden)

    Yoichi Noda

    2014-07-01

    Full Text Available The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases.

  18. Truncation of the membrane-spanning domain of human immunodeficiency virus type 1 envelope glycoprotein defines elements required for fusion, incorporation, and infectivity.

    Science.gov (United States)

    Yue, Ling; Shang, Liang; Hunter, Eric

    2009-11-01

    The membrane-spanning domain (MSD) of the envelope (Env) glycoprotein from human (HIV) and simian immunodeficiency viruses plays a key role in anchoring the Env complex into the viral membrane but also contributes to its biological function in fusion and virus entry. In HIV type 1 (HIV-1), it has been predicted to span 27 amino acids, from lysine residue 681 to arginine 707, and encompasses an internal arginine at residue 694. By examining a series of C-terminal-truncation mutants of the HIV-1 gp41 glycoprotein that substituted termination codons for amino acids 682 to 708, we show that this entire region is required for efficient viral infection of target cells. Truncation to the arginine at residue 694 resulted in an Env complex that was secreted from the cells. In contrast, a region from residues 681 to 698, which contains highly conserved hydrophobic residues and glycine motifs and extends 4 amino acids beyond 694R, can effectively anchor the protein in the membrane, allow efficient transport to the plasma membrane, and mediate wild-type levels of cell-cell fusion. However, these fusogenic truncated Env mutants are inefficiently incorporated into budding virions. Based on the analysis of these mutants, a "snorkeling" model, in which the flanking charged amino acid residues at 681 and 694 are buried in the lipid while their side chains interact with polar head groups, is proposed for the HIV-1 MSD.

  19. Role of adaptor proteins in motor regulation and membrane transport

    NARCIS (Netherlands)

    M.A. Schlager (Max)

    2010-01-01

    markdownabstract__Abstract__ Active transport along the cytoskeleton is a process essential for proper cellular function. Although much is known about the motor proteins that generate the necessary force and the cytoskeleton that provides the cellular infrastructure, many questions still remain. Fo

  20. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Simon Imhof

    2016-04-01

    Full Text Available Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  1. Negative regulation of lymphocyte activation by the adaptor protein LAX.

    Science.gov (United States)

    Zhu, Minghua; Granillo, Olivia; Wen, Renren; Yang, Kaiyong; Dai, Xuezhi; Wang, Demin; Zhang, Weiguo

    2005-05-01

    The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.

  2. Optimization of multiplexed RADseq libraries using low-cost adaptors.

    Science.gov (United States)

    Henri, Hélène; Cariou, Marie; Terraz, Gabriel; Martinez, Sonia; El Filali, Adil; Veyssiere, Marine; Duret, Laurent; Charlat, Sylvain

    2015-04-01

    Reduced representation genomics approaches, of which RADseq is currently the most popular form, offer the possibility to produce genome wide data from potentially any species, without previous genomic information. The application of RADseq to highly multiplexed libraries (including numerous specimens, and potentially numerous different species) is however limited by technical constraints. First, the cost of synthesis of Illumina adaptors including molecular identifiers (MIDs) becomes excessive when numerous specimens are to be multiplexed. Second, the necessity to empirically adjust the ratio of adaptors to genomic DNA concentration impedes the high throughput application of RADseq to heterogeneous samples, of variable DNA concentration and quality. In an attempt to solve these problems, we propose here some adjustments regarding the adaptor synthesis. First, we show that the common and unique (MID) parts of adaptors can be synthesized separately and subsequently ligated, which drastically reduces the synthesis cost, and thus allows multiplexing hundreds of specimens. Second, we show that self-ligation of adaptors, which makes the adaptor concentration so critical, can be simply prevented by using unphosphorylated adaptors, which significantly improves the ligation and sequencing yield.

  3. Rab3A is a new interacting partner of synaptotagmin I and may modulate synaptic membrane fusion through a competitive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chunliang [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205 (China); Li, Jianglin; Guo, Tianyao; Yan, Yizhong; Tang, Cheng; Wang, Ying; Chen, Ping [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Wang, Xianchun, E-mail: wang_xianchun@263.net [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Liang, Songping, E-mail: liangsp@hunnu.edu.cn [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China)

    2014-02-21

    Highlights: • Rab3A has been found to be a novel interacting protein of synaptotagmin I. • Rab3A binds to synaptotagmin I in a Ca{sup 2+}-independent manner. • KKKK motif in C2B domain of synaptotagmin I is a key site for Rab3A binding. • Rab3A competitively inhibits the binding of C2B in synaptotagmin I to syntaxin 1B. • Rab3A may regulate synaptic membrane fusion and exocytosis in a competitive manner. - Abstract: Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca{sup 2+}-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.

  4. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins

    Directory of Open Access Journals (Sweden)

    Vasko eVeljanovski

    2014-06-01

    Full Text Available Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double-membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins.

  5. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers

    NARCIS (Netherlands)

    Martin, [No Value; Pecheur, EI; Ruysschaert, JM; Hoekstra, D

    1999-01-01

    To clarify the molecular mechanism by which an amphipathic negatively charged peptide consisting of 11 residues (WAE) induces fusion, and the relevance of these features for fusion, its mode of insertion and orientation into target bilayers were investigated. Using attenuated total reflection

  6. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    Science.gov (United States)

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  7. Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways.

    Science.gov (United States)

    Rival, Thomas; Macchi, Marc; Arnauné-Pelloquin, Laetitia; Poidevin, Mickael; Maillet, Frédéric; Richard, Fabrice; Fatmi, Ahmed; Belenguer, Pascale; Royet, Julien

    2011-03-01

    Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.

  8. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  9. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  10. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Science.gov (United States)

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  11. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  12. Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion.

    Directory of Open Access Journals (Sweden)

    Zhen Gong

    Full Text Available The membrane proximal region (MPR, residues 649-683 and transmembrane domain (TMD, residues 684-705 of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683 of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705, in Escherichia coli as a fusion protein with maltose binding protein (MBP. MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM. Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

  13. Cdc42 and Actin Control Polarized Expression of TI-VAMP Vesicles to Neuronal Growth Cones and Their Fusion with the Plasma MembraneV⃞

    Science.gov (United States)

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-01-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth. PMID:16381811

  14. Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane.

    Science.gov (United States)

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-03-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.

  15. An allosteric rheostat in HIV-1 gp120 reduces CCR5 stoichiometry required for membrane fusion and overcomes diverse entry limitations.

    Science.gov (United States)

    Platt, Emily J; Durnin, James P; Shinde, Ujwal; Kabat, David

    2007-11-16

    Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1(JRCSF) variants that more efficiently use mutant CCR5s, including CCR5(Delta18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1(JRCSF) variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Delta18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Delta18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1(JRCSF) is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an

  16. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    Science.gov (United States)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein, and may point to important differences in assembly and infectivity of these two coronaviruses. PMID:20580052

  17. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity.

    Directory of Open Access Journals (Sweden)

    Nerea Huarte

    Full Text Available The membrane proximal external region (MPER of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.

  18. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Stéphane G. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Banner, David [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Chi, Le Thi Bao [Department of Microbiology, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Carlo Urbani Centre, Hue University of Medicine and Pharmacy, Thua Thien Hue (Viet Nam); Leon, Alberto J. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); Xu, Luoling; Ran, Longsi [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Huang, Stephen S.H. [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario (Canada); Farooqui, Amber [Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario (Canada); International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong (China); and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  19. Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo.

    Science.gov (United States)

    Bedbrook, Claire N; Kato, Mihoko; Ravindra Kumar, Sripriya; Lakshmanan, Anupama; Nath, Ravi D; Sun, Fei; Sternberg, Paul W; Arnold, Frances H; Gradinaru, Viviana

    2015-08-20

    Membrane proteins are the main gatekeepers of cellular state, especially in neurons, serving either to maintain homeostasis or instruct response to synaptic input or other external signals. Visualization of membrane protein localization and trafficking in live cells facilitates understanding the molecular basis of cellular dynamics. We describe here a method for specifically labeling the plasma membrane-localized fraction of heterologous membrane protein expression using channelrhodopsins as a case study. We show that the genetically encoded, covalent binding SpyTag and SpyCatcher pair from the Streptococcus pyogenes fibronectin-binding protein FbaB can selectively label membrane-localized proteins in living cells in culture and in vivo in Caenorhabditis elegans. The SpyTag/SpyCatcher covalent labeling method is highly specific, modular, and stable in living cells. We have used the binding pair to develop a channelrhodopsin membrane localization assay that is amenable to high-throughput screening for opsin discovery and engineering.

  20. Optimized Adaptor Polymerase Chain Reaction Method for Efficient Genomic Walking

    Institute of Scientific and Technical Information of China (English)

    Peng XU; Rui-Ying HU; Xiao-Yan DING

    2006-01-01

    Genomic walking is one of the most useful approaches in genome-related research. Three kinds of PCR-based methods are available for this purpose. However, none of them has been generally applied because they are either insensitive or inefficient. Here we present an efficient PCR protocol, an optimized adaptor PCR method for genomic walking. Using a combination of a touchdown PCR program and a special adaptor, the optimized adaptor PCR protocol achieves high sensitivity with low background noise. By applying this protocol, the insertion sites of a gene trap mouse line and two gene promoters from the incompletely sequenced Xenopus laevis genome were successfully identified with high efficiency. The general application of this protocol in genomic walking was promising.

  1. Molecular dynamics simulations of T-2410 and T-2429 HIV fusion inhibitors interacting with model membranes: Insight into peptide behavior, structure and dynamics.

    Science.gov (United States)

    Mavioso, I C V C; de Andrade, V C R; Palace Carvalho, A J; Martins do Canto, A M T

    2017-09-01

    T-2410 and T-2429 are HIV fusion inhibitor peptides (FI) designed to present a higher efficiency even against HIV strains that developed resistance against other FIs. Similar peptides were shown to interact with model membranes both in the liquid disordered phase and in the liquid ordered state. Those results indicated that such interaction is important to function and could be correlated with their effectiveness. Extensive molecular dynamics simulations were carried out to investigate the interactions between both T-2410 and T-2429 with bilayers of pure 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and a mixture of POPC/cholesterol (Chol) (1:1). It was observed that both peptides interact strongly with both membrane systems, especially with the POPC/Chol systems, where these peptides show the highest number of H-bonds observed so far. T-2410 and T-2429 showed higher extent of interaction with bilayers when compared to T-20 or T-1249 in previous studies. This is most notable in POPC/Chol membranes where, although able to form H-bonds with Chol, they do so to a lesser extent than T-1249 does, the latter being the only FI peptide so far that was observed to form H-bonds with Chol. This behavior suggests that interaction of FI peptides with rigid Chol rich membranes may not be as dependent from peptide/Chol H-bond formation as previous results of T-1249 behavior led to believe. As in other similar peptides, the higher ability to interact with membranes shown by T-2410 and T2429 is probably correlated with its higher inhibitory efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Physicochemical characterization of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide: interaction with model membranes.

    Science.gov (United States)

    Sánchez-Martín, Maria Jesús; Cruz, Antonio; Busquets, M Antònia; Haro, Isabel; Alsina, M Asunción; Pujol, Montserrat

    2012-10-15

    Four peptide sequences corresponding to the E1 protein of GBV-C: NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10) and QAGLAVRPGKSAAQLVGE (P18) were studied as they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP). In this work, the surface properties of the E1 peptide sequences are investigated and their physicochemical characterization is done by studying their interaction with model membranes; moreover, their mixtures with HIV-1 FP were also studied in order to observe whether they are capable to modify the HIV-1 FP interaction with model membranes as liposomes or monolayers. Physicochemical properties of peptides (pI and net charge) were predicted showing similarities between P7 and P8, and P10 and HIV-1 FP, whereas P18 appears to be very different from the rest. Circular dichroism experiments were carried out showing an increase of the percentage of α-helix of P7 and P8 when mixed with HIV-1 FP corroborating a conformational change that could be the cause of their inhibition ability. Penetration experiments show that all the peptides can spontaneously insert into phospholipid membranes. Analysis of compression isotherms indicates that the peptides interact with phospholipids and the E1 peptides modify the compression isotherms of HIV-1 FP, but there is one of the peptides that excelled as the best candidate for inhibiting the activity of HIV-1 FP, P7, and therefore, that could be potentially used in future anti-HIV-1 research.

  3. Crystal Structure of a Soluble Fragment of the Membrane Fusion Protein HlyD in a Type I Secretion System of Gram-Negative Bacteria.

    Science.gov (United States)

    Kim, Jin-Sik; Song, Saemee; Lee, Minho; Lee, Seunghwa; Lee, Kangseok; Ha, Nam-Chul

    2016-03-01

    The protein toxin HlyA of Escherichia coli is exported without a periplasmic intermediate by the type I secretion system (T1SS). The T1SS is composed of an inner membrane ABC transporter HlyB, an outer-membrane channel protein TolC, and a membrane fusion protein HlyD. However, the assembly of the T1SS remains to be elucidated. In this study, we determine the crystal structure of a part of the C-terminal periplasmic domain of HlyD. The long α-helical domain consisting of three α helices and a lipoyl domain was identified in the crystal structure. Based on the HlyD structure, we modeled the hexameric assembly of HlyD with a long α-helical barrel, which formed a complex with TolC in an intermeshing cogwheel-to-cogwheel manner, as observed in tripartite RND-type drug efflux pumps. These observations provide a structural blueprint for understanding the type I secretion system in pathogenic Gram-negative bacteria.

  4. Crystal Structure of Dengue Type 1 Envelope Protein in the Postfusion Conformation and its Implication for Receptor Binding, Membrane Fusion and Antibody Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, V.; Dessau, M; Kucera, K; Anthony, K; Ledizet, M; Modis, Y

    2009-01-01

    Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the pH sensor that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.

  5. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  6. Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH.

    Science.gov (United States)

    Dong, Sicong; Wang, Manli; Qiu, Zhijuan; Deng, Fei; Vlak, Just M; Hu, Zhihong; Wang, Hualin

    2010-05-01

    The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.

  7. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    Science.gov (United States)

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  8. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling.

    Science.gov (United States)

    Kazi, Julhash U; Agarwal, Shruti; Sun, Jianmin; Bracco, Enrico; Rönnstrand, Lars

    2014-02-01

    The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.

  9. DMPD: Signalling adaptors used by Toll-like receptors: an update. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18706831 Signalling adaptors used by Toll-like receptors: an update. Kenny EF, O'Ne...ill LA. Cytokine. 2008 Sep;43(3):342-9. Epub 2008 Aug 15. (.png) (.svg) (.html) (.csml) Show Signalling adap...tors used by Toll-like receptors: an update. PubmedID 18706831 Title Signalling adaptors used by Toll-like r

  10. DMPD: The SAP family of adaptors in immune regulation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15541655 The SAP family of adaptors in immune regulation. Latour S, Veillette A. Se...min Immunol. 2004 Dec;16(6):409-19. (.png) (.svg) (.html) (.csml) Show The SAP family of adaptors in immune ...regulation. PubmedID 15541655 Title The SAP family of adaptors in immune regulation. Authors Latour S, Veill

  11. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    Science.gov (United States)

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and

  12. Functional fluorescent protein insertions in herpes simplex virus gB report on gB conformation before and after execution of membrane fusion.

    Directory of Open Access Journals (Sweden)

    John R Gallagher

    2014-09-01

    Full Text Available Entry of herpes simplex virus (HSV into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.

  13. The Expression of Sperm Membrane Peptide-Hepatitis B Surface Antigen Fusion Protein with Recombinant Vaccinia Virus

    Institute of Scientific and Technical Information of China (English)

    杨晓鸣; 赵峰; 严缘昌; 李光地; 汪垣

    1998-01-01

    A synthetic oligonucleotide, HSD-2a, encoding a peptide segment of the extracellular domain of a human sperm membrane protein, YWK-Ⅱ, was fused with hepatitis B surface antigen gene (HBs gene). The fused gene was then cloned to pUC18 plasmid.

  14. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins.

    Directory of Open Access Journals (Sweden)

    Ricardo Núñez Miguel

    Full Text Available The Toll-like receptor 4 (TLR4 is a class I transmembrane receptor expressed on the surface of immune system cells. TLR4 is activated by exposure to lipopolysaccharides derived from the outer membrane of Gram negative bacteria and forms part of the innate immune response in mammals. Like other class 1 receptors, TLR4 is activated by ligand induced dimerization, and recent studies suggest that this causes concerted conformational changes in the receptor leading to self association of the cytoplasmic Toll/Interleukin 1 receptor (TIR signalling domain. This homodimerization event is proposed to provide a new scaffold that is able to bind downstream signalling adaptor proteins. TLR4 uses two different sets of adaptors; TRAM and TRIF, and Mal and MyD88. These adaptor pairs couple two distinct signalling pathways leading to the activation of interferon response factor 3 (IRF-3 and nuclear factor kappaB (NFkappaB respectively. In this paper we have generated a structural model of the TLR4 TIR dimer and used molecular docking to probe for potential sites of interaction between the receptor homodimer and the adaptor molecules. Remarkably, both the Mal and TRAM adaptors are strongly predicted to bind at two symmetry-related sites at the homodimer interface. This model of TLR4 activation is supported by extensive functional studies involving site directed mutagenesis, inhibition by cell permeable peptides and stable protein phosphorylation of receptor and adaptor TIR domains. Our results also suggest a molecular mechanism for two recent findings, the caspase 1 dependence of Mal signalling and the protective effects conferred by the Mal polymorphism Ser180Leu.

  15. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  16. Alternatively spliced short and long isoforms of adaptor protein intersectin 1 form complexes in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2012-12-01

    Full Text Available Intersectin 1 (ITSN1 is an adaptor protein involved in membrane trafficking and cell signaling. Long and short isoforms of ITSN1 (ITSN1-L and ITSN1-S are produced by alternative splicing. The aim of our study was to investigate whether ITSN1-L and ITSN1-S could interact in mammalian cells. Methods. During this study we employed immunoprecipitation and confocal microscopy. Results. We have shown that endogenous ITSN1-S co-precipitates with overexpressed ITSN1-L in PC12, 293 and 293T cells. Long and short isoforms of ITSN1 also co-localize in 293T cells. Conclusions. ITSN1-L and ITSN1-S form complexes in mammalian cells.

  17. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    Science.gov (United States)

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  18. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  19. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    Science.gov (United States)

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-04-01

    Lipids and proteins are organized in cellular membranes in clusters, often called `lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  20. Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane.

    Science.gov (United States)

    Karnik, Rucha; Zhang, Ben; Waghmare, Sakharam; Aderhold, Christin; Grefen, Christopher; Blatt, Michael R

    2015-03-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners.

  1. Adaptor-tagged competitive PCR: a novel method for measuring relative gene expression.

    OpenAIRE

    Kato, K.

    1997-01-01

    A simple and reliable PCR-based method to quantitate gene expression is described. Following the digestion of double-stranded cDNA by a restriction enzyme, an adaptor is ligated to a cDNA from a first RNA sample, and another adaptor to a second RNA sample. The two adaptors share a common sequence at the outer region, but differ in size. Equal amounts of the ligated samples are mixed, and amplified by an adaptor-primer and a primer specific to the gene of interest. Products derived from the tw...

  2. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  3. The role of the N-terminal segment of CCR5 in HIV-1 Env-mediated membrane fusion and the mechanism of virus adaptation to CCR5 lacking this segment

    Directory of Open Access Journals (Sweden)

    Kabat David

    2007-08-01

    Full Text Available Abstract Background HIV-1 envelope glycoprotein (Env induces membrane fusion as a result of sequential binding to CD4 and chemokine receptors (CCR5 or CXCR4. The critical determinants of CCR5 coreceptor function are the N-terminal domain (Nt and the second extracellular loop. However, mutations in gp120 adapt HIV-1 to grow on cells expressing the N-terminally truncated CCR5(Δ18 (Platt et al., J. Virol. 2005, 79: 4357–68. Results We have functionally characterized the adapted Env (designated Env(NYP using a quantitative cell-cell fusion assay. The rate of fusion with target cells expressing wild-type CCR5 and the resistance to fusion inhibitors was virtually identical for wild-type Env and Env(NYP, implying that the coreceptor affinity had not increased as a result of adaptation. In contrast, Env(NYP-induced fusion with cells expressing CCR5(Δ18 occurred at a slower rate and was extremely sensitive to the CCR5 binding inhibitor, Sch-C. Resistance to Sch-C drastically increased after pre-incubation of Env(NYP- and CCR5(Δ18-expressing cells at a temperature that was not permissive to fusion. This indicates that ternary Env(NYP-CD4-CCR5(Δ18 complexes accumulate at sub-threshold temperature and that low-affinity interactions with the truncated coreceptor are sufficient for triggering conformational changes in the gp41 of Env(NYP but not in wild-type Env. We also demonstrated that the ability of CCR5(Δ18 to support fusion and infection mediated by wild-type Env can be partially reconstituted in the presence of a synthetic sulfated peptide corresponding to the CCR5 Nt. Pre-incubation of wild-type Env- and CCR5(Δ18-expressing cells with the sulfated peptide at sub-threshold temperature markedly increased the efficiency of fusion. Conclusion We propose that, upon binding the Nt region of CCR5, wild-type Env acquires the ability to productively engage the extracellular loop(s of CCR5 – an event that triggers gp41 refolding and membrane merger

  4. Enteroviral Infection in a Patient with BLNK Adaptor Protein Deficiency.

    Science.gov (United States)

    NaserEddin, Adeeb; Shamriz, Oded; Keller, Baerbel; Alzyoud, Raed M; Unger, Susanne; Fisch, Paul; Prus, Evgenia; Berkun, Yakov; Averbuch, Diana; Shaag, Avraham; Wahadneh, Adel M; Conley, Mary Ellen; Warnatz, Klaus; Elpeleg, Orly; Stepensky, Polina

    2015-05-01

    B-cell linker (BLNK) protein is a non-redundant adaptor molecule in the signaling pathway activated by (pre) B-cell antigen receptor signals. We present two siblings with a homozygous deleterious frameshift mutation in BLNK, resulting in a block of B cell development in the bone marrow at the preB1 to preB2 stage, absence of circulating B cells and agammaglobulinemia. This is the first description of an enteroviral infection associated arthritis and dermatitis in a patient with BLNK deficiency.

  5. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular,

  6. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  7. Herpes Simplex Virus 1 Enters Human Keratinocytes by a Nectin-1-Dependent, Rapid Plasma Membrane Fusion Pathway That Functions at Low Temperature.

    Science.gov (United States)

    Sayers, Charlotte L; Elliott, Gillian

    2016-11-15

    Herpes simplex virus 1 (HSV-1) infects humans through stratified epithelia that are composed primarily of keratinocytes. The route of HSV-1 entry into keratinocytes has been the subject of limited investigation, but it is proposed to involve pH-dependent endocytosis, requiring the gD-binding receptor nectin-1. Here, we have utilized the nTERT human keratinocyte cell line as a new model for dissecting the mechanism of HSV-1 entry into the host. Although immortalized, these cells nonetheless retain normal growth and differentiation properties of primary cells. Using short interfering RNA (siRNA) depletion studies, we confirm that, despite nTERT cells expressing high levels of the alternative gD receptor HVEM, HSV-1 requires nectin-1, not HVEM, to enter these cells. Strikingly, virus entry into nTERT cells occurred with unusual rapidity, such that maximum penetration was achieved within 5 min. Moreover, HSV-1 was able to enter keratinocytes but not other cell types at temperatures as low as 7°C, conditions where endocytosis was shown to be completely inhibited. Transmission electron microscopy of early entry events at both 37°C and 7°C identified numerous examples of naked virus capsids located immediately beneath the plasma membrane, with no evidence of virions in cytoplasmic vesicles. Taken together, these results imply that HSV-1 uses the nectin-1 receptor to enter human keratinocyte cells via a previously uncharacterized rapid plasma membrane fusion pathway that functions at low temperature. These studies have important implications for current understanding of the relationship between HSV-1 and its relevant in vivo target cell. The gold standard of antiviral treatment for any human virus infection is the prevention of virus entry into the host cell. In the case of HSV-1, primary infection in the human begins in the epidermis of the skin or the oral mucosa, where the virus infects keratinocytes, and it is therefore important to understand the molecular events

  8. Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Russell Vassell

    Full Text Available The membrane proximal external region (MPER of the gp41 subunit of the HIV-1 envelope glycoprotein (Env contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.

  9. XB130: A novel adaptor protein in cancer signal transduction

    Science.gov (United States)

    ZHANG, RUIYAO; ZHANG, JINGYAO; WU, QIFEI; MENG, FANDI; LIU, CHANG

    2016-01-01

    Adaptor proteins are functional proteins that contain two or more protein-binding modules to link signaling proteins together, which affect cell growth and shape and have no enzymatic activity. The actin filament-associated protein (AFAP) family is an important member of the adaptor proteins, including AFAP1, AFAP1L1 and AFAP1L2/XB130. AFAP1 and AFAP1L1 share certain common characteristics and function as an actin-binding protein and a cSrc-activating protein. XB130 exhibits certain unique features in structure and function. The mRNA of XB130 is expressed in human spleen, thyroid, kidney, brain, lung, pancreas, liver, colon and stomach, and the most prominent disease associated with XB130 is cancer. XB130 has a controversial effect on cancer. Studies have shown that XB130 can promote cancer progression and downregulation of XB130-reduced growth of tumors derived from certain cell lines. A higher mRNA level of XB130 was shown to be associated with a better survival in non-small cell lung cancer. Previous studies have shown that XB130 can regulate cell growth, migration and invasion and possibly has the effect through the cAMP-cSrc-phosphoinositide 3-kinase/Akt pathway. Except for cancer, XB130 is also associated with other pathological or physiological procedures, such as airway repair and regeneration. PMID:26998266

  10. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    Science.gov (United States)

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  11. A Big-Five Personality Profile of the Adaptor and Innovator.

    Science.gov (United States)

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  12. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis.

    Science.gov (United States)

    Chetrit, David; Barzilay, Lior; Horn, Galit; Bielik, Tom; Smorodinsky, Nechama I; Ehrlich, Marcelo

    2011-02-18

    Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle.

  13. SLAM family receptors and SAP adaptors in immunity.

    Science.gov (United States)

    Cannons, Jennifer L; Tangye, Stuart G; Schwartzberg, Pamela L

    2011-01-01

    The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.

  14. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...... on the nuclearity of fusion partners. While CD47 promotes cell fusions involving mono-nucleated pre-osteoclasts, syncytin-1 promotes fusion of two multi-nucleated osteoclasts, but also reduces the number of fusions between mono-nucleated pre-osteoclasts. Furthermore, CD47 seems to mediate fusion mostly through......Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...

  15. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy-McIntyre, Anna K. [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia); Baer, Severine [Program Infection and Cancer, Abt. F010 and INSERM U701, Deutsches Krebsforschungszentrum, Heidelberg (Germany); Ludlow, Louise [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Drummer, Heidi E. [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia); Department of Microbiology and Immunology, The University of Melbourne, Vic. 3010 (Australia); Poumbourios, Pantelis, E-mail: apoumbourios@burnet.edu.au [Macfarlane Burnet Institute for Medical Research and Public Health, Vic. 3004 (Australia); Department of Microbiology, Monash University, Vic. 3168 (Australia)

    2010-04-16

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1{sub QH1549.13} blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  16. Adaptor Protein Complexes AP-1 and AP-3 Are Required by the HHV-7 Immunoevasin U21 for Rerouting of Class I MHC Molecules to the Lysosomal Compartment

    Science.gov (United States)

    Kimpler, Lisa A.; Glosson, Nicole L.; Downs, Deanna; Gonyo, Patrick; May, Nathan A.; Hudson, Amy W.

    2014-01-01

    The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes. PMID:24901711

  17. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  18. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo.

    Science.gov (United States)

    Carvajal-Gonzalez, Jose Maria; Balmer, Sophie; Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-04-07

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.

  19. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  20. The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection.

    Science.gov (United States)

    Nordhoff, Carolin; Hillesheim, Andrea; Walter, Beate M; Haasbach, Emanuel; Planz, Oliver; Ehrhardt, Christina; Ludwig, Stephan; Wixler, Viktor

    2012-07-01

    The innate immune response of influenza A virus-infected cells is predominantly mediated by type I interferon-induced proteins. Expression of the interferon β (IFNβ) itself is initiated by accumulating viral RNA and is transmitted by different signalling cascades that feed into activation of the three transcriptional elements located in the IFNβ promoter, AP-1, IRF-3 and NF-κB. FHL2 (four-and-a-half LIM domain protein 2) is an adaptor molecule that shuttles between membrane and nucleus regulating signalling cascades and gene transcription. Here we describe FHL2 as a novel regulator of influenza A virus propagation. Using mouse FHL2 wild-type, knockout and rescued cells and human epithelial cells with different expression levels of FHL2 we showed that FHL2 decreases influenza A virus propagation by regulating the intrinsic cellular antiviral immune response. On virus infection FHL2 translocates into the nucleus, potentiating the IRF-3-dependent transcription of the IFNβ gene.

  1. Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice.

    Directory of Open Access Journals (Sweden)

    Henrike Lenzen

    Full Text Available BACKGROUND: Impaired salt and water absorption is an important feature in the pathogenesis of diarrhea in inflammatory bowel disease (IBD. We analyzed the expression of proinflammatory cytokines in the infiltrating immune cells and the function and expression of the Na(+/H(+ exchanger isoform 3 (NHE3 and its regulatory PDZ-adaptor proteins NHERF1, NHERF2, and PDZK1 in the colon of interleukin-10-deficient (IL-10(-/- mice. METHODOLOGY/PRINCIPAL FINDINGS: Gene and protein expression were analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR, in situ RT-PCR, and immunohistochemistry. NHE3 activity was measured fluorometrically in apical enterocytes within isolated colonic crypts. Mice developed chronic colitis characterized by a typical immune cell infiltration composed of T-lymphocytes and macrophages, with high levels of gene and protein expression of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. In parallel, inducible nitric oxide synthase expression was increased while procaspase 3 expression was unaffected. Interferon-γ expression remained low. Although acid-activated NHE3 activity was significantly decreased, the inflammatory process did not affect its gene and protein expression or its abundance and localization in the apical membrane. However, expression of the PDZ-adaptor proteins NHERF2 and PDZK1 was downregulated. NHERF1 expression was unchanged. In a comparative analysis we observed the PDZK1 downregulation also in the DSS (dextran sulphate sodium model of colitis. CONCLUSIONS/SIGNIFICANCE: The impairment of the absorptive function of the inflamed colon in the IL-10(-/- mouse, in spite of unaltered NHE3 expression and localization, is accompanied by the downregulation of the NHE3-regulatory PDZ adaptors NHERF2 and PDZK1. We propose that the downregulation of PDZ-adaptor proteins may be an important factor leading to NHE3 dysfunction and diarrhea in the course of the cytokine

  2. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  3. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  4. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  5. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING.

    Science.gov (United States)

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J; Chen, Chuo

    2015-07-21

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein-ligand interactions.

  6. Controlled cellular fusion using optically trapped plasmonic nano-heaters

    Science.gov (United States)

    Bahadori, Azra; Lund, Andreas R.; Semsey, Szabolcs; Oddershede, Lene B.; Bendix, Poul M.

    2016-09-01

    Optically trapped plasmonic nano-heaters are used to mediate efficient and controlled fusion of biological membranes. The fusion method is demonstrated by optically trapping plasmonic nanoparticles located in between vesicle membranes leading to rapid lipid and content mixing. As an interesting application we show how direct control over fusion can be used for studying diffusion of peripheral membrane proteins and their interactions with membranes and for studying protein reactions. Membrane proteins encapsulated in an inert vesicle can be transferred to a vesicle composed of negative lipids by optically induced fusion. Mixing of the two membranes results in a fused vesicle with a high affinity for the protein and we observe immediate membrane tubulation due to the activity of the protein. Fusion of distinct membrane compartments also has applications in small scale chemistry for realizing pico-liter reactions and offers many exciting applications within biology which are discussed here.

  7. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.

    Science.gov (United States)

    Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P

    2011-11-22

    Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41.

  8. Mechanics of post-fusion exocytotic vesicle

    Science.gov (United States)

    Stephens, Thomas; Wu, Zhanghan; Liu, Jian

    2017-06-01

    Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.

  9. SLAM-family receptors: immune regulators with or without SAP-family adaptors.

    Science.gov (United States)

    Veillette, André

    2010-03-01

    The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.

  10. Increasing the efficiency of SAGE adaptor ligation by directed ligation chemistry

    Science.gov (United States)

    So, Austin P.; Turner, Robin F. B.; Haynes, Charles A.

    2004-01-01

    The ability of Serial Analysis of Gene Expression (SAGE) to provide a quantitative picture of global gene expression relies not only on the depth and accuracy of sequencing into the SAGE library, but also on the efficiency of each step required to generate the SAGE library from the starting mRNA material. The first critical step is the ligation of adaptors containing a Type IIS recognition sequence to the anchored 3′ end cDNA population that permits the release of short sequence tags (SSTs) from defined sites within the 3′ end of each transcript. Using an in vitro transcript as a template, we observed that only a small fraction of anchored 3′ end cDNA are successfully ligated with added SAGE adaptors under typical reaction conditions currently used in the SAGE protocol. Although the introduction of ∼500-fold molar excess of adaptor or the inclusion of 15% (w/v) PEG-8000 increased the yield of the adaptor-modified product, complete conversion to the desired adaptor:cDNA hetero-ligation product is not achieved. An alternative method of ligation, termed as directed ligation, is described which exploits a favourable mass-action condition created by the presence of NlaIII during ligation in combination with a novel SAGE adaptor containing a methylated base within the ligation site. Using this strategy, we were able to achieve near complete conversion of the anchored 3′ end cDNA into the desired adaptor-modified product. This new protocol therefore greatly increases the probability that a SST will be generated from every transcript, greatly enhancing the fidelity of SAGE. Directed ligation also provides a powerful means to achieve near-complete ligation of any appropriately designed adaptor to its respective target. PMID:15247329

  11. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties

    NARCIS (Netherlands)

    Shahid, Salman; Nijmeijer, Kitty; Nehache, Sabrina; Vankelecom, Ivo; Deratani, Andre; Quemener, Damien

    2015-01-01

    Mixed matrix membranes (MMMs) incorporating conventional fillers frequently suffer from insufficient adhesion between the polymer matrix and the fillers. This often results in the formation of non-selective voids at the filler/polymer interface, which decreases the performance of the membrane. A nov

  12. MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, Dorothea C.; Nehache, Sabrina; Vankelecom, Ivo; Deratani, Andre; Quemener, Damien

    2015-01-01

    Mixed matrix membranes (MMMs) incorporating conventional fillers frequently suffer from insufficient adhesion between the polymer matrix and the fillers. This often results in the formation of non-selective voids at the filler/polymer interface, which decreases the performance of the membrane. A

  13. Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Janine Kimpel

    Full Text Available Although a variety of genetic strategies have been developed to inhibit HIV replication, few direct comparisons of the efficacy of these inhibitors have been carried out. Moreover, most studies have not examined whether genetic inhibitors are able to induce a survival advantage that results in an expansion of genetically-modified cells following HIV infection. We evaluated the efficacy of three leading genetic strategies to inhibit HIV replication: 1 an HIV-1 tat/rev-specific small hairpin (sh RNA; 2 an RNA antisense gene specific for the HIV-1 envelope; and 3 a viral entry inhibitor, maC46. In stably transduced cell lines selected such that >95% of cells expressed the genetic inhibitor, the RNA antisense envelope and viral entry inhibitor maC46 provided the strongest inhibition of HIV-1 replication. However, when mixed populations of transduced and untransduced cells were challenged with HIV-1, the maC46 fusion inhibitor resulted in highly efficient positive selection of transduced cells, an effect that was evident even in mixed populations containing as few as 1% maC46-expressing cells. The selective advantage of the maC46 fusion inhibitor was also observed in HIV-1-infected cultures of primary T lymphocytes as well as in HIV-1-infected humanized mice. These results demonstrate robust inhibition of HIV replication with the fusion inhibitor maC46 and the antisense Env inhibitor, and importantly, a survival advantage of cells expressing the maC46 fusion inhibitor both in vitro and in vivo. Evaluation of the ability of genetic inhibitors of HIV-1 replication to confer a survival advantage on genetically-modified cells provides unique information not provided by standard techniques that may be important in the in vivo efficacy of these genes.

  14. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    Science.gov (United States)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  15. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  16. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM.

    Science.gov (United States)

    Togni, M; Swanson, K D; Reimann, S; Kliche, S; Pearce, A C; Simeoni, L; Reinhold, D; Wienands, J; Neel, B G; Schraven, B; Gerber, A

    2005-09-01

    SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca(2+) responses, are normal in SKAP-HOM(-/-) animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM(-/-). In addition, adhesion of activated B cells to fibronectin (a ligand for beta1 integrins) as well as to ICAM-1 (a ligand for beta2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins.

  17. Tension-induced vesicle fusion: pathways and pore dynamics

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2008-01-01

    and eventually opens a pore to complete the fusion process. In pathway II, at higher tension, a stalk is formed during the fusion process that is then transformed by transmembrane pore formation into a fusion pore. Whereas the latter pathway II resembles stalk pathways as observed in other simulation studies...... fusion time on membrane tension implies that the fusion process is completed by overcoming two energy barriers with scales of 13kBT and 11kBT. The fusion pore radius as a function of time has also been extracted from the simulations, and provides a quantitative measure of the fusion dynamics which...

  18. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  19. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry

    DEFF Research Database (Denmark)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven;

    2016-01-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxida......Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol......-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress...... and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby...

  20. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  1. Spinal Fusion

    Science.gov (United States)

    ... results in predictable healing. Autograft is currently the “gold standard” source of bone for a fusion. The ... pump. With this technique, the patient presses a button that delivers a predetermined amount of narcotic pain ...

  2. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  3. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation.

    Science.gov (United States)

    Liu, Siqi; Cai, Xin; Wu, Jiaxi; Cong, Qian; Chen, Xiang; Li, Tuo; Du, Fenghe; Ren, Junyao; Wu, You-Tong; Grishin, Nick V; Chen, Zhijian J

    2015-03-13

    During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway. Copyright © 2015, American Association for the Advancement of Science.

  4. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  5. The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease

    Directory of Open Access Journals (Sweden)

    Nikolett Marton

    2015-01-01

    Full Text Available Although Src-like adaptor proteins (SLAP-1 and SLAP-2 were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins.

  6. Molecular dynamics simulations of lipid vesicle fusion in atomic detail

    NARCIS (Netherlands)

    Knecht, Volker; Marrink, Siewert-Jan

    The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic

  7. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Watters TM, Kenny...tor adaptor proteins. Authors Watters TM, Kenny EF, O'Neill LA. Publication Immunol Cell Biol. 2007 Aug-Sep;

  8. Trophoblast fusion.

    Science.gov (United States)

    Huppertz, Berthold; Gauster, Martin

    2011-01-01

    The villous trophoblast of the human placenta is the epithelial cover of the fetal chorionic villi floating in maternal blood. This epithelial cover is organized in two distinct layers, the multinucleated syncytiotrophoblast directly facing maternal blood and a second layer of mononucleated cytotrophoblasts. During pregnancy single cytotrophoblasts continuously fuse with the overlying syncytiotrophoblast to preserve this end-differentiated layer until delivery. Syncytial fusion continuously supplies the syncytiotrophoblast with compounds of fusing cytotrophoblasts such as proteins, nucleic acids and lipids as well as organelles. At the same time the input of cytotrophoblastic components is counterbalanced by a continuous release of apoptotic material from the syncytiotrophoblast into maternal blood. Fusion is an essential step in maintaining the syncytiotrophoblast. Trophoblast fusion was shown to be dependant on and regulated by multiple factors such as fusion proteins, proteases and cytoskeletal proteins as well as cytokines, hormones and transcription factors. In this chapter we focus on factors that may be involved in the fusion process of trophoblast directly or that may prepare the cytotrophoblast to fuse.

  9. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    Science.gov (United States)

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  10. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    Science.gov (United States)

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  11. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    Directory of Open Access Journals (Sweden)

    Chad R Sethman

    Full Text Available Sterile alpha and armadillo-motif containing protein (SARM, a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  12. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    Science.gov (United States)

    Sethman, Chad R; Hawiger, Jacek

    2013-01-01

    Sterile alpha and armadillo-motif containing protein (SARM), a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies) underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  13. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    Science.gov (United States)

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  14. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis.

    Science.gov (United States)

    Teckchandani, Anjali; Mulkearns, Erin E; Randolph, Timothy W; Toida, Natalie; Cooper, Jonathan A

    2012-08-01

    Endocytic adaptor proteins facilitate cargo recruitment and clathrin-coated pit nucleation. The prototypical clathrin adaptor AP2 mediates cargo recruitment, maturation, and scission of the pit by binding cargo, clathrin, and accessory proteins, including the Eps-homology (EH) domain proteins Eps15 and intersectin. However, clathrin-mediated endocytosis of some cargoes proceeds efficiently in AP2-depleted cells. We found that Dab2, another endocytic adaptor, also binds to Eps15 and intersectin. Depletion of EH domain proteins altered the number and size of clathrin structures and impaired the endocytosis of the Dab2- and AP2-dependent cargoes, integrin β1 and transferrin receptor, respectively. To test the importance of Dab2 binding to EH domain proteins for endocytosis, we mutated the EH domain-binding sites. This mutant localized to clathrin structures with integrin β1, AP2, and reduced amounts of Eps15. Of interest, although integrin β1 endocytosis was impaired, transferrin receptor internalization was unaffected. Surprisingly, whereas clathrin structures contain both Dab2 and AP2, integrin β1 and transferrin localize in separate pits. These data suggest that Dab2-mediated recruitment of EH domain proteins selectively drives the internalization of the Dab2 cargo, integrin β1. We propose that adaptors may need to be bound to their cargo to regulate EH domain proteins and internalize efficiently.

  15. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein

    DEFF Research Database (Denmark)

    Pelicci, G; Giordano, S; Zhen, Z

    1995-01-01

    The receptor of Hepatocyte Growth Factor-Scatter Factor (HGF) is a tyrosine kinase which regulates cell motility and growth. After ligand-induced tyrosine phosphorylation, the HGF receptor associates with the Shc adaptor, via the SH2 domain. Site-directed mutagenesis of the HGF receptor indicates...

  16. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish.

    NARCIS (Netherlands)

    Meijer, A.H.; Krens, SF Gabby; Rodriguez, IA Medina; He, S; Bitter, W.; Snaar-Jagalska, B Ewa; Spaink, H.P.

    2004-01-01

    The zebrafish genomic sequence database was analysed for the presence of genes encoding members of the Toll-like receptors (TLR) and interleukin receptors (IL-R) and associated adaptor proteins containing a TIR domain. The resulting predictions show the presence of one or more counterparts for the

  17. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  18. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection.

    Science.gov (United States)

    Dumard, Carlos H; Barroso, Shana P C; de Oliveira, Guilherme A P; Carvalho, Carlos A M; Gomes, Andre M O; Couceiro, José Nelson S S; Ferreira, Davis F; Nico, Dirlei; Oliveira, Andrea C; Silva, Jerson L; Santos, Patrícia S

    2013-01-01

    Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.

  19. Deduced sequences of the membrane fusion and attachment proteins of canine distemper viruses isolated from dogs and wild animals in Korea.

    Science.gov (United States)

    Bae, Chae-Wun; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Nak-Hyung; Seo, Kun-Ho; Kang, Young-Sun; Park, Choi-Kyu; Choi, In-Soo

    2013-08-01

    Canine distemper virus (CDV) causes highly contagious respiratory, gastrointestinal, and neurological diseases in wild and domestic animal species. Despite a broad vaccination campaign, the disease is still a serious problem worldwide. In this study, six field CDV strains were isolated from three dogs, two raccoon dogs, and one badger in Korea. The full sequence of the genes encoding fusion (F) and hemagglutinin (H) proteins were compared with those of other CDVs including field and vaccine strains. The phylogenetic analysis for the F and H genes indicated that the two CDV strains isolated from dogs were most closely related to Chinese strains in the Asia-1 genotype. Another four strains were closely related to Japanese strains in the Asia-2 genotype. The six currently isolated strains shared 90.2-92.1% and 88.2-91.8% identities with eight commercial vaccine strains in their nucleotide and amino acid sequences of the F protein, respectively. They also showed 90.1-91.4% and 87.8-90.7% identities with the same vaccine strains in their nucleotide and deduced amino acid sequences of the H protein, respectively. Different N-linked glycosylation sites were identified in the F and H genes of the six isolates from the prototype vaccine strain Onderstepoort. Collectively, these results demonstrate that at least two different CDV genotypes currently exist in Korea. The considerable genetic differences between the vaccine strains and wild-type isolates would be a major factor of the incomplete protection of dogs from CDV infections.

  20. Full Inactivation of Human Influenza Virus by High Hydrostatic Pressure Preserves Virus Structure and Membrane Fusion While Conferring Protection to Mice against Infection

    Science.gov (United States)

    Dumard, Carlos H.; Barroso, Shana P. C.; de Oliveira, Guilherme A. P.; Carvalho, Carlos A. M.; Gomes, Andre M. O.; Couceiro, José Nelson S. S.; Ferreira, Davis F.; Nico, Dirlei; Oliveira, Andrea C.; Silva, Jerson L.; Santos, Patrícia S.

    2013-01-01

    Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses. PMID:24282553

  1. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Science.gov (United States)

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  2. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Directory of Open Access Journals (Sweden)

    Tonika Lam

    Full Text Available Class switch DNA recombination (CSR of the immunoglobulin heavy chain (IgH locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID expression and AID targeting to switch (S regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit and PKA-RIα (regulatory inhibitory subunit and uracil DNA glycosylase (Ung. 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198 or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR. 14-3-3 adaptors colocalized with AID and replication protein A (RPA in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr, an accessory protein of human immunodeficiency virus type-1 (HIV-1, which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  3. Intrinsically disordered proteins drive membrane curvature

    Science.gov (United States)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  4. Interaction of ubiquitin ligase CBL with LMP2A protein of Epstein-Barr virus occurs via PTB domain of CBL and does not depend on adaptor ITSN1

    Directory of Open Access Journals (Sweden)

    Dergai O. V.

    2013-03-01

    Full Text Available Aim. Previously Latent membrane protein 2A (LMP2A of Epstein-Barr virus was found to be ubiquitylated by CBL ubiquitin ligase but no direct interaction of LMP2A with CBL was reported. We aimed to explore this interaction and study a possibility of adaptor protein involvement. Taking into consideration that both LMP2A and CBL were shown to interact with endocytic adaptor protein intersectin 1 (ITSN1, we assumed that the latter could serve as a scaffold for LMP2A/CBL complex. Methods. We used an immunofluorescence and coimmuno- precipitation approaches to test a mutual complex formation of ITSN1, CBL and LMP2A proteins. Results. LMP2A coimmunoprecipitated with CBL while LMP2A did not interact with CBL G306E mutant harboring inactive phosphotyrosine-binding domain. We observed a triple colocalization of ITSN1, CBL and LMP2A signals in MCF-7 cells as well as coprecipitation of all mentioned proteins. Overexpression of ITSN1 did not affect the efficiency of complex formation of LMP2A with CBL. Moreover, LMP2A mutant unable to interact with ITSN1 was readily precipitated with CBL. Conclusions. LMP2A can be engaged in the complex together with endocytic adaptor ITSN1 and ubiquitin ligase CBL. We show that PTB domain of CBL is responsible for interaction with LMP2A. ITSN1 is not required for LMP2A recruiting to CBL.

  5. Yeast Endocytic Adaptor AP-2 Binds the Stress Sensor Mid2 and Functions in Polarized Cell Responses

    Science.gov (United States)

    Chapa-y-Lazo, Bernardo; Allwood, Ellen G; Smaczynska-de Rooij, Iwona I; Snape, Mary L; Ayscough, Kathryn R

    2014-01-01

    The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth. PMID:24460703

  6. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  7. Robust expression of the human neonatal Fc receptor in a truncated soluble form and as a full-length membrane-bound protein in fusion with eGFP.

    Directory of Open Access Journals (Sweden)

    Johan Seijsing

    Full Text Available Studies on the neonatal Fc receptor (FcRn have revealed a multitude of important functions in mammals, including protection of IgG and serum albumin (SA from lysosomal degradation. The pharmacokinetic behavior of therapeutic antibodies, IgG-Fc- and SA-containing drugs is therefore influenced by their interaction with FcRn. Pre-clinical development of such drugs is facilitated if their interaction with FcRn can be studied in vitro. For this reason we have developed a robust system for production of the soluble extracellular domain of human FcRn as well as the full-length receptor as fusion to green fluorescent protein, taking advantage of a lentivirus-based gene delivery system where stable over-expressing cells are easily and rapidly generated. Production of the extracellular domain in multiple-layered culture flasks, followed by affinity purification using immobilized IgG, resulted in capture of milligram amounts of soluble receptor per liter cell culture with retained IgG binding. The receptor was further characterized by SDS-PAGE, western blotting, circular dichroism spectroscopy, ELISA, surface plasmon resonance and a temperature stability assay showing a functional and stable protein of high purity. The full-length receptor was found to be successfully over-expressed in a membrane-bound form with retained pH-dependent IgG- and SA-binding.

  8. Tame Fusion

    Institute of Scientific and Technical Information of China (English)

    S.D. Scott

    2003-01-01

    The first section of this paper covers preliminaries. Essentially, the next four cover units. It is shown that a compatible nearring with DCCR is Nnilpotent if and only if every maximal right N-subgroup is a right ideal. The last five sections relate to fusion (I.e., N-groups minimal for being generated by Nsubgroups, where each is N-isomorphic to a given N-group). Right N-subgroups of a tame nearring N with DCCR, minimal for not annihilating a minimal ideal from the left, are self monogenic and N-isomorphic. That this holds for any collection of minimal ideals is significant. Here, the right N-subgroup involved is a 'fusion product' of the 'components'.

  9. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  10. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    Science.gov (United States)

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  11. Carpal Fusion

    OpenAIRE

    2012-01-01

    Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC) syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformatio...

  12. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling.

    Science.gov (United States)

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2015-02-01

    SLAP (Src like adaptor protein) contains adjacent Src homology 3 (SH3) and Src homology 2 (SH2) domains closely related in sequence to that of cytoplasmic Src family tyrosine kinases. Expressed most abundantly in the immune system, SLAP function has been predominantly studied in the context of lymphocyte signaling, where it functions in the Cbl dependent downregulation of antigen receptor signaling. However, accumulating evidence suggests that SLAP plays a role in the regulation of a broad range of membrane receptors including members of the receptor tyrosine kinase (RTK) family. In this review we highlight the role of SLAP in the ubiquitin dependent regulation of type III RTKs PDGFR, CSF-1R, KIT and Flt3, as well as Eph family RTKs. SLAP appears to bind activated type III and Eph RTKs via a conserved autophosphorylated juxtamembrane tyrosine motif in an SH2-dependent manner, suggesting that SLAP is important in regulating RTK signaling.

  13. Fusion rules of equivariantizations of fusion categories

    OpenAIRE

    2012-01-01

    We determine the fusion rules of the equivariantization of a fusion category $\\mathcal{C}$ under the action of a finite group $G$ in terms of the fusion rules of $\\mathcal{C}$ and group-theoretical data associated to the group action. As an application we obtain a formula for the fusion rules in an equivariantization of a pointed fusion category in terms of group-theoretical data. This entails a description of the fusion rules in any braided group-theoretical fusion category.

  14. Fusion rules of equivariantizations of fusion categories

    OpenAIRE

    Burciu, Sebastian; Natale, Sonia

    2012-01-01

    We determine the fusion rules of the equivariantization of a fusion category $\\mathcal{C}$ under the action of a finite group $G$ in terms of the fusion rules of $\\mathcal{C}$ and group-theoretical data associated to the group action. As an application we obtain a formula for the fusion rules in an equivariantization of a pointed fusion category in terms of group-theoretical data. This entails a description of the fusion rules in any braided group-theoretical fusion category.

  15. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.

    Science.gov (United States)

    Barrero-Villar, Marta; Cabrero, José Román; Gordón-Alonso, Mónica; Barroso-González, Jonathan; Alvarez-Losada, Susana; Muñoz-Fernández, M Angeles; Sánchez-Madrid, Francisco; Valenzuela-Fernández, Agustín

    2009-01-01

    The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.

  16. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.

    Science.gov (United States)

    Bonnemaison, Mathilde L; Bäck, Nils; Duffy, Megan E; Ralle, Martina; Mains, Richard E; Eipper, Betty A

    2015-08-28

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    Science.gov (United States)

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  18. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    Science.gov (United States)

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  19. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses.

  20. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-08-31

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability.

  1. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling.

    Science.gov (United States)

    Kazi, Julhash U; Kabir, Nuzhat N; Rönnstrand, Lars

    2015-07-01

    SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.

  2. Use of Conversion Adaptors to Clone Antigen Genes in Lambda gt11

    Science.gov (United States)

    1987-01-01

    gradients of 19, 30, and 50%. with 4 units ofT 4 DNA ligase for 60 min at Chromosomal DNA was prepared by dode- 16°C. Because the adaptor-insert...0.75 M and 6.5%. respectively. After chill- Biotec. Madison. WI) and 0.5 unit of T4 ing on ice for I h. the mixture was centri- DNA ligase , in 5ul of

  3. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.

    Science.gov (United States)

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven; Højrup, Peter; Emanuelsson, Cecilia; von Wachenfeldt, Claes

    2016-09-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc.

  4. FUSION WORLD

    Institute of Scientific and Technical Information of China (English)

    Caroline; 黄颖(翻译)

    2009-01-01

    Fusion World”科技展示体验中心是英国设计公司MET Studio为新加坡科技研究局(A*Star)的科学工程委员会(SERC)所设计的,位于启汇城的办公地点,用于展示该委员会的精选技术作品,以吸引潜在的客户和启汇城内的学生购买群体。

  5. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    Science.gov (United States)

    Wiley, H Steven; VanHook, Annalisa M

    2016-07-12

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.

  6. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Ebbe Toftgaard Poulsen

    2015-12-01

    Full Text Available The Amyloid Precursor Protein (APP has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ in Alzheimer’s disease (AD. However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc and its Adaptor Protein 2 (AP-2. Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies.

  7. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, Igor; Grant, Robert A.; Flynn, Julia M.; Sauer, Robert T.; Baker, Tania A. (MIT)

    2010-07-19

    Energy-dependent proteases often rely on adaptor proteins to modulate substrate recognition. The SspB adaptor binds peptide sequences in the stress-response regulator RseA and in ssrA-tagged proteins and delivers these molecules to the AAA+ ClpXP protease for degradation. The structure of SspB bound to an ssrA peptide is known. Here, we report the crystal structure of a complex between SspB and its recognition peptide in RseA. Notably, the RseA sequence is positioned in the peptide-binding groove of SspB in a direction opposite to the ssrA peptide, the two peptides share only one common interaction with the adaptor, and the RseA interaction site is substantially larger than the overlapping ssrA site. This marked diversity in SspB recognition of different target proteins indicates that it is capable of highly flexible and dynamic substrate delivery.

  8. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    Science.gov (United States)

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  9. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure.

    Directory of Open Access Journals (Sweden)

    Ryan T Fuchs

    Full Text Available High-throughput sequencing (HTS has become a powerful tool for the detection of and sequence characterization of microRNAs (miRNA and other small RNAs (sRNA. Unfortunately, the use of HTS data to determine the relative quantity of different miRNAs in a sample has been shown to be inconsistent with quantitative PCR and Northern Blot results. Several recent studies have concluded that the major contributor to this inconsistency is bias introduced during the construction of sRNA libraries for HTS and that the bias is primarily derived from the adaptor ligation steps, specifically where single stranded adaptors are sequentially ligated to the 3' and 5'-end of sRNAs using T4 RNA ligases. In this study we investigated the effects of ligation bias by using a pool of randomized ligation substrates, defined mixtures of miRNA sequences and several combinations of adaptors in HTS library construction. We show that like the 3' adaptor ligation step, the 5' adaptor ligation is also biased, not because of primary sequence, but instead due to secondary structures of the two ligation substrates. We find that multiple secondary structural factors influence final representation in HTS results. Our results provide insight about the nature of ligation bias and allowed us to design adaptors that reduce ligation bias and produce HTS results that more accurately reflect the actual concentrations of miRNAs in the defined starting material.

  10. Carpal Fusion

    Directory of Open Access Journals (Sweden)

    Jalal Jalalshokouhi*

    2012-05-01

    Full Text Available Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformation, Stickler syndrome, thalidomide embryopathy, Turner syndrome and many other conditions as mentioned in Rubinstein-Taybi's book. Sometimes there is no known causative disease.Diagnosis is usually made by plain X-ray during studying a syndrome or congenital disease or could be an incidental finding like our patients. Hand bone anomalies are more common in syndromes or other congenital or non-hereditary conditions, but polydactyly, syndactyly or oligodactyly and carpal fusions are interesting. X-ray is the modality of choice, but MRI and X-ray CT with multiplanar reconstructions may be used for diagnosis.

  11. V-ATPase, ScNhxlp and Yeast Vacuole Fusion

    Institute of Scientific and Technical Information of China (English)

    Quan-Sheng Qiu

    2012-01-01

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos.It is a central cellular reaction that plays important roles in signal transduction,protein sorting and subcellular compartmentation.Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summanzed in this article.It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast.Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH.V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast.Fission defects are epistatic to fusion defects.Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast,the fusion reaction does not need the transport activity but requires the physical presence of the proton pump.Vo,the membrane-integral sector of the V-ATPase,forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the Vo trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.

  12. Distinct roles for key karyogamy proteins during yeast nuclear fusion.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D

    2009-09-01

    During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.

  13. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  14. The Adaptor Protein SAP Directly Associates with CD3ζ Chain and Regulates T Cell Receptor Signaling

    Science.gov (United States)

    Proust, Richard; Bertoglio, Jacques; Gesbert, Franck

    2012-01-01

    Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex. PMID:22912825

  15. Dual action of BPC194 : a membrane active peptide killing bacterial cells

    NARCIS (Netherlands)

    Moiset, Gemma; Cirac, Anna D; Stuart, Marc C A; Marrink, Siewert-Jan; Sengupta, Durba; Poolman, Bert

    2013-01-01

    Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We

  16. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration

    Institute of Scientific and Technical Information of China (English)

    Takuya Watanabe; Masumi Tsuda; Yoshinori Makino; Tassos Konstantinou; Hiroshi Nishihara; Tokifumi Majima; Akio Minami; Stephan M Feller; Shinya Tanaka

    2009-01-01

    Upon growth factor stimulation, the scaffold protein, Gabl, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gabl. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extraceilular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of Crkll demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of Crkll, is critical for the induction of Gabl-Y307 phosphorylation. SH2 mutation of Crkll also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gabl, whereas Crk-SH3(N) interacted with the Gabl mutant, which lacks the clus-tered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gabl was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gabl. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gabl with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The GabI-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gabl-Y307F disturbed the localization of Crk, FAK, and paxiilin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphory-lation of Gabl-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.

  17. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    Directory of Open Access Journals (Sweden)

    Rafal Goraczniak

    2013-01-01

    Full Text Available U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2 and metabotropic glutamate receptor 1 (GRM1, in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6 indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.

  18. Membrane tension is a key determinant of bud morphology in clathrin-mediated endocytosis

    CERN Document Server

    Hassinger, Julian E; Drubin, David G; Rangamani, Padmini

    2016-01-01

    In clathrin-mediated endocytosis (CME), clathrin and various adaptor proteins coat a patch of the plasma membrane, which is reshaped to form a budded vesicle. Experimental studies have demonstrated that elevated membrane tension can inhibit bud formation by a clathrin coat. In this study, we investigate the impact of membrane tension on the mechanics of membrane budding by simulating clathrin coats that either grow in area or progressively induce greater curvature. At low membrane tension, progressively increasing the area of a curvature-generating coat causes the membrane to smoothly evolve from a flat to budded morphology, whereas the membrane remains essentially flat at high membrane tensions. Interestingly, at physiologically relevant, intermediate membrane tensions, the shape evolution of the membrane undergoes a snapthrough instability in which increasing coat area causes the membrane to "snap" from an open, U-shaped bud to a closed, $\\Omega$-shaped bud. This instability is accompanied by a large energy...

  19. Structural basis for the interaction of the adaptor protein grb14 with activated ras.

    Directory of Open Access Journals (Sweden)

    Rohini Qamra

    Full Text Available Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA domain, a pleckstrin-homology (PH domain, a family-specific BPS (between PH and SH2 region, and a C-terminal Src-homology-2 (SH2 domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V. The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.

  20. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site.

    Science.gov (United States)

    Bothe, Ingo; Deng, Su; Baylies, Mary

    2014-06-01

    Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization.

  1. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    Science.gov (United States)

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  2. Proteasome inhibition, the pursuit of new cancer therapeutics, and the adaptor molecule p130Cas

    Directory of Open Access Journals (Sweden)

    Anderson Kenneth C

    2011-10-01

    Full Text Available Abstract Current interest in proteasome inhibitors for cancer therapy has stimulated considerable research efforts to identify the molecular pathway to their cytotoxicity with a view to identifying the mechanisms of sensitivity and resistance as well as informing the development of new drugs. Zhao and Vuori describe this month in BMC Biology experiments indicating a novel role of the adaptor protein p130Cas in sensitivity to apoptosis induced not only by proteasome inhibitors but also by the unrelated drug doxorubicin. See research article: http:// http://www.biomedcentral.com/1741-7007/9/73

  3. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.

    Directory of Open Access Journals (Sweden)

    Per Larsson

    Full Text Available Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.

  4. Involvement of β3A Subunit of Adaptor Protein-3 in Intracellular Trafficking of Receptor-like Protein Tyrosine Phosphatase PCP-2

    Institute of Scientific and Technical Information of China (English)

    Hui DONG; Hong YUAN; Weirong JIN; Yan SHEN; Xiaojing XU; Hongyang WANG

    2007-01-01

    PCP-2 is a human receptor-like protein tyrosine phosphatase and a member of the MAM domain family cloned in human pancreatic adenocarcinoma cells. Previous studies showed that PCP-2 directly interacted with β-catenin through the juxtamembrane domain, dephosphorylated β-catenin and played an important role in the regulation of cell adhesion. Recent study showed that PCP-2 was also involved in the repression of β-catenin-induced transcriptional activity. Here we describe the interactions of PCP-2 with the β3A subunit of adaptor protein (AP)-3 and sorting nexin (SNX) 3. These protein complexes were detected using the yeast two-hybrid assay with the juxtamembrane and membrane-proximal catalytic domain of PCP-2 as "bait". Both AP-3 and SNX3 are molecules involved in intracellular trafficking of membrane receptors. The association between the β3A subunit of AP-3 and PCP-2 was further confirmed in mammalian cells. Our results suggested a possible mechanism of intracellular trafficking of PCP-2 mediated by AP-3 and SNX3 which might participate in the regulation of PCP-2 functions.

  5. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  6. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  7. Repair of damaged connectors of tunneled cuffed catheters with a two-piece adaptor for peritoneal dialysis.

    Science.gov (United States)

    Letachowicz, Krzysztof; Letachowicz, Waldemar; Weyde, Waclaw; Gołębiowski, Tomasz; Kusztal, Mariusz; Wątorek, Ewa; Klinger, Marian

    2012-01-01

    Although catheter use exposes the patient to several complications, tunneled cuffed catheters are widely applied for temporary or long-term vascular access. The aim of the study was to establish the rate of tunneled dialysis catheter damage and report our experience with breakage repair. All 363 cuffed tunneled hemodialysis catheters inserted into 309 patients from May 2000 to December 2008 were followed up. When connector damage was encountered, repair with a two-piece adaptor for peritoneal dialysis was attempted. Mechanical breakage occurred in 33 (9.1%) of catheters with an incidence of 0.36/1000 catheter-days. The most frequent was connector damage, found in 25 cases (67.6%). Catheter repair using a peritoneal dialysis Luer adaptor was performed with good early and long-term outcome. Tunneled catheter breakage is a relatively rare complication. Catheter repair using the adaptor for peritoneal dialysis is easy to perform, safe, and cost-effective.

  8. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog

    Science.gov (United States)

    Zhang, Qing; Zmasek, Christian M.; Cai, Xiaohui; Godzik, Adam

    2011-01-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein–protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. PMID:21110998

  9. Myoblast fusion: Experimental systems and cellular mechanisms.

    Science.gov (United States)

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  10. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    Science.gov (United States)

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  11. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  12. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae.

    Science.gov (United States)

    Unterweger, Daniel; Kostiuk, Benjamin; Ötjengerdes, Rina; Wilton, Ashley; Diaz-Satizabal, Laura; Pukatzki, Stefan

    2015-08-13

    Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.

  13. Cooperative immunoregulatory function of the transmembrane adaptor proteins SIT and LAX.

    Science.gov (United States)

    Arndt, Börge; Kalinski, Thomas; Reinhold, Dirk; Thielitz, Anja; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2013-03-01

    Lymphocyte activation is crucial for the generation of immune responses. In vitro studies have demonstrated that TRAPs are critical regulators of lymphocyte activation. However, more recent in vivo studies have demonstrated that with the exception of LAT, TRAPs, such as SIT, NTAL, and LAX, only minimally affect immune cell functions. Additional studies have suggested that the mild or the apparent lack of a phenotype displayed by most TRAP KO mice may be explained by functional redundancy among this family of adaptors. In fact, it has been shown that the phenotype of NTAL/LAT or SIT/TRIM double-deficient mice is more severe than that of the single KOs. Here, we have evaluated whether SIT and the related transmembrane adaptor LAX have overlapping functions by generating SIT/LAX DKO mice. We show that DKO, in contrast to single KO mice, accumulate large numbers of activated CD4(+) T cells in the spleen. Moreover, conventional B cells from DKO mice are hyperproliferative upon CD40 stimulation. Additionally, we found that DKO mice displayed an expansion of the B1 cell pool in the peritoneal cavity, hypergammaglobulinaemia, and an enhanced immune response to the T1-independent antigen, TNP-LPS. Finally, we demonstrate that SIT/LAX double deficiency resulted in a more pronounced breakdown of peripheral tolerance and the development of autoimmunity characterized by ANAs and renal disease (glomerulonephritis and proteinuria). Collectively, our data indicate that SIT and LAX are important negative regulators of immune responses that functionally cooperate.

  14. The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment.

    Science.gov (United States)

    Chen, Jia; Jardetzky, Theodore S; Longnecker, Richard

    2016-11-15

    Epstein-Barr virus (EBV) is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD). In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706) of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain.

  15. The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2016-11-01

    Full Text Available Epstein-Barr virus (EBV is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD. In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706 of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain.

  16. Cold nuclear fusion

    National Research Council Canada - National Science Library

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    ...... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion...

  17. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  18. Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex

    Directory of Open Access Journals (Sweden)

    Fuchs Pinhas

    2009-09-01

    Full Text Available Abstract Background Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes. This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. Results We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within" or by infection with a high amount of virus particles per cell (fusion "from without". Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Conclusion Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.

  19. Cold fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  20. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Terry L Bennett

    Full Text Available During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes. This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.

  1. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    Science.gov (United States)

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  2. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine-phos...

  3. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  4. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  5. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

    Science.gov (United States)

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S.; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J.; Wang, Junzhi; Stuart, David I.; Fry, Elizabeth E.; Rao, Zihe

    2012-01-01

    Enterovirus 71 (EV71), a major agent of hand-foot-and-mouth disease in children, can cause severe central nervous system disease and mortality. At present no vaccine or antiviral therapy is available. We have determined high-resolution structures for the mature virus and natural empty particles. The structure of the mature virus is similar to that of other enteroviruses, whilst the empty particles are dramatically expanded, with notable fissures, resembling elusive enterovirus uncoating intermediates not previously characterized in atomic detail. Hydrophobic capsid pockets within the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. The results provide a paradigm for enterovirus uncoating, in which the VP1 GH loop acts as an adaptor-sensor for the attachment of cellular receptors, converting heterologous inputs to a generic uncoating mechanism, spotlighting novel points for therapeutic intervention. PMID:22388738

  6. The late endosomal adaptor p14 is a macrophage host-defense factor against Salmonella infection.

    Science.gov (United States)

    Taub, Nicole; Nairz, Manfred; Hilber, Diana; Hess, Michael W; Weiss, Günter; Huber, Lukas A

    2012-06-01

    The outcome of an infection depends on the balance between host resistance and bacterial virulence. Here, we show that the late endosomal adaptor p14 (also known as LAMTOR2) is one of the components for cellular host defense against the intracellular pathogen Salmonella enterica serovar Typhimurium. During Salmonella infection, the complex of p14 and MP1 is required for the accurately timed transport of Salmonella through the endolysosomal system. Loss of p14 opens a time window that allows Salmonella to populate a replication niche, in which early and late antimicrobial effector systems, comprising NADPH phagocytic oxidase and inducible nitric oxide synthase, respectively, are inappropriately activated. Thus, p14 supports the accurate transport of Salmonella through the endolysosomal system, thereby limiting bacterial replication in both, professional phagocytes and in non-phagocytic cells in vitro, and helps mice to successfully battle Salmonella infection in vivo.

  7. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  8. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency.

    Science.gov (United States)

    Gerrish, Robert S; Gill, Steven R

    2010-11-01

    Suppression Subtractive Hybridization (SSH) and its derivative, Pooled Suppression Subtractive hybridization (PSSH), are powerful tools used to study variances larger than ~100 bp in prokaryotic genome structure. The initial steps involve ligating an oligonucleotide of known sequence (the "adaptor") to a fragmented genome to facilitate amplification, subtraction and downstream sequencing. SSH results in the creation of a library of unique DNA fragments which have been traditionally analyzed via Sanger sequencing. Numerous next generation sequencing technologies have entered the market yet SSH is incompatible with these platforms. This is due to the high level of sequence conservation of the oligonucleotide used for SSH. This rigid adherence is partly because it has yet to be determined if alteration of this oligonucleotide will have a deleterious impact on subtraction efficiency. The subtraction occurs when non-unique fragments are inhibited by a secondary self-pairing structure which requires exact nucleotide sequence. We determine if appending custom sequence to the 5' terminal ends of these oligonucleotides during the nested PCR stages of PSSH will reduce subtraction efficiency. We compare a pool of ten S. aureus clinical isolates with a standard PSSH and custom tailed-PSSH. We detected no statistically significant difference between their subtraction efficiencies. Our observations suggest that the adaptor's terminal ends may be labeled during the nested PCR step. This produces libraries labeled with custom sequence. This does not lead to loss of subtraction efficiency and would be invaluable for groups wishing to combine SSH or PSSH with their own downstream applications, such as a high throughput sequencing platform.

  9. The Influences of Connectors and Adaptors to Fiber-To-The-Home Network Performance

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ab-Rahman

    2012-01-01

    Full Text Available Problem statement: The reliability of the entire communications network was dependent on the reliability of each single element. Connector was important devices that can affect the performance of the fiber communication. There were a large number of issues that affect the performance of fiber optic connectors in todays networks. These factors were increasingly as data rates, the number of wavelengths and transmission distances continue to escalate. Approach: Therefore this study was carried out to test on the influence of connectors and adapters to the performance of the optical network. Initially the actual attenuation of connector and adaptor were tested by using multifunction loss tester. The first two 1 m corning optical fibers with a connector at each end are measured. Then, both the 1 m corning optical fibers were joined together by an adaptor and connected to the Multifunction loss tester. Three types of wavelength are used as the source to test the attenuation of the fiber which is 1310, 1490-1550 nm. In order to measure the Bit Error Rate (BER and the power loss in optical fiber communication, a simple simulation was carried out by using software opti sys. Results: The attenuation on the connector was caused mainly by existence of impurities in the connector, less perfect connection, scattering of beam and others. These causes the parameter such as power received, Q-factor, minimum BER and also the eye-height to change. Changes in these parameters also affect the performance at the user end. It was very critical that causes of attenuation to be eliminated. Conclusion/Recommendations: From the result it can be concluded that, the greater the attenuation, the greater the decrease in power received. It also affects the Q-factor of the system where as the attenuation increase, the maximum Q-factor decreases. As for the minimum BER, minimum BER changes as the attenuation increase initially, after a maximum value it decreases as the

  10. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    Energy Technology Data Exchange (ETDEWEB)

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.; (HHMI)

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  11. `Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells

    Science.gov (United States)

    Oleinick, Alexander; Svir, Irina; Amatore, Christian

    2017-01-01

    Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering (`Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called `full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of `full fusion'.

  12. 'Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells.

    Science.gov (United States)

    Oleinick, Alexander; Svir, Irina; Amatore, Christian

    2017-01-01

    Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering ('Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called 'full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of 'full fusion'.

  13. The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation.

    Science.gov (United States)

    Key, Tim; Sarker, Muzaddid; de Antueno, Roberto; Rainey, Jan K; Duncan, Roy

    2015-02-01

    The reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell-cell, rather than virus-cell, membrane fusion. The 36-40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell-cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome-liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol.

  14. Src-Like adaptor protein (SLAP) binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Science.gov (United States)

    Kazi, Julhash U; Rönnstrand, Lars

    2012-01-01

    Fms-like tyrosine kinase 3 (Flt3) is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML). Src-like adaptor protein (SLAP) is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  15. Src-Like adaptor protein (SLAP binds to the receptor tyrosine kinase Flt3 and modulates receptor stability and downstream signaling.

    Directory of Open Access Journals (Sweden)

    Julhash U Kazi

    Full Text Available Fms-like tyrosine kinase 3 (Flt3 is an important growth factor receptor in hematopoiesis. Gain-of-function mutations of the receptor contribute to the transformation of acute myeloid leukemia (AML. Src-like adaptor protein (SLAP is an interaction partner of the E3 ubiquitin ligase Cbl that can regulate receptor tyrosine kinases-mediated signal transduction. In this study, we analyzed the role of SLAP in signal transduction downstream of the type III receptor tyrosine kinase Flt3. The results show that upon ligand stimulation SLAP stably associates with Flt3 through multiple phosphotyrosine residues in Flt3. SLAP constitutively interacts with oncogenic Flt3-ITD and co-localizes with Flt3 near the cell membrane. This association initiates Cbl-dependent receptor ubiquitination and degradation. Depletion of SLAP expression by shRNA in Flt3-transfected Ba/F3 cells resulted in a weaker activation of FL-induced PI3K-Akt and MAPK signaling. Meta-analysis of microarray data from patient samples suggests that SLAP mRNA is differentially expressed in different cancers and its expression was significantly increased in patients carrying the Flt3-ITD mutation. Thus, our data suggest a novel role of SLAP in different cancers and in modulation of receptor tyrosine kinase signaling apart from its conventional role in regulation of receptor stability.

  16. Premature Activation of the Paramyxovirus Fusion Protein before Target Cell Attachment with Corruption of the Viral Fusion Machinery*

    Science.gov (United States)

    Farzan, Shohreh F.; Palermo, Laura M.; Yokoyama, Christine C.; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E.; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-01-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents. PMID:21799008

  17. Auto-fusion and the shaping of neurons and tubes.

    Science.gov (United States)

    Soulavie, Fabien; Sundaram, Meera V

    2016-12-01

    Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes.

  18. Mutations in the DI-DII Linker of Human Parainfluenza Virus Type 3 Fusion Protein Result in Diminished Fusion Activity.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available Human parainfluenza virus type 3 (HPIV3 can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369-374 of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.

  19. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  20. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  1. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  2. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  3. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  4. CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets.

    Science.gov (United States)

    Aldhamen, Yasser A; Rastall, David P W; Chen, Weimin; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Kaminski, Norbert E; Amalfitano, Andrea

    2016-06-08

    The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy.

  5. Pore dynamics in lipid membranes

    Science.gov (United States)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  6. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  7. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  8. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  9. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    Science.gov (United States)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  10. Magnetic fusion reactor economics

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  11. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  12. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  13. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures...... around 20 C, but at temperatures above 26 C we observe an increase in the scattered intensity due to fusion. The system is unusually well suited for the study of basic mechanisms of vesicle fusion. The vesicles are flexible with a bending rigidity of only a few k(H)T. The monolayer spontaneous curvature...

  14. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    Science.gov (United States)

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-01

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  15. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    Directory of Open Access Journals (Sweden)

    Vinod R M T Balasubramaniam

    Full Text Available We constructed a novel chicken (Gallus gallus lung cDNA library fused inside yeast acting domain vector (pGADT7. Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI nucleoprotein (NP from the strain (A/chicken/Malaysia/5858/2004(H5N1 as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1 to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction. Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  16. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    Science.gov (United States)

    Balasubramaniam, Vinod R M T; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  17. N-Acetylneuraminyllactosylceramide, GM3-NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza virus A/Aichi/2/68 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid.

    Science.gov (United States)

    Suzuki, Y; Matsunaga, M; Matsumoto, M

    1985-02-10

    Agglutinates of native chicken erythrocytes caused by influenza virus A/Aichi/2/68 (H3N2) at 4 degrees C were potently fused and lysed at low pH (optimum pH 5.3) at 37 degrees C. Exogenous gangliosides GM3 (Sia alpha 2-3Gal beta 1-4Glc beta 1-ceramide) and GM2 (GalNAc beta 1-4(Sia alpha 2-3)-Gal beta 1-4Glc beta 1-ceramide) were integrated into the membranes of chicken asialoerythrocytes within 5-min incubation at 37 degrees C. We found that the incorporation of ganglioside GM3 containing N-acetylneuraminic acid into asialoerythrocytes restored the biological responsiveness to the virus as established by agglutination at 4 degrees C and fusion and hemolysis at 37 degrees C at pH 5.3. Biological responsiveness of GM3-NeuAc-erythrocytes to the virus was considerably higher than that of GM3-NeuGc-erythrocytes under the same experimental conditions. Treatment of the GM3-NeuAc-erythrocytes with neuraminidase again resulted in the complete abolishment of the response to the virus. Erythrocytes containing GM2-NeuAc showed no detectable biological responses toward the virus. The above results indicate that the hemagglutinin of influenza virus A/Aichi/2/68 (H3N2) recognizes the sialyloligosaccharide chain of ganglioside GM3 as its receptor which mediates the adsorption and fusion process on the virus entry into the host cells and has more preferential specificity for binding to N-acetylneuraminic acid-containing GM3 than that to N-glycolyl type in the target cell membranes.

  18. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    Science.gov (United States)

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  19. The Mechanism of Henipavirus Fusion: Examining the Relationships between the Attachment and Fusion Glycoproteins

    Institute of Scientific and Technical Information of China (English)

    Andrew C. Hickey; Christopher C. Broder

    2009-01-01

    The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These viruses enter host cells via a class I viral fusion mechanism mediated by their attachment and fusion envelope glycoproteins; efficient membrane fusion requires both these glycoproteins in conjunction with specific virus receptors present on susceptible host cells. The henipavirus attachment glycoprotein interacts with a cellular B class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of monoclonal antibody (mAb) reactivity with G has revealed measurable alterations in the antigenic structure of the glycoprotein following its binding interaction with receptor. These observations only appear to occur with full-length native G glycoprotein, which is a tetrameric oligomer, and not with soluble forms of G (sG), which are disulfide-linked dimers. Single amino acid mutations in a heptad repeat-like structure within the stalk domain of G can disrupt its association with F and subsequent membrane fusion promotion activity. Notably, these mutants of G also appear to confer a postreceptor bound conformation implicating the stalk domain as an important element in the G glycoprotein's structure and functional relationship with F. Together, these observations suggest fusion is dependent on a specific interaction between the F and G glycoproteins of the henipaviruses. Further, receptor binding induces measurable changes in the G glycoprotein that appear to be greatest in respect to the interactions between the pairs of dimers comprising its native tetrameric structure. These receptor-induced conformational changes may be associated with the G glycoprotein's promotion of the fusion activity of F.

  20. A novel bispecific peptide HIV-1 fusion inhibitor targeting the N-terminal heptad repeat and fusion peptide domains in gp41.

    Science.gov (United States)

    Jiang, Xifeng; Jia, Qiyan; Lu, Lu; Yu, Fei; Zheng, Jishen; Shi, Weiguo; Cai, Lifeng; Jiang, Shibo; Liu, Keliang

    2016-12-01

    HIV-1 fusion with the target cell is initiated by the insertion of the gp41 fusion peptide (FP) into the target cell membrane and the interaction between the gp41 N- and C-terminal heptad repeats (NHR and CHR), followed by the formation of the six-helix bundle (6-HB) fusion core. Therefore, both FP and NHR are important targets for HIV-1 fusion inhibitors. Here, we designed and synthesized a dual-target peptidic HIV-1 fusion inhibitor, 4HR-LBD-VIRIP, in which 4HR-LBD is able to bind to the gp41 NHR domain, while VIRIP is able to interact with gp41 FP. We found that 4HR-LBD-VIRIP is about tenfold more potent than 4HR-LBD and VIRIP in inhibiting HIV-1IIIB infection and HIV-1 envelope glycoprotein (Env)-mediated cell-cell fusion, suggesting that this dual-target HIV-1 fusion inhibitor possesses a strong synergistic antiviral effect. A biophysical analysis indicates that 4HR-LBD-VIRIP can interact with N70 peptide that contains the gp41 NHR and FP domains and binds with lipid membrane. This study provides a new approach for designing novel viral fusion inhibitors against HIV and other enveloped viruses with class I membrane fusion proteins.

  1. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    Science.gov (United States)

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  2. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  3. Nuclear fusion inside condense matters

    Institute of Scientific and Technical Information of China (English)

    HE Jing-tang

    2007-01-01

    This article describes in detail the nuclear fusion inside condense matters--the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  4. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog.

    Science.gov (United States)

    Zhang, Qing; Zmasek, Christian M; Cai, Xiaohui; Godzik, Adam

    2011-04-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    Science.gov (United States)

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.

  6. Artificial Neural Network for the Prediction of Tyrosine-Based Sorting Signal Recognition by Adaptor Complexes

    Directory of Open Access Journals (Sweden)

    Debarati Mukherjee

    2012-01-01

    Full Text Available Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic domains. Among these sorting signals, the tyrosine-based motif (YXXØ is one of the best characterized and is recognized by μ-subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4. Despite their overlap in specificity, each μ-subunit has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori, the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational approach based on the Artificial Neural Network (ANN paradigm that addresses the issue of tyrosine-signal specificity, enabling the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help predict mechanisms of intracellular protein sorting.

  7. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Science.gov (United States)

    Yu, Chia-Yi; Chang, Tsung-Hsien; Liang, Jian-Jong; Chiang, Ruei-Lin; Lee, Yi-Ling; Liao, Ching-Len; Lin, Yi-Ling

    2012-01-01

    Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA) but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96)G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT) stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  8. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  9. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    Directory of Open Access Journals (Sweden)

    Matthew A.M. Todd

    2015-06-01

    Full Text Available The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6 gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS, while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL and acute myeloid leukemia (AML. Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis.

  10. Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair

    Directory of Open Access Journals (Sweden)

    Andrew Kaplan

    2017-01-01

    Full Text Available The goal of developing treatments for central nervous system (CNS injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons. These discoveries have stemmed from screening efforts, large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth. It will be important to continue searching for new compounds that can induce axon repair. Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration. 14-3-3s bind to many functionally diverse client proteins to regulate their functions. We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A, a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins. Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.

  11. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases.

    Science.gov (United States)

    Kaplan, Andrew; Ottmann, Christian; Fournier, Alyson E

    2017-09-14

    14-3-3s are a family of ubiquitously expressed adaptor proteins that regulate hundreds of functionally diverse 'client proteins.' In humans, there are seven isoforms with conserved structure and function. 14-3-3s typically bind to client proteins at phosphorylated serine/threonine motifs via a linear binding groove. Binding can have a variety of effects on the stability, activity and/or localization of the client protein. 14-3-3s are generating significant interest as potential drug targets for their involvement in cellular homeostasis and disease. They are especially abundant in the central nervous system (CNS) and are implicated in numerous CNS diseases, often through specific interactions with disease-relevant client proteins. Several tool compounds that can modulate 14-3-3 interactions with client proteins to elicit therapeutic effects have recently been described. Here we offer a perspective on the functions of 14-3-3s in neurons and the potential development of drugs to therapeutically target 14-3-3 PPIs for CNS diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lymphocytes and the Dap12 adaptor are key regulators of osteoclast activation associated with gonadal failure.

    Directory of Open Access Journals (Sweden)

    Adrienne Anginot

    Full Text Available Bone resorption by osteoclasts is necessary to maintain bone homeostasis. Osteoclast differentiation from hematopoietic progenitors and their activation depend on M-CSF and RANKL, but also requires co-stimulatory signals acting through receptors associated with DAP12 and FcRgamma adaptors. Dap12 mutant mice (KDelta75 are osteopetrotic due to inactive osteoclasts but, surprisingly, these mice are more sensitive than WT mice to bone loss following an ovariectomy. Because estrogen withdrawal is known to disturb bone mass, at least in part, through lymphocyte interaction, we looked at the role of mature lymphocytes on osteoclastogenesis and bone mass in the absence of functional DAP12. Lymphocytes were found to stimulate an early osteoclast differentiation response from Dap12-deficient progenitors in vitro. In vivo, Rag1-/- mice lacking mature lymphocytes did not exhibit any bone phenotype, but lost their bone mass after ovariectomy like KDelta75 mice. KDelta75;Rag1-/- double mutant female mice exhibited a more severe osteopetrosis than Dap12-deficient animals but lost their bone mass after ovariectomy, like single mutants. These results suggest that both DAP12 and mature lymphocytes act synergistically to maintain bone mass under physiological conditions, while playing similar but not synergistic co-stimulatory roles in protecting bone loss after gonadal failure. Thus, our data support a role for lymphocytes during osteoclast differentiation and suggest that they may function as accessory cells when regular osteoclast function is compromised.

  13. Development of STEP-NC Adaptor for Advanced Web Manufacturing System

    Science.gov (United States)

    Ajay Konapala, Mr.; Koona, Ramji, Dr.

    2017-08-01

    Information systems play a key role in the modern era of Information Technology. Rapid developments in IT & global competition calls for many changes in basic CAD/CAM/CAPP/CNC manufacturing chain of operations. ‘STEP-NC’ an enhancement to STEP for operating CNC machines, creating new opportunities for collaborative, concurrent, adaptive works across the manufacturing chain of operations. Schemas and data models defined by ISO14649 in liaison with ISO10303 standards made STEP-NC file rich with feature based, rather than mere point to point information of G/M Code format. But one needs to have a suitable information system to understand and modify these files. Various STEP-NC information systems are reviewed to understand the suitability of STEP-NC for web manufacturing. Present work also deals with the development of an adaptor which imports STEP-NC file, organizes its information, allowing modifications to entity values and finally generates a new STEP-NC file to export. The system is designed and developed to work on web to avail additional benefits through the web and also to be part of a proposed ‘Web based STEP-NC manufacturing platform’ which is under development and explained as future scope.

  14. Dengue virus targets the adaptor protein MITA to subvert host innate immunity.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Yu

    Full Text Available Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN. We found that activation of interferon regulatory factor 3 (IRF3 triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IRF3 activation (MITA but not the murine homologue MPYS, was cleaved in cells infected with DEN-1 or DEN-2 and with expression of the enzymatically active protease NS2B3. The cleavage site of MITA was mapped to LRR↓(96G and the function of MITA was suppressed by dengue protease. DEN replication was reduced with overexpression of MPYS but not with MITA, while DEN replication was enhanced by MPYS knockdown, indicating an antiviral role of MITA/MPYS against DEN infection. The involvement of MITA in DEN-triggered innate immune response was evidenced by reduction of IRF3 activation and IFN induction in cells with MITA knockdown upon DEN-2 infection. NS2B3 physically interacted with MITA, and the interaction and cleavage of MITA could be further enhanced by poly(dA:dT stimulation. Thus, we identified MITA as a novel host target of DEN protease and provide the molecular mechanism of how DEN subverts the host innate immunity.

  15. A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling.

    Science.gov (United States)

    Ní Cheallaigh, Clíona; Sheedy, Frederick J; Harris, James; Muñoz-Wolf, Natalia; Lee, Jinhee; West, Kim; McDermott, Eva Palsson; Smyth, Alicia; Gleeson, Laura E; Coleman, Michelle; Martinez, Nuria; Hearnden, Claire H A; Tynan, Graham A; Carroll, Elizabeth C; Jones, Sarah A; Corr, Sinéad C; Bernard, Nicholas J; Hughes, Mark M; Corcoran, Sarah E; O'Sullivan, Mary; Fallon, Ciara M; Kornfeld, Hardy; Golenbock, Douglas; Gordon, Stephen V; O'Neill, Luke A J; Lavelle, Ed C; Keane, Joseph

    2016-02-16

    Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer.

  16. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  17. Novel isoform of adaptor protein ITSN1 forms homodimers via its C-terminus

    Directory of Open Access Journals (Sweden)

    Skrypkina I. Ya.

    2011-06-01

    Full Text Available Aim. Previously we have identified a novel isoform of endocytic adaptor protein ITSN1 designated as ITSN122a. Western blot revealed two immunoreactive bands of 120 and 250 kDa that corresponded to ITSN1-22a. The goal of this study was to investigate the possibility of dimer formation by the novel isoform. Methods. Dimerization ability of ITSN1-22a was tested by immunoprecipitation and subsequent Western blot analysis. To specify the region responsible for dimerization, site-directed mutagenesis and truncation analysis were carried out. Inhibition of endocytosis by potassium depletion and EGF stimulation of HEK293 were performed. Results. We have found that ITSN1-22a forms dimers in HEK293 cells. The dimerization of ITSN1-22a was mediated by C-terminal domain. We showed that cysteines C1016 and C1019 were involved in homodimerization. Inhibition of clathrin-mediated endocytosis and mitogen stimulation did not affect ITSN1-22a dimer formation. Conclusions. ITSN1-22a is the only one known ITSN1 isoform, which is capable to form homodimers via disulphide bonds. This could be important for the formation of protein complexes containing ITSN1 molecules.

  18. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    Science.gov (United States)

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  19. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  20. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human.

    Science.gov (United States)

    Belinda, Loh Wei-Ching; Wei, Wang Xiao; Hanh, Bui Thi Hong; Lei, Luan Xiao; Bow, Ho; Ling, Ding Jeak

    2008-03-01

    Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human.

  1. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    Science.gov (United States)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  2. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  3. Complementary Advanced Fusion Exploration

    Science.gov (United States)

    2005-08-01

    homographic computer vision image fusion, out-of-sequence measurement and track data handling, Nash bargaining approaches to sensor management... homographic fusion notions are identified together with the Nash approach, the pursuit-evasion approach to threat situation outcome determination, and the

  4. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  5. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  6. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appe...

  7. Mechanisms of Membrane Curvature Generation in Membrane Traffic

    Directory of Open Access Journals (Sweden)

    Hye-Won Shin

    2012-02-01

    Full Text Available During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.

  8. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  9. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  10. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  11. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses

    Science.gov (United States)

    2013-09-12

    opportunities to disrupt early stages in viral replication and prevent a productive infection [11,13]. Targeting this viral entry process with inhibitory...stage of the viral replication cycle. Enveloped viruses require fusion of viral and cellular membranes for the viral genome to enter the cell cytoplasm...Rad, Hercules, CA). Cell-cell fusion assay A plasmid based cell-cell fusion assay was developed similar to the alphavirus replicon-based system

  12. Control of Fusion and Solubility in Fusion Systems

    CERN Document Server

    Craven, David A

    2009-01-01

    In this article, we consider the control of fusion in fusion systems, proving three previously known, non-trivial results in a new, largely elementary way. We then reprove a result of Aschbacher, that the product of two strongly closed subgroups is strongly closed; to do this, we consolidate the theory of quotients of fusion systems into a consistent theory. We move on considering p-soluble fusion systems, and prove that they are constrained, allowing us to effectively characterize fusion systems of p-soluble groups. This leads us to recast Thompson Factorization for Qd(p)-free fusion systems, and consider Thompson Factorization for more general fusion systems.

  13. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  14. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  15. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    Science.gov (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  16. Trisomy 21- affected placentas highlight prerequisite factors for human trophoblast fusion and differentiation.

    Science.gov (United States)

    Malassiné, André; Frendo, Jean-Louis; Evain-Brion, Danièle

    2010-01-01

    Trophoblastic cell fusion is one essential step of the human trophoblast differentiation pathway and is a multifactorial and dynamic process finely regulated and still poorly known. Disturbances of syncytiotrophoblast formation are observed in numerous pathological clinical conditions such as preeclampsia, intrauterine growth retardation and trisomy 21. In this review, we summarize current knowledge of the different membrane proteins directly involved in trophoblastic cell fusion, which we identified by using the physiological model of primary culture of villous trophoblastic cells. Connexin 43 and gap junctional intercellular communication point to the role of molecular exchanges through connexin channels preceding membrane fusion. Zona occludens-1, which can interact with connexin 43, is also directly involved in trophoblast fusion. The recently identified fusogenic membrane retroviral envelop glycoproteins syncytin 1 (encoded by the HERV-W gene) and syncytin 2 (encoded by the FRD gene) and their receptors are major factors involved in human placental development . We describe the increasing number of factors promoting or inhibiting trophoblast fusion and differentiation and emphasize the role of human chorionic gonadotropin (hCG) and its receptor. Indeed, in trisomy 21 the dynamic process leading to membrane fusion is impaired due to an abnormal hCG signaling. This abnormal trophoblast fusion and differentiation in trisomy 21-affected placenta is reversible in vitro. Trisomy 21 trophoblastic cell culture may therefore be useful to identify the possible large number of prerequisite factors involved in trophoblast fusion, the limiting step of trophoblast differentiation.

  17. Fusion of Selected Cells and Vesicles Mediated by Optically Trapped Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Bahadori, Azra

    . In this work, we introduce a novel and extremely flexible physical method which can trigger membrane fusion in a highly selective manner not only between synthetic GUVs of different compositions, but also between live cells which remain viable after fusion. Optical tweezers’ laser (1064 nm) is used to position...

  18. The TIR-domain containing adaptor TRAM is required for TLR7 mediated RANTES production.

    Directory of Open Access Journals (Sweden)

    Enda Shevlin

    Full Text Available Toll-like receptor 7 (TLR7 plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV and Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor molecule (TRAM plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the complex and initiation of IRF3 dependent type I interferon production as well as NF-κB dependent pro-inflammatory cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that TRAM(-/- murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not TNFα, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7 mediated CCL5 and IFN-β, but not TNFα, gene induction. Furthermore, suppression of endogenous human TRAM expression in human macrophages significantly impaired RV16 induced CCL5 and IFNβ, but not TNFα gene induction. Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNβ and IFNα reporter genes. TLR7-mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM(-/- cells. Finally, co-immunoprecipitation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions. Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity.

  19. The Toll-Like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery

    Directory of Open Access Journals (Sweden)

    Pak Kwang

    2009-08-01

    Full Text Available Abstract Background Toll-like receptor (TLR signalling is crucial for innate immune responses to infection. The involvement of TLRs in otitis media (OM, the most prevalent childhood disease in developed countries, has been implicated by studies in middle ear cell lines, by association studies of TLR-related gene polymorphisms, and by altered OM in mice bearing mutations in TLR genes. Activated TLRs signal via two alternative intracellular signaling molecules with differing effects; MyD88 (Myeloid differentiation primary response gene 88 inducing primarily interleukin expression and TRIF (Tir-domain-containing adaptor inducing interferon β mediating type I interferon (IFN expression. We tested the hypothesis that TRIF and type I IFN signaling play a role in OM, using a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi. The ME inflammatory response to NTHi was examined in wild-type (WT and TRIF-/- mice by qPCR, gene microarray, histopathology and bacterial culture. Results Expression of TRIF mRNA was only modesty enhanced during OM, but both type I IFN signalling genes and type I IFN-inducible genes were significantly up-regulated in WT mice. TRIF-deficient mice showed reduced but more persistent mucosal hyperplasia and less leukocyte infiltration into the ME in response to NTHi infection than did WT animals. Viable bacteria could be cultured from MEs of TRIF-/- mice for much longer in the course of disease than was the case for middle ears of WT mice. Conclusion Our results demonstrate that activation of TRIF/type I IFN responses is important in both the pathogenesis and resolution of NTHi-induced OM.

  20. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    Science.gov (United States)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of

  1. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    Science.gov (United States)

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  2. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes

    Science.gov (United States)

    Luo, Min; Yeruva, Sunil; Liu, Yongjian; Chodisetti, Giriprakash; Riederer, Brigitte; Menon, Manoj B.; Tachibana, Keisuke; Doi, Takefumi; Seidler, Ursula E.

    2017-01-01

    Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy.

  3. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Science.gov (United States)

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  4. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various pu

  5. Sampling Based Average Classifier Fusion

    Directory of Open Access Journals (Sweden)

    Jian Hou

    2014-01-01

    fusion algorithms have been proposed in literature, average fusion is almost always selected as the baseline for comparison. Little is done on exploring the potential of average fusion and proposing a better baseline. In this paper we empirically investigate the behavior of soft labels and classifiers in average fusion. As a result, we find that; by proper sampling of soft labels and classifiers, the average fusion performance can be evidently improved. This result presents sampling based average fusion as a better baseline; that is, a newly proposed classifier fusion algorithm should at least perform better than this baseline in order to demonstrate its effectiveness.

  6. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  7. Cold nuclear fusion

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available In normal temperature condition, the nuclear force constraint inertial guidance method, realize the combination of deuterium and tritium, helium and lithium... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion". According to the similarity of the nuclear force constraint inertial guidance system, the different velocity and energy of the ion beam mixing control, developed ion speed dc transformer, it is cold nuclear fusion collide, issue of motivation and the nuclear power plant start-up fusion and power transfer system of the important equipment, so the merger to apply for a patent

  8. Laser-Driven Fusion.

    Science.gov (United States)

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  9. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  10. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  11. Characterization of docking and fusion of synaptic-like microvesicles in PC12 cells using TIRFM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Neurotransmitters are released by the fusion of synaptic vesicles with presynaptic membrane, which has been extensively studied. The analysis of single vesicle fusion kinetics reveals that there exist fusion modes of "kiss and run" and "kiss and stay" which may be favored by neurons especially during strong firing beside full fusion. Pre-fusion steps of translocation, docking and priming along the exocytotic pathway play important roles in neurotransmitter release and its regulation. In the present report, we used dual-color imaging of VAMP2-pHluorin and VAChT-TDimer2 under total internal reflection fluorescence microscope (TIRFM) to monitor the docking and fusion of synaptic-like microvesicles (SLMVs) in PC12 cells stimulated by high K+. Our results show that "kiss and run" is a dominative fusion mode in PC12 cells under high K+-challenge, and the dwell time of SLMVs is prolonged by the high K+ stimulation that suggests an enhancement of vesicle priming.

  12. Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.

    Science.gov (United States)

    Chang, Che-Wei; Jackson, Meyer B

    2015-07-07

    Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca(2+)-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Measles Virus Fusion Protein: Structure, Function and Inhibition

    Directory of Open Access Journals (Sweden)

    Philippe Plattet

    2016-04-01

    Full Text Available Measles virus (MeV, a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  14. Sperm-egg adhesion and fusion in mammals.

    Science.gov (United States)

    Sutovsky, Peter

    2009-04-01

    Fertilisation is an orchestrated, stepwise process during which the participating male and female gametes undergo irreversible changes, losing some of their structural components while contributing others to the resultant zygote. Following sperm penetration through the egg coat, the sperm plasma membrane fuses with its oocyte counterpart, the oolemma. At least two plasma membrane proteins essential for sperm-oolemma fusion--IZUMO and CD9 on the male and female gametes, respectively--have been identified recently by classical cell biology approaches and confirmed by gene deletion. Oolemma-associated tetraspanin CD81, closely related to CD9, also appears to have an essential role in fusion. Additional proteins that may have nonessential yet still facilitating roles in sperm-oolemma adhesion and fusion include oolemma-anchored integrins and oocyte-expressed retroviral envelope proteins, sperm disintegrins, and sperm-borne proteins of epididymal origin such as CRISP1 and CRISP2. This review discusses these components of the gamete fusion mechanism within the framework of gamete structure, membrane biology, cell signalling and cytoskeletal dynamics, and revisits the topic of antipolyspermy defence at the oolemma level. Harnessing the mechanisms of sperm-egg fusion is of importance to animal biotechnology and to human assisted fertilisation, wherein male patients with reduced sperm fusibility have been identified.

  15. Economically competitive fusion

    Directory of Open Access Journals (Sweden)

    David J. Ward

    2008-12-01

    Full Text Available Not since the oil crisis of the 1970s has the perception that energy is a crucial and precious resource been as strong as it is today. The need for a new approach to world energy supply, driven by concerns over resources, pollution, and security, is leading to a reappraisal of fusion. Fusion has enormous potential and major safety and environmental advantages, and hence could make a large difference to energy supplies.

  16. Fusion ignition research experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dale Meade

    2000-07-18

    Understanding the properties of high gain (alpha-dominated) fusion plasmas in an advanced toroidal configuration is the largest remaining open issue that must be addressed to provide the scientific foundation for an attractive magnetic fusion reactor. The critical parts of this science can be obtained in a compact high field tokamak which is also likely to provide the fastest and least expensive path to understanding alpha-dominated plasmas in advanced toroidal systems.

  17. Preparation and immunogenicity characteristics analysis of a epitope fusion protein of Epstein-Bar virus encoded latent membrane protein 2A%EBV编码潜伏膜蛋白2A抗原表位的串联表达及其免疫原性分析

    Institute of Scientific and Technical Information of China (English)

    曹清; 唐小军; 李文杰; 熊四平; 毛园; 熊林; 刘玉; 王长军; 冯振卿

    2013-01-01

    Objective:To prepare a immunogenic epitope tandem of latent membrane protein 2A (LMP2A) of Epstein-Ban:virus and analyze its characteristics of immunology.Methods:LMP2A epitopes were analyzed by using DNAstar software,and two immunogenic epitopes were selected due to stronger immunogenicity.The genes of these two epitopes were integrated through gene synthesis,and then cloned into prokaryotic expression vector pET28a.The recombinant epitopes were expressed and purified by E.coli BL21,and then the protein was utilized to immunize mouse to prepare anti-epitope fusion protein polyclonal antibody after the analysis of SDS-PAGE and Western blot assay.The titer of the antibody was assessed by ELISA and the immunohistochemical experiment was performed to test the specificity of the polyclonal antibody for natural LAMP2A.Results:Through prokaryotic expression and purification,high purity fusion protein was obtained.By mouse immunization,anti-LMP2A polyclonal antibody of high titer and specificity was prepared,which can be applied to ELISA and immunohistochemical analysis.Conclusion:An epitope fusion protein,which shares the natural antigen immunogenicity,can be used to prepare the polyclonal antibody specific for LMP2A.This study has laid a solid foundation for screening whole humanized genetic engineering antibody by epitope fusion protein.%目的:制备具有免疫原性的EB病毒潜伏膜蛋白2A (latent membrane protein 2A,LMP2A)的表位串联蛋白并分析其免疫学特性.方法:用DNAstar软件分析LMP2A的抗原表位,将预测的免疫原性较强的两个表位通过基因合成串联在一起,克隆到原核表达载体pET28a中,经大肠杆菌BL21表达并纯化.制备的含LMP2A表位重组蛋白经SDS-PAGE、Western blot鉴定后,免疫小鼠制备多克隆抗体,以ELISA检测抗体的效价,免疫组织化学法检测该抗体对天然LMP2A的特异性.结果通过原核表达与纯化,获得高纯度的表位融合蛋白,经小鼠免疫

  18. Fusion, cold fusion, and space policy

    Energy Technology Data Exchange (ETDEWEB)

    Rotegard, D. (CST Ltd. (United States))

    1991-01-01

    This paper critiques Americal science policy through a consideration of two examples-cold fusion and asteroid mining. It points out that the failure of central planning in science and technology policy is just as marked as in more mundane activities. It highlights the current low level of debate and points out some technical issues that need to be addressed. It concludes with evidence that the alliance of flawed policy options is further lowering the level of debate. (author).

  19. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation

    Science.gov (United States)

    Willensky, Shmuel; Bignon, Eduardo A.; Tischler, Nicole D.; Dessau, Moshe

    2016-01-01

    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. PMID:27783673

  20. The vaccinia virus 14-kilodalton (A27L) fusion protein forms a triple coiled-coil structure and interacts with the 21-kilodalton (A17L) virus membrane protein through a C-terminal alpha-helix.

    Science.gov (United States)

    Vázquez, M I; Rivas, G; Cregut, D; Serrano, L; Esteban, M

    1998-12-01

    The vaccinia virus 14-kDa protein (encoded by the A27L gene) plays an important role in the biology of the virus, acting in virus-to-cell and cell-to-cell fusions. The protein is located on the surface of the intracellular mature virus form and is essential for both the release of extracellular enveloped virus from the cells and virus spread. Sequence analysis predicts the existence of four regions in this protein: a structureless region from amino acids 1 to 28, a helical region from residues 29 to 37, a triple coiled-coil helical region from residues 44 to 72, and a Leu zipper motif at the C terminus. Circular dichroism spectroscopy, analytical ultracentrifugation, and chemical cross-linking studies of the purified wild-type protein and several mutant forms, lacking one or more of the above regions or with point mutations, support the above-described structural division of the 14-kDa protein. The two contiguous cysteine residues at positions 71 and 72 are not responsible for the formation of 14-kDa protein trimers. The location of hydrophobic residues at the a and d positions on a helical wheel and of charged amino acids in adjacent positions, e and g, suggests that the hydrophobic and ionic interactions in the triple coiled-coil helical region are involved in oligomer formation. This conjecture was supported by the construction of a three-helix bundle model and molecular dynamics. Binding assays with purified proteins expressed in Escherichia coli and cytoplasmic extracts from cells infected with a virus that does not produce the 14-kDa protein during infection (VVindA27L) show that the 21-kDa protein (encoded by the A17L gene) is the specific viral binding partner and identify the putative Leu zipper, the predicted third alpha-helix on the C terminus of the 14-kDa protein, as the region involved in protein binding. These findings were confirmed in vivo, following transfection of animal cells with plasmid vectors expressing mutant forms of the 14-kDa protein and

  1. A small molecule fusion inhibitor of dengue virus

    NARCIS (Netherlands)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P.; Ma, Ngai Ling; Smit, Jolanda M.; Wischut, Jan; Shi, Pei-Yong; Wenk, Markus R.; Schul, Wouter

    2009-01-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (bet

  2. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA.

    Science.gov (United States)

    Hautbergue, Guillaume M; Hung, Ming-Lung; Walsh, Matthew J; Snijders, Ambrosius P L; Chang, Chung-Te; Jones, Rachel; Ponting, Chris P; Dickman, Mark J; Wilson, Stuart A

    2009-12-01

    Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5' capping and 3' end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4-7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8-10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.

  3. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    Science.gov (United States)

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface.

  4. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  5. INTERACTION OF THE HIV-1 FUSION PEPTIDE WITH PHOSPHOLIPID-VESICLES - DIFFERENT STRUCTURAL REQUIREMENTS FOR FUSION AND LEAKAGE

    NARCIS (Netherlands)

    NIEVA, JL; NIR, S; MUGA, A; GONI, FM; WILSCHUT, J

    1994-01-01

    This paper presents a study on the membrane fusion activity of a 23-residue synthetic peptide, representing the N-terminus of gp41 of the human immunodeficiency virus type I (HIV-1; LAV(1a) strain), in a model system involving large unilamellar vesicles (LUV) composed of the negatively charged 1-pal

  6. Downstream Toll-like receptor signaling mediates adaptor-specific cytokine expression following focal cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Bolanle Famakin

    2012-07-01

    Full Text Available Abstract Background Deletion of some Toll-like receptors (TLRs affords protection against cerebral ischemia, but disruption of their known major downstream adaptors does not. To determine whether compensation in the production of downstream effectors by one pathway when the other is disrupted can explain these findings, we examined cytokine/chemokine expression and inflammatory infiltrates in wild-type (WT, MyD88−/− and TRIF-mutant mice following permanent middle cerebral artery occlusion (pMCAO. Methods Cytokine/chemokine expression was measured with a 25-plex bead array in the serum and brains of all three groups of mice at baseline (no surgery/naïve and at 3 hours and 24 hours following pMCAO. Brain inflammatory and neutrophil infiltrates were examined 24 hours following pMCAO. Results IL-6, keratinocyte chemoattractant (KC, granulocyte colony-stimulating factor (G-CSF and IL-10 were significantly decreased in MyD88−/− mice compared to WT mice following pMCAO. Significantly, decreased levels of the neutrophil chemoattractants KC and G-CSF corresponded with a trend toward fewer neutrophils in the brains of MyD88−/− mice. IP-10 was significantly decreased when either pathway was disrupted. MIP-1α was significantly decreased in TRIF-mutant mice, consistent with TRIF-dependent production. MyD88−/− mice showed elevations of a number of Th2 cytokines, such as IL-13, at baseline, which became significantly decreased following pMCAO. Conclusions Both MyD88 and TRIF mediate pathway-specific cytokine production following focal cerebral ischemia. Our results also suggest a compensatory Th2-type skew at baseline in MyD88−/− mice and a paradoxical switch to a Th1 phenotype following focal cerebral ischemia. The MyD88 pathway directs the expression of neutrophil chemoattractants following cerebral ischemia.

  7. Fusogenic activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process.

    Science.gov (United States)

    Cobaleda, C; Muñoz-Barroso, I; Sagrera, A; Villar, E

    2002-04-01

    Enveloped viruses, such as newcastle disease virus (NDV), make their entry into the host cell by membrane fusion. In the case of NDV, the fusion step requires both transmembrane hemagglutinin-neuraminidase (HN) and fusion (F) viral envelope glycoproteins. The HN protein should show fusion promotion activity. To date, the nature of HN-F interactions is a controversial issue. In this work, we aim to clarify the role of the HN glycoprotein in the membrane fusion step. Four types of reconstituted detergent-free NDV envelopes were used, on differing in their envelope protein contents. Fusion of the different virosomes and erythrocyte ghosts was monitored using the octadecyl rhodamine B chloride assay. Only the reconstituted envelopes having the F protein, even in the absence of HN protein, displayed residual fusion activity. Treatment of such virosomes with denaturing agents affecting the F protein abolished fusion, indicating that the fusion detected was viral protein-dependent. Interestingly, the rate of fusion in the reconstituted systems was similar to that of intact viruses in the presence of the inhibitor of HN sialidase activity 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. The results show that the residual fusion activity detected in the reconstituted systems was exclusively due to F protein activity, with no contribution from the fusion promotion activity of HN protein.

  8. Lipid membranes on nanostructured silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O' Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM); Zeineldin, Reema R. (University of New Mexico, Albuquerque, NM); Last, Julie A.; Brueck, Stephen R. J. (University of New Mexico, Albuquerque, NM)

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  9. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  10. Lateral Lumbar Interbody Fusion

    Science.gov (United States)

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  11. Membranous nephropathy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000472.htm Membranous nephropathy To use the sharing features on this page, please enable JavaScript. Membranous nephropathy is a kidney disorder that leads to changes ...

  12. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.

    Science.gov (United States)

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C

    2014-05-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.

  13. Fusion of Cytothrophoblast with Syncytiotrophoblast in the Human Placenta: Factors Involved in Syncytialization

    Directory of Open Access Journals (Sweden)

    Gauster M

    2008-01-01

    Full Text Available Human placental villi are covered by a characteristic epithelial-like layer. It consists of mononucleated cytotrophoblasts and an overlyingsyncytiotrophoblast layer both in contact to the trophoblastic basement membrane. The syncytiotrophoblast mostly lacks DNA replication andseems to transcribe only barely mRNA. Therefore, the syncytiotrophoblast depends on cell compounds delivered by fusing cytotrophoblasts. Delivery of fresh cytoplasmic contents into the syncytiotrophoblast is achieved by continuous fusion with cytotrophoblasts throughout gesta-tion. Fusion between cytotrophoblasts and the syncytiotrophoblast is driven by multiple factors, including environmental growth factors andcytokines, which turn on a specific cascade of fusogenic proteins in cytotrophoblasts destined for fusion. The cascade includes protein kinasesand transcription factors, as well as induced expression of fusion-promoting proteins associated with the cell membrane. Additionally, specificproteases are activated, which cleave and remodel structural proteins to prepare the cell for fusion. However, not only fusogenic proteins, butalso plasma membrane architecture and physicochemical factors such as calcium and oxygen affect intertrophoblastic fusion. Coordinatedaction of all factors involved is crucial for proper cytotrophoblast – syncytiotrophoblast fusion. Deregulation of a single factor might cause aninadequate fusion rate and could lead to pregnancy complications such as preeclampsia or even spontaneous abortion.

  14. Nuclear fusion during yeast mating occurs by a three-step pathway.

    Science.gov (United States)

    Melloy, Patricia; Shen, Shu; White, Erin; McIntosh, J Richard; Rose, Mark D

    2007-11-19

    In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in approximately 80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.

  15. Generation of monoclonal antibodies specific of the postfusion conformation of the Pneumovirinae fusion (F) protein.

    Science.gov (United States)

    Rodríguez, Laura; Olmedillas, Eduardo; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Terrón, María C; Luque, Daniel; Palomo, Concepción; Melero, José A

    2015-11-01

    Paramyxovirus entry into cells requires fusion of the viral and cell membranes mediated by one of the major virus glycoproteins, the fusion (F) glycoprotein which transits from a metastable pre-fusion conformation to a highly stable post-fusion structure during the membrane fusion process. F protein refolding involves large conformational changes of the protein trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) from each protomer into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of the Pneumovirinae F proteins, and as extension of previous work (Palomo et al., 2014), a general strategy was designed to obtain polyclonal and particularly monoclonal antibodies specific of the 6HB motif of the Pneumovirinae fusion protein. The antibodies reported here should assist in the characterization of the structural changes that the F protein of human metapneumovirus or respiratory syncytial virus experiences during the process of membrane fusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Fine structure of fusion products from soybean cell culture and pea leaf protoplasts.

    Science.gov (United States)

    Fowke, L C; Constabel, F; Gamborg, O L

    1977-01-01

    Protoplasts from pea (Pisum sativum L.) leaves and cultured soybean (Glycine max L.) cells were fused by means of polyethylene glycol and subsequently cultured for one week. Both agglutinated protoplasts and cultured fusion products were examined by electron microscopy. Agglutination occurred over large areas of the plasma membranes. The membrane contanct was discontinuous and irregularly spaced. Many cultured fusion products regenerated cell walls and divided to form cell clusters. Fusion of pea and soybean interphase nuclei occurred in some cells. The detection of heterochromatin typical of pea in the synkaryon, even after division, suggests the cells were hybrids. The cytoplasm of the cells from the fusion products contained both soybean leucoplasts and pea chloroplasts. The chloroplasts had apparently ceased dividing and some showed signs of degenerating. Large multinucleate fusion products developed cell walls but failed to divide.

  17. Advances on the research of adaptor SARM of Toll like receptor%TLR接头蛋白SARM研究进展

    Institute of Scientific and Technical Information of China (English)

    李涛; 徐元宏; 熊自忠

    2012-01-01

    SARM是最后一个发现的TLR接头蛋白,也是唯一具有抑制作用的接头蛋白,SARM的功能在不同物种和不同研究体系中结果差异较大,本文综述了人和小鼠中SARM的基因定位、基因结构和表达情况,并综述了线虫、鲎、文昌鱼、斑马鱼、小鼠和人等不同物种中SARM功能研究的最新进展.%SARM is the last adaptor of Toll like receptor to be found and a unique adaptor to possess inhibitory action. The function of SARM is largely difference in disparate species and research system. This paper reviews the gene location, gene structure and gene expression of SARM in human beings and mice and the advancement of SARM function research in Caenorhabditis elegans, horseshoe crab, amphioxus, zebra fish, mouse and human beings.

  18. Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (σS by ClpXP.

    Directory of Open Access Journals (Sweden)

    Dimce eMicevski

    2015-04-01

    Full Text Available In Escherichia coli, σS is the master regulator of the general stress response. The level of σS changes in response to multiple stress conditions and it is regulated at many levels including protein turnover. In the absence of stress, σS is rapidly degraded by the AAA+ protease, ClpXP in a regulated manner that depends on the adaptor protein RssB. This two-component response regulator mediates the recognition of σS and its delivery to ClpXP. The turnover of σS however, can be inhibited in a stress specific manner, by one of three anti-adaptor proteins. Each anti-adaptor binds to RssB and inhibits its activity, but how this is achieved is not fully understood at a molecular level. Here we describe details of the interaction between each anti-adaptor and RssB that leads to the stabilization of σS. By defining the domains of RssB using partial proteolysis we demonstrate that each anti-adaptor uses a distinct mode of binding to inhibit RssB activity. IraD docks specifically to the N-terminal domain of RssB, IraP interacts primarily with the C-terminal domain, while IraM interacts with both domains. Despite these differences in binding, we propose that docking of each anti-adaptor induces a conformational change in RssB, which resembles the inactive dimer of RssB. This dimer-like state of RssB not only prevents substrate binding but also triggers substrate release from a pre-bound complex.

  19. Firing membranes

    NARCIS (Netherlands)

    Kappert, Emiel Jan

    2015-01-01

    Thermal processing is commonly employed to alter the chemistry and microstructure of membrane layers. It can shape, strengthen, and give functionality to a membrane. A good understanding of the processes taking place during the thermal processing of a membrane material allows for optimization and tu

  20. Exocytosis and endocytosis in neurodocrine cells: inseparable membranes !

    Directory of Open Access Journals (Sweden)

    Sébastien eHouy

    2013-10-01

    Full Text Available Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid towards understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

  1. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  2. Multibiometrics Belief Fusion

    CERN Document Server

    Kisku, Dakshina Ranjan; Gupta, Phalguni

    2010-01-01

    This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.

  3. Fusion research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress.

  4. Medical Image Fusion

    Directory of Open Access Journals (Sweden)

    Mitra Rafizadeh

    2007-08-01

    Full Text Available Technological advances in medical imaging in the past two decades have enable radiologists to create images of the human body with unprecedented resolution. MRI, PET,... imaging devices can quickly acquire 3D images. Image fusion establishes an anatomical correlation between corresponding images derived from different examination. This fusion is applied either to combine images of different modalities (CT, MRI or single modality (PET-PET."nImage fusion is performed in two steps:"n1 Registration: spatial modification (eg. translation of model image relative to reference image in order to arrive at an ideal matching of both images. Registration methods are feature-based and intensity-based approaches."n2 Visualization: the goal of it is to depict the spatial relationship between the model image and refer-ence image. We can point out its clinical application in nuclear medicine (PET/CT.

  5. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...... to the occupied and empty regions. Scale Invariant Feature Transform (SIFT) feature descriptors are interpreted using gaussian probabilistic error models. The use of occupancy grids is proposed for representing the sensor readings. The Bayesian estimation approach is applied to update the sonar array......  and the SIFT descriptors' uncertainty grids. The sensor fusion yields a significant reduction in the uncertainty of the occupancy grid compared to the individual sensor readings....

  6. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil fl