WorldWideScience

Sample records for adaptive spectral doppler

  1. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    of matched filters (one for each veloc- ity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out....... Simulations in Field II for pul- sating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior per- formance for short observation...

  2. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    Science.gov (United States)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  3. Doppler spectral characteristics of infrainguinal vein bypasses

    DEFF Research Database (Denmark)

    Nielsen, Tina G; von Jessen, F; Sillesen, H;

    1993-01-01

    With the aim of assessing the velocity profile of femoropopliteal and femorocrural vein bypasses, 128 patients undergoing infrainguinal vein bypass surgery entered a postoperative Duplex surveillance protocol, which included clinical assessment and Duplex scanning, using Doppler spectral analysis...

  4. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    Science.gov (United States)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.

  5. Doppler ultrasound spectral enhancement using the Gabor transform-based spectral subtraction.

    Science.gov (United States)

    Zhang, Yu; Zhang, Hong

    2005-10-01

    Most of the important clinical indices of blood flow are estimated from the spectrograms of Doppler ultrasound (US) signals. Any noise may degrade the readability of the spectrogram and the precision of the clinical indiCes, so the spectral enhancement plays an important role in Doppler US signal processing. A new Doppler US spectral enhancement method is proposed in this paper and implemented in three main steps: the Gabor transform is used to compute the Gabor coefficients of a Doppler US signal, the spectral subtraction is performed on the magnitude of the Gabor coefficients, and the Gabor expansion with the spectral subtracted Gabor coefficients is used to reconstruct the denoised Doppler US signal. The different analysis and synthesis windows are examined in the Gabor transform and expansion. The signal-to-noise ratio (SNR) improvement together with the overall enhancement of spectrograms are examined on the simulated Doppler US signals from a femoral artery. The results show the denoising method based on the orthogonal-like Gabor expansion achieves the best denoising performance. The experiments on some clinical Doppler US signals from umbilical arteries confirm the superior denoising performance of the new method.

  6. Post-Doppler Adaptive Digital Beamforming of Skywave Radar

    Directory of Open Access Journals (Sweden)

    Chen Xixin

    2016-08-01

    Full Text Available The analytical expression of shortwave interference in the range-Doppler domain is derived and is found to exhibit a constant-amplitude spectrum ridge parallel to the range axis. The spatial nonstationarity of the shortwave interference induced by ionosphere perturbation is then analyzed and is found to be equivalent to the amplitude-phase error between the same frequency points of shortwave interference on different antenna elements; hence, the above mentioned spatial nonstationarity only a has a slight effect on the performance of Adaptive Digital BeamForming (ADBF. On the basis of the above analyses, this paper presents a post-Doppler ADBF approach for skywave radar. This approach involves transforming the received signal in each antenna element into a range-Doppler domain and then performing adaptive processing at each Doppler frequency point. The real radar data processing conducted in this study shows that the ADBF approach has a good interference suppression performance and strong robustness.

  7. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    International Nuclear Information System (INIS)

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the Λ scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The |Fg = 3> → |Fe = 4> resonance pumping can result in the ground state |Fg = 4, mF = 4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg = 4> → |Fe = 3> transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field. (atomic and molecular physics)

  8. Blood velocity estimation using ultrasound and spectral iterative adaptive approaches

    DEFF Research Database (Denmark)

    Gudmundson, Erik; Jakobsson, Andreas; Jensen, Jørgen Arendt;

    2011-01-01

    This paper proposes two novel iterative data-adaptive spectral estimation techniques for blood velocity estimation using medical ultrasound scanners. The techniques make no assumption on the sampling pattern of the emissions or the depth samples, allowing for duplex mode transmissions where B......-mode images are interleaved with the Doppler emissions. Furthermore, the techniques are shown, using both simplified and more realistic Field II simulations as well as in vivo data, to outperform current state-of-the-art techniques, allowing for accurate estimation of the blood velocity spectrum using only 30...

  9. Spectrally selective optical pumping in Doppler-broadened cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Hai; Zeng Xian-Jin; Li Qing-Meng; Huang Qiang; Sun Wei-Min

    2013-01-01

    The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations.The process,described by a three-level model with the A scheme,shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms.The |Fg =3> → |Fe-4> resonance pumping can result in the ground state |Fg =4,mF =4> sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg =4.To enhance the anisotropy in the ground state,we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line |Fg =4> → |Fe =3>transition,in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.

  10. Correlation between Spectral Index and Doppler Factor for a Sample of Fermi Blazars

    Indian Academy of Sciences (India)

    J. Tao; J. H. Fan; H. J. Pan; D. X. Wu; S. H. Li

    2014-09-01

    Relativistic beaming effect is important for blazars. In a very recent work, -ray Doppler factors were calculated for a sample of Fermi blazars (Fan et al. 2013). In this work, we investigated the correlation between the Doppler factor and the effective spectral index, 4OX, and found an anticorrelation between them.

  11. A quadtree-adaptive spectral wave model

    Science.gov (United States)

    Popinet, Stéphane; Gorman, Richard M.; Rickard, Graham J.; Tolman, Hendrik L.

    A spectral wave model coupling a quadtree-adaptive discretisation of the two spatial dimensions with a standard discretisation of the two spectral dimensions is described. The implementation is greatly simplified by reusing components of the Gerris solver (for spatial advection on quadtrees) and WAVEWATCH III (for spectral advection and source terms). Strict equivalence between the anisotropic diffusion and spatial filtering methods for alleviation of the Garden Sprinkler Effect (GSE) is demonstrated. This equivalence facilitates the generalisation of GSE alleviation techniques to quadtree grids. For the case of a cyclone-generated wave field, the cost of the adaptive method increases linearly with spatial resolution compared to quadratically for constant-resolution methods. This leads to decrease in runtimes of one to two orders of magnitude for practical spatial resolutions. Similar efficiency gains are shown to be possible for global spectral wave forecasting.

  12. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  13. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler.

    Science.gov (United States)

    Soler, Marta; Dominguez, Elisabet; Lucas, Xiomara; Novellas, Rosa; Gomes-Coelho, Kassia Valeria; Espada, Yvonne; Agut, Amalia

    2016-08-01

    The aim of this study was to evaluate whether the comparison between the ultrasonographic features of canine mammary tumours, assessed by B-Mode, colour Doppler, power Doppler, spectral Doppler, and histopathologic features, would help to differentiate if a tumour is benign or malignant. Ultrasonographic examinations of 104 tumours were performed. Volume, margins, presence of a capsule, echotexture and presence and distribution of the vascular flow of the tumours were evaluated. All the tumours were surgically removed, submitted for histopathologic examination and classified in two groups: Group I (benign tumours) and Group II (malignant tumours). Echotexture was the only parameter evaluated by B-Mode ultrasonography where significant differences were found (pbenign tumours, the most common vascular pattern was the peripheral, showing significant differences (pgland tumours may help, in a first examination of the tumour, to differentiate between benign and malignant tumours; however to reach a definitive diagnosis histological study is required.

  14. Comparison between ultrasonographic findings of benign and malignant canine mammary gland tumours using B-mode, colour Doppler, power Doppler and spectral Doppler.

    Science.gov (United States)

    Soler, Marta; Dominguez, Elisabet; Lucas, Xiomara; Novellas, Rosa; Gomes-Coelho, Kassia Valeria; Espada, Yvonne; Agut, Amalia

    2016-08-01

    The aim of this study was to evaluate whether the comparison between the ultrasonographic features of canine mammary tumours, assessed by B-Mode, colour Doppler, power Doppler, spectral Doppler, and histopathologic features, would help to differentiate if a tumour is benign or malignant. Ultrasonographic examinations of 104 tumours were performed. Volume, margins, presence of a capsule, echotexture and presence and distribution of the vascular flow of the tumours were evaluated. All the tumours were surgically removed, submitted for histopathologic examination and classified in two groups: Group I (benign tumours) and Group II (malignant tumours). Echotexture was the only parameter evaluated by B-Mode ultrasonography where significant differences were found (pmammary gland tumours may help, in a first examination of the tumour, to differentiate between benign and malignant tumours; however to reach a definitive diagnosis histological study is required. PMID:27473987

  15. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  16. The Doppler Effect and Spectral Energy Distribution of Blazars

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relativistic beaming model is adopted to discuss quantitatively the observational differences between radio-selected BL Lac objects (RBLs) and X-ray-selected BL Lac objects (XBLs), and between BL Lac objects and fiat spectrum radio quasars (FSRQs). The main results are the following: (1) In the Doppler cor-rected color-color (αin ro-αin ox -αox) diagram, XBLs and FSRQs occupy separated regions,while RBLs bridge the gap between them. These properties suggest that similar in- trinsic physical processes operate in all the objects under a range of intrinsic physical conditions. (2) Our results are consistent with the results of Sambruna, Maraschi and Urry (1996) from other methods. We show the αxox introduced by Sambruna to be a good index for describing the energy distribution because it represents the intrinsic energy distribution and includes the Doppler correction. (3) The Doppler effect of relativistic beaming is the main mechanism, and the physical differences (such as magnetic fields, electron energies) are also important complementary fac-tors for understanding the relation between XBLs and RBLs;

  17. Assessment of Regional Myocardial Displacement via Spectral Tissue Doppler Compared with Color Tissue Tracking

    Directory of Open Access Journals (Sweden)

    Zahra Ojaghi-Haghighi

    2008-12-01

    Full Text Available Background: The recent developments in tissue Doppler imaging (TDI now more than ever permit the quantification of the myocardial function. In the current systems, tissue tracking or displacement curves are generated from color tissue Doppler data through the instantaneous temporal integral of velocity-time curves. Methods: The purpose of the present study was to assess regional myocardial displacement via spectral TDI. Maximum myocardial velocities were extracted from spectral pulsed tissue Doppler images using a developed computer program and were integrated throughout the cardiac cycle. Spectral tissue Doppler echocardiography was performed to evaluate longitudinal and radial functions in 20 healthy men, and the calculated end-systolic displacements were subsequently compared with the displacements measured from the same areas via color tissue tracking. Results: According to the Bland-Altman analysis between spectral tissue tracking and color tissue tracking, the significant arithmetic mean was 7.34 mm with SD mean differences of ±2.24 mm in all of the evaluated segments. Despite significant differences (p<0.001, there was a good significant correlation between the two methods (r=0.79, p<0.001. Conclusion: A verification study showed that the proposed approach had the ability to assess regional myocardial displacement using spectral TDI, which can be used in a wider range of equipment than is currently possible.

  18. Adaptable Multivariate Calibration Models for Spectral Applications

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,EDWARD V.

    1999-12-20

    Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

  19. Investigation of retinal vessel autoregulation using real-time spectral domain Doppler optical coherence tomography

    Science.gov (United States)

    Bower, Bradley A.; Zhao, Mingtao; Izatt, Joseph A.

    2006-02-01

    Investigation of the autoregulatory mechanism of human retinal perfusion was conducted with a novel real-time spectral domain Doppler optical coherence tomography (SDOCT) system. Volumetric, time-sequential, and Doppler flow imaging was performed in the superior arcade region on normal healthy subjects breathing normal room air and 100% oxygen. The real-time Doppler SDOCT system displays fully processed, high-resolution [512 (axial) x 1000 (lateral) pixels] B-scans at 17 frames/sec in volumetric and time-sequential imaging modes, and also displays fully processed overlaid color Doppler flow images comprising 512 (axial) x 500 (lateral) pixels at 6 frames/sec. OCT fundus images generated from volumetric datasets updated in real time (up to 2 fundus images/sec for 100 x 100 pixel volumes) were used to image and localize retinal vessels for time-sequential and Doppler flow analysis. In preliminary measurements, data acquired following 5 minutes of 100% oxygen inhalation was compared with that acquired 5 minutes post-inhalation. The same arterial segments examined at both time points exhibit constriction in vessel diameter under pure oxygen inhalation of up to 7% and reduction in peak flow velocity as great as 38%, both of which are in good agreement with previous laser Doppler velocimetry studies.

  20. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    Science.gov (United States)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  1. Perceptual Adaptation of Voice Gender Discrimination with Spectrally Shifted Vowels

    Science.gov (United States)

    Li, Tianhao; Fu, Qian-Jie

    2011-01-01

    Purpose: To determine whether perceptual adaptation improves voice gender discrimination of spectrally shifted vowels and, if so, which acoustic cues contribute to the improvement. Method: Voice gender discrimination was measured for 10 normal-hearing subjects, during 5 days of adaptation to spectrally shifted vowels, produced by processing the…

  2. Assessment of spectral Doppler in preclinical ultrasound using a small-size rotating phantom.

    Science.gov (United States)

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M; Hadoke, Patrick W F; Gray, Gillian A; Hoskins, Peter R

    2013-08-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (measured errors for beam-target angles of 50°-80°. However, for angles of 10°-40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  3. Statistical characteristics of Doppler spectral width as observed by the conjugate SuperDARN radars

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    Full Text Available We performed a statistical analysis of the occurrence distribution of Doppler spectral width around the day-side high-latitude ionosphere using data from the conjugate radar pair composed of the CUTLASS Iceland-East radar in the Northern Hemisphere and the SENSU Syowa-East radar in the Southern Hemisphere. Three types of spectral width distribution were identified: (1 an exponential-like distribution in the lower magnetic latitudes (below 72°, (2 a Gaussian-like distribution around a few degrees magnetic latitude, centered on 78°, and (3 another type of distribution in the higher magnetic latitudes (above 80°. The first two are considered to represent the geophysical regimes such as the LLBL and the cusp, respectively, because they are similar to the spectral width distributions within the LLBL and the cusp, as classified by Baker et al. (1995. The distribution found above 80° magnetic latitude has been clarified for the first time in this study. This distribution has similarities to the exponential-like distribution in the lower latitude part, although clear differences also exist in their characteristics. These three spectral width distributions are commonly identified in conjugate hemispheres. The latitudinal transition from one distribution to another exhibits basically the same trend between two hemispheres. There is, however, an interhemispheric difference in the form of the distribution around the cusp latitudes, such that spectral width values obtained from Syowa-East are larger than those from Iceland-East. On the basis of the spectral width characteristics, the average locations of the cusp and the open/closed field line boundary are estimated statistically.

    Key words. Ionosphere (ionosphere-magnetosphere inter-actions; plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers

  4. Modelling Solar Oscillation Power Spectra: II. Parametric Model of Spectral Lines Observed in Doppler Velocity Measurements

    CERN Document Server

    Vorontsov, Sergei V

    2013-01-01

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements and extends naturally to the analysis of high-frequency pseudo modes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  5. Doppler radar spectral width broadening due to beamwidth and wind shear

    Directory of Open Access Journals (Sweden)

    G. D. Nastrom

    Full Text Available The spectral width observed by Doppler radars can be due to several effects including the atmospheric turbulence within the radar sample volume plus effects associated with the background flow and the radar geometry and configuration. This study re-examines simple models for the effects due to finite beamwidth and vertical shear of the horizontal wind. Analytic solutions of 1- and 2-dimensional models are presented. Comparisons of the simple 2-dimensional model with numerical integrations of a 3-dimensional model with a symmetrical Gaussian beam show that the 2-dimensional model is usually adequate. The solution of the 2-dimensional model gives a formula that can be applied easily to large data sets. Analysis of the analytic solutions of the 2-dimensional model for off-vertical beams reveals a term that has not been included in mathematical formulas for spectral broadening in the past. This term arises from the simultaneous effects of the changing geometry due to curvature within a finite beamwidth and the vertical wind shear. The magnitude of this effect can be comparable to that of the well-known effects of beam-broadening and wind shear, and since it can have either algebraic sign, it can significantly reduce (or increase the expected spectral broadening, although under typical conditions it is smaller than the beam-broadening effect. The predictions of this simple model are found to be consistent with observations from the VHF radar at White Sands Missile Range, NM.

  6. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  7. A software sampling frequency adaptive algorithm for reducing spectral leakage

    Institute of Scientific and Technical Information of China (English)

    PAN Li-dong; WANG Fei

    2006-01-01

    Spectral leakage caused by synchronous error in a nonsynchronous sampling system is an important cause that reduces the accuracy of spectral analysis and harmonic measurement.This paper presents a software sampling frequency adaptive algorithm that can obtain the actual signal frequency more accurately,and then adjusts sampling interval base on the frequency calculated by software algorithm and modifies sampling frequency adaptively.It can reduce synchronous error and impact of spectral leakage;thereby improving the accuracy of spectral analysis and harmonic measurement for power system signal where frequency changes slowly.This algorithm has high precision just like the simulations show,and it can be a practical method in power system harmonic analysis since it can be implemented easily.

  8. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density

    Science.gov (United States)

    Wojtkiewicz, S.; Liebert, A.; Rix, H.; Maniewski, R.

    2011-12-01

    In classical laser Doppler (LD) perfusion measurements, zeroth- and first-order moments of the power spectral density of the LD signal are utilized for the calculation of a signal corresponding to the concentration, speed and flow of red blood cells (RBCs). We have analysed the nonlinearities of the moments in relation to RBC speed distributions, parameters of filters utilized in LD instruments and the signal-to-noise ratio. We have developed a new method for fast simulation of the spectrum of the LD signal. The method is based on a superposition of analytically calculated Doppler shift probability distributions derived for the assumed light scattering phase function. We have validated the method by a comparison of the analytically calculated spectra with results of Monte Carlo (MC) simulations. For the semi-infinite, homogeneous medium and the single Doppler scattering regime, the analytical calculation describes LD spectra with the same accuracy as the MC simulation. The method allows for simulating the LD signal in time domain and furthermore analysing the index of perfusion for the assumed wavelength of the light, optical properties of the tissue and concentration of RBCs. Fast simulations of the LD signal in time domain and its frequency spectrum can be utilized in applications where knowledge of the LD photocurrent is required, e.g. in the development of detectors for tissue microperfusion monitoring or in measurements of the LD autocorrelation function for perfusion measurements. The presented fast method for LD spectra calculation can be used as a tool for evaluation of signal processing algorithms used in the LD method and/or for the development of new algorithms of the LD flowmetry and imaging. We analysed LD spectra obtained by analytical calculations using a classical algorithm applied in classical LD perfusion measurements. We observed nonlinearity of the first moment M1 for low and high speeds of particles (v 10 mm s-1). It was also noted that the

  9. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery

    Science.gov (United States)

    Goldstein, Neil; Fox, Marsha; Adler-Golden, Steven; Gregor, Brian

    2013-03-01

    Field test results are presented for a prototype long-wave adaptive imager that provides both hyperspectral imagery and contrast imagery based on the direct application of hyperspectral detection algorithms in hardware. Programmable spatial light modulators are used to provide both spectral and spatial resolution using a single element detector. Programmable spectral and spatial detection filters can be used to superimpose any possible analog spectral detection filter on the image. In this work, we demonstrate three modes of operation, including hyperspectral imagery, and one and two-dimensional imagery using a generalized matched filter for detection of a specific target gas within the scene.

  10. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    Science.gov (United States)

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  11. An example of scaling MST Doppler spectra using median spectra, spectral smoothing, and velocity tracing

    Science.gov (United States)

    Green, J. L.

    1986-01-01

    Although automatic, computer scaling methods appeared at the start of the MST (mesosphere stratosphere troposphere) radar technique, there is a continuing need for scaling algorithms that perform editing functions and increase the sensitivity of radar by post processing. The scaling method presented is an adaptation of the method of scaling MST Doppler spectra presented by Rastogi (1984). A brief overview of this method is as follows: a median spectrum is calculated from several sequential spectra; the median noise value is subtracted from this derived spectrum; the median spectrum is smoothed; the detection/nondetection decision is made by comparing the smoothed spectrum to the variance of the smoothed noise; and if a signal is detected, then the half-power points of the smoothed echo spectrum are used to place limits on the evaluation of the first two moments of the unsmoothed median spectrum. In all of the above steps, the algorithm is guided by tracing the expected velocity range upward from the lowest range as far as possible. The method is discussed in more detail.

  12. Adaptive spectral identification techniques in presence of undetected non linearities

    CERN Document Server

    Cella, G; Guidi, G M

    2002-01-01

    The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise

  13. A Spectral Adaptive Mesh Refinement Method for the Burgers equation

    Science.gov (United States)

    Nasr Azadani, Leila; Staples, Anne

    2013-03-01

    Adaptive mesh refinement (AMR) is a powerful technique in computational fluid dynamics (CFD). Many CFD problems have a wide range of scales which vary with time and space. In order to resolve all the scales numerically, high grid resolutions are required. The smaller the scales the higher the resolutions should be. However, small scales are usually formed in a small portion of the domain or in a special period of time. AMR is an efficient method to solve these types of problems, allowing high grid resolutions where and when they are needed and minimizing memory and CPU time. Here we formulate a spectral version of AMR in order to accelerate simulations of a 1D model for isotropic homogenous turbulence, the Burgers equation, as a first test of this method. Using pseudo spectral methods, we applied AMR in Fourier space. The spectral AMR (SAMR) method we present here is applied to the Burgers equation and the results are compared with the results obtained using standard solution methods performed using a fine mesh.

  14. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    Science.gov (United States)

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  15. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    2010-01-01

    New ultrasound techniques for blood flow estimation have been investigated in-vivo. These are vector velocity estimators (Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane Wave Excitation) and adaptive spectral estimators (Blood spectral Power Capon and Blood...

  16. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance......-vivo with the two techniques on ten volunteers were evaluated quantitatively and qualitatively and compared to the conventional spectral Doppler method. Descriptive statistics, kappa statistics and multiple t-tests were performed and it was shown that BAPES and BPC can produce useful spectrograms with a narrower...... observation window compared to the conventional spectral Doppler method. The thesis shows, that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight in to the complexity of fluid dynamics. This could give the clinician a new tool...

  17. Left Ventricular Diastolic Dysfunction Assessed by Conventional Echocardiography and Spectral Tissue Doppler Imaging in Adolescents With Arterial Hypertension.

    Science.gov (United States)

    Morka, Aleksandra; Szydlowski, Leslaw; Moric-Janiszewska, Ewa; Mazurek, Boguslaw; Markiewicz-Loskot, Grazyna; Stec, Sebastian

    2016-02-01

    Compared to conventional echocardiography, spectral tissue Doppler imaging (s-TDI) allows more precise evaluation of diastolic cardiac function. The purpose of this study was to conduct s-TDI to analyze the slow movement of the left ventricular (LV) myocardium in adolescents with systemic arterial hypertension (HT) and to determine whether patients with HT suffer from LV diastolic dysfunction. The study group comprised 69 consecutive patients (48 boys and 21 girls aged 14-17 years [mean, 15.5 ± 1.1 years]) with primary HT, and the control group comprised 48 healthy participants (24 boys and 24 girls aged 14-17 years [mean, 15.8 ± 1.3 years]). Physical examinations, 24-hour arterial blood pressure monitoring, conventional 2-dimensional and Doppler echocardiography, and s-TDIs were performed. Analysis revealed that study group participants were significantly heavier and had greater LV mass indices than controls (P annuli during examination.Changes in the myocardium appear similar to those seen in adults. PMID:26937911

  18. Assessment of Normal Vertebral Arteries Vs. Normal Internal Carotid and Common Carotid Arteries Blood Flow Spectral Doppler Indices

    Directory of Open Access Journals (Sweden)

    Sh. Sharif Kashani

    2005-08-01

    Full Text Available Introduction & Background: Vertebrobasilar insufficiency is the main cause of cerebrovascular accidents (CVAs in 20% of cases. There are few reports regarding spectral Doppler indices (SDIs of vertebral arteries (VAs normal blood flow. The objective of this study is to provide basic reference data about SDIs of VAs nor-mal blood flow separately, and in comparison with internal and common carotid arteries (ICAs and CCAs normal blood flows SDIs, for better and earlier detection of disordered SDIs of these arteries blood flow. Patients & Methods: This cross-sectional study was performed in Amir Alam hospital by three radiologists ex-perienced in vascular color Doppler sonography (CDS and spectral Doppler sonography (SDS from February 2002 till March 2004, on 70 normal patients. CDS and SDS of right and left vertebral arteries (RVA and LVA, right and left common carotid arteries (RCCA and LCCA, and right and left internal carotid arteries (RICA and LICA were performed. SDIs consisted of peak systolic velocity (PSV, end- diastolic velocity (EDV, and resistive index (RI values of these arteries blood flows and were assessed and compared with one another. Fi-nally all data was collected in SPSS version 12 software, and analyzed with the Student's T-test. Results: In this study, the mean PSV, EDV, and RI values of RVA blood flow were respectively 41.60 ± 9.6 cm/s, 14.60 ± 3.7 cm/s and 0.65 ± 0.06; the mean PSV, EDV and RI values of LVA blood flow were respectively 42.20 ± 10.2 cm/s, 15.20 ± 4.2 cm/s, and 0.64 ± 0.05. There was not statistically significant difference between the mean PSV, EDV, and RI values of RVA and LVA blood flows (P value > 0.1. The mean PSV and EDV val-ues of VAs blood flows were significantly lower than the mean PSV and EDV values of CCAs and ICCAs blood flows respectively (p-value 0.05.

  19. Spectral pulsed-wave tissue Doppler imaging lateral-to-septal delay fails to predict clinical or echocardiographic outcome after cardiac resynchronization therapy

    NARCIS (Netherlands)

    O.I.I. Soliman (Osama Ibrahim Ibrahim); D.A.M.J. Theuns (Dominic); M.L. Geleijnse (Marcel); A. Nemes (Attila); K. Caliskan (Kadir); W.B. Vletter (Wim); L.J.L.M. Jordaens (Luc); F.J. ten Cate (Folkert)

    2007-01-01

    textabstractAims: The current study sought to assess if pre-implantation lateral-to-septal delay (LSD) ≥60 ms assessed by spectral pulsed-wave myocardial tissue Doppler imaging (PW-TDI) could predict successful long-term outcome after cardiac resynchronization therapy (CRT). Methods and results Sixt

  20. Adaptive camouflage in the VIS and IR spectral range: main principles and mechanisms

    Science.gov (United States)

    Schwarz, Alexander

    2015-10-01

    This paper presents a survey of main applicable technical principles and mechanisms for adaptive camouflage in the visible (VIS) and infrared (IR) spectral ranges. All principles are described by their operation method and technical data such as the active spectral range, the degree and speed of adaptation, weight, power consumption, robustness, usability, lifetime, technology readiness level (TRL) etc.. The paper allows to compare the different principles and to assess them with regard to an application to an adaptive camouflage system.

  1. Magnetic local time, substorm, and particle precipitation-related variations in the behaviour of SuperDARN Doppler spectral widths

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2004-12-01

    Full Text Available Super Dual Auroral Radar Network (DARN radars often detect a distinct transition in line-of-sight Doppler velocity spread, or spectral width, from <50ms–1 at lower latitude to >200ms–1 at higher latitude. They also detect a similar boundary, namely the range at which ionospheric scatter with large spectral width suddenly commences (i.e. without preceding scatter with low spectral width. The location and behaviour of the spectral width boundary (SWB (and scatter boundary and the open-closed magnetic field line boundary (OCB are thought to be closely related. The location of the nightside OCB can be inferred from the poleward edge of the auroral oval determined using energy spectra of precipitating particles measured on board Defence Meteorology Satellite Program (DMSP satellites. Observations made with the Halley SuperDARN radar (75.5° S, 26.6° W, geographic; –62.0°Λ and the Tasman International Geospace Environment Radar (TIGER (43.4° S, 147.2° E; –54.5°Λ are used to compare the location of the SWB with the DMSP-inferred OCB during 08:00 to 22:00 UT on 1 April 2000. This study interval was chosen because it includes several moderate substorms, whilst the Halley radar provided almost continuous high-time resolution measurements of the dayside SWB location and shape, and TIGER provided the same in the nightside ionosphere. The behaviour of the day- and nightside SWB can be understood in terms of the expanding/contracting polar cap model of high-latitude convection change, and the behaviour of the nightside SWB can also be organised according to substorm phase. Previous comparisons with DMSP OCBs have proven that the radar SWB is often a reasonable proxy for the OCB from dusk to just past midnight (Chisham et al., 2004. However, the present case study actually suggests that the nightside SWB is often a better proxy for the poleward edge of Pedersen conductance enhanced by hot particle precipitation in the

  2. Experimental demonstration of an adaptive architecture for direct spectral imaging classification.

    Science.gov (United States)

    Dunlop-Gray, Matthew; Poon, Phillip K; Golish, Dathon; Vera, Esteban; Gehm, Michael E

    2016-08-01

    Spectral imaging is a powerful tool for providing in situ material classification across a spatial scene. Typically, spectral imaging analyses are interested in classification, though often the classification is performed only after reconstruction of the spectral datacube. We present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator, the AFSSI-C measures specific projections of the spectral datacube which are generated by an adaptive Bayesian classification and feature design framework. We experimentally demonstrate multiple order-of-magnitude improvement of classification accuracy in low signal-to-noise (SNR) environments when compared to legacy spectral imaging systems. PMID:27505794

  3. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  4. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    International Nuclear Information System (INIS)

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  5. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    OpenAIRE

    Villain, J.-P.; André, R; M. Pinnock; R. A. Greenwald; Hanuise, C.

    2002-01-01

    The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Perio...

  6. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers.

    Science.gov (United States)

    Li, Youzhi; Hoskins, Alan; Schlottau, Friso; Wagner, Kelvin H; Embry, Carl; Babbitt, William Randall

    2006-09-01

    We introduce a new approach to coherent lidar range-Doppler sensing by utilizing random-noise illuminating waveforms and a quantum-optical, parallel sensor based on spatial-spectral holography (SSH) in a cryogenically cooled inhomogeneously broadened absorber (IBA) crystal. Interference between a reference signal and the lidar return in the spectrally selective absorption band of the IBA is used to sense the lidar returns and perform the front-end range-correlation signal processing. Modulating the reference by an array of Doppler compensating frequency shifts enables multichannel Doppler filtering. This SSH sensor performs much of the postdetection signal processing, increases the lidar system sensitivity through range-correlation gain before detection, and is capable of not only Doppler processing but also parallel multibeam reception using the high-spatial resolution of the IBA crystals. This approach permits the use of ultrawideband, high-power, random-noise, cw lasers as ranging waveforms in lidar systems instead of highly stabilized, injection-seeded, and amplified pulsed or modulated laser sources as required by most conventional coherent lidar systems. The capabilities of the IBA media for many tens of gigahertz bandwidth and resolution in the 30-300 kHz regime, while using either a pseudo-noise-coded waveform or just a high-power, noisy laser with a broad linewidth (e.g., a truly random noise lidar) may enable a new generation of improved lidar sensors and processors. Preliminary experimental demonstrations of lidar ranging and simulation on range-Doppler processing are presented. PMID:16912777

  7. Development and testing of a risk reduction high energy laser transmitter for high spectral resolution lidar and Doppler winds lidar

    Science.gov (United States)

    Wang, Jinxue; Leyva, Victor; Hovis, Floyd E.

    2007-09-01

    Spaceborne 3-dimensional winds lidar and spaceborne High Spectral Resolution Lidar (HSRL) for aerosol and clouds are among the high priority future space missions recommended by the recent National Research Council (NRC) Decadal Review. They are expected to provide the important three dimensional winds data and aerosol data critically needed to improve climate models and numerical weather forecasting. HSRL and winds lidar have a common requirement for high energy solid-state lasers with output wavelengths at 1064nm, 532nm and 355nm, which can be achieved with Nd:YAG lasers and 2nd and 3rd harmonic generations. For direct detection winds lidar, only the 355nm output is needed. One of the key development needs is the demonstration of laser transmitter subsystem. Top issues include power and thermal management, lifetime, high energy UV operations, damage and contamination. Raytheon and its partner, Fibertek, have designed and built a space-qualifiable high energy Nd:YAG laser transmitter with funding from Raytheon Internal Research and Development (IR&D). It is intended to serve as a risk-reduction engineering unit and a test bed for the spaceborne HRSL and direct-detection Doppler winds Lidar missions. Close to 900 mJ/pulse at1064nm and a wall-plug efficiency of 6.5% have been achieved with our risk reduction laser. It is currently being characterized and tested at Raytheon Space and Airborne Systems. In this paper, we will discuss the design, build and testing results of this risk reduction high energy laser transmitter.

  8. Seeing Beyond Sight: The Adaptive, Feature-Specific, Spectral Imaging Classifier

    Science.gov (United States)

    Dunlop-Gray, Matthew John

    Spectral imaging, a combination of spectroscopy and imaging, is a powerful tool for providing in situ material classification across a spatial scene. Typically spectral imaging analyses are interested in classification, though conventionally the classification is performed only after reconstruction of the spectral datacube, which can have upwards of 109 signal elements. In this dissertation, I present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator which induces spectral filtering, the AFSSI-C measures specific projections of the spectral datacube which in turn feed an adaptive Bayesian classification and feature design framework. I present my work related to the design, construction, and testing of this instrument, which ultimately demonstrated significantly improved classification accuracy compared to legacy spectral imaging systems by first showing agreement with simulation, and then comparing to expected performance of traditional systems. As a result of its open aperture and adaptive filters, the AFSSI-C achieves 250x better accuracy than pushbroom, whiskbroom, and tunable filter systems for a four-class problem at 0 dB TSNR (task signal-to-noise ratio)---a point where measurement noise is equal to the minimum separation between the library spectra. The AFSSI-C also achieves 100x better accuracy than random projections at 0 dB TSNR.

  9. Avaliação com Doppler colorido e espectral da veia porta de cães Evaluation of portal vein in dogs by color and spectral Doppler imaging

    Directory of Open Access Journals (Sweden)

    Raquel Sartor

    2009-04-01

    Full Text Available A perfusão total do fígado e suas contribuições relativas, pelo sistema portal e pela artéria hepática, podem estar alteradas por vários processos hepáticos, como doença hepato-celular difusa, neoplasia e shunts intra-hepáticos. O estudo do comportamento do fluxo sangüíneo nos vasos do fígado por meio da ultra-sonografia Doppler tem demonstrado que este é um método viável não-invasivo e de grande auxílio, principalmente na avaliação da hemodinâmica portal. São duas as modalidades de ultra-sonografia Doppler com maior aplicação na rotina para avaliação de fluxo nos vasos abdominais, o Doppler espectral e o Doppler colorido. Na doença hepática crônica, ocorre alteração da complacência hepática devido à fibrose ou à cirrose, as quais acarretam alterações vasculares, levando ao aumento da pressão venosa portal. As principais indicações desse exame são os casos em que há suspeita de hipertensão portal. A hemodinâmica portal é avaliada pela mensuração de sua área, da velocidade média, do volume de fluxo no vaso e do índice de congestão portal. Esta revisão de literatura tem como objetivo descrever os princípios físicos básicos da ultra-sonografia Doppler e sua aplicação na avaliação da hemodinâmica portal nos cães.Total hepatic perfusion by portal system and hepatic arteria as well as its respective average contributions, can be affected for several hepatic processes, such as diffuse liver disease, neoplasm and intrahepatic shunts. Blood flow exams of the liver vessels using Doppler ultrasonography, appeared as a viable, non-invasive and helpful diagnostic method for the hemoportal dynamic evaluation. There are two Doppler ultrasonographic modalities most frequently used in routine for evaluation of the abdominal vessels flow, spectral Doppler imaging and color-flow Doppler imaging. In chronic liver disease, alteration of hepatic complacency occurs because of either fibrosis or cirrhosis

  10. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Science.gov (United States)

    Villain, J.-P.; André, R.; Pinnock, M.; Greenwald, R. A.; Hanuise, C.

    2002-11-01

    The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

  11. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  12. The Role of Colour Doppler And Spectral Flow Analysis In Pregnancy Induced Hypertension: A Case Control Study

    Directory of Open Access Journals (Sweden)

    Hinal Bhagat

    2015-03-01

    Full Text Available Background: The use of Doppler ultrasound to study blood flow in Obstetrics is of major importance because fetal inaccessibility precludes many other methods of study of fetal circulation. This study was undertaken to assess the role of Doppler in management of Pregnancy induced Hypertension. Methodology: The present case-control study was conducted in the department of Radiology, Govt. Medical College and New Civil Hospital, Surat. Details of obstetric history, age, last menstrual date and underlying risk factor, Doppler study of umbilical artery, fetal middle cerebral artery, both maternal uterine arteries and Ductus venosus was done. Parameters in form of Resistive index (RI, Pulsatility index (PI and systolic/diastolic ratio (S/D of all four arteries were taken. Results: It was observed that 55% cases with pregnancy induced hypertension developed IUGR fetuses while 2% of the IUGR fetus was present in control group. There were 41 (54% cases with IUGR fetuses. Out of which 28 (68% cases with IUGR had fetoplacental Doppler abnormality. 13 cases had abnormally low PI of MCA with normal umbilical arterial Doppler indices, out of which 12 patients had abnormal fetal outcome. Conclusion: By examining the maternal vessels using Doppler ultrasound it is possible to determine, the risk of complication developing in the course of pregnancy long before clinical signs of preeclampsia appear so that therapeutic measures may be undertaken early. [Natl J Med Res 2015; 5(1.000: 57-60

  13. Regulation of human cutaneous circulation evaluated by laser Doppler flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and prostaglandines.

    Science.gov (United States)

    Kvandal, Per; Stefanovska, Aneta; Veber, Mitja; Kvernmo, Hebe Désirée; Kvermmo, Hebe Désirée; Kirkebøen, Knut Arvid

    2003-05-01

    Nitric oxide (NO) and prostaglandines (PGs) are important in regulation of vascular tone and blood flow. Their contribution in human cutaneous circulation is still uncertain. We inhibited NO synthesis by infusing N(G)-monomethyl-L-arginine (L-NMMA) in the brachial artery (16 micromol/min for 5 min) and reversed it by intraarterial infusion of L-arginine (40 micromol/min for 7.5 min). PG synthesis was inhibited by the cyclooxygenase inhibitor aspirin (600 mg over 5 min intravenously). Basal cutaneous perfusion and perfusion responses during iontophoresis with the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were recorded by laser Doppler flowmetry (LDF). We performed wavelet transforms of the measured signals. Mean spectral amplitude within the frequency interval from 0.0095 to 1.6 Hz and mean and normalized amplitudes of five intervals around 1, 0.3, 0.1, 0.04, and 0.01 Hz were analysed. The oscillations with frequencies around 1, 0.3, 0.1, and 0.04 Hz are influenced by the heartbeat, the respiration, the intrinsic myogenic activity of vascular smooth muscle, and the neurogenic activity of the vessel wall, respectively. We have previously shown that the oscillation with a frequency around 0.01 Hz is modulated by the vascular endothelium. L-NMMA reduced mean value of the LDF signal by approximately 20% (P = 0.0067). This reduction was reversed by L-arginine. Mean value of the LDF signals during ACh and SNP iontophoresis did not change after infusion of L-NMMA. Aspirin did not affect mean value of the LDF signal or the LDF signal during ACh or SNP iontophoresis. Before interventions the only significant difference between the effects of ACh and SNP was observed in the frequency around 0.01 Hz, where ACh increased normalized amplitude to a greater extent than SNP. L-NMMA abolished this difference, whereas it reappeared after infusion of L-arginine (P = 0.0084). Aspirin did not affect this

  14. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    Science.gov (United States)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  15. Spectral saliency via automatic adaptive amplitude spectrum analysis

    Science.gov (United States)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  16. Adaptive Model-Based Mine Detection/Localization using Noisy Laser Doppler Vibration Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E J; Xiang, N; Candy, J V

    2009-04-06

    The acoustic detection of buried mines is hampered by the fact that at the frequencies required for obtaining useful penetration, the energy is quickly absorbed by the ground. A recent approach which avoids this problem, is to excite the ground with a high-level low frequency sound, which excites low frequency resonances in the mine. These resonances cause a low-level vibration on the surface which can be detected by a Laser Doppler Vibrometer. This paper presents a method of quickly and efficiently detecting these vibrations by sensing a change in the statistics of the signal when the mine is present. Results based on real data are shown.

  17. An Adaptive Clutter Suppression Technique for Moving Target Detector in Pulse Doppler Radar

    Directory of Open Access Journals (Sweden)

    A. Mandal

    2014-04-01

    Full Text Available An adaptive system performs the processing by using an architecture having time-varying parameters on the received signals which accompanies with clutters. In this paper, an adaptive moving target detector has been designed to meet the challenges of target detection amidst various levels of clutter environments. The approach has been used that is able to overcome the inherent limitations of conventional systems (e.g. Moving Target Indicator, Fast Fourier Transform etc. having predefined coefficients. In this purpose an optimal design of transversal filter is being proposed along with various weight selection Maps to improve probability of detection in ground based surveillance radar. A modified LMS algorithm based adaptive FIR filter has been implemented utilizing modular CORDIC unit as a main processing element for filtering as well as weight updatation to suppress clutter of various intensity. Extensive MATLAB simulations have been done using various levels of clutter input to show the effectiveness of adaptive moving target detector (AMTD.

  18. Adaptive spectral window sizes for extraction of diagnostic features from optical spectra

    Science.gov (United States)

    Kan, Chih-Wen; Lee, Andy Y.; Nieman, Linda T.; Sokolov, Konstantin; Markey, Mia K.

    2010-07-01

    We present an approach to adaptively adjust the spectral window sizes for optical spectra feature extraction. Previous studies extracted features from spectral windows of a fixed width. In our algorithm, piecewise linear regression is used to adaptively adjust the window sizes to find the maximum window size with reasonable linear fit with the spectrum. This adaptive windowing technique ensures the signal linearity in defined windows; hence, the adaptive windowing technique retains more diagnostic information while using fewer windows. This method was tested on a data set of diffuse reflectance spectra of oral mucosa lesions. Eight features were extracted from each window. We performed classifications using linear discriminant analysis with cross-validation. Using windowing techniques results in better classification performance than not using windowing. The area under the receiver-operating-characteristics curve for windowing techniques was greater than a nonwindowing technique for both normal versus mild dysplasia (MD) plus severe high-grade dysplasia or carcinama (SD) (MD+SD) and benign versus MD+SD. Although adaptive and fixed-size windowing perform similarly, adaptive windowing utilizes significantly fewer windows than fixed-size windows (number of windows per spectrum: 8 versus 16). Because adaptive windows retain most diagnostic information while reducing the number of windows needed for feature extraction, our results suggest that it isolates unique diagnostic features in optical spectra.

  19. Spectral Efficiency Optimization for an Interfering Cognitive Radio with Adaptive Modulation and Coding

    CERN Document Server

    Taki, Mehrdad

    2009-01-01

    In this paper, we consider a primary and a cognitive user transmitting over a wireless fading interference channel. The primary user transmits with a constant power and utilizes an adaptive modulation and coding (AMC) scheme satisfying a bit error rate requirement. We propose a link adaptation scheme to maximize the average spectral efficiency of the cognitive radio, while a minimum required spectral efficiency for the primary user is provisioned. The resulting problem is constrained to also satisfy a bit error rate requirement and a power constraint for the cognitive link. The AMC mode selection and power control at the cognitive transmitter is optimized based on the modified signal to noise plus interference ratio feedback of both links. The problem is then cast as a nonlinear discrete optimization problem for which a fast and efficient suboptimum solution is presented. We also present a scheme with rate adaptive and constant power cognitive radio. An important characteristic of the proposed schemes is that...

  20. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  1. Geophysical astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation

    Science.gov (United States)

    Rosenberg, Duane; Fournier, Aimé; Fischer, Paul; Pouquet, Annick

    2006-06-01

    An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe.

  2. A spectrally efficient detect-and-forward scheme with two-tier adaptive cooperation

    KAUST Repository

    Benjillali, Mustapha

    2011-09-01

    We propose a simple relay-based adaptive cooperation scheme to improve the spectral efficiency of "Detect-and-Forward" (DetF) half-duplex relaying in fading channels. In a new common framework, we show that the proposed scheme offers considerable gainsin terms of the achievable information ratescompared to conventional DetF relaying schemes for both orthogonal and non-orthogonal source/relay transmissions. The analysis leads on to a general adaptive cooperation strategy based on the maximization of information rates at the destination which needs to observe only the average signal-to-noise ratios of the links. © 2006 IEEE.

  3. Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar

    Science.gov (United States)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.

  4. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    Science.gov (United States)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  5. Changes in the spectral index of skin-surface laser Doppler signals of nude mice following the injection of CT26 tumor cells.

    Science.gov (United States)

    Liu, Ju-Chi; Hsiu, Hsin; Hsu, Yi-Ping; Tsai, Hung-Chi; Kuo, Chung-Hsien

    2016-01-01

    This study investigated microcirculatory-blood-flow responses in nude mice following the injection of CT26 tumor cells by analyzing the frequency content of skin blood-flow signals recorded on the skin surface. CT26 cells were injected subcutaneously (10^4/100 μl) into the right back flank of each 7-week-old mouse. Three-minute laser Doppler flowmetry (LDF) signals were measured in 60 nude mice. The data sequences were obtained at 1, 2, and 3 weeks after injecting CT26 cells. Mouse tissue samples were cut into sections and examined microscopically to determine the condition of cancer metastasis. Spectral analysis performed after 1 week revealed a significant decrease in the relative energy contribution of the endothelium-related frequency band, and significant increases in those of the myogenic and respiration-related frequency bands of the LDF signals in the metastasis group (n=12). To the best of our knowledge, this is the first study demonstrating the feasibility of evaluating metastasis in animal subjects based on changes in noninvasively measured LDF parameters. Changes in the LDF spectral indexes can be attributed to differences in the microcirculatory regulatory activities. The present measurements performed on the skin surface provide a noninvasive and real-time method for evaluating the microcirculatory responses induced by implanting CT26 tumor cells.

  6. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    Science.gov (United States)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  7. Adaptive uniform grayscale coded aperture design for high dynamic range compressive spectral imaging

    Science.gov (United States)

    Diaz, Nelson; Rueda, Hoover; Arguello, Henry

    2016-05-01

    Imaging spectroscopy is an important area with many applications in surveillance, agriculture and medicine. The disadvantage of conventional spectroscopy techniques is that they collect the whole datacube. In contrast, compressive spectral imaging systems capture snapshot compressive projections, which are the input of reconstruction algorithms to yield the underlying datacube. Common compressive spectral imagers use coded apertures to perform the coded projections. The coded apertures are the key elements in these imagers since they define the sensing matrix of the system. The proper design of the coded aperture entries leads to a good quality in the reconstruction. In addition, the compressive measurements are prone to saturation due to the limited dynamic range of the sensor, hence the design of coded apertures must consider saturation. The saturation errors in compressive measurements are unbounded and compressive sensing recovery algorithms only provide solutions for bounded noise or bounded with high probability. In this paper it is proposed the design of uniform adaptive grayscale coded apertures (UAGCA) to improve the dynamic range of the estimated spectral images by reducing the saturation levels. The saturation is attenuated between snapshots using an adaptive filter which updates the entries of the grayscale coded aperture based on the previous snapshots. The coded apertures are optimized in terms of transmittance and number of grayscale levels. The advantage of the proposed method is the efficient use of the dynamic range of the image sensor. Extensive simulations show improvements in the image reconstruction of the proposed method compared with grayscale coded apertures (UGCA) and adaptive block-unblock coded apertures (ABCA) in up to 10 dB.

  8. A spectral identification technique for adaptive attitude control and pointing of the Space Telescope

    Science.gov (United States)

    Teuber, D. L.

    1976-01-01

    The Space Telescope is a 2.4 m class aperture optical telescope having near-diffraction-limited performance. It will be placed into earth orbit by 1980 via the Space Shuttle. The problem considered is how to achieve negligible degradation of the astronomy imaging capability (to 0.005 arc second) due to smearing by pointing motions during observations. Initially, pointing instability sources were identified and a linear stability was used to assess the magnitude of elastic body modes and to design control system compensation regions necessary for subsequent adaptive control. A spectral identification technique for this adaptive attitude control and pointing has been investigated that will alleviate requirements for comprehensive dynamic ground testing. Typical all-digital simulation results describing motions of the telescope line of sight are presented.

  9. The use of the spectral method within the fast adaptive composite grid method

    Energy Technology Data Exchange (ETDEWEB)

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  10. Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification

    KAUST Repository

    Winokur, J.

    2015-12-19

    We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a finer control of the resolution along two distinct subsets of model parameters. The control of the error along different subsets of parameters may be needed for instance in the case of a model depending on uncertain parameters and deterministic design variables. We first consider a nested approach where an independent adaptive sparse grid PSP is performed along the first set of directions only, and at each point a sparse grid is constructed adaptively in the second set of directions. We then consider the application of aPSP in the space of all parameters, and introduce directional refinement criteria to provide a tighter control of the projection error along individual dimensions. Specifically, we use a Sobol decomposition of the projection surpluses to tune the sparse grid adaptation. The behavior and performance of the two approaches are compared for a simple two-dimensional test problem and for a shock-tube ignition model involving 22 uncertain parameters and 3 design parameters. The numerical experiments indicate that whereas both methods provide effective means for tuning the quality of the representation along distinct subsets of parameters, PSP in the global parameter space generally requires fewer model evaluations than the nested approach to achieve similar projection error. In addition, the global approach is better suited for generalization to more than two subsets of directions.

  11. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation

    International Nuclear Information System (INIS)

    As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generally cannot be localized. In our previous work, we used achromatic or monochromatic measurements and an a priori permissible source region strategy to develop a multilevel adaptive finite-element algorithm. In this paper, we propose a spectrally solved tomographic algorithm with a posteriori permissible source region selection. Multispectral measurements, and anatomical and optical information first deal with the nonuniqueness of BLT and constrain the possible solution of source reconstruction. The use of adaptive mesh refinement and permissible source region based on a posteriori measures not only avoids the dimension disaster arising from the multispectral measured data but also reduces the ill-posedness of BLT and therefore improves the reconstruction quality. Reconsideration of the optimization method and related modifications further enhance reconstruction robustness and efficiency. We also incorporate into the method some improvements for reducing computational burdens. Finally, using a whole-body virtual mouse phantom, we demonstrate the capability of the proposed BLT algorithm to reconstruct accurately bioluminescent sources in deeper positions. In terms of optical property errors and two sources of discernment in deeper positions, this BLT algorithm represents the unique predominance for BLT reconstruction

  12. Assessing the Effects of Acupuncture by Comparing Needling the Hegu Acupoint and Needling Nearby Nonacupoints by Spectral Analysis of Microcirculatory Laser Doppler Signals

    Directory of Open Access Journals (Sweden)

    Hsin Hsiu

    2011-01-01

    Full Text Available We aimed to assess the effects of acupuncture by analyzing the frequency content of skin blood-flow signals simultaneously recorded at the Hegu acupoint and two nearby nonacupoints following acupuncture stimulation (AS. Laser Doppler flowmetry (LDF signals were measured in male healthy volunteers in two groups of experiments: needling the Hegu acupoint (n = 13 and needling a nearby nonacupoint (control experiment; n = 10. Each experiment involved recording a 20 min baseline-data sequence and two sets of effects data recorded 0–20 and 50–70 min after stopping AS. Wavelet transform with Morlet mother wavelet was applied to the measured LDF signals. Needling the Hegu acupoint significantly increased the blood flow, significantly decreased the relative energy contribution at 0.02–0.06 Hz and significantly increased the relative energy contribution at 0.4–1.6 Hz at Hegu, but induced no significant changes at the nonacupoints. Also, needling a nearby nonacupoint had no effect in any band at any site. This is the first time that spectral analysis has been used to investigate the microcirculatory blood-flow responses induced by AS, and has revealed possible differences in sympathetic nerve activities between needling the Hegu acupoint and its nearby nonacupoint. One possible weakness of the present design is that different De-Qi feelings following AS could lead to nonblind experimental setup, which may bias the comparison between needling Hegu and its nearby nonacupoint. Our results suggest that the described noninvasive method can be used to evaluate sympathetic control of peripheral vascular activity, which might be useful for studying the therapeutic effects of AS.

  13. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  14. Post-Doppler Adaptive Digital Beamforming of Skywave Radar%天波雷达后多普勒自适应波束形成

    Institute of Scientific and Technical Information of China (English)

    陈希信

    2016-01-01

    该文推导了短波干扰在距离−多普勒域上的解析表达式,表现为平行于距离轴的恒幅谱脊;分析了电离层运动导致的短波干扰空间非平稳性,其等效为各阵元上相同多普勒频点之间的幅相误差,对自适应波束形成的影响可以忽略。在上述分析的基础上,该文提出了天波雷达后多普勒自适应波束形成方法,首先将各阵元接收信号变换到距离−多普勒域上,然后在各个频点上分别进行自适应处理。实测数据处理表明该方法的干扰抑制性能良好,稳健性也较强。%The analytical expression of shortwave interference in the range-Doppler domain is derived and is found to exhibit a constant-amplitude spectrum ridge parallel to the range axis. The spatial nonstationarity of the shortwave interference induced by ionosphere perturbation is then analyzed and is found to be equivalent to the amplitude-phase error between the same frequency points of shortwave interference on different antenna elements; hence, the above mentioned spatial nonstationarity only a has a slight effect on the performance of Adaptive Digital BeamForming (ADBF). On the basis of the above analyses, this paper presents a post-Doppler ADBF approach for skywave radar. This approach involves transforming the received signal in each antenna element into a range-Doppler domain and then performing adaptive processing at each Doppler frequency point. The real radar data processing conducted in this study shows that the ADBF approach has a good interference suppression performance and strong robustness.

  15. Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behavior of railway bridges

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J. [Inst. for Transportation Technologies, FAMU-FSU College of Engineering, Tallahassee, FL (United States); Ruge, P. [Inst. of Dynamics of Structures, Dresden Univ. of Technology (Germany)

    2001-07-01

    Extensive studies, concerning the longitudinal behavior of long railway bridges due to braking forces have been done by measurements in situ, and by statical, as well as dynamical simulations. Thereby, the only consistent numerical realization with respect to the measured data was the dynamical one. However, the consecutive discretizations in space and time with time-dependent system matrices are extremely time consuming due to the moving loads and varying stiffness of the ballast under, and in front of, the moving train. Therefore, every effort should be made to optimize the discretization in the space domain. This paper presents a strategy for assessing the quality of finite elements in space and for applying an adaptive mesh-refinement for this special engineering problem. The method is characterized by a spectral assessment, comparing a certain set of eigenvalues of the actual discretization with those of a very fine and rather exact numerical model. The error estimator introduced in this paper controls a whole set of global eigenvalues with corresponding natural vibration modes in order to assess certain types of shape functions. Thus, the procedure estimates local modifications on the one hand and p-properties on the other by means of global indication. (orig.)

  16. Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm, drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width were 11.3 ± 1.6 ms for green photoreceptors compared with 18.6 ± 4.4 ms and 15.6 ± 4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value in green photoreceptors, compared to blue and UV (41% and 49%, respectively. Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed

  17. Ultrasonic Doppler Modes

    Science.gov (United States)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  18. Laser Doppler imaging, revisited

    OpenAIRE

    Atlan, Michael; Gross, Michel

    2006-01-01

    International audience We present a detection scheme designed to perform laser Doppler imaging in a wide-field configuration, aimed at slow flows characterization. The optical field which carries a spectral information about the local scatterers dynamic state that results from momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne off-axis digital holography.

  19. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    Science.gov (United States)

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. PMID:26486871

  20. Doppler sonography of RA joints and LCAP

    OpenAIRE

    Kanno, Yukiko; Kobayashi, Hiroko; Suzuki, Eiji; Iwadate, Haruyo; Sasajima, Tomomi; Watanabe, Hiroshi; Ohira, Hiromasa

    2008-01-01

    Synovial vascularization in metacarpophalangeal joints of a patient with rheumatoid arthritis treated with leukocytapheresis (LCAP) was evaluated by Doppler sonography. After the treatment with LCAP, evaluation with American College of Rheumatology core set showed improvement, and the levels of C-reactive protein and serum amyloid A protein decreased. Power Doppler sonography demonstrated a reduction of color flow signals of the joints, and spectral Doppler sonography demonstrated an increase...

  1. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    Science.gov (United States)

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  2. Pseudo-spectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with Particle-In-Cell codes

    CERN Document Server

    Blaclard, G; Lehe, R; Vay, J L

    2016-01-01

    With the advent of PW class lasers, the very large laser intensities attainable on-target should enable the production of intense high order Doppler harmonics from relativistic laser-plasma mirrors interactions. At present, the modeling of these harmonics with Particle-In-Cell (PIC) codes is extremely challenging as it implies an accurate description of tens of harmonic orders on a a broad range of angles. In particular, we show here that standard Finite Difference Time Domain (FDTD) Maxwell solvers used in most PIC codes partly fail to model Doppler harmonic generation because they induce numerical dispersion of electromagnetic waves in vacuum which is responsible for a spurious angular deviation of harmonic beams. This effect was extensively studied and a simple toy-model based on Snell-Descartes law was developed that allows us to finely predict the angular deviation of harmonics depending on the spatio-temporal resolution and the Maxwell solver used in the simulations. Our model demonstrates that the miti...

  3. Adaptation of the University of Wisconsin High Spectral Resolution Lidar for Polarization and Multiple Scattering Measurements

    Science.gov (United States)

    Eloranta, E. W.; Piironen, P. K.

    1996-01-01

    Quantitative lidar measurements of aerosol scattering are hampered by the need for calibrations and the problem of correcting observed backscatter profiles for the effects of attenuation. The University of Wisconsin High Spectral Resolution Lidar (HSRL) addresses these problems by separating molecular scattering contributions from the aerosol scattering; the molecular scattering is then used as a calibration target that is available at each point in the observed profiles. While the HSRl approach has intrinsic advantages over competing techniques, realization of these advantages requires implementation of a technically demanding system which is potentially very sensitive to changes in temperature and mechanical alignments. This paper describes a new implementation of the HSRL in an instrumented van which allows measurements during field experiments. The HSRL was modified to measure depolarization. In addition, both the signal amplitude and depolarization variations with receiver field of view are simultaneously measured. This allows for discrimination of ice clouds from water clouds and observation of multiple scattering contributions to the lidar return.

  4. Time domain zero-padding based adaptive-PAM signal transmission with high spectral efficiency in IMDD optical communication system

    Science.gov (United States)

    Zhang, Fangliu; He, Jing; Deng, Rui; Cheng, Yun; Xiao, Minlei; Chen, Lin

    2016-08-01

    In this paper, an adaptive pulse amplitude modulation (APAM) scheme is proposed and experimentally demonstrated in the intensity-modulation and direct-detection (IMDD) optical communications system. In the proposed scheme, the channel is divided into two sub-channels, and different PAM mapping can be chosen for different sub-channel according to the fading conditions. In addition, the 20-km standard single mode fiber (SSMF) transmission of 24 Gbit/s 16/4-APAM signal with the spectral efficiency (SE) up to 6 bit/s/Hz is experimentally demonstrated. The experiment results show that the bit error rate (BER) of the 16/4-APAM signal can be achieved less than 2.4e-2.

  5. Relative seismic shaking vulnerability microzonation using an adaptation of the Nakamura Horizontal to Vertical Spectral Ratio Method

    Indian Academy of Sciences (India)

    Michael L Turnbull

    2008-11-01

    An alternative seismic shaking vulnerability survey method to computational intensive theoretical modelling of site response to earthquake, and time consuming test versus reference site horizontal ratio methods, is described. The methodology is suitable for small to large scale engineering investigations. Relative seismic shaking vulnerability microzonation using an adaptation of the Nakamura horizontal to vertical spectral ratio method provides many advantages over alternative methods including: low cost; rapid field phase (100 km2 can easily be covered by a single operator in 5 days); low and flexible instrumentation requirements (a single seismometer and data logger of almost any type is required); field data can be collected at any time during the day or night (the results are insensitive to ambient social noise); no basement rock reference site is required (thus eliminating trigger synchronisation between reference and multiple test site seismographs); rapid software aided analysis; insensitivity to ground-shaking resonance peaks; ability to compare results obtained from non-contiguous survey fields. The methodology is described in detail, and a practical case study is provided, including mapped results. The resulting microzonation maps indicate the relative seismic shaking vulnerability for built structures of different height categories within adjacent zones, with a resolution of approximately 1 km.

  6. LOFAR Sonobuoy Signal Processing Based on Adaptive Line Enhancer and Doppler-CPA Positioning%基于自适应线谱增强的LOFAR浮标信号处理及Doppler-CPA定位方法

    Institute of Scientific and Technical Information of China (English)

    桑龙; 王英民; 刘小明

    2009-01-01

    LOFAR浮标是一种被动全向浮标,用于对潜搜索的初始阶段.常规的LOFAR谱图对于小信噪比和有色背景噪声处理性能下降.文中采用自适应线谱增强技术将目标辐射中的线谱成分从背景噪声中分离出来进行LOFAR谱图分析,提高LOFAR浮标的检测性能.在LOFAR分析的基础上利用目标的多普勒信息,采用Doppler-CAP方法测算目标的速度和目标与浮标的距离,初步估算出目标的航迹.仿真结果表明,新的LDFAR浮标数据处理算法检测性能更好,能够得到目标与浮标最接近点的距离.

  7. Characterisation of an airblast sputtering unit - verification of numeric simulations using an adapted phase doppler droplet measuring technique; Charakterisierung eines Airblastzerstaeubers - Bestaetigung numerischer Simulationen mit einem angepassten Phasen-Doppler-Tropfenmessverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Willmann, M.

    1999-07-01

    Two-phase flows were investigated in high-pressure conditions in order to assess the influence of pressure and temperature on spray jet dispersion in so-called airblast sputtering units, whose function is described. The project was to contribute to improved characterisation and better understanding of spray jets. New methods of measurement and calculation were employed that provide more comprehensive and accurate data on two-phase flows. [German] In der vorliegenden Arbeit sollen Zweiphasenstroemungen unter Hochdruckbedingungen untersucht werden, um den Einfluss von Druck und Temperatur auf die Spruehstrahl-Ausbreitung unter Verwendung von sogenannten Airblast-Zerstaeubern aufzuzeigen. Diese Zerstaeuberbauart wird derzeit typischerweise in Gasturbinen eingesetzt, ihre Funktionsweise wird in einem Kapitel der Arbeit dargestellt. Mit der vorliegenden Arbeit wird ein wesentlicher Beitrag zur verbesserten Charakterisierung und zum erweiterten Verstaendnis von Spruehstrahlen, insbesondere unter Einsatz von Airblast-Zerstaeubern geschaffen. Dabei werden sowohl im messtechnischen Bereich wie auch auf numerischer Seite neue Methoden vorgestellt, die eine wesentlich umfassendere und genauere Darstellung von Zweiphasenstroemungen erlauben. Der Einsatz dieser erweiterten Methoden an der Stroemung eines Modellairblastzerstaeubers zeigt wichtige Effekte bei der Tropfenausbreitung und -verdunstung auf. Die Arbeit ist dabei in drei Teilbereiche gegliedert. In einem messtechnisch ausgerichteten Teil werden die neuen, erweiterten Ansaetze zur Auslegung des Phasen-Doppler Verfahrens vorgestellt und damit die Grundlagen zur experimentellen Charakterisierung eines Spruehstrahls geschaffen. In zweiten Teil erfolgt die Darstellung der verwendeten numerischen Methoden. Im dritten Teil werden schliesslich die Resultate experimenteller wie numerischer Untersuchungen parallel eingesetzt, um die physikalischen Phaenomene im Spruehstrahl eines Airblastzerstaeubers darzustellen und damit die

  8. ANL Doppler flowmeter

    Science.gov (United States)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  9. 自适应滤波技术在激光多普勒测速仪中的应用%Application of least mean square adaptive filter technology in laser Doppler velocimeter

    Institute of Scientific and Technical Information of China (English)

    刘帆; 金世龙; 周健

    2012-01-01

    Noise always exists in photoelectric signal detected by laser Doppler velocimcter (LDV). A new method of signal processing was proposed in order to eliminate the noise interference and enhance the measurement accuracy of LDV. The least mean square(LMS) adaptive filter technology was applied in the signal detection system of LDV. By processing the Doppler signal, we greatly minished the interference of noise. The simulation ari3 experiment results indicate that this technology effectively increases the signal to noise ratio(SNR) of Doppler signal, reduces.the system's demand for SNR of signal, and obviously improves the noiseproof ability, the sensibility,as well as the measurement accuracy of LDV system. This application creates conditions for the design of high accuracy LDV.%激光多普勒测速仪检测系统提取的光电信号中存在较大的噪声信号.为了消除这些噪声干扰,提高激光多普勒测速仪的测量精度,提出一种新的信号处理方法,将最小均方差自适应滤波技术应用于激光多普勒测量中,利用多普勒信号和噪声信号的统计特性,以最小均方误差估计为准则,最大程度地滤除噪声信号.阐述了最小均方差自适应滤波算法的基本原理,在MATLAB平台上将其应用于理想正弦信号进行仿真,并将其应用于实测多普勒信号的处理中.仿真和实验均表明,该技术可以有效抑制激光多普勒测量中的多频率噪声的干扰,大大提高多普勒信号的信噪比和测量精度,为设计高精度的激光多普勒测速仪创造了条件.

  10. The Doppler effect in NMR spectroscopy.

    Science.gov (United States)

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  11. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  12. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...

  13. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue ...

  14. ELABORATION OF ADAPTIVE MODELS OF SPECTRAL ANALYSIS WITH APPLICATION OF METHODS OF FILTRATION WHEN PREDICTING THE DYNAMICS OF AIC SUGAR INDUSTRY (PART 1 – FORMULATION AND SIMULATION

    Directory of Open Access Journals (Sweden)

    Zhmurko D. Y.

    2016-02-01

    Full Text Available Objective: To improve the consistency and effectiveness of strategic planning and forecasting in modern conditions it requires development of the existing classifications of types of planning, strategies, forecasts and forecast methods. This study examines the introduction to problems of spectral analysis of the macroeconomic dynamics of key world and Russian sugar subcomplex. The article is devoted to forecasting the activities of integrated manufacturing systems of sugar subcomplex in agro industrial subcomplex. As well as to the practical application of economic-mathematical methods (based on spectral analysis to control the economic parameters of the integrated industrial systems of the sugar subcomplex, oriented to meet the needs of the sugar production of the population not only of individuals, but of the regions and the country as a whole. Discussion: Procedures to identify and study the dynamics of periodic components of the development of the agriculture segment agriculture are based on methods of spectral analysis of random processes. The article describes the performed experiments with various kinds of non-stationary time series of agricultural sector and food industry sugar subcomplex. The article presents results of numerical experiments with the spectra of time series of sugar production, sown areas, gross harvest and yield of sugar beet and sugar cane country. Systematic ideas and methods underlying the spectral analysis were shown. The article also assesses the results. Results: The algorithm developed by the author for the adaptive method of spectral analysis was implemented by the author in the context of a specific software product, namely in MS Excel format. The results of the empirical research confirmed the possibility of practical use of developed models in forecasting likely scenarios for the development of sugar sub-complex in the interests of integrated production systems. The results are illustrated by numerous graphs

  15. ELABORATION OF ADAPTIVE MODELS OF SPECTRAL ANALYSIS WITH APPLICATION OF METHODS OF FILTRATION WHEN PREDICTING THE DYNAMICS OF THE SUGAR INDUSTRY AIC (PART 2 – FORECASTING AND CONCLUSIONS

    Directory of Open Access Journals (Sweden)

    Zhmurko D. Y.

    2016-02-01

    Full Text Available Objective: To improve the consistency and effectiveness of strategic planning and forecasting in modern conditions it requires development of the existing classifications of types of planning, strategies, forecasts and forecast methods. This study examines the introduction to problems of spectral analysis of the macroeconomic dynamics of key world and Russian sugar subcomplex. The article is devoted to forecasting the activities of integrated manufacturing systems of sugar subcomplex in agro industrial subcomplex. As well as to the practical application of economic-mathematical methods (based on spectral analysis to control the economic parameters of the integrated industrial systems of the sugar subcomplex, oriented to meet the needs of the sugar production of the population not only of individuals, but of the regions and the country as a whole. Discussion: Procedures to identify and study the dynamics of periodic components of the development of the agriculture segment agriculture are based on methods of spectral analysis of random processes. The article describes the performed experiments with various kinds of non-stationary time series of agricultural sector and food industry sugar sub-complex. The article presents results of numerical experiments with the spectra of time series of sugar production, sown areas, gross harvest and yield of sugar beet and sugar cane country. Systematic ideas and methods underlying the spectral analysis were shown. The article also assesses the results. Results: The algorithm developed by the author for the adaptive method of spectral analysis was implemented by the author in the context of a specific software product, namely in MS Excel format. The results of the empirical research confirmed the possibility of practical use of developed models in forecasting likely scenarios for the development of sugar sub-complex in the interests of integrated production systems. The results are illustrated by numerous graphs

  16. Colour Doppler ultrasound of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  17. Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: a case study

    Science.gov (United States)

    Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.

    2015-12-01

    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It

  18. Saturn's Doppler velocimetry wind measurements with VLT/UVES

    Science.gov (United States)

    Silva, Miguel; Mota Machado, Pedro; Luz, David; Sanchez-Lavega, Agustin; Hueso, Ricardo; Peralta, Javier

    2016-10-01

    We present Doppler wind velocity results of Saturn's zonal flow at ~0.4 mbar pressure level. Our aim is help to constrain the characterization of the equatorial jet at the referred altitude and the latitudinal variation of the zonal winds, to contribute to monitor the spatial and temporal variability in order to achieve a better understanding of the dynamics of Saturn's zonal winds, which Sánchez-Lavega et al. (2003, Nature, 423, 623) have found to have strongly changed in recent years, as the planet approached southern summer solstice.The UVES/VLT instrument has been used, which simultaneously achieves high spectral resolving power and high spatial resolution. The field has been derotated in order to have the aperture aligned perpendicularly to Saturn's rotation axis. In this configuration, spatial information in the East-West direction is preserved in a set of spectra in the direction perpendicular to dispersion.The technique of absolute accelerometry (AA, Connes, 1985, ApSS 110, 211) has been applied to the backscattered solar spectrum in order to determine the Doppler shift associated with the zonal circulation. Our measurements have been made in the wavelength range of 480-680 nm. Previously we successfully adapted this Doppler velocimetry technique for measuring winds at Venus cloud tops (Machado et al. 2012).The observations consisted of 4 blocks of 15 exposures of 90 sec, plus two shorter blocks of 9 exposures, totalling 7.3 hours of telescope time. In order to cover the whole disk the aperture has been offset by 1 arcsec in the North-South direction between consecutive exposures. Most of the northern hemisphere was covered by the rings. Saturn's diameter was 17.4 arcsec, and the slit aperture was 0.3x25 arcsec. The aperture offset between consecutive exposures was 1 arcsec. Two observations blocks of 9 exposures only covered the central part of the disk, and four others covered the whole disk. The sub-terrestrial point was at -26.1 degrees South. The

  19. Calculation of the two-body scattering K-matrix in configuration space by an adaptive spectral method

    International Nuclear Information System (INIS)

    A spectral integral method (IEM) for solving the two-body, one-variable Lippmann-Schwinger equation for the wavefunction in configuration space is generalized to the case of the two-variable scattering K-matrix. The main difficulty is that in this case the driving term of the integral equation is discontinuous. It is found that the desirable features of the IEM, such as the economy of mesh points for a given required accuracy, are carried over also to this case even though the result is also discontinuous. The main innovation is a judicious choice of the partitions in coordinate space, plus a new recursion relation forward and backward to the point of discontinuity. For a simple exponential potential an accuracy of 7 significant figures is achieved for the K-matrix, with the number N of Chebyshev support points in each partition equal to 17. For a potential with a large repulsive core, such as the potential between two He atoms, an accuracy of 7 significant figures requires that N is increased to 65 support points per partition

  20. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    Science.gov (United States)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  1. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  2. Preoperative evaluation of ovarian masses with color Doppler and its correlation with pathological finding

    Directory of Open Access Journals (Sweden)

    Isha Khurana

    2016-07-01

    Conclusions: Color Doppler is a good non-invasive modality to differentiate benign from malignant lesions. Vascularity is most sensitive and RI is most specific. Thus, color Doppler and spectral Doppler tremendously increased the reliability in diagnosing a malignant ovarian tumor. Color Doppler served as an important tool to rule out malignancy in solid tumors if they failed to show any intra-tumoral vascularity. B-Mode USG in combination with color Doppler and spectral Doppler is proposed as the first and foremost diagnostic modality in patients with ovarian tumor, so as to establish the definite diagnosis of malignancy early in the course of the disease. [Int J Reprod Contracept Obstet Gynecol 2016; 5(7.000: 2084-2092

  3. Application of wavelet analysis in laser Doppler vibration signal denoising

    Science.gov (United States)

    Lan, Yu-fei; Xue, Hui-feng; Li, Xin-liang; Liu, Dan

    2010-10-01

    Large number of experiments show that, due to external disturbances, the measured surface is too rough and other factors make use of laser Doppler technique to detect the vibration signal contained complex information, low SNR, resulting in Doppler frequency shift signals unmeasured, can not be demodulated Doppler phase and so on. This paper first analyzes the laser Doppler signal model and feature in the vibration test, and studies the most commonly used three ways of wavelet denoising techniques: the modulus maxima wavelet denoising method, the spatial correlation denoising method and wavelet threshold denoising method. Here we experiment with the vibration signals and achieve three ways by MATLAB simulation. Processing results show that the wavelet modulus maxima denoising method at low laser Doppler vibration SNR, has an advantage for the signal which mixed with white noise and contained more singularities; the spatial correlation denoising method is more suitable for denoising the laser Doppler vibration signal which noise level is not very high, and has a better edge reconstruction capacity; wavelet threshold denoising method has a wide range of adaptability, computational efficiency, and good denoising effect. Specifically, in the wavelet threshold denoising method, we estimate the original noise variance by spatial correlation method, using an adaptive threshold denoising method, and make some certain amendments in practice. Test can be shown that, compared with conventional threshold denoising, this method is more effective to extract the feature of laser Doppler vibration signal.

  4. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  5. Doppler Signatures of the Atmospheric Circulation on Hot Jupiters

    CERN Document Server

    Showman, Adam P; Lewis, Nikole K; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation--and Doppler signature--of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blue- and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps...

  6. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  7. Doppler Cooling a Microsphere

    OpenAIRE

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The...

  8. Superharmonic microbubble Doppler effect in ultrasound therapy

    Science.gov (United States)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  9. Superharmonic microbubble Doppler effect in ultrasound therapy

    Science.gov (United States)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  10. Sub-Doppler resolution with double coherently driving fields

    CERN Document Server

    Dong, P; Hai, T S; Gao, J Y; Dong, Po; Hai, Tang Sing; Gao, Jin-Yue

    2000-01-01

    We propose a four-level model where sub-Doppler resolution as well as enhanced absorption of a weak probe field are realized by using two coherently driving fields. We show that spectral resolution can be improved by modifying the coherent fields intensity and frequencies.

  11. The Doppler Pendulum Experiment

    Science.gov (United States)

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  12. Doppler-musical instrument

    International Nuclear Information System (INIS)

    We propose a possible ultra-high energy resolution backscattering spectrometer optimized to spallation neutron source. A combination of multi monochromator crystal and Doppler drive provides considerable neutron flux, together with the reasonable energy range -30 < E < 30 μeV, even when the ultra-high energy resolution of ΔE∼0.03 μeV is attained. (author)

  13. Neutral wind results from TIMED Doppler interferometer

    Science.gov (United States)

    Killeen, T.; Gablehouse, R.; Gell, D.; Johnson, R.; Niciejewski, R.; Ortland, D.; Wu, Q.; Skinner, W.; Solomon, S.; Kafkalidis, J.

    2003-04-01

    Since the launch of the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite in December 2001, the TIMED Doppler Interferometer (TIDI) has been collecting lower thermosphere and mesospheric data for over a year. After adjustments to the spectral sampling scheme and operational mode, the instrument has been optimized. Efforts have also been made to improve the instrument performance. Preliminary neutral winds from O2 (0-0) have been analyzed. Tidal features and their seasonal variation are shown clearly in the wind data, which are quantitatively consistent with model prediction. We will report our progress on these efforts.

  14. Spectral polarimetric radar clutter suppression to enhance atmospheric echoes

    NARCIS (Netherlands)

    Unal, C.M.H.

    2009-01-01

    The clutter present in the Doppler spectra of atmospheric targets can be removed by using polarimetry. The purpose is to suppress the Doppler velocity bins where spectral polarimetric parameters have atypical values. This procedure largely improves profiles of moments and polarimetric parameters of

  15. Laser Doppler flowmetry imaging

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  16. HF Doppler observations

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Sugiuchi, H.; Ishimine, T.; Maeno, H.; Honma, S.

    1986-12-01

    This paper reports the solar flare and geomagnetic storm effects on the frequency of JJY signals received at Okinawa (f = 15 MHz) and Kokubunji (f = 5 and 8 MHz) during the period of June-September 1982. The increase in the electron density due to solar flares is deduced from the Doppler frequency deviation of 1 Hz as 2 x 10/sup 15/ electrons/m/sub 2/ below the reflection height. The result is in good agreement with the observation of the total electron content by the Faraday rotation measurements. On July 13, 1982, an abrupt increase of 0.8 Hz in frequency followed by a decrease of 0.6 Hz was observed in association with the huge storm sudden commencement. This fact indicates a successive transmission of westward electric field of 1.5 mV/m and eastward electric field of 1.1 mV/m from the outer magnetosphere to the low latitude ionosphere. It is shown that the decreases in Doppler frequency were associated with geomagnetic bays. The strength of the electric field (1.8 mV/m) derived from the Doppler frequency deviation is 20% of that of the electric field which is required to produce ionospheric electric currents responsible for the geomagnetic field variation on the ground. The large amplitude Doppler frequency oscillations of period of 1-1.5 h were observed at Kokubunji and Okinawa with a delay time of 20-25 min during the geomagnetic storm on September 6, 1982. It is suggested that the large-scale TID (Travelling Ionospheric Disturbance) with a phase velocity of 600 m/s and a wavelength of 2000 km is produced at high latitudes and is propagated to low latitudes.

  17. Quantitative Laser Doppler Flowmetry

    OpenAIRE

    Fredriksson, Ingemar

    2009-01-01

    Laser Doppler flowmetry (LDF) is virtually the only non-invasive technique, except for other laser speckle based techniques, that enables estimation of the microcirculatory blood flow. The technique was introduced into the field of biomedical engineering in the 1970s, and a rapid evolvement followed during the 1980s with fiber based systems and improved signal analysis. The first imaging systems were presented in the beginning of the 1990s. Conventional LDF, although unique in many aspects an...

  18. Laser double Doppler flowmeter

    Science.gov (United States)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  19. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    Science.gov (United States)

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels.

  20. The Multiple Doppler Radar Workshop, November 1979.

    Science.gov (United States)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for

  1. Laser doppler perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 {mu}m. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs.

  2. Laser doppler perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Waardell, K.

    1992-11-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 {mu}m. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs.

  3. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  4. Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy.

    Science.gov (United States)

    Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin

    2015-05-01

    The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon.

  5. Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy.

    Science.gov (United States)

    Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin

    2015-05-01

    The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon. PMID:26263315

  6. Doppler Beats or Interference Fringes?

    Science.gov (United States)

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  7. [Color Doppler sonography of focal abdominal lesions].

    Science.gov (United States)

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  8. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Shabram, Megan, E-mail: showman@lpl.arizona.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  9. Gold nanorods as a contrast agent for Doppler optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available PURPOSE: To investigate gold nanorods (GNRs as a contrast agent to enhance Doppler optical coherence tomography (OCT imaging of the intrascleral aqueous humor outflow. METHODS: A serial dilution of GNRs was scanned with a spectral-domain OCT device (Bioptigen, Durham, NC to visualize Doppler signal. Doppler measurements using GNRs were validated using a controlled flow system. To demonstrate an application of GNR enhanced Doppler, porcine eyes were perfused at constant pressure with mock aqueous alone or 1.0×10(12 GNR/mL mixed with mock aqueous. Twelve Doppler and volumetric SD-OCT scans were obtained from the limbus in a radial fashion incremented by 30°, forming a circular scan pattern. Volumetric flow was computed by integrating flow inside non-connected vessels throughout all 12 scans around the limbus. RESULTS: At the GNR concentration of 0.7×10(12 GNRs/mL, Doppler signal was present through the entire depth of the testing tube without substantial attenuation. A well-defined laminar flow profile was observed for Doppler images of GNRs flowing through the glass capillary tube. The Doppler OCT measured flow profile was not statistically different from the expected flow profile based upon an autoregressive moving average model, with an error of -0.025 to 0.037 mm/s (p = 0.6435. Cross-sectional slices demonstrated the ability to view anterior chamber outflow ex-vivo using GNR-enhanced Doppler OCT. Doppler volumetric flow measurements were comparable to flow recorded by the perfusion system. CONCLUSIONS: GNRs created a measureable Doppler signal within otherwise silent flow fields in OCT Doppler scans. Practical application of this technique was confirmed in a constant pressure ex-vivo aqueous humor outflow model in porcine eyes.

  10. Ship motion estimation from polarized Doppler spectra from ship wakes on two-dimensional sea surfaces

    Science.gov (United States)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Sun, Rong-Qing

    2016-07-01

    The main purpose of this paper is to investigate the Doppler spectra from ship wakes on two-dimensional sea surfaces and further estimate the ship motion characteristics. The analysis of the ship wakes is helpful to detect the existence of ships on sea surface. And it will be an alternative method when the radar cross-section values are not competent to identify the ship target. In the study, Doppler spectra for different polarizations are compared with and without ship's wakes based on the second-order small slope approximation method. As expected, there appears the second spectral peak when ship's wake is considered. Moreover, the ship velocities, wind speed, and direction are also analyzed. As the results shown, there is a good linearity relation between the position of the second Doppler spectral peak and the ship velocity. Therefore, it is feasible to detect ship according the Doppler spectra.

  11. Doppler selection of HF radiosignals on long paths

    Science.gov (United States)

    Zalizovskii, A. V.; Galushko, V. G.; Kashcheev, A. S.; Koloskov, A. V.; Yampolski, Yu. M.; Egorov, I. B.; Popov, A. V.

    2007-10-01

    The long-term registration of the Doppler spectra of HF radiosignals has been performed on the Moscow-Akademik Vernadsky Ukrainian Antarctic station path. It has been revealed that the spectra are split when the solar terminator crosses direct and return radio lines. The spectral and energy characteristics of direct and return signals have been calculated within the scope of the asymptotic theory of long-range propagation of decametric radiowaves.

  12. Experimental demonstration of real-time adaptively modulated DDO-OFDM systems with a high spectral efficiency up to 5.76bit/s/Hz transmission over SMF links.

    Science.gov (United States)

    Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin

    2014-07-28

    In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.

  13. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    Science.gov (United States)

    Martin, E. H.; Zafar, A.; Caughman, J. B. O.; Isler, R. C.; Bell, G. L.

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of Hδ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  14. Matched filter based iterative adaptive approach

    Science.gov (United States)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  15. Doppler calibration method for Spectral Domain OCT spectrometers

    NARCIS (Netherlands)

    D.J. Faber; T.G. van Leeuwen

    2009-01-01

    We present a calibration method for SD-OCT domain spectrometers based on the M-scan of a moving mirror. This method allows determination of the wavenumber sampling increment which determines the depth axis assigned to the structural image. It also allows wavelength calibration of individual pixels w

  16. Relationship between hepatic vein frequency by Spectral Doppler ultrasound and Fibroscan numerical value on cirrhosis patients%脉冲多普勒超声测定肝硬化患者肝静脉频谱与Fibroscan测值关系研究

    Institute of Scientific and Technical Information of China (English)

    梁雄波; 程小飞; 李紫平

    2014-01-01

    目的:探讨脉冲多普勒超声和瞬时弹性成像(Fibroscan)观察肝硬化患者肝静脉(HV)血流频谱改变的意义。方法选择乙型肝炎肝硬化患者(130例)和同期健康体检者(80例),使用脉冲多普勒超声测定肝硬化患者肝静脉血流频谱,并将频谱波形分为0型、1型、2型,同时进行Fibroscan检测。结果肝硬化代偿期与失代偿期患者HV1(%)、HV2(%)、HV1+ HV2(%)(26.74、18.60、45.35、43.18、38.64、81.82)明显高于正常对照组(8.75、0、8.75,P<0.001),Fibroscan测值(11.80±4.30,17.60±5.73)明显高于正常对照组(4.90±1.36,P <0.001),而HV0(%)(54.65,18.18)明显低于正常对照组(91.25,P <0.001)。结论运用Fibroscan测值以及脉冲多普勒超声测定肝硬化患者肝静脉频谱波形变化,对判断肝硬化程度,选择治疗方案及预后判断具有重要意义,有望成为当前无痛、无创条件下评估肝硬化程度的另一新途径。%Objective Analysis how the blood lfow frequency change on cirrhosis patients by spectral Doppler ultrasound and Fibroscan. Methods Hepatitis B patients with cirrhosis (130 cases) and healthy physical examination controls (80 cases) were examined, using pulse doppler ultrasonic measurement in hepatic vein blood lfow spectrum of patients with liver cirrhosis, and divided pectrum wave form into type 0 and type 1, type 2, Fibroscan tests were used at the same time. Results The numerical value (26.74, 18.60, 45.35, 43.18, 38.64, 81.82) on decompensated and decompensated cirrhosis group HV1 (%), HV2 (%) and HV1+HV2 (%) are signiifcantly higher than the control group (8.75, 0, 8.75, P<0.001), the Fibrorscan numerical value (11.80 ± 4.30, 17.60 ± 5.73) significantly higher than the control group (4.90 ± 1.36, P < 0.001), as the HV0 (%) (54.65, 18.18) signiifcantly lower than the control group (91.25, P<0.001). Conclusions Take advantage of the

  17. High Resolution Doppler Lidar

    Science.gov (United States)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  18. [The effect of Doppler effect on ultraviolet absorption spectrum from difference in temperature (UVASDT)].

    Science.gov (United States)

    Hu, Yao-gai; Zeng, Fan-qing; Li, Wei; Hu, Ji-ming

    2005-06-01

    In this paper, the formation of UV absorption spectrum from difference in temperature (UVASDT) is discussed. Broadening of spectral lines might be one of the reasons for the formation of UVASDT. The effect of temperature on the broadening of spectral lines is analyzed. The Doppler SDT function is deduced, and the SDT of C60 and progesterone can be explained by it. It is indicated that the Doppler effect might be the primary reason for the formation of UVASDT of this kind of substance.

  19. TIMED Doppler Interferometer: Overview and recent results

    Science.gov (United States)

    Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.; Gell, D. A.

    2006-10-01

    The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite carries a limb-scanning Fabry-Perot interferometer designed to perform remote-sensing measurements of upper atmosphere winds and temperatures globally. This instrument is called the TIMED Doppler Interferometer, or TIDI. This paper provides an overview of the TIDI instrument design, on-orbit performance, operational modes, data processing and inversion procedures, and a summary of wind results to date. Daytime and nighttime neutral winds in the mesosphere and lower thermosphere/ionosphere (MLTI) are measured on TIDI using four individual scanning telescopes that collect light from various upper atmosphere airglow layers on both the cold and warm sides of the high-inclination TIMED spacecraft. The light is spectrally analyzed using an ultrastable plane etalon Fabry-Perot system with sufficient spectral resolution to determine the Doppler line characteristics of atomic and molecular emissions emanating from the MLTI. The light from all four telescopes and from an internal calibration field passes through the etalon and is combined on a single image plane detector using a Circle-to-Line Interferometer Optic (CLIO). The four geophysical fields provide orthogonal line-of-sight measurements to either side of the satellite's path and these are analyzed to produce altitude profiles of vector winds in the MLTI. The TIDI wind measurements presented here are from the molecular oxygen (0-0) band, covering the altitude region 85-105 km. The unique TIDI design allows for more extended local time coverage of wind structures than previous wind-measuring instruments from high-inclination satellites. The TIDI operational performance has been nominal except for two anomalies: (1) higher than expected background white light caused by a low-level light leak and (2) ice deposition on cold optical surfaces. Both anomalies are well understood and the instrumental modes and data analysis techniques have been

  20. Spectral Methods

    CERN Document Server

    Shen, Jie; Wang, Li-Lian

    2011-01-01

    Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large

  1. The lineshape problem in Doppler-width thermometry

    Science.gov (United States)

    Domenica De Vizia, Maria; Moretti, Luigi; Castrillo, Antonio; Fasci, Eugenio; Gianfrani, Livio

    2011-09-01

    Typically eliminated in any experiment of time and frequency metrology, the Doppler broadening effect can be regarded as a gift of nature for the purpose of measuring the thermodynamic temperature of a gaseous sample. Nevertheless, Doppler-width retrieval from highly-accurate absorption spectra is surely not an easy task as it requires an adequate knowledge of the lineshape function, accounting for the different mechanisms that contribute to the overall linewidth. Semiclassical theories provide several possibilities, more or less accurate in reproducing the observed profiles. Here, the influence of the choice of the lineshape model in Doppler-width thermometry is investigated in the physical situation of self-colliding ? O molecules. A large number of absorption profiles were simulated, using the uncorrelated version of the speed-dependent Galatry profile and setting different values for the gas pressure, the signal-to-noise ratio and the Dicke-narrowing parameter. Spectral analysis was performed by means of different models, in order to retrieve the zero-pressure value of the Doppler width. It turned out that precision and accuracy can be pushed to extreme levels provided that the signal-to-noise ratio is sufficiently high (namely, larger than 50,000) and that a speed-dependent lineshape model is used.

  2. Airborne microwave Doppler measurements of ocean wave directional spectra

    Science.gov (United States)

    Plant, W. J.; Keller, W. C.; Reeves, A. B.; Uliana, E. A.; Johnson, J. W.

    1987-01-01

    A technique is presented for measuring ocean wave directional spectra from aircraft using microwave Doppler radar. The technique involves backscattering coherent microwave radiation from a patch of sea surface which is small compared to dominant ocean wavelengths in the antenna look direction, and large compared to these lengths in the perpendicular (azimuthal) direction. The mean Doppler shift of the return signal measured over short time intervals is proportional to the mean sea surface velocity of the illuminated patch. Variable sea surface velocities induced by wave motion therefore produce time-varying Doppler shifts in the received signal. The large azimuthal dimension of the patch implies that these variations must be produced by surface waves traveling near the horizontal antenna look direction thus allowing determination of the direction of wave travel. Linear wave theory is used to convert the measured velocities into ocean wave spectral densities. Spectra measured simultaneously with this technique and two laser profilometers, and nearly simultaneous with this technique and two laser profilometers, and nearly simultaneous with a surface buoy, are presented. Applications and limitations of this airborne Doppler technique are discussed.

  3. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    International Nuclear Information System (INIS)

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio

  4. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  5. General principles of carotid Doppler ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Whal [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    Carotid Doppler ultrasonography is a popular tool for evaluating atherosclerosis of the carotid artery. Its two-dimensional gray scale can be used for measuring the intima-media thickness, which is very good biomarker for atherosclerosis and can aid in plaque characterization. The plaque morphology is related to the risk of stroke. The ulceration of plaque is also known as one of the strong predictors of future embolic event risk. Color Doppler ultrasonography and pulse Doppler ultrasonography have been used for detecting carotid artery stenosis. Doppler ultrasonography has unique physical properties. The operator should be familiar with the physics and other parameters of Doppler ultrasonography to perform optimal Doppler ultrasonography studies.

  6. 端元匹配的遥感影像地物自适应光谱表征%Adaptive spectral representation of remote sensing objects based on endmember matching

    Institute of Scientific and Technical Information of China (English)

    乔程; 骆剑承; 沈占锋; 胡晓东; 夏列钢

    2012-01-01

    Spectral information is essential for objects recognition in remote sensing imagery. However, objects which have particular indices are rather few, and spectra types of spectral library and their universality are limited either. Therefore , an adaptive spectral representation method of remote sensing objects based on endmember matching is proposed. Proper endmember of imagery itself is selected. Spectral angle and distance, which is between the characteristic vectors of spectra of the interested pixel and a specific endmember, are both considered to form a new way for comprehensive spectral matching. Experiments of vegetation and water were adopted in ETM + (Enhanced Thematic Mapper) images, and were compared to those using USGS ( United States Geological Survey) library and normalized difference vegetation index (NDVI) /normalized difference water index (NDWI). Moreover, validations of shadow and bareland images were also carried out to test the effectiveness and universality of the proposed method.%光谱信息是遥感识别地物的依据,而目前已发展的典型地类的光谱指数模型有限,波谱库中的标准地物类型及其普适性也是有限的.鉴于此,提出一种端元匹配的地物自适应光谱表征方法,通过选取贴合影像本身的端元,并综合光谱角和距离度量对影像和端元光谱进行综合匹配.通过ETM+(Enhanced Thematic Mapper)影像上对植被、水体与美国地质调查局(United States Geological Survey,USGS)波谱库及归一化植被/水体指数的对比实验,及阴影、裸地等的验证实验,证实了该方法的有效性和普适性.

  7. Wind measurements in Saturn's atmosphere with UVES/VLT ground-based Doppler velocimetry

    Science.gov (United States)

    Machado, Pedro; Silva, Miguel; Peralta, Javier; Luz, David; Sánchez-Lavega, Agustin; Hueso, Ricardo

    2016-04-01

    We will present preliminary Doppler wind velocity results of Saturn's zonal flow at cloud level. Our aim is help to constrain the characterization of the equatorial jet at cloud level and the latitudinal variation of the zonal winds, to measure its spatial and temporal variability, to contribute to monitor the variability in order to achieve a better understanding of the dynamics of Saturn's zonal winds, whose equatorial jet has a complex vertical structure and temporal variability (Sanchez-Lavega et al., Nature, 423, 623, 3003; Garcia-Melendo et al., Geophys. Res. Lett., 37, L22204. 2010). Finally, the complementarity with Cassini, providing an independent set of observations. The UVES/VLT instrument has been used, which simultaneously achieves high spectral resolving power and high spatial resolution. The field has been derotated in order to have the aperture aligned perpendicularly to Saturn's rotation axis. In this configuration, spatial information in the East-West direction is preserved in a set of spectra in the direction perpendicular to dispersion. The technique of absolute accelerometry (AA, Connes, 1985, ApSS 110, 211) has been applied to the backscattered solar spectrum in order to determine the Doppler shift associated with the zonal circulation. Our measurements have been made in the wavelength range of 480-680 nm. Previously we successfully adapted this Doppler velocimetry technique for measuring winds at Venus cloud tops (Machado et al. 2012). In the present study we will show the adaptation of this method for Saturn's case. Since the AA technique only allows to compare spectra where the line shifts are within the line width, in fast rotating atmospheres (as is the case of Saturn) the spectra must be compared by pairs from adjacent areas of the disk (adjacent pixels in the slit). We will use coordinated observations from the Cassini's Visible and Infrared Mapping Spectrometer (VIMS), in order to compare with the Doppler winds obtained from the UVES

  8. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies

    Science.gov (United States)

    Bolis, A.; Cantwell, C. D.; Moxey, D.; Serson, D.; Sherwin, S. J.

    2016-09-01

    A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices. The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.

  9. Mie-Rayleigh Doppler Wind Lidar with Two Double-edge Interferometers

    Institute of Scientific and Technical Information of China (English)

    孙东松

    2002-01-01

    The Mie-Rayleigh direct detection Doppler lidar (DDDL) with two double-edge etalons is presented. Fabry-Perot (F-P) etalon is used as the spectral analyzer for Doppler measurement formthe aerosol and molecule backscattered signals. The aerosol and molecular backscattering signals are separated by a polarization isolator with less signal decrement, so this system has about same accuracy as individual Rayleigh Doppler lidar or Mie Doppler lidar system. The simulation on a proposed ground-based DDDL at 532 nm shows that the velocity error is less than 2 m/s below 8 km for a 100 m vertical resolution by Mie channel and 2m/s up to 20 km by Rayleigh channel, respectively.

  10. Doppler peaks from active perturbations

    CERN Document Server

    Magueijo, J; Coulson, D; Ferreira, P; Magueijo, Joao; Albrecht, Andreas; Coulson, David; Ferreira, Pedro

    1995-01-01

    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.

  11. Inverse Doppler Effects in Flute

    CERN Document Server

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  12. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  13. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  14. The quiet Sun average Doppler shift of coronal lines up to 2 MK

    CERN Document Server

    Dadashi, Neda; Solanki, Sami K

    2011-01-01

    The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. Here we analyse combined SUMER/SoHO and EIS/Hinode observations of the quiet Sun around disk centre to determine, for the first time, the average Doppler shift of several spectral lines formed between 1 and 2 MK, where the largest part of the quiet coronal emission is formed. The measurements are based on a novel technique applied to EIS spectra to measure the difference in Doppler shift between lines formed at different temperatures. Simultaneous wavelength-calibrated SUMER spectra allow establishing the absolute value a...

  15. Understanding Doppler Broadening of Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Rawool-Sullivan, Mohini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  16. Anomalous Doppler effects in bulk phononic crystal

    International Nuclear Information System (INIS)

    Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.

  17. Micro-Doppler Analysis of Small UAVs

    NARCIS (Netherlands)

    Wit, J.J.M. de; Harmanny, R.I.A.; Prémel Cabic, G.

    2012-01-01

    Coherent radar measures micro-Doppler properties of moving objects. The micro-Doppler signature depends on parts of an object moving and rotating in addition to the main body motion (e.g. rotor blades) and is therefore characteristic for the type of object. In this study, the micro-Doppler signature

  18. Speckles in laser doppler perfusion imaging

    NARCIS (Netherlands)

    Rajan, Vinayakrishnan

    2007-01-01

    Laser Doppler Flowmetry (LDF) is a noninvasive diagnostic method to measure blood flow in tissue [1]. The technique is based on measuring the Doppler shift induced by moving red blood cells to the illuminating coherent light. A laser Doppler instrument often gives output signals related to the flux,

  19. The Doppler Effect--A New Approach

    Science.gov (United States)

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  20. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    Science.gov (United States)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  1. Doppler-shifted self-reflected wave from a semiconductor

    Science.gov (United States)

    Schuelzgen, Alex; Hughes, S.; Peyghambarian, Nasser

    1997-06-01

    We report the first experimental observation of a self- reflected wave inside a very dense saturable absorber. An intense femtosecond pulse saturates the absorption and causes a density front moving into the semiconductor sample. Due to the motion of the boundary between saturated and unsaturated areas of the sample the light reflected at this boundary is red-shifted by the Doppler effect. The spectrally shifted reflection makes it possible to distinguish between surface reflection and self-reflection and is used to proof the concept of the dynamic nonlinear skin effect experimentally. Quite well agreement with model calculations is found.

  2. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    Science.gov (United States)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  3. Efficient geometric rectification techniques for spectral analysis algorithm

    Science.gov (United States)

    Chang, C. Y.; Pang, S. S.; Curlander, J. C.

    1992-01-01

    The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.

  4. A new time-domain narrowband velocity estimation technique for Doppler ultrasound flow imaging. I. Theory.

    Science.gov (United States)

    Vaitkus, P J; Cobbold, R C

    1998-01-01

    A significant improvement in blood velocity estimation accuracy can be achieved by simultaneously processing both temporal and spatial information obtained from a sample volume. Use of the spatial information becomes especially important when the temporal resolution is limited. By using a two-dimensional sequence of spatially sampled Doppler signal "snapshots" an improved estimate of the Doppler correlation matrix can be formed. Processing Doppler data in this fashion addresses the range-velocity spread nature of the distributed red blood cell target, leading to a significant reduction in spectral speckle. Principal component spectral analysis of the "snapshot" correlation matrix is shown to lead to a new and robust Doppler mode frequency estimator. By processing only the dominant subspace of the Doppler correlation matrix, the Cramer-Rao bounds on the estimation error of target velocity is significantly reduced in comparison to traditional narrowband blood velocity estimation methods and achieves almost the same local accuracy as a wideband estimator. A time-domain solution is given for the velocity estimate using the root-MUSIC algorithm, which makes the new estimator attractive for real-time implementation. PMID:18244249

  5. Spectral density correction of a signal at frequency variable transformation

    Directory of Open Access Journals (Sweden)

    Viorel NICOLAU

    2006-12-01

    Full Text Available The goal of this paper is to determine analytical expression for the spectral density function of a signal, affected by a known frequency transformation, which do not modify the process energy. Such transformations of frequency variable can frequently appear on spectral density function of a signal, due to physical events (e.g. Doppler effect or mathematical considerations (e.g. changing the coordinate system. In this case, all components of the spectral density function are modified. The formulas are valid for every spectral component and can be used in signal processing, for model simulation or implementation of advanced algorithm. A case study is illustrated on wave spectrum correction.

  6. [Doppler echocardiography of ventricular diastole].

    Science.gov (United States)

    Roudaut, R; Gosse, P; Dallocchio, M

    1988-12-01

    Non-invasive studies of left ventricular relaxation and filling by means of doppler-echocardiography are of considerable interest owing to easy recording and good reproducibility. However, such physiological parameters as site of measurement, heart rate and, chiefly, age may interfere with the curves obtained. The interpretation of tracings must also take into account the presence of mitral valve pathology (stenosis or regurgitation), aortic stenosis, disorders of atrioventricular (prolonged PR complex) or intraventricular (left bundle branch block) conduction and medication (e.g. vasodilators). In clinical practice, one of the main advantages of the technique is that it makes it possible to distinguish between the physiological left ventricular hypertrophy (LVH) of top-class sportsmen (without impaired ventricular filling) and the pathological LVH of hypertrophic cardiomyopathy. The purpose of this study, with a review of the literature, was to take stock of the value and limitations of the doppler indices.

  7. Causality and the Doppler Peaks

    OpenAIRE

    Turok, Neil

    1996-01-01

    Could cosmic structure have formed by the action of causal physics within the standard hot big bang, or was a prior period of inflation required? Recently there has been some discussion of whether causal sources could reproduce the pattern of Doppler peaks of the standard scale-invariant adiabatic theory. This paper gives a rigorous definition of causality, and a causal decomposition of a general source. I present an example of a simple causal source which mimics the standard adiabatic theory...

  8. Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields

    CERN Document Server

    Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S

    2014-01-01

    The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...

  9. The influence of laser spot size on the micro-Doppler spectrum

    Science.gov (United States)

    Zhang, Dehua; Zhang, Haiyang; Zheng, Zheng; Yang, Hongzhi; Zhao, Changming; Yang, Suhui

    2015-08-01

    Micro-Doppler effect, which is induced by micro motion of target or any structure on the target, is a frequency modulation that generates sidebands about the target's Doppler frequency shift, such as mechanical vibration or rotation. When a target's motions incorporate micro motions, the radar echo signal will contain micro-Doppler characteristics related to these motions. Therefore, the micro-Doppler effect provides a new approach to obtain the dynamic properties of targets, which can be used to accomplish the detection and identification of targets, such as the identification of different types of helicopters. Scattering of the laser spot from a target surface modulates the Doppler signal, causes broadening of the signal spectrum, and, adds uncertainty to the signature analysis. A mathematic model of cone spin, which is a typical micro motion, is built first in this paper. Furthermore, an analyzed equation is deduced to predict the micro-Doppler spectral broadening of acquired medium current signals in situations of different laser spot size. It is found that the beam spot size on the target affects the resulting spectral broadening. Finally, an experiment based on the scaled model is performed to verify the simulation. A narrow-linewidth single frequency fiber laser is employed to detect the cone target at different laser spot size by coherent detection with constant detect distance and laser power. The experimental result shows that the beam spot size on the target affects the resulting spectral broadening caused by speckle, which corresponds to the simulation result. The experimental broadening was consistently greater than the theoretical broadening due to other effects that also contribute to the total broadening.

  10. Influence of Inter Carrier Interference on Link Adaptation Algorithms in OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Rahman, Muhammad Imadur; Wang, Yuanye;

    2007-01-01

    systems is not obvious and has not received much attention till now. It is seen that when ICI is not captured in the SNR measured then the LA system fails to meet the target error rate. However, it is shown that with suitable modification to the SNR switching threshold for changing the adaptive modulation......The performance of Link Adaptation (LA) under the influence of inter carrier interference (ICI), which is cause by carrier frequency offset (CFO) and Doppler frequency spread due to mobility, in orthogonal frequency division multiplexing (OFDM) based wireless systems is analyzed in this work. LA...... can over the problem. It is also noted that ICI severely reduces the spectral efficiency of OFDM systems even when LA is used....

  11. Spectrally tunable pixel sensors

    Science.gov (United States)

    Langfelder, G.; Buffa, C.; Longoni, A. F.; Zaraga, F.

    2013-01-01

    They are here reported the developments and experimental results of fully operating matrices of spectrally tunable pixels based on the Transverse Field Detector (TFD). Unlike several digital imaging sensors based on color filter arrays or layered junctions, the TFD has the peculiar feature of having electrically tunable spectral sensitivities. In this way the sensor color space is not fixed a priori but can be real-time adjusted, e.g. for a better adaptation to the scene content or for multispectral capture. These advantages come at the cost of an increased complexity both for the photosensitive elements and for the readout electronics. The challenges in the realization of a matrix of TFD pixels are analyzed in this work. First experimental results on an 8x8 (x 3 colors) and on a 64x64 (x 3 colors) matrix will be presented and analyzed in terms of colorimetric and noise performance, and compared to simulation predictions.

  12. Ultrasonography color Doppler of the hepatic venous portal system

    Directory of Open Access Journals (Sweden)

    Juan Carlos Mantilla Suárez

    2006-08-01

    Full Text Available Color doppler ultrasonography is an imaging method that allows theassessment of the venous portal hepatic system to obtain informationfor the diagnosis of portal venous hypertension, identifying thesubtle changes of the hepatic arterial flow, spectral wave and pulsatility index, portal vein diameter, morphology of the spectral wave, direction o flow inverted and portosystemic shunts in advancedpathology as well as in the evaluation of transyugular intrahepaticportosystemic shunts (TIPS, used in the treatment of patients withesophageal bleeding varix. It is useful in diagnosis of the Budd-Chiari syndrome and the evaluation and follow up of patients with inferior vein cava filters. This article offers a review of the hepatic portal venous system and the main ultrasonographic features of portal venous hypertension, and Budd-Chiari syndrome and their causes.

  13. Doppler spectra and estimated windspeed of a violent tornado

    International Nuclear Information System (INIS)

    Presented in this paper are Doppler spectra of a very large tornado that occurred on 22 May 1981 near Binger, Oklahoma. Tracking of the tornado was accomplished with the help of a novel ''polar spectra display.'' Bimodal tornado spectral signatures (TSS) were observed in about 40 scans. Direct measurements of maximum velocities from spectral skirts yielded a maximum tangential speed of 80 m s-1 (90 m s-1 relative to ground). A diameter of 1 km at 200 m above ground was deduced from a simplified model. Radial centrifuging of radar targets was estimated to be about 20 m s-1. With simple assumptions for radar target sizes and summation of forces, a beamwidth average convergence value of abou 2.5 x 10-2 s-1 was calculated for the tornado boundary layer

  14. Quantitative Doppler ultrasound evaluation of occlusive arterial disease in the lower limb

    DEFF Research Database (Denmark)

    Bagi, P; Sillesen, H; Hansen, H J

    1988-01-01

    duration of PRT was used for comparison with ankle/brachial pressure index (A/B index) and angiography. A highly significant correlation was found between PRT and A/B index (r = -0.75, P less than 0.001). Based on receiver operating characteristic curves an overall diagnostic accuracy of 90% in diagnosing......Forty consecutive patients with lower limb arterial disease were evaluated using a multi-gated pulsed Doppler system. Doppler signals were sampled at 4 sites in each limb, and following spectral analysis, the pulse rise time (PRT) was measured. The value obtained at the location giving the longest...

  15. Tissue Doppler Findings in Patients with Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Firoozeh Abtahi

    2016-09-01

    Full Text Available In conclusion, our results suggested that increasing degrees of pulmonary artery systolic pressure affected timing of some tissue Doppler-derived intervals within the cardiac cycle, including IVC time, time to peak systolic myocardial velocity (Sm, and time to peak strain. Therefore, tissue Doppler imaging could be used in assessment of patients with suspected pulmonary arterial hypertension. Background: Pulmonary hypertension is an untreatable condition with poor prognosis and factors such as more elevated pulmonary arterial systolic pressure and right ventricular dysfunction are associated with a worse outcome. Objectives: Considering the limitations of the current modalities, this study aimed to find the relationship between tissue Doppler-derived systolic and diastolic parameters and elevated pulmonary arterial pressure in order to assess the routine application of tissue Doppler imaging in evaluation of pulmonary arterial hypertension. Patients and Methods: This study was conducted on 100 inpatient and outpatient individuals referred to the Department of Echocardiography in Shahid Faghihi hospital, Shiraz, Iran from July 2012 to March 2013. The individuals who had preserved right ventricular function in the presence of pulmonary arterial hypertension were included in the case group. On the other hand, the patients who did not have echocardiographic signs of pulmonary arterial hypertension were enrolled into the control group. All the patients underwent a complete transthoracic echocardiogram including 2-dimensional, color flow, and spectral Doppler as well as tissue Doppler imaging using a vivid E9 system, and the desired systolic and diastolic parameters were recorded. The relationship among these parameters was evaluated by independent sample t-test using the SPSS statistical software, version 16. Besides, P < 0.05 was considered to be statistically significant. Results: The mean time to peak strain was significantly longer in the case

  16. Doppler images of DI Piscium during 2004-2006

    Science.gov (United States)

    Lindborg, M.; Hackman, T.; Mantere, M. J.; Korhonen, H.; Ilyin, I.; Kochukhov, O.; Piskunov, N.

    2014-02-01

    Aims: DI Psc (HD 217352) is a Li-rich, rapidly rotating single K giant. We set out to study the spot configuration and activity level by calculating surface temperature maps of the star. Methods: We apply the Doppler imaging method on high-resolution optical spectroscopy obtained during 2004-2006. Results: In July-August 2004, no clear spot structures were visible, but the spot coverage increased in July 2005, and cool spots emerged, especially at intermediate latitudes. Later on in September 2006, the spot coverage increased and cool spots were visible on both sides of the equator. However, the map of 2006 suffers from bad phase coverage, meaning it is not possible to draw definite conclusions on the spot locations during that season. Conclusions: Compared with earlier Doppler maps of DI Psc and temperature maps obtained for other late-type stars with similar rotation rates, DI Psc seems to be in a low activity state especially during the observing season of July-August 2004. During the 2005 and 2006 observing seasons, the spot activity seen in the spectral line profiles and inferred from Doppler images increases, and the temperature contrast in our last map is more comparable to what was reported in an earlier study. Therefore, it can be concluded that the spot activity level of the star is variable over time. However, the present and previous Doppler images form too short a time series to draw conclusions about a possible activity cycle in DI Psc. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  17. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  18. DOPPLER ANALYSIS IN PREGNANCY INDUCED HYPERTENSION

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-12-01

    Full Text Available A study of 50 cases was conducted to evaluate the role of Colour Doppler imaging in pregnancy induced hypertension with women over 28 weeks of gestation, the initial scan was performed immediately after the diagnosis of PIH to avoid any influence of treatment on Doppler evaluation. This study was aimed to analyze the blood flow in umbilical artery, maternal uterine artery & fetal middle cerebral artery using Doppler ultrasound.

  19. DOPPLER ANALYSIS IN PREGNANCY INDUCED HYPERTENSION

    OpenAIRE

    Tushar; Amit C

    2014-01-01

    A study of 50 cases was conducted to evaluate the role of Colour Doppler imaging in pregnancy induced hypertension with women over 28 weeks of gestation, the initial scan was performed immediately after the diagnosis of PIH to avoid any influence of treatment on Doppler evaluation. This study was aimed to analyze the blood flow in umbilical artery, maternal uterine artery & fetal middle cerebral artery using Doppler ultrasound.

  20. Postoperative doppler evaluation of liver transplants

    OpenAIRE

    Rupan Sanyal; Zarzour, Jessica G.; Ganeshan, Dakshina M; Puneet Bhargava; Chandana G Lall; Mark D Little

    2014-01-01

    Doppler ultrasound plays an important role in the postoperative management of hepatic transplantation, by enabling early detection and treatment of various vascular complications. This article describes the normal Doppler findings following liver transplantation and reviews the imaging appearances of various vascular complications associated with it. The article also discusses transient waveform abnormalities, often seen on a post-transplant Doppler examination, and the importance of differen...

  1. Emboli detection using the Doppler ultrasound technique

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; CHEN Xi; ZHANG Yu; WANG Weiqi

    2003-01-01

    Embolic detection is very important to the early diagnosis of vessel disease. The Doppler ultrasound technique is one of the common methods to detect the emboli non-invasively. When the emboli pass through the sample volume of the Doppler ultrasound instrument, there exist high intensity transient Doppler signals. Thus the emboli can be detected directly from the variation of Doppler signal amplitude. Since there may be some disturbance in the system, this general detection method has great limitation. To improve the accuracy of emboli auto-detection, several novel methods are studied to obtain the sensitive characteristic of the emboli signals using the new signal processing theories.

  2. Single mode, extreme precision Doppler spectrographs

    CERN Document Server

    Schwab, Christian; Betters, Christopher H; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a...

  3. Doppler-width thermodynamic thermometry by means of line-absorbance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castrillo, A.; De Vizia, M. D.; Gianfrani, L. [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, Caserta (Italy); Moretti, L. [Dipartimento di Matematica, Seconda Universita di Napoli, Caserta (Italy); Galzerano, G.; Laporta, P. [Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie (IFN-CNR), Milano (Italy); Merlone, A. [Istituto Nazionale di Ricerca Metrologica, Torino (Italy)

    2011-09-15

    A clean and effective implementation of Doppler-width thermometry is described. Exploiting the relationship between line-center absorbance and integrated absorbance, the Doppler width of a molecular spectral line can be retrieved from a set of profiles resulting from different gas pressures. The method is validated by its application to numerically simulated spectra. Preliminary experiments, in water vapor samples, turn out to be successful, demonstrating Doppler-widths' retrieval in the near-infrared with a precision of 8x10{sup -5}, at the water triple point temperature. The direct link to the Boltzmann constant makes the proposed method very attractive for temperature metrology as a tool for the realization of a new thermodynamic temperature scale.

  4. Six-wave mixing spectroscopy in a Doppler-broadened cascade four-level system

    Energy Technology Data Exchange (ETDEWEB)

    Niu Jinyan; Wang Ruquan; Wang Bingbing; Wu Lingan; Fu Panming, E-mail: pmfu@aphy.iphy.ac.c [Laboratory of Optical Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2009-09-14

    We study six-wave mixing (SWM) spectroscopy based on electromagnetically induced transparency in a Doppler-broadened cascade four-level system. It is found that the SWM spectra are extremely sensitive to the configuration of the incident beams, where the linewidth can be either Doppler-free or very broad, due to the polarization interference of atoms of different velocities. This polarization interference can be controlled in the presence of a strong coupling field. Moreover, SWM can be employed as a new type of Doppler-free Autler-Townes (AT) spectroscopy, which has better spectral resolution than conventional AT spectroscopy. Finally, we also reveal the intrinsic connection between frequency-domain SWM spectroscopy and time-domain photon echoes through studying the time-domain correspondence of SWM.

  5. The Martian rotation from Doppler measurements: Simulations of future radioscience experiments

    Science.gov (United States)

    Péters, Marie-Julie; Yseboodt, Marie; Dehant, Véronique; Le Maistre, Sebastien; Marty, Jean-Charles

    2016-10-01

    The radioscience experiment onboard the future InSight and ExoMars missions consists in two-way Doppler shift measurement from a X-band radio link between a lander on Mars and the ground stations on Earth. The Doppler effect on the radio signal is related to the revolution of the planets around the Sun and to the variations of the orientation and the rotation of Mars. The variations of the orientation of the rotation axis are the precession and nutations, related to the deep interior of Mars and the variations of the rotation rate are the length-of-day variation, related to the dynamic of the atmosphere.We perform numerical simulations of the Doppler measurements in order to quantify the precision that can be achieved on the determination of the Mars rotation and orientation parameters (MOP). For this purpose, we use the GINS (Géodésie par Intégrations Numériques Simultanées) software developed by the CNES and further adapted at the Royal Observatory of Belgium for planetary geodesy applications. This software enables to simulate the relative motion of the lander at the surface of Mars relative to the ground stations and to compute the MOP signature on the Doppler shift. The signature is the difference between the Doppler observable estimated taking into account a MOP and the Doppler estimated without this parameter.The objective is to build a strategy to be applied to future data processing in order to improve our estimation of the MOP. We study the effect of the elevation of the Earth in the sky of the lander, of the tracking duration and number of pass per week, of the tracking time, of the lander position and of Doppler geometry on the signatures. Indeed, due to the geometry, the Doppler data are highly sensitive to the position variations along the line of sight.

  6. Airborne Differential Doppler Weather Radar

    Science.gov (United States)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  7. Tablet based real-time Doppler spectrum processing

    OpenAIRE

    Dahl, Bjørn Rudi

    2014-01-01

    By utilizing mobile, low-cost Doppler ultrasound technology in developing countries, the mortality rate of unborn children, small children and pregnant women might be reduced. Two main Doppler techniques which are used in ultrasound are the Doppler spectrum and the Doppler audio. The Doppler spectrum is used for quantitative analysis of the blood-flow while the Doppler audio is used for guidance during recordingThis thesis presents the implementation of a real-time Dopplerspectrum generator a...

  8. Fresh look at the doppler changes in pregnancies with placental-based complications

    Directory of Open Access Journals (Sweden)

    S Dikshit

    2011-01-01

    Full Text Available Placental-based complications of pregnancy can be classified as acute and chronic. An example of acute placental complication is abruptio placenta. The chronic placental complications include pregnancy induced hypertension (PIH and idiopathic Intrauterine growth restriction (IUGR. The fetus is at risk for perinatal complications in both acute and chronic conditions. Here we take a look at the natural history of the Doppler parameters in chronic conditions. The techniques used for assessing the fetal well-being include, clinical methods, biophysical tests, conventional ultrasonography, and fetal Doppler studies. Arterial Doppler studies are used to assess the well-being of the fetus and to determine the timing of delivery. However, arterial Dopplers predict only the subset of fetuses at risk of having perinatal complications. Venous Dopplers have been used to improve upon the prognostication. However, by the time the commonly used venous Doppler signs, that is, ′A′ wave reversal in ductus venosus (DV is present, the fetus is likely to be already compromised. The fetus tries to adapt to the environment of deprivation by making a series of changes in the umbilical artery circulation, cerebral circulation, and hepatic circulation. As a result of these adaptations, the fetus overcomes the state of chronic hypoxia. This article takes a look at these changes and also the effect of these adaptations. It is suggested that serial comparisons of the venous flow characteristics of the DV and inferior vena cava (IVC can provide an early indication of the impending decompensation and can be used to predict the time the delivery.

  9. Time-Height Variations of Ion-Line Doppler Spectra at HAARP

    Science.gov (United States)

    Watkins, B. J.; Fallen, C. T.

    2012-12-01

    O-mode HF heating results in enhanced electron temperatures in the lower ionosphere that in turn result in enhanced electron densities due to temperature-dependent molecular ion chemistry. As a result, for a fixed HF heating frequency, the altitude of the HF interaction region decreases with time after the onset of HF heating. Corresponding altitudes of the HF-enhanced ion-line signals detected with the MUIR UHF-frequency diagnostic radar also decrease with time. For the data presented here, the radar range resolution was 600 meters, and time-height Doppler spectra were obtained for every pulse (10ms inter-pulse period) of the UHF-radar. We have therefore been able to examine the height-dependent spectral characteristics of ion-line signals every 10ms. The UHF radar signals show a brief initial period after HF turn-on (about 120ms) when signals are scattered around zero Doppler over about 2km height range. The UHF signals then rapidly convert to a stable configuration with two ion-line signatures (approximately +/- 5kHz Doppler values); above a fixed height there is only positive Doppler data (downward ion-acoustic waves), and below that height there is only negative Doppler data (upward ion-acoustic waves). The power associated with the downward ion-acoustic waves is typically stronger than the upward waves. For the example shown, this spectral type persists for the entire duration of the HF heating time, at progressively lower heights. We suggest that the spectral characteristics are associated with HF frequencies near the 3rd gyro harmonic.

  10. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  11. Observation of the Zero Doppler Effect

    Science.gov (United States)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  12. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  13. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  14. Denoising of arterial and venous Doppler signals using discrete wavelet transform: effect on clinical parameters.

    Science.gov (United States)

    Tokmakçi, Mahmut; Erdoğan, Nuri

    2009-05-01

    In this paper, the effects of a wavelet transform based denoising strategy on clinical Doppler parameters are analyzed. The study scheme included: (a) Acquisition of arterial and venous Doppler signals by sampling the audio output of an ultrasound scanner from 20 healthy volunteers, (b) Noise reduction via decomposition of the signals through discrete wavelet transform, (c) Spectral analysis of noisy and noise-free signals with short time Fourier transform, (d) Curve fitting to spectrograms, (e) Calculation of clinical Doppler parameters, (f) Statistical comparison of parameters obtained from noisy and noise-free signals. The decomposition level was selected as the highest level at which the maximum power spectral density and its corresponding frequency were preserved. In all subjects, noise-free spectrograms had smoother trace with less ripples. In both arterial and venous spectrograms, denoising resulted in a significant decrease in the maximum (systolic) and mean frequency, with no statistical difference in the minimum (diastolic) frequency. In arterial signals, this leads to a significant decrease in the calculated parameters such as Systolic/Diastolic Velocity Ratio, Resistivity Index, Pulsatility Index and Acceleration Time. Acceleration Index did not change significantly. Despite a successful denoising, the effects of wavelet decomposition on high frequency components in the Doppler signal should be challenged by comparison with reference data, or, through clinical investigations. PMID:19470316

  15. Color doppler sonography in thickened gallbladder wall

    International Nuclear Information System (INIS)

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes

  16. Doppler-ultrasonographic finding of air in the portal vein: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Soon; Lee, Kwan Sup; Lee, Yul; Chung, Soo Young; Bae, Sang Hoon [College of Medicine, Hallym University, Seoul (Korea, Republic of)

    1994-03-15

    Classically air in the portal vein has been detected on plain radiography, but computed tomography and ultrasonography have been shown to be more sensitive. We report a case of air in the PV in a 10-day-old infant with pneumatosis intestinalis with its ultrasonographic and Doppler findings. The patient was a 10-day-old infant born by cesarean section at 41 weeks. Simple abdomen film revealed branching pattern of radiolucent air shadows within in contour of liver, gas distention of bowel loops and thickenod bowel walls with lincar intraluminal air shadows in abdomen, suggesting necrotizing enterocolitis. So we performed Doppler ultrasonography. Ultrasonography showed branching pattern of hyperechogenic dots and along the lumen of left portal vein. The color Doppler study revealed an aliasing duo to increased velocity and whirling pattern of blood flow, and the Duplex Doppler spectral display showed sharp, vertical bidirectional spikes by air in portal vein. Air in the portal vein can be easily diagnosed by the following signs: hyperechogenic dots in the portal vein on ultrasonography and vertical, sharp bidirectional spikes superimposed on the usual Doppler tracing of the portal vein on Duplex ultrasonography.

  17. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    Science.gov (United States)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Measuring Velocity and Acceleration Using Doppler Shift of a Source with an Example of Jet in SS433

    Indian Academy of Sciences (India)

    Sanjay M. Wagh

    2014-12-01

    We describe here as to how the Doppler shift of a source needs to be used to measure its velocity and acceleration. We also apply this method, as an example here, to spectral lines of the blue-shifted jet in micro-quasar SS433 and discuss the intricacies of these measurements.

  19. An FPGA-based Doppler Processor for a Spaceborne Precipitation Radar

    Science.gov (United States)

    Durden, S. L.; Fischman, M. A.; Johnson, R. A.; Chu, A. J.; Jourdan, M. N.; Tanelli, S.

    2007-01-01

    Measurement of precipitation Doppler velocity by spaceborne radar is complicated by the large velocity of the satellite platform. Even if successive pulses are well correlated, the velocity measurement may be biased if the precipitation target does not uniformly fill the radar footprint. It has been previously shown that the bias in such situations can be reduced if full spectral processing is used. The authors present a processor based on field-programmable gate array (FPGA) technology that can be used for spectral processing of data acquired by future spaceborne precipitation radars. The requirements for and design of the Doppler processor are addressed. Simulation and laboratory test results show that the processor can meet real-time constraints while easily fitting in a single FPGA.

  20. The quiet Sun average Doppler shift of coronal lines up to 2 MK

    OpenAIRE

    Dadashi, Neda; Teriaca, Luca; Solanki, Sami K.

    2011-01-01

    The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. ...

  1. Fetal cerebral-umbilical Doppler ratio in prediction of fetal distress in patients with preeclampsia

    OpenAIRE

    Jurišić Aleksandar; Jurišić Žaklina; Pažin Vladimir; Vasiljević Mladenko; Janković-Ražnatović Svetlana; Dragojević-Dikić Svetlana

    2010-01-01

    Bacground/Aim. The use of color Doppler ultrasonography provides noninvasive observation, confirmation and quantification of pathophysiological processes in fetoplacental circulation in pregnant patients. By blood vessel mapping and the obtained waves spectral analysis it is possible to evaluate vascular resistency of the fetus blood vessels. The aim of the study was to evaluate cerebral-umbilical pulsatility index ratio in fetal circulation in prediction of fetal distress in patients with pr...

  2. Correlation-induced spectral changes

    Science.gov (United States)

    Wolf, Emil; James, Daniel F. V.

    1996-06-01

    This paper presents a review of research, both theoretical and experimental, concerning the influence of coherence properties of fluctuating light sources and of correlation properties of scattering media on the spectra of radiated and scattered fields. Much of this research followed a discovery made in 1986, that the spectrum of light may change on propagation, even in free space. More than 100 papers on this topic have been published to date and many of them are reviewed, or at least mentioned, in this article. After an introduction and a summary of some of the main mathematical results relating to second-order coherence theory of statistically stationary optical fields, spectral changes that may take place on superposing fields produced by two partially correlated sources are discussed. Spectral effects in fields produced by two-dimensional secondary sources and by three-dimensional primary sources are then considered. The section which follows describes spectral changes that may arise when polychromatic light is scattered on media whose physical properties vary randomly either in space and/or in time. A review is also presented of recent research, which has revealed that under certain circumstances the changes in the spectrum of light scattered on random media may imitate the Doppler effect, even though the source, the medium and the observer are all at rest with respect to one another. In the final section a brief review is given of a new emerging technique sometimes called spatial-coherence spectroscopy. It is based on the discovery that it is possible, under certain circumstances, to determine field correlations from spectral measurements.

  3. Correlation-induced spectral changes

    International Nuclear Information System (INIS)

    This paper presents a review of research, both theoretical and experimental, concerning the influence of coherence properties of fluctuating light sources and of correlation properties of scattering media on the spectra of radiated and scattered fields. Much of this research followed a discovery made in 1986, that the spectrum of light may change on propagation, even in free space. More than 100 papers on this topic have been published to date and many of them are reviewed, or at least mentioned, in this article. After an introduction and a summary of some of the main mathematical results relating to second-order coherence theory of statistically stationary optical fields, spectral changes that may take place on superposing fields produced by two partially correlated sources are discussed. Spectral effects in fields produced by two-dimensional secondary sources and by three-dimensional primary sources are then considered. The section which follows describes spectral changes that may arise when polychromatic light is scattered on media whose physical properties vary randomly either in space and/or in time. A review is also presented of recent research, which has revealed that under certain circumstances the changes in the spectrum of light scattered on random media may imitate the Doppler effect, even though the source, the medium and the observer are all at rest with respect to one another. In the final section a brief review is given of a new emerging technique sometimes called spatial-coherence spectroscopy. It is based on the discovery that it is possible, under certain circumstances, to determine field correlations from spectral measurements. (author)

  4. Staggered Multiple-PRF Ultrafast Color Doppler.

    Science.gov (United States)

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  5. Rotational Doppler effect in nonlinear optics

    Science.gov (United States)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  6. Colour doppler ultrasound assessment of the normal neonatal hip

    International Nuclear Information System (INIS)

    To determine the morphology and hemodynamic characteristics of the arterial vessels of the proximal femur according to specific anatomic regions in asymptomatic neonates in 2 pediatric-based health care institutions. Forty-three neonates (29 female, 14 male; age range, 2 d-3 mo; median age, 3 d) were enrolled in the study. Thirty-two (37%) of 86 hips were classified as Graf type IIA joints (mean alpha angle, 56.0o ± 2.7o), and 54 (63%) were classified as type I joints (mean alpha angle, 65.0o ± 4.6o). Colour and spectral Doppler imaging identified vessels running along the acetabular labrum, epiphyseal vessels, and femoral neck. We showed 4 different patterns of vascularity of the hips: radial, parallel, mixed radial-parallel, and indeterminate, however, they were not related to the hip maturity (P = .3, coronal plane; P = .62, transverse plane) or to the amount of colour pixels identified in each region (P = .35). The mean number of pixels in the ligamentum teres region was significantly higher than that in other regions of interest (P =.03). Except for the acetabular labrum arteries, Doppler spectrum waveforms of proximal femur arteries presented with low resistivity. There was a tendency towards females' acetabular arteries presenting with lower peak systolic velocities than males' acetabular arteries (P =.06). Colour Doppler spectrum waveforms and intensity of vascularity in normal neonatal hips differ according to the anatomic region under evaluation. This observation deserves further investigation on its role on the physiopathogenesis of neonatal hip disorders. (author)

  7. Colour doppler ultrasound assessment of the normal neonatal hip

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Neira, C.L. [Dept. of Diagnostic Imaging, Alberta Children' s Hospital, Calgary, Alberta (Canada)], E-mail: clara.ortiz@calgaryhealthregion.ca; Laffan, E.; Daneman, A. [Dept. of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario (Canada); Fong, K. [Dept. of Diagnostic Imaging, Mount Sinai Hospital, Toronto, Ontario (Canada); Roposch, A. [Dept. of Orthopedic Surgery, The Hospital for Sick Children, Toronto, Ontario (Canada); Great Ormond Street Hospital, Inst. of Child Health, Univ. College London, London (United Kingdom)

    2009-04-15

    To determine the morphology and hemodynamic characteristics of the arterial vessels of the proximal femur according to specific anatomic regions in asymptomatic neonates in 2 pediatric-based health care institutions. Forty-three neonates (29 female, 14 male; age range, 2 d-3 mo; median age, 3 d) were enrolled in the study. Thirty-two (37%) of 86 hips were classified as Graf type IIA joints (mean alpha angle, 56.0{sup o} {+-} 2.7{sup o}), and 54 (63%) were classified as type I joints (mean alpha angle, 65.0{sup o} {+-} 4.6{sup o}). Colour and spectral Doppler imaging identified vessels running along the acetabular labrum, epiphyseal vessels, and femoral neck. We showed 4 different patterns of vascularity of the hips: radial, parallel, mixed radial-parallel, and indeterminate, however, they were not related to the hip maturity (P = .3, coronal plane; P = .62, transverse plane) or to the amount of colour pixels identified in each region (P = .35). The mean number of pixels in the ligamentum teres region was significantly higher than that in other regions of interest (P =.03). Except for the acetabular labrum arteries, Doppler spectrum waveforms of proximal femur arteries presented with low resistivity. There was a tendency towards females' acetabular arteries presenting with lower peak systolic velocities than males' acetabular arteries (P =.06). Colour Doppler spectrum waveforms and intensity of vascularity in normal neonatal hips differ according to the anatomic region under evaluation. This observation deserves further investigation on its role on the physiopathogenesis of neonatal hip disorders. (author)

  8. TU-A-9A-02: Analysis of Variations in Clinical Doppler Ultrasound Peak Velocity Measurements

    International Nuclear Information System (INIS)

    Purpose: Doppler ultrasound (US) peak velocity (Vmax) measurements show considerable variations due to intrinsic spectral broadening with different scanning techniques, machines and manufacturers. We developed a semi-automated Vmax estimation method and used this method to investigate the performance of a US system for clinical Doppler Vmax measurement. Methods: Semi-automated Vmax is defined as the velocity at which the computed mean spectral profile falls to within 1 background standard deviation of the background mean. GE LOGIQ E9 system with 9L and ML6-15 probes were studied with steady flow (5.3 – 12.5 ml/s) in a Gammex OPTIMIZER 1425A phantom. All Doppler spectra were acquired by 1 operator at the distal end of 5 mm angular tube using a modified clinical carotid artery protocol. Repeatability and variation of Vmax to scanning parameters and probes were analyzed and reported as percentage, i.e. (max-min)/mean. Results: Vmax estimation had good repeatability (3.1% over 6 days for 9L, and 3.6% for ML6-15). For 9L probe, varying gain, compression, scale, SV depth and length, and frequency had minimal impact on Vmax (all variations less than 4.0%). Beam steering had slightly higher influence (largest variations across flow rates were 4.9% for 9L and 6.9% for ML6-15). For both probes, Doppler angle had the greatest effect on Vmax. Percentage increase of Vmax was largely independent of actual flow rates. For Doppler angle varied from 30 to 60°, Vmax increased 24% for 9L, and 20% for ML6-15. Vmax measured by ML6-15 were lower than that by 9L at each Doppler angle with differences less than 5%. Conclusion: The proposed Vmax estimation method is shown to be a useful tool to evaluate clinical Doppler US system performance. For the tested system and probes, Doppler angle had largest impact in measured Vmax

  9. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR...

  10. Single Mode, Extreme Precision Doppler Spectrographs

    Science.gov (United States)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  11. The first Doppler images of the eclipsing binary SZ Piscium

    CERN Document Server

    Xiang, Yue; Cameron, A Collier; Barnes, J R; Zhang, Liyun

    2015-01-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September--December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about $0.9 M_{\\odot}$ and $1283 \\pm 10$ d, respectively. After removing the contribution of the third body from the LSD profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant starspot activities on the surface of the K subgiant component. The distributions of starspots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the...

  12. The first Doppler images of the eclipsing binary SZ Piscium

    Science.gov (United States)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  13. Doppler disc tomography applied to low mass AGN spin

    CERN Document Server

    Middleton, Matthew

    2014-01-01

    Doppler tomography can provide a powerful means of determining black hole spin when our view to the central regions are revealed and obscured by optically thick orbiting material, and can provide an independent estimate that does not suffer as many degeneracies as traditional methods. For low mass AGN, time-dependent obscuration is expected to leave a signature in the changing spectrum of the disc emission which extends into the soft X-ray bandpass. We create a spectral model incorporating Doppler tomography and apply it to the case of the low mass (8$\\times$10$^{5}$ M$_{\\odot}$) AGN, RX J1301.9+2747 which shows unusual timing properties in the form of short-lived flares that we argue are best explained by the orbit of a window through an optically thick wind. Modelling the phase-resolved spectrum over the course of the highest data quality flare indicates a very low spin even when we relax our constraints. This is the lowest mass AGN for which a spin has been measured and the first via this technique. We not...

  14. Doppler disc tomography applied to low-mass AGN spin

    Science.gov (United States)

    Middleton, Matthew J.; Ingram, Adam R.

    2015-01-01

    Doppler tomography can provide a powerful means of determining black hole spin when our view to the central regions are revealed and obscured by optically thick orbiting material, and can provide an independent estimate that does not suffer as many degeneracies as traditional methods. For low-mass active galactic nuclei (AGN), time-dependent obscuration is expected to leave a signature in the changing spectrum of the disc emission which extends into the soft X-ray bandpass. We create a spectral model incorporating Doppler tomography and apply it to the case of the low-mass (8 × 105 M⊙) AGN, RX J1301.9+2747 which shows unusual timing properties in the form of short-lived flares that we argue are best explained by the orbit of a window through an optically thick wind. Modelling the phase-resolved spectrum over the course of the highest data quality flare indicates a very low spin even when we relax our constraints. This is the lowest mass AGN for which a spin has been measured and the first via this technique. We note that, as the mass and spin are very low, this appears to favour supermassive black hole (SMBH) growth by chaotic rather than constant accretion.

  15. Colour-Doppler sonography of the musculophrenic vein in cows.

    Science.gov (United States)

    Braun, U; Hoegger, R; Haessig, M

    2009-03-01

    The goal of the present study was to examine the musculophrenic vein of 29 healthy Swiss Braunvieh cows using colour-Doppler sonography to determine vessel morphology and diameter, and blood flow velocity. The hair over the reticular region was clipped, and the left musculophrenic vein was examined before and 10min after sedation using 0.03mg/kg xylazine. The musculophrenic vein appeared as a vessel with a diameter of 0.5-1.1cm located in the diaphragmatic musculature. The spectral display was a broad band structure with a wave-like shape. The Doppler measurement point was 1.5-2.7cm from the body surface. The diameter of the vein and the blood flow velocity did not differ significantly before and after sedation. Before sedation, the mean diameter (+/-SD) of the musculophrenic vein was 0.7 (0.2) cm, the maximum blood flow velocity 90.2 (38.6) cm/s, the mean blood flow velocity 60.4 (22.3) cm/s and the minimum blood flow velocity 41.4 (24.2) cm/s. There were significant correlations (r=0.45-0.90) between blood flow velocity before and after sedation and between minimum, maximum and mean blood flow velocities.

  16. Doppler shifted H Ly α emission from Jupiter's aurora

    International Nuclear Information System (INIS)

    IUE observations of the aurora on Jupiter have been performed with high spectral resolution in a search for Doppler shifted H Ly α emission produced through charge exchange by fast precipitating protons, as observed in the Earth's aurora. No emission has been observed corresponding to proton energies greater than 200 eV, placing a strict upper limit on the contribution of KeV - MeV protons to the production of Jupiter's aurora. However, a large fraction of the H Ly α emission has appeared Doppler-shifted mainly toward the blue by roughly 50 km/sec, corresponding to a kinetic energy of 10-20 eV for a fast proton or H atom, and there are higher velocity wings on the line extending out to equivalent energies of 150-200 eV. The blue shift indicates motion up out of the atmosphere, and the authors suggest that the emission results from the in situ acceleration of ionospheric protons in Jupiter's auroral ionosphere by analogy to the ionospheric potentials observed in the Earth's auroral zones. These observations demonstrate that the acceleration of ionospheric plasma in an H2 atmosphere can lead to bright Ly α emission, with implications for the production of the outer planet airglow emissions

  17. A new parametric approach for wind profiling with Doppler Radar

    Science.gov (United States)

    Le Foll, GwenaëLle; Larzabal, Pascal; Clergeot, Henri; Petitdidier, Monique

    1997-07-01

    In this paper, we propose a new approach for wind profile extraction with Doppler radar. To perform this, we first focus on the analysis and modeling of VHF or UHF waves backscattered by clear-air turbulence. A physical description of the backscattered wave is given. This description involves a spectral model that includes a parametric profile of the Doppler spectrum. A parametric approach of the wind profile can be easily generated. The sounding volume is divided into slabs whose thickness is consistent with that of the expected homogeneous turbulent layer. The echo spectrum of each slab is supposed Gaussian. Thus, for the range gate, the backscattered spectrum is a priori non-Gaussian, since it is weighted by a nonconstant reflectivity. This represents a more realistic assumption than the classical ones. The realistic temporal model thereby obtained can be used in simulation, which provides a valable tool for testing the extraction algorithm. An original recursive fitting, in terms of maximum likelihood, between the experimentally recorded spectrum and the parametric candidate spectrum is described and implemented as a second-order, steepest-descent algorithm. This optimization problem is solved in a weighted fashion on the entire gate simultaneously. The regularized parametric method, described in this paper, is a way to minimize some of the drawbacks encountered with traditional methods. Simulations reveal good statistical performance compared with traditional methods. The algorithm is then tested on real data. To achieve this, original methods are proposed for noise suppression and clutter removal.

  18. Spectral Hole Burning via Kerr Nonlinearity

    Science.gov (United States)

    Khan, Anwar Ali; Abdul Jabar, M. S.; Jalaluddin, M.; Bacha, Bakht Amin; Iftikhar, Ahmad

    2015-10-01

    Spectral hole burning is investigated in an optical medium in the presence of Doppler broadening and Kerr nonlinearity. The Kerr nonlinearity generates coherent hole burning in the absorption spectrum. The higher order Kerr nonlinearity enhances the typical lamb dip of the hole. Normal dispersion in the hole burning region while Steep anomalous dispersion between the two hole burning regions also enhances with higher order Kerr effect. A large phase shift creates large delay or advancement in the pulse propagation while no distortion is observed in the pulse. These results provide significant steps to improve optical memory, telecom devices, preservation of information and image quality. Supported by Higher Education Commission (HEC) of Pakistan

  19. Densities, Spectral Densities and Modality

    OpenAIRE

    Davies, PL Laurie; Kovac, A.

    2002-01-01

    This paper considers the problem of specifying a simple approximating density function for a given data set (x1,…,xn). Simplicity is measured by the number of modes but several different definitions of approximation are introduced. The taut string method is used to control the numbers of modes and to produce candidate approximating densities. Refinements are introduced that improve the local adaptivity of the procedures and the method is extended to spectral densities.

  20. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  1. Sub-Doppler Laser Cooling using Electromagnetically Induced Transparency

    CERN Document Server

    He, Peiru; Anderson, Dana Z; Rey, Ana Maria; Holland, Murray

    2016-01-01

    We propose a sub-Doppler laser cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phenomenon experienced by atoms with multiple internal quantum states when illuminated by laser fields with appropriate frequencies. By detuning the lasers slightly from the "dark resonance", we observe that, within the transparency window, atoms can be subject to a strong viscous force, while being only slightly heated by the diffusion caused by spontaneous photon scattering. In contrast to other laser cooling schemes, such as polarization gradient cooling or EIT-sideband cooling, no external magnetic field or strong external confining potential is required. Using a semiclassical approximation, we derive analytically quantitative expressions for the steady-state temperature, which is confirmed by full quantum mechanical numerical simulations. We find that the lowest ...

  2. The High Spectral Resolution Lidar

    Science.gov (United States)

    Eloranta, E. W.; Roesler, F. L.; Sroga, J. T.

    1983-01-01

    The High Spectral Resolution Lidar (HSRL) system was developed for the remote measurement of atmospheric optical properties. Measurements are obtained by the separation of the backscattered signal into aerosol and molecular channels using a high spectral resolution Fabry-Perot optical interferometer to separate the aerosol contributions to backscatter near the laser wavelength from the Doppler-shifted molecular component of the backscatter. The transmitter consists of an optically pumped pulsed dye laser of the oscillator-amplifier design which emits at 467.88 nm, with a bandwidth of less than 0.3 pm. The transmitter and receiver share a common Schmidt-Cassegrain telescope, although they do not share the same field stop, but rather two conjugate stops. The HSRL system uses a computer-controlled dual-channel photon-counting data acquisition system providing for stable measurements at very low power levels and an excellent dynamic range. The system has been used to obtain airborne measurements of height profiles of aerosol and molecular backscatter cross sections.

  3. INSTANTANEOUS DOPPLER FREQUENCY FOR SQUINT SAR IMAGING

    Institute of Scientific and Technical Information of China (English)

    Liu Guangyan; Huang Shunji

    2003-01-01

    Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.

  4. High Throughput Direct Detection Doppler Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  5. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  6. Student Microwave Experiments Involving the Doppler Effect.

    Science.gov (United States)

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  7. The quiet Sun average Doppler shift of coronal lines up to 2 MK

    Science.gov (United States)

    Dadashi, N.; Teriaca, L.; Solanki, S. K.

    2011-10-01

    Context. The average Doppler shift shown by spectral lines formed from the chromosphere to the corona reveals important information on the mass and energy balance of the solar atmosphere, providing an important observational constraint to any models of the solar corona. Previous spectroscopic observations of vacuum ultra-violet (VUV) lines have revealed a persistent average wavelength shift of lines formed at temperatures up to 1 MK. At higher temperatures, the behaviour is still essentially unknown. Aims: Here we analyse combined SUMER (Solar Ultraviolet Measurements of Emitted Radiation)/SoHO (Solar and Heliospheric Observatory) and EIS (EUV Imaging Spectrometer)/Hinode observations of the quiet Sun around disk centre to determine, for the first time, the average Doppler shift of several spectral lines formed between 1 and 2 MK, where the largest part of the quiet coronal emission is formed. Methods: The measurements are based on a novel technique applied to EIS spectra to measure the difference in Doppler shift between lines formed at different temperatures. Simultaneous wavelength-calibrated SUMER spectra allow establishing the absolute value at the reference temperature of T ≈ 1 MK. Results: The average line shifts at 1 MK SUMER measurements), this translates into a maximum Doppler shift of (-4.4 ± 2.2) km s-1 around 1.8 MK. The measured value appears to decrease to about (-1.3 ± 2.6) km s-1 at the Fe xv formation temperature of 2.1 MK. Conclusions: The measured average Doppler shift between 0.01 and 2.1 MK, for which we provide a parametrisation, appears to be qualitatively and roughly quantitatively consistent with what foreseen by 3D coronal models where heating is produced by dissipation of currents induced by photospheric motions and by reconnection with emerging magnetic flux.

  8. Left ventricular radial colour and longitudinal pulsed-wave tissue Doppler echocardiography in 39 healthy domestic pet rabbits.

    Science.gov (United States)

    Casamian-Sorrosal, Domingo; Saunders, Richard; Browne, William; Elliot, Sarah; Fonfara, Sonja

    2014-10-01

    This paper reports radial colour and longitudinal mitral annulus pulsed-wave tissue Doppler findings in a large cohort of healthy, adult pet rabbits. Thirty-nine rabbits (22 Dwarf Lops, 14 French Lops and three Alaskans) underwent conscious echocardiography. The median age of the rabbits was 22 months and the median weight was 2.8 kg (Dwarf Lop 2.4 kg/French Lop 6.0 kg). Adequate radial colour and longitudinal pulsed-wave tissue Doppler traces were obtained in 100% and 85% of cases, respectively. Most systolic tissue Doppler parameters were significantly higher in French Lops than in Dwarf Lops. Separation of mitral inflow diastolic waves was present in 40% of cases using conventional spectral Doppler and in >60% of cases using pulsed-wave tissue Doppler which could be beneficial when evaluating diastolic function in rabbits. This study can be used as a reference for normal echocardiographic tissue Doppler values for adult rabbits undergoing conscious echocardiography in clinical practice. PMID:25089025

  9. Doppler micro sense and avoid radar

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  10. Doppler synthetic aperture hitchhiker imaging

    International Nuclear Information System (INIS)

    In this paper we consider passive airborne receivers that use backscattered signals from sources of opportunity transmitting single-frequency or ultra-narrowband waveforms. Because of its combined passive synthetic aperture and the single-frequency nature of the transmitted waveforms, we refer to the system under consideration as Doppler synthetic aperture hitchhiker (DSAH). We present a novel image formation method for DSAH. Our method first correlates the windowed signal obtained from one receiver with the windowed, filtered, scaled and translated version of the received signal from another receiver. This processing removes the transmitter-related variables from the phase of the Fourier integral operator that maps the radiance of the scene to the correlated signal. Next, we use microlocal analysis to reconstruct the scene radiance by the weighted backprojection of the correlated signal. The image reconstruction method is applicable to both cooperative and non-cooperative sources of opportunity using one or more airborne receivers. It has the desirable property of preserving the visible edges of the scene radiance. Additionally, it is an analytic reconstruction technique that can be made computationally efficient. We present numerical simulations to demonstrate the performance of the image reconstruction method and to verify the theoretical results

  11. with Ultrasound Color Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Shin Takayama

    2012-01-01

    Full Text Available Color Doppler imaging (CDI can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture.

  12. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  13. Sub-Doppler resonances in the back-scattered light from random porous media infused with Rb vapor

    CERN Document Server

    Villalba, S; Lenci, L; Bloch, D; Lezama, A; Failache, H

    2013-01-01

    We report on the observation of sub-Doppler resonances on the back-scattered light from a random porous glass medium with rubidium vapor filling its interstices. The sub-Doppler spectral lines are the consequence of saturated absorption where the incident laser beam saturates the atomic medium and the back-scattered light probes it. Some specificities of the observed spectra reflect the transient atomic evolution under confinement inside the pores. Simplicity, robustness and potential miniaturization are appealing features of this system as a spectroscopic reference.

  14. Retroreflector for photonic Doppler velocimetry

    Science.gov (United States)

    Lagoski, Thomas J.; Coutu, Ronald A., Jr.; Starman, LaVern A.

    2009-08-01

    In order to meet the goals of the Department of Defense (DoD) for smaller and more accurate weapons, numerous projects are currently investigating the miniaturization of weapons and munition fuze components. One of these efforts is to characterize the performance of small detonators. The velocity of the flyer, the key component needed to initiate a detonation sequence, can be measured using a photonic Doppler velocimeter (PDV). The purpose of this research was to develop a microelectromechanical system (MEMS) device that would act as an optimal retroreflective surface for the PDV. Two MEMS solutions were explored: one using the PolyMUMPsTM fabrication process and one in-house fabrication design using silicon on insulator (SOI) wafers. The in-house design consisted of an array of corner reflectors created using an SOI wafer. Each corner reflector consisted of three separate mirror plates which were self-assembled by photoresist pad hinges. When heated to a critical temperature (typically 140-160 °C), the photoresist pads melted and the resulting surface tension caused each mirror to rotate into place. The resulting array of corner reflectors was then coated with a thin layer of gold to increase reflectivity. Despite the successful assembly of a PolyMUMPsTM corner reflector, assembling an array of these reflectors was found to be unfeasible. Although the SOI corner reflector design was completed, these devices were not fabricated in time for testing during this research. However, the bidirectional reflectance distribution function (BRDF) and optical cross section (OCS) of commercially available retroreflective tapes were measured. These results can be used as a baseline comparison for future testing of a fabricated SOI corner reflector array.

  15. Enhanced Spectral Reflectance Reconstruction Using Pseudo-Inverse Estimation Method

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Rifai

    2013-06-01

    Full Text Available This paper will present an enhanced approach for the reconstruction of spectral reflectance by the combination between two methods, the Pseudo-Inverse (PI as the base formula, whilst adaptively selecting the training samples as performed in the Adaptive Wiener estimation method proposed by Shen and Xin for the estimation of the spectral reflectance. This enhancement will be referred to as Adaptive Pseudo-Inverse (API through this research. Training and verification datasets have been prepared from GretagMacbeth ColorChecker CC chart, Kodak Color Chart and a specially designed palette of Japanese organic and inorganic mineral pigments to test and compare the estimation results, using the Pseudo-Inverse and Adaptive Pseudo-Inverse method. The performance of spectral reconstruction methods will be presented in terms of spectral and colorimetric error for the estimation accuracy. The experimental results showed that the proposed method achieved better performance and noticeable decline in spectral estimation error.

  16. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to Multifrequency HF Doppler Radar. I. Method of Calculation and Its Hardware Implementation

    Science.gov (United States)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-10-01

    The method of calculating the total drift velocity vector of small-scale artificial ionospheric irregularities as measured by the effective Doppler frequency shift of aspect-scattered signals from several diagnostic illumination transmitters operated at different frequencies is discussed. The technique of adaptive simulation of decameter radio waves propagating in an inhomogeneous magnetized ionosphere with allowance for the aspect scattering effects due to small-scale field-aligned irregularities is developed. A multifrequency HF Doppler radar for simultaneous measurement of the Doppler spectra of radio signals at a set of frequencies is described.

  17. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  18. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  19. Traveling Ionospheric Disturbance Characteristics Over Texas Using the TIDDBIT HF Doppler Radar

    Science.gov (United States)

    Wene, G.; Crowley, G.; Fessler, B.; Bronn, J.

    2004-05-01

    the costs that would be associated with an incoherent-scatter radar. SwRI recently designed, built and deployed an HF Doppler sounding system for three months, in Texas, to investigate TIDs. The TIDDBIT radar consisted of three transmitters (Austin, Uvalde and St. Hedwig) and a receiver in San Antonio, Texas. Using cross-spectral analysis and triangulation of the TIDDBIT signals, TID speeds and azimuths were obtained for each wave frequency. We provide a synoptic survey of the TID characteristics observed over Texas during January-March 2002. Such a system would be of great utility for the study of gravity wave seeding of low latitude ionospheric irregularities.

  20. Doppler imaging of LQ Hydrae for 1998-2002

    Science.gov (United States)

    Cole, E. M.; Hackman, T.; Käpylä, M. J.; Ilyin, I.; Kochukhov, O.; Piskunov, N.

    2015-09-01

    Aims: We study the spot distribution on the surface of LQ Hya during the observing seasons October 1998-November 2002. We look for persistent active longitudes, trends in the level of spot activity and compare to photometric data. Methods: We apply the Doppler imaging technique on photospheric spectral lines using an inversion code to retrieve images of the surface temperature. Results: We present new temperature maps using multiple spectral lines for a total of 7 seasons. Conclusions: We find no evidence for active longitudes persisting over multiple observing seasons. The spot activity appears to be concentrated to two latitude regions. Using the currently accepted rotation period, we find spot structures to show a trend in the phase-time plot, indicative of a need for a longer period. We conclude that the long-term activity of LQ Hya is more chaotic than that of some magnetically active binary stars analyzed with similar methods, but still with clear indications of an activity cycle from the photometry. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 2 is available in electronic form at http://www.aanda.org

  1. Arm locking with Doppler estimation errors

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yinan; Wand, Vinzenz; Mitryk, Shawn; Mueller, Guido, E-mail: yinan@phys.ufl.ed [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2010-05-01

    At the University of Florida we developed the University of Florida LISA Interferometer Simulator (UFLIS) in order to study LISA interferometry with hardware in the loop at a system level. One of the proposed laser frequency stabilization techniques in LISA is arm locking. Arm locking uses an adequately filtered linear combination of the LISA arm signals as a frequency reference. We will report about experiments in which we demonstrated arm locking using UFLIS. During these experiments we also discovered a problem associated with the Doppler shift of the return beam. The initial arm locking publications assumed that this Doppler shift can perfectly be subtracted inside the phasemeter or adds an insignificant offset to the sensor signal. However, the remaining Doppler knowledge error will cause a constant change in the laser frequency if unaccounted for. Several ways to circumvent this problem have been identified. We performed detailed simulations and started preliminary experiments to verify the performance of the proposed new controller designs.

  2. The Spectral Shift Function and Spectral Flow

    Science.gov (United States)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  3. Characterization of very narrow spectral lines with temporal intensity interferometry

    CERN Document Server

    Tan, Peng Kian

    2016-01-01

    Context: Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. Aims: We want to resolve the linewidth of narrow spectral emissions in starlight. Methods: A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. Results: We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20 MHz wide linewidth of Doppler-broadened laser light, and identify a coherent laser light contribution in a blackbody radiation background.

  4. COMPARATIVE EVALUATION OF COLOR DOPPLER AND CONVENTIONAL DIGITAL SUBTRACTION ANGIOGRAPHY IN INFRA GENICULAR ARTERIAL DISEASE: A PROSPECTIVE COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Akshara

    2015-03-01

    Full Text Available Patient suffering from infragenicular peripheral arterial occlusive disease is not an uncommon clinical scenario. In our setup Buergers Disease and Atherosclerotic disease are the most common cause of arterial insufficiency, particularly in middle aged smokers of low socioeconomic status apart from vasculitis, th romboembolism and trauma. Color Doppler (CD is a good modality for assessment of supragenicular arterial system, however infragenicular arteries are many times cannot be examined properly because of their deeper position. Digital Subtraction Arteriography ( DSA is a better modality in this situation . The aim of this study is to compare color doppler and conventionional digital subtraction arteriography in patients of infragenicular arterial disease. This prospective study was designed in the department of Radiodiagnosis G.R. Medical College Gwalior Madhya - Pradesh, India . 50 patients of lower limb ischemia formed the subjects and their affected lower limbs were evaluated by CD (COLOR DOPPLER and DSA (Digital Subtraction Arteriography, for localization and grading of lesions in the arteries, into normal, insignificant stenosis, significant stenosis and occlusion. The results were analyzed in a blind fashion in a total of 150 vascular segments. Results were analyzed by two way contingency tables and kappa statistics. In our study we observed that in the infragenicular arterial system disease, color doppler had a Sensitivity = 83%, Specificity = 92%, PPV = 66%, NPV = 96% Therefore it can be concluded that a normal color flow and spectral waveform in Color Doppler examination of inferiorgenicular arteries excludes the need of arteriography. However DSA is definitely helpful in patient where abnormal/absent color flow and/or spectral wave form is seen because of lower PPV (66% Color Doppler.

  5. Preprocessing of ionospheric echo Doppler spectra

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  6. Observation of the inverse Doppler effect.

    Science.gov (United States)

    Seddon, N; Bearpark, T

    2003-11-28

    We report experimental observation of an inverse Doppler shift, in which the frequency of a wave is increased on reflection from a receding boundary. This counterintuitive effect has been produced by reflecting a wave from a moving discontinuity in an electrical transmission line. Doppler shifts produced by this system can be varied in a reproducible manner by electronic control of the transmission line and are typically five orders of magnitude greater than those produced by solid objects with kinematic velocities. Potential applications include the development of tunable and multifrequency radiation sources.

  7. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  8. An all-fiber image-reject homodyne coherent Doppler wind lidar

    DEFF Research Database (Denmark)

    Foroughi Abari, Farzad; Pedersen, Anders Tegtmeier; Mann, Jakob

    2014-01-01

    In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in-phase/quadrature-phase detec......In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in...... by the presence of two independent signal observations with uncorrelated noise, various noise sources can be suppressed and a more simplified velocity estimation algorithm can be employed in the spectral domain. Other benefits of this architecture include, but are not limited to, a more reliable measurement...

  9. ABSORPTION PROPERTIES OF A DRIVEN FOUR-LEVEL DOPPLER-BROADENED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YUAN SHI; WU JIN-HUI; GAO JIN-YUE

    2001-01-01

    This paper deals with the absorption spectra of a weak probe in a four-level Doppler-broadened system driven by three coherent fields. The main aim is to extend earlier studies of the spontaneous emission spectrum and to present a comprehensive survey of the spectral features of this system. In addition to a derivation of exact formulae for the spectra, we give an explanation with the help of an appropriate set of dressed atomic states. We also get a deeper insight into the physical origin of gain in view of the existence of a population inversion between the levels of the lasing transition. Finally, we explore the effect of Doppler broadening on the absorption profile of the weak probe.

  10. Invasive and noninvasive assessment of pulmonic regurgitation: clinical, angiographic, phonocardiographic, echocardiographic, and Doppler ultrasound correlations.

    Science.gov (United States)

    Chandraratna, P A; Wilson, D; Imaizumi, T; Ritter, W S; Aronow, W S

    1982-06-01

    Three patients with pulmonic regurgitation and no evidence of pulmonary hypertension were investigated. These patients had low pitched diastolic murmurs which increased on inspiration, evidence of connective tissue disease as manifested by lax joints and hyperextensible skin, and marked hilar dance which extended up to the peripheral vessels. Suprasternal echocardiography revealed dilatation and increased systolic expansion of the right pulmonary artery (RPA) (25% and 28%, respectively) in two patients; the third patient had a normal RPA dimension in diastole and a marked increase in diameter (88%) in systole. Thus, these three patients demonstrated hyperdistensibility of the RPA. The spectral signal from the pulsed doppler echocardiograph showed evidence of turbulent blood flow in diastole (wide dispersion of the dots) in the right ventricular outflow tract in all three patients. This pattern was indicative of pulmonic regurgitation. In summary, the combined use of echocardiography and Doppler ultrasound is useful in the evaluation of patients with pulmonic regurgitation.

  11. Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data

    Science.gov (United States)

    McCaffrey, Katherine

    Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing

  12. Fish embryo multimodal imaging by laser Doppler digital holography

    CERN Document Server

    Verrier, Nicolas; Picart, Pascal; Gross, Michel

    2015-01-01

    A laser Doppler imaging scheme combined to an upright microscope is proposed. Quantitative Doppler imaging in both velocity norm and direction, as well as amplitude contrast of either zebrafish flesh or vasculature is demonstrated.

  13. Analisis Efek Doppler pada Sistem Komunikasi ITS-Sat

    Directory of Open Access Journals (Sweden)

    Agriniwaty Paulus

    2013-09-01

    Full Text Available Analisa efek Doppler ini menggunakan pemrograman Matlab dengan citra yang berukuran 160 128 piksel, pada eksentrisitas (e satelit yang diasumsikan 0 sehingga bentuk lintasannya circular, dengan ketinggian 700 km dari stasiun bumi, sudut inklinasi sebesar 53° dan sinyal informasi ditransmisikan pada transmisi downlink dengan frekuensi carrier 2.4 GHz. Doppler shift terbesar terjadi saat satelit berada pada posisi terjauh dari terminal bumi yakni sebesar 51.077 KHz. Untuk  menghilangkan efek Doppler maka data output dikompensasi dengan invers dari efek Doppler tersebut. Berdasarkan hasil simulasi diperoleh bahwa BER untuk frekuensi Doppler maksimum maupun minimum adalah mendekati atau hampir sama yaitu 0.5001 dan 0.4998, dan dalam keadaan tanpa terkena Doppler shift yaitu ± 0.0197 untuk SNR 0 sampai 10 dB. Sedangkan dari segi kualitas citra, diperoleh bahwa untuk Doppler shift maksimum, kualitas citra lebih baik dibandingkan saat Doppler shift minimum.

  14. Self-mixing dual-frequency laser Doppler velocimeter.

    Science.gov (United States)

    Cheng, Chih-Hao; Lin, Lyu-Chih; Lin, Fan-Yi

    2014-02-10

    A self-mixing (SM) dual-frequency (DF) laser Doppler velocimeter (LDV) (SM DF-LDV) is proposed and studied, which integrates the advantages of both the SM-LDV and the DF-LDV. An optically injected semiconductor laser operated in a dual-frequency period-one (P1) dynamical state is used as the light source. By probing the target with the light-carried microwave generated from the beat of the two optical frequency components, the spectral broadening in the Doppler signal due to the speckle noise can be significantly reduced. Together with an SM configuration, the SM DF-LDV has the advantages of direction discriminability, self-alignment, high sensitivity, and compact setup. In this study, speckle noise reduction and direction discriminability with an SM DF-LDV are demonstrated. The signal-to-noise ratios (SNRs) at different feedback powers are investigated. Benefiting from the high sensitivity of the SM configuration, an SNR of 23 dB is achieved without employing an avalanched photodetector or photomultiplier tube. The velocity resolution and the SNR under different speckle noise conditions are studied. Average velocity resolution of 0.42 mm/s and SNR of 22.1 dB are achieved when a piece of paper is rotating at a transverse velocity of 5 m/s. Compared with a conventional single-frequency LDV (SF-LDV), the SM DF-LDV shows improvements of 20-fold in the velocity resolution and 8 dB in the SNR.

  15. Photoacoustic Doppler flow measurement in optically scattering media

    OpenAIRE

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-01-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microc...

  16. Rotational Doppler effect in left-handed materials

    OpenAIRE

    Luo, Hailu; Wen, Shuangchun; Shu, Weixing; Tang, Zhixiang; Zou, Yanhong; Fan, Dianyuan

    2008-01-01

    We explain the rotational Doppler effect associated with light beams carrying with orbital angular momentum in left-handed materials (LHMs). We demonstrate that the rotational Doppler effect in LHMs is unreversed, which is significantly different from the linear Doppler effect. The physics underlying this intriguing effect is the combined contributions of negative phase velocity and inverse screw of wave-front. In the normal dispersion region, the rotational Doppler effect induces a upstream ...

  17. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  18. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  19. Measurement of TID and Gravity Wave Parameters Using An HF Doppler System

    Science.gov (United States)

    Wene, G. P.; Crowley, G.; Fessler, B. W.; Bronn, J. S.

    2005-05-01

    The manifestation of atmospheric gravity waves (AGWs) in the ionosphere is called a traveling ionospheric disturbance (TID). TIDs can be thought of as traveling corrugations in the ionosphere, and as such can seriously affect HF radio communications and surveillance systems. They may indirectly play a greater role in disrupting communications by triggering the growth of ionospheric instabilities, resulting in scintillation of radio signals. It is therefore of great interest to monitor TIDs on a routine basis, and to correlate their properties with other phenomena. In this paper, we present data from a unique radio technique for measuring TID properties such as their spectrum, and their spectrally resolved propagation characteristics. One of the most sensitive methods for detecting transient changes in the ionosphere is the HF Doppler technique operating in the 3-10 MHz band. HF Doppler systems have advantages over all other techniques for the measurement of TID characteristics. They are more amenable to analysis than data from ionosonde chains, and their time resolution (30 sec) is much higher than that of ionosondes . Unlike total electron content (TEC) methods, which respond to height-integrated TID effects, the HF Doppler radar responds to TIDs at the altitude of the radio reflection point. Finally, HF Doppler systems have low power consumption, so that both spatial and temporal resolution can be maintained for many days without the costs that would be associated with an incoherent-scatter radar. SwRI recently designed, built and deployed an HF Doppler sounding system in Texas, to investigate TIDs. The TIDDBIT radar consisted of three transmitters (Austin, Uvalde and St. Hedwig) and a receiver in San Antonio, Texas. Using a cross-spectral analysis technique, TID speeds and azimuths were obtained for each wave frequency. We provide a synoptic survey of the TID characteristics observed over Texas during January-March 2002. The Doppler system provides an accurate

  20. Applications of doppler effect in navigation and oceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    . The Doppler effect is also used in sports, through Doppler radar systems to measure ball speed. Navigation technology received a boost in the 1960s with the introduction of the satellite navigation system, which applies the Doppler effect. In this system...

  1. On acceleration dependence of Doppler effect in light

    Indian Academy of Sciences (India)

    Sanjay M Wagh

    2013-09-01

    Using only the geometric relationships of suitable locations, we analyse Doppler effect in light to show how the acceleration of the source also contributes to the Doppler shift. We further propose that an experiment be performed using cyclotron-type devices to determine the acceleration dependence of the Doppler shift.

  2. Solid breast neoplasms: Differential diagnosis with pulsed Doppler ultrasound

    NARCIS (Netherlands)

    T.J.A. Kuijpers (T. J A); A.I.M. Obdeijn (Inge-Marie); Ph.M. Kruyt (Philip); M. Oudkerk (Matthijs)

    1994-01-01

    textabstractIn this prospective study, duplex Doppler ultrasound was used in 95 consecutive patients with solid breast masses to evaluate the presence of neovascular flow. A positive Doppler signal, i.e., a Doppler shift frequency of more than 1 kHz using a 5 MHz insonating frequency, was found in 3

  3. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  4. Equipment for flow measurements according to the ultrasonic Doppler method

    International Nuclear Information System (INIS)

    An instrument for flow measurements according to the ultrasonic Doppler method is described. It consists of an applicator with an ultrasonic oscillator and, connected to it, a Doppler instrument for the Doppler flow record. The angle of incidence of the ultrasonic beam may be taken into account, flow measurement independent of the angle thus becoming possible. (RW)

  5. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  6. Diagnosis of aortic coarctation by tardus-parvus renal artery Doppler signal in an infant with multicystic dysplastic kidney: a case report.

    Science.gov (United States)

    Park, Kate; McHugh, Kieran; vant Hoff, William

    2007-03-01

    We report an infant with known unilateral multicystic dysplastic kidney (MCDK) who underwent renal ultrasonography and Doppler spectral waveform analysis for investigation of hypertension. A tardus-parvus waveform was demonstrated in the renal artery on the normal side suggesting either renal artery or more proximal stenosis. Coarctation of the aorta was subsequently demonstrated. PMID:17211604

  7. Doppler Shift Compensation Schemes in VANETs

    Directory of Open Access Journals (Sweden)

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  8. Doppler-ultralydundersøgelse af underekstremitetsarteriosklerose

    DEFF Research Database (Denmark)

    Rørdam, P; von Jessen, F; Sillesen, H H;

    1992-01-01

    Arteriography, which requires resources and is not entirely without risk, has hitherto been a prerequisite for reconstructive surgery in cases of symptom-producing arteriosclerosis in the lower limbs. As an alternative, indirect Doppler ultrasonic examination has been employed but does not appear...

  9. [Phlegmasia alba dolens diagnosed with Doppler ultrasonography].

    Science.gov (United States)

    Wulff, C; Lorentzen, T; Christensen, E; Pedersen, E B

    1996-11-11

    Differential diagnostic problems may occur in a patient with a cold, pale and swollen leg. Especially when the peripheral blood pressure is reduced, it is particularly difficult to distinguish cases caused by venous thrombosis from those caused by arterial embolism. Colour-Doppler ultra-sonography might be helpful for establishing the correct diagnosis. A case history is presented.

  10. Spectroscopic observation of the rotational Doppler effect.

    Science.gov (United States)

    Barreiro, S; Tabosa, J W R; Failache, H; Lezama, A

    2006-09-15

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle electromagnetically induced transparency coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  11. Method for Canceling Ionospheric Doppler Effect

    Science.gov (United States)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  12. Calculating "g" from Acoustic Doppler Data

    Science.gov (United States)

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  13. Fifty Years of HF Doppler Observations

    OpenAIRE

    Ogawa, T.; T. Ichinose

    2009-01-01

    High frequency Doppler observations of the ionosphere began in August of 1957 in Kyoto. The number of the observation points worldwide were about 40 in 1980 and are about 20 at present. By this method the movement of the ionosphere reflection height and electron density below the height can be observed. Such variations are occurred by a wide variety of sources.

  14. An electronic Doppler signal generator for assessing continuous-wave ultrasonic Doppler flowmeters

    Science.gov (United States)

    Smallwood, R. H.; Dixon, P.

    1986-03-01

    The design and performance of the electric Doppler signal generator are described. The features of the CW ultrasonic Doppler flowmeter, which operates in the 2-10 MHz range, that are relevant to the design of the generator are examined. Methods for evaluating the bandwidth, dynamic range, directional separation, and linearity of the zero-crossing detector are discussed. The use of a polyphase network as a phase shifter to generate a single sideband (SSB) signal is analyzed. The SSB generation is performed at a frequency of 100 kHz and the advantages of generation at this frequency are stated. The selection of proper SSB signals for the system is investigated. The performance of the Doppler signal generator is evaluated with a frequency analyzer; sideband rejection ratios and phase error in the quadrature oscillator are calculated. The Doppler generator was applied to a CW flowmeter and output signal levels were measured. The test reveals that the Doppler signal generator's performance exceeds the flowmeter requirements; rejection of the unwanted sideband exceeds 40 dB for Doppler frequencies up to 10 kHz, which is the minimum upper frequency for 10 MHz flowmeters.

  15. A Global Fitting Approach For Doppler Broadening Thermometry

    Science.gov (United States)

    Amodio, Pasquale; Moretti, Luigi; De Vizia, Maria Domenica; Gianfrani, Livio

    2014-06-01

    Very recently, a spectroscopic determination of the Boltzmann constant, kB, has been performed at the Second University of Naples by means of a rather sophisticated implementation of Doppler Broadening Thermometry (DBT)1. Performed on a 18O-enriched water sample, at a wavelength of 1.39 µm, the experiment has provided a value for kB with a combined uncertainty of 24 parts over 106, which is the best result obtained so far, by using an optical method. In the spectral analysis procedure, the partially correlated speed-dependent hard-collision (pC-SDHC) model was adopted. The uncertainty budget has clearly revealed that the major contributions come from the statistical uncertainty (type A) and from the uncertainty associated to the line-shape model (type B)2. In the present work, we present the first results of a theoretical and numerical work aimed at reducing these uncertainty components. It is well known that molecular line shapes exhibit clear deviations from the time honoured Voigt profile. Even in the case of a well isolated spectral line, under the influence of binary collisions, in the Doppler regime, the shape can be quite complicated by the joint occurrence of velocity-change collisions and speed-dependent effects. The partially correlated speed-dependent Keilson-Storer profile (pC-SDKS) has been recently proposed as a very realistic model, capable of reproducing very accurately the absorption spectra for self-colliding water molecules, in the near infrared3. Unfortunately, the model is so complex that it cannot be implemented into a fitting routine for the analysis of experimental spectra. Therefore, we have developed a MATLAB code to simulate a variety of H218O spectra in thermodynamic conditions identical to the one of our DBT experiment, using the pC-SDKS model. The numerical calculations to determine such a profile have a very large computational cost, resulting from a very sophisticated iterative procedure. Hence, the numerically simulated spectra

  16. Exact classical Doppler effect derived from the photon emission process

    CERN Document Server

    Lin, Chyi-Lung; Hsieh, Shang-Lin; Tsai, Chun-Ming

    2016-01-01

    The concept of photon is not necessary only applied to the relativistic Doppler theory. It may also work well for classical theory. As conservation of momentum and energy are physical laws, if applying these laws gives the exact relativistic Doppler effect, it should also give the exact classical Doppler effect. So far the classical Doppler effect is only obtained by using some approximation, as derived by Fermi in 1932. We show that the exact classical Doppler effect can be derived from the photon emission process in the exact treatment and reveal that these results are the same as those derived from the wave theory of light.

  17. Zeta Spectral Action

    CERN Document Server

    Kurkov, Maxim A; Sakellariadou, Mairi; Watcharangkool, Apimook

    2014-01-01

    In this paper we propose a novel definition of the bosonic spectral action using zeta function regularization, in order to address the issues of renormalizability, ultraviolet completeness and spectral dimensions. We compare the zeta spectral action with the usual (cutoff based) spectral action and discuss its purely spectral origin, predictive power, stressing the importance of the issue of the three dimensionful fundamental constants, namely the cosmological constant, the Higgs vacuum expectation value, and the gravitational constant. We emphasize the fundamental role of the neutrino Majorana mass term for the structure of the bosonic action.

  18. Multidimensional spectral load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  19. Statistical study of high-latitude E-region Doppler spectra obtained with the SHERPA HF radar

    Science.gov (United States)

    Hanuise, C.; Villain, J. P.; Cerisier, J. C.; Senior, C.; Ruohoniemi, J. M.; Greenwald, R. A.; Baker, K. B.

    1991-04-01

    A large number of Doppler spectra obtained at six HF frequencies in the E region with the SHERPA HF radar are analyzed statistically. They are characterized by their total power, their mean velocity and their spectral width. The observations cover geomagnetic conditions varying from quiet to disturbed. Due to the location of the auroral oval relative to the radar field of view, echoes are preferentially detected in the morning westward electrojet, with radial velocities away from the radar. This results in an asymmetrical velocity distribution. Both usual Type 1 and Type 2 Doppler spectra, associated with two-stream and gradient-drift waves, respectively, are at the origin of the two peaks in the distribution. Other spectral types do not appear in the statistics. Spectral widths remain narrow for both types. This is explained by a longer lifetime of wave trains compared to higher frequency waves detected by VHF radars. A decrease of the Doppler velocity with radar frequency is related to gradient effects on threshold, as predicted by the linear dispersion equation for the two-stream instability.

  20. Doppler Imaging with a Clean-Like Approach - Part One - a Newly Developed Algorithm Simulations and Tests

    Science.gov (United States)

    Kurster, M.

    1993-07-01

    A newly developed method for the Doppler imaging of star spot distributions on active late-type stars is presented. It comprises an algorithm particularly adapted to the (discrete) Doppler imaging problem (including eclipses) and is very efficient in determining the positions and shapes of star spots. A variety of tests demonstrates the capabilities as well as the limitations of the method by investigating the effects that uncertainties in various stellar parameters have on the image reconstruction. Any systematic errors within the reconstructed image are found to be a result of the ill-posed nature of the Doppler imaging problem and not a consequence of the adopted approach. The largest uncertainties are found with respect to the dynamical range of the image (brightness or temperature contrast). This kind of uncertainty is of little effect for studies of star spot migrations with the objectives of determining differential rotation and butterfly diagrams for late-type stars.

  1. Absorption properties of a driven Doppler-broadened ladder system with hyperfine structure

    Institute of Scientific and Technical Information of China (English)

    吴金辉; 高锦岳

    2002-01-01

    We have studied the absorption spectrum of a Doppler-broadened ladder system, where the highest level is coupled into two middle hyperfine sublevels by a strong coherent field. We find that, when the system is considered as homoge- neous, either two or three spectral components are observed, depending on the detuning of the coherent field. But when the velocity distribution of atoms is considered, we can always observe one electromagnetically induced transparency (EIT) window with high dispersion. So the atomic hyperfine structure cannot be an impediment for obtaining EIT.

  2. ESTIMATION OF DOPPLER CENTROID FREQUENCY IN SPACEBORNE SCANSAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar(ScanSAR).Inaccurate Doppler centroid frequency will result in ghost images in imaging result.In this letter,the principle and algorithms of Doppler centroid frequency estimation are introduced.Then the echo data of ScanSAR system is analyzed.Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid fequency in strip mode SAR,an improved method for Doppler centroid frequency estimation in ScanSAR is proposed.The method has improved the accuracy of Doppler centroid fequency estimation in ScanSAR by zero padding between burst data.Finally,the proposed method is validated with the processing of ENVironment SATellite Advanced Synthetic Aperture Radar(ENVISAT ASAR)wide swath raw data.

  3. Doppler Tomography of XTE J2123-058 and Other Neutron Star LMXBs

    CERN Document Server

    Hynes, R I; Haswell, C A; Casares, J; Zurita, C

    2000-01-01

    We describe Doppler tomography obtained in the 1998 outburst of the neutron star low mass X-ray binary (LMXB) XTE J2123-058. This analysis, and other aspects of phase-resolved spectroscopy, indicate similarities to SW Sex systems, except that anomalous emission kinematics are seen in HeII, whilst phase 0.5 absorption is confined to H alpha. This separation of these effects may provide tighter constraints on models in the LMXB case than is possible for SW Sex systems. We will compare results for other LMXBs which appear to show similar kinematics and discuss how models for the SW Sex phenomenon can be adapted to these systems. Finally we will summarise the limited Doppler tomography performed on the class of neutron star LMXBs as a whole, and discuss whether any common patterns can yet be identified.

  4. Spatial and Wavenumber Resolution of Doppler Reflectometry

    CERN Document Server

    Surkov, A; Surkov, Alexander; Gusakov, Evgeniy

    2004-01-01

    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described....

  5. Minior Actinide Doppler Coefficient Measurement Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  6. Color Doppler US of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotto, Michele (ed.) [Trieste Univ. Ospedale di Cattinara (Italy). Dept. Radiology

    2008-07-01

    This book provides a comprehensive reference and practical guide on the application of US to penile diseases and conditions. After introductory chapters on technical requirements and penile anatomy, subsequent chapters offer a systematic overview of the diverse applications of color Doppler US. The topics covered include erectile dysfunction, Peyronie's disease, priapism, trauma, tumors, the postoperative penis, inflammation, and fibrosis. Each topic is introduced by a clinical overview with the purpose of clarifying the problems and elucidating what the urologist may expect from color Doppler US. Thereafter, performance of the US study is explained and the pathological anatomy reviewed. High-quality images obtained with high-end US equipment are included. Each chapter also contains a section on the diagnostic information provided by other imaging modalities, and in particular MRI. (orig.)

  7. Laser Doppler measurement of cutaneous blood flow

    International Nuclear Information System (INIS)

    Laser Doppler velocimetry is an instrument system which has only recently been applied to the evaluation and quantitation of perfusion in the micro-vascular bed. The instrument is based on the Doppler principle, but uses low power laser light rather than the more commonly used ultrasound, and has a sample volume of approximately 1 mm/sup 3/. As it is non-invasive, it can be used on any skin surface or exposed microvascular bed and provides a continuous semi-quantitative measure of microcirculatory perfusion, it has a number of advantages as compared to other cutaneous blood flow measurement techniques. Initial studies have shown that it is easily used, and it has demonstrated good correlation with both xenon radio-isotope clearance and microsphere deposition techniques. Areas of current evaluation and utilization are in most major areas of medicine and surgery and include plastic, vascular and orthopaedic surgery, dermatology, gastro-enterology, rheumatology, burns and anaesthesiology

  8. Transcranial Doppler sonography in familial hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A. (Universita la Sapienza, Roma (Italy))

    1991-02-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab.

  9. Design of a Doppler reflectometer for KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. D., E-mail: kdlee@nfri.re.kr; Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S. [National Fusion Research Institute, Yuseong, Daejeon 305-333 (Korea, Republic of)

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  10. Renal duplex Doppler ultrasound findings in diabetics

    International Nuclear Information System (INIS)

    The correlation between clinical-laboratory findings and renal duplex Doppler ultrasound findings was studied in 45 patients with diabetes mellitus to see the role of duplex Doppler ultrasound in the detection of diabetic nephropathy. The resistive indices in patients with elevated serum creatinine, BUN, proteinuria, and systolic blood pressure levels were statistically significantly higher than those in patients with normal levels (p<0.05). Also resistive indics in patients with retinopathy were higher than that in patients without retinopathy (p<0.05). But the ultrasound morphologic changes of kidney such as renal length, cortical eye-catching, and corticomedullarycontrast were not well correlated with clinical-laboratory data and resistive index. The resistive index of the kidney in conjunction with clinical-laboratory data in diabetics may be helpful in the evaluation of diabetic nephropathy

  11. The Modulation of Ionospheric Alfven Resonator on Heating HF Waves and the Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    NiBin-bin; ZhaoZheng-yu; XieShu-guo

    2003-01-01

    The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature varia-tions on the Alfven resonant field, We discuss the mechanism of the modulation effect and lucubrate possible reasons for the Doppler effect. The results show that the Alfven resonant field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR on HF waves has a quasi-quadratic relation with the Alfven field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase vari-ation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.

  12. Color Doppler imaging of cervicocephalic fibromuscular dysplasia

    OpenAIRE

    Grzyska Ulrich; Arning Christian

    2004-01-01

    Abstract Background Fibromuscular dysplasia (FMD) is a possible cause of stroke, especially in middle-aged women. However, only few reports are available on ultrasonographic detection and monitoring. Methods Among the 15,000 patients who underwent color Doppler imaging (CDI) of the cervicocephalic arteries during the study period, all cases fulfilling ultrasound criteria of FMD were included into the case series. Criteria of FMD were: 1. Segmental string-of-beads pattern, 2. Localization in t...

  13. Sub-Nyquist Radar via Doppler Focusing

    OpenAIRE

    Bar-Ilan, Omer; Eldar, Yonina C.

    2012-01-01

    We investigate the problem of a monostatic pulse-Doppler radar transceiver trying to detect targets, sparsely populated in the radar's unambiguous time-frequency region. Several past works employ compressed sensing (CS) algorithms to this type of problem, but either do not address sample rate reduction, impose constraints on the radar transmitter, propose CS recovery methods with prohibitive dictionary size, or perform poorly in noisy conditions. Here we describe a sub-Nyquist sampling and re...

  14. Doppler cooling to the Quantum limit

    OpenAIRE

    Chalony, Maryvonne; Kastberg, Anders; Klappauf, Bruce; Wilkowski, David

    2011-01-01

    Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-Gaussian momentum distribution, and divergence of its mean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for...

  15. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  16. Doppler Findings in Intrapartum Fetal Distress

    OpenAIRE

    Khatereh Tooba; Laleh Eslamian

    2011-01-01

    The umbilical vein (UV) has a non pulsating and even pattern in normal fetuses. Pulsation of UV has been described in severely growth restricted fetuses with chronic hypoxia. We wanted to see whether UV pulsations could also be seen in fetuses with heart deceleration during labor, as an adjunctive measure to assess the intra partum hypoxia. In a prospective study Doppler examination was performed on 34 fetuses with normal cardiotocography (CGT) and 26 fetuses with abnormal CTGs (GA>37w and ce...

  17. COLOUR DOPPLER EVALUATION OF ACUTE RENAL COLIC

    Directory of Open Access Journals (Sweden)

    Vallepu Ramaiah

    2016-05-01

    Full Text Available AIMS Can Doppler index–RI be a predictor of renal colics impending obstruction in acute and emergency clinical settings. To compare the results of RI in cases of obstructive, nondilated and normal kidneys. METHODS A total of 90 patients were included in this prospective study. The patients were grouped into three categories based on the clinical settings. Group 1 with acute unilateral obstruction were 44, group 2 who were presented with flank pain without stone disease were 26 and group 3 were 20 patients with sonologically normal kidneys. Grey scale ultrasonography and colour Doppler study carried out in all the groups and index – RI value were compared. RESULTS The study showed differences in RI values among the groups (0.726±0.04, 0.63±0.039 and 0.608±0.03 respectively. CONCLUSION In acute and emergency clinical setting, grey scale ultrasonography and interrogation with colour Doppler index– RI improved the assessment and detection of impending obstructive uropathy.

  18. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  19. Doppler compensated underwater acoustic communication system

    Science.gov (United States)

    Raj, Anand; George, Binu; Supiya, M. H.; Kurian, James; Pillai, P. R. Saseendran

    2001-05-01

    Spread spectrum methods are used in communication systems to provide a low probability of intercept in hostile environments and multiple access capability in systems shared by many users as well as to provide high processing gain in channels where the transmitted signal is distorted by multipath effects. Such systems serve to be an effective tool for underwater telemetry environments, where multipath propagation effect and Doppler spreading is seen to be more predominant. This paper describes the implementation of a Doppler compensated underwater telemetry system based on CDMA technique. The system consists of multiple CDMA transmitters and a phase locked loop based carrier recoverable CDMA receiver. The effects of the Doppler shift can be compensated by the carrier recovery subsystem in the demodulator, based on PLL technique, which extracts the carrier frequency/phase and simultaneously demodulates the signal. The decision device in the receiver consists of a PN sequence generator as well as a bank of correlators, which are used to determine the data transmitted. The system simulation has been implemented in MATLAB. The advantage of this system is that multiple transmitting stations can transmit simultaneously to a central receiver, thereby increasing the system throughput.

  20. Detrended fluctuation analysis of laser Doppler flowmetry time series.

    Science.gov (United States)

    Esen, Ferhan; Aydin, Gülsün Sönmez; Esen, Hamza

    2009-12-01

    Detrended fluctuation analysis (DFA) of laser Doppler flow (LDF) time series appears to yield improved prognostic power in microvascular dysfunction, through calculation of the scaling exponent, alpha. In the present study the long lasting strenuous activity-induced change in microvascular function was evaluated by DFA in basketball players compared with sedentary control. Forearm skin blood flow was measured at rest and during local heating. Three scaling exponents, the slopes of the three regression lines, were identified corresponding to cardiac, cardio-respiratory and local factors. Local scaling exponent was always approximately one, alpha=1.01+/-0.15, in the control group and did not change with local heating. However, we found a broken line with two scaling exponents (alpha(1)=1.06+/-0.01 and alpha(2)=0.75+/-0.01) in basketball players. The broken line became a single line having one scaling exponent (alpha(T)=0.94+/-0.01) with local heating. The scaling exponents, alpha(2) and alpha(T), smaller than 1 indicate reduced long-range correlation in blood flow due to a loss of integration in local mechanisms and suggest endothelial dysfunction as the most likely candidate. Evaluation of microvascular function from a baseline LDF signal at rest is the superiority of DFA to other methods, spectral or not, that use the amplitude changes of evoked relative signal. PMID:19660479

  1. On Detecting New Worlds: The Art of Doppler Spectroscopy with Iodine Cells

    Science.gov (United States)

    Wang, Sharon Xuesong

    2016-08-01

    The first discovery of an extra-solar planet (exoplanet) around a main-sequence star, 51 Peg b, discovered using Doppler spectroscopy, opened up the field of exoplanets. For more than a decade, the dominant way for finding exoplanets was using precise Doppler spectroscopy to measure the radial velocity (RV) changes of stars. Today, precise Doppler spectroscopy is still crucial for the discovery and characterization of exoplanets, and it has a great chance for finding the first rocky exoplanet in the Habitable Zone of its host star. However, such endeavor requires an exquisite precision of 10-50 cm/s while the current state of the art is 1 m/s. This thesis set out to improve the RV precision of two precise Doppler spectrometers on two 10-meter class telescopes: HET/HRS and Keck/HIRES. Both of these spectrometers use iodine cells as their wavelength calibration sources, and their spectral data are being analyzed via forward modeling to estimate stellar RVs. Neither HET/HRS or Keck/HIRES deliver an RV precision at the photon-limited level, meaning that there are additional RV systematic errors caused by instrumental changes or errors in the data analysis. HET/HRS has an RV precision of 3-5 m/s, while Keck/HIRES has about 1-2 m/s. I have found that the leading cause behind HET/HRS's "under-performance" in comparison to Keck/HIRES is temperature changes of the iodine gas cell (and thus an inaccurate iodine reference spectrum). Another reason is the insufficient modeling of the HET/HRS instrumental profile. While Keck/HIRES does not suffer from these problems, it also has several RV systematic error sources of con siderable sizes. The work in this thesis has revealed that the errors in Keck/HIRES's stellar reference spectrum add about 1 m/s to the error budget and are the major drivers behind the spurious RV signal at the period of a sidereal year and its harmonics. Telluric contamination and errors caused by the spectral fitting algorithm also contribute on the level of

  2. Power doppler sonography in early renal transplantation: Does it differentiate acute graft rejection from acute tubular necrosis?

    Directory of Open Access Journals (Sweden)

    Haytham M Shebel

    2014-01-01

    Full Text Available To evaluate the role of power Doppler in the identification and differentiation bet-ween acute renal transplant rejection and acute tubular necrosis (ATN, we studied 67 live donor renal transplant recipients. All patients were examined by spectral and power Doppler sono-graphy. Assessment of cortical perfusion (CP by power Doppler was subjective, using our grading score system: P0 (normal CP; homogenous cortical blush extending to the capsule, P1 (reduced CP; cortical vascular cut-off at interlobular level, P2 (markedly reduced CP; scattered cortical color flow at the interlobar level. Renal biopsies were performed during acute graft dysfunction. Pathological diagnoses were based on Banff classification 1997. The Mann- Whitney test was used to test the difference between CP grades with respect to serum creatinine (SCr, and resistive index (RI. For 38 episodes of acute graft rejection grade I, power Doppler showed that CP was P1 and RI ranging from 0.78 to 0.89. For 21 episodes of acute graft rejection grade II, power Doppler showed that CP was P1, with RI ranging from 0.88 to >1. Only one case of grade III rejection had a CP of P2. Twelve biopsies of ATN had CP of P0 and RI ranging from 0.80 to 0.89 There was a statistically significant correlation between CP grading and SCr (P <0.01 as well as between CP grading and RI (P <0.05. CP grading had a higher sensitivity in the detection of early acute rejection compared with RI and cross-sectional area measurements. We conclude that power Doppler is a non-invasive sensitive technique that may help in the detection and differentiation between acute renal transplant rejection and ATN, particularly in the early post-transplantation period.

  3. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335.

    Science.gov (United States)

    Miao, Dan; Ding, Wen-Long; Zhao, Bao-Qing; Lu, Lu; Xu, Qian-Zhao; Scheer, Hugo; Zhao, Kai-Hong

    2016-06-01

    Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660 nm and fluoresces near 675 nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700 nm and fluorescing >710 nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700 nm and fluoresce at 714 nm. The red shift of ~40 nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,3(1) double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711 nm, fluorescence at 628 or 726 nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation.

  4. Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335.

    Science.gov (United States)

    Miao, Dan; Ding, Wen-Long; Zhao, Bao-Qing; Lu, Lu; Xu, Qian-Zhao; Scheer, Hugo; Zhao, Kai-Hong

    2016-06-01

    Phycobiliproteins that bind bilins are organized as light-harvesting complexes, phycobilisomes, in cyanobacteria and red algae. The harvested light energy is funneled to reaction centers via two energy traps, allophycocyanin B and the core-membrane linker, ApcE1 (conventional ApcE). The covalently bound phycocyanobilin (PCB) of ApcE1 absorbs near 660 nm and fluoresces near 675 nm. In cyanobacteria capable of near infrared photoacclimation, such as Synechococcus sp. PCC7335, there exist even further spectrally red shifted components absorbing >700 nm and fluorescing >710 nm. We expressed the chromophore domain of the extra core-membrane linker from Synechococcus sp. PCC7335, ApcE2, in E. coli together with enzymes generating the chromophore, PCB. The resulting chromoproteins, PCB-ApcE2(1-273) and the more truncated PCB-ApcE2(24-245), absorb at 700 nm and fluoresce at 714 nm. The red shift of ~40 nm compared with canonical ApcE1 results from non-covalent binding of the chromophore by which its full conjugation length including the Δ3,3(1) double bond is preserved. The extreme spectral red-shift could not be ascribed to exciton coupling: dimeric PCB-ApcE2(1-273) and monomeric-ApcE2(24-245) absorbed and fluoresced similarly. Chromophorylation of ApcE2 with phycoerythrobilin- or phytochromobilin resulted in similar red shifts (absorption at 615 and 711 nm, fluorescence at 628 or 726 nm, respectively), compared to the covalently bound chromophores. The self-assembled non-covalent chromophorylation demonstrates a novel access to red and near-infrared emitting fluorophores. Brightly fluorescent biomarking was exemplified in E. coli by single-plasmid transformation. PMID:27045046

  5. Adaptive Lighting

    OpenAIRE

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive LightingAdaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled i...

  6. Studying Turbulence from Doppler-broadened Absorption Lines: Statistics of Logarithms of Intensity

    CERN Document Server

    Lazarian, A

    2008-01-01

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particularly, saturated absorption lines, can be used within the framework of the earlier-introduced technique termed the Velocity Coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence, thus it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show, that the amount of information that one can use is, inevitably, limited by noise. In practical terms, this means that only wings...

  7. The other spectral flow

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.

  8. Planet Candidate Validation and Spin-Orbit Misalignments from Doppler Tomography

    Science.gov (United States)

    Johnson, Marshall C.

    2016-01-01

    Short-period planets around intermediate-mass (~1.5-2.5 M⊙ A-mid F type) stars are a largely unexplored region of parameter space. These stars' typically rapid rotation and rotationally broadened spectral lines preclude the use of the precise radial velocity measurements that are typically used to discover planets and confirm transiting planet candidates. Nonetheless, exploring this population is important for constraining models of planet formation and migration. I have been using Doppler tomography to investigate this population. As a planet transits a rotating star, it successively obscures regions of the stellar disk with different radial velocities, resulting in a perturbation to the rotationally broadened line profile; this is the Rossiter-McLaughlin effect. In Doppler tomography, I spectroscopically resolve this perturbation and its movement during the transit. This allows me to not only validate transiting planet candidates, as I can show that the transiting object orbits the target star and is not a blended background eclipsing binary, but also to measure the spin-orbit misalignments of these planets. This is the (sky-projected) angle between the stellar spin and planetary orbital angular momentum vectors, and is a statistical probe of planetary migration; different migration mechanisms predict different distributions of spin-orbit misalignments. In this dissertation talk I will discuss my work to validate Kepler planet candidates around rapidly rotating stars using Doppler tomography, and to measure the spin-orbit misalignments of hot Jupiters discovered by ground-based surveys. I will also discuss the use of Doppler tomography to provide additional characterization of planets and their host stars, such as the detection of planetary orbital precession and stellar differential rotation. Finally, I will highlight the potential of current and future missions such as K2 and TESS to expand our knowledge of planets around intermediate-mass stars.

  9. Time gap for temporal cloak based on spectral hole burning in atomic medium

    Science.gov (United States)

    Jabar, M. S. Abdul; Bacha, Bakht Amin; Ahmad, Iftikhar

    2016-08-01

    We demonstrate the possibility of creating a time gap in the slow light based on spectral hole burning in a four-level Doppler broadened sodium atomic system. A time gap is also observed between the slow and the fast light in the hole burning region and near the burnt hole region, respectively. A cloaking time gap is attained in microseconds and no distortion is observed in the transmitted pulse. The width of the time gap is observed to vary with the inverse Doppler effect in this system. Our results may provide a way to create multiple time gaps for a temporal cloak. Project supported by the Higher Education Commission (HEC) of Pakistan.

  10. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    Science.gov (United States)

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  11. The High-Resolution Doppler Imager: status update 12 years after launch

    Science.gov (United States)

    Skinner, Wilbert R.; Marshall, Alan R.; Gell, David A.; Raines, Jim

    2003-11-01

    The High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has been measuring winds in the stratosphere, mesosphere and lower thermosphere since November, 1991. The winds are determined by measuring the Doppler shift of emission and absorption lines in the O2 Atmospheric Band that are located between 630 and 762 nm. HRDI is a triple-etalon Fabry-Perot interferometer that has a resolution of ~0.05 cm-1 and very good white light rejection. A multi-channel detector with 31 channels is used to examine a spectral region 0.5 cm-1 wide and an adjustable filter wheel permits the selection of any one of 13 spectral bands. The long life of this instrument has presented many challenges in keeping the calibrations current and in compensating for inevitable degradations in instrument and spacecraft performance. Some of the problems with the UARS spacecraft the affect HRDI operations are: limited power due to the solar array drive failure; loss of data resulting from a failure of the tape recorders, and loss of attitude knowledge caused by the failure of the star trackers. HRDI has shown little loss in capability over the years with only a decrease in the azimuth rate of the telescope motor a significant sign of aging. This paper will discuss some of these challenges and how they have been met.

  12. Influence of Doppler Bin Width on GNSS Detection Probabilities

    CERN Document Server

    Geiger, Bernhard C

    2011-01-01

    The acquisition stage in GNSS receivers determines Doppler shifts and code phases of visible satellites. Acquisition is thus a search in two continuous dimensions, where the digital algorithms require a partitioning of the search space into cells. We present analytic expressions for the acquisition performance depending on the partitioning of the Doppler frequency domain. In particular, the impact of the number and width of Doppler bins is analyzed. The presented results are verified by simulations.

  13. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    Institute of Scientific and Technical Information of China (English)

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  14. Applications of Doppler ultrasound in clinical vascular disease

    Science.gov (United States)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  15. Analysis on rotational Doppler Effect based on modal expansion method

    CERN Document Server

    Zhou, Hailong; Zhang, Pei; Zhang, Xinliang

    2015-01-01

    We theoretically investigate the optical rotational Doppler Effect using modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the change of mode index. The theoretical model makes us better understand the physical processes of rotational Doppler Effect. It can provide theoretical guidance for many related applications, such as detection of rotating bodies, detection of OAM and frequency shift.

  16. Ionospheric Doppler measurements by means of HF-radar techniques

    OpenAIRE

    D. Altadill; Bianchi, C

    2005-01-01

    Studies of the dynamics of the ionosphere and its related phenomena are mainly based on Doppler Drift measurements. The time variation (ionisation/recombination) of plasma density, thermospheric wind and others can be observed by means of HF-radars. The technique of Doppler Drift measurements is a quite complex technique that is now affordable by means of an advanced ionospheric sounder. The combination of vertical sounding and interferometric Doppler detection discloses the Doppl...

  17. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...

  18. The Sensitivity of Hybrid Differential Stereoscopy for Spectral Imaging

    CERN Document Server

    DeForest, Craig E

    2007-01-01

    Stereoscopic spectral imaging is an observing technique that affords rapid acquisition of limited spectral information over an entire image plane simultaneously. Light from a telescope is dispersed into multiple spectral orders, which are imaged separately, and two or more of the dispersed images are combined using an analogy between the (x,y,\\lambda) spectral data space and conventional (x,y,z) three-space. Because no photons are deliberately destroyed during image acquisition, the technique is much more photon-efficient in some observing regimes than existing techniques such as scanned-filtergraph or scanned-slit spectral imaging. Hybrid differential stereoscopy, which uses a combination of conventional cross-correlation stereoscopy and linear approximation theory to extract the central wavelength of a spectral line, has been used to produce solar Stokes-V (line-of-sight) magnetograms in the 617.34 nm Fe I line, and more sophisticated inversion techniques are currently being used to derive Doppler and line ...

  19. Ionospheric variations in the period range of days to tens of days deduced from HF doppler observation

    International Nuclear Information System (INIS)

    The HF Doppler frequency variation of the ionosphere corresponds to ionospheric phase path change, which should be ascribed to traveling ionospheric disturbance, solar flares (UV and X-ray), magnetic pulsation, geomagnetic sudden commencement as well as sudden impulse. Therefore, the HF Doppler variation may possibly be a manifestation of solar-terrestrial activity. In this paper, the results of the spectral analysis of ionospheric variation in the period ranging from a few days to tens of days observed by the HFD method in nearly the whole year of 1986 are reported. For the purpose of comparison, the spectral analysis has been done on the of F2 data and the horizontal component data of the geomagnetic field, which were obtained during the same observation period. The present study is the first long period study concerning the spectral features of HFD variation. The observation and the data, the spectral analysis and the results are reported. The most important factor for dealing with HFD records is the frequency stability of the observation system. The HFD observation detected surely ionospheric variation in the period of 3 - 13 days and 16 - 21 days. (K.I.)

  20. Ionospheric variations in the period range of days to tens of days deduced from HF doppler observation

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Takashi; Yoshimura, Yasuo; Okuzawa, Takashi (University of Electro-Communications, Chofu, Tokyo (Japan)); Ogawa, Toshio

    1989-01-01

    The HF Doppler frequency variation of the ionosphere corresponds to ionospheric phase path change, which should be ascribed to traveling ionospheric disturbance, solar flares (UV and X-ray), magnetic pulsation, geomagnetic sudden commencement as well as sudden impulse. Therefore, the HF Doppler variation may possibly be a manifestation of solar-terrestrial activity. In this paper, the results of the spectral analysis of ionospheric variation in the period ranging from a few days to tens of days observed by the HFD method in nearly the whole year of 1986 are reported. For the purpose of comparison, the spectral analysis has been done on the of F2 data and the horizontal component data of the geomagnetic field, which were obtained during the same observation period. The present study is the first long period study concerning the spectral features of HFD variation. The observation and the data, the spectral analysis and the results are reported. The most important factor for dealing with HFD records is the frequency stability of the observation system. The HFD observation detected surely ionospheric variation in the period of 3 - 13 days and 16 - 21 days. (K.I.).

  1. Kinematic Seismic Rupture Parameters from a Doppler Analysis

    Science.gov (United States)

    Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.

    2010-05-01

    The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining

  2. Evaluating Peripheral Vascular Injuries: Is Color Doppler Enough for Diagnosis?

    Directory of Open Access Journals (Sweden)

    Mohd Lateef Wani

    2014-03-01

    Full Text Available Background:: Vascular injury poses a serious threat to limb and life. Thus, diagnosis should be made immediately with minimally invasive methods. Doppler is a good aid in diagnosis of vascular injury. Methods:: The present prospective study was conducted on 150 patients who presented with soft signs (the signs which are suggestive but not confirmatory of vascular injury. They were subjected to color Doppler examination before exploration. The patients with the features of vascular injury on color Doppler were subjected to exploration. On the other hand, those who had normal Doppler were subjected to CT- angiography. Then, the findings of the exploration were matched with those of color Doppler. The data were analyzed using the SPSS statistical software. Results:: Out of the 150 Doppler examinations, 110 (73.33% were reported as positive, while 40 were reported as negative for vascular injury. These were subjected to CT-angiography and seven of them had the features of vascular injury on CT-angiography. All the patients with positive Doppler or CT angiography findings were subjected to exploration. Doppler had a sensitivity of 94% and specificity of 82.5% in diagnosis of vascular injury using Binary classification test. Conclusions:: Color Doppler is an easily available, reliable, and handy method of diagnosing a vascular injury. It has a very high sensitivity and specificity in diagnosis of vascular injuries.

  3. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    Science.gov (United States)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  4. Reexamination of the Doppler effect through Maxwell's equations.

    Science.gov (United States)

    Guo, Wei; Aktas, Yildirim

    2012-08-01

    In this work, the electric field emitted from a moving source, an electric point dipole, is analyzed for the purpose of illustrating the physics behind the Doppler effect. It is found that if the (translational) motion of the source is nonrelativistic, the Doppler effect is realized in two steps: the motion of the source first causes the dyadic Green function associated with the electric field to acquire an oscillation frequency in the far-field region of the source, and then the frequency leads to the Doppler effect. It is also demonstrated that the Doppler effect is observable only in the far-field region of the source.

  5. EUV Doppler Imaging for CubeSat Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mature the design and fabricate the Flare Initiation Doppler Imager (FIDI) instrument to demonstrate low-spacecraft-resource EUV technology (most notably,...

  6. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  7. Current-induced spin wave Doppler shift

    Science.gov (United States)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  8. O VI 1032 Å intensity and Doppler shift oscillations above a coronal hole: Magnetosonic waves or quasi-periodic upflows?

    Science.gov (United States)

    Mancuso, S.; Raymond, J. C.; Rubinetti, S.; Taricco, C.

    2016-08-01

    On 1996 December 19, the Ultraviolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO) conducted a special high-cadence sit-and-stare observation in the O vi 1032 Å spectral line above a polar coronal hole at a heliocentric distance of 1.38 R⊙. The ~ 9-h dataset was analyzed by applying advanced spectral techniques to investigate the possible presence of propagating waves. Highly significant oscillations in O vi intensity (P = 19.5 min) and Doppler shift (P = 7.2 min) were detected over two different portions of the UVCS entrance slit. A cross-correlation analysis between the O vi intensity and Doppler shift fluctuations shows that the most powerful oscillations were in phase or anti-phase over the same portions of the slit, thus providing a possible signature of propagating magnetosonic waves. The episodic nature of the observed oscillations and the large amplitudes of the Doppler shift fluctuations detected in our observations, if not attributable to line-of-sight effects or inefficient damping, may indicate that the observed fluctuations were produced by quasi-periodic upflows.

  9. Transmission media effects on precise Doppler tracking

    Science.gov (United States)

    Callahan, P. S.

    1978-01-01

    The effects of the transmission media - the earth's troposphere and ionosphere, and the solar wind - on precise Doppler tracking are discussed. The charged particle effects can be largely removed by dual frequency observations; however there are limitations to these corrections (besides system noise and/or finite integration times) including the effects of magnetic fields, diffraction, and differential refraction, all of which must be carefully evaluated. The earth's troposphere can contribute an error of delta f/f approximately 10 to the minus 14th power.

  10. Doppler cooling to the quantum limit.

    Science.gov (United States)

    Chalony, M; Kastberg, A; Klappauf, B; Wilkowski, D

    2011-12-01

    Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-gaussian momentum distribution, and divergence of its mean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for very a narrow transition, cooling can be improved using a dipole trap, where the clock shift is canceled. PMID:22242994

  11. Doppler cooling and trapping on forbidden transitions

    OpenAIRE

    Binnewies, T.; Wilpers, G.; Sterr, U.; Riehle, F.; Helmcke, J.; Mehlstäubler, T. E.; Rasel, E. M.; Ertmer, W.

    2001-01-01

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \\mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 1...

  12. Doppler cooling to the Quantum limit

    CERN Document Server

    Chalony, Maryvonne; Klappauf, Bruce; Wilkowski, David

    2011-01-01

    Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-Gaussian momentum distribution, and divergence of its mean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for very a narrow transition, cooling can be improved using a dipole trap, where the clock shift is canceled.

  13. Moessbauer spectroscopy - applications of the Doppler principle

    International Nuclear Information System (INIS)

    Moessbauer spectroscopy is an experimental method based on the application of the Doppler principle in the velocity modulation system for variation of γ-ray energy. The object of observations is a resonating nucleus. From Moessbauer spectra one can gain information on the electronic and magnetic environment (based on hyperfine interactions) and on the vibrational states of atoms (based on the Debey-Waller factor). It is a typical microscopic method which has found applications in all disciplines of natural sciences as well as in medicine, art, archaeology and materials science. (author) 5 figs., 37 refs

  14. Adaptive blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of data-adaptive spectral estimation techniques for blood velocity estimation in medical ultrasound. Current commercial systems are based on the averaged periodogram, which requires a large observation window to give sufficient spectral resolution. Herein, we propose...... a novel data-adaptive method to form the blood velocity spectral estimate. The method is evaluated using realistic field II simulations for both steady and unsteady flow. The latter representing the femoral artery with strong tissue interference. The method is compared to the averaged periodogram...

  15. Temporal shape analysis via the spectral signature.

    Science.gov (United States)

    Bernardis, Elena; Konukoglu, Ender; Ou, Yangming; Metaxas, Dimitris N; Desjardins, Benoit; Pohl, Kilian M

    2012-01-01

    In this paper, we adapt spectral signatures for capturing morphological changes over time. Advanced techniques for capturing temporal shape changes frequently rely on first registering the sequence of shapes and then analyzing the corresponding set of high dimensional deformation maps. Instead, we propose a simple encoding motivated by the observation that small shape deformations lead to minor refinements in the spectral signature composed of the eigenvalues of the Laplace operator. The proposed encoding does not require registration, since spectral signatures are invariant to pose changes. We apply our representation to the shapes of the ventricles extracted from 22 cine MR scans of healthy controls and Tetralogy of Fallot patients. We then measure the accuracy score of our encoding by training a linear classifier, which outperforms the same classifier based on volumetric measurements. PMID:23286031

  16. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  17. Application of HF Doppler measurements for the investigation of internal atmospheric waves in the ionosphere

    Science.gov (United States)

    Petrova, I. R.; Bochkarev, V. V.; Latipov, R. R.

    2009-09-01

    We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3-4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1-72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.

  18. Doppler ultrasound scan during normal gestation: umbilical circulation; Ecografia Doppler en la gestacion normal: circulacion umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, T.; Sabate, J.; Martinez-Benavides, M. M.; Sanchez-Ramos, J. [Hospital Virgen Macarena. Sevilla (Spain)

    2002-07-01

    To determine normal umbilical circulation patterns by means of Doppler ultrasound scan in a healthy gestating population without risk factors and with normal perinatal results, and to evaluate any occurring modifications relative to gestational age by obtaining records kept during pregnancy. One hundred and sixteen pregnant women carrying a single fetus have been studied. These women had no risk factors, with both clinical and analytical controls, as well as ultrasound scans, all being normal. There were performed a total of 193 Doppler ultrasound scans between weeks 15 and 41 of gestation, with blood-flow analysis in the arteries and vein of the umbilical cord. The obtained information was correlated with parameters that evaluate fetal well-being (fetal monitoring and/or oxytocin test) and perinatal result (delivery type, birth weight, Apgar score). Statistical analysis was performed with the programs SPSS 6.0.1 for Windows and EPIINFO 6.0.4. With pulsed Doppler, the umbilical artery in all cases demonstrated a biphasic morphology with systolic and diastolic components and without retrograde blood flow. As the gestation period increased, there was observed a progressive decrease in resistance along with an increase in blood-flow velocity during the diastolic phase. The Doppler ultrasound scan is a non-invasive method that permits the hemodynamic study of umbilical blood circulation. A knowledge of normal blood-flow signal morphology, as well as of the normal values for Doppler indices in relation to gestational age would permit us to utilize this method in high-risk pregnancies. (Author) 30 refs.

  19. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  20. Electrophysiological measurements of spectral sensitivities: a review

    Directory of Open Access Journals (Sweden)

    R.D. DeVoe

    1997-02-01

    Full Text Available Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

  1. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... distributed differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial...

  2. A laser-lock concept to reach cm/s-precision in Doppler experiments with Fabry-Perot wavelength calibrators

    CERN Document Server

    Reiners, A; Ulbrich, R G

    2014-01-01

    State-of-the-art Doppler experiments require wavelength calibration with precision at the cm/s level. A low-finesse Fabry-Perot interferometer (FPI) can provide a wavelength comb with a very large bandwidth as required for astronomical experiments, but unavoidable spectral drifts are difficult to control. Instead of actively controlling the FPI cavity, we propose to passively stabilize the interferometer and track the time-dependent cavity length drift externally. A dual-finesse cavity allows drift tracking during observation. The drift of the cavity length is monitored in the high-finesse range relative to an external standard: a single narrow transmission peak is locked to an external cavity diode laser and compared to an atomic frequency. Following standard locking schemes, tracking at sub-mm/s precision can be achieved. This is several orders of magnitude better than currently planned high-precision Doppler experiments. It allows freedom for relaxed designs rendering this approach particularly interesting...

  3. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  4. The Modulation of Ionospheric Alfvén Resonator on Heating HF Waves and the Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    Ni Bin-bin; Zhao Zheng-yu; Xie Shu-guo

    2003-01-01

    Abstract: The propagation of HF waves in IAR can produce many nonlinear effects, including the modulation effect of IAR on HF waves and the Doppler effect. To start with the dependence of the ionospheric electron temperature variaof the modulation effect and lucubrate possible reasons for the field can have an observable modulation effect on HF waves while its mechanism is quite different from that of Schumann resonant field on HF waves. The depth of modulation of IAR field, which directly inspires the formation of cross-spectrum between ULF waves and HF waves and results in spectral peaks at some gyro-frequencies of IAR. With respect to the Doppler effect during the propagation of HF waves in IAR, it is mainly caused by the motion of the high-speed flyer and the drifting electrons and the frequency shift from the phase variation of the reflected waves can be neglected when the frequency of HF incident wave is high enough.

  5. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  6. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  7. "An analysis of the classical Doppler Effect"[1] revisited

    OpenAIRE

    Rothenstein, Bernhard; Nafornita, Corina

    2004-01-01

    After having shown that the formula which describes the Doppler effect in the general case holds only in the case of the "very high" frequency assumption, we derive free of assumptions Doppler formulas for two scenarios presented in the revisited paper.

  8. Measurement of depth of burns by laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Droog, E.J.; Steenbergen, W.; Sjöberg, F.

    2001-01-01

    Laser Doppler perfusion imaging (LDPI), is a further development in laser Doppler flowmetry (LDF). Its advantage is that it enables assessment of microvascular blood flow in a predefined skin area rather than, as for LDF, in one place. In many ways this method seems to be more promising than LDF in

  9. Micro-Doppler classification of riders and riderless horses

    Science.gov (United States)

    Tahmoush, David

    2014-05-01

    Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.

  10. A study for developing an ultrasonic Doppler flowmeter

    Science.gov (United States)

    Biermans, M.; Bregman, R.

    1984-06-01

    The system parameters for low cost ultrasonic Doppler flowmeters for medical applications were investigated. A flowmeter was built. A phase locked loop is used to find the correct Doppler shift. Laboratory and field tests prove the success of the development, although very often insufficient reflectors exist in the liquids. The accuracy is + or - 5%; the reproducibility is + or - 0.5%.

  11. Doppler weather radar with predictive wind shear detection capabilities

    Science.gov (United States)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  12. Musculoskeletal colour/power Doppler in sports medicine

    DEFF Research Database (Denmark)

    Boesen, M I; Boesen, M; Langberg, Henning;

    2010-01-01

    This review article discusses the aspects of sports medicine where musculoskeletal Doppler ultrasound has valuable contribution in diagnosis and/or treatment of some of the typical musculoskeletal sports injuries. Also, conditions where the Doppler ultrasound has no value are discussed. Some...

  13. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  14. Hole-burning in an Autler-Townes doublet and in superluminal (subluminal) Electromagnetically induced transparency of a light pulse via a joint nonlinear coherent Kerr effect and Doppler broadening

    CERN Document Server

    Bacha, Bakhtt A; Ahmad, Iftikhar

    2013-01-01

    We investigate the behavior of light pulse propagation in a 4-level double Lambda atomic system under condition of electromagnetically induced transparency. The Fano type interference effect and spectral hole burning appears in the the dynamics of the absorption-dispersion spectra caused by the joint nonlinear coherence Kerr effect and Doppler broadening. The coherent Kerr effect exhibits an enhancement (reduction) in superluminal (subluminal) in negative (in positive) group index while the Doppler broadening generates multiple hole burning in the Autler-Townes like spectra of this system. The hole burning in addition with coherent Kerr effect on the spectral profile influences the dynamics of subluminal and superluminal of the probe pulse through the medium. The characteristics of superluminality and subluminality modified by considering cold-Kerr-free medium and hot-Kerr-dependent mediums. The light pulse delays and advances in different regions of dispersion medium with the Doppler broadening and coherent ...

  15. Embolic Doppler ultrasound signal detection via fractional Fourier transform.

    Science.gov (United States)

    Gençer, Merve; Bilgin, Gökhan; Aydın, Nizamettin

    2013-01-01

    Computerized analysis of Doppler ultrasound signals can aid early detection of asymptomatic circulating emboli. For analysis, physicians use informative features extracted from Doppler ultrasound signals. Time -frequency analysis methods are useful tools to exploit the transient like signals such as Embolic signals. Detection of discriminative features would be the first step toward automated analysis of embolic Doppler ultrasound signals. The most problematic part of setting up emboli detection system is to differentiate embolic signals from confusing similar wave-like patterns such as Doppler speckle and artifacts caused by tissue movement, probe tapping, speaking etc. In this study, discrete version of fractional Fourier transform is presented as a solution in the detection of emboli in digitized Doppler ultrasound signals. An accurate set of parameters are extracted using short time Fourier transform and fractional Fourier transform and the results are compared to reveal detection quality. Experimental results prove the efficiency of fractional Fourier transform in which discriminative features becomes more evident.

  16. Use of GPS network data for HF Doppler measurements interpretation

    CERN Document Server

    Petrova, Inna R; Latypov, Ruslan R

    2014-01-01

    The method of measurement of Doppler frequency shift of ionospheric signal - HF Doppler technique - is one of well-known and widely used methods of ionosphere research. It allows to research various disturbances in the ionosphere. There are some sources of disturbances in the ionosphere. These are geomagnetic storms, solar flashes, metrological effects, atmospheric waves. This method allows to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occur near to the Earth. HF Doppler technique has the high sensitivity to small frequency variations and the high time resolution, but interpretation of results is difficult. In this work we make an attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows to separate ionosphere disturbances of medium scale.

  17. Doplerovi brodski navigacioni brzinomjeri / Maritime navigational Doppler logs

    Directory of Open Access Journals (Sweden)

    Milovan Unković

    2006-01-01

    Full Text Available Doplerovi navigacioni brodski brzinomjeri rade na principu Doplerovog efekta. Doplerov predajni projektor emituje snop ultrazvučnih vibracija u vodi, a drugi (ili isti projektor prima odbijeni signal od dna ili od sloja vode. U ovom radu opisana je teorija Doplerovog efekta, primjena te teorije na brodskim brzinomjerima, konstrukcija i karakteristike savremenih Doplerovih brzinomjera. / The Doppler maritime navigational logs are based on measurement of the Doppler effect. A Doppler log transmitting transducer emits beam of sound vibration in the water, and a second (or the same transducer receives the echo from the sea bed or -water layer. In this article describes theory of Doppler effect, using this theory in maritime logs, construction and performance of modern Doppler logs.

  18. Ionospheric Doppler measurements by means of HF-radar techniques

    Directory of Open Access Journals (Sweden)

    D. Altadill

    2005-06-01

    Full Text Available Studies of the dynamics of the ionosphere and its related phenomena are mainly based on Doppler Drift measurements. The time variation (ionisation/recombination of plasma density, thermospheric wind and others can be observed by means of HF-radars. The technique of Doppler Drift measurements is a quite complex technique that is now affordable by means of an advanced ionospheric sounder. The combination of vertical sounding and interferometric Doppler detection discloses the Doppler sources. The echo signal contains the Doppler shift in frequency imposed on the wave carrier by each point source where the signal is reflected. Other phenomena like environmental noise and the intrinsic error of the measurements that, together with the change in time of the refractive index, affect the measurements in various ways impeding to better quantify the results.

  19. Doppler-cancelled response to VLF gravitational waves

    Science.gov (United States)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  20. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    CERN Document Server

    Howard, Andrew W

    2016-01-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically-determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories collected by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA--WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a ...

  1. Adaptive spectral clustering algorithm based on Nystr(o)m method with multi-level structure in LUV color space%LUV色彩空间中多层次化结构Nystr(o)m方法的自适应谱聚类算法

    Institute of Scientific and Technical Information of China (English)

    刘雅蓉; 汪西莉

    2012-01-01

    In this paper, we propose an adaptive spectral clustering algorithm based on the Nystrom method with multilevel structures in LUV color space. First, we introduce the LUV color space, which can effectively avoid the influence of barely noticeable differences on the segmentation results, achieving better result in texture and edge regions. Second, we combine the spectral clustering algorithm based on multi-level structure and the Nystrom method. Our approach can reduce the operation time and solve the problem of memory overflow. Finally, in X-means, through the analysis of the eigengap to adaptive select the value of K, this approach can automatically determine the number of clusters. The proposed method is applied to image segmentation, respectively, in LUV color space and RGB color space. The experimental results show that in LUV color space we can obtain even better results. The data computation and operation time as well as the segmentation result of the proposed algorithm are superior, compared to the spectral clustering algorithm based on the Nystrom method (SC-N).%提出一种在LUV空间中基于多层次化结构Nystr(o)m方法的自适应谱聚类算法.首先引入LUV色彩空间,避免了RGB色彩空间中色彩辨别阈对分割的影响,在纹理、边缘区域取得了更好的分割效果;其次将谱聚类算法中基于多层次化结构的方法和基于Nystr(o)m采样的方法结合起来,有效减少了运算时间、解决了数据量较大时计算过程中内存溢出的问题;最后在K均值聚类中通过对特征间隙( eigengap)的分析,自适应地选择K值的大小,解决了自动确定聚类数目的问题.将提出的方法在LUV色彩空间中和RGB色彩空间中分别进行图像分割实验,结果表明在LUV色彩空间中取得效果更加理想.同时也将提出的算法与基于Nystr(o)m方法的谱聚类算法(spectral clustering-Nystr(o)m,SC-N)进行比较.实验结果表明,该算法在数据运算量、运行时

  2. 基于循环平稳的LOFDM系统双散射信道最大多普勒扩展盲估计%Cyclostationarity-Based Maximum Doppler Spread Blind Estimation for LOFDM Systems in Doubly-Dispersive Channels

    Institute of Scientific and Technical Information of China (English)

    高猛; 沈越泓; 袁志钢

    2011-01-01

    LOFDM ( Lattice Orthogonal Frequency Division Multiplexing) , which is proposed by Strohmer T and Beaver S in 2003 , has higher spectral efficiency and better bit error rate (BER) performance compared with OFDM systems in the time-frequency dispersive channel. To minimize the joint inter-symbol interference (ISI) and inter-carrier interference (ICI) caused by the doubly dispersive channel, LOFDM systems need to adapt the parameters of signals' TFL and shaping-pulse scale to the channel dispersion characteristics in the transmitters. The maximum Doppler spread, or equivalently, the mobile speed, is a measure of the spectral dispersion of mobile fading channel. Accurate estimation of the mobile speed is of importance in LOFDM systems which require the knowledge of the rate of channel variations to achieve its adaptive strategy. In this paper, aiming at the special characteristics of LOFDM signals, a cyclostationarity-based blind maximum Doppler spread estimation algorithm for LOFDM systems over the doubly-dispersion channels is proposed , which avoids the waste of spectral efficiency in the current estimation algorithms. Theory analyses and simulation results demonstrate that the proposed algorithm can obtain the effective estimation for a wide range of Doppler spreads under the condition that the information of the multi-path is unknown and have a good normalized mean square error ( NMSE) performance, while both the capability of anti-noise and the speed of convergence are nice.%Strohmer T与Beaver S于2003年提出了适用于时频散射信道的网格正交频分复用(LOFDM,Lattice Orthogonal Frequency Division Multiplexing)系统,与传统OFDM系统相比该系统具有更高的频带种用率和更好的误码性能.LOFDM系统发送端需要自适应地调整信号的原形脉冲和其时频分布的参数与信道保持匹配,以尽可能地降低符号间干扰和载波间干扰的影响.最大多普勒扩展作为信道时变性的直接反映,是LOFDM系

  3. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... the investigations of lighting scenarios carried out in two test installations: White Cube and White Box. The test installations are discussed as large-scale experiential instruments. In these test installations we examine what could potentially occur when light using LED technology is integrated and...

  4. Using FLCT to Obtain Spectral Information From MOSES Data

    Science.gov (United States)

    Courrier, Hans; Kankelborg, Charles

    2014-06-01

    The Multi-Order Solar EUV Spectrograph (MOSES) is a high cadence slitless spectrograph that images in He II 304Å. The large field of view (20’x10’) combined with the ability to quickly obtain images containing both spectral and spatial information makes MOSES an ideal platform for probing small scale, short duration flows resulting from magnetic reconnection in the solar transition region. The ease of obtaining co-temporal spectral and spatial data with a slitless spectrograph is counterbalanced by increased difficulty required to disentangling the information captured in the images. The Fourier Local Correlation Tracking (FLCT) routine developed by Fischer and Welch (2007) is developed as a technique for obtaining Doppler shifts and line widths from small scale flows imaged by MOSES. Results are reported utilizing this technique on simulated images and MOSES data.

  5. Adaptive Computing.

    Science.gov (United States)

    Harrell, William

    1999-01-01

    Provides information on various adaptive technology resources available to people with disabilities. (Contains 19 references, an annotated list of 129 websites, and 12 additional print resources.) (JOW)

  6. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  7. Estudio de la aorta abdominal mediante doppler espectral pulsado en perros Vascular study of abdominal aorta using doppler duplex ultrasonography in dogs

    Directory of Open Access Journals (Sweden)

    N Miño

    2004-01-01

    Full Text Available Para poder realizar un diagnóstico correcto de la aorta abdominal mediante Doppler duplex vascular es necesario un buen conocimiento del espectro Doppler característico y de los resultados obtenidos respecto de los parámetros de flujo. Para ello, se usaron diez perros adultos, cinco machos y cinco hembras, de la raza Beagle, sin someterlos a tranquilización previa. Se tomaron cinco medidas de cada parámetro en estudio, buscando un ángulo inferior a 45º y un espectro obtenido que se ajustara al característico de la aorta a nivel de la bifurcación de las arteria ilíacas. El espectro Doppler obtenido muestra un perfil de velocidad de flujo en tapón, pues la velocidad en la pared y en el lumen del vaso es similar. Por ello, el espectro presenta una delgada línea en sístole que deja una gran ventana espectral o sistólica. También se aprecia un patrón de flujo de impedancia elevada, aparecen elevados picos sistólicos y flujo reverso en diástole temprana, que es seguido por otra onda diastólica en el sentido del transductor. Los parámetros calculados aportan un valor medio de diámetro de 0.88 ± 0.12 cm, área de 0.62 ± 0.19 cm2, perímetro de 2.86 ± 0.43 cm; el rango de velocidades obtenido fue una velocidad máxima de 92.45 ± 17.38 cm/sg., media de 27.13 ± 9.05 cm/sg. y mínima de 8.55 ± 6.82 cm/sg. el IR fue de 0.91 ± 0.11, el IP de 3.09 ± 0.66 y el volumen de flujo de 1.06 ± 0.55 L/min.Doppler ultrasonography is a new technique used in small animal sonography. The knowledge of the normal Doppler signs of each blood vessel is important in their identification because it is necessary for recognize pathologic changes. Ten dogs, five males and five females, were examined without sedation. Imaged in a transverse plane, was calculated diameter, area and perimeter, with a duplex Doppler ultrasonography provided us maxim, mean and minimum velocity, pulsatility index, resistive index and flow volume. The aorta has typical plug

  8. Ultrasonic intrusion sensor using the Doppler effect; Choonpa Doppler hoshiki shinnyu sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kani, H.; Iwasaki, N.; Goto, M. [Nippon Soken, Inc., Tokyo (Japan); Tsuzuki, T.; Nakamura, T. [Denso Corp., Aichi (Japan)

    1997-10-01

    For vehicle anti-theft alarm systems which cope with vehicle and car component theft, EU initiated vehicle security regulations from Jan 1997. Also, the insurance industry has instituted the insurance certification of vehicle anti-theft alarm systems. We have developed an ultrasonic intrusion sensor using the doppler effect for vehicle anti-theft alarm systems specifically for these EU regulations and insurance certification. 2 refs., 7 figs., 1 tab.

  9. Fractal fluctuations in transcranial Doppler signals

    Science.gov (United States)

    West, B. J.; Zhang, R.; Sanders, A. W.; Miniyar, S.; Zuckerman, J. H.; Levine, B. D.

    1999-03-01

    Cerebral blood flow (CBF) velocity measured using transcranial Doppler ultrasonography (TCD) is not strictly constant, but has both a systematic and random component. This behavior may indicate that the axial blood flow in the middle cerebral artery is a chaotic process. Herein we use the relative dispersion, the ratio of the standard deviation to the mean, to show by systematically aggregating the data that the correlation in the beat-to-beat CBF time series is a modulated inverse power law. This scaling of the CBF time series indicates the existence of long-time memory in the underlying control process. We argue herein that the control system has allometric properties that enable it to maintain a relatively constant brain perfusion.

  10. Implementation of Doppler backscattering for MAST

    CERN Document Server

    Hillesheim, J C; Peebles, W A; Meyer, H; Meakins, A; Field, A R; Dunai, D; Carr, M; Hawkes, N

    2014-01-01

    A sixteen channel millimeter-wave diagnostic system, covering the frequency range 30-75 GHz, has been installed on MAST [B. Lloyd et al., Nucl. Fusion 43, 1665 (2003)] and has been successfully used for both Doppler backscattering (DBS) and conventional (normal-incidence) fluctuation reflectometry. DBS has become a well-established and versatile diagnostic technique for the measurement of intermediate- k ($k_{\\bot} \\rho_i \\sim 1$, and higher) density fluctuations and flows in magnetically confined fusion experiments. The $180^{\\circ}$ backscattering for DBS requires three dimensional wave-vector matching between the launched beam and the plasma fluctuations inducing the scattering, which are expected to be highly elongated along the magnetic field. The large pitch angle in MAST means that DBS implementation depends strongly on the capability to accurately launch the probing beam at a toroidal and poloidal angle that is matched to the magnetic field at the scattering location. We report on the scattering consi...

  11. Widefield laser doppler velocimeter: development and theory.

    Energy Technology Data Exchange (ETDEWEB)

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  12. Doppler cooling and trapping on forbidden transitions

    CERN Document Server

    Binnewies, T; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-01-01

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \\mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments.

  13. Doppler cooling and trapping on forbidden transitions.

    Science.gov (United States)

    Binnewies, T; Wilpers, G; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-09-17

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments. PMID:11580503

  14. The Doppler peaks from a generic defect

    CERN Document Server

    Magueijo, J

    1996-01-01

    We investigate which of the exotic Doppler peak features found for textures and cosmic strings are generic novelties pertaining to defects. We find that the ``out of phase'' texture signature is an accident. Generic defects, when they generate a secondary peak structure similar to inflation, apply to it an additive shift. It is not necessary for this shift to be ``out of phase''. We also show which factors are responsible for the absence of secondary oscillations found for cosmic strings. Within this general analysis we finally consider the conditions under which topological defects and inflation can be confused. It is argued that only \\Omega=1 inflation and a defect with a horizon size coherence length have a chance to be confused. Any other inflationary or defect model always differ distinctly. (To appear in the proceedings of the XXXIth Moriond meeting, ``Microwave Background Anisotropies'')

  15. DC coupled Doppler radar physiological monitor.

    Science.gov (United States)

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  16. Doppler cooling and trapping on forbidden transitions.

    Science.gov (United States)

    Binnewies, T; Wilpers, G; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-09-17

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments.

  17. Microscale Heat Conduction Models and Doppler Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Hawari, Ayman I. [North Carolina State Univ., Raleigh, NC (United States); Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  18. Coherent Detection in Laser Doppler Velocimeters

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner

    1974-01-01

    The possibility of heterodyning between electromagnetic waves scattered by particles separated in space is explained from a classical point of view and from a quantum mechanical point of view. The last description being carried out using only the Heisenberg uncertainty principle and a rather coarse......, but intelligible particle picture of electromagnetic waves. The analysis is carried out with special emphasis on the heterodyning process in the laser Doppler velocimeter (LDV) because the main purpose of this article is to provide a better understanding of this instrument. An aid for this purpose...... is the evaluation of a visual comprehensive interference pattern (Moiré pattern), which furthermore reveals some important features of the optical set-up....

  19. Correlation and Sequential Filtering with Doppler Measurements

    Institute of Scientific and Technical Information of China (English)

    WANGJianguo; HEPeikun; HANYueqiu; WUSiliang

    2004-01-01

    Two sequential filters are developed for Doppler radar measurements in the presence of correlation between range and range rate measurement errors. Two ideal linear measurement equations with the pseudo measurements are constructed via block-partitioned Cholesky factorization and the practical measurement equationswith the pseudo measurements are obtained through the direction cosine estimation and error compensation. The resulting sequential filters make the position measurement be possibly processed before the pseudo measurement and hence the more accurate direction cosine estimate can be obtained from the filtered position estimate rather than the predicted state estimate. The numerical simulations with different rangerange rate correlation coefficients show thatthe proposed two sequential filters are almost equivalent in performance but both superior to the conventional extended Kalman filter for different correlation coefficients.

  20. Role of transcranial Doppler in cerebrovascular disease.

    Science.gov (United States)

    Kulkarni, Amit A; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only noninvasive modality for the assessment of real-time cerebral blood flow. It complements various anatomic imaging modalities by providing physiological-flow related information. It is relatively cheap, easily available, and can be performed at the bedside. It has been suggested as an essential component of a comprehensive stroke centre. In addition to its importance in acute cerebrovascular ischemia, its role is expanding in the evaluation of cerebral hemodynamics in various disorders of the brain. The "established" clinical indications for the use of TCD include cerebral ischemia, sickle cell disease, detection of right-to-left shunts, subarachnoid hemorrhage, periprocedural or surgical monitoring, and brain death. We present the role of TCD in acute cerebrovascular ischemia, sonothrombolysis, and intracranial stenosis. PMID:27625245

  1. High Spectral Resolution Lidar: System Calibration

    Science.gov (United States)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  2. Noncomputable Spectral Sets

    CERN Document Server

    Teutsch, J

    2007-01-01

    It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus ...

  3. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  4. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  5. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I - Theory and instrumentation

    Science.gov (United States)

    Shipley, S. T.; Tracy, D. H.; Eloranta, E. W.; Roesler, F. L.; Weinman, J. A.; Trauger, J. T.; Sroga, J. T.

    1983-01-01

    A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator-amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

  6. High Spectral Resolution Lidar Measurements of Extinction and Particle Size in Clouds

    Science.gov (United States)

    Eloranta, E. W.; Piirronen, P.

    1996-01-01

    The University of Wisconsin High Spectral Resolution Lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler broadened molecular backscatter return from the unbroadened aerosol return. In the past, the HSRL employed a 150 mm diameter Fabry-Perot etalon to separate the aerosol and molecular signals. The replacement of the etalon with an I2 absorption filter significantly improved the ability of the HSRL to separate weak molecular signals inside dense clouds.

  7. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    Science.gov (United States)

    Howard, Andrew W.; Fulton, Benjamin J.

    2016-11-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA—WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a methodology to estimate the pipeline completeness using injection and recovery tests. We applied this machinery to the Doppler data and computed planet detection limits for each star as a function of planet minimum mass and semimajor axis. For typical stars in the survey, we are sensitive to approximately Saturn-mass planets inside of 1 au, Jupiter-mass planets inside of ˜3 au, and our sensitivity declines out to ˜10 au. For the best Doppler targets, we are sensitive to Neptune-mass planets in 3 au orbits. Using an idealized model of Doppler survey completeness, we forecast the precision of future surveys of non-ideal Doppler targets that are likely targets of imaging missions. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by NASA, the University of California, and the University of Hawaii.

  8. Pulsed Doppler echocardiographic analysis of mitral regurgitation after myocardial infarction.

    Science.gov (United States)

    Loperfido, F; Biasucci, L M; Pennestri, F; Laurenzi, F; Gimigliano, F; Vigna, C; Rossi, E; Favuzzi, A; Santarelli, P; Manzoli, U

    1986-10-01

    In 72 patients with previous myocardial infarction (MI), mitral regurgitation (MR) was assessed by pulsed-wave Doppler echocardiography and compared with physical and 2-dimensional echocardiographic findings. MR was found by Doppler in 29 of 42 patients (62%) with anterior MI, 11 of 30 (37%) with inferior MI (p less than 0.01) and in none of 20 normal control subjects. MR was more frequent in patients who underwent Doppler study 3 months after MI than in those who underwent Doppler at discharge (anterior MI = 83% vs 50%, p less than 0.01; inferior MI = 47% vs 27%, p = not significant). Of 15 patients who underwent Doppler studies both times, 3 (all with anterior MI) had MR only on the second study. Of the patients with Doppler MR, 12 of 27 (44%) with a left ventricular (LV) ejection fraction (EF) greater than 30% and 1 of 13 (8%) with an EF of 30% or less (p less than 0.01) had an MR systolic murmur. Mitral prolapse or eversion and papillary muscle fibrosis were infrequent in MI patients, whether or not Doppler MR was present. The degree of Doppler MR correlated with EF (r = -0.61), LV systolic volume (r = 0.47), and systolic and diastolic mitral anulus circumference (r = 0.52 and 0.51, respectively). Doppler MR was present in 24 of 28 patients (86%) with an EF of 40% or less and in 16 of 44 (36%) with EF more than 40% (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3766410

  9. Spectral Networks and Snakes

    CERN Document Server

    Gaiotto, Davide; Neitzke, Andrew

    2012-01-01

    We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.

  10. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Science.gov (United States)

    Kalesse, Heike; Szyrmer, Wanda; Kneifel, Stefan; Kollias, Pavlos; Luke, Edward

    2016-03-01

    Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  11. Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling

    Directory of Open Access Journals (Sweden)

    H. Kalesse

    2015-10-01

    Full Text Available Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediments through a supercooled liquid water (SLW layer. The observations were collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM mobile facility AMF2 at Hyytiälä, Finland during the BAECC (Biogenic Aerosols – Effects on Clouds and Climate Snowfall Experiment field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are taken into account by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in-situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.

  12. Clinical utility of tissue Doppler imaging in patients with acute myocardial infarction complicated by cardiogenic shock

    Directory of Open Access Journals (Sweden)

    Zieroth Shelley

    2008-03-01

    Full Text Available Abstract Background Echocardiography is widely used in the management of patients with cardiogenic shock (CS. Left ventricular ejection fraction (EF has been shown to be an independent predictor of survival in CS. Tissue Doppler Imaging (TDI is a sensitive echocardiographic technique that allows for the early quantitative assessment of regional left ventricular dysfunction. TDI derived indices, including systolic velocity (S', early (E' and late (A' diastolic velocities of the lateral mitral annulus, are reduced in heart failure patients (EF Objective To characterize TDI derived indices in CS patients as compared to patients with chronic CHF. Methods Between 2006 and 2007, 100 patients were retrospectively evaluated who underwent echocardiography for assessment of LV systolic function. This population included: Group I 50 patients (30 males, 57 ± 13 years with chronic CHF as controls; and Group II 50 patients (29 males, 58 ± 10 years with CS. Spectral Doppler indices including peak early (E and late (A transmitral velocities, E/A ratio, and E-wave deceleration time were determined. Tissue Doppler indices including S', E' and A' velocities of the lateral annulus were measured. Results Of the entire cohort, the mean LVEF was 25 ± 5%. Cardiogenic shock patients demonstrated significantly lower lateral S', E' and a higher E/E' ratio (p Conclusion Despite similar reduction in LV systolic function, CS patients have reduced myocardial velocities and higher filling pressures using TDI, as compared to CHF patients. Whether TDI could be a reliable tool to determine CS patients with the best chance of recovery following revascularization is yet to be determined.

  13. Lower limbs valvular insufficiency diagnosed by color-doppler US: variability in the results using the standing or semi-Fowler position and Valsalva maneuver or distal compression

    Directory of Open Access Journals (Sweden)

    Federico Guillermo Lubinus Badillo

    2007-05-01

    Full Text Available Objectives: To determine differences in diagnosis of valvular insufficiency by color doppler ultrasonography in standing or semi-Fowler position and Valsalva maneuver or distal compression. Methodology:98 patients with 1-3 degreee valvular insufficiency were studiedAll of thew were evaluated by doppler ultrasonography in boothpositions and maneuvers. Results: There were differences betweenthe different techniques. In upper segments, a higher frequency of reflux was found with semi-Fowler plus Valsalva´s maneuver; in intermediate segments there were similar reflux prevalences using both positions; and, in lower segments, there was more reflux using standing position plus Valsalva´s maneuver. Conclusion. Depending on the venous group to evaluate, it is necessary to adapt the evaluation technique used with Doppler ultrasound color test.

  14. Carotid Doppler and transcranial Doppler in diagnosing transient ischemic attack: A healthy control

    Institute of Scientific and Technical Information of China (English)

    Huiling Chen; Jinhua Qiu; Hongying Liu

    2006-01-01

    BACKGROUND: If changes of hemodynamics in internal or external cranial artery and stenosis of atherosclerosis are found early, patients with transient ischemic attack (TIA) may be treated at an early phase so as to prevent and decrease the onset of cerebral infarction. Carotid Doppler can analyze carotid canal wall, hemodynamic properties and stenosis, and changes of plaque morphology; however, transcranial Doppler (TCD)can evaluate vascular stenosis and occlusion and judge collateral circulation in cranium through detecting velocity and direction of blood flow. Can the association of them increase the diagnostic rate of TIA?OBJECTIVE: To evaluate the effect of the association of carotid Doppler and TCD on TIA in internal carotid artery.DESIGN: Contrast observational study.SETTING: Department of Neuroelectrophysiology, Central People's Hospital of Huizhou.PARTICIPANTS: A total of 54 patients with TIA in internal carotid artery were selected from the Department of Neurology of Huizhou Central People's Hospital from May 2004 to June 2005. There were 35 males and 24 females aged 46-81 years. The clinical situation was asthenia of single limb, hemiplegia, anaesthesia of single upper or lower limb, hemianesthesia, sensory disorder and aphasia. The symptoms lasted for less than 2 hours. All cases were diagnosed with CT, and those who had pathological changes of acute cerebral infarction and history of cardiac disease were excluded. Additionally, 50 healthy subjects who were regarded as control group were selected from the Department of Neurology of Huizhou Central People's Hospital. There were 30 males and 20 females aged 45-80 years. All subjects were consent.METHODS: HD15000 color Doppler ultrasound (Philips Company, USA) and Muliti-DopX2 TCD (DWL Company, Germany) were used to detect hemodynamics, stenosis and distribution of atherosclerosis in carotid artery and internal carotid artery. Evaluation of marker: Stenosis was calculated by the ratio between the minimal

  15. Phase modulation of propagation effect with Doppler broadening

    Institute of Scientific and Technical Information of China (English)

    Qiao Hong-Xia; Yang Yan-Ling; Tan Xia; Tong Dian-Min; Fan Xi-Jun

    2008-01-01

    This paper studies the propagation effect in a closed lambda-type three-level atomic system with Doppler broadening.It is shown that,Doppler broadening due to atomic motion and propagation effect associated with driving field depletion along the active medium decreases obviously the gain and output of the lasing without inversion(LWI);the relative phase between the probe and driving fields has a remarkable modulation role to the propagation effect on LWI when Doppler broadening presents;by choosing suitable value of the relative phase,we can get the largest gain and output of LWI.

  16. Interferometric millimeter wave and THz wave doppler radar

    Science.gov (United States)

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  17. Computer simulation studies of pulsed Doppler signals from vortices

    Institute of Scientific and Technical Information of China (English)

    CHEN Sizhong; WANG Yuanyuan; WANG Weiqi

    2001-01-01

    A computer simulation method for pulsed Doppler signals from vortices was proposed to generate simulated vortex Doppler signals under various given circumstances. The relative waveforms, such as the maximum frequency waveform, the mean frequency waveform and the bandwidth waveform, were obtained using the short time Fourier analysis of those simulated signals. The relations were studied between several spectrum parameters obtained from these waveforms and given simulation conditions, such as the position and the size of the sample volume, the distance between two vortices, the free stream velocity and the maximum tangent velocity of the vortex. The sensitive parameters were found to detect vortices using the pulsed Doppler techniques.

  18. Coherent Doppler wind lidars in a turbulent atmosphere

    CERN Document Server

    Banakh, Viktor

    2013-01-01

    Radiophysical tools for measuring atmospheric dynamics include sodars, Doppler radars, and Doppler lidars. Among these, coherent Doppler lidars (CDLs) have been considered the best for remote measurement of wind turbulence. This is important not only for understanding the exchange processes in the boundary layer, but also in the applied aspect, such as aviation safety. CDLs significantly extend possibilities of experimental investigation of not only wind turbulence, but also coherent structures such as aircraft wake vortices. The authors of this book conducted field tests of the developed meth

  19. Sub-Doppler laser cooling of potassium atoms

    CERN Document Server

    Landini, M; Carcagni', L; Trypogeorgos, D; Fattori, M; Inguscio, M; Modugno, G

    2011-01-01

    We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of systems and an adiabatic ramping of the laser parameters allows to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25(3)microK and 47(5)microK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings will find application to other atomic systems.

  20. Sub-Doppler laser cooling of potassium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Landini, M. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Dipartimento di fisica, Universita di Trento, I-38123 Povo (Trento) (Italy); Roy, S.; Carcagni, L.; Trypogeorgos, D. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); Fattori, M.; Inguscio, M.; Modugno, G. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  1. Mitigating Doppler shift effect in HF multitone data modem

    Science.gov (United States)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  2. Processor operated correlator with applications to laser Doppler signals

    DEFF Research Database (Denmark)

    Bisgaard, C.; Johnsen, B.; Hassager, Ole

    1984-01-01

    A 64-channel correlator is designed with application to the processing of laser Doppler anemometry signals in the range 200 Hz to 250 kHz. The correlator is processor operated to enable the consecutive sampling of 448 correlation functions at a rate up to 500 Hz. Software is described to identify...... a Doppler frequency from each correlation and the system is especially designed for transient flow signals. Doppler frequencies are determined with an accuracy of about 0.1%. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  3. Rotational Doppler Effect and Barnett Field in Spinning NMR

    Science.gov (United States)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  4. [Feasibility study of the Doppler exploration of the renal artery].

    Science.gov (United States)

    Milon, P; Clavier, E; Genevois, A; Benozio, M

    1990-03-01

    Using arteriography as a reference, the authors investigate the feasibility of pulsed doppler exploration of the normal or pathological renal arteries in 46 successive patients. The poor sensitivity of pulsed doppler, mainly due to the considerable anatomical variations of the renal pedicle, does not currently allow using this technique for the detection of renal arterial stenosis. When combined with angiography, pulsed doppler becomes a definite asset in therapeutic radiology to help in the choice of a treatment and in follow-up. PMID:2191123

  5. Spectral library searching in proteomics.

    Science.gov (United States)

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.

  6. Acoustic Doppler Current Profiler Data Processing System manual [ADCP

    Science.gov (United States)

    Cote, Jessica M.; Hotchkiss, Frances S.; Martini, Marinna; Denham, Charles R.; revisions by Ramsey, Andree L.; Ruane, Stephen

    2000-01-01

    This open-file report describes the data processing software currently in use by the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), to process time series of acoustic Doppler current data obtained by Teledyne RD Instruments Workhorse model ADCPs. The Sediment Transport Instrumentation Group (STG) at the WHCMSC has a long-standing commitment to providing scientists high quality oceanographic data published in a timely manner. To meet this commitment, STG has created this software to aid personnel in processing and reviewing data as well as evaluating hardware for signs of instrument malfunction. The output data format for the data is network Common Data Form (netCDF), which meets USGS publication standards. Typically, ADCP data are recorded in beam coordinates. This conforms to the USGS philosophy to post-process rather than internally process data. By preserving the original data quality indicators as well as the initial data set, data can be evaluated and reprocessed for different types of analyses. Beam coordinate data are desirable for internal and surface wave experiments, for example. All the code in this software package is intended to run using the MATLAB program available from The Mathworks, Inc. As such, it is platform independent and can be adapted by the USGS and others for specialized experiments with non-standard requirements. The software is continuously being updated and revised as improvements are required. The most recent revision may be downloaded from: http://woodshole.er.usgs.gov/operations/stg/Pubs/ADCPtools/adcp_index.htm The USGS makes this software available at the user?s discretion and responsibility.

  7. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-07-01

    Full Text Available The Micro Rain Radar (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations at 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  8. An ion Doppler spectrometer instrument for ion temperature and flow measurements on SSPX

    International Nuclear Information System (INIS)

    A high-resolution ion Doppler spectrometer (IDS) has been installed on the sustained spheromak plasma experiment to measure ion temperatures and plasma flow. The system is composed of a 1 m focal length Czerny-Turner spectrometer with a diffraction grating line density of 2400 lines/mm, which allows for first order spectra between 300 and 600 nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126 nm/channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining the wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber-optic survey spectrometer sensitive to a wavelength range 200-1100 nm and having a resolution of 0.2 nm is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of C III 464.72 nm line in the plasma shows time-resolved ion temperatures up to 250 eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvenic plasma flow ranging from 5 to 45 km/s for helium discharges.

  9. Sub-Doppler optical resolution by confining a vapour in a nanostructure

    CERN Document Server

    Ballin, Philippe; Maurin, Isabelle; Laliotis, Athanasios; Bloch, Daniel

    2013-01-01

    We show that a thermal vapor confined in a nanostructure is of spectroscopic interest. We perform reflection spectroscopy on a Cs vapour cell whose window is covered with a thin opal film (typically, 10 or 20 layers of ~ 1{\\mu}m diameter spheres). Sub-Doppler structures appear in the optical spectrum in a purely linear regime of optical excitation and the signal is shown to originate from the interstitial regions of the opal. These narrow spectral structures, observable for a large range of oblique incidence angles (~ 30-50°), are an original feature associated to the 3-D vapor confinement. It remembers a Dicke narrowing, i.e. a Doppler broadening suppression when the atomic motion is sub-wavelength confined. This narrowing, commonly observed in the r.f. domain when a buffer gas ensures a collision confinement effect, had remained elusive in the optical frequency. Also, we describe preliminary experiments performed in a pump-probe technique, intended to elucidate the spatial origin of the narrow contri...

  10. Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry

    Science.gov (United States)

    2016-01-01

    Laser spectroscopy in the linear regime of radiation–matter interaction is a powerful tool for measuring thermodynamic quantities in a gas at thermodynamic equilibrium. In particular, the Doppler effect can be considered a gift of nature, linking the thermal energy to an optical frequency, namely the line centre frequency of an atomic or molecular spectral line. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry (DBT). This paper reports on the efforts that have been carried out, in the last decade, worldwide, to the end of making DBT competitive with more consolidated and accurate methodologies, such as acoustic gas thermometry and dielectric constant gas thermometry. The main requirements for low-uncertainty DBT, of both theoretical and technical nature, will be discussed, with a special focus on those related to the line shape model and to the frequency scale. A deep comparison among the different molecules that have been selected in successful DBT implementations is also reported. Finally, for the first time, to the best of my knowledge, the influence of refractive index effects is discussed. PMID:26903093

  11. Improved Micro Rain Radar snow measurements using Doppler spectra post-processing

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2012-11-01

    Full Text Available The Micro Rain Radar 2 (MRR is a compact Frequency Modulated Continuous Wave (FMCW system that operates at 24 GHz. The MRR is a low-cost, portable radar system that requires minimum supervision in the field. As such, the MRR is a frequently used radar system for conducting precipitation research. Current MRR drawbacks are the lack of a sophisticated post-processing algorithm to improve its sensitivity (currently at +3 dBz, spurious artefacts concerning radar receiver noise and the lack of high quality Doppler radar moments. Here we propose an improved processing method which is especially suited for snow observations and provides reliable values of effective reflectivity, Doppler velocity and spectral width. The proposed method is freely available on the web and features a noise removal based on recognition of the most significant peak. A dynamic dealiasing routine allows observations even if the Nyquist velocity range is exceeded. Collocated observations over 115 days of a MRR and a pulsed 35.2 GHz MIRA35 cloud radar show a very high agreement for the proposed method for snow, if reflectivities are larger than −5 dBz. The overall sensitivity is increased to −14 and −8 dBz, depending on range. The proposed method exploits the full potential of MRR's hardware and substantially enhances the use of Micro Rain Radar for studies of solid precipitation.

  12. Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry.

    Science.gov (United States)

    Gianfrani, Livio

    2016-03-28

    Laser spectroscopy in the linear regime of radiation-matter interaction is a powerful tool for measuring thermodynamic quantities in a gas at thermodynamic equilibrium. In particular, the Doppler effect can be considered a gift of nature, linking the thermal energy to an optical frequency, namely the line centre frequency of an atomic or molecular spectral line. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry (DBT). This paper reports on the efforts that have been carried out, in the last decade, worldwide, to the end of making DBT competitive with more consolidated and accurate methodologies, such as acoustic gas thermometry and dielectric constant gas thermometry. The main requirements for low-uncertainty DBT, of both theoretical and technical nature, will be discussed, with a special focus on those related to the line shape model and to the frequency scale. A deep comparison among the different molecules that have been selected in successful DBT implementations is also reported. Finally, for the first time, to the best of my knowledge, the influence of refractive index effects is discussed. PMID:26903093

  13. Evaluation of Portal Venous Velocity with Doppler Ultrasound in Patients with Nonalcoholic Fatty Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Ulusan, Serife; Yakar, Tolga; Koc, Zafer [Baskent University Faculty of Medicine, Adana (Turkmenistan)

    2011-08-15

    We examined the relationship between portal venous velocity and hepatic-abdominal fat in patients with nonalcoholic fatty liver disease (NAFLD), using spectral Doppler ultrasonography (US) and magnetic resonance imaging (MRI). In this prospective study, 35 patients with NAFLD and 29 normal healthy adults (control group) underwent portal Doppler US. The severity of hepatic steatosis in patients with NAFLD was assessed by MRI through chemical shift imaging, using a modification of the Dixon method. Abdominal (intra-abdominal and subcutaneous) fat was measured by MRI. The difference in portal venous velocity between the patients with NAFLD and the control group was significant (p < 0.0001). There was no correlation between the degree of abdominal or hepatic fat and portal venous velocity (p > 0.05). There were strong correlations between the hepatic fat fraction and subcutaneous adiposity (p < 0.0001), intraperitoneal fat accumulation (p 0.017), and retroperitoneal fat accumulation (p < 0.0001). Our findings suggest that patients with NAFLD have lower portal venous velocities than normal healthy subjects.

  14. Color Doppler Imaging of Ophthalmic Arteries : Age Related Changes in the Normal Subjects

    International Nuclear Information System (INIS)

    Color Doppler imaging (CDI) with Doppler spectral analysis was done to evaluate the age related changes of the ophthalmic arteries in 60 normotensive subjects (Age : 19∼64y, mean =38.3y, M : F = 1 : 1). A 7 MHz linear transducer for small parts (Acuson L7384) was used. The ophthalmic artery about 1∼1.5 cm behind the optic nerve head was depicted by the CDI. The maximum peak velocity (S1), the second peak velocity (S2), the maximum peak diastolic velocity (D1) and the end diastolic velocity (D*2) were recorded. Additionally, the piteously index(PI), the resistive index (RI), the ratio of S1 to S2 (S1 / S2) and the ratio of S1 to D1 (S1 / D1) were calculated. Correlation between the age and the above indices (ratio) was estimated. PI, RI, S1 / S2 and S1 / D1 declined progressively as a function of advancing age. The S1 / S2 showed the strongest inverse correlation with age (r = -0.667). The meaning of the S2's in old age is not clear. It could be related to the decreased compliance of the aged ophthalmic arteries

  15. Doppler speeds of the hydrogen Lyman lines in solar flares from EVE

    CERN Document Server

    Brown, Stephen A; Labrosse, Nicolas

    2016-01-01

    The hydrogen Lyman lines provide important diagnostic information about the dynamics of the chromosphere, but there have been few systematic studies of their variability during flares. We investigate Doppler shifts in these lines in several flares, and use these to calculate plasma speeds. We use spectral data from the Multiple EUV Grating Spectrograph B (MEGS-B) detector of the Extreme-Ultraviolet Variability Experiment (EVE) instrument on the Solar Dynamics Observatory. MEGS-B obtains full-disk spectra of the Sun at a resolution of 0.1nm in the range 37-105 nm, which we analyse using three independent methods. The first method performs Gaussian fits to the lines, and compares the quiet-Sun centroids with the flaring ones to obtain the Doppler shifts. The second method uses cross-correlation to detect wavelength shifts between the quiet-Sun and flaring line profiles. The final method calculates the "center-of-mass" of the line profile, and compares the quiet-Sun and flaring centroids to obtain the shift. In ...

  16. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to t...

  17. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  18. Localizing Plages on BO Mic, First steps towards chromospheric Doppler imaging

    CERN Document Server

    Wolter, U

    2005-01-01

    We have obtained a densely sampled time series of CaII H&K line profiles of the ultrafast rotating K-dwarf star BO Mic. Taken at high resolution, the spectra reveal pronounced variations of the emission core profiles. We interpret these variations as signs of concentrated chromospherically active regions, in analogy to solar plages. We further interpret the variations as partly due to the rapid growth and decay of plages, while other variations appear to be caused by plages moved over the visible stellar disk by rotation. The equivalent width of the Ca K core emission changes approximately in anti-phase to the photospheric brightness, suggesting an association of the chromospheric plage regions with pronounced dark photospheric spots. We believe that further analysis of the presented spectral time series will lead to a chromospheric Doppler image of BO mic.

  19. A tunable Doppler-free dichroic lock for laser frequency stabilization

    Science.gov (United States)

    Singh, Vivek; Tiwari, V. B.; Mishra, S. R.; Rawat, H. S.

    2016-08-01

    We propose and demonstrate a laser frequency stabilization scheme which generates a dispersion-like tunable Doppler-free dichroic lock (TDFDL) signal. This signal offers a wide tuning range for lock point (i.e. zero-crossing) without compromising on the slope of the locking signal. The method involves measurement of magnetically induced dichroism in an atomic vapour for a weak probe laser beam in the presence of a counter-propagating strong pump laser beam. A simple model is presented to explain the basic principles of this method to generate the TDFDL signal. The spectral shift in the locking signal is achieved by tuning the frequency of the pump beam. The TDFDL signal is shown to be useful for locking the frequency of a cooling laser used for magneto-optical trap (MOT) for 87 Rb atoms.

  20. A tunable Doppler-free dichroic lock for laser frequency stabilization

    CERN Document Server

    Singh, Vivek; Mishra, S R; Rawat, H S

    2016-01-01

    We propose and demonstrate a laser frequency stabilization scheme which generates a dispersion-like tunable Doppler-free dichroic lock (TDFDL) signal. This signal offers a wide tuning range for lock point (i.e. zero-crossing) without compromising on the slope of the locking signal. The method involves measurement of magnetically induced dichroism in an atomic vapour for a weak probe laser beam in presence of a counter propagating strong pump laser beam. A simple model is presented to explain the basic principles of this method to generate the TDFDL signal. The spectral shift in the locking signal is achieved by tuning the frequency of the pump beam. The TDFDL signal is shown to be useful for locking the frequency of a cooling laser used for magneto-optcal trap (MOT) for $^{87}Rb$ atoms.

  1. Observability of secondary Doppler peaks in the CMBR power spectrum by experiments with small fields

    CERN Document Server

    Hobson, M P; Magueijo, Joao

    1996-01-01

    We investigate the effects of finite sky coverage on the spectral resolution \\Delta\\ell in the estimation of the CMBR angular power spectrum C^{\\ell}. A method is developed for obtaining quasi-independent estimates of the power spectrum, and the cosmic/sample variance of these estimates is calculated. The effect of instrumental noise is also considered for prototype interferometer and single-dish experiments. By proposing a statistic for the detection of secondary (Doppler) peaks in the CMBR power spectrum, we then compute the significance level at which such peaks may be detected for a large range of model CMBR experiments. In particular, we investigate experimental design features required to distinguish between competing cosmological theories, such as cosmic strings and inflation, by establishing whether or not secondary peaks are present in the CMBR power spectrum.

  2. Impact of atmospheric clutter on Doppler-limited gas sensors in the submillimeter/terahertz.

    Science.gov (United States)

    Medvedev, Ivan R; Neese, Christopher F; Plummer, Grant M; De Lucia, Frank C

    2011-06-20

    It is well known that clutter (spectral interference) from atmospheric constituents can be a severe limit for spectroscopic point sensors, especially where high sensitivity and specificity are required. In this paper, we will show for submillimeter/terahertz (SMM/THz) sensors that use cw electronic techniques the clutter limit for the detection of common target gases with absolute specificity (probability of false alarm ≪ 10⁻¹⁰) is in the ppt (1 part in 10¹²) range or lower. This is because the most abundant atmospheric gases are either transparent to SMM/THz radiation (e.g., CO₂) or have spectra that are very sparse relative to the 10⁵ Doppler-limited resolution elements available (e.g., H₂O). Moreover, the low clutter limit demonstrated for cw electronic systems in the SMM/THz is independent of system size and complexity.

  3. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  4. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  5. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    Science.gov (United States)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  6. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B;

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation...

  7. Laser Doppler instrument measures fluid velocity without reference beam

    Science.gov (United States)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  8. Doppler electron velocimetry : notes on creating a practical tool.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.; Milster, Tom (University of Arizona)

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  9. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  10. The Doppler Effect: A Consideration of Quasar Redshifts.

    Science.gov (United States)

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  11. Design of new seismometer based on laser Doppler effect

    Institute of Scientific and Technical Information of China (English)

    Zhenhui Du(杜振辉); Fuxiang Huang(黄福祥); Chengzhi Jiang(蒋诚志); Zhifei Tao(陶知非); Hua Gao(高华); Lina Lü(吕丽娜)

    2004-01-01

    In order to improve the resolution of seismic acquisition, a new seismic acquisition system based on tangential laser Doppler effect with an optimized differential optical configuration is proposed. The relative movement of the inertia object and the immobile frame is measured by laser Doppler effect, which can avoid the electromagnetic and thermometric interference, and the adoption of frequency-modulated (FM)transmission can improve the ability of anti-jamming. The frequency bandwidth is properly determined by analyzing the frequency of the Doppler signal. The velocity, displacement, acceleration, and frequency to be measured can be real-time acquired by frequency/velocity (F/V) converting the FM Doppler signal.A 100-dB dynamic range and the linear frequency range of 1.0 to 1000 Hz are realized.

  12. Doppler Compensation by using of Segmented Match Filter

    Directory of Open Access Journals (Sweden)

    Nader Ghadimi

    2008-09-01

    Full Text Available Match filter is one of the important parts of radar receiver. By using of Match Filter, the signal to noise ratio can be maximized so that the probability of detection is increased. Match Filter can be used as a pulse compression filter in radar receiver. Binary phase code is one of the pulse compression methods that, the compression can be down with a Match Filter in the receiver. Doppler effect is one of the problems that degrade the performance of Match Filter. In this paper, two methods “Mixer Array” and “Segmented Match Filter” are proposed for Doppler compensation. The operation of these two methods as Doppler compensation techniques are considered theoretically. The simulation is used to demonstrate the Doppler compensation performance of new techniques compared to conventional methods.

  13. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    Science.gov (United States)

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  14. Numerical studies of HF Doppler variations caused by ionospheric disturbances

    Science.gov (United States)

    Takefu, M.; Hiroshige, N.

    HF Doppler variations caused by ionospheric disturbances are studied using an ionosphere model containing sinusoidal traveling electron density fluctuations. The present study uses a more realistic ionosphere model and a more accurate numerical method than previous works using corrugated specular reflector models. The study gives a clue to estimate the TID-associated fluctuations of ionospheric electron density by means of HF Doppler measurements. It is shown that some kinds of characteristic HF Doppler traces result depending on the wavelength of the disturbance and its traveling direction. Numerical results suggest that more or less 5 percent of the background electron density can explain most of the quasi-periodic variations on the observed HF Doppler records.

  15. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    CERN Document Server

    Long, David A; Plusquellic, David F; Hodges, Joseph T

    2016-01-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the $D_1$ and $D_2$ transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 $\\mu$s (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  16. Modifications and Moving Measurements of Mobile Doppler LIDAR

    Science.gov (United States)

    Liu, Bing-Yi; Liu, Zhi-Shen; Song, Xiao-Quan; Wu, Song-Hua; Bi, De-Cang; Wang, Xi-Tao; Yin, Qi-Wei; Reitebuch, Oliver

    2010-10-01

    In the last annual report of ID. 5291 LIDAR Cal/Val, a mobile Doppler lidar had been developed for 3D wind measurements by the Chinese partners from Ocean Remote Sensing Institute, Ocean University of China. In this year, in order to further improve the mobility of the mobile Doppler lidar for lidar calibration and validation, both GPS and inertial navigation system are integrated on the vehicle for performing measurements during movement. The modifications of the system and the results of the moving measurements are presented. This work simplifies the construction of the mobile Doppler system and makes the lidar more flexible for ground-based wind measurements and validation with the ADM-Aeolus spaceborne Doppler lidar.

  17. Characterization of pelvic organs by Doppler sonography waveform shape.

    Science.gov (United States)

    Ronnie, Tepper; Yodfat, Shaharabany; Ron, Shiri; Hershkovitz, Reli

    2010-05-01

    The purpose was to describe blood flow waveform of pelvic organs obtained by Doppler according to their unique characteristics. A prospective study was designed and 79 premenopausal and postmenopausal women were screened. Transvaginal ultrasonography combined with color Doppler was performed. Arterial blood flow of the uterus, fallopian tubes and both ovarian center and periphery were assessed, by a unique computerized program exclusively developed for this research (MATLAB language). Waveform characterization was performed by calculating alpha and beta angles, representing upward curve of each waveform and angles of refraction gamma and delta. alpha to delta angles were found significantly different for each of the pelvic organs. Significant differences in the characteristics of Doppler waveforms were also observed between pre and postmenopausal women. Luteal and follicular phase blood flow waveforms were similar. These findings contribute to our ability to classify the origin of blood vessel by processing Doppler waveforms by a computerized method. PMID:20420968

  18. Doppler bubble detection and decompression sickness: a prospective clinical trial.

    Science.gov (United States)

    Bayne, C G; Hunt, W S; Johanson, D C; Flynn, E T; Weathersby, P K

    1985-09-01

    Decompression sickness in human beings exposed to high ambient pressure is thought to follow from gas bubble formation and growth in the body during return to low pressure. Detection of Doppler-shifted ultrasonic reflections in major blood vessels has been promoted as a noninvasive and sensitive indicator of the imminence of decompression sickness. We have conducted a double-blind, prospective clinical trial of Doppler ultrasonic bubble detection in simulated diving using 83 men, of whom 8 were stricken and treated for the clinical disease. Diagnosis based only on the Doppler signals had no correlation with clinical diagnosis. Bubble scores were only slightly higher in the stricken group. The Doppler technique does not appear to be of diagnostic value in the absence of other clinical information.

  19. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  20. Physiological and pathophysiological cerebrovascular regulation monitored by transcranial doppler

    OpenAIRE

    Hellström, Gunnar

    1997-01-01

    PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL CEREBROVASCULAR REGULATION MONITORED BY TRANSCRANIAL DOPPLER Thesis by Gunnar Hellström, M D., Department of Clinical Neuroscience, Division of Neurology, Karolinska Hospital and Insbtute, Stocknolm, Sweden Transcranial Doppler ultrasonography (TCD) became available in the middle of the 1980s as a new technique for examinmg cerebral circulation. With this technique it is possible to measure the velocity of blood flow in major ...

  1. Diagnosis of cervical cancer with transvaginal color Doppler sonography

    OpenAIRE

    Li-bo DENG; Wei ZHOU; Chang, Shu-Fang; Ming-jie LIN

    2011-01-01

    Objective To investigate the imaging features of cervical cancer by transvaginal color Doppler sonography(TVCS),and evaluate the diagnostic value of TVCS.Methods A hundred and thirty cases of cervical intraepithelial neoplasia(CIN) grade Ⅰ-Ⅱ and cervical cancer,diagnosed by Thinprep cytologic test(TCT),cervical biopsy and pathological examination,received TVCS examination.The image characters and color Doppler flow imaging(CDFI) were collected and analyzed.Another 41 cases with normal cervice...

  2. Doppler Tomography in Cataclysmic Variables: an historical perspective

    OpenAIRE

    Echevarria, J.

    2012-01-01

    To mark the half-century anniversary of this newly-born field of Cataclysmic Variables, a special emphasis is made in this review, on the Doppler Effect as a tool in astrophysics. The Doppler Effect was in fact, discovered almost 170 years ago, and has been since, one of the most important tools which helped to develop modern astrophysics. We describe and discuss here, its use in Cataclysmic Variables which, combined with another important tool, the tomography, first devised for medical purpo...

  3. Doppler velocimetry for predicting fetal death in a twin pregnancy.

    OpenAIRE

    Soikkeli, Pia; Dubiel, Mariusz; Gudmundsson, Saemundur

    2002-01-01

    Diagnosis of discordant twins is easily accomplished with modern ultrasound equipment, though diagnosing twin-to-twin transfusion syndrome (TTS) at an early stage might be a problem. The possibility of excluding TTS by Doppler ultrasound is demonstrated in a case with early severe growth restriction of one fetus. Characteristic blood velocity changes in a dying fetus are also illustrated. The Doppler technique has become an accepted method in obstetrics for antenatal surveillance, perm...

  4. Intrauterine growth retardation : prediction of perinatal distress by doppler ultrasound

    OpenAIRE

    Reuwer, P.J.H.M.; Rietman, G.W.; Sijmens, E.A.; Tiel, M.W.M. van; Bruinse, H.W.

    1987-01-01

    To investigate the ability of umbilical artery Doppler findings to identify true cases at risk of fetal distress among 51 pregnancies clinically judged to be compromised by intrauterine growth retardation (IUGR) Doppler data were related to pregnancy outcome, which was classified into three groups—group 1, healthy babies with normal placental function (16 fetuses), group 2, fetuses with definite signs of placental failure (30), and group 3, non-classifiable pregnancies (5). Group 2 was subdiv...

  5. Radar target recognition based on micro-Doppler effect

    Institute of Scientific and Technical Information of China (English)

    DONG Wei-guang; LI Yan-jun

    2008-01-01

    Mechanical vibration of target structures will modulate the phase function of radar backscattering, and will induce thefrequency modulation of returned signals from the target. It generates a side bands of the target body Doppler frequencyshift, which is helpful for target recognition. Based on this.a micro-Doppler atomic storehouse is built for the targetrecognition, and four kinds of common classifiers are used separately to perform the classified recognition. The simulationexperimental results show that this method has high recognition rate above 90%.

  6. Use of GPS network data for HF Doppler measurements interpretation

    OpenAIRE

    Petrova, Inna R.; Bochkarev, Vladimir V.; Latypov, Ruslan R.

    2014-01-01

    The method of measurement of Doppler frequency shift of ionospheric signal - HF Doppler technique - is one of well-known and widely used methods of ionosphere research. It allows to research various disturbances in the ionosphere. There are some sources of disturbances in the ionosphere. These are geomagnetic storms, solar flashes, metrological effects, atmospheric waves. This method allows to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occur...

  7. Analisis Efek Doppler pada Sistem Komunikasi ITS-Sat

    OpenAIRE

    Agriniwaty Paulus; Eko Setijadi; Gamantyo Hendrantoro

    2013-01-01

    Analisa efek Doppler ini menggunakan pemrograman Matlab dengan citra yang berukuran 160 128 piksel, pada eksentrisitas (e) satelit yang diasumsikan 0 sehingga bentuk lintasannya circular, dengan ketinggian 700 km dari stasiun bumi, sudut inklinasi sebesar 53° dan sinyal informasi ditransmisikan pada transmisi downlink dengan frekuensi carrier 2.4 GHz. Doppler shift terbesar terjadi saat satelit berada pada posisi terjauh dari terminal bumi yakn...

  8. Power and color Doppler ultrasound settings for inflammatory flow

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin;

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used...... on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies....

  9. Measuring Solar Doppler Velocities in the He ii 30.38 nm Emission Using the EUV Variability Experiment (EVE)

    Science.gov (United States)

    Chamberlin, P. C.

    2016-08-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory has provided unprecedented measurements of the solar EUV irradiance at high temporal cadence with good spectral resolution and range since May 2010. The main purpose of EVE was to connect the Sun to the Earth by providing measurements of the EUV irradiance as a driver for space weather and Living With a Star studies, but after launch the instrument has demonstrated the significance of its measurements in contributing to studies looking at the sources of solar variability for pure solar physics purposes. This paper expands upon previous findings that EVE can in fact measure wavelength shifts during solar eruptive events and therefore provide Doppler velocities for plasma at all temperatures throughout the solar atmosphere from the chromosphere to hot flaring temperatures. This process is not straightforward as EVE was not designed or optimized for these types of measurements. In this paper we describe the many detailed instrumental characterizations needed to eliminate the optical effects in order to provide an absolute baseline for the Doppler shift studies. An example is given of a solar eruption on 7 September 2011 (SOL2011-09-07), associated with an X1.2 flare, where EVE Doppler analysis shows plasma ejected from the Sun in the He ii 30.38 nm emission at a velocity of almost 120 km s^{-1} along the line-of-sight.

  10. An Overview of the Adaptive Robust DFT

    Directory of Open Access Journals (Sweden)

    Djurović Igor

    2010-01-01

    Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.

  11. Doppler Monitoring of the WASP-47 Multiplanet System

    CERN Document Server

    Dai, Fei; Arriagada, Pamela; Butler, R Paul; Crane, Jeffrey D; Johnson, John Asher; Shectman, Stephen A; Teske, Johanna K; Thompson, Ian B; Vanderburg, Andrew; Wittenmyer, Robert A

    2015-01-01

    We present precise Doppler observations of WASP-47, a transiting planetary system featuring a hot Jupiter with both inner and outer planetary companions. This system has an unusual architecture and also provides a rare opportunity to measure planet masses in two different ways: the Doppler method, and the analysis of transit-timing variations (TTV). Based on the new Doppler data, obtained with the Planet Finder Spectrograph on the Magellan/Clay 6.5m telescope, the mass of the hot Jupiter is $370 \\pm 29~M_{\\oplus}$. This is consistent with the previous Doppler determination as well as the TTV determination. For the inner planet WASP-47e, the Doppler data lead to a mass of $12.2\\pm 3.7~ M_{\\oplus}$, in agreement with the TTV-based upper limit of $<$22~$M_{\\oplus}$ ($95\\%$ confidence). For the outer planet WASP-47d, the Doppler mass constraint of $10.4\\pm 8.4~M_{\\oplus}$ is consistent with the TTV-based measurement of $15.2^{+6.7}_{-7.6}~ M_{\\oplus}$.

  12. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  13. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  14. Evaluating microcirculation by pulsatile laser Doppler signal

    Science.gov (United States)

    Chao, P. T.; Jan, M. Y.; Hsiu, H.; Hsu, T. L.; Wang, W. K.; Wang, Y. Y. Lin

    2006-02-01

    Laser Doppler flowmetry (LDF) is a popular method for monitoring the microcirculation, but it does not provide absolute measurements. Instead, the mean flux response or energy distribution in the frequency domain is generally compared before and after stimulus. Using the heartbeat as a trigger, we investigated whether the relation between pressure and flux can be used to discriminate different microcirculatory conditions. We propose the following three pulsatile indices for evaluating the microcirculation condition from the normalized pressure and flux segment with a synchronized-averaging method: peak delay time (PDT), pressure rise time and flux rise time (FRT). The abdominal aortic blood pressure and renal cortex flux (RCF) signals were measured in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The mean value of the RCF did not differ between SHR and WKY. However, the PDT was longer in SHR (87.14 ± 5.54 ms, mean ± SD) than in WKY (76.92 ± 2.62 ms; p discriminate RCF signals that cannot be discriminated using traditional methods.

  15. Muscle activity characterization by laser Doppler Myography

    International Nuclear Information System (INIS)

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin

  16. Doppler findings in intrapartum fetal distress.

    Science.gov (United States)

    Eslamian, Laleh; Tooba, Khatereh

    2011-01-01

    The umbilical vein (UV) has a non pulsating and even pattern in normal fetuses. Pulsation of UV has been described in severely growth restricted fetuses with chronic hypoxia. We wanted to see whether UV pulsations could also be seen in fetuses with heart deceleration during labor, as an adjunctive measure to assess the intra partum hypoxia. In a prospective study Doppler examination was performed on 34 fetuses with normal cardiotocography (CGT) and 26 fetuses with abnormal CTGs (GA>37w and cervical dilatation>3cm). Perinatal outcome was assessed according to presence or absence of UV pulsations. The 2 groups were similar regarding gestational age, cervical dilatation, Umbilical artery blood pH, S/D ratio,Pulsatility Index( PI) and Resistance Index (RI). Intraabdominal UV pulsation were present in 6 (23.1%) of abnormal CTG group but no case were seen in normal CTG group (P= 0.005). Five of 6 (83.3%) fetuses with UV pulsation underwent cesarean delivery. The rate of cesarean delivery was 90% in abnormal CTG group without pulsation and 14.7% in normal CTG group. The frequency of Apgar score Apgar sore <7or NICU admission were seen. PMID:22009812

  17. Muscle activity characterization by laser Doppler Myography

    Science.gov (United States)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  18. Doppler effect induced spin relaxation boom

    Science.gov (United States)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  19. Satellite Doppler Fixation and International Boundaries

    Science.gov (United States)

    Leppard, N. A. G.

    1980-01-01

    International boundaries have seldom been completely defined in geodetic terms. The existence of natural resources, which ignore the arbitrary boundaries of man, assume considerable importance when division of those resources becomes a point of issue between potential owners. This is particularly so when the boundary is illdefined in a geodetic sense. World-wide satellite reference systems, like natural resources, also have little regard for the internally less precise national or international systems. When the one is used to define the location of the other, great care must be taken to ensure equitable division, for financial gain and loss can be considerable. The definition of position is complicated by the existence of the two ephemerides for the N.N.S.S. satellites and the number of alternative reduction procedures available. The definition of the position of the Frigg Gas Field in the North Sea is an example of how the United Kingdom and Norway resolved the geodetic problem of reconciling geodetic and Doppler data.

  20. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  1. Doppler radar retrievals from lava fountaining paroxysms generating tephra plumes at Mt. Etna

    Science.gov (United States)

    Valentin, Freret-Lorgeril; Franck, Donnadieu; Mauro, Coltelli; Simona, Scollo; Patrick, Fréville; Claude, Hervier; Michele, Prestifilippo

    2016-04-01

    Etna volcano is one of the most active European volcanoes. Between January 2011 and December 2013, a new crater called the New South East Crater (NSEC) was built during 46 eruptive episodes characterized by lava fountaining generating tephra plumes that reached up to 10 km (a.s.l). A 23 cm-wavelength Doppler radar (VOLDORAD 2B), located about 3 km from NSEC at the Montagnola station and integrated into the INGV-OE instrumental network, has been continuously monitoring the explosive activity of Mt. Etna's summit craters since 2009. We have studied these paroxysms by analyzing the radar echoes and Doppler signals coming from adjacent volumes of the fixed beam probing the lava fountains close to the eruptive crater, in combination with thermal and visible imagery. The range gating (150 m-deep probed volumes along-beam) allows us to discriminate the active summit craters and to roughly estimate the lava fountain width. The backscattered power, which is related to the erupted tephra mass load in the beam, and Doppler velocities help to mark the transition from Strombolian activity to lava fountaining, providing onset and end times of the fountain. Both radar parameters directly provide a proxy for the mass eruption rate, which is found to follow the time variations of tephra plume height. Oscillations of the echo power during lava fountaining indicate a pulsatile behavior likely originating in the magmatic conduit or deeper reservoir. Ejection velocities retrieved from positive along-beam velocities measured near the emission source, are found to range from 140 to almost 350 m/s during the climax. Maximum along-beam Doppler velocity components from fallouts allow us to infer maximum particle sizes (pluri-decimetric) in agreement with field observations. The mode of power spectral distribution could further be used to constrain the mean diameter of proximal fallout. A reliable quantification of the source mass loading parameters requires more stringent constraints on the

  2. Spectral/Fourier Domain Optical Coherence Tomography

    Science.gov (United States)

    de Boer, Johannes F.

    Optical coherence tomography is a low-coherence interferometric method for imaging of biological tissue [1, 2]. For more than a decade after its inception between 1988 and 1991, the dominant implementation has been time domain OCT (TD-OCT), in which the length of a reference arm is rapidly scanned. The first spectral or Fourier domain OCT (SD/FD-OCT) implementation was reported in 1995 [3]. In SD-OCT the reference arm is kept stationary, and the depth information is obtained by a Fourier transform of the spectrally resolved interference fringes in the detection arm of a Michelson interferometer. This approach has provided a significant advantage in signal-to-noise ratio (SNR), which despite reports as early as 1997 [4, 5] has taken about half a decade to be recognized fully by the OCT community in 2003 [6-8]. The first demonstration of SD-OCT for in vivo retinal imaging in 2002 [9] was followed by a full realization of the sensitivity advantage by video rate in vivo retinal imaging [10], including high-speed 3-D volumetric imaging [11], ultrahigh-resolution video rate imaging [12, 13], and Doppler blood flow determination in the human retina [14, 15]. The superior sensitivity of SD-OCT, combined with the lack of need for a fast mechanical scanning mechanism, has opened up the possibility of much faster scanning without loss of image quality and provided a paradigm shift from point sampling to volumetric mapping of biological tissue in vivo. The technology has been particularly promising for ophthalmology [16, 17]. In this chapter, the principles and system design considerations of SD-OCT will be discussed in more detail.

  3. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  4. Evolution of low-frequency features in the CMB spectrum due to stimulated Compton scattering and Doppler-broadening

    CERN Document Server

    Chluba, J

    2008-01-01

    We discuss a new solution of the Kompaneets-equation for physical situations in which low frequency photons, forming relatively narrow spectral details, are Compton scattered in an isotropic, infinite medium with an intense ambient blackbody field that is very close to full thermodynamic equilibrium with the free electrons. In this situation the background-induced stimulated Compton scattering slows down the motion of photons toward higher frequencies by a factor of 3 in comparison with the solution that only takes into account Doppler-broadening and boosting. This new solution is important for detailed computations of cosmic microwave background spectral distortions arising due to uncompensated atomic transitions of hydrogen and helium in the early Universe. In addition we derive another analytic solution that only includes the background-induced stimulated Compton scattering and is valid for power-law ambient radiation fields. This solution might have interesting applications for radio lines arising inside ...

  5. 基于稳定竞争自适应重加权采样的光谱分析无标模型传递方法%Calibration Transfer without Standards for Spectral Analysis Based on Stability Competitive Adaptive Reweighted Sampling

    Institute of Scientific and Technical Information of China (English)

    张晓羽; 李庆波; 张广军

    2014-01-01

    A novel calibration transfer method based on stability competitive adaptive reweighted sampling (SCARS) was pro-posed in the present paper .An informative criterion ,i .e .the stability index ,defined as the absolute value of regression coeffi-cient divided by its standard deviation was used .And the root mean squared error of prediction (RMSEP) after transfer was also used .The wavelength variables which were important and insensitive to influence of measurement parameters were selected . And then the differences in responses of different instruments or measurement conditions for a specific sample were eliminated or reduced to improve the calibration transfer results .Moreover ,in the proposed method ,the spectral variables were compressed , making calibration transfer more stable .The application of the proposed method to calibration transfer of NIR analysis was eval-uated by analyzing the corn with different NIR spectrometers .The results showed that this method can well correct the differ-ence between instruments and improve the analytical accuracy .The transfer results obtained by the proposed method ,orthogonal signal correction (OSC) ,Monte Carlo uninformative variable elimination (MCUVE) and competitive adaptive reweighted sam-pling (CARS) ,respectively ,for corn with different NIR spectrometers indicated that the former gave the best analytical accura-cy ,and was effective for the spectroscopic data compression which can simplify and optimize the transfer process .%提出了一种基于稳定竞争自适应重加权采样(stability competitive adaptive reweighted sampling , SCARS)的无标模型传递方法。利用有用信息标准即稳定度指数(定义为回归系数除以其标准偏差的绝对值)和传递后的预测均方根误差(root mean squared error of prediction ,RMSEP),选择重要的、受测样参数影响不敏感的波长变量,能够消除或减少不同仪器或测量条件对样本信息反应差异,提高模

  6. Spectral correlates lexical prosody

    Science.gov (United States)

    Okobi, Anthony

    2005-09-01

    The purpose of this study is to derive a quantitative acoustic model of lexical-prosodic characteristics of stressed vowels by looking at several spectral properties associated with the articulatory mechanisms used in speech production. Native speakers of American English were asked to name disyllabic visualizable nouns. Words containing liquids or glides were not used in this study because of their effect on the spectra of adjacent vowels. Subjects uttered short phrases in which the target word was pitch accent half of the time and unaccented the other half. Results show that within the category of full vowels, unstressed and stressed vowels can be distinguished by syllable/vowel durations and spectral tilt. Spectral tilt (SpT) is an acoustic measure related to the degree of glottal spreading. Stressed full vowels had longer duration and less SpT. Distinction between unaccented and accented stressed vowels can be made by amplitude of voicing (AV), F0 (pitch), and intensity contour differences. Accented stressed vowels have higher pitch, and greater AV and intensity. These results suggest that there are acoustic correlates to lexical stress that can be used to determine the stressed syllable of a word, regardless of whether or not it is pitch accented. [Work supported by NIH T32-DC00038.

  7. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    Science.gov (United States)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  8. Longitudinal study of aortic isthmus Doppler in appropriately grown and small-for-gestational-age fetuses with normal and abnormal umbilical artery Doppler.

    LENUS (Irish Health Repository)

    Kennelly, M M

    2012-04-01

    To establish reference ranges using longitudinal data for aortic isthmus (AoI) Doppler indices in appropriate-for-gestational-age (AGA) fetuses and to document the longitudinal trends in a cohort of small-for-gestational-age (SGA) fetuses with normal umbilical artery Doppler and in fetuses with intrauterine growth restriction (IUGR) and abnormal umbilical artery Doppler.

  9. Doppler ultrasound of the placenta and maternal and fetal vessels during normal gestation in captive agoutis (Dasyprocta prymnolopha, Wagler, 1831).

    Science.gov (United States)

    Sousa, Francisco C A; Pessoa, Gerson T; Moura, Laecio S; Rodrigues, Renan P S; Diniz, Anaemilia N; Souza, André B; Silva, Elzivânia G; Sanches, Marina P; Silva-Filho, Osmar F; Guerra, Porfirio C; Sousa, João M; Neves, Willams C; Alves, Flávio R

    2016-11-01

    The use of ultrasound for pregnancy monitoring is critical for the evaluation of hemodynamic parameters essential to fetal viability. In the present study, using B-mode and Doppler ultrasound, we characterized the placenta, subplacenta, maternal, and fetal vessels during normal gestation of healthy agoutis raised in captivity. In total, 30 agoutis were obtained from the Center for the Study and Preservation of Wild Animals, Center of Agricultural Sciences, Federal University of Piauí (Núcleo de Estudos e Preservação de Animais Silvestres-NEPAS, Centro de Ciências Agrárias-CCA, Universidade Federal do Piauí-UFPI). These animals were subjected to B-mode and Doppler ultrasound examinations to evaluate their maternal and fetal hemodynamic profiles. The placenta was located in the mesometrial region and had a discoid, ellipsoid, or globular aspect. With spectral Doppler, characteristic systolic and diastolic flow was observed in the umbilical artery. This flow increased during pregnancy. A cross-sectional view revealed a goblet-shaped placenta. The uteroplacental blood flow was characterized by a marked increase in systolic peak velocity during pregnancy, the presence of a rapid deceleration ramp, and a relatively high diastolic speed. The fetal aortic vascular flow was predominantly systolic and diastolic. The caudal vena cava blood flow was characterized by a systolic peak followed by a decreased diastolic wave throughout pregnancy. In the present study, we characterized the morphologic and hemodynamic interactions of the placenta/subplacenta with maternal and fetal vessels in agoutis at 30, 45, 60, 75, and 90 days gestation using B-mode and Doppler ultrasound. We determined the approximation and separation of the blood flow values of the umbilical artery, subplacental flow, uteroplacental artery, fetal aorta, and fetal vena cava. We believe these values may contribute to an understanding of the gestational biology and aid delivery prediction in this species

  10. Spectrally efficient switched transmit diversity for spectrum sharing systems

    KAUST Repository

    Bouida, Zied

    2011-09-01

    Under the scenario of an underlay cognitive radio network, we propose in this paper an adaptive scheme using switched transmit diversity and adaptive modulation in order to increase the spectral efficiency of the secondary link. The proposed bandwidth efficient scheme (BES) uses the scan and wait (SWC) combining technique where a transmission occurs only when a branch with an acceptable performance is found, otherwise data is buffered. In our scheme, the modulation constellation size and the used transmit branch are determined to achieve the highest spectral efficiency given the fading channel conditions, the required error rate performance, and a peak interference constraint to the primary receiver. Selected numerical examples show that the BES scheme increases the capacity of the secondary link when compared to an existing switching efficient scheme (SES). This spectral efficiency comes at the expense of an increased average number of switched branches and thus an increased average delay. © 2011 IEEE.

  11. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...

  12. Spectral Measures on Locally Fields

    OpenAIRE

    Fan, Ai Hua

    2015-01-01

    In this paper, we propose to study spectral measures on local fields. Some basic results are presented, including the stability of Bessel sequences under perturbation, the Landau theorem on Beurling density, the law of pure type of spectral measures, the boundedness of the Radon-Nikodym derivative of absolutely continuous $F$-spectral measures etc.

  13. Nuclear spectrometry and spectral interpretation

    International Nuclear Information System (INIS)

    The performance of various spectrometric detectors is summarized and methods of spectral analysis described. Sections include instrumentation, differential pulse height analysis, energy resolution and the width of spectral peaks, proportional counters (operating characteristics and application to mineral analysis), solid state detectors and spectral peak analysis

  14. Doppler Findings in Intrapartum Fetal Distress

    Directory of Open Access Journals (Sweden)

    Khatereh Tooba

    2011-08-01

    Full Text Available The umbilical vein (UV has a non pulsating and even pattern in normal fetuses. Pulsation of UV has been described in severely growth restricted fetuses with chronic hypoxia. We wanted to see whether UV pulsations could also be seen in fetuses with heart deceleration during labor, as an adjunctive measure to assess the intra partum hypoxia. In a prospective study Doppler examination was performed on 34 fetuses with normal cardiotocography (CGT and 26 fetuses with abnormal CTGs (GA>37w and cervical dilatation>3cm. Perinatal outcome was assessed according to presence or absence of UV pulsations. The 2 groups were similar regarding gestational age, cervical dilatation, Umbilical artery blood pH, S/D ratio,Pulsatility Index( PI and Resistance Index (RI. Intraabdominal UV pulsation were present in 6 (23.1% of abnormal CTG group but no case were seen in normal CTG group (P= 0.005. Five of 6 (83.3% fetuses with UV pulsation underwent cesarean delivery. The rate of cesarean delivery was 90% in abnormal CTG group without pulsation and 14.7% in normal CTG group. The frequency of Apgar score <7 was more in fetuses with UV pulsations (16.7% vs 5% although not statistically significant. NICU admission was considerably more in UV pulsation group (33% vs 5%, P= 0.123. After exclusion of LBW fetuses the UV pulsation was present in 4 (19% of abnormal CTG group, who 3 of them underwent cesarean section. Neither umbilical artery pH<7 nor Apger score <7 or NICU admission were seen in these 4 neonates. Pulsation in UV was seen in 23% of fetuses with abnormal CTG during intra partum period. Cesarean delivery and NICU admission was increased in fetuses with UV pulsations, although not statistically significant. When LBW fetuses were excluded no case of UA pH<7, Apgar sore <7or NICU admission were seen.

  15. Interpreting laser Doppler recordings from free flaps.

    Science.gov (United States)

    Svensson, H; Holmberg, J; Svedman, P

    1993-01-01

    Although the transfer of free flaps is nowadays accomplished with an increasing degree of safety, thrombosis of the microvascular anastomoses is still a problem. In order to avoid delay in re-operating, various methods for objective blood flow monitoring have been tried, among them Laser Doppler Flowmetry (LDF). When one reviews the literature, it is apparent that opinions differ about whether or not LDF is a reliable technique for this purpose. To focus on the need to interpret continuous recordings, this paper reports our findings in six latissimus dorsi free flaps chosen from our series of LDF monitoring procedures. One uneventful flap, no. 1, had an immediate postoperative LDF value of 4.5 perfusion units (PU). LDF values improved during the recovery period and the graphic recording showed fluctuations due to normal physiological variations of the blood flow in the flap. Another uneventful flap, no. 4, showed the same pattern, though at an appreciably lower level, 2 PU, on average. Flap no. 2 had an acceptably high value of 3.5 PU despite suffering a venous thrombosis. However, the LDF recording showed no fluctuations and the value declined gradually. Another flap, no. 3, showed fluctuations and blood flow was normal although the value decreased to 2.5 PU. In flap no. 5, any value between 2 and 3.5 PU could be obtained merely by adjusting the position of the probe in the holder. In no. 6, the LDF value suddenly dropped, accompanied by a decrease in the total amount of backscattered light, indicating venous obstruction which was confirmed at re-operation.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. ADEPT - Abnormal Doppler Enteral Prescription Trial

    Directory of Open Access Journals (Sweden)

    McCormick Kenny

    2009-10-01

    Full Text Available Abstract Background Pregnancies complicated by abnormal umbilical artery Doppler blood flow patterns often result in the baby being born both preterm and growth-restricted. These babies are at high risk of milk intolerance and necrotising enterocolitis, as well as post-natal growth failure, and there is no clinical consensus about how best to feed them. Policies of both early milk feeding and late milk feeding are widely used. This randomised controlled trial aims to determine whether a policy of early initiation of milk feeds is beneficial compared with late initiation. Optimising neonatal feeding for this group of babies may have long-term health implications and if either of these policies is shown to be beneficial it can be immediately adopted into clinical practice. Methods and Design Babies with gestational age below 35 weeks, and with birth weight below 10th centile for gestational age, will be randomly allocated to an "early" or "late" enteral feeding regimen, commencing milk feeds on day 2 and day 6 after birth, respectively. Feeds will be gradually increased over 9-13 days (depending on gestational age using a schedule derived from those used in hospitals in the Eastern and South Western Regions of England, based on surveys of feeding practice. Primary outcome measures are time to establish full enteral feeding and necrotising enterocolitis; secondary outcomes include sepsis and growth. The target sample size is 400 babies. This sample size is large enough to detect a clinically meaningful difference of 3 days in time to establish full enteral feeds between the two feeding policies, with 90% power and a 5% 2-sided significance level. Initial recruitment period was 24 months, subsequently extended to 38 months. Discussion There is limited evidence from randomised controlled trials on which to base decisions regarding feeding policy in high risk preterm infants. This multicentre trial will help to guide clinical practice and may also

  17. Comparison between oscillometric- and Doppler-ABI in elderly individuals

    Directory of Open Access Journals (Sweden)

    Takahashi I

    2013-03-01

    Full Text Available Ikuno Takahashi,1,3 Kyoji Furukawa,2 Waka Ohishi,1 Tetsuya Takahashi,3 Masayasu Matsumoto,3 Saeko Fujiwara11Department of Clinical Studies, 2Department of Statistics, Radiation Effects Research Foundation (RERF, Hiroshima, Japan; 3Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, JapanAbstract: Peripheral arterial disease (PAD generally remains under-recognized, mainly due to the specialized technical skills required to detect the low values of the ankle-brachial index (ABI. As a simpler and faster alternative to the standard method using continuous-wave Doppler ultrasound, we evaluated automated oscillometric ABI measurement by VP-2000 with an elderly cohort of 113 subjects (age range, 61 to 88 years. The standard deviation in ABIs measured by the Doppler method was statistically greater than that measured by the oscillometric method for each of the two legs (P < 0.001. Correlations in ABIs between the two methods were 0.46 for the left leg and 0.61 for the right leg; this result appears to have been caused by interobserver variation in the Doppler ABI measurements. While the trend showing greater differences between average oscillometric- and Doppler-ABIs was significant at the lower ABI ranges, there was little indication of differences in measurements having an average ABI > 1.1. The difference between the methods was suggestively larger in subjects who were smokers than in non-smokers (P = 0.09, but the difference was not affected by other potential atherosclerotic risk factors, including age at examination (P > 0.50. A larger difference at lower ABIs led to better PAD detection by the Doppler method compared to the oscillometric method (sensitivity = 50%, specificity = 100%, although the overall agreement was not small (Cohen's Kappa = 0.65. Our findings indicate that oscillometric devices can provide more accurate estimation of the prevalence of PAD in elderly individuals than the conventional Doppler

  18. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations.

    Science.gov (United States)

    Abari, Cyrus F; Chu, Xinzhao; Michael Hardesty, R; Mann, Jakob

    2015-10-20

    This paper shows an efficient adaptation of a polarization diversity optical front-end, commonly used in high-speed fiber-optic communications, in a coherent Doppler lidar (CDL). The adopted architecture can be employed in a modified transceiver design for an all-fiber micropulsed coherent Doppler wind lidar where the performance limits of such systems are pushed beyond the conventionally available wind CDLs. As a result, either a longer measurement range, crucial in clear-air environments with low concentration of aerosols, or a shorter integration time (resulting in a faster scanning) can be achieved. Alternatively, in certain aerosol loading conditions where the presence of nonspherical aerosols is considerable, the system can be reconfigured on the fly to analyze the cross polarization of the backscatter optical signal. The result is the capability to analyze the nature of aerosol particles for the detected range of interest. Due to full utilization of the backscatter signal, i.e., detection of co-polarization and cross polarization components, the signal-to-noise-ratio (SNR) as well as detection range is improved in this configuration. Moreover, the system is capable of providing a more reliable estimation of the aerosol backscatter coefficient when compared with the contemporary CDLs. This system employs robust and compact all-fiber subsystems, which are cost effective and widely available as off-the-shelf components. PMID:26560390

  19. Adaptive test

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter; Eriksen, Mette Rose

    2010-01-01

    Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale.......Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale....

  20. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related...... concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation....... This model incorporates elements of central strategizing, autonomous entrepreneurial behavior, interactive information processing, and open communication systems that enhance the organization's ability to observe exogenous changes and respond effectively to them....

  1. Adaptive management

    Science.gov (United States)

    Allen, Craig R.; Garmestani, Ahjond S.

    2015-01-01

    Adaptive management is an approach to natural resource management that emphasizes learning through management where knowledge is incomplete, and when, despite inherent uncertainty, managers and policymakers must act. Unlike a traditional trial and error approach, adaptive management has explicit structure, including a careful elucidation of goals, identification of alternative management objectives and hypotheses of causation, and procedures for the collection of data followed by evaluation and reiteration. The process is iterative, and serves to reduce uncertainty, build knowledge and improve management over time in a goal-oriented and structured process.

  2. Bias Adaptation for Vocal Tract Length Normalization

    OpenAIRE

    Saheer, Lakshmi; Yamagishi, Junichi; Garner, Philip N.; Dines, John

    2013-01-01

    Vocal tract length normalisation (VTLN) is a well known rapid adaptation technique. VTLN as a linear transformation in the cepstral domain results in the scaling and translation factors. The warping factor represents the spectral scaling parameter. While, the translation factor represented by bias term captures more speaker characteristics especially in a rapid adaptation framework without having the risk of over-fitting. This paper presents a complete and comprehensible derivation of the bia...

  3. Spectral Variability of FSRQs

    Indian Academy of Sciences (India)

    Minfeng Gu; Y. L. Ai

    2011-03-01

    The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may be responsible for the spectral behaviour.

  4. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  5. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  6. Results of the international ionospheric Doppler sounder network

    Science.gov (United States)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  7. Influence of speckle effect on doppler velocity measurement

    Science.gov (United States)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  8. Renal Power Doppler Ultrasonographic Evaluation of Children With Acute Pyelonephritis

    Directory of Open Access Journals (Sweden)

    Ali Pahlusi

    2011-10-01

    Full Text Available Urinary tract infections are common in children. The available gold standard method for diagnosis, Tc-99m dimercaptosuccinic acid scan is expensive and exposes patients to considerable amount of radiation. This study was performed to compare and assess the efficacy of Power Doppler Ultrasound versus Tc-99m DMSA scan for diagnosis of acute pyelonephritis. A quasi experimental study was conducted on 34 children with mean age of 2.82.7 years who were hospitalized with their first episode of febrile urinary tract infection. All children were evaluated in the first 3 days of admission by Doppler Ultrasound and Tc-99m DMSA scan. Patients with congenital structural anomalies were excluded. Each kidney was divided into three zones. The comparison between efficacy of Doppler Ultrasound and DMSA scan was carried out based on number of patients and on classified renal units. Based on the number of patients enrolled; the sensitivity, specificity, positive and negative predictive values and accuracy of Doppler Ultrasound were 89%, 53%, 70%, 80% and 74%, respectively but based on the renal units, it was 66%, 81%, 46%, 91% and 79% , respectively. Although Doppler Ultrasound has the potential for identifying acute pyelonephritis in children, but it is still soon to replace DMSA scan.

  9. Response of a Doppler canceling system to plane gravitational waves

    Science.gov (United States)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  10. High-resolution Doppler model of the human gait

    Science.gov (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  11. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    Science.gov (United States)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  12. Ecocardiografia modo Doppler pulsado em gatos clinicamente sadios Pulsed wave Doppler echocardiography in clinically healthy cats

    Directory of Open Access Journals (Sweden)

    R.O. Carvalho

    2006-06-01

    Full Text Available Estudou-se o fluxo sangüíneo através das quatro valvas cardíacas em 30 gatos clinicamente sadios, com idade entre um e cinco anos e peso médio de 4,08kg, por meio da ecocardiografia modo Doppler pulsado. Foram medidas a velocidade máxima e a velocidade média dos fluxos, e realizou-se uma análise qualitativa dos seus perfis. Os animais foram sedados pela combinação de quetamina (12mg/kg e acepromazina (0,04mg/kg, aplicados por via intramuscular. Observou-se correlação positiva entre os parâmetros avaliados e a freqüência cardíaca, com exceção daqueles medidos no fluxo da valva aórtica. Não se observou correlação entre velocidades máxima e média e freqüência cardíaca e entre aquelas e peso corporal, e não houve diferença entre sexos.Pulsed wave Doppler echocardiography was used to study blood flow across the cardiac valves in 30 five-year-old cats (average body weight = 4.08kg. Animals were sedated using a combination of ketamin (12mg/kg, IM and acepromazin (0.04mg/kg, IM. Peak and mean velocities were determined, and blood flow patterns were recorded at the four cardiac valves. All variables, except those characterizing aortic valve flow, were positively correlated with heart rate. Blood flow variables were not correlated, however, with body weight; and there were no differences between males and females.

  13. Doppler Tomography in Cataclysmic Variables: an historical perspective

    CERN Document Server

    Echevarria, J

    2012-01-01

    To mark the half-century anniversary of this newly-born field of Cataclysmic Variables, a special emphasis is made in this review, on the Doppler Effect as a tool in astrophysics. The Doppler Effect was in fact, discovered almost 170 years ago, and has been since, one of the most important tools which helped to develop modern astrophysics. We describe and discuss here, its use in Cataclysmic Variables which, combined with another important tool, the tomography, first devised for medical purposes 70 years ago, helped to devise the astronomical Doppler Tomography, developed only two decades ago. A discussion is made since the first trailed spectra provided a one dimensional analysis of these binaries; on the establishment of a 2D velocity profiling of the accretion discs; and unto modern techniques, which include Roche Tomography, time modulation and 3D imaging.

  14. Lorentz invariance and the rotor Doppler shift experiments

    International Nuclear Information System (INIS)

    It is shown that 'Rotor Doppler shift Experiments' provide a way to distinguish Einstein's Special Relativity (SR) from Lorentz's Aether Theory (LAT). Misconceptions in previous papers involving the Doppler shift experiments are examined. The theoretical and experimental data available on rotor Doppler shift experiments are analysed. Two models of SR violating theories are used to predict the output of a recently proposed experiment by Torr and Kolen. The first one corresponds to (strict) LAT and the other to an extended form of LAT. Contrary to the first, the second theory leads to results in agreement with the preliminary experimental data of Torr et al indicating a breakdown both of SR and strict LAT. (Author)

  15. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  16. Non-intrusive Shock Measurements Using Laser Doppler Vibrometers

    Science.gov (United States)

    Statham, Shannon M.; Kolaini, Ali R.

    2012-01-01

    Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.

  17. An introduction and guide to effective Doppler assessment.

    Science.gov (United States)

    Benbow, Maureen

    2014-12-01

    Accurate and timely diagnosis of leg ulceration is an essential factor in making evidence-based, effective decisions regarding patient management with the aim of swift wound healing and/or referral to the appropriate specialty. Nurses are professionally responsible for ensuring that patients receive the appropriate assessment and evidence-based management. This article examines the most up-to-date guidance on Doppler ultrasound as a key element of this assessment. Approaches to assessment will be explored, with emphasis on the need to include a Doppler ultrasound as one key element of a larger, holistic assessment. An introduction to the ankle-brachial pressure index (ABPI) will be given, followed by a step-by-step guide to standard procedures for carrying out a full Doppler ultrasound. Alternative options for measuring ABPI are also provided. PMID:25478852

  18. Resting Doppler ankle brachial pressure index measurement: a literature review.

    Science.gov (United States)

    Sihlangu, Dorcus; Bliss, Julie

    2012-07-01

    Peripheral vascular disease (PVD) is under-diagnosed in primary and acute settings. The use of Doppler ankle brachial pressure index (ABPI) is effective in diagnosing PVD , aid in determining aetiology of leg ulcers and is cost efficient in reducing the effects of atherosclerosis and cardiovascular events. The aim of this literature review was to review practitioners' experience in using Doppler ABPI, different skills used to measure ABPI and to examine practitioners' confidence in ABPI. The findings identified variation in method for Doppler measurement: including position of the artery, arm measurement, resting period and type of equipment for measuring blood pressure, variations in practitioners' training and experience have demonstrated variability in ABPI results. Although limited in number, the studies have demonstrated knowledge gap, and the need for training among health professionals. PMID:22875182

  19. Three-dimensional laser cooling at the Doppler limit

    CERN Document Server

    Chang, Rockson; Bouton, Quentin; Fang, Yami; Klafka, Tobias; Audo, Kevin; Aspect, Alain; Westbrook, Christoph I; Clément, David

    2014-01-01

    Many predictions of the theory of Doppler cooling of 2-level atoms, notably the celebrated minimum achievable temperature $T_D=\\hbar \\Gamma/2 k_B$, have never been verified in a three-dimensional geometry. Here, we show that, despite their degenerate level structure, we can use Helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with the Doppler theory. We show that the special properties of Helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses.

  20. It's all in the past: Deconstructing the temporal Doppler effect.

    Science.gov (United States)

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future.