An improved adaptive wavelet shrinkage for ultrasound despeckling
Indian Academy of Sciences (India)
Preservation Index (EPI). A comparison of the results shows that the proposed fil- ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and intra scale dependency; speckle; adaptive thresholding; ultrasound images. ∗.
Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage
Directory of Open Access Journals (Sweden)
Yan-long Chen
2014-01-01
Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.
Fast generation of computer-generated holograms using wavelet shrinkage.
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2017-01-09
Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.
Energy Technology Data Exchange (ETDEWEB)
Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Building nonredundant adaptive wavelets by update lifting
H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)
2002-01-01
textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations
ECG denoising with adaptive bionic wavelet transform.
Sayadi, Omid; Shamsollahi, Mohammad Bagher
2006-01-01
In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.
Directory of Open Access Journals (Sweden)
Yudong Zhang
2016-01-01
Full Text Available Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS. It is composed of three successful components: (i exponential wavelet transform, (ii iterative shrinkage-thresholding algorithm, and (iii random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.
Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping
2016-01-01
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068
Directory of Open Access Journals (Sweden)
Levi Lopes Teixeira
2015-12-01
Full Text Available Time series forecasting is widely used in various areas of human knowledge, especially in the planning and strategic direction of companies. The success of this task depends on the forecasting techniques applied. In this paper, a hybrid approach to project time series is suggested. To validate the methodology, a time series already modeled by other authors was chosen, allowing the comparison of results. The proposed methodology includes the following techniques: wavelet shrinkage, wavelet decomposition at level r, and artificial neural networks (ANN. Firstly, a time series to be forecasted is submitted to the proposed wavelet filtering method, which decomposes it to components of trend and linear residue. Then, both are decomposed via level r wavelet decomposition, generating r + 1 Wavelet Components (WCs for each one; and then each WC is individually modeled by an ANN. Finally, the predictions for all WCs are linearly combined, producing forecasts to the underlying time series. For evaluating purposes, the time series of Canadian Lynx has been used, and all results achieved by the proposed method were better than others in existing literature.
An improved adaptive wavelet shrinkage for ultrasound despeckling
Indian Academy of Sciences (India)
complicated process for the physician to make the diagnosis. Two approaches for speckle ... level has the same number of samples as the input (Coifman & Donoho 1995; Matsuyama et al 2012 ..... Inf. Theory 41(3): 613–627. Gao H-Y 1998 ...
Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun
2018-05-01
Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.
Adapted wavelet analysis from theory to software
Wickerhauser, Mladen Victor
1994-01-01
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Big data extraction with adaptive wavelet analysis (Presentation Video)
Qu, Hongya; Chen, Genda; Ni, Yiqing
2015-04-01
Nondestructive evaluation and sensing technology have been increasingly applied to characterize material properties and detect local damage in structures. More often than not, they generate images or data strings that are difficult to see any physical features without novel data extraction techniques. In the literature, popular data analysis techniques include Short-time Fourier Transform, Wavelet Transform, and Hilbert Transform for time efficiency and adaptive recognition. In this study, a new data analysis technique is proposed and developed by introducing an adaptive central frequency of the continuous Morlet wavelet transform so that both high frequency and time resolution can be maintained in a time-frequency window of interest. The new analysis technique is referred to as Adaptive Wavelet Analysis (AWA). This paper will be organized in several sections. In the first section, finite time-frequency resolution limitations in the traditional wavelet transform are introduced. Such limitations would greatly distort the transformed signals with a significant frequency variation with time. In the second section, Short Time Wavelet Transform (STWT), similar to Short Time Fourier Transform (STFT), is defined and developed to overcome such shortcoming of the traditional wavelet transform. In the third section, by utilizing the STWT and a time-variant central frequency of the Morlet wavelet, AWA can adapt the time-frequency resolution requirement to the signal variation over time. Finally, the advantage of the proposed AWA is demonstrated in Section 4 with a ground penetrating radar (GPR) image from a bridge deck, an analytical chirp signal with a large range sinusoidal frequency change over time, the train-induced acceleration responses of the Tsing-Ma Suspension Bridge in Hong Kong, China. The performance of the proposed AWA will be compared with the STFT and traditional wavelet transform.
Adaptive Image Transmission Scheme over Wavelet-Based OFDM System
Institute of Scientific and Technical Information of China (English)
GAOXinying; YUANDongfeng; ZHANGHaixia
2005-01-01
In this paper an adaptive image transmission scheme is proposed over Wavelet-based OFDM (WOFDM) system with Unequal error protection (UEP) by the design of non-uniform signal constellation in MLC. Two different data division schemes: byte-based and bitbased, are analyzed and compared. Different bits are protected unequally according to their different contribution to the image quality in bit-based data division scheme, which causes UEP combined with this scheme more powerful than that with byte-based scheme. Simulation results demonstrate that image transmission by UEP with bit-based data division scheme presents much higher PSNR values and surprisingly better image quality. Furthermore, by considering the tradeoff of complexity and BER performance, Haar wavelet with the shortest compactly supported filter length is the most suitable one among orthogonal Daubechies wavelet series in our proposed system.
Marginal adaptation of a low-shrinkage silorane-based composite: A SEM-analysis
DEFF Research Database (Denmark)
Schmidt, Malene; Bindslev, Preben Hørsted; Poulsen, Sven
2012-01-01
shrinkage, has been marketed. Objective. To investigate whether reduced polymerization shrinkage improves the marginal adaptation of composite restorations. Material and methods. A total of 156 scanning electron microscopy (SEM) pictures (78 baseline, 78 follow-up) of the occlusal part of Class II......-casts of the restorations were used for SEM pictures at x 16 magnification. Pictures from baseline and follow-up (398 days, SD 29 days) were randomized and the examiner was blinded to the material and the age of the restoration. Stereologic measurements were used to calculate the length and the width of the marginal...
Wavelet domain image restoration with adaptive edge-preserving regularization.
Belge, M; Kilmer, M E; Miller, E L
2000-01-01
In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.
Adaptive Wavelet Coding Applied in a Wireless Control System.
Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O
2017-12-13
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Adaptive Wavelet Coding Applied in a Wireless Control System
Directory of Open Access Journals (Sweden)
Felipe O. S. Gama
2017-12-01
Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Adaptive wavelet tight frame construction for accelerating MRI reconstruction
Directory of Open Access Journals (Sweden)
Genjiao Zhou
2017-09-01
Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Wavelet methods in multi-conjugate adaptive optics
International Nuclear Information System (INIS)
Helin, T; Yudytskiy, M
2013-01-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus
International Nuclear Information System (INIS)
Tankanag, Arina; Chemeris, Nikolay
2008-01-01
An original method for the analysis of oscillations of cutaneous blood flow has been developed, which makes use of laser Doppler flowmetry (LDF) data and is based on the continuous wavelet transform and adaptive wavelet theory. The potential of the method has been demonstrated in experiments with the response of microcirculatory bed to the local linearly-increasing heating of a skin spot. The use of adaptive wavelet transform for analysis of peripheral blood flow oscillations enables one to process short (5 min) LDF signals in a wide frequency range (0.009-2 Hz). The major advantage of the method proposed, as compared to traditional wavelet analysis, has been shown to be a significant reduction of 'border effects'. This makes possible a correct low-frequency component analysis of much shorter LDF signals compared to those used in traditional wavelet processing.
Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters
Abhayaratne, Charith
2011-07-01
Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.
International Nuclear Information System (INIS)
Avci, E.
2007-01-01
In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
International Nuclear Information System (INIS)
Zhang, Yan; Tang, Baoping; Chen, Rengxiang; Liu, Ziran
2016-01-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses
Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System
Directory of Open Access Journals (Sweden)
Zhang Yulin
2015-01-01
Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.
Wavelet and adaptive methods for time dependent problems and applications in aerosol dynamics
Guo, Qiang
Time dependent partial differential equations (PDEs) are widely used as mathematical models of environmental problems. Aerosols are now clearly identified as an important factor in many environmental aspects of climate and radiative forcing processes, as well as in the health effects of air quality. The mathematical models for the aerosol dynamics with respect to size distribution are nonlinear partial differential and integral equations, which describe processes of condensation, coagulation and deposition. Simulating the general aerosol dynamic equations on time, particle size and space exhibits serious difficulties because the size dimension ranges from a few nanometer to several micrometer while the spatial dimension is usually described with kilometers. Therefore, it is an important and challenging task to develop efficient techniques for solving time dependent dynamic equations. In this thesis, we develop and analyze efficient wavelet and adaptive methods for the time dependent dynamic equations on particle size and further apply them to the spatial aerosol dynamic systems. Wavelet Galerkin method is proposed to solve the aerosol dynamic equations on time and particle size due to the fact that aerosol distribution changes strongly along size direction and the wavelet technique can solve it very efficiently. Daubechies' wavelets are considered in the study due to the fact that they possess useful properties like orthogonality, compact support, exact representation of polynomials to a certain degree. Another problem encountered in the solution of the aerosol dynamic equations results from the hyperbolic form due to the condensation growth term. We propose a new characteristic-based fully adaptive multiresolution numerical scheme for solving the aerosol dynamic equation, which combines the attractive advantages of adaptive multiresolution technique and the characteristics method. On the aspect of theoretical analysis, the global existence and uniqueness of
An adaptive wavelet-network model for forecasting daily total solar-radiation
International Nuclear Information System (INIS)
Mellit, A.; Benghanem, M.; Kalogirou, S.A.
2006-01-01
The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model
An image adaptive, wavelet-based watermarking of digital images
Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia
2007-12-01
In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.
Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Syed Zulqadar Hassan
2017-03-01
Full Text Available An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.
Kim, Jinkwon; Min, Se Dong; Lee, Myoungho
2011-06-27
Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects
Directory of Open Access Journals (Sweden)
Min Se Dong
2011-06-01
Full Text Available Abstract Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam
2017-07-01
In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
Convergence acceleration of Navier-Stokes equation using adaptive wavelet method
International Nuclear Information System (INIS)
Kang, Hyung Min; Ghafoor, Imran; Lee, Do Hyung
2010-01-01
An efficient adaptive wavelet method is proposed for the enhancement of computational efficiency of the Navier-Stokes equations. The method is based on sparse point representation (SPR), which uses the wavelet decomposition and thresholding to obtain a sparsely distributed dataset. The threshold mechanism is modified in order to maintain the spatial accuracy of a conventional Navier-Stokes solver by adapting the threshold value to the order of spatial truncation error. The computational grid can be dynamically adapted to a transient solution to reflect local changes in the solution. The flux evaluation is then carried out only at the points of the adapted dataset, which reduces the computational effort and memory requirements. A stabilization technique is also implemented to avoid the additional numerical errors introduced by the threshold procedure. The numerical results of the adaptive wavelet method are compared with a conventional solver to validate the enhancement in computational efficiency of Navier-Stokes equations without the degeneration of the numerical accuracy of a conventional solver
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks
Directory of Open Access Journals (Sweden)
Chien-Peng Ho
2007-03-01
Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.
Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui
2012-04-01
Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.
Energy Technology Data Exchange (ETDEWEB)
Webster, Clayton G [ORNL; Zhang, Guannan [ORNL; Gunzburger, Max D [ORNL
2012-10-01
Accurate predictive simulations of complex real world applications require numerical approximations to first, oppose the curse of dimensionality and second, converge quickly in the presence of steep gradients, sharp transitions, bifurcations or finite discontinuities in high-dimensional parameter spaces. In this paper we present a novel multi-dimensional multi-resolution adaptive (MdMrA) sparse grid stochastic collocation method, that utilizes hierarchical multiscale piecewise Riesz basis functions constructed from interpolating wavelets. The basis for our non-intrusive method forms a stable multiscale splitting and thus, optimal adaptation is achieved. Error estimates and numerical examples will used to compare the efficiency of the method with several other techniques.
Block-based wavelet transform coding of mammograms with region-adaptive quantization
Moon, Nam Su; Song, Jun S.; Kwon, Musik; Kim, JongHyo; Lee, ChoongWoong
1998-06-01
To achieve both high compression ratio and information preserving, it is an efficient way to combine segmentation and lossy compression scheme. Microcalcification in mammogram is one of the most significant sign of early stage of breast cancer. Therefore in coding, detection and segmentation of microcalcification enable us to preserve it well by allocating more bits to it than to other regions. Segmentation of microcalcification is performed both in spatial domain and in wavelet transform domain. Peak error controllable quantization step, which is off-line designed, is suitable for medical image compression. For region-adaptive quantization, block- based wavelet transform coding is adopted and different peak- error-constrained quantizers are applied to blocks according to the segmentation result. In view of preservation of microcalcification, the proposed coding scheme shows better performance than JPEG.
Image-adaptive and robust digital wavelet-domain watermarking for images
Zhao, Yi; Zhang, Liping
2018-03-01
We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems
Directory of Open Access Journals (Sweden)
Jing Xu
2016-07-01
Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.
A wavelet domain adaptive image watermarking method based on chaotic encryption
Wei, Fang; Liu, Jian; Cao, Hanqiang; Yang, Jun
2009-10-01
A digital watermarking technique is a specific branch of steganography, which can be used in various applications, provides a novel way to solve security problems for multimedia information. In this paper, we proposed a kind of wavelet domain adaptive image digital watermarking method using chaotic stream encrypt and human eye visual property. The secret information that can be seen as a watermarking is hidden into a host image, which can be publicly accessed, so the transportation of the secret information will not attract the attention of illegal receiver. The experimental results show that the method is invisible and robust against some image processing.
Adaptive algorithms for a self-shielding wavelet-based Galerkin method
International Nuclear Information System (INIS)
Fournier, D.; Le Tellier, R.
2009-01-01
The treatment of the energy variable in deterministic neutron transport methods is based on a multigroup discretization, considering the flux and cross-sections to be constant within a group. In this case, a self-shielding calculation is mandatory to correct sections of resonant isotopes. In this paper, a different approach based on a finite element discretization on a wavelet basis is used. We propose adaptive algorithms constructed from error estimates. Such an approach is applied to within-group scattering source iterations. A first implementation is presented in the special case of the fine structure equation for an infinite homogeneous medium. Extension to spatially-dependent cases is discussed. (authors)
Conservative adaptivity and two-way self-nesting using discrete wavelets
Dubos, Thomas
2010-05-01
In simulating atmosphere and oceans, multiscale modelling is desirable to track high-intensity weather patterns, to investigate the interactions between the various spatio-temporal scales of the climate system, and to perform assessments of climate change at scales small enough to derive impacts on society and ecosystems. The mainstream approach to multiscale modelling is to nest a fine, limited-area model into a coarse, global model. These models are then coupled, either one-way or two-way, in order to combine the global coverage of the global model and the fine details of the fine model. In the long simulations typical of climate studies, initial conditions are unimportant, except for the few quantities like mass that are exactly conserved. In this context it is crucial that numerical models conserve at least mass exactly at the discrete level. However even with elaborate strategies like adaptive mesh refinement (AMR) conservation is not straightforwardly achieved. Although the continuous wavelet transform has become a standard tool of geophysical data analysis, it is less known that discrete wavelets and the associated transforms provide the basis for spatially adaptive numerical methods. Such methods are now well-developed in the fluid dynamics community. Since they allow spatial adaptivity, they can also be seen as two-way self-nesting methods. However since they are not specifically designed for geophysical purposes they are usually not exactly conservative. I present a fairly general framework in which a wavelet-based layer is added to an existing conservative scheme (finite-volume or finite-difference) to make it spatially adaptive without breaking the exact conservation of linear invariants. Discrete wavelet transforms involve an upscaling operation by which fields are transferred from a fine grid to a coarser grid with half the resolution. The method requires that mass fluxes be upscaled in a way that is consistent with the upscaling of mass. This
Stabilized Conservative Level Set Method with Adaptive Wavelet-based Mesh Refinement
Shervani-Tabar, Navid; Vasilyev, Oleg V.
2016-11-01
This paper addresses one of the main challenges of the conservative level set method, namely the ill-conditioned behavior of the normal vector away from the interface. An alternative formulation for reconstruction of the interface is proposed. Unlike the commonly used methods which rely on the unit normal vector, Stabilized Conservative Level Set (SCLS) uses a modified renormalization vector with diminishing magnitude away from the interface. With the new formulation, in the vicinity of the interface the reinitialization procedure utilizes compressive flux and diffusive terms only in the normal direction to the interface, thus, preserving the conservative level set properties, while away from the interfaces the directional diffusion mechanism automatically switches to homogeneous diffusion. The proposed formulation is robust and general. It is especially well suited for use with adaptive mesh refinement (AMR) approaches due to need for a finer resolution in the vicinity of the interface in comparison with the rest of the domain. All of the results were obtained using the Adaptive Wavelet Collocation Method, a general AMR-type method, which utilizes wavelet decomposition to adapt on steep gradients in the solution while retaining a predetermined order of accuracy.
Adaptive wavelet method for pricing two-asset Asian options with floating strike
Černá, Dana
2017-12-01
Asian options are path-dependent option contracts which payoff depends on the average value of the asset price over some period of time. We focus on pricing of Asian options on two assets. The model for pricing these options is represented by a parabolic equation with time variable and three state variables, but using substitution it can be reduced to the equation with only two state variables. For time discretization we use the θ-scheme. We propose a wavelet basis that is adapted to boundary conditions and use an adaptive scheme with this basis for discretization on the given time level. The main advantage of this scheme is small number of degrees of freedom. We present numerical experiments for the Asian put option with floating strike and compare the results for the proposed adaptive method and the Galerkin method.
Directory of Open Access Journals (Sweden)
Wang Chao
2016-03-01
Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.
Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan
2017-07-01
Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Qu, Jinxiu; Zhang, Zhousuo; Guo, Ting; Luo, Xue; Sun, Chuang; Li, Bing; Wen, Jinpeng
2014-01-01
The viscoelastic sandwich structure is widely used in mechanical equipment, yet the structure always suffers from damage during long-term service. Therefore, state recognition of the viscoelastic sandwich structure is very necessary for monitoring structural health states and keeping the equipment running with high reliability. Through the analysis of vibration response signals, this paper presents a novel method for this task based on the adaptive redundant second generation wavelet packet transform (ARSGWPT), permutation entropy (PE) and the wavelet support vector machine (WSVM). In order to tackle the non-linearity existing in the structure vibration response, the PE is introduced to reveal the state changes of the structure. In the case of complex non-stationary vibration response signals, in order to obtain more effective information regarding the structural health states, the ARSGWPT, which can adaptively match the characteristics of a given signal, is proposed to process the vibration response signals, and then multiple PE features are extracted from the resultant wavelet packet coefficients. The WSVM, which can benefit from the conventional SVM as well as wavelet theory, is applied to classify the various structural states automatically. In this study, to achieve accurate and automated state recognition, the ARSGWPT, PE and WSVM are combined for signal processing, feature extraction and state classification, respectively. To demonstrate the effectiveness of the proposed method, a typical viscoelastic sandwich structure is designed, and the different degrees of preload on the structure are used to characterize the various looseness states. The test results show that the proposed method can reliably recognize the different looseness states of the viscoelastic sandwich structure, and the WSVM can achieve a better classification performance than the conventional SVM. Moreover, the superiority of the proposed ARSGWPT in processing the complex vibration response
Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman
2016-02-01
To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.
Energy Technology Data Exchange (ETDEWEB)
Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gabriele@policlinico.mo.it; Ciarmatori, Alberto [Medical Physics Department, Azienda Ospedaliero-Universitaria di Modena, Modena 41124, Italy and Physics Department, University of Bologna, Bologna 40126 (Italy); Vecchi, Claudio; Baldazzi, Giuseppe [Physics Department, University of Bologna, Bologna 40126 (Italy); Gottardi, Giovanni; Costi, Tiziana [Medical Physics Department, Azienda Ospedaliero-Universitaria di Modena, Modena 41124 (Italy); Meduri, Bruno; D’Angelo, Elisa; Bruni, Alessio; Mazzeo, Ercole; Pratissoli, Silvia; Giacobazzi, Patrizia; Lohr, Frank [Radiation Oncology Department, Azienda Ospedaliero-Universitaria di Modena, Modena 41124 (Italy)
2016-07-15
Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export daily coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.
International Nuclear Information System (INIS)
Maffei, Nicola; Guidi, Gabriele; Ciarmatori, Alberto; Vecchi, Claudio; Baldazzi, Giuseppe; Gottardi, Giovanni; Costi, Tiziana; Meduri, Bruno; D’Angelo, Elisa; Bruni, Alessio; Mazzeo, Ercole; Pratissoli, Silvia; Giacobazzi, Patrizia; Lohr, Frank
2016-01-01
Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export daily coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.
Impact of glacier shrinkage and adapted hydropower potential in the Swiss Alps
International Nuclear Information System (INIS)
Terrier, Stephane; Bieri, Martin; Jordan, Frederic; Schleiss, Anton J.
2015-01-01
Global warming is an alarming reality and likely leads to an increase of multiple pressures on socio-economic systems. However, in high-mountain regions it might also become an opportunity to adapt existing hydropower schemes and to develop new projects to this reality. In the Alps, the melting of glaciers first produces over the near future an increase of the average annual discharge depending on glacier and catchment characteristics, especially during the summer season. Nevertheless after a certain time, significant decrease of runoff related to glacier melting must be considered for hydropower management. Moreover, the shrinking glaciers free new areas, having the potential for the construction of new dams and reservoirs. The opportunity to build new dams and hydropower plants downstream of retreating glaciers is studied using two models. The first (GlabTop) is used to predict the future topography and geomorphology underneath the melting glaciers, in order to define the optimal locations of the future dams and reservoirs. Secondly, the RS3.0 CLIMATE rainfall-runoff hydrological model computes the glacier evolution, the river discharge at the outlet of the catchment area as well as the hydropower production of the new schemes. As a case study the Upper Aare River basin in Switzerland is presented. The opportunity of the construction of a new dam and a hydropower plant is studied, including its economic benefit. The result of the case study provides a basis to assess the potential of investing in such projects to ensure the Swiss hydroelectricity production also in future as well as peak energy for the European grid. (authors)
Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
International Nuclear Information System (INIS)
Nguyen, Hang T.; Nabney, Ian T.
2010-01-01
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their NMSEs are 0.02314 and 0.15384 respectively. (author)
Adaptive image denoising based on support vector machine and wavelet description
An, Feng-Ping; Zhou, Xian-Wei
2017-12-01
Adaptive image denoising method decomposes the original image into a series of basic pattern feature images on the basis of wavelet description and constructs the support vector machine regression function to realize the wavelet description of the original image. The support vector machine method allows the linear expansion of the signal to be expressed as a nonlinear function of the parameters associated with the SVM. Using the radial basis kernel function of SVM, the original image can be extended into a MEXICAN function and a residual trend. This MEXICAN represents a basic image feature pattern. If the residual does not fluctuate, it can also be represented as a characteristic pattern. If the residuals fluctuate significantly, it is treated as a new image and the same decomposition process is repeated until the residuals obtained by the decomposition do not significantly fluctuate. Experimental results show that the proposed method in this paper performs well; especially, it satisfactorily solves the problem of image noise removal. It may provide a new tool and method for image denoising.
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
Lakshmanan, M.K.
2011-01-01
Wavelet Packet Modulation (WPM) is a multi-carrier transmission technique that uses orthogonal wavelet packet bases to combine a collection of information bits into a single composite signal. This system can be considered as a viable alternative, for wide-band communication, to the popular
An adaptive mode-driven spatiotemporal motion vector prediction for wavelet video coding
Zhao, Fan; Liu, Guizhong; Qi, Yong
2010-07-01
The three-dimensional subband/wavelet codecs use 5/3 filters rather than Haar filters for the motion compensation temporal filtering (MCTF) to improve the coding gain. In order to curb the increased motion vector rate, an adaptive motion mode driven spatiotemporal motion vector prediction (AMDST-MVP) scheme is proposed. First, by making use of the direction histograms of four motion vector fields resulting from the initial spatial motion vector prediction (SMVP), the motion mode of the current GOP is determined according to whether the fast or complex motion exists in the current GOP. Then the GOP-level MVP scheme is thereby determined by either the S-MVP or the AMDST-MVP, namely, AMDST-MVP is the combination of S-MVP and temporal-MVP (T-MVP). If the latter is adopted, the motion vector difference (MVD) between the neighboring MV fields and the S-MVP resulting MV of the current block is employed to decide whether or not the MV of co-located block in the previous frame is used for prediction the current block. Experimental results show that AMDST-MVP not only can improve the coding efficiency but also reduce the number of computation complexity.
Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.
Vikhe, P S; Thool, V R
2016-04-01
Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.
International Nuclear Information System (INIS)
Malik, A.H.; Memon, A.A.; Arshad, F.
2013-01-01
Blow-Off System Controller (MIMO AWNN-SBOSC) is designed based on real time dynamic parametric plant data of steam blow-off system with conventional Single-Input Multi-Output Proportional plus Integral plus Derivative Controller (SIMO PIDC). The proposed MIMO AWANN-SBOSC is designed using three Multi-Input Single-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Controllers (MISO AWNN-SBOSC). The hidden layer of each MISO AWNN-SBOSC is formulated using Mother Wavelet Transforms (MWT). Using nonlinear dynamic neural data of designed MIMO AWNN-SBOSC, a Multi-Input Multi-Output Adaptive Wavelet Neural Network based Steam Blow-Off System Model (MIMO AWNN-SBOSM) is developed in cascaded mode. MIMO AWNN-SBOSM is designed using two MISO AWNN-SBOSM. All training, testing and validation of MIMO AWNN-SBOSC and MIMO AWNN-SBOSM are carried out in MA TLAB while all simulation experiments are performed in Visual C. The results of the new design is evaluated against conventional controller based measured data and found robust, fast and much better in performance. (author)
Luo, G. Y.; Osypiw, D.; Irle, M.
2003-05-01
The dynamic behaviour of wood machining processes affects the surface finish quality of machined workpieces. In order to meet the requirements of increased production efficiency and improved product quality, surface quality information is needed for enhanced process control. However, current methods using high price devices or sophisticated designs, may not be suitable for industrial real-time application. This paper presents a novel approach of surface quality evaluation by on-line vibration analysis using an adaptive spline wavelet algorithm, which is based on the excellent time-frequency localization of B-spline wavelets. A series of experiments have been performed to extract the feature, which is the correlation between the relevant frequency band(s) of vibration with the change of the amplitude and the surface quality. The graphs of the experimental results demonstrate that the change of the amplitude in the selective frequency bands with variable resolution (linear and non-linear) reflects the quality of surface finish, and the root sum square of wavelet power spectrum is a good indication of surface quality. Thus, surface quality can be estimated and quantified at an average level in real time. The results can be used to regulate and optimize the machine's feed speed, maintaining a constant spindle motor speed during cutting. This will lead to higher level control and machining rates while keeping dimensional integrity and surface finish within specification.
Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network
Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao
2009-10-01
A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.
Energy Technology Data Exchange (ETDEWEB)
Mota, Hilton de Oliveira; Rocha, Leonardo Chaves Dutra da [Department of Computer Science, Federal University of Sao Joao del-Rei, Visconde do Rio Branco Ave., Colonia do Bengo, Sao Joao del-Rei, MG, 36301-360 (Brazil); Salles, Thiago Cunha de Moura [Department of Computer Science, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil); Vasconcelos, Flavio Henrique [Department of Electrical Engineering, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil)
2011-02-15
In this paper an improved method to denoise partial discharge (PD) signals is presented. The method is based on the wavelet transform (WT) and support vector machines (SVM) and is distinct from other WT-based denoising strategies in the sense that it exploits the high spatial correlations presented by PD wavelet decompositions as a way to identify and select the relevant coefficients. PD spatial correlations are characterized by WT modulus maxima propagation along decomposition levels (scales), which are a strong indicative of the their time-of-occurrence. Denoising is performed by identification and separation of PD-related maxima lines by an SVM pattern classifier. The results obtained confirm that this method has superior denoising capabilities when compared to other WT-based methods found in the literature for the processing of Gaussian and discrete spectral interferences. Moreover, its greatest advantages become clear when the interference has a pulsating or localized shape, situation in which traditional methods usually fail. (author)
Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried
2013-02-01
In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.
Directory of Open Access Journals (Sweden)
Ying Chen
2018-03-01
Full Text Available Rate-distortion optimization (RDO plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC. Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-10-01
Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.
DEFF Research Database (Denmark)
Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...
Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors
Directory of Open Access Journals (Sweden)
P. Villard
2012-01-01
Full Text Available A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An 8×16 pixels test circuit demonstrates this functionality.
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
International Nuclear Information System (INIS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre
2008-01-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
Methods for measuring shrinkage
Chapman, Paul; Templar, Simon
2006-01-01
This paper presents findings from research amongst European grocery retailers into their methods for measuring shrinkage. The findings indicate that: there is no dominant method for valuing or stating shrinkage; shrinkage in the supply chain is frequently overlooked; data is essential in pinpointing where and when loss occurs and that many retailers collect data at the stock-keeping unit (SKU) level and do so every 6 months. These findings reveal that it is difficult to benc...
Aboufadel, Edward
1999-01-01
An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets
Rezaee, Kh; Haddadnia, J
2013-09-01
Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast cancer tumors in mammograms in early stages. It also allows the rapid processing of the input data. In the first step, after designing a filter, the discrete wavelet transform is applied to the input images and the approximate coefficients of scaling components are constructed. Then, the different parts of image are classified in continuous spectrum. In the next step, by using adaptive K-means algorithm for initializing and smart choice of clusters' number, the appropriate threshold is selected. Finally, the suspicious cancerous mass is separated by implementing the image processing techniques. We Received 120 mammographic images in LJPEG format, which had been scanned in Gray-Scale with 50 microns size, 3% noise and 20% INU from clinical data taken from two medical databases (mini-MIAS and DDSM). The proposed algorithm detected tumors at an acceptable level with an average accuracy of 92.32% and sensitivity of 90.24%. Also, the Kappa coefficient was approximately 0.85, which proved the suitable reliability of the system performance. The exact positioning of the cancerous tumors allows the radiologist to determine the stage of disease progression and suggest an appropriate treatment in accordance with the tumor growth. The low PPV and high NPV of the system is a warranty of the system and both clinical specialists and patients can trust its output.
Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J
2015-01-01
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in
Directory of Open Access Journals (Sweden)
Ryan B Graham
Full Text Available Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG. Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs to our previous data to comprehensively evaluate: 1 differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power, and 2 muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue
Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.
2017-01-01
People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.
Cheng, Lizhi; Luo, Yong; Chen, Bo
2014-01-01
This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...
Adaptive compressive ghost imaging based on wavelet trees and sparse representation.
Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie
2014-03-24
Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Directory of Open Access Journals (Sweden)
Sidra Mumtaz
Full Text Available This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG. A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Chan, Y T
1995-01-01
Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...
International Nuclear Information System (INIS)
Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.
2011-01-01
Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.
Shrinkage Reducing Admixture for Concrete
ECT Team, Purdue
2007-01-01
Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.
Cure shrinkage in casting resins
Energy Technology Data Exchange (ETDEWEB)
Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-02-01
A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.
Hortos, William S.
2008-04-01
Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at
Directory of Open Access Journals (Sweden)
Ram Sewak SINGH
2017-12-01
Full Text Available Power spectral analysis of short-term heart rate variability (HRV can provide instant valuable information to understand the functioning of autonomic control over the cardiovascular system. In this study, an adaptive continuous Morlet wavelet transform (ACMWT method has been used to describe the time-frequency characteristics of the HRV using band power spectra and the median value of interquartile range. Adaptation of the method was based on the measurement of maximum energy concentration. The ACMWT has been validated on synthetic signals (i.e. stationary, non-stationary as slow varying and fast changing frequency with time modeled as closest to dynamic changes in HRV signals. This method has been also tested in the presence of additive white Gaussian noise (AWGN to show its robustness towards the noise. From the results of testing on synthetic signals, the ACMWT was found to be an enhanced energy concentration estimator for assessment of power spectral of short-term HRV time series compared to adaptive Stockwell transform (AST, adaptive modified Stockwell transform (AMST, standard continuous Morlet wavelet transform (CMWT and Stockwell transform (ST estimators at statistical significance level of 5%. Further, the ACMWT was applied to real HRV data from Fantasia and MIT-BIH databases, grouped as healthy young group (HYG, healthy elderly group (HEG, arrhythmia controlled medication group (ARCMG, and supraventricular tachycardia group (SVTG subjects. The global results demonstrate that spectral indices of low frequency power (LFp and high frequency power (HFp of HRV were decreased in HEG compared to HYG subjects (p<0.0001. While LFp and HFp indices were increased in ARCMG compared to HEG (p<0.00001. The LFp and HFp components of HRV obtained from SVTG were reduced compared to other group subjects (p<0.00001.
Shrinkage Degree in $L_{2}$ -Rescale Boosting for Regression.
Xu, Lin; Lin, Shaobo; Wang, Yao; Xu, Zongben
2017-08-01
L 2 -rescale boosting ( L 2 -RBoosting) is a variant of L 2 -Boosting, which can essentially improve the generalization performance of L 2 -Boosting. The key feature of L 2 -RBoosting lies in introducing a shrinkage degree to rescale the ensemble estimate in each iteration. Thus, the shrinkage degree determines the performance of L 2 -RBoosting. The aim of this paper is to develop a concrete analysis concerning how to determine the shrinkage degree in L 2 -RBoosting. We propose two feasible ways to select the shrinkage degree. The first one is to parameterize the shrinkage degree and the other one is to develop a data-driven approach. After rigorously analyzing the importance of the shrinkage degree in L 2 -RBoosting, we compare the pros and cons of the proposed methods. We find that although these approaches can reach the same learning rates, the structure of the final estimator of the parameterized approach is better, which sometimes yields a better generalization capability when the number of sample is finite. With this, we recommend to parameterize the shrinkage degree of L 2 -RBoosting. We also present an adaptive parameter-selection strategy for shrinkage degree and verify its feasibility through both theoretical analysis and numerical verification. The obtained results enhance the understanding of L 2 -RBoosting and give guidance on how to use it for regression tasks.
GENERALIZED DOUBLE PARETO SHRINKAGE.
Armagan, Artin; Dunson, David B; Lee, Jaeyong
2013-01-01
We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t -like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.
Modeling Restrained Shrinkage Induced Cracking in Concrete Rings Using the Thick Level Set Approach
Directory of Open Access Journals (Sweden)
Rebecca Nakhoul
2018-03-01
Full Text Available Modeling restrained shrinkage-induced damage and cracking in concrete is addressed herein. The novel Thick Level Set (TLS damage growth and crack propagation model is used and adapted by introducing shrinkage contribution into the formulation. The TLS capacity to predict damage evolution, crack initiation and growth triggered by restrained shrinkage in absence of external loads is evaluated. A study dealing with shrinkage-induced cracking in elliptical concrete rings is presented herein. Key results such as the effect of rings oblateness on stress distribution and critical shrinkage strain needed to initiate damage are highlighted. In addition, crack positions are compared to those observed in experiments and are found satisfactory.
Certain problems concerning wavelets and wavelets packets
International Nuclear Information System (INIS)
Siddiqi, A.H.
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs
Certain problems concerning wavelets and wavelets packets
Energy Technology Data Exchange (ETDEWEB)
Siddiqi, A H
1995-09-01
Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.
Wavelet tree structure based speckle noise removal for optical coherence tomography
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Wavelet analysis for nonstationary signals
International Nuclear Information System (INIS)
Penha, Rosani Maria Libardi da
1999-01-01
Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect
Thermal Shrinkage for Shoulder Instability
Toth, Alison P.; Warren, Russell F.; Petrigliano, Frank A.; Doward, David A.; Cordasco, Frank A.; Altchek, David W.; O’Brien, Stephen J.
2010-01-01
Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent...
Accounting for PDMS shrinkage when replicating structures
DEFF Research Database (Denmark)
Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik
2014-01-01
are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...
Fast reversible wavelet image compressor
Kim, HyungJun; Li, Ching-Chung
1996-10-01
We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.
Hu, Yue; Tu, Xiaotong; Li, Fucai; Li, Hongguang; Meng, Guang
2017-11-01
The order tracking method based on time-frequency representation is regarded as an effective tool for fault detection of bearings with varying rotating speeds. In the traditional order tracking methods, a tachometer is required to obtain the instantaneous speed which is hardly satisfied in practice due to the technical and economical limitations. Some tacholess order tracking methods have been developed in recent years. In these methods, the instantaneous frequency ridge extraction is one of the most important parts. However, the current ridge extraction methods are sensitive to noise and may easily get trapped in a local optimum. Due to the presence of noise and other unrelated components of the signal, bearing fault features are difficult to be detected from the envelope spectrum or envelope order spectrum. To overcome the abovementioned drawbacks, an adaptive and tacholess order analysis method is proposed in this paper. In this method, a novel ridge extraction algorithm based on dynamic path optimization is adopted to estimate the instantaneous frequency. This algorithm can overcome the shortcomings of the current ridge extraction algorithms. Meanwhile, the enhanced empirical wavelet transform (EEWT) algorithm is applied to extract the bearing fault features. Both simulated and experimental results demonstrate that the proposed method is robust to noise and effective for bearing fault detection under variable speed conditions.
Thermal shrinkage for shoulder instability.
Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J
2011-07-01
Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.
Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie
2017-03-27
Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
The influence of shrinkage reducing admixtures on plastic shrinkage
Directory of Open Access Journals (Sweden)
Mora, J.
2003-12-01
Full Text Available Shrinkage reducing admixtures (SRAs are viable alternatives for reducing plastic shrinkage cracking in concrete. The objective of the present paper is to study early age plastic shrinkage in restrained concrete elements, where three different SRAs have been used. The influence of the admixture is analyzed through the following measurements: capillary pressure, evaporation, temperature evolution, crack evolution and settlement. The tests for studying the cracking and deformation were made on two different configurations (i.e., restrained prisms with reduced cross-section and restrained panel, in a wind tunnel, with controlled wind temperature and velocity. The conclusions obtained indicate the viability of the use of this type of admixture and the usefulness of the test methods.
Los aditivos reductores de retracción (SRAs se plantean, hoy en día, como una alternativa viable para reducir la fisuración por retracción plástica. El objetivo del presente artículo es conocer mejor y predecir el comportamiento a primeras edades de la retracción plástica en elementos estructurales coaccionados, a los que se les ha añadido diversos aditivos reductores de retracción (tres tipos diferentes. Esta influencia se analiza a través de las siguientes propiedades: presión capilar, evaporación, evolución de temperaturas, evolución de fisuración, y deformaciones verticales de asentamiento. Los ensayos para estudiar la fisuración y las deformaciones se han realizado sobre diferentes configuraciones (prisma restringido con estrangulamiento y panel restringido, en un túnel de viento, con temperaturas y velocidades de viento controladas. Las conclusiones obtenidas señalan la viabilidad del empleo de este tipo de aditivos y la bondad de los métodos experimentales utilizados.
Numerical shaping of the ultrasonic wavelet
International Nuclear Information System (INIS)
Bonis, M.
1991-01-01
Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test
Effective implementation of wavelet Galerkin method
Finěk, Václav; Šimunková, Martina
2012-11-01
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete
International Nuclear Information System (INIS)
Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako
2011-01-01
In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.
Institute of Scientific and Technical Information of China (English)
徐涛; 李冠章
2011-01-01
A novel adaptive detail enhancement algorithm aiming at colour image is proposed in this paper based on wavelet transform. The first step is to select appropriate colour space, and then the luminance components of the image are being implemented wavelet transform while the chroma components are hold on. The detail wavelet coefficients are adjusted adaptively considering the contrasts of discomposed approximate images on each level while the approximate coefficients are increased properly to boost the average luminance of colour image, there is no extra adjustment parameters setting in the process of treatment. Experiments confirm that the algorithm preserves the brighter details of the image and improves the darker details in it too. Meanwhile the image colour distortion does not appear.%针对彩色图像,提出了一种基于小波变换的自适应细节增强算法.首先选择了合适的彩色空间,保持图像的彩色分量不变,对其亮度分量进行小波变换,然后按照分解后的各级近似图像对比度自适应地调整小波细节系数,同时适当地增强近似系数以提高彩色图像的平均亮度,在处理过程中不需要设定额外的调整参数.实验证明,算法不但保留了图像较亮的细节,而且增强了较暗的细节,同时达到了图像色彩不失真的目的.
Soil shrinkage characteristics in swelling soils
International Nuclear Information System (INIS)
Taboada, M.A.
2004-01-01
The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects
Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia
2015-01-01
This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...
Skopina, Maria; Protasov, Vladimir
2016-01-01
This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...
Wavelets, vibrations and scalings
Meyer, Yves
1997-01-01
Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...
Wavelets in scientific computing
DEFF Research Database (Denmark)
Nielsen, Ole Møller
1998-01-01
the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...
Czech Academy of Sciences Publication Activity Database
Zima, Miroslav; Tichavský, Petr; Paul, K.; Krajča, V.
2012-01-01
Roč. 33, č. 8 (2012), s. 39-49 ISSN 0967-3334 R&D Projects: GA MŠk 1M0572; GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : electroencephalogram * artifact removal * independent component analysis * wavelet denoising Subject RIV: FH - Neurology Impact factor: 1.496, year: 2012 http://library.utia.cas.cz/separaty/2014/SI/zima-0379312.pdf
International Nuclear Information System (INIS)
Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A
2001-01-01
This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)
Optical Flow of Small Objects Using Wavelets, Bootstrap Methods, and Synthetic Discriminant Filters
National Research Council Canada - National Science Library
Hewer, Gary
1997-01-01
...) targets in highly cluttered and noisy environments. In this paper; we present a novel wavelet detection algorithm which incorporates adaptive CFAR detection statistics using the bootstrap method...
Improved Real-time Denoising Method Based on Lifting Wavelet Transform
Directory of Open Access Journals (Sweden)
Liu Zhaohua
2014-06-01
Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.
Mitigation strategies for autogenous shrinkage cracking
DEFF Research Database (Denmark)
Bentz, Dale P.; Jensen, Ole Mejlhede
2004-01-01
As the use of high-performance concrete has increased, problems with early-age cracking have become prominent. The reduction in water-to-cement ratio, the incorporation of silica fume, and the increase in binder content of high-performance concretes all contribute to this problem. In this paper......, the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete are presented. Basic characteristics of the cement paste that contribute to or control the autogenous shrinkage response include the surface tension of the pore solution, the geometry of the pore...... of early-age cracking due to autogenous shrinkage. Mitigation strategies discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition...
Improvement of electrocardiogram by empirical wavelet transform
Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya
2017-09-01
Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.
Fractional Calculus and Shannon Wavelet
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.
Wavelet analysis in neurodynamics
International Nuclear Information System (INIS)
Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A
2012-01-01
Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)
Fang, Li-Zhi
1998-01-01
Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.
Castro, Liliana Raquel; Castro, Silvia Mabel
1995-01-01
Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.
Volumetric polymerization shrinkage of contemporary composite resins
Directory of Open Access Journals (Sweden)
Halim Nagem Filho
2007-10-01
Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.
Volumetric polymerization shrinkage of contemporary composite resins
Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz
2007-01-01
The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...
Blatter, Christian
1998-01-01
The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.
Sparse data structure design for wavelet-based methods
Directory of Open Access Journals (Sweden)
Latu Guillaume
2011-12-01
Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.
Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.
Al Sunbul, Hanan; Silikas, Nick; Watts, David C
2016-08-01
To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
EEG Artifact Removal Using a Wavelet Neural Network
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
The iterative shrinkage method for impulsive noise reduction from images
International Nuclear Information System (INIS)
Beygi, Sajjad; Kafashan, Mohammadmehdi; Bahrami, Hamid Reza; Mugler, Dale H
2012-01-01
In this paper, we present a novel scheme to compensate impulsive noise from images using the sparse shrinkage method. In this scheme, we assume the remaining noise after using a simple median filtering in place of corrupted pixels, found by boundary discriminative noise detection method, to be Gaussian additive noise. This assumption will later be verified by the means of simulation. Knowing that the pure image in the discrete wavelet transform (DWT) domain is a sparse vector, we define an optimization problem to minimize the l 0 -norm of the estimated image vector from the noisy one in the DWT domain. l 0 -norm makes the optimization problem a combinatorial optimization problem which is NP-hard to solve. To come up with a solution for our optimization problem, we convert the l 0 -norm problem to a continuous optimization problem which is then solved to find the estimated image with reduced noise. In the simulation and discussion part, the performance of our proposed method in reducing impulsive noise is compared to that of existing methods in the literature. We show that our proposed algorithm generally performs better in terms of both subjective and objective evaluations and is less complex. (paper)
Influence of Shrinkage-Reducing Admixtures on the Development of Plastic Shrinkage Cracks
DEFF Research Database (Denmark)
Lura, Pietro; Pease, Bradley Justin; Mazzotta, Guy
2007-01-01
The term plastic shrinkage cracking is generally used to describe cracks that form between the time when concrete is placed and the time when concrete sets. This paper discusses how the evaporation of water causes concave menisci to form on the surface of fresh concrete. These menisci cause both...... settlement of the concrete and tensile stress development in the surface of the concrete, which increase the potential for development of plastic shrinkage cracks. Specifically, this paper studies the development of plastic shrinkage cracks in mortars containing a commercially available shrinkage-reducing...... admixture (SRA). Mortars containing SRA show fewer and narrower plastic shrinkage cracks than plain mortars when exposed to the same environmental conditions. It is proposed that the lower surface tension of the pore fluid in the mortars containing SRA results in less evaporation, reduced settlement...
Heat shrinkage of electron beam modified EVA
International Nuclear Information System (INIS)
Datta, S.K.; Chaki, T.K.; Bhowmick, A.K.
1997-01-01
Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author)
Heat shrinkage of electron beam modified EVA
Energy Technology Data Exchange (ETDEWEB)
Datta, S.K.; Chaki, T.K.; Bhowmick, A.K. [Indian Institute of Technology, Kharagpur (India). Rubber Technology Center; Tikku, V.K.; Pradhan, N.K. [NICCO Corporation Ltd., (Cable Div.), Calcutta (India)
1997-10-01
Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author).
The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images
International Nuclear Information System (INIS)
Pita-Machado, Reinado; Perez-Diaz, Marlen; Lorenzo-Ginori, Juan V.; Bravo-Pino, Rolando
2014-01-01
Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which are not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions
Exploring an optimal wavelet-based filter for cryo-ET imaging.
Huang, Xinrui; Li, Sha; Gao, Song
2018-02-07
Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.
Dual-tree complex wavelet for medical image watermarking
International Nuclear Information System (INIS)
Mavudila, K.R.; Ndaye, B.M.; Masmoudi, L.; Hassanain, N.; Cherkaoui, M.
2010-01-01
In order to transmit medical data between hospitals, we insert the information for each patient in the image and its diagnosis, the watermarking consist to insert a message in the image and try to find it with the maximum possible fidelity. This paper presents a blind watermarking scheme in wavelet transform domain dual tree (DTT), who increasing the robustness and preserves the image quality. This system is transparent to the user and allows image integrity control. In addition, it provides information on the location of potential alterations and an evaluation of image modifications which is of major importance in a medico-legal framework. An example using head magnetic resonance and mammography imaging illustrates the overall method. Wavelet techniques can be successfully applied in various image processing methods, namely in image de noising, segmentation, classification, watermarking and others. In this paper we discussed the application of dual tree complex wavelet transform (D T-CWT), which has significant advantages over classic discrete wavelet transform (DWT), for certain image processing problems. The D T-CWT is a form of discreet wavelet transform which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The main part of the paper is devoted to profit the exceptional quality for D T-CWT, compared to classical DWT, for a blind medical image watermarking, our schemes are using for the performance bivariate shrinkage with local variance estimation and are robust of attacks and favourably preserves the visual quality. Experimental results show that embedded watermarks using CWT give good image quality and are robust in comparison with the classical DWT.
Lecture notes on wavelet transforms
Debnath, Lokenath
2017-01-01
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...
Assessment of concrete creep and shrinkage
International Nuclear Information System (INIS)
Trivedi, Neha; Singh, R.K.
2012-01-01
B-3 model prediction of concrete creep and shrinkage strains on cylindrical specimen and BARC Containment test model (BARCOM) are presented. Experimental shrinkage strain is shown to be in agreement with B-3 model predictions for cylindrical specimen and BARCOM. Creep strain in cylindrical specimen is found to be in agreement with B-3 model. In BARCOM for wall cast in different pores, creep strain is in agreement with B-3 model in hoop direction however in longitudinal direction, observed creep strain in higher than B-3 model. For dome structure cast in a single pour, experimental creep strain shows confirmity with B-3 model both in hoop and longitudinal directions. The study on concrete aging and average longitudinal shrinkage strain is carried out. (author)
Dry shrinkage characteristics of buffer materials
Energy Technology Data Exchange (ETDEWEB)
Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Fujita, A.
1999-03-01
Generation of cracks due to drying of compressed bentonite was observed by changing the initial water content to obtain shrinkage constants such as shrinkage limit and shrinking rate. As a result, generation of practically no cracks was observed when the initial water content of samples was below 13%. The volume change due to drying increased with the water content in the sample, and the shrinkage constants were found to depend on the initial water content. Further, the one-dimensional compression strength after drying was compared with that before drying in order to clarify the effect of cracks generated by drying on the mechanical strength. As a result, the dry sample with cracks proved to have large one-dimensional compression strength or E{sub 50} compared to wet samples, so that the mechanical strength was kept even after drying. (H. Baba)
Target recognition by wavelet transform
International Nuclear Information System (INIS)
Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen
2002-01-01
Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided
Daily water level forecasting using wavelet decomposition and artificial intelligence techniques
Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.
2015-01-01
Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
Electromagnetic spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, R.; Garcia-Sucerquia, J.
2005-10-01
The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)
Quantitative analyses of shrinkage characteristics of neem ...
African Journals Online (AJOL)
Quantitative analyses of shrinkage characteristics of neem (Azadirachta indica A. Juss.) wood were carried out. Forty five wood specimens were prepared from the three ecological zones of north eastern Nigeria, viz: sahel savanna, sudan savanna and guinea savanna for the research. The results indicated that the wood ...
Shrinkage Approach for Gene Expression Data Analysis
Czech Academy of Sciences Publication Activity Database
Haman, Jiří; Valenta, Zdeněk
2013-01-01
Roč. 9, č. 3 (2013), s. 2-8 ISSN 1801-5603 Grant - others:UK(CZ) SVV-2013-266517 Institutional support: RVO:67985807 Keywords : microarray technology * high dimensional data * mean squared error * James-Stein shrinkage estimator * mutual information Subject RIV: IN - Informatics, Computer Science http://www.ejbi.org/img/ejbi/2013/3/Haman_en.pdf
Shrinkage Approach for Gene Expression Data Analysis
Czech Academy of Sciences Publication Activity Database
Haman, Jiří; Valenta, Zdeněk; Kalina, Jan
2013-01-01
Roč. 1, č. 1 (2013), s. 65-65 ISSN 1805-8698. [EFMI 2013 Special Topic Conference. 17.04.2013-19.04.2013, Prague] Institutional support: RVO:67985807 Keywords : shrinkage estimation * covariance matrix * high dimensional data * gene expression Subject RIV: IN - Informatics, Computer Science
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
WAVELET ANALYSIS OF ABNORMAL ECGS
Directory of Open Access Journals (Sweden)
Vasudha Nannaparaju
2014-02-01
Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.
Søgaard, Andreas
For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...
Drying shrinkage problems in high PI subgrade soils.
2014-01-01
The main objective of this study was to investigate the longitudinal cracking in pavements due to drying : shrinkage of high PI subgrade soils. The study involved laboartory soil testing and modeling. The : shrinkage cracks usually occur within the v...
Mesoscopic analysis of drying shrinkage damage in a cementitious material
DEFF Research Database (Denmark)
Moonen, P.; Pedersen, R.R.; Simone, A.
2008-01-01
Concrete and cement-based materials exhibit shrinkage when exposed to drying. Structural effects and inhomogeneity of material properties adverse free shrinkage, hereby inducing stress concentrations and possibly damage. In this contribution, the magnitude of shrinkage- induced damage during...... temperatures are considered: 35 °C and 50 °C. Significantly more micro-damage and higher internal stresses are found for the latter, revealing the importance of drying shrinkage damage, even at laboratory scale....
The shrinkage of hardening cement paste and mortar
Haas, de G.D.; Kreijger, P.C.; Niël, E.M.M.G.; Slagter, J.C.; Stein, H.N.; Theissing, E.M.; Wallendael, van M.
1975-01-01
This paper is an abstract from the report of the commission B10: "The influence of the shrinkage of cement on the shrink-age of concrete", of the Netherlands Committee for Concrete Research. Measurements of pulse velocity, volume shrinkage and heat of hydration on hardening portland cement support
Wavelet neural network load frequency controller
International Nuclear Information System (INIS)
Hemeida, Ashraf Mohamed
2005-01-01
This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one
Qosai Sahib Radi Marshdi; Ahlam Hamid Jasim; Haider Abass Obeed
2018-01-01
The principle of using expansive agents has been recommended to manufacture shrinkage compensating concrete provided that an adequate wet curing is carried out. On the other hand, shrinkage-reducing admixture (SRA) in the concrete mixes, has been more recently suggested to reduce the risk of cracking in concrete structures caused by drying shrinkage. This paper is devoted to the study of the influence of complex modifier in the form of superplasticizer, shrinkage reducing admixture and e...
Shrinkage measurement for holographic recording materials
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.
2017-05-01
There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).
Shrinkage deformation of cement foam concrete
Kudyakov, A. I.; Steshenko, A. B.
2015-01-01
The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.
International Nuclear Information System (INIS)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-01-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Energy Technology Data Exchange (ETDEWEB)
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
DEFF Research Database (Denmark)
Yoon, G. H.; Kim, Y. Y.; Bendsøe, Martin P.
2004-01-01
In topology optimization applications for the design of compliant mechanisms, the formation of hinges is typically encountered. Often such hinges are unphysical artifacts that appear due to the choice of discretization spaces for design and analysis. The objective of this work is to present a new...... two-dimensional compliant mechanism design problems....
Forced Ignition Study Based On Wavelet Method
Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.
2011-05-01
The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.
Noise reduction by wavelet thresholding
National Research Council Canada - National Science Library
Jansen, Maarten
2001-01-01
.... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...
Reducing Shrinkage in Canned and Frozen Mushrooms
Gormley, T. R. (Thomas Ronan); Walshe, P.E.
1982-01-01
The process involving a preliminary soaking of the mushrooms in water for 20 min followed by a chill storage period followed by a further water soak for 2 hr, and known as the 3S process, gave a considerable reduction in total shrinkage in both brown and white strain canned mushrooms compared with the control samples. Water uptake by the mushrooms in the 3S process was greatest when the soaking water temperature was between 20 and 30°C and had a pH of 8. Citric acid in the blanch water enhanc...
International Nuclear Information System (INIS)
Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.
1984-01-01
To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments
A generalized wavelet extrema representation
Energy Technology Data Exchange (ETDEWEB)
Lu, Jian; Lades, M.
1995-10-01
The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.
Wavelet frames and their duals
DEFF Research Database (Denmark)
Lemvig, Jakob
2008-01-01
frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...
Wavelet Enhanced Appearance Modelling
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.
2004-01-01
Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage......-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme...
Distinct spontaneous shrinkage of a sporadic vestibular schwannoma
DEFF Research Database (Denmark)
Huang, Xiaowen; Cayé-Thomasen, Per; Stangerup, Sven-Eric
2013-01-01
on "shrinkage" or "negative growth" or "regression" or "involution" of the tumor were selected, and the contents on the rate, extent and mechanism of spontaneous tumor shrinkage were extracted and reviewed. The reported rate of spontaneous shrinkage of vestibular schwannoma is 5-10% of patients managed......We present a case with outspoken spontaneous vestibular schwannoma shrinkage and review the related literature. The patient was initially diagnosed with a left-sided, intrameatal vestibular schwannoma, which subsequently grew into the cerebello-pontine angle (CPA), followed by total shrinkage...... of the CPA component without any intervention over a 12-year observation period. The literature on spontaneous tumor shrinkage was retrieved by searching the subject terms "vestibular schwannoma, conservative management" in PubMed/MEDLINE database, without a time limit. Of the published data, the articles...
Ultrasonic assessment of shrinkage type discontinuities
International Nuclear Information System (INIS)
Hubber, John
2010-01-01
This investigation into ultrasonic internal discontinuities is intended to demonstrate typical examples of internal 'shrinkage' type discontinuities and its connection with the casting suitability, integrity and reliability in service. This type of discontinuity can be misinterpreted by ultrasonic technicians and can lead to the rejection of castings unnecessarily, due to the mis-characterization of fine shrinkage - discrete porosity. The samples for this investigation were taken from thirty ton heavy section ductile iron mill flange castings, manufactured by Graham Campbell Ferrum International. The sampled area was of discontinuities that were recorded for sizing on an area due to loss of back wall echo, but had acceptable reflectivity. A comparative sample was taken adjacent to the area of discrete porosity. The discontinuities found by this investigation are of a 'spongy' type, gaseous in appearance and are surrounded by acoustically sound material. All discontinuities discussed in this paper are centrally located in the through thickness of the casting. The porous nature of this type of discontinuity consisting of approximately 80-90% metal has its own residual strength, as indicated by the proof stress results which reveal a residual strength of up to 50-60% of that of the unaffected area of the casting. The affected areas are elliptical in shape and vary in density and through thickness throughout.
Computation of shrinkage stresses in prestressed concrete containments
International Nuclear Information System (INIS)
Wu, R.F.; Ouyang, H.
1989-01-01
According to a survey, surface cracking on PCRVs and PCCs under the investigations is confined to drying shrinkage and thermal strain effects and no instances of structurally significant cracking was been found. In this paper, the authors use FEM to compute humidity distribution in drying concrete and shrinkage stresses by internal restraint. Since PCC is built segment by segment in several years, a computational model taking into account construction sequence is presented and shrinkage stresses by external restraints are calculated with the model
Creep and shrinkage of concrete according to Eurocode 2
Directory of Open Access Journals (Sweden)
Milićević Ivan M.
2017-01-01
Full Text Available This paper presents the procedure for calculation of creep coefficient and shrinkage strain according to Eurocode 2 (SRPS EN 1992-1-1:2004. The calculated values of final creep coefficient and shrinkage strain, for the usual design conditions, are given in Annexes. The influence of key parameters on final creep coefficient and shrinkage strain is analyzed and the comparison between their final values calculated according to Eurocode 2 and BAB 87 is presented.
Directory of Open Access Journals (Sweden)
Cesar Augusto Galvão Arrais
2013-04-01
Full Text Available This study compared the volumetric shrinkage (VS, flexural strength (FS and flexural modulus (FM properties of the low-shrinkage resin composite Aelite LS (Bisco to those of Filtek LS (3M ESPE and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent and the microhybrid Aelite Universal (Bisco. The composites (n = 5 were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter were obtained (n = 12 and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%. Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.
Multifractal Cross Wavelet Analysis
Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene
Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.
An Introduction to Wavelet Theory and Analysis
Energy Technology Data Exchange (ETDEWEB)
Miner, N.E.
1998-10-01
This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.
A Hybrid Model Based on Wavelet Decomposition-Reconstruction in Track Irregularity State Forecasting
Directory of Open Access Journals (Sweden)
Chaolong Jia
2015-01-01
Full Text Available Wavelet is able to adapt to the requirements of time-frequency signal analysis automatically and can focus on any details of the signal and then decompose the function into the representation of a series of simple basis functions. It is of theoretical and practical significance. Therefore, this paper does subdivision on track irregularity time series based on the idea of wavelet decomposition-reconstruction and tries to find the best fitting forecast model of detail signal and approximate signal obtained through track irregularity time series wavelet decomposition, respectively. On this ideology, piecewise gray-ARMA recursive based on wavelet decomposition and reconstruction (PG-ARMARWDR and piecewise ANN-ARMA recursive based on wavelet decomposition and reconstruction (PANN-ARMARWDR models are proposed. Comparison and analysis of two models have shown that both these models can achieve higher accuracy.
Wavelet spectra of JACEE events
International Nuclear Information System (INIS)
Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.
1995-01-01
Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)
Multispectral Image Enhancement Through Adaptive Wavelet Fusion
2016-09-14
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a...faster reaction times and ultimately improved situational awareness (Toet et al., 2014). A crucial step in this coloring process is the choice of a...better match the natural daytime colors. Reference (c.q. deliverable) Hogervorst, M.A., & Toet, A. (2016). Improved Colour Matching Technique
Iris Recognition Using Wavelet
Directory of Open Access Journals (Sweden)
Khaliq Masood
2013-08-01
Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.
Directory of Open Access Journals (Sweden)
Hannu Olkkonen
2013-01-01
Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.
Energy Technology Data Exchange (ETDEWEB)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.
International Nuclear Information System (INIS)
Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro
2015-01-01
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation
PLASTIC SHRINKAGE CONTROLLING EFFECT BY POLYPROPYLENE SHORT FIBER WITH HYDROPHILY
Hosoda, Akira; Sadatsuki, Yoshitomo; Oshima, Akihiro; Ishii, Akina; Tsubaki, Tatsuya
The aim of this research is to clarify the mechanism of controlling plastic shrinkage crack by adding small amout of synthetic short fiber, and to propose optimum polypropylene short fiber to control plastic shrinkage crack. In this research, the effect of the hydrophily of polypropylene fiber was investigated in the amount of plastic shrinkage of mortar, total area of plastic shrinkage crack, and bond properties between fiber and mortar. The plastic shrinkage test of morar was conducted under high temperature, low relative humidity, and constant wind velocity. When polypropylene fiber had hydrophily, the amount of plastic shrinkage of mortar was restrained, which was because cement paste in morar was captured by hydrophilic fiber and then bleeding of mortar was restrained. With hydrophily, plastic shrinkage of mortar was restrained and bridging effect was improved due to better bond, which led to remarkable reduction of plastic shrinkage crack. Based on experimental results, the way of developing optimum polypropylene short fiber for actual construction was proposed. The fiber should have large hydrophily and small diameter, and should be used in as small amount as possible in order not to disturb workability of concrete.
Dynamics of tissue shrinkage during ablative temperature exposures
International Nuclear Information System (INIS)
Rossmann, Christian; Haemmerich, Dieter; Garrett-Mayer, Elizabeth; Rattay, Frank
2014-01-01
There is a lack of studies that examine the dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration and contraction of collagen at temperatures greater 50 °C. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 min of heating to temperatures between 60 and 95 °C. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. The shrinkage dynamics had the same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95 °C, was 12.3, 13.8, 16.6, 19.2 and 21.7%, respectively. Our results demonstrate the shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. (paper)
Drying Shrinkage Microcracking in Cement-based Materials
Bisschop, J.; Van Mier, J.G.M.
2002-01-01
In this paper the nature of drying shrinkage microcracking in a variety of model cementbased materials, as well as in more practical types of concrete is described. The model mixtures were studied to elucidate the mechanisms of drying shrinkage microcracking and the factors that influence these
Wavelet theory and its applications
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.
1996-07-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.
Wavelets and multiscale signal processing
Cohen, Albert
1995-01-01
Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...
From Fourier analysis to wavelets
Gomes, Jonas
2015-01-01
This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
An adaptive method for γ spectra smoothing
International Nuclear Information System (INIS)
Xiao Gang; Zhou Chunlin; Li Tiantuo; Han Feng; Di Yuming
2001-01-01
Adaptive wavelet method and multinomial fitting gliding method are used for smoothing γ spectra, respectively, and then FWHM of 1332 keV peak of 60 Co and activities of 238 U standard specimen are calculated. Calculated results show that adaptive wavelet method is better than the other
A wavelet phase filter for emission tomography
International Nuclear Information System (INIS)
Olsen, E.T.; Lin, B.
1995-01-01
The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods
Reduction of the Early Autogenous Shrinkage of High Strength Concrete
Directory of Open Access Journals (Sweden)
Drago Saje
2015-01-01
Full Text Available The results of a laboratory investigation on the early autogenous shrinkage of high strength concrete, and the possibilities of its reduction, are presented. Such concrete demonstrates significant autogenous shrinkage, which should, however, be limited in the early stages of its development in order to prevent the occurrence of cracks and/or drop in the load-carrying capacity of concrete structures. The following possibilities for reducing autogenous shrinkage were investigated: the use of low-heat cement, a shrinkage-reducing admixture, steel fibres, premoistened polypropylene fibres, and presoaked lightweight aggregate. In the case of the use of presoaked natural lightweight aggregate, with a fraction from 2 to 4 mm, the early autogenous shrinkage of one-day-old high strength concrete decreased by about 90%, with no change to the concrete's compressive strength in comparison with that of the reference concrete.
Sparsity-based shrinkage approach for practicability improvement of H-LBP-based edge extraction
Energy Technology Data Exchange (ETDEWEB)
Zhao, Chenyi [School of Physics, Northeast Normal University, Changchun 130024 (China); Qiao, Shuang, E-mail: qiaos810@nenu.edu.cn [School of Physics, Northeast Normal University, Changchun 130024 (China); Sun, Jianing, E-mail: sunjn118@nenu.edu.cn [School of Mathematics and Statistics, Northeast Normal University, Changchun 130024 (China); Zhao, Ruikun; Wu, Wei [Jilin Cancer Hospital, Changchun 130021 (China)
2016-07-21
The local binary pattern with H function (H-LBP) technique enables fast and efficient edge extraction in digital radiography. In this paper, we reformulate the model of H-LBP and propose a novel sparsity-based shrinkage approach, in which the threshold can be adapted to the data sparsity. Using this model, we upgrade fast H-LBP framework and apply it to real digital radiography. The experiments show that the method improved using the new shrinkage approach can avoid elaborately artificial modulation of parameters and possess greater robustness in edge extraction compared with the other current methods without increasing processing time. - Highlights: • An novel sparsity-based shrinkage approach for edge extraction on digital radiography is proposed. • The threshold of SS-LBP can be adaptive to the data sparsity. • SS-LBP is the development of AH-LBP and H-LBP. • Without boosting processing time and losing processing efficiency, SS-LBP can avoid elaborately artificial modulation of parameters provides. • SS-LBP has more robust performance in edge extraction compared with the existing methods.
Signal Analysis by New Mother Wavelets
International Nuclear Information System (INIS)
Niu Jinbo; Qi Kaiguo; Fan Hongyi
2009-01-01
Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)
Wavelet evolutionary network for complex-constrained portfolio rebalancing
Suganya, N. C.; Vijayalakshmi Pai, G. A.
2012-07-01
Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.
The wavelet/scalar quantization compression standard for digital fingerprint images
Energy Technology Data Exchange (ETDEWEB)
Bradley, J.N.; Brislawn, C.M.
1994-04-01
A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Studies on heat shrinkage PVC tubes
International Nuclear Information System (INIS)
Pyun, Hyung Chick; Kim, Ki Yup; Nho, Young Chang
1991-01-01
Radiation crosslinking of PVC was investigated for the purpose of obtaining a suitable formulation for heat shrinkable tube. PVC was not only compounded with various crosslinking agents and plasticizers to evaluate their effects on the radiation sensitivity, heat shrinkable property and other mechanical properties, but also mixed with NBR, crosslinking agents and plasticizers to obtain efficient crosslinking yield and suitable mechanical properties for heat shrinkable tube. Gel yield of PVC increased with increasing unsaturation levels per molecular weight of crosslinking agents. Among crosslinking agents tested, TMPTMA with three unsaturated groups showed highest gel yield, while PVC containing NBR was more sensitive to crosslinking than PVC itself regardless the types of crosslinking agents and plasticizers. Tensile strength was increased with increasing radiation dose and gel percent, but elongation decreased. It was found that gel percent was increased with increasing radiation dose, heat transformation was decreased with increasing gel percent. When NBR was mixed with PVC, the radiation dosage required for enhancing yield of gel percent and heat transformation were found to be much smaller comparing with the case containing no NBR. Therefore, the addition of NBR to PVC was very effective to increase heat-resisting property of PVC. Heat shrinkage was not much varied with radiation dose, the types of crosslinking agents and plasticizers, but it was increased remarkably with decreasing stretching temperature and increasing annealing temperature. (Author)
Jiang, M.; Cui, B.-Y.; Schmid, N. A.; McLaughlin, M. A.; Cao, Z.-C.
2017-09-01
Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.
Energy Technology Data Exchange (ETDEWEB)
Jiang, M.; Schmid, N. A.; Cao, Z.-C. [Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506 (United States); Cui, B.-Y.; McLaughlin, M. A. [Department of Physics and Astronomy West Virginia University Morgantown, WV 26506 (United States)
2017-09-20
Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation of their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.
Modeling for prediction of restrained shrinkage effect in concrete repair
International Nuclear Information System (INIS)
Yuan Yingshu; Li Guo; Cai Yue
2003-01-01
A general model of autogenous shrinkage caused by chemical reaction (chemical shrinkage) is developed by means of Arrhenius' law and a degree of chemical reaction. Models of tensile creep and relaxation modulus are built based on a viscoelastic, three-element model. Tests of free shrinkage and tensile creep were carried out to determine some coefficients in the models. Two-dimensional FEM analysis based on the models and other constitutions can predict the development of tensile strength and cracking. Three groups of patch-repaired beams were designed for analysis and testing. The prediction from the analysis shows agreement with the test results. The cracking mechanism after repair is discussed
Wavelets: Applications to Image Compression-II
Indian Academy of Sciences (India)
Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.
Wavelet Transforms using VTK-m
Energy Technology Data Exchange (ETDEWEB)
Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-27
These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.
From Calculus to Wavelets: ANew Mathematical Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...
International Development Research Centre (IDRC) Digital Library (Canada)
building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.
Texture analysis using Gabor wavelets
Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.
1996-04-01
Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.
Analysis of transient signals by Wavelet transform
International Nuclear Information System (INIS)
Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de
2000-01-01
The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)
Energy Technology Data Exchange (ETDEWEB)
Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)
1997-10-22
A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.
WAVELET TRANSFORM AND LIP MODEL
Directory of Open Access Journals (Sweden)
Guy Courbebaisse
2011-05-01
Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.
Creep and Shrinkage of High Strength Concretes: an Experimental Analysis
Directory of Open Access Journals (Sweden)
Berenice Martins Toralles carbonari
2002-01-01
Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.
Comparison of shrinkage related properties of various patch repair materials
Kristiawan, S. A.; Fitrianto, R. S.
2017-02-01
A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.
Influence of gelatinous fibers on the shrinkage of silver maple
Donals G. Arganbright; Dwight W. Bensend; Floyd G. Manwiller
1970-01-01
The degree of lean was found to have a significant influence on the logitudinal and transverse shrinkage of three soft maple trees. This may be accounted for by differences in the cell wall layer thickness and fibril angle.
Shrinkage and durability study of bridge deck concrete.
2010-12-01
The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...
Large-proportional shrunken bio-replication of shark skin based on UV-curing shrinkage
International Nuclear Information System (INIS)
Chen, Huawei; Che, Da; Zhang, Xin; Yue, Yue; Zhang, Deyuan
2015-01-01
The shark skin effect has attracted worldwide attention because of its superior drag reduction. As the product of natural selection, the maximum drag reduction of shark skin is found in its normal living environment. Large-proportional shrinkage of shark skin morphology is greatly anticipated for its adaptation to faster fluid flow. One novel approach, large-proportional shrunken bio-replication, is proposed as a method to adjust the optimal drag reduction region of shark skin based on the shrinkage of UV-cured material. The shark skin is taken as a replica template to allow large-proportional shrinking in the drag reduction morphology by taking advantage of the shrinkage of UV-curable material. The accuracy of the large-proportional shrunken bio-replication approach is verified by a comparison between original and shrunken bio-replicated shark skin, which shows that the shrinking ratio can reach 23% and the bio-replication accuracy is higher than 95%. In addition, the translation of the optimum drag reduction peak of natural surface function to various applications and environments is proved by drag reduction experiments. (technical note)
Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings
Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui
2018-02-01
Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.
Prevention of shrinkage cracking in tight concrete structures
International Nuclear Information System (INIS)
Alvaredo, A.M.; Wittmann, F.H.
1995-01-01
It is shown that crack formation and propagation in concrete members subjected to restrained shrinkage can be realistically predicted by means of a comprehensive approach including a diffusion analysis and fracture mechanics considerations. The conditions for stable crack propagation regarding dimensions of the concrete member, degree of restraint to the imposed deformation and material properties are discussed. Guidelines on the prevention of shrinkage cracking of concrete structures are given. (author). 10 refs., 5 figs
Fundamental papers in wavelet theory
Walnut, David F
2006-01-01
This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from differ
A CMOS Morlet Wavelet Generator
Directory of Open Access Journals (Sweden)
A. I. Bautista-Castillo
2017-04-01
Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.
Shrinkage Module of Soil Samples with Different Cement Content
Directory of Open Access Journals (Sweden)
Mohannad Sabry
2017-12-01
Full Text Available The differences in soil's body mass during shrinkage over time have changes in soil physical properties which provide an important reason to check the design of underground foundations in expansive soils. In this paper, a state-of-art of the soil heat stress-strain relationship prediction methods is checked using soil engineering laboratory experiments and Matlab R2013b numerical modelling. The shrinkage of soils with different cement content of (0%, 2%, 4%, 6% and 8% with the same water content of 20 percent in room temperature for 24 hours, are critically reviewed in terms of their predictive shrinkage along with their strengths and flexural behaviour. The review highlights the prediction methods present to determine the effect of heat stress on the shrinkage of soil samples with different cement content after classifying the soils into clay, silt and sand depending on their particle size using sieve and hydrometer experiments. The results of the soil engineering laboratory experiments showed that as the cement content increases, the shrinkage of soil decreases as a result of increased elasticity in soil. The numerical analysis using finite element method in Matlab R2013b shows that as the cement content increases the displacement in the soil sample decreases and that the soil sample with 8% cement content has more resistance to shrinkage and less displacement than the soil with 6% cement, which has less resistance to heat stresses and more displacement.
Variation of Shrinkage Strain within the Depth of Concrete Beams
Directory of Open Access Journals (Sweden)
Jong-Hyun Jeong
2015-11-01
Full Text Available The variation of shrinkage strain within beam depth was examined through four series of time-dependent laboratory experiments on unreinforced concrete beam specimens. Two types of beam specimens, horizontally cast and vertically cast, were tested; shrinkage variation was observed in the horizontally cast specimens. This indicated that the shrinkage variation within the beam depth was due to water bleeding and tamping during the placement of the fresh concrete. Shrinkage strains were measured within the beam depth by two types of strain gages, surface-attached and embedded. The shrinkage strain distribution within the beam depth showed a consistent tendency for the two types of gages. The test beams were cut into four sections after completion of the test, and the cutting planes were divided into four equal sub-areas to measure the aggregate concentration for each sub-area of the cutting plane. The aggregate concentration increased towards the bottom of the beam. The shrinkage strain distribution was estimated by Hobbs’ equation, which accounts for the change of aggregate volume concentration.
Wavelet series approximation using wavelet function with compactly ...
African Journals Online (AJOL)
The Wavelets generated by Scaling Function with Compactly Support are useful in various applications especially for reconstruction of functions. Generally, the computational process will be faster if Scaling Function support descends, so computational errors are summarized from one level to another level. In this article, the ...
Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography
Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.
1995-04-01
This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.
Hexagonal wavelet processing of digital mammography
Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.
1993-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.
Wavelets a tutorial in theory and applications
1992-01-01
Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the
Bargatze, L. F.
2015-12-01
Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted
Wavelet entropy characterization of elevated intracranial pressure.
Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao
2008-01-01
Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.
Directory of Open Access Journals (Sweden)
LU Yongle
2014-07-01
Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.
Wavelet library for constrained devices
Ehlers, Johan Hendrik; Jassim, Sabah A.
2007-04-01
The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.
Online Wavelet Complementary velocity Estimator.
Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin
2018-02-01
In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yu-xin Zhao
2014-01-01
Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.
Volume change of limestone and its effects on drying shrinkage of concrete
YAGI, Shogo; AQUINO, Carlos; INOUE, Masumi; OKAMOTO, Takahisa
2010-01-01
Recently, the cracks of concrete by drying shrinkage become one of the problems in the construction industry in Japan. The drying shrinkage decreases when the concrete is produced with limestone aggregate. However, it is not clear why the drying shrinkage is decreased. The purpose of this study is to clarify the relation between the drying shrinkage of concrete and the limestone aggregate. In this study, the experiments about the strength, elasticity and drying shrinkage of concrete and the p...
Time-Dependent Behavior of Shrinkage Strain for Early Age Concrete Affected by Temperature Variation
Qin, Yu; Yi, Zhijian; Wang, Weina; Wang, Di
2017-01-01
Shrinkage has been proven to be an important property of early age concrete. The shrinkage strain leads to inherent engineering problems, such as cracking and loss of prestress. Atmospheric temperature is an important factor in shrinkage strain. However, current research does not provide much attention to the effect of atmospheric temperature on shrinkage of early age concrete. In this paper, a laboratory study was undertaken to present the time-dependent shrinkage of early age concrete under...
Geosynthetic clay liners shrinkage under simulated daily thermal cycles.
Sarabadani, Hamid; Rayhani, Mohammad T
2014-06-01
Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.
Wavelet/scalar quantization compression standard for fingerprint images
Energy Technology Data Exchange (ETDEWEB)
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Inflation and wavelets for the icosahedral Danzer tiling
International Nuclear Information System (INIS)
Kramer, Peter; Andrle, Miroslav
2004-01-01
The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry
Efficient regularization with wavelet sparsity constraints in photoacoustic tomography
Frikel, Jürgen; Haltmeier, Markus
2018-02-01
In this paper, we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding, which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of PAT-vaguelette soft-thresholding with a total variation (TV) prior. We also provide an efficient implementation of the PAT-vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.
Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks
Directory of Open Access Journals (Sweden)
NAWAB ALI LAKHO
2017-04-01
Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.
Shrinkage calibration method for μPIM manufactured parts
DEFF Research Database (Denmark)
Quagliotti, Danilo; Tosello, Guido; Salaga, J.
2016-01-01
Five green and five sintered parts of a micro mechanical component, produced by micro powder injection moulding, were measured using an optical coordinate measuring machine. The aim was to establish a method for quality assurance of the final produced parts. Initially, the so called “green” parts...... were compared with the sintered parts (final products) calculating the percentage of shrinkage after sintering. Successively, the expanded uncertainty of the measured dimensions were evaluated for each single part as well as for the overall parts. Finally, the estimated uncertainty for the shrinkage...... was evaluated propagating the expanded uncertainty previously stated and considering green and sintered parts correlated. Results showed that the proposed method can be effective instating tolerances if it is assumed that the variability on the dimensions induced by the shrinkage equals the propagated expanded...
Visualization of a Turbulent Jet Using Wavelets
Institute of Scientific and Technical Information of China (English)
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Modeling Network Traffic in Wavelet Domain
Directory of Open Access Journals (Sweden)
Sheng Ma
2004-12-01
Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.
Cross wavelet analysis: significance testing and pitfalls
Directory of Open Access Journals (Sweden)
D. Maraun
2004-01-01
Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.
Multidimensional signaling via wavelet packets
Lindsey, Alan R.
1995-04-01
This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.
Wavelet analysis of epileptic spikes
Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-05-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Wavelet analysis of epileptic spikes
Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.
2003-01-01
Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.
Self-compacting fine-grained concretes with compensated shrinkage
Directory of Open Access Journals (Sweden)
Alimov Lev
2017-01-01
Full Text Available This paper substantiates the efficiency of application of fine-grained concrete for erection of cast-in-place concrete and reinforced concrete structures of different purpose. On the basis of analysis of experimental research results it was established that the introduction of microfillers with expansion effect to composite binder allows not only improving the rheological properties of fine-grained concrete, but also decreasing of value of shrinkage strain and improving of concrete crack resistance and durability. The analysis of the results of industrial use of fine-grained concretes with compensated shrinkage is given.
Hydration of Portoguese cements, measurement and modelling of chemical shrinkage
DEFF Research Database (Denmark)
Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.
2008-01-01
form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...
Void shrinkage in stainless steel during high energy electron irradiation
International Nuclear Information System (INIS)
Singh, B.N.; Foreman, A.J.E.
1976-03-01
During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)
Wavelet Analysis for Molecular Dynamics
2015-06-01
Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Wavelet Radiosity on Arbitrary Planar Surfaces
Holzschuch , Nicolas; Cuny , François; Alonso , Laurent
2000-01-01
Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...
Wavelet analysis and its applications an introduction
Yajnik, Archit
2013-01-01
"Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.
Wavelets for Sparse Representation of Music
DEFF Research Database (Denmark)
Endelt, Line Ørtoft; Harbo, Anders La-Cour
2004-01-01
We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...
Wavelet-based prediction of oil prices
International Nuclear Information System (INIS)
Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik
2005-01-01
This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced
Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising
International Nuclear Information System (INIS)
Fan, W J; Lu, Y
2006-01-01
Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting
Complex Wavelet transform for MRI
International Nuclear Information System (INIS)
Junor, P.; Janney, P.
2004-01-01
Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual
Measuring method for heat-shrinkage of fuel pellet
International Nuclear Information System (INIS)
Komono, Akira; Ishizaki, Jin; Inaki, Kiyohiro.
1997-01-01
The present invention concerns a method of determining an amount of heat-shrinkage of UR 2 pellets containing gadolinium oxide (Gd 2 O 2 ) based on the difference of the density thereof before and after heating. In a heat shrinkage test of UO 2 pellets containing from 1.0 to 15.0% by weight of gadolinium oxide, the amount of heat-shrinkage is measured under the condition of heat-retaining temperature: from 1700 to 1750degC, temperature elevation time and lowering time: from 90 to 120mins, heat-retaining time: 24hours, inert gas atmosphere, gas pressure: 0.35kg/cm 2 and gas dew point: from -55 to 40degC without changing O/M. This invention has a feature in the use of the inert gas and the elevation of the dew point of the gas. Then, oxygen dissociation phenomenon from crystal lattices of the fuel pellets is suppressed, and normal densification value is shown. Then, fuel pellets of good quality with less fluctuation of the heat-shrinkage can be obtained. (N.H.)
Effect of processing conditions on shrinkage in injection moulding
Jansen, K.M.B.; van Dijk, D.J.; Husselman, M.H.
1998-01-01
A systematic study on the effect of processing conditions on mold shrinkage was undertaken for seven common thermoplastic polymers. It turned out that the holding pressure was always the key parameter. The effect of the melt temperature is slightly less important. Injection velocity and mold
Accurate characterisation of post moulding shrinkage of polymer parts
DEFF Research Database (Denmark)
Neves, L. C.; De Chiffre, L.; González-Madruga, D.
2015-01-01
The work deals with experimental determination of the shrinkage of polymer parts after injection moulding. A fixture for length measurements on 8 parts at the same time was designed and manufactured in Invar, mounted with 8 electronic gauges, and provided with 3 temperature sensors. The fixture w...
Drying and Radial Shrinkage Characteristics and Changes in Color ...
African Journals Online (AJOL)
nahimana
2011-08-12
Aug 12, 2011 ... A pre-test experiment was carried out following the. Thompson ... energy saving potential and the ability to control drying temperature and air humidity. ..... structural collapse by shrinkage, case hardening, etc. From the slopes of .... Thus, the Nahimana et al. model is proposed as a new model predicting with ...
Shrinkage of Newly Formed Particles in an Urban Environment
Czech Academy of Sciences Publication Activity Database
Škrabalová, Lenka; Zíková, Naděžda; Ždímal, Vladimír
2015-01-01
Roč. 15, č. 4 (2015), s. 1313-1324 ISSN 1680-8584 R&D Projects: GA ČR GAP209/11/1342 Institutional support: RVO:67985858 Keywords : aerosol dynamics * ultrafine particles * particle shrinkage Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.393, year: 2015
Drying and radial shrinkage characteristics and changes in color ...
African Journals Online (AJOL)
Drying and radial shrinkage characteristics and changes in color and shape of carrots tissues during air drying were studied. Slices dimensions were obtained by computer vision and the color was quantified by chroma, hue, whitening index and total carotenoids contents. The drying time became shorter of 1 h when ...
Characterisation of tissue shrinkage during microwave thermal ablation.
Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum
2014-11-01
The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.
The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls
Directory of Open Access Journals (Sweden)
Samir A. Al-Mashhadi
2017-07-01
Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Application of wavelets in speech processing
Farouk, Mohamed Hesham
2014-01-01
This book provides a survey on wide-spread of employing wavelets analysis in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.
Singularity detection by wavelet approach: application to electrocardiogram signal
Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier
2010-01-01
In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.
Construction of wavelets with composite dilations
International Nuclear Information System (INIS)
Wu Guochang; Li Zhiqiang; Cheng Zhengxing
2009-01-01
In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.
Parsimonious Wavelet Kernel Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Wang Qin
2015-11-01
Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.
Some applications of wavelets to physics
International Nuclear Information System (INIS)
Thompson, C.R.
1992-01-01
A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied
Anshuang, Su; Ling, Qin; Shoujie, Zhang; Jiayang, Zhang; Zhaoyu, Li
2017-01-01
This paper investigated the influences of shrinkage reducing agent and expansive admixture on autogenous and drying shrinkage of ultrahigh performance concrete (UHPC) containing antifoaming admixture. The shrinkage reducing agent was used at dosage of 0.5%, 1%, and 2% and the expansive admixture was used at dosage of 2% to 4% by mass of cementitious material. The results show that the air content of UHPC increases with the higher addition of shrinkage reducing agent and expansive admixtures. ...
Complex Wavelet Based Modulation Analysis
DEFF Research Database (Denmark)
Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt
2008-01-01
Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...
Wavelets and the Lifting Scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2012-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Wavelets and the lifting scheme
DEFF Research Database (Denmark)
la Cour-Harbo, Anders; Jensen, Arne
2009-01-01
The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....
Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies
Chen, Yi-Hau
2009-03-01
Case-control association studies often aim to investigate the role of genes and gene-environment interactions in terms of the underlying haplotypes (i.e., the combinations of alleles at multiple genetic loci along chromosomal regions). The goal of this article is to develop robust but efficient approaches to the estimation of disease odds-ratio parameters associated with haplotypes and haplotype-environment interactions. We consider "shrinkage" estimation techniques that can adaptively relax the model assumptions of Hardy-Weinberg-Equilibrium and gene-environment independence required by recently proposed efficient "retrospective" methods. Our proposal involves first development of a novel retrospective approach to the analysis of case-control data, one that is robust to the nature of the gene-environment distribution in the underlying population. Next, it involves shrinkage of the robust retrospective estimator toward a more precise, but model-dependent, retrospective estimator using novel empirical Bayes and penalized regression techniques. Methods for variance estimation are proposed based on asymptotic theories. Simulations and two data examples illustrate both the robustness and efficiency of the proposed methods.
Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies
Chen, Yi-Hau; Chatterjee, Nilanjan; Carroll, Raymond J.
2009-01-01
Case-control association studies often aim to investigate the role of genes and gene-environment interactions in terms of the underlying haplotypes (i.e., the combinations of alleles at multiple genetic loci along chromosomal regions). The goal of this article is to develop robust but efficient approaches to the estimation of disease odds-ratio parameters associated with haplotypes and haplotype-environment interactions. We consider "shrinkage" estimation techniques that can adaptively relax the model assumptions of Hardy-Weinberg-Equilibrium and gene-environment independence required by recently proposed efficient "retrospective" methods. Our proposal involves first development of a novel retrospective approach to the analysis of case-control data, one that is robust to the nature of the gene-environment distribution in the underlying population. Next, it involves shrinkage of the robust retrospective estimator toward a more precise, but model-dependent, retrospective estimator using novel empirical Bayes and penalized regression techniques. Methods for variance estimation are proposed based on asymptotic theories. Simulations and two data examples illustrate both the robustness and efficiency of the proposed methods.
Lin, Yuan-Chien; Yu, Hwa-Lung
2013-04-01
The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between
Chen, Wei; Brouwers, H.J.H.
2012-01-01
The use of shrinkage-compensating admixture in concrete has been proven to be an effective way to mitigate the shrinkage of concrete. The hydration of a shrinkage-compensating admixture in cement paste and concrete is investigated in this paper with numerical simulation and experimental study. An
[Investigation of fast filter of ECG signals with lifting wavelet and smooth filter].
Li, Xuefei; Mao, Yuxing; He, Wei; Yang, Fan; Zhou, Liang
2008-02-01
The lifting wavelet is used to decompose the original ECG signals and separate them into the approach signals with low frequency and the detail signals with high frequency, based on frequency characteristic. Parts of the detail signals are ignored according to the frequency characteristic. To avoid the distortion of QRS Complexes, the approach signals are filtered by an adaptive smooth filter with a proper threshold value. Through the inverse transform of the lifting wavelet, the reserved approach signals are reconstructed, and the three primary kinds of noise are limited effectively. In addition, the method is fast and there is no time delay between input and output.
Mammography image compression using Wavelet
International Nuclear Information System (INIS)
Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa
2004-01-01
Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)
Analysis of Shrinkage on Thick Plate Part using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Najihah S.N.
2016-01-01
Full Text Available Injection moulding is the most widely used processes in manufacturing plastic products. Since the quality of injection improves plastic parts are mostly influenced by process conditions, the method to determine the optimum process conditions becomes the key to improving the part quality. This paper presents a systematic methodology to analyse the shrinkage of the thick plate part during the injection moulding process. Genetic Algorithm (GA method was proposed to optimise the process parameters that would result in optimal solutions of optimisation goals. Using the GA, the shrinkage of the thick plate part was improved by 39.1% in parallel direction and 17.21% in the normal direction of melt flow.
The Process of Shrinkage as a Challenge to Urban Governance
Directory of Open Access Journals (Sweden)
Stryjakiewicz Tadeusz
2016-06-01
Full Text Available For many decades most researchers, planners and local authorities have been focusing almost exclusively on urban growth and its socio-economic and spatial consequences. However, in the current debate concerning the future of cities and regions in Europe the process of their shrinkage starts to attract more attention. In the conditions of a declining population, urban governance is an important challenge for local authorities, being usually much more difficult than during the periods of population growth.
Clay Mineralogy of Brazilian Oxisols with Shrinkage Properties
Directory of Open Access Journals (Sweden)
Samara Alves Testoni
2017-08-01
Full Text Available ABSTRACT Shrinkage capacity (caráter retrátil in Portuguese is a new diagnostic characteristic recently introduced in the Brazilian System of Soil Classification (SiBCS to indicate shrink and swell properties observed in subtropical soils from highland plateaus in southern Brazil, specifically in Oxisols with brown colors. In soils located in road cuts exposed to drying for some weeks, strong shrinkage of soil volume is observed in these soils, resulting in the formation of pronounced vertical cracks and large and very large prismatic structures, which crumble in blocks when handled. We hypothesize that such properties are related to their clay mineralogy, although there are no conclusive studies about this, the motive for the present study. Samples of the A and B horizons from six Oxisols with expansive capacity from the states of Santa Catarina and Rio Grande do Sul were analyzed. One Rhodic Hapludox, from the state of Paraná, without expansive capacity, was used for comparison. All the soils are very clayey, originated from basalt, and have similar iron oxide content. For identification of clay mineralogy, X-ray diffraction techniques were employed, together with the use of NEWMOD® software to investigate and describe the interstratified minerals. The results showed that most expansive soils have a similar mineralogical composition, with kaolinite, interstratified kaolinite-smectite (K-S, and hydroxy-Al interlayered smectites (HIS, unlike the non-expansive Rhodic Hapludox, which exhibited kaolinite with significant amounts of gibbsite and low amount of interstratified K-S. According to the mineralogical assemblage identified in the expansive soils, we can affirm that the mechanism of smectite expansion and contraction is related to the shrinkage capacity of the soil, considering that the level of hydroxy-Al intercalation is low. In addition, these mechanisms also are related to the presence of quasicrystals and domains that control the
PREDIKSI SHRINKAGE UNTUK MENGHINDARI CACAT PRODUK PADA PLASTIC INJECTION
Directory of Open Access Journals (Sweden)
Agus Dwi Anggono
2015-05-01
Full Text Available Plastic injection merupakan proses manufactur untuk membuat produk dengan bahan dasar plastic atau dalam kesempatan ini polypropylene. Pada proses tersebut seringkali terjadi cacat produk seperti pengerutan, retak, dimensi tidak sesuai dan kerusakan saat produk keluar dari mould, sehingga banyak material yang terbuang percuma. Meskipun cacat produk tersebut dipengaruhi banyak factor, tetapi yang paling utama adalah masalah shrinkage, atau penyusutan material setelah terjadi pendinginan. Sangat penting untuk melakukan prediksi lebih awal terjadinya penyusutan setelah pendinginan untuk menghindari cacat produk. Dalam penelitian ini akan dilakukan prediksi shrinkage yang akan digunakan untuk material polypropylene dengan cara perhitungan standar. Pembuatan modeling dalam bentuk 3D (tiga dimensi injection molding baik cavity maupun corenya dengan menggunakan CATIA, kemudian dilakukan analisis dengan software MoldFlow untuk pembuatan mesh dan memberikan batasan panas pada komponen sehingga dapat diketahui mode penyusutannya. Analisis ini akan memberikan gambaran tentang distribusi panas pada mould dan memberikan tentang gambaran aliran fluida. Pada analisis tersebut dapat dilihat gejala terjadinya cacat produk, jika hal itu terjadi maka perlu dilakukan perubahan shrinkage, sampai diperoleh hasil analisis yang baik.
The Shrinkage Model And Expert System Of Plastic Lens Formation
Chang, Rong-Seng
1988-06-01
Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.
Experimental Analysis on Shrinkage and Swelling in Ordinary Concrete
Directory of Open Access Journals (Sweden)
Barbara Kucharczyková
2017-01-01
Full Text Available The paper deals with the experimental determination of shrinkage development during concrete ageing. Three concrete mixtures were made. They differed in the amount of cement in the fresh mixture, 300, 350, and 400 kg/m3. In order to determine the influence of plasticiser on the progress of volume changes, another three concrete mixtures were prepared with plasticiser in the amount of 0.25% by cement mass. Measurements were performed with the goal of observing the influence of cement and plasticiser content on the overall development of volume changes in the concrete. Changes in length and mass losses of the concrete during ageing were measured simultaneously. The continuous measurement of concrete mass losses caused by drying of the specimen’s surface proved useful during the interpretation of results obtained from the concrete shrinkage measurement. During the first 24 hours of ageing, all the concrete mixtures exhibited swelling. Its magnitude and progress were influenced by cement, water, and plasticiser content. However, a loss of mass caused by water evaporation from the surface of the specimens was also recorded in this stage. The measured progress of shrinkage corresponded well to the progress of mass loss.
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
Numerical solution of the Black-Scholes equation using cubic spline wavelets
Černá, Dana
2016-12-01
The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.
Applications of a fast, continuous wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1997-02-01
A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.
A Regular k-Shrinkage Thresholding Operator for the Removal of Mixed Gaussian-Impulse Noise
Directory of Open Access Journals (Sweden)
Han Pan
2017-01-01
Full Text Available The removal of mixed Gaussian-impulse noise plays an important role in many areas, such as remote sensing. However, traditional methods may be unaware of promoting the degree of the sparsity adaptively after decomposing into low rank component and sparse component. In this paper, a new problem formulation with regular spectral k-support norm and regular k-support l1 norm is proposed. A unified framework is developed to capture the intrinsic sparsity structure of all two components. To address the resulting problem, an efficient minimization scheme within the framework of accelerated proximal gradient is proposed. This scheme is achieved by alternating regular k-shrinkage thresholding operator. Experimental comparison with the other state-of-the-art methods demonstrates the efficacy of the proposed method.
Yu, Liang; Antoni, Jerome; Leclere, Quentin; Jiang, Weikang
2017-11-01
Acoustical source reconstruction is a typical inverse problem, whose minimum frequency of reconstruction hinges on the size of the array and maximum frequency depends on the spacing distance between the microphones. For the sake of enlarging the frequency of reconstruction and reducing the cost of an acquisition system, Cyclic Projection (CP), a method of sequential measurements without reference, was recently investigated (JSV,2016,372:31-49). In this paper, the Propagation based Fast Iterative Shrinkage Thresholding Algorithm (Propagation-FISTA) is introduced, which improves CP in two aspects: (1) the number of acoustic sources is no longer needed and the only making assumption is that of a "weakly sparse" eigenvalue spectrum; (2) the construction of the spatial basis is much easier and adaptive to practical scenarios of acoustical measurements benefiting from the introduction of propagation based spatial basis. The proposed Propagation-FISTA is first investigated with different simulations and experimental setups and is next illustrated with an industrial case.
Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method
Watanabe, Takeshi; Hashimoto, Chikanori
2015-03-01
Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.
Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete
Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun
2017-09-01
In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.
Significance tests for the wavelet cross spectrum and wavelet linear coherence
Directory of Open Access Journals (Sweden)
Z. Ge
2008-12-01
Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As
Target Identification Using Harmonic Wavelet Based ISAR Imaging
Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.
2006-12-01
A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.
Digital transceiver implementation for wavelet packet modulation
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Using wavelet features for analyzing gamma lines
International Nuclear Information System (INIS)
Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.
2004-01-01
Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method
Framelets and wavelets algorithms, analysis, and applications
Han, Bin
2017-01-01
Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...
Image Registration Using Redundant Wavelet Transforms
National Research Council Canada - National Science Library
Brown, Richard
2001-01-01
.... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...
Thin film description by wavelet coefficients statistics
Czech Academy of Sciences Publication Activity Database
Boldyš, Jiří; Hrach, R.
2005-01-01
Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf
Wavelet and Blend maps for texture synthesis
Du Jin-Lian; Wang Song; Meng Xianhai
2011-01-01
blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...
Directory of Open Access Journals (Sweden)
Heru Wahyu Herwanto
2012-09-01
Full Text Available Abstract: The Use of Wavelet Image Enhancement and Image Energy Texture for Detecting Suspected Mass in Mammogram. Breast cancer is one of the most dangerous cancer for female. The risk of the cancer can be lessened by early detection using mammography. This research sets out to detect and sign the edge of suspected mass in mammogram. The method used is an image enhancement and segmentation. The process of image enhancement uses the method of adaptive wavelet enhancement, meanwhile the segmentation uses the calculation of image energy texture with laws filter, smoothing, tressholding, morphology, and boudary extraction. The final result of this method will be compared with those of same method with corrected images abd adaptive histogram equalization. The result of the research shows that there is an improvement of enthropy, deviation standard, and contrast values. The overall execution program takes 1.82869 seconds longer than the adaptive histogram equalization.
Polymerization shrinkage stress of composite resins and resin cements – What do we need to know?
Directory of Open Access Journals (Sweden)
Carlos José SOARES
2017-08-01
Full Text Available Abstract Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.
Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?
Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis
2017-08-28
Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.
Exploiting tumor shrinkage through temporal optimization of radiotherapy
International Nuclear Information System (INIS)
Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Wolfgang, John; Bortfeld, Thomas; Ramakrishnan, Jagdish; Salari, Ehsan
2014-01-01
In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes. (paper)
Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding
Desmal, Abdulla; Bagci, Hakan
2015-01-01
A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.
Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding
Desmal, Abdulla
2015-04-13
A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.
Application of Improved Wavelet Thresholding Function in Image Denoising Processing
Directory of Open Access Journals (Sweden)
Hong Qi Zhang
2014-07-01
Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.
Investigation of Shrinkage Defect in Castings by Quantitative Ishikawa Diagram
Directory of Open Access Journals (Sweden)
Chokkalingam B.
2017-03-01
Full Text Available Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7 and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.
Schmidt, Malene; Dige, Irene; Kirkevang, Lise-Lotte; Vaeth, Michael; Hørsted-Bindslev, Preben
2015-03-01
The aim of the present study was to investigate the clinical performance of a low-shrinkage silorane-based composite material (Filtek™ Silorane, 3 M-Espe) by comparing it with a methacrylate-based composite material (Ceram•X™, Dentsply DeTrey). A number of 72 patients (158 restorations) participated in the study. After 5 years, a total of 107 restorations (52 Filtek™ Silorane, 55 Ceram•X™) in 48 patients were evaluated. Only class II restorations were included. All the restorations were placed by the same dentist, and the restorations were scored by one experienced dentist/evaluator. Materials were applied following the manufacturer's instructions. The primary outcome was marginal adaptation. Secondary outcomes were: marginal discoloration, approximal contact, anatomic form, fracture, secondary caries, and hypersensitivity. After 5 years, no statistically significant differences between the two materials were found in marginal adaptation either occlusally (p = 0.96) or approximally (p = 0.62). No statistically significant differences were found between the two materials in terms of approximal contact, anatomic form, fractures, or discoloration. Secondary caries was found in two teeth (Filtek™ Silorane). One tooth showed hypersensitivity (Ceram•X™). Restorations of both materials were clinically acceptable after 5 years. This study did not find any advantage of the silorane-based composite over the methacrylate-based composite, which indicates that the low-shrinkage of Filtek™ Silorane may not be a determinant factor for clinical success in class II cavities. This paper is the first to evaluate the 5-year clinical performance of a low-shrinkage composite material.
Directory of Open Access Journals (Sweden)
Stefania Salvatore
2016-07-01
Full Text Available Abstract Background Wastewater-based epidemiology (WBE is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA and to wavelet principal component analysis (WPCA which is more flexible temporally. Methods We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. Results The first three principal components (PCs, functional principal components (FPCs and wavelet principal components (WPCs explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. Conclusion FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
Detecting microcalcifications in digital mammogram using wavelets
International Nuclear Information System (INIS)
Yang Jucheng; Park Dongsun
2004-01-01
Breast cancer is still one of main mortality causes in women, but the early detection can increase the chance of cure. Microcalcifications are small size structures, which can indicate the presence of cancer since they are often associated to the most different types of breast tumors. However, they very small size and the X-ray systems limitations lead to constraints to the adequate visualization of such structures, which means that the microcalcifications can be missed many times in mammogram visual examination. In addition, the human eyes are not able to distinguish minimal tonality differences, which can be another constraint when mammogram image presents poor contrast between microcalcifications and the tissues around them. Computer-aided diagnosis (CAD) schemes are being developed in order to increase the probabilities of early detection. To enhance and detect the microcalcifications in the mammograms we use the wavelets transform. From a signal processing point of view, microcalcifications are high frequency components in mammograms. Due to the multi-resolution decomposition capacity of the wavelet transform, we can decompose the image into different resolution levels which sensitive to different frequency bands. By choosing an appropriate wavelet and a right resolution level, we can effectively enhance and detect the microcalcifications in digital mammogram. In this work, we describe a new four-step method for the detection of microcalcifications: segmentation, wavelets transform processing, labeling and post-processing. The segmentation step is to split the breast area into 256x256 segments. For each segmented sub-image, wavelet transform is operated on it. For comparing study wavelet transform method, 4 typical family wavelets and 4 decomposing levels is discussed. We choose four family wavelets for detecting microcalcifications, that is, Daubechies, Biothgonai, Coieflets and Symlets wavelets, for simply, bd4, bior3.7, coif3, sym2 are chosen as the
Design changes of device to investigation of alloys linear contraction and shrinkage stresses
Directory of Open Access Journals (Sweden)
J. Mutwil
2009-07-01
Full Text Available Some design changes in device elaborated by author to examination of linear contraction and shrinkage stresses progress of metals and alloys during– and after solidification have been described. The introduced changes have been focused on design of closing of shrinkage test rod mould. The introduced changes have been allowed to simplify a mounting procedure of thermocouples measuring a temperature of the shrinkage rod casting (in 6 points. Exemplary investigation results of linear contraction and shrinkage stresses development in Al-Si13.5% alloy have been presented.
DEFF Research Database (Denmark)
Luo, Yangjun; Wang, Michael Yu; Zhou, Mingdong
2015-01-01
To take into account the shrinkage effect in the early stage of Reinforced Concrete (RC) design, an effective continuum topology optimization method is presented in this paper. Based on the power-law interpolation, shrinkage of concrete is numerically simulated by introducing an additional design......-dependent force. Under multi-axial stress conditions, the concrete failure surface is well fitted by two Drucker-Prager yield functions. The optimization problem aims at minimizing the cost function under yield strength constraints on concrete elements and a structural shrinkage volume constraint. In conjunction...... to ensure the structural safety under the combined action of external loads and shrinkage....
Multiresolution wavelet-ANN model for significant wave height forecasting.
Digital Repository Service at National Institute of Oceanography (India)
Deka, P.C.; Mandal, S.; Prahlada, R.
Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...
A New Formula for the Inverse Wavelet Transform
Sun, Wenchang
2010-01-01
Finding a computationally efficient algorithm for the inverse continuous wavelet transform is a fundamental topic in applications. In this paper, we show the convergence of the inverse wavelet transform.
Wavelet transforms as solutions of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Zweig, G.
1997-10-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.
Wavelet Transforms: Application to Data Analysis - I -10 ...
Indian Academy of Sciences (India)
from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.
Wavelet processing techniques for digital mammography
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Nuclear data compression and reconstruction via discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)
Construction of a class of Daubechies type wavelet bases
International Nuclear Information System (INIS)
Li Dengfeng; Wu Guochang
2009-01-01
Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.
A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data
Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.
2002-01-01
Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the
A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis
Directory of Open Access Journals (Sweden)
Fei Chen
2003-01-01
Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.
Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Xiao Wang
2018-05-01
Full Text Available In practical electric vehicle applications, the noise of original discharging/charging voltage (DCV signals are inevitable, which comes from electromagnetic interference and the measurement noise of the sensors. To solve such problems, the Discrete Wavelet Transform (DWT based state of charge (SOC estimation method is proposed in this paper. Through a multi-resolution analysis, the original DCV signals with noise are decomposed into different frequency sub-bands. The desired de-noised DCV signals are then reconstructed by utilizing the inverse discrete wavelet transform, based on the sure rule. With the de-noised DCV signal, the SOC and the parameters are obtained using the adaptive extended Kalman Filter algorithm, and the adaptive forgetting factor recursive least square method. Simulation and experimental results show that the SOC estimation error is less than 1%, which indicates an effective improvement in SOC estimation accuracy.
A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions
Directory of Open Access Journals (Sweden)
Seyed Hossein Mahdavi
2015-01-01
Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.
On extensions of wavelet systems to dual pairs of frames
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2015-01-01
It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...
Image encryption using the fractional wavelet transform
International Nuclear Information System (INIS)
Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L
2011-01-01
In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.
Partially coherent imaging and spatial coherence wavelets
International Nuclear Information System (INIS)
Castaneda, Roman
2003-03-01
A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)
Motion compensation via redundant-wavelet multihypothesis.
Fowler, James E; Cui, Suxia; Wang, Yonghui
2006-10-01
Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.
The effect of fibers on the loss of water by evaporation and shrinkage of concrete
Directory of Open Access Journals (Sweden)
N. M. P. Pillar
Full Text Available Shrinkage is one of the least desirable attributes in concrete. Large areas of exposed concrete surfaces , such as in shotcrete tunnel linings, where it is practically impossible to make a moist cure, are highly susceptible to plastic shrinkage at early ages. The autogenous and drying shrinkage can lead to states of greater than threshold strength, causing fracture, mechanical damage and lack of durability of concrete structures. The addition of fibers can greatly reduce plastic shrinkage, but has limited effect in mitigating autogenous and drying shrinkage. To evaluate the performance of polypropylene and steel fibers to understand their effect on shrinkage of concrete, a study was carried out to relate the loss of water from the paste and the shrinkage during the first 28 days of age, and compare it with a control mix without fiber. The loss of water was obtained by the weight loss of the specimens at different ages, since the only component that could contribute for the loss of weight was the water lost by the paste of the concrete. And the paste itself is the only source of shrinkage. Uniaxial compressive tests from very early ages enabled the determination of time when plastic shrinkage ended. It was observed that the control concrete mix lost three times more water and developed plastic and drying shrinkage 60 % higher than the fiber reinforced concrete mixes. It was possible to demonstrate that the reduced loss of water caused by the incorporation of fibers is related to the mitigation of plastic shrinkage. It was observed that the fibers are effective to restrain the movement of water through the cement paste in the plastic state, however such effect is limited after concrete starts the hardening state.
Wavelet analysis deformation monitoring data of high-speed railway bridge
Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa
2015-12-01
Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring
Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent
Li, Changcheng; Jia, Fujia
2017-10-01
Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.
Optimal wavelet transform for the detection of microaneurysms in retina photographs.
Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian
2008-09-01
In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.
Application of wavelet-based multi-model Kalman filters to real-time flood forecasting
Chou, Chien-Ming; Wang, Ru-Yih
2004-04-01
This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.
Orthonormal Wavelet Bases for Quantum Molecular Dynamics
International Nuclear Information System (INIS)
Tymczak, C.; Wang, X.
1997-01-01
We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society
Wavelet methods in mathematical analysis and engineering
Damlamian, Alain
2010-01-01
This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.
Multiresolution signal decomposition transforms, subbands, and wavelets
Akansu, Ali N; Haddad, Paul R
2001-01-01
The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course
Creep and shrinkage effects on integral abutment bridges
Munuswamy, Sivakumar
Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the
Feasibility of wavelet expansion methods to treat the energy variable
International Nuclear Information System (INIS)
Van Rooijen, W. F. G.
2012-01-01
This paper discusses the use of the Discrete Wavelet Transform (DWT) to implement a functional expansion of the energy variable in neutron transport. The motivation of the work is to investigate the possibility of adapting the expansion level of the neutron flux in a material region to the complexity of the cross section in that region. If such an adaptive treatment is possible, 'simple' material regions (e.g., moderator regions) require little effort, while a detailed treatment is used for 'complex' regions (e.g., fuel regions). Our investigations show that in fact adaptivity cannot be achieved. The most fundamental reason is that in a multi-region system, the energy dependence of the cross section in a material region does not imply that the neutron flux in that region has a similar energy dependence. If it is chosen to sacrifice adaptivity, then the DWT method can be very accurate, but the complexity of such a method is higher than that of an equivalent hyper-fine group calculation. The conclusion is thus that, unfortunately, the DWT approach is not very practical. (authors)
A break-even analysis of RFID technology for inventory sensitive to shrinkage
Kok, de A.G.; Donselaar, van K.H.; Woensel, van T.
2008-01-01
By embedding RFID tags onto their products, both manufacturers and retailers try to control for shrinkage (e.g. due to theft). Current inventory control systems do not take into account the disappearing inventory due to this shrinkage. As a response, corrective actions are made by performing costly
Van Mier, J.G.M.; Jankovic, D.
2005-01-01
Numerical modeling of moisture flow, drying shrinkage and crack phenomena in cement microstructure, by coupling a Lattice Gas Automaton and a Lattice Fracture Model, highlighted the importance of a shrinkage coefficient (?sh) as the most significant parameter for achieving realistic numerical
Development and Performance Assessment of the High-Performance Shrinkage Reducing Agent for Concrete
Directory of Open Access Journals (Sweden)
Hyung Sub Han
2016-01-01
Full Text Available To develop a high-performance shrinkage reducing agent, this study investigated several shrinkage reducing materials and supplements for those materials. Fluidity and air content were satisfactory for the various shrinkage reducing materials. The decrease in viscosity was the lowest for glycol-based materials. The decrease in drying shrinkage was most prominent for mixtures containing glycol-based materials. In particular, mixtures containing G2 achieved a 40% decrease in the amount of drying shrinkage. Most shrinkage reducing materials had weaker level of compressive strength than that of the plain mixture. When 3% triethanolamine was used for early strength improvement, the strength was enhanced by 158% compared to that of the plain mixture on day 1; enhancement values were 135% on day 7 and 113% on day 28. To assess the performance of the developed high-performance shrinkage reducing agent and to determine the optimal amount, 2.0% shrinkage reducing agent was set as 40% of the value of the plain mixture. While the effect was more prominent at higher amounts, to prevent deterioration of the compressive strength and the other physical properties, the recommended amount is less than 2.0%.
Yuan, B.; Yu, Q.L.; Dainese, E.; Brouwers, H.J.H.
2017-01-01
This paper aims to study the shrinkage mechanism of sodium carbonate activated slag containing limestone powder (LP). The workability, pore structure, reaction kinetics and strength development were characterized. The results show that the autogenous shrinkage increases when the dosage of LP is low
Shrinkage reduction of dental composites by addition of expandable zirconia filler
DEFF Research Database (Denmark)
Skovgaard, M.; Almdal, Kristoffer; Sørensen, Bent F.
2011-01-01
. The shrinkage of the composite was calculated from density measurements using Archimedes method. The rate of the phase transformation in resin was measured by determining the volume fraction of monoclinic zirconia (vm). The composite had a vm of 0.5 after 8 h of water storage. The overall shrinkage...
A study of biorthogonal multiple vector-valued wavelets
International Nuclear Information System (INIS)
Han Jincang; Cheng Zhengxing; Chen Qingjiang
2009-01-01
The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.
Solution of wave-like equation based on Haar wavelet
Directory of Open Access Journals (Sweden)
Naresh Berwal
2012-11-01
Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
DEFF Research Database (Denmark)
Snoeck, Didier; Jensen, Ole Mejlhede; De Belie, Nele
2016-01-01
A promising way to mitigate autogenous shrinkage in cementitious materials with a low water-to-binder ratio is internal curing by the use of superabsorbent polymers. Superabsorbent polymers are able to absorb multiple times their weight in water and can be applied as an internal water reservoir...... to induce internal curing and mitigation of self-desiccation. Their purposefulness has been demonstrated in Portland cement pastes with and without silica fume. Nowadays, fly ash and blast-furnace slag containing binders are also frequently used in the construction industry. The results on autogenous...... shrinkage in materials blended with fly ash or blast-furnace slag remain scarce, especially after one week of age. This paper focuses on the autogenous shrinkage by performing manual and automated shrinkage measurements up to one month of age. Without superabsorbent polymers, autogenous shrinkage...
Creep and shrinkage analysis for concrete spent fuel dry storage module
Energy Technology Data Exchange (ETDEWEB)
Zhang, D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)], E-mail: zhangd@aecl.ca
2009-07-01
CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)
Creep and shrinkage analysis for concrete spent fuel dry storage module
International Nuclear Information System (INIS)
Zhang, D.
2009-01-01
CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)
Optimization of wavelet decomposition for image compression and feature preservation.
Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T
2003-09-01
A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.
Quantum dynamics and electronic spectroscopy within the framework of wavelets
International Nuclear Information System (INIS)
Toutounji, Mohamad
2013-01-01
This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)
Aerosol particle shrinkage event phenomenology in a South European suburban area during 2009-2015
Alonso-Blanco, E.; Gómez-Moreno, F. J.; Núñez, L.; Pujadas, M.; Cusack, M.; Artíñano, B.
2017-07-01
A high number of aerosol particle shrinkage cases (70) have been identified and analyzed from an extensive and representative database of aerosol size distributions obtained between 2009 and 2015 at an urban background site in Madrid (Spain). A descriptive classification based on the process from which the shrinkage began is proposed according which shrinkage events were divided into three groups: (1) NPF + shrinkage (NPF + S) events, (2) aerosol particle growth process + shrinkage (G + S) events, and (3) pure shrinkage (S) events. The largest number of shrinkages corresponded to the S-type followed by NPF + S, while the G + S events were the least frequent group recorded. Duration of shrinkages varied widely from 0.75 to 8.5 h and SR from -1.0 to -11.1 nm h-1. These processes typically occurred in the afternoon, around 18:00 UTC, caused by two situations: i) a wind speed increase usually associated with a change in the wind direction (over 60% of the observations) and ii) the reduction of photochemical activity at the end of the day. All shrinkages were detected during the warm period, mainly between May and August, when local meteorological conditions (high solar irradiance and temperature and low relative humidity), atmospheric processes (high photochemical activity) and availability of aerosol-forming precursors were favorable for their development. As a consequence of these processes, the particles concentration corresponding to the Aitken mode decreased into the nucleation mode. The accumulation mode did not undergo significant changes during these processes. In some cases, a dilution of the particulate content in the ambient air was observed. This work, goes further than others works dealing with aerosol particles shrinkages, as it incorporates as a main novelty a classification methodology for studying these processes. Moreover, compared to other studies, it is supported by a high and representative number of observations. Thus, this study contributes to
Bicalho, Aline Aredes; de Souza, Silas Júnior Boaventura; de Rosatto, Camila Maria Peres; Tantbirojn, Daranee; Versluis, Antheunis; Soares, Carlos José
2015-12-01
Evaluate the effect of environment on post-gel shrinkage (Shr), cuspal strains (CS), microtensile bond strength (μTBS), elastic modulus (E) and shrinkage stress in molars with large class II restorations. Sixty human molars received standardized Class II mesio-oclusal-distal cavity preparations. Restorations were made with two composites (CHA, Charisma Diamond, Heraus Kulzer and IPS Empress Direct, Ivoclar-Vivadent) using three environment conditions (22°C/50% humidity, 37°C/50% humidity and 37°C/90% humidity) simulated in custom developed chamber. Shr was measured using the strain gauge technique (n=10). CS was measured using strain gauges. Half of the teeth (n=5) were used to assess the elastic modulus (E) and Knoop hardness (KHN) at different depths using microhardness indentation. The other half (n=5) was used to measure the μTBS. The composites and environment conditions were simulated in a two-dimensional finite element analysis of a tooth restoration. Polymerization shrinkage was modeled using Shr data. The Shr, CS, μTBS, KHN and E data were statistically analyzed using two-way ANOVA and Tukey test (significance level: 0.05). Both composites had similar Shr, CS, μTBS and shrinkage stress. CHA had higher elastic modulus than IPS. Increasing temperature and humidity significantly increased Shr, CS and shrinkage stress. μTBS were similar for groups with lower humidity, irrespective of temperature, and higher with higher humidity. E and KHN were constant through the depth for CHA. E and KHN values were affected by environment only for IPS, mainly deeper in the cavity. Shrinkage stress at dentin/composite interface had high inverse correlation with μTBS. Shrinkage stress in enamel had high correlation with CS. Increasing temperature and humidity caused higher post-gel shrinkage and cusp deformation with higher shrinkage stresses in the tooth structure and tooth/restoration interface for both composites tested. The chamber developed for simulating the
Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo
Energy Technology Data Exchange (ETDEWEB)
Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)
1996-05-01
Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.
Information retrieval system utilizing wavelet transform
Brewster, Mary E.; Miller, Nancy E.
2000-01-01
A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.
monthly energy consumption forecasting using wavelet analysis
African Journals Online (AJOL)
User
ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...
Characterization and Simulation of Gunfire with Wavelets
Directory of Open Access Journals (Sweden)
David O. Smallwood
1999-01-01
Full Text Available Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of these records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.
Multiscale wavelet representations for mammographic feature analysis
Laine, Andrew F.; Song, Shuwu
1992-12-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Wavelet based multicarrier code division multiple access ...
African Journals Online (AJOL)
This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...
Directory of Open Access Journals (Sweden)
Jikai Chen
2016-12-01
Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.
Directory of Open Access Journals (Sweden)
Suresh Mitthra
2017-01-01
Full Text Available Background: Understanding the mechanical properties is important in predicting the clinical behavior of composites. Finite element analysis (FEA evaluates properties of materials replicating clinical scenario. Aim: This study evaluated polymerization shrinkage and stress, wear resistance (WR, and compressive strength (CS of silorane in comparison with two methacrylate resins. Settings and Design: This study design was a numerical study using FEA. Materials and Methods: Three-dimensional (3D models of maxillary premolar with Class I cavities (2 mm depth, 4 mm length, and 2.5 mm width created and restored with silorane, nanohybrid, and microhybrid; Groups I, II, and III, respectively. Loads of 200–600 N were applied. Polymerization shrinkage was first determined by displacement produced in the X, Y, and Z planes. Maximum stress distribution due to shrinkage was calculated using AN SYS software. 3D cube models of composite resins were simulated with varying filler particle size. Similar loads were applied. WR and compressive stress were calculated: K W L/H and load/cross-sectional area, respectively. Statistical analysis done using one-way ANOVA, Kruskal–Wallis, and Tukey's honestly significant difference test (P < 0.05. Results: Polymerization shrinkage (0.99% and shrinkage stress (233.21 Mpa of silorane were less compared to microhybrid (2.14% and 472.43 Mpa and nanohybrid (2.32% and 464.88 Mpa. Silorane (7.92×/1011 μm/mm3 and nanohybrid (7.79×/1011 showed superior WR than microhybrid (1.113×/1017. There was no significant difference in compressive stress among the groups. Conclusion: Silorane exhibited less polymerization shrinkage and shrinkage stress compared to methacrylates. Silorane and nanohybrid showed greater WR compared to microhybrid. CS of all groups was similar.
International Nuclear Information System (INIS)
Fiorino, Claudio; Maggiulli, Eleonora; Broggi, Sara; Cattaneo, Giovanni Mauro; Calandrino, Riccardo; Liberini, Simone; Faggiano, Elena; Rizzo, Giovanna; Dell'Oca, Italo; Di Muzio, Nadia
2011-01-01
The Jacobian of the deformation field of elastic registration between images taken during radiotherapy is a measure of inter-fraction local deformation. The histogram of the Jacobian values (Jac) within an organ was introduced (JVH-Jacobian-volume-histogram) and first applied in quantifying parotid shrinkage. MVCTs of 32 patients previously treated with helical tomotherapy for head-neck cancers were collected. Parotid deformation was evaluated through elastic registration between MVCTs taken at the first and last fractions. Jac was calculated for each voxel of all parotids, and integral JVHs were calculated for each parotid; the correlation between the JVH and the planning dose-volume histogram (DVH) was investigated. On average, 82% (±17%) of the voxels shrinks (Jac 50% (Jac < 0.5). The best correlation between the DVH and the JVH was found between V10 and V15, and Jac < 0.4-0.6 (p < 0.01). The best constraint predicting a higher number of largely compressing voxels (Jac0.5<7.5%, median value) was V15 ≥ 75% (OR: 7.6, p = 0.002). Jac and the JVH are promising tools for scoring/modelling toxicity and for evaluating organ/contour variations with potential applications in adaptive radiotherapy.
Directory of Open Access Journals (Sweden)
Deyu Cui
2018-04-01
Full Text Available State of charge (SOC estimation is becoming increasingly important, along with electric vehicle (EV rapid development, while SOC is one of the most significant parameters for the battery management system, indicating remaining energy and ensuring the safety and reliability of EV. In this paper, a hybrid wavelet neural network (WNN model combining the discrete wavelet transform (DWT method and adaptive WNN is proposed to estimate the SOC of lithium-ion batteries. The WNN model is trained by Levenberg-Marquardt (L-M algorithm, whose inputs are processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation neural network (BPNN, L-M based BPNN (LMBPNN, L-M based WNN (LMWNN, DWT with L-M based BPNN (DWTLMBPNN and extend Kalman filter (EKF, the proposed intelligent SOC estimation method is validated and proved to be effective. Under the New European Driving Cycle (NEDC, the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively. The characteristics of high accuracy and strong robustness of the proposed method are verified by comparison study and robustness evaluation results (e.g., measurement noise test and untrained driving cycle test.
Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method
Directory of Open Access Journals (Sweden)
Wei Liu
2016-01-01
Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.
Directory of Open Access Journals (Sweden)
J. Mutwil
2009-07-01
Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.
Effect of the key mixture parameters on shrinkage of reactive powder concrete.
Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed
2014-01-01
Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.
Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars
Directory of Open Access Journals (Sweden)
Vanissorn Vimonsatit
2015-12-01
Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2018-02-01
Full Text Available Electricity load forecasting plays a paramount role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate planning and prediction of electricity load are therefore vital. In this study, a novel approach for forecasting monthly electricity demands by wavelet transform and a neuro-fuzzy system is proposed. Firstly, the most appropriate inputs are selected and a dataset is constructed. Then, Haar wavelet transform is utilized to decompose the load data and eliminate noise. In the model, a hierarchical adaptive neuro-fuzzy inference system (HANFIS is suggested to solve the curse-of-dimensionality problem. Several heuristic algorithms including Gravitational Search Algorithm (GSA, Cuckoo Optimization Algorithm (COA, and Cuckoo Search (CS are utilized to optimize the clustering parameters which help form the rule base, and adaptive neuro-fuzzy inference system (ANFIS optimize the parameters in the antecedent and consequent parts of each sub-model. The proposed approach was applied to forecast the electricity load of Hanoi, Vietnam. The constructed models have shown high forecasting performances based on the performance indices calculated. The results demonstrate the validity of the approach. The obtained results were also compared with those of several other well-known methods including autoregressive integrated moving average (ARIMA and multiple linear regression (MLR. In our study, the wavelet CS-HANFIS model outperformed the others and provided more accurate forecasting.
Effects of Shrinkage Reducing Agent and Expansive Additive on Mortar Properties
Treesuwan, Sarapon; Maleesee, Komsan
2017-01-01
This research is to study the effect of mortar mixed with shrinkage reducing agent (polyoxyalkylene alkyl ether type), expansive additive (CaO type), and fly ash (hereinafter “SRA,” “EX,” and “FA,” resp.). Moreover, steam curing was studied to improve the properties of mortar. The plastic shrinkage test was conducted by using the strain gauge embedded at 0.5 cm from the surface according to the ASTM C1579-06 standard within early age followed by the total shrinkage test and compressive streng...
Effects of drying conditions, admixtures and specimen size on shrinkage strains
International Nuclear Information System (INIS)
Al-Saleh, Saleh A.; Al-Zaid, Rajeh Z.
2006-01-01
The paper presents the results of an experimental investigation on the effects of drying conditions, specimen size and presence of plasticizing admixture on the development of shrinkage strains. The measurements are taken in a harsh (50 deg. C and 5% R.H.) and a moderate environment (28 deg. C and 50% R.H.). The results include strain development at various levels of cross sections of concrete prisms. The drying conditions are found to be the dominant parameter affecting the shrinkage strain development particularly in specimens of smaller sizes. The effect of plasticizing admixture on shrinkage strains is negligible
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding
Directory of Open Access Journals (Sweden)
Thomas André
2007-03-01
Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.
Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.
Marin, Zach; Wallace, J Kent; Nadeau, Jay; Khalil, Andre
2018-03-01
We propose an automated wavelet-based method of tracking particles in unreconstructed off-axis holograms to provide rough estimates of the presence of motion and particle trajectories in digital holographic microscopy (DHM) time series. The wavelet transform modulus maxima segmentation method is adapted and tailored to extract Airy-like diffraction disks, which represent bacteria, from DHM time series. In this exploratory analysis, the method shows potential for estimating bacterial tracks in low-particle-density time series, based on a preliminary analysis of both living and dead Serratia marcescens, and for rapidly providing a single-bit answer to whether a sample chamber contains living or dead microbes or is empty. Copyright © 2017 Elsevier Inc. All rights reserved.
JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding
Directory of Open Access Journals (Sweden)
André Thomas
2007-01-01
Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.
[An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].
Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang
2014-07-01
Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.
Study on SOC wavelet analysis for LiFePO4 battery
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.
Image-based modeling of tumor shrinkage in head and neck radiation therapy1
Chao, Ming; Xie, Yaoqin; Moros, Eduardo G.; Le, Quynh-Thu; Xing, Lei
2010-01-01
Purpose: Understanding the kinetics of tumor growth∕shrinkage represents a critical step in quantitative assessment of therapeutics and realization of adaptive radiation therapy. This article presents a novel framework for image-based modeling of tumor change and demonstrates its performance with synthetic images and clinical cases. Methods: Due to significant tumor tissue content changes, similarity-based models are not suitable for describing the process of tumor volume changes. Under the hypothesis that tissue features in a tumor volume or at the boundary region are partially preserved, the kinetic change was modeled in two steps: (1) Autodetection of homologous tissue features shared by two input images using the scale invariance feature transformation (SIFT) method; and (2) establishment of a voxel-to-voxel correspondence between the images for the remaining spatial points by interpolation. The correctness of the tissue feature correspondence was assured by a bidirectional association procedure, where SIFT features were mapped from template to target images and reversely. A series of digital phantom experiments and five head and neck clinical cases were used to assess the performance of the proposed technique. Results: The proposed technique can faithfully identify the known changes introduced when constructing the digital phantoms. The subsequent feature-guided thin plate spline calculation reproduced the “ground truth” with accuracy better than 1.5 mm. For the clinical cases, the new algorithm worked reliably for a volume change as large as 30%. Conclusions: An image-based tumor kinetic algorithm was developed to model the tumor response to radiation therapy. The technique provides a practical framework for future application in adaptive radiation therapy. PMID:20527569
Image-based modeling of tumor shrinkage in head and neck radiation therapy
International Nuclear Information System (INIS)
Chao Ming; Xie Yaoqin; Moros, Eduardo G.; Le, Quynh-Thu; Xing Lei
2010-01-01
Purpose: Understanding the kinetics of tumor growth/shrinkage represents a critical step in quantitative assessment of therapeutics and realization of adaptive radiation therapy. This article presents a novel framework for image-based modeling of tumor change and demonstrates its performance with synthetic images and clinical cases. Methods: Due to significant tumor tissue content changes, similarity-based models are not suitable for describing the process of tumor volume changes. Under the hypothesis that tissue features in a tumor volume or at the boundary region are partially preserved, the kinetic change was modeled in two steps: (1) Autodetection of homologous tissue features shared by two input images using the scale invariance feature transformation (SIFT) method; and (2) establishment of a voxel-to-voxel correspondence between the images for the remaining spatial points by interpolation. The correctness of the tissue feature correspondence was assured by a bidirectional association procedure, where SIFT features were mapped from template to target images and reversely. A series of digital phantom experiments and five head and neck clinical cases were used to assess the performance of the proposed technique. Results: The proposed technique can faithfully identify the known changes introduced when constructing the digital phantoms. The subsequent feature-guided thin plate spline calculation reproduced the ''ground truth'' with accuracy better than 1.5 mm. For the clinical cases, the new algorithm worked reliably for a volume change as large as 30%. Conclusions: An image-based tumor kinetic algorithm was developed to model the tumor response to radiation therapy. The technique provides a practical framework for future application in adaptive radiation therapy.
Image-based modeling of tumor shrinkage in head and neck radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Chao Ming; Xie Yaoqin; Moros, Eduardo G.; Le, Quynh-Thu; Xing Lei [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 and Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, Arkansas 72205-1799 (United States); Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States); Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, Arkansas 72205-1799 (United States); Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States)
2010-05-15
Purpose: Understanding the kinetics of tumor growth/shrinkage represents a critical step in quantitative assessment of therapeutics and realization of adaptive radiation therapy. This article presents a novel framework for image-based modeling of tumor change and demonstrates its performance with synthetic images and clinical cases. Methods: Due to significant tumor tissue content changes, similarity-based models are not suitable for describing the process of tumor volume changes. Under the hypothesis that tissue features in a tumor volume or at the boundary region are partially preserved, the kinetic change was modeled in two steps: (1) Autodetection of homologous tissue features shared by two input images using the scale invariance feature transformation (SIFT) method; and (2) establishment of a voxel-to-voxel correspondence between the images for the remaining spatial points by interpolation. The correctness of the tissue feature correspondence was assured by a bidirectional association procedure, where SIFT features were mapped from template to target images and reversely. A series of digital phantom experiments and five head and neck clinical cases were used to assess the performance of the proposed technique. Results: The proposed technique can faithfully identify the known changes introduced when constructing the digital phantoms. The subsequent feature-guided thin plate spline calculation reproduced the ''ground truth'' with accuracy better than 1.5 mm. For the clinical cases, the new algorithm worked reliably for a volume change as large as 30%. Conclusions: An image-based tumor kinetic algorithm was developed to model the tumor response to radiation therapy. The technique provides a practical framework for future application in adaptive radiation therapy.
Hyperspectral image compressing using wavelet-based method
Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng
2017-10-01
Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.
From cardinal spline wavelet bases to highly coherent dictionaries
International Nuclear Information System (INIS)
Andrle, Miroslav; Rebollo-Neira, Laura
2008-01-01
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)
DEFF Research Database (Denmark)
Snoeck, D.; Jensen, Ole Mejlhede; De Belie, N.
2015-01-01
Fly ash and blast-furnace slag containing binders are frequently used in the construction industry and it is important to know the extent of autogenous shrinkage and its (ideal) mitigation by superabsorbent polymers in these systems as a function of their age. In this paper, the autogenous...... shrinkage was determined by manual and automated shrinkage measurements. Autogenous shrinkage was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity. Internal curing...
Joint multifractal analysis based on wavelet leaders
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Wavelet analysis of the impedance cardiogram waveforms
International Nuclear Information System (INIS)
Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K
2012-01-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Gestures recognition based on wavelet and LLE
International Nuclear Information System (INIS)
Ai, Qingsong; Liu, Quan; Lu, Ying; Yuan, Tingting
2013-01-01
Wavelet analysis is a time–frequency, non-stationary method while the largest Lyapunov exponent (LLE) is used to judge the non-linear characteristic of systems. Because surface electromyography signal (SEMGS) is a complex signal that is characterized by non-stationary and non-linear properties. This paper combines wavelet coefficient and LLE together as the new feature of SEMGS. The proposed method not only reflects the non-stationary and non-linear characteristics of SEMGS, but also is suitable for its classification. Then, the BP (back propagation) neural network is employed to implement the identification of six gestures (fist clench, fist extension, wrist extension, wrist flexion, radial deviation, ulnar deviation). The experimental results indicate that based on the proposed method, the identification of these six gestures can reach an average rate of 97.71 %.
Wavelets and their applications past and future
Coifman, Ronald R.
2009-04-01
As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.
Yan, Hong; Song, Xiangzhong; Tian, Kuangda; Chen, Yilin; Xiong, Yanmei; Min, Shungeng
2018-02-01
A novel method, mid-infrared (MIR) spectroscopy, which enables the determination of Chlorantraniliprole in Abamectin within minutes, is proposed. We further evaluate the prediction ability of four wavelength selection methods, including bootstrapping soft shrinkage approach (BOSS), Monte Carlo uninformative variable elimination (MCUVE), genetic algorithm partial least squares (GA-PLS) and competitive adaptive reweighted sampling (CARS) respectively. The results showed that BOSS method obtained the lowest root mean squared error of cross validation (RMSECV) (0.0245) and root mean squared error of prediction (RMSEP) (0.0271), as well as the highest coefficient of determination of cross-validation (Qcv2) (0.9998) and the coefficient of determination of test set (Q2test) (0.9989), which demonstrated that the mid infrared spectroscopy can be used to detect Chlorantraniliprole in Abamectin conveniently. Meanwhile, a suitable wavelength selection method (BOSS) is essential to conducting a component spectral analysis.
Transformer Protection Using the Wavelet Transform
ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı
2014-01-01
This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...
Wavelet representation of the nuclear dynamics
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.
Wavelet Decomposition of the Financial Market
Czech Academy of Sciences Publication Activity Database
Vošvrda, Miloslav; Vácha, Lukáš
2007-01-01
Roč. 16, č. 1 (2007), s. 38-54 ISSN 1210-0455 R&D Projects: GA ČR GA402/04/1026; GA ČR(CZ) GA402/06/1417 Grant - others:GA UK(CZ) 454/2004/A-EK FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : agents' trading strategies * heterogeneous agents model with stochastic memory * worst out algorithm * wavelet Subject RIV: AH - Economics
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-07
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
On transforms between Gabor frames and wavelet frames
DEFF Research Database (Denmark)
Christensen, Ole; Goh, Say Song
2013-01-01
We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....
An introduction to random vibrations, spectral & wavelet analysis
Newland, D E
2005-01-01
One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation
Swelling/shrinkage of compacted and natural clayey soils
International Nuclear Information System (INIS)
Nowamooz, H.
2007-12-01
This thesis presents an experimental study performed on compacted loose and natural dense expansive soils using osmotic odometers. Several successive cycles were applied under three different low constant vertical net stresses. The loose soil presents a significant shrinkage accumulation while the dense one produces the swelling accumulation during the suction cycles. The suction cycles induced an equilibrium stage which indicates an elastic behaviour of the samples. At the end of suction cycles, a loading/unloading test was performed at the constant suctions for both materials. The mechanical parameters, i.e. the virgin compression index lambda(s), the apparent pre-consolidation stress p0(s) and the elastic compression index values lambda are completely dependent on the followed stress paths. The whole experimental results made it possible to define the yielding surfaces: suction limit between micro and macrostructure (Lm/M), loading collapse (LC) and saturation curve (SCS). The suction limit (Lm/M) depends completely to the soil fabrics and to the diameter separating the micro- and macrostructure. The pre-consolidation stress variation with suction is represented by the LC surface. The compression curves at different imposed suctions converge towards the saturated state for the high applied vertical stresses. We consider the saturation pressure (Psat) as the necessary pressure to reach the saturated state for an imposed suction. The higher the suction, the higher the saturation pressure. The yielding surface representing this pressure as a function of suction is called the saturation curve (SCS). Generally we can state that the suction cycles unified the LC and SC surfaces and increased the (Lm/M) up to a higher value. (author)
2012-08-01
Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...
Desmal, Abdulla; Bagci, Hakan
2014-01-01
A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST
The evolution of shrinkage strain of pet-mortar composite eco ...
African Journals Online (AJOL)
... resulting from the cement hydration and are governed by various physical and ... of PET volumetric additive amounts for cement substituting and for the behavior ... Keywords: Composite Eco-materials; Cement substitution; Shrinkage strain; ...
A case study of shrinkage-in place leaching of low grade uranium ore deposit
International Nuclear Information System (INIS)
Ding Dexin; Zhou Guohe
1998-09-01
A case study of shrinkage-in place leaching of low grade uranium ore deposit is dealt with. A test block was selected, and the shrinkage mining method was employed to construct the in place heap for leaching. Blast parameters and operations were carefully tried in order to make sure that the fragment size composition was adequate for leaching. A leaching system was planned and the corresponding leaching parameters were tried, too. The results show that the shrinkage method and the parameters for blasting and leaching are all adequate for the in-situ leaching of the blasted ore. This shrinkage-in place leaching system combines the mining and metallurgy processes into one and produces a lot of profits and could be applicable to many low grade uranium ore deposits which are so hard and compact that they have to be fragmented before being leached
Estimation of the profile of cross-machine shrinkage of paper
International Nuclear Information System (INIS)
I'Anson, S J; Sampson, W W; Constantino, R P A; Hoole, S M
2008-01-01
In common with many other materials, paper tends to shrink as it dries. Although every attempt is made to restrain paper, some shrinkage occurs on all paper machines in the direction perpendicular to that of manufacture and this shrinkage is always much higher at the edges of the machine than in the centre. Measurement of the profile of this cross-machine shrinkage is possible using the fast Fourier transform to locate and measure periodic elements imprinted by the filtration fabrics used during the formation of the paper web. This paper describes a new method which allows the geometrical relationships within the fabric to be used along with dimensional changes to estimate shrinkage. The method has the advantages over previous methods of more tolerant sampling protocols, operator independent analysis and improved accuracy
Drying shrinkage problems in high-plastic clay soils in Oklahoma.
2013-08-01
Longitudinal cracking in pavements due to drying shrinkage of high-plastic subgrade soils has been a major : problem in Oklahoma. Annual maintenance to seal and repair these distress problems costs significant amount of : money to the state. The long...
Directory of Open Access Journals (Sweden)
Yasushi Mochizuki
2018-03-01
Full Text Available A 60-year-old male displayed sudden shrinkage of a left free rectus abdominis musculocutaneous flap, which had been grafted to his left maxilla 15 years previously. No post-reconstructive irradiation had been performed, and no late occlusion of the vascular anastomosis, local infection, recurrence of the maxillary cancer, or body weight loss was observed. However, the shrinkage amounted to approximately 50%. This is considerably more than previously reported cases of shrinkage of various free flaps, which ranged between 10% and 25%. The resultant depression was successfully augmented with a right free deep inferior epigastric artery perforator flap. The residual fat volume of the previously grafted shrunken flap was revealed to be compatible with that of the newly harvested contralateral perforator flap. Thus, the volume of the previously grafted flap may reflect the status of the intact contralateral donor site, although the mechanism of sudden flap shrinkage is unclear.
Influence of fly ash, slag cement and specimen curing on shrinkage of bridge deck concrete.
2014-12-01
Cracks occur in bridge decks due to restrained shrinkage of concrete materials. Concrete materials shrink as : cementitious materials hydrate and as water that is not chemically bonded to cementitious materials : migrates from the high humid environm...
Prediction of shrinkage cracking age of concrete with and without expansive additive
Directory of Open Access Journals (Sweden)
Dung Tien Nguyen
2010-10-01
Full Text Available The aim of this research is to propose a model for predicting cracking age of concrete due to restrained shrinkage. Thisstudy focuses on analyzing shrinkage and expansion mechanisms in the expansive concrete to formulate a model that can beemployed to predict whether shrinkage cracking occurs or not. In case of conventional (non-expansive concrete, this modelcan be applied by neglecting the early expansion due to expansive additive. Parameters considered in this model are restrainedexpansion, free shrinkage, cracking strain that can be experimentally measured by experiment and tensile creep which isderived by back calculation. The model was verified by test results of expansive concrete mixtures as well as normal concretemixtures both with and without fly ash.
Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane
2017-04-01
The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.
Directory of Open Access Journals (Sweden)
Jianjun Liu
2013-01-01
Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.
Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar
Directory of Open Access Journals (Sweden)
Mao-chieh Chi
2012-01-01
Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.
Denoising solar radiation data using coiflet wavelets
Energy Technology Data Exchange (ETDEWEB)
Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Pedestrian detection based on redundant wavelet transform
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
Fringe pattern information retrieval using wavelets
Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano
2005-08-01
Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.
JPEG and wavelet compression of ophthalmic images
Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.
1999-05-01
This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.
Generalized exact holographic mapping with wavelets
Lee, Ching Hua
2017-12-01
The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru
2017-11-29
The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.
Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting
Institute of Scientific and Technical Information of China (English)
WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng
2003-01-01
To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.
Coresident sensor fusion and compression using the wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Yocky, D.A.
1996-03-11
Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.
EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform
National Research Council Canada - National Science Library
Bhatti, Muhammad
2001-01-01
EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...
A study of non-binary discontinuity wavelet
International Nuclear Information System (INIS)
Lin Hai; Liu Lianshou
2006-01-01
This paper gives a study of non-binary discontinuity wavelet, put forward the theory and method of constituting basic wavelet functions, and has constituted concretely a wavelet function using λ=3.4 as an example. It also conducts a theoretical inference on the decomposition algorithm and reconstruction algorithm of non-binary wavelet, and gives a concrete study of the change of matrix in connection with λ=3.4. In the end, it shows the future of application of the result to the study of high energy collision. (authors)
Wavelets for the stimulation of turbulent incompressible flows
International Nuclear Information System (INIS)
Deriaz, E.
2006-02-01
This PhD thesis presents original wavelet methods aimed at simulating incompressible fluids. In order to construct 2D and 3D wavelets designed for incompressible flows, we resume P-G Lemarie-Rieussets and K. Urbans works on divergence free wavelets. We show the existence of associated fast algorithms. In the following, we use divergence-free wavelet construction to define the Helmholtz decomposition of 2D and 3D vector fields. All these algorithms provide a new method for the numerical resolution of the incompressible Navier-Stokes equations. (author)
Wavelet-based moment invariants for pattern recognition
Chen, Guangyi; Xie, Wenfang
2011-07-01
Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.
Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication
National Research Council Canada - National Science Library
Chui, Charles K
2007-01-01
...; secondly, based on minimum-energy criteria, new data processing tools, particularly variational algorithms and optimal wavelet thresholding methods, with applications to image restoration, were introduced...
Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms
National Research Council Canada - National Science Library
Ardolino, Richard S
2007-01-01
This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
Wavelet-based verification of the quantitative precipitation forecast
Yano, Jun-Ichi; Jakubiak, Bogumil
2016-06-01
This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
Experimental drying shrinkage of hardened cement pastes as a function of relative humidity
DEFF Research Database (Denmark)
Hansen, Kurt Kielsgaard; Baroghel, V.B.
1996-01-01
The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared.......The results of an experimental study concerning drying shrinkage measured as a function of relative humidity on thin specimens of mature hardened cement pastes are presented. The results obtained at two laboratories are compared....
Shrinkage stress in concrete under dry-wet cycles: an example with concrete column
Gao, Yuan; Zhang, Jun; Luosun, Yiming
2014-02-01
This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.
Adaptive Robot Control – An Experimental Comparison
Directory of Open Access Journals (Sweden)
Francesco Alonge
2012-11-01
Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.
The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.
Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G
2015-10-01
Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit. © 2015 John Wiley & Sons Ltd.
Effect of shrinkage porosity on mechanical properties of ferritic ductile iron
Directory of Open Access Journals (Sweden)
Wang Zehua
2013-05-01
Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.
Digital image analysis of radial shrinkage of fresh spruce (Picea abies L.) wood.
Hansmann, Christian; Konnerth, Johannes; Rosner, Sabine
2011-03-21
Contact-free digital image analysis was performed of the radial shrinkage of fresh, fully saturated small spruce wood beams. An experimental test set-up was developed to ensure constant distance from the charge-coupled device camera to the sample surface as well as constant climate and light conditions during the whole experiment. Dimensional changes were observed immediately after the drying process began. An unexpected distinct effect could be observed which could not be explained by drying surface layers only. After a fast initial radial shrinkage a slowing down of the dimensional changes occurred at high mean moisture contents. A complete interruption of any dimensional changes followed. Finally, a recovery from shrinkage was even observed. It is assumed that strong negative pressure occurred in the fully saturated capillaries owing to dehydration which led to additional dimensional changes. As a consequence, the break of the water column and aeration in these capillaries finally resulted in a recovery period in the shrinkage rate due to the pressure release. After this effect, the dehydration was characterized by a phase of fast and almost linear shrinkage due to drying surface layers. Finally, the shrinkage slowed down to zero when reaching equilibrium moisture content.
International Nuclear Information System (INIS)
Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El
2011-01-01
This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.
Energy Technology Data Exchange (ETDEWEB)
Duval, L.
2000-11-01
Wavelet and wavelet packet transforms are the most commonly used algorithms for seismic data compression. Wavelet coefficients are generally quantized and encoded by classical entropy coding techniques. We first propose in this work a compression algorithm based on the wavelet transform. The wavelet transform is used together with a zero-tree type coding, with first use in seismic applications. Classical wavelet transforms nevertheless yield a quite rigid approach, since it is often desirable to adapt the transform stage to the properties of each type of signal. We thus propose a second algorithm using, instead of wavelets, a set of so called 'extended transforms'. These transforms, originating from the filter bank theory, are parameterized. Classical examples are Malvar's Lapped Orthogonal Transforms (LOT) or de Queiroz et al. Generalized Lapped Orthogonal Transforms (GenLOT). We propose several optimization criteria to build 'extended transforms' which are adapted the properties of seismic signals. We further show that these transforms can be used with the same zero-tree type coding technique as used with wavelets. Both proposed algorithms provide exact compression rate choice, block-wise compression (in the case of extended transforms) and partial decompression for quality control or visualization. Performances are tested on a set of actual seismic data. They are evaluated for several quality measures. We also compare them to other seismic compression algorithms. (author)
Wavelet based free-form deformations for nonrigid registration
Sun, Wei; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
A new approach to pre-processing digital image for wavelet-based watermark
Agreste, Santa; Andaloro, Guido
2008-11-01
The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.
Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva
2018-02-01
Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.
International Nuclear Information System (INIS)
Yang, W.; Wu, H.; Cao, L.
2012-01-01
More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)
Wavelet Based Diagnosis and Protection of Electric Motors
Khan, M. Abdesh Shafiel Kafiey; Rahman, M. Azizur
2010-01-01
In this chapter, a short review of conventional Fourier transforms and new wavelet based faults diagnostic and protection techniques for electric motors is presented. The new hybrid wavelet packet transform (WPT) and neural network (NN) based faults diagnostic algorithm is developed and implemented for electric motors. The proposed WPT and NN
Early detection of rogue waves by the wavelet transforms
International Nuclear Information System (INIS)
Bayındır, Cihan
2016-01-01
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Optimization design of biorthogonal wavelets for embedded image coding
Lin, Z.; Zheng, N.; Liu, Y.; Wetering, van de H.M.M.
2007-01-01
We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two
Multiresolution signal decomposition schemes. Part 2: Morphological wavelets
H.J.A.M. Heijmans (Henk); J. Goutsias (John)
1999-01-01
htmlabstractIn its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens. The
Multidimensional filter banks and wavelets research developments and applications
Levy, Bernard
1997-01-01
Multidimensional Filter Banks and Wavelets: Reserach Developments and Applications brings together in one place important contributions and up-to-date research results in this important area. Multidimensional Filter Banks and Wavelets: Research Developments and Applications serves as an excellent reference, providing insight into some of the most important research issues in the field.
Evaluation of the wavelet image two-line coder
DEFF Research Database (Denmark)
Rein, Stephan Alexander; Fitzek, Frank Hanns Paul; Gühmann, Clemens
2015-01-01
This paper introduces the wavelet image two-line (Wi2l) coding algorithm for low complexity compression of images. The algorithm recursively encodes an image backwards reading only two lines of a wavelet subband, which are read in blocks of 512 bytes from flash memory. It thus only requires very ...
Polarized spectral features of human breast tissues through wavelet ...
Indian Academy of Sciences (India)
Abstract. Fluorescence characteristics of human breast tissues are investigated through wavelet transform and principal component analysis (PCA). Wavelet transform of polar- ized fluorescence spectra of human breast tissues is found to localize spectral features that can reliably differentiate different tissue types.
Early detection of rogue waves by the wavelet transforms
Energy Technology Data Exchange (ETDEWEB)
Bayındır, Cihan, E-mail: cihan.bayindir@isikun.edu.tr
2016-01-08
Highlights: • The advantages of wavelet analysis over the Fourier analysis for the early detection of rogue waves are discussed. • The triangular wavelet spectra can be detected at early stages of the development of rogue waves. • The wavelet analysis is capable of detecting not only the emergence but also the location of a rogue wave. • Wavelet analysis is also capable of predicting the characteristic distances between successive rogue waves. - Abstract: We discuss the possible advantages of using the wavelet transform over the Fourier transform for the early detection of rogue waves. We show that the triangular wavelet spectra of the rogue waves can be detected at early stages of the development of rogue waves in a chaotic wave field. Compared to the Fourier spectra, the wavelet spectra are capable of detecting not only the emergence of a rogue wave but also its possible spatial (or temporal) location. Due to this fact, wavelet transform is also capable of predicting the characteristic distances between successive rogue waves. Therefore multiple simultaneous breaking of the successive rogue waves on ships or on the offshore structures can be predicted and avoided by smart designs and operations.
Wavelet-Coded OFDM for Next Generation Mobile Communications
DEFF Research Database (Denmark)
Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
2016-01-01
In this work, we evaluate the performance of Wavelet-Coding into offering robustness for OFDM signals against the combined effects of varying fading and noise bursts. Wavelet-Code enables high diversity gains with a low complex receiver, and, most notably, without compromising the system’s spectr......-wave frequencies in future generation mobile communication due to its robustness against multipath fading....
Water storage change estimation from in situ shrinkage measurements of clay soils
Directory of Open Access Journals (Sweden)
B. te Brake
2013-05-01
Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.
Shirmohammadi Chelan, Bagher; Moradi, Hamidreza; Moosavi, Vahid; Semiromi, Majid Taie; Zeinali, Ali
2013-01-01
Drought is accounted as one of the most natural hazards. Studying on drought is important for designing and managing of water resources systems. This research is carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference system (ANFIS) techniques for meteorological drought
International Conference and Workshop on Fractals and Wavelets
Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod
2014-01-01
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
Denoising in Wavelet Packet Domain via Approximation Coefficients
Directory of Open Access Journals (Sweden)
Zahra Vahabi
2012-01-01
Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.
Srivastava, Subodh; Sharma, Neeraj; Singh, S. K.; Srivastava, R.
2014-01-01
In this paper, a combined approach for enhancement and segmentation of mammograms is proposed. In preprocessing stage, a contrast limited adaptive histogram equalization (CLAHE) method is applied to obtain the better contrast mammograms. After this, the proposed combined methods are applied. In the first step of the proposed approach, a two dimensional (2D) discrete wavelet transform (DWT) is applied to all the input images. In the second step, a proposed nonlinear complex diffusion based uns...
Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi
2018-06-01
The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.
Abstract harmonic analysis of continuous wavelet transforms
Führ, Hartmut
2005-01-01
This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula.
Seismic image watermarking using optimized wavelets
International Nuclear Information System (INIS)
Mufti, M.
2010-01-01
Geotechnical processes and technologies are becoming more and more sophisticated by the use of computer and information technology. This has made the availability, authenticity and security of geo technical data even more important. One of the most common methods of storing and sharing seismic data images is through standardized SEG- Y file format.. Geo technical industry is now primarily data centric. The analytic and detection capability of seismic processing tool is heavily dependent on the correctness of the contents of the SEG-Y data file. This paper describes a method through an optimized wavelet transform technique which prevents unauthorized alteration and/or use of seismic data. (author)
Coherent states versus De Broglie-Wavelets
International Nuclear Information System (INIS)
Barut, A.O.
1993-08-01
There are two types of nonspreading localized wave forms representing a stable, individual, indivisible, single quantum particle with interference properties endowed with classical (hidden) parameters, i.e. initial positions and velocity: coherent states and wavelets. The first is exactly known for oscillator, the second for free particles. Their relation and their construction is discussed from a new unified point of view. We then extend this contraction to the Coulomb problem, where with the introduction of a new time variable T, nonspreading states are obtained. (author). 10 refs
Image Mosaic Techniques OptimizationUsing Wavelet
Institute of Scientific and Technical Information of China (English)
ZHOUAn-qi; CUILi
2014-01-01
This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.
Wavelet analysis of the nuclear phase space
Energy Technology Data Exchange (ETDEWEB)
Jouault, B.; Sebille, F.; Mota, V. de la
1997-12-31
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author). 34 refs.
Wavelet analysis of the nuclear phase space
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; Mota, V. de la.
1997-01-01
The description of transport phenomena in nuclear matter is addressed in a new approach based on the mathematical theory of wavelets and the projection methods of statistical physics. The advantage of this framework is to offer the opportunity to use information concepts common to both the formulation of physical properties and the mathematical description. This paper focuses on two features, the extraction of relevant informations using the geometrical properties of the underlying phase space and the optimization of the theoretical and numerical treatments based on convenient choices of the representation spaces. (author)
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Neoadjuvant androgen deprivation and prostate gland shrinkage during conformal radiotherapy
International Nuclear Information System (INIS)
Sanguineti, Giuseppe; Marcenaro, Michela; Franzone, Paola; Foppiano, Franca; Vitale, Vito
2003-01-01
=0.03). At tmtCT, on average, patients undergoing 3DCRT within 3 months from AD start showed an increase of the amount of rectum receiving 40-75 Gy compared to plCT values. At 40 Gy (V40) the mean difference between tmtCT and plCT was +7.5%. In the other two groups, average variations of V40-70 were within ±2% of plCT values. However, these differences are not significant. Conclusion: For patients who undergo plCT and 3DCRT shortly after AD start, prostate gland shrinkage may be substantial. In some of these patients, this might lead to an unexpected increase of the percentage of rectal wall exposed to intermediate doses
OFDM Scheme Based on Wavelet Packet Transform-OrientedGraded Multi-Service
Institute of Scientific and Technical Information of China (English)
赵慧; 侯春萍
2003-01-01
In this paper, a concept of image grading transmission is put forward to enhance data rate and to improve the usage of subcarriers in orthogonal frequency division multiplexing (OFDM). The idea originates from the wavelet packets representative of an image in which information is graded in terms of different priorities. The graded image facilitates more efficient use of adaptive subcarriers and bits allocation. The results of simulation in typical mobile environment prove that the output signal noise ratio (SNR) of the graded image excels that of the ungraded image by 1-2 dB under the same channel condition.
Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K
2005-01-01
Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873
Directory of Open Access Journals (Sweden)
Tae-Yub Kwon
2014-01-01
Full Text Available Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control. The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P>0.05 or significantly larger (P<0.05 than that of the control resin and were related to the polymerization kinetics (P<0.05 rather than the PMMA bead size (P=0.335. Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
Directory of Open Access Journals (Sweden)
Alain Pefferkorn
2012-01-01
Full Text Available The adsorption of polymethylmethacrylate polymer of different molecular weight at the aerosil/ethyleneglycol- or 1,3 butanediol-dimethacrylate interfaces was determined to provide microstructured networks. Their structural characteristics were determined to be controlled by the amount of polymer initially supplied to the system. The sediment (the settled phase characteristics, determined as a function of the polymer concentration and the rate of the polymerization shrinkage determined for composite resins, obtained by extrusion of the sediment after centrifugation, were found to be correlated. The specific role of the adsorbed polymer was found to be differently perturbed with the supplementary supply of dimethacrylate based monomer additives. Particularly, the bisphenol A dimethacrylate that generated crystals within the sediment was found to impede the shrinkage along the crystal lateral faces and strongly limit the shrinkage along its basal faces. Addition of ethyleneglycol- or polyethylene-glycoldimethacrylate monomers was determined to modify the sedimentation characteristics of the aerosil suspension and the shrinkage properties of the composites. Finally, the effects of stepwise light curing methods with prolonged lighting-off periods were investigated and found to modify the development and the final values of the composite shrinkage.
Directory of Open Access Journals (Sweden)
Amin Noushini
2014-01-01
Full Text Available The current study assesses the drying shrinkage behaviour of polyvinyl alcohol fibre reinforced concrete (PVA-FRC containing short-length (6 mm and long-length (12 mm uncoated monofilament PVA fibres at 0.125%, 0.25%, 0.375%, and 0.5% volumetric fractions. Fly ash is also used as a partial replacement of Portland cement in all mixes. PVA-FRC mixes have been compared to length change of control concrete (devoid of fibres at 3 storage intervals: early-age (0–7 days, short-term (0–28 days, and long-term (28–112 days intervals. The shrinkage results of FRC and control concrete up to 112 days indicated that all PVA-FRC mixes exhibited higher drying shrinkage than control. The shrinkage exhibited by PVA-FRC mixes ranged from 449 to 480 microstrain, where this value was only 427 microstrain in the case of control. In addition, the longer fibres exhibited higher mass loss, thus potentially contributing to higher shrinkage.
Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments
Akchiche, Hamida; Kriker, Abdelouahed
2017-02-01
The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.
Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes
Directory of Open Access Journals (Sweden)
Özgür Eren
2010-06-01
Full Text Available Naturally concrete shrinks when it is subjected to a drying environment. If this shrinkage is restrained, tensile stresses develop and concrete may crack. Plastic shrinkage cracks are especially harmful on slabs. One of the methods to reduce the adverse effects of shrinkage cracking of concrete is by reinforcing concrete with short randomly distributed fibers. The main objective of this study was to investigate the effect of fiber volume and aspect ratio of hooked steel fibers on plastic shrinkage cracking behavior together with some other properties of concrete. In this research two different compressive strength levels namely 56 and 73 MPa were studied. Concretes were produced by adding steel fibers of 3 different volumes of 3 different aspect ratios. From this research study, it is observed that steel fibers can significantly reduce plastic shrinkage cracking behavior of concretes. On the other hand, it was observed that these steel fibers can adversely affect some other properties of concrete during fresh and hardened states.
Gholamhoseini, Alireza
2016-03-01
Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.
Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres
Directory of Open Access Journals (Sweden)
Marijana Serdar
2015-01-01
Full Text Available Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.
A generalized DEMATEL theory with a shrinkage coefficient for an indirect relation matrix
Directory of Open Access Journals (Sweden)
Liu Hsiang-Chuan
2017-01-01
Full Text Available In this paper, a novel decision-making trial and evaluation laboratory (DEMATEL theory with a shrinkage coefficient of indirect relation matrix is proposed, and a useful validity index, called Liu’s validity index, is also proposed for evaluating the performance of any DEMATEL model. If the shrinkage coefficient of an indirect relation matrix is equal to 1, then this new theory is identical to the traditional theory; in other words, it is a generalization of the traditional theory. Furthermore, the indirect relation is always considerably greater than the direct one in traditional DEMATEL theory, which is unreasonable and unfair because it overemphasizes the influence of the indirect relation. We prove in this paper that if the shrinkage coefficient is equal to 0.5, then the indirect relation is less than its direct relation. Because the shrinkage coefficient belongs to [0.5, 1], according to Liu’s validity index, we can find a more appropriate shrinkage coefficient to obtain a more efficient DEMATEL method. Some crucial properties of this new theory are discussed, and a simple example is provided to illustrate the advantages of the proposed theory.
Restrained Shrinkage Cracking of Fiber-Reinforced High-Strength Concrete
Directory of Open Access Journals (Sweden)
Ashkan Saradar
2018-02-01
Full Text Available Concrete shrinkage and volume reduction happens due to the loss of moisture, which eventually results in cracks and more concrete deformation. In this study, the effect of polypropylene (PP, steel, glass, basalt, and polyolefin fibers on compressive and flexural strength, drying shrinkage, and cracking potential, using the ring test at early ages of high-strength concrete mixtures, was investigated. The restrained shrinkage test was performed on concrete ring specimens according to the ASTM C1581 standard. The crack width and age of restrained shrinkage cracking were the main parameters studied in this research. The results indicated that the addition of fiber increases the compressive strength by 16%, 20%, and 3% at the age of 3, 7, and 28 days, respectively, and increases the flexural toughness index up to 7.7 times. Steel and glass fibers had a better performance in flexural strength, but relatively poor action in the velocity reduction and cracking time of the restrained shrinkage. Additionally, cracks in all concrete ring specimens except for the polypropylene-containing mixture, was developed to a full depth crack. The mixture with polypropylene fiber indicated a reduction in crack width up to 62% and an increasing age cracking up to 84%.
Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin
2008-01-01
Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.
Wavelet Denoising of Mobile Radiation Data
International Nuclear Information System (INIS)
Campbell, D.B.
2008-01-01
The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems
Cryptocurrency price drivers: Wavelet coherence analysis revisited.
Phillips, Ross C; Gorse, Denise
2018-01-01
Cryptocurrencies have experienced recent surges in interest and price. It has been discovered that there are time intervals where cryptocurrency prices and certain online and social media factors appear related. In addition it has been noted that cryptocurrencies are prone to experience intervals of bubble-like price growth. The hypothesis investigated here is that relationships between online factors and price are dependent on market regime. In this paper, wavelet coherence is used to study co-movement between a cryptocurrency price and its related factors, for a number of examples. This is used alongside a well-known test for financial asset bubbles to explore whether relationships change dependent on regime. The primary finding of this work is that medium-term positive correlations between online factors and price strengthen significantly during bubble-like regimes of the price series; this explains why these relationships have previously been seen to appear and disappear over time. A secondary finding is that short-term relationships between the chosen factors and price appear to be caused by particular market events (such as hacks / security breaches), and are not consistent from one time interval to another in the effect of the factor upon the price. In addition, for the first time, wavelet coherence is used to explore the relationships between different cryptocurrencies.
Wavelet representation of the nuclear dynamics
International Nuclear Information System (INIS)
Jouault, B.; Sebille, F.; De La Mota, V.
1997-01-01
The study of the transport phenomena in nuclear matter is addressed in a new approach based on wavelet theory and the projection methods of statistical physics. The advantage of this framework is to optimize the representation spaces and the numerical treatment which gives the opportunity to enlarge the spectra of physical processes taken into account to preserve some important quantum information. At the same time this approach is more efficient than the usual solving schemes and mathematical formulations of the equations based on usual concepts. The application of this methodology to the the study of the physical phenomena related to the heavy ion collisions at intermediate energies has resulted in a model named DYWAN (DYnamical WAvelets in Nuclei). The results obtained with DYWAN for the central collisions in the system Ca + Ca at three different beam energies are reported. These are in agreement with the experimental results since a fusion process at 30 MeV is observed as well as a binary reaction at 50 MeV and kind of an explosion of the system at 90 MeV
Digital Modulation Identification Model Using Wavelet Transform and Statistical Parameters
Directory of Open Access Journals (Sweden)
P. Prakasam
2008-01-01
Full Text Available A generalized modulation identification scheme is developed and presented. With the help of this scheme, the automatic modulation classification and recognition of wireless communication signals with a priori unknown parameters are possible effectively. The special features of the procedure are the possibility to adapt it dynamically to nearly all modulation types, and the capability to identify. The developed scheme based on wavelet transform and statistical parameters has been used to identify M-ary PSK, M-ary QAM, GMSK, and M-ary FSK modulations. The simulated results show that the correct modulation identification is possible to a lower bound of 5 dB. The identification percentage has been analyzed based on the confusion matrix. When SNR is above 5 dB, the probability of detection of the proposed system is more than 0.968. The performance of the proposed scheme has been compared with existing methods and found it will identify all digital modulation schemes with low SNR.
Wavelet Decomposition Method for $L_2/$/TV-Image Deblurring
Fornasier, M.
2012-07-17
In this paper, we show additional properties of the limit of a sequence produced by the subspace correction algorithm proposed by Fornasier and Schönlieb [SIAM J. Numer. Anal., 47 (2009), pp. 3397-3428 for L 2/TV-minimization problems. An important but missing property of such a limiting sequence in that paper is the convergence to a minimizer of the original minimization problem, which was obtained in [M. Fornasier, A. Langer, and C.-B. Schönlieb, Numer. Math., 116 (2010), pp. 645-685 with an additional condition of overlapping subdomains. We can now determine when the limit is indeed a minimizer of the original problem. Inspired by the work of Vonesch and Unser [IEEE Trans. Image Process., 18 (2009), pp. 509-523], we adapt and specify this algorithm to the case of an orthogonal wavelet space decomposition for deblurring problems and provide an equivalence condition to the convergence of such a limiting sequence to a minimizer. We also provide a counterexample of a limiting sequence by the algorithm that does not converge to a minimizer, which shows the necessity of our analysis of the minimizing algorithm. © 2012 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Yih-Dean Jan
2014-04-01
Conclusion: Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins.
An Experimental Study on Shrinkage Strains of Normal-and High-Strength Concrete-Filled Frp Tubes
Vincent, Thomas; Ozbakkaloglu, Togay
2017-09-01
It is now well established that concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) are an attractive construction technique for new columns, however studies examining concrete shrinkage in CFFTs remain limited. Concrete shrinkage may pose a concern for CFFTs, as in these members the curing of concrete takes place inside the FRP tube. This paper reports the findings from an experimental study on concrete shrinkage strain measurements for CFFTs manufactured with normal- and high-strength concrete (NSC and HSC). A total of 6 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured, with 3 specimens each manufactured using NSC and HSC. The specimens were instrumented with surface and embedded strain gauges to monitor shrinkage development of exposed concrete and concrete sealed inside the CFFTs, respectively. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths were 44.8 or 83.2 MPa. Analysis of the shrinkage measurements from concrete sealed inside the CFFTs revealed that embedment depth and concrete compressive strength only had minor influences on recorded shrinkage strains. However, an analysis of shrinkage measurements from the exposed concrete surface revealed that higher amounts of shrinkage can occur in HSC. Finally, it was observed that shrinkage strains are significantly higher for concrete exposed at the surface compared to concrete sealed inside the CFFTs.
Directory of Open Access Journals (Sweden)
Abazar Solgi
2017-06-01
Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was
Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform
Institute of Scientific and Technical Information of China (English)
LiaoYa-li; Yangyan; CaoYang
2003-01-01
Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.
Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space
DEFF Research Database (Denmark)
Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T
2009-01-01
Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astr......Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...... concentrations observed in connection with neuronal stimulation, the actions of the Na(+)/K(+)/Cl(-) (NKCC1) and the Na(+)/HCO(3) (-) (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model...
Mathematical model for creep and thermal shrinkage of concrete at high temperature
International Nuclear Information System (INIS)
Bazant, Z.P.
1983-01-01
Based on the existing limited test data, it is possible to set up an approximate constitutive model for creep and shrinkage at temperatures above 100 0 C, up to about 400 0 C. The model presented here describes the effect of various constant temperatures on the creep rate and the rate of aging, similar effects of the specific water content, the creep increase caused by simultaneous changes in moisture content, the thermal volume changes as well as the volume changes caused by changes in moisture content (drying shrinkage or thermal shrinkage), and the effect of pore pressure produced by heating. Generalizations to time-variable stresses and multiaxial stresses are also given. The model should allow more realistic analysis of reactor vessels and containments for accident situations, of concrete structures subjected to fire, of vessels for coal gasification or liquefaction, etc. (orig.)
Calcium silicate structure and carbonation shrinkage of a tobermorite-based material
International Nuclear Information System (INIS)
Matsushita, Fumiaki; Aono, Yoshimichi; Shibata, Sumio
2004-01-01
Carbonated autoclaved aerated concretes (AACs) show no shrinkage at a degree of carbonation approximately less than 20%. The 29 Si MAS NMR spectrum showed that at a degree of carbonation less than 25%, the typical double-chain silicate anion structure of tobermorite-11A was well maintained and interlayer Ca ions were exchanged with protons. This corresponded to the absence of carbonation shrinkage at a degree of carbonation less than 20%. When the degree of carbonation increased from 25% to 50% up to 60%, the double-chain silicate anion structure of tobermorite-11A was decomposed and Ca ions in the Ca-O layers were dissolved, showing a possible mechanism of carbonation shrinkage
Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars
DEFF Research Database (Denmark)
Bentz, D. P.; Geiker, Mette Rica; Hansen, Kurt Kielsgaard
2001-01-01
Fundamental studies of the early-age desiccation of cement-based materials with and without a shrinkage-reducing admixture (SRA) have been performed. Studies have been conducted under both sealed and drying conditions. Physical measurements include mass loss, surface tension, X-ray absorption to ...... to low w/c ratio concretes undergoing self-desiccation, in addition to their normal usage to reduce drying shrinkage.......Fundamental studies of the early-age desiccation of cement-based materials with and without a shrinkage-reducing admixture (SRA) have been performed. Studies have been conducted under both sealed and drying conditions. Physical measurements include mass loss, surface tension, X-ray absorption...
Directory of Open Access Journals (Sweden)
P. Bernardi
2016-07-01
Full Text Available Shrinkage effects on short-term behavior of reinforced concrete elements are often neglected both in design code provisions and in numerical simulations. However, it is known that their influence on serviceability performance can be significant, especially in case of lightly-reinforced beams. As a matter of fact, the restraint provided by the reinforcement on concrete determines a reduction of the cracking load of the structural element, as well as an increase of its deflection. This paper deals with the modeling of early-age shrinkage effects in the field of smeared crack approaches. To this aim, an existing non-linear constitutive relation for cracked reinforced concrete elements is extended herein to include early-age concrete shrinkage. Careful verifications of the model are carried out by comparing numerical results with significant experimental data reported in technical literature, providing a good agreement both in terms of global and local behavior.
Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope
Energy Technology Data Exchange (ETDEWEB)
Lorut, F.; Imbert, G. [ST Microelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Roggero, A. [Centre National d' Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse (France)
2013-08-28
In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.
Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM
Directory of Open Access Journals (Sweden)
Isafiq M.
2016-01-01
Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.
Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M
The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and
Directory of Open Access Journals (Sweden)
William Fedrigo
2017-09-01
Full Text Available Full-depth recycling with portland cement (FDR-PC has been widely used for pavement rehabilitation; however, doubts remain regarding factors affecting some properties of the recycled material. Aiming on quantifying the effects of those factors on the strength, drying shrinkage, erodibility, capillary rise and absorption of cement-treated mixtures (CTM of reclaimed asphalt pavement (RAP and graded crushed stone, tests were conducted considering different RAP contents, cement contents, compaction efforts and curing times. Cement addition increased the mixtures strength and reduced their erodibility and capillary flow characteristics, but increased shrinkage. Low cement contents resulted in acceptable strength for CTM, but in high capillary rise and absorption, not being suitable if the layer is exposed to long periods of water soaking. Higher compaction effort led to similar effects as cement addition, counterbalancing low cement contents usage and reducing costs and shrinkage cracking risk. Strength and shrinkage showed higher growth rates at early stages, and then precautions should be taken in order to avoid moisture loss. Increasing RAP content decreased strength; though, RAP effect on the other properties was statistically non-significant, indicating a similar behaviour as CTM without RAP. Considering the studied properties, the mixture with most satisfactory behaviour for field applications was identified. The results highlighted strength is not the only property to be considered when designing FDR-PC mixtures; although presenting acceptable strength, some mixtures may fail due to shrinkage cracking or erosion, when exposed to water content variations. Keywords: Full-depth recycling with cement, Strength, Drying shrinkage, Erodibility, Capillary rise, Absorption
Song, Q Chelsea; Wee, Serena; Newman, Daniel A
2017-12-01
To reduce adverse impact potential and improve diversity outcomes from personnel selection, one promising technique is De Corte, Lievens, and Sackett's (2007) Pareto-optimal weighting strategy. De Corte et al.'s strategy has been demonstrated on (a) a composite of cognitive and noncognitive (e.g., personality) tests (De Corte, Lievens, & Sackett, 2008) and (b) a composite of specific cognitive ability subtests (Wee, Newman, & Joseph, 2014). Both studies illustrated how Pareto-weighting (in contrast to unit weighting) could lead to substantial improvement in diversity outcomes (i.e., diversity improvement), sometimes more than doubling the number of job offers for minority applicants. The current work addresses a key limitation of the technique-the possibility of shrinkage, especially diversity shrinkage, in the Pareto-optimal solutions. Using Monte Carlo simulations, sample size and predictor combinations were varied and cross-validated Pareto-optimal solutions were obtained. Although diversity shrinkage was sizable for a composite of cognitive and noncognitive predictors when sample size was at or below 500, diversity shrinkage was typically negligible for a composite of specific cognitive subtest predictors when sample size was at least 100. Diversity shrinkage was larger when the Pareto-optimal solution suggested substantial diversity improvement. When sample size was at least 100, cross-validated Pareto-optimal weights typically outperformed unit weights-suggesting that diversity improvement is often possible, despite diversity shrinkage. Implications for Pareto-optimal weighting, adverse impact, sample size of validation studies, and optimizing the diversity-job performance tradeoff are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.
2014-01-01
We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227