Tutu, Hiroki
2011-06-01
Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.
Directory of Open Access Journals (Sweden)
Rajiv K Gupta
2011-01-01
Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized
ON THE RESONANT FREQUENCIES OF THE OJA
African Journals Online (AJOL)
Dr Obe
1997-09-01
Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about ...
Electrothermal Frequency Modulated Resonator for Mechanical Memory
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.
2016-01-01
In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure
DEFF Research Database (Denmark)
Chen, Yangyang; Yang, Ming; Hu, Kun
2017-01-01
High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...
On Resonant Heating Below the Cyclotron Frequency
International Nuclear Information System (INIS)
Chen, Liu; Lin, Zhihong; White, R.
2001-01-01
Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency
On Frequency Combs in Monolithic Resonators
Directory of Open Access Journals (Sweden)
Savchenkov A. A.
2016-06-01
Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.
On Frequency Combs in Monolithic Resonators
Savchenkov, A. A.; Matsko, A. B.; Maleki, L.
2016-06-01
Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.
Superconducting high frequency high power resonators
International Nuclear Information System (INIS)
Hobbis, C.; Vardiman, R.; Weinman, L.
1974-01-01
A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)
Resonant magnetic pumping at very low frequency
International Nuclear Information System (INIS)
Canobbio, Ernesto
1978-01-01
We propose to exploit for plasma heating purposes the very low frequency limit of the Alfven wave resonance condition, which reduces essentially to safety factor q=m/n, a rational number. It is shown that a substantial fraction of the total RF-energy can be absorbed by the plasma. The lowest possible frequency value is determined by the maximum tolerable width of the RF-magnetic islands which develop near the singular surface. The obvious interest of the proposed scheme is the low frequency value (f<=10 KHz) which allows the RF-coils to be protected by stainless steel or even to be put outside the liner
Frequency division using a micromechanical resonance cascade
Energy Technology Data Exchange (ETDEWEB)
Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)
2014-12-15
A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.
Broadband low-frequency sound isolation by lightweight adaptive metamaterials
Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming
2018-03-01
Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.
Symmetry adaptation, operator equivalents and magnetic resonance
International Nuclear Information System (INIS)
Kibler, M.; Chatterjee, R.
1977-12-01
Basic quantities for symmetry adaptation are discussed in connection with molecular and solid state physics. This gives rise to a formalism whose the central elements are operator equivalents adapted to a point group. Such symmetry adapted operator equivalents are defined in terms of Schwinger operators so that they cover the off-diagonal and diagonal cases. Special emphasis is put on the applications of the formalism to magnetic resonance. More specifically, it is shown how to apply the formalism to the construction, the study of the transformation properties, and the determination of the eigenstates of a generalized spin hamiltonian. Numerous examples are given as well as key tables relative to the chain SO(3) for making easy the application of the formalism to electron paramagnetic resonance [fr
Andersen, Christian Kraglund; Mølmer, Klaus
2015-03-01
A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.
Roslan, Nurul Fazlin; Suul, Jon Are; Luna Alloza, Álvaro; Candela García, José Ignacio; Rodríguez Cortés, Pedro
2015-01-01
This paper discusses the implementation of proportional resonant (PR) current controllers for a Voltage Source Converter (VSC) with LCL filter which is synchronized to the grid by virtual flux (VF) estimation with inherent sequence separation. Even though there is an extensive amount of literature and studies on the PR current controller for tracking the current reference of a VSC in the stationary reference frame, there is no discussion taking into account voltage sensor-less operation based...
High quality factor gigahertz frequencies in nanomechanical diamond resonators
Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.
2007-01-01
We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...
Electrothermal Frequency Modulated Resonator for Mechanical Memory
Hafiz, Md Abdullah Al
2016-08-18
In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043
Magnetodielectric effect of Mn–Zn ferrite at resonant frequency
International Nuclear Information System (INIS)
Pengfei, Pan; Ning, Zhang
2016-01-01
The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.
Non-resonant energy harvesting via an adaptive bistable potential
International Nuclear Information System (INIS)
Hosseinloo, Ashkan Haji; Turitsyn, Konstantin
2016-01-01
Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts. (paper)
A vibration energy harvesting device with bidirectional resonance frequency tunability
International Nuclear Information System (INIS)
Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T
2008-01-01
Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined
Temperature dependence of the resonance frequency of thermogravimetric devices
Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.
2010-01-01
This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to
On the Resonant Frequencies of the Oja | Nwachukwu | Nigerian ...
African Journals Online (AJOL)
A method for calculating the unblown resonant frequencies of an 'Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about 2000Hz, the differences ...
Mixed frequency excitation of an electrostatically actuated resonator
Ramini, Abdallah
2015-04-24
We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg
Radio frequency quadrupole resonator for linear accelerator
Moretti, Alfred
1985-01-01
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Adaptation responses to increasing drought frequency
Loch, A. J.; Adamson, D. C.; Schwabe, K.
2016-12-01
Using state contingent analysis we discuss how and why irrigators adapt to alternative water supply signals. This analysis approach helps to illustrate how and why producers currently use state-general and state-allocable inputs to adapt and respond to known and possible future climatic alternative natures. Focusing on the timing of water allocations, we explore inherent differences in the demand for water by two key irrigation sectors: annual and perennial producers which in Australia have allowed a significant degree of risk-minimisation during droughts. In the absence of land constraints, producers also had a capacity to respond to positive state outcomes and achieve super-normal profits. In the future, however, the probability of positive state outcomes is uncertain; production systems may need to adapt to minimise losses and/or achieve positive returns under altered water supply conditions that may arise as a consequence of more frequent drought states. As such, producers must assess whether altering current input/output choice sets in response to possible future climate states will enhance their long-run competitive advantage for both expected new normal and extreme water supply outcomes. Further, policy supporting agricultural sector climate change resilience must avoid poorly-designed strategies that increase producer vulnerability in the face of drought. Our analysis explores the reliability of alternative water property right bundles and how reduced allocations across time influence alternative responses by producers. We then extend our analysis to explore how management strategies could adapt to two possible future drier state types: i) where an average reduction in water supply is experienced; and ii) where the frequency of droughts increase. The combination of these findings are subsequently used to discuss the role water reform policy has to deal with current and future climate scenarios. We argue current policy strategies could drive producers to
Variable frequency iteration MPPT for resonant power converters
Zhang, Qian; Bataresh, Issa; Chen, Lin
2015-06-30
A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.
Resonant difference-frequency atomic force ultrasonic microscope
Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)
2010-01-01
A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.
A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies
Directory of Open Access Journals (Sweden)
Samuel Á. Jaramillo-Flórez
2013-11-01
Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Institute of Scientific and Technical Information of China (English)
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Resonance Frequency Readout Circuit for a 900 MHz SAW Device.
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-09-15
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.
High Energy Single Frequency Resonant Amplifier, Phase I
National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.; Emira, Ahmed; Radwan, Ahmed Gomaa; Salama, Khaled N.
2012-01-01
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality
Method and apparatus for resonant frequency waveform modulation
Taubman, Matthew S [Richland, WA
2011-06-07
A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.
3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies
Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip
2017-07-01
We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.
Memory recall and spike-frequency adaptation
Roach, James P.; Sander, Leonard M.; Zochowski, Michal R.
2016-05-01
The brain can reproduce memories from partial data; this ability is critical for memory recall. The process of memory recall has been studied using autoassociative networks such as the Hopfield model. This kind of model reliably converges to stored patterns that contain the memory. However, it is unclear how the behavior is controlled by the brain so that after convergence to one configuration, it can proceed with recognition of another one. In the Hopfield model, this happens only through unrealistic changes of an effective global temperature that destabilizes all stored configurations. Here we show that spike-frequency adaptation (SFA), a common mechanism affecting neuron activation in the brain, can provide state-dependent control of pattern retrieval. We demonstrate this in a Hopfield network modified to include SFA, and also in a model network of biophysical neurons. In both cases, SFA allows for selective stabilization of attractors with different basins of attraction, and also for temporal dynamics of attractor switching that is not possible in standard autoassociative schemes. The dynamics of our models give a plausible account of different sorts of memory retrieval.
Chemisorption-Induced Resonance Frequency Shift of a Microcantilever
International Nuclear Information System (INIS)
Zhang Ji-Qiao; Feng Xi-Qiao; Yu Shou-Wen; Huang Gan-Yun
2012-01-01
The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)
Vibrational resonances in biological systems at microwave frequencies.
Adair, Robert K
2002-03-01
Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.
Resonance cones below the ion cyclotron frequency: theory and experiment
International Nuclear Information System (INIS)
Bellan, P.
1976-03-01
The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves
A high-switching-frequency flyback converter in resonant mode
Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan
2017-01-01
The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this
Directory of Open Access Journals (Sweden)
Hilmi Volkan Demir
2009-11-01
Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.
Ion–Cyclotron Resonance Frequency Interval Dependence on the O ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz.
Constant-frequency, clamped-mode resonant converters
Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.
1987-01-01
Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.
Relationship between wingbeat frequency and resonant frequency of the wing in insects
International Nuclear Information System (INIS)
Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol
2013-01-01
In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (A f ), following the proportionality f ∼ m 1/2 /A f , while the natural frequency was significantly correlated with area density (f 0 ∼ m w /A f , m w is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports-–that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy. (paper)
Frequency-difference-dependent stochastic resonance in neural systems
Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong
2017-08-01
Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.
Artificial excitation of ELF waves with frequency of Schumann resonance
Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.
2014-11-01
We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.
Frequency Adaptability of Harmonics Controllers for Grid-Interfaced Converters
DEFF Research Database (Denmark)
Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede
2017-01-01
sensitivity of the most popular harmonic controllers for grid-interfaced converters. The frequency adaptability of these harmonic controllers is evaluated in the presence of a variable grid frequency within a specified reasonable range, e.g., +-1% of the nominal grid frequency (50 Hz). Solutions...
Resonant power converter comprising adaptive dead-time control
DEFF Research Database (Denmark)
2017-01-01
The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....
Dynamics of multi-frequency oscillator ensembles with resonant coupling
Lück, S.; Pikovsky, A.
2011-07-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.
Experimental characterization of graphene by electrostatic resonance frequency tuning
Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.
2017-01-01
In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting
Helium gas purity monitor based on low frequency acoustic resonance
Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.
1996-05-01
Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.
Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)
2009-06-15
In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural
Jump resonant frequency islands in nonlinear feedback control systems
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.
Weitzel, Erik K; Tasker, Ron; Brownell, William E
2003-09-01
Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
International Nuclear Information System (INIS)
Lueck, S.; Pikovsky, A.
2011-01-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.
Dynamics of multi-frequency oscillator ensembles with resonant coupling
Energy Technology Data Exchange (ETDEWEB)
Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)
2011-07-11
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.
Thin Co films with tunable ferromagnetic resonance frequency
International Nuclear Information System (INIS)
Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.
2012-01-01
The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.
Digital system to monitor the natural frequency of mechanical resonators
International Nuclear Information System (INIS)
Brengartner, Tobias; Siegel, Michael; Urban, Martin; Monse, Benjamin; Frühauf, Dietmar
2013-01-01
Mechanical resonators are often used in process or condition monitoring. They are used for liquid-level limit detection or for viscosity and density sensing. Therefore, the resonator is preferably actuated at its natural frequency. In industrial applications, this is achieved by analogue closed resonant circuits. These circuits have been established because of the low energy consumption and low component costs. Due to the future trend of microprocessors, digital systems are now an interesting alternative and can achieve better results compared to analogue realizations. In this context, this paper presents a novel digital system for monitoring the natural frequency of mechanical resonators. The system is realized with newly developed algorithms and is based on a simple signal processing procedure with minimum computational cost. This allows the use of a low-power microcontroller, thus making the system interesting for industrial use. It is shown that the natural frequency can be measured in respect of high industrial requirements on reliability, fastness and accuracy, combined with the possibility of reducing energy consumption. (paper)
Adaptively optimizing stochastic resonance in visual system
Yang, Tao
1998-08-01
Recent psychophysics experiment has showed that the noise strength could affect the perceived image quality. This work gives an adaptive process for achieving the optimal perceived image quality in a simple image perception array, which is a simple model of an image sensor. A reference image from memory is used for constructing a cost function and defining the optimal noise strength where the cost function gets its minimum point. The reference image is a binary image, which is used to define the background and the object. Finally, an adaptive algorithm is proposed for searching the optimal noise strength. Computer experimental results show that if the reference image is a thresholded version of the sub-threshold input image then the output of the sensor array gives an optimal output, in which the background and the object have the biggest contrast. If the reference image is different from a thresholded version of the sub-threshold input image then the output usually gives a sub-optimal contrast between the object and the background.
Resonance frequencies of AFM cantilevers in contact with a surface
Energy Technology Data Exchange (ETDEWEB)
Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)
2016-12-15
To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.
Superthin resonator dye laser with THz intermode frequency separation
International Nuclear Information System (INIS)
Rudych, P D; Surovtsev, N V
2014-01-01
Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)
Resonant-frequency discharge in a multi-cell radio frequency cavity
International Nuclear Information System (INIS)
Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.
2014-01-01
We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal
Miller, Lindsay Margaret
hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency harvester
Resonant interactions between cometary ions and low frequency electromagnetic waves
Thorne, Richard M.; Tsurutani, Bruce T.
1987-01-01
The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.
A MEMS coupled resonator for frequency filtering in air
Ilyas, Saad
2018-02-03
We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.
Low-frequency nuclear quadrupole resonance with a dc SQUID
International Nuclear Information System (INIS)
Chang, J.W.
1991-07-01
Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs
A software sampling frequency adaptive algorithm for reducing spectral leakage
Institute of Scientific and Technical Information of China (English)
PAN Li-dong; WANG Fei
2006-01-01
Spectral leakage caused by synchronous error in a nonsynchronous sampling system is an important cause that reduces the accuracy of spectral analysis and harmonic measurement.This paper presents a software sampling frequency adaptive algorithm that can obtain the actual signal frequency more accurately,and then adjusts sampling interval base on the frequency calculated by software algorithm and modifies sampling frequency adaptively.It can reduce synchronous error and impact of spectral leakage;thereby improving the accuracy of spectral analysis and harmonic measurement for power system signal where frequency changes slowly.This algorithm has high precision just like the simulations show,and it can be a practical method in power system harmonic analysis since it can be implemented easily.
Directory of Open Access Journals (Sweden)
Peter Dzurko
2007-01-01
Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.
Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency
Directory of Open Access Journals (Sweden)
Peter Dzurko
2006-01-01
Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.
Nano-resonator frequency response based on strain gradient theory
International Nuclear Information System (INIS)
Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad
2014-01-01
This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)
Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS
Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim
2015-03-01
In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.
Long Elastic Open Neck Acoustic Resonator for low frequency absorption
Simon, Frank
2018-05-01
Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.
Whispering gallery mode resonators for frequency metrology applications
Baumgartel, Lukas
This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical
Detection of network attacks based on adaptive resonance theory
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
Directory of Open Access Journals (Sweden)
Alessandro Cosci
2016-08-01
Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.
Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang
2018-06-01
Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.
Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang
2018-04-01
Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.
Resonant frequency and elastic modulus measurements on hardened cement pastes
International Nuclear Information System (INIS)
Lee, D.J.
1982-12-01
A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)
RF MEMS Fractal Capacitors With High Self-Resonant Frequencies
Elshurafa, Amro M.
2012-07-23
This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.
Low frequency noise in resonant Josephson soliton oscillators
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.
1991-01-01
The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...
Resonant behavior of a fractional oscillator with fluctuating frequency
Soika, Erkki; Mankin, Romi; Ainsaar, Ain
2010-01-01
The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.
Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing
Energy Technology Data Exchange (ETDEWEB)
Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL
2012-01-01
We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.
Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P
2015-12-01
The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.
Resonant-frequency discharge in a multi-cell radio frequency cavity
Energy Technology Data Exchange (ETDEWEB)
Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L
2014-11-07
We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.
Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.
Johns, Lennart D
2002-07-01
To present the frequency resonance hypothesis, a possible mechanical mechanism by which treatment with non-thermal levels of ultrasound stimulates therapeutic effects. The review encompasses a 4-decade history but focuses on recent reports describing the effects of nonthermal therapeutic levels of ultrasound at the cellular and molecular levels. A search of MEDLINE from 1965 through 2000 using the terms ultrasound and therapeutic ultrasound. The literature provides a number of examples in which exposure of cells to therapeutic ultrasound under nonthermal conditions modified cellular functions. Nonthermal levels of ultrasound are reported to modulate membrane properties, alter cellular proliferation, and produce increases in proteins associated with inflammation and injury repair. Combined, these data suggest that nonthermal effects of therapeutic ultrasound can modify the inflammatory response. The concept of the absorption of ultrasonic energy by enzymatic proteins leading to changes in the enzymes activity is not novel. However, recent reports demonstrating that ultrasound affects enzyme activity and possibly gene regulation provide sufficient data to present a probable molecular mechanism of ultrasound's nonthermal therapeutic action. The frequency resonance hypothesis describes 2 possible biological mechanisms that may alter protein function as a result of the absorption of ultrasonic energy. First, absorption of mechanical energy by a protein may produce a transient conformational shift (modifying the 3-dimensional structure) and alter the protein's functional activity. Second, the resonance or shearing properties of the wave (or both) may dissociate a multimolecular complex, thereby disrupting the complex's function. This review focuses on recent studies that have reported cellular and molecular effects of therapeutic ultrasound and presents a mechanical mechanism that may lead to a better understanding of how the nonthermal effects of ultrasound may be
Sparse time-frequency decomposition based on dictionary adaptation.
Hou, Thomas Y; Shi, Zuoqiang
2016-04-13
In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. © 2016 The Author(s).
Synthetic Computation: Chaos Computing, Logical Stochastic Resonance, and Adaptive Computing
Kia, Behnam; Murali, K.; Jahed Motlagh, Mohammad-Reza; Sinha, Sudeshna; Ditto, William L.
Nonlinearity and chaos can illustrate numerous behaviors and patterns, and one can select different patterns from this rich library of patterns. In this paper we focus on synthetic computing, a field that engineers and synthesizes nonlinear systems to obtain computation. We explain the importance of nonlinearity, and describe how nonlinear systems can be engineered to perform computation. More specifically, we provide an overview of chaos computing, a field that manually programs chaotic systems to build different types of digital functions. Also we briefly describe logical stochastic resonance (LSR), and then extend the approach of LSR to realize combinational digital logic systems via suitable concatenation of existing logical stochastic resonance blocks. Finally we demonstrate how a chaotic system can be engineered and mated with different machine learning techniques, such as artificial neural networks, random searching, and genetic algorithm, to design different autonomous systems that can adapt and respond to environmental conditions.
Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu
2017-09-01
Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.
Adaptive Maneuvering Frequency Method of Current Statistical Model
Institute of Scientific and Technical Information of China (English)
Wei Sun; Yongjian Yang
2017-01-01
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
Adaptation behavior of skilled infant bouncers to different spring frequencies
Directory of Open Access Journals (Sweden)
Olinda Habib Perez
2015-05-01
Full Text Available Infants explore their environments through repetitive movements that are constrained or facilitated by the environmental context. In this study, we evaluated how skilled bouncers adapted to bouncing in systems with four different spring conditions (natural frequencies of 0.9, 1.15, 1.27 and 1.56 Hz. Trunk kinematics and vertical ground reaction forces (VGRFs were recorded from three pre-walking infants (mean age 10.6 ±0.9 months. Bounce frequency, trunk displacement, peak VGRF, percent of time on the ground and time to peak force as a function of time on the ground were analyzed. In addition, infant bounce frequencies were compared to measured oscillations of an inert mass equivalent to each infant’s mass. All infants bounced above the natural frequency of the spring system in all conditions suggesting that they did not behave solely like mass-spring systems. Infants produced asymmetrical VGRF loading patterns suggesting that a timing component, such as bounce frequency, was regulated. Skilled infants consistently increased their bounce frequency as their vertical trunk displacement decreased; however, the mode for regulating bounce frequency differed from infant to infant.
Effect of metal coating and residual stress on the resonant frequency ...
Indian Academy of Sciences (India)
CranesSci MEMS Laboratory, Department of Mechanical Engineering, Indian. Institute of ... Finally, it is found that the analytical models give an error of ... As a resonator, the most important characteristics are the resonant frequency and.
Amplitude modulation reduces loudness adaptation to high-frequency tones.
Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang
2015-07-01
Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.
The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.
Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan
2017-12-12
This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.
Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation
Directory of Open Access Journals (Sweden)
Sekhar S Chandra
2004-01-01
Full Text Available We address the problem of estimating instantaneous frequency (IF of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE. The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD-based IF estimators for different signal-to-noise ratio (SNR.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
International Nuclear Information System (INIS)
Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.
2013-01-01
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.
DEFF Research Database (Denmark)
Ghasemi, Negareh; Zare, Firuz; Davari, Pooya
2017-01-01
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...
Resonant frequencies of massless scalar field in rotating black-brane spacetime
Institute of Scientific and Technical Information of China (English)
Jing Ji-Liang; Pan Qi-Yuan
2008-01-01
This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.
Magnetic Resonance Mediated Radio Frequency Coagulation for Vascular Repair
Zhao, Ming
Purpose. Magnetic Resonance Mediated Radiofrequency Coagulation employs the RF heating effect of MRI scanning to coagulate biomaterials for repair of vascular defects. Coagulation of a protein biomaterial by MR-induced RF heating is a novel means to effect repair of defects such as aneurysms or arteriovenous malformations. Our novel method is to coagulate a thermosetting material (such as egg white, which can be used for investigating heat coagulation behavior and MR relaxation properties) delivered endovascularly by catheter and coagulated by RF-induced heating of an intracatheter resonant wire antenna in the scanner. Methods. Experiments were performed on a Siemens 1.5 T MRI scanner and a Bruker 14T NMR spectrometer. Egg white was brought to equilibrium at seven temperatures (20, 30, 40, 50, 60, 70 and 37 °C) in sequence. Measurement of the water spin-lattice relaxation time Ti, spin-spin relaxation time T2, spin-lattice relaxation time in the rotating frame T1p, or full width at half maximum of the MT spectrum were performed at each temperature. Relaxation parameters of raw egg white and egg white after coagulation at 70 °C were measured in the scanner at 20 °C to determine optimum inversion time, echo time and offset frequency for good image contrast between coagulated and uncoagulated protein. Finally, coagulation of egg white within a glass aneurysm phantom by RF heating in the scanner was performed to demonstrate the MR coagulation methodology and the ability to achieve image contrast between coagulated and uncoagulated biomaterial. Results. Water T2, T1p and MT gave the most definitive indication of the change from uncoagulated at low temperature to fully coagulated at 60 °C, while water T1 showed only the expected gradual increase with temperature, and no response to coagulation. MT weighted imaging is expected to be the optimum method to establish the coagulation condition of the biomaterial.
RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning
International Nuclear Information System (INIS)
Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu
2012-01-01
We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2018-03-24
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method
Directory of Open Access Journals (Sweden)
Jure Tuta
2018-03-01
Full Text Available This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method, a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.. Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response
Suchenek, Mariusz
2017-04-01
One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.
DEFF Research Database (Denmark)
Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede
2015-01-01
It is mandatory for grid-connected power converters to synchronize the feed-in currents with the grid. Moreover, the power converters should produce feed-in currents with low total harmonic distortions according to the demands, by employing advanced current controllers, e.g., Proportional Resonant...... deviations. Experiments on a single-phase grid-connected inverter system are presented, which have verified the proposals and also the effectiveness of the frequency adaptive current controllers....... (PR) and Repetitive Controllers (RC). The synchronization is actually to detect the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. As a consequence, harmonics and deviations...
International Nuclear Information System (INIS)
Seemann, K.; Leiste, H.; Krüger, K.
2013-01-01
Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state
Outphasing control of gallium nitride based very high frequency resonant converters
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2015-01-01
In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...
Radio-frequency quadrupole resonator for linear accelerator
Moretti, A.
1982-10-19
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Signal Adaptive System for Space/Spatial-Frequency Analysis
Directory of Open Access Journals (Sweden)
Veselin N. Ivanović
2009-01-01
Full Text Available This paper outlines the development of a multiple-clock-cycle implementation (MCI of a signal adaptive two-dimensional (2D system for space/spatial-frequency (S/SF signal analysis. The design is based on a method for improved S/SF representation of the analyzed 2D signals, also proposed here. The proposed MCI design optimizes critical design performances related to hardware complexity, making it a suitable system for real time implementation on an integrated chip. Additionally, the design allows the implemented system to take a variable number of clock cycles (CLKs (the only necessary ones regarding desirable—2D Wigner distribution-presentation of autoterms in different frequency-frequency points during the execution. This ability represents a major advantage of the proposed design which helps to optimize the time required for execution and produce an improved, cross-terms-free S/SF signal representation. The design has been verified by a field-programmable gate array (FPGA circuit design, capable of performing S/SF analysis of 2D signals in real time.
Insertion torque, resonance frequency, and removal torque analysis of microimplants.
Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen
2016-09-01
This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.
Adaptive reconstructions for magnetic resonance imaging of moving organs
International Nuclear Information System (INIS)
Lohezic, Maelene
2011-01-01
Magnetic resonance imaging (MRI) is a valuable tool for the clinical diagnosis for brain imaging as well as cardiac and abdominal imaging. For instance, MRI is the only modality that enables the visualization and characterization myocardial edema. However, motion remains a challenging problem for cardiac MRI. Breathing as well as cardiac beating have to be carefully handled during patient examination. Moreover they limit the achievable temporal and spatial resolution of the images. In this work an approach that takes these physiological motions into account during image reconstruction process has been proposed. It allows performing cardiac examination while breathing freely. First, an iterative reconstruction algorithm, that compensates motion estimated from a motion model constrained by physiological signals, is applied to morphological cardiac imaging. A semi-automatic method for edema detection has been tested on reconstructed images. It has also been associated with an adaptive acquisition strategy which enables free-breathing end-systolic imaging. This reconstruction has then been extended to the assessment of transverse relaxation times T2, which is used for myocardial edema characterization. The proposed method, ARTEMIS, enables free-breathing T2 mapping without additional acquisition time. The proposed free breathing approaches take advantage of physiological signals to estimate the motion that occurs during MR acquisitions. Several solutions have been tested to measure this information. Among them, accelerometer-based external sensors allow local measurements at several locations. Another approach consists in the use of k-space based measurements, which are 'embedded' inside the MRI pulse sequence (navigator) and prevent from the requirement of additional recording hardware. Hence, several adaptive reconstruction algorithms were developed to obtain diagnostic information from free breathing acquisitions. These works allow performing efficient and accurate
Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve
Directory of Open Access Journals (Sweden)
Guojun Pan
2015-01-01
Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.
High Frequency LLC Resonant Converter with Magnetic Shunt Integrated Planar Transformer
DEFF Research Database (Denmark)
Li, Mingxiao; Ouyang, Ziwei; Andersen, Michael A. E.
2018-01-01
High Frequency LLC requires a smaller resonant inductance which is usually implemented by transformer leakage inductance. However, this small resonant inductance is difficult to deal with a wide input voltage range. This paper proposes a new method to implement a larger resonant inductance by using...... a magnetic shunt integrated into planar transformer. The switching frequency can be greatly narrowed by designing a smaller inductance ratio of magnetizing inductance to resonant inductance. Since this method can well deal with a wide input voltage range without adding extra inductor and increasing the size...... of the transformer, the power density can be improved. The precise leakage inductance calculation method for this transformer and detailed LLC converter design procedure are presented. A 280-380V and 48V-100W half bridge LLC resonant converter with 1 MHz resonant frequency is built to verify the design methodology....
Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)
Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo
2016-11-01
A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).
Frequency-domain analysis of resonant-type ring magnet power supplies
International Nuclear Information System (INIS)
Kim, J.M.S.; Reiniger, K.W.
1993-01-01
For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results
Method for Estimating Optimum Free Resonant Frequencies in Overcoupled WPT System
Directory of Open Access Journals (Sweden)
Dong-Wook Seo
2017-01-01
Full Text Available In our previous work, we proposed the method to maximize the output power even in the overcoupled state of the wireless power transfer (WPT system by controlling free resonant frequencies and derived closed-form expression for optimum free resonant frequencies of the primary and secondary resonators. In this paper, we propose the mutual coupling approach to derive the optimum free resonant frequencies and show the measured power transfer efficiency (PTE using the transmission efficiency as well as the system energy efficiency. The results of the proposed approach exactly coincide with those of the previous work, and the fabricated prototype achieves the transmission efficiency of about 80% by tuning the free resonant frequencies to the optimum values in the overcoupled state.
Spanish adaptation of social withdrawal motivation and frequency scales.
Indias García, Sílvia; De Paúl Ochotorena, Joaquín
2016-11-01
To adapt into Spanish three scales measuring frequency (SWFS) and motivation for social withdrawal (CSPS and SWMS) and to develop a scale capable of assessing the five motivations for social withdrawal. Participants were 1,112 Spanish adolescents, aged 12-17 years. The sample was randomly split into two groups in which exploratory and confirmatory (CFA) factor analyses were performed separately. A sample of adolescents in residential care (n = 128) was also used to perform discriminant validity analyses. SWFS was reduced to eight items that account for 40% of explained variance (PVE), and its reliability is high. SWMS worked adequately in the original version, according to CFA. Some items from the CSPS were removed from the final Spanish version. The newly developed scale (SWMS-5D) is composed of 20 items including five subscales: Peer Isolation, Unsociability, Shyness, Low Mood and Avoidance. Analyses reveal adequate convergent and discriminant validities. The resulting SWFS-8 and SWMS-5D could be considered useful instruments to assess frequency and motivation for social withdrawal in Spanish samples.
Design of etch holes to compensate spring width loss for reliable resonant frequencies
International Nuclear Information System (INIS)
Jang, Yun-Ho; Kim, Jong-Wan; Kim, Yong-Kweon; Kim, Jung-Mu
2012-01-01
A pattern width loss during the fabrication of lateral silicon resonators degrades resonant frequency reliability since such a width loss causes the significant deviation of spring stiffness. Here we present a design guide for etch holes to obtain reliable resonant frequencies by controlling etch holes geometries. The new function of an etch hole is to generate the comparable amount of the width loss between springs and etch holes, in turn to minimize the effect of the spring width loss on resonant frequency shift and deviation. An analytic expression reveals that a compensation factor (CF), defined by the circumference (C u ) of a unit etch hole divided by its silicon area (A u ), is a key parameter for reliable frequencies. The protrusive etch holes were proposed and compared with square etch holes to demonstrate the frequency reliability according to CF values and etch hole shapes. The normalized resonant frequency shift and deviation of the protrusive etch hole (−13.0% ± 6.9%) were significantly improved compared to those of a square etch hole with a small CF value (−42.8% ± 14.8%). The proposed design guide based on the CF value and protrusive shapes can be used to achieve reliable resonant frequencies for high performance silicon resonators. (technical note)
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.
2012-01-01
Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.
A MEMS coupled resonator for frequency filtering in air
Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.
2018-01-01
We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined
Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length
Directory of Open Access Journals (Sweden)
Jun-Ha LEE
2016-05-01
Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951
On the frequency and field linewidth conversion of ferromagnetic resonance spectra
International Nuclear Information System (INIS)
Wei, Yajun; Svedlindh, Peter; Liang Chin, Shin
2015-01-01
Both frequency swept and field swept ferromagnetic resonance measurements have been carried out for a number of different samples with negligible, moderate and significant extrinsic frequency independent linewidth contribution to analyze the correlation between the experimentally measured frequency and field linewidths. Contrary to the belief commonly held by many researchers, it is found that the frequency and field linewidth conversion relation does not hold for all cases. Instead it holds only for samples with negligible frequency independent linewidth contributions. For samples with non-negligible frequency independent linewidth contribution, the field linewidth values converted from the measured frequency linewidth are larger than the experimentally measured field linewidth. A close examination of the literature reveals that previously reported results support our findings, with successful conversions related to samples with negligible frequency independent linewidth contributions and unsuccessful conversions related to samples with significant frequency independent linewidth. The findings are important in providing guidance in ferromagnetic resonance linewidth conversions. (paper)
Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators
International Nuclear Information System (INIS)
Koehler, D.R.
1979-01-01
Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 10 4 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure
External Ear Resonant Amplitude and Frequency of 3-7 Year Old Children
Directory of Open Access Journals (Sweden)
Amir Hossein Zare
2004-06-01
Full Text Available Objective: To measure external ear resonant amplitude and frequency in children (3-7 years old and to compare with adult measures. Method and materials: The external ear resonance peak amplitude and frequency of 63 children 3-7 years old were recorded. All of the children had normal tympanogram and there was no cerumen in external auditory canal. 20 adult of 21-24 years old (10 male , 10 female were selected in order to compare with children that had normal tympanogram. The tests included : 1-otoscopy 2- tympanometry 3-microphone probe tube test. Results: The average of resonance peak frequency for children and adult is 4200 Hz and 3200 Hz , respectively. The resonance frequency of children had significantly diffrence with average of resonance frequency in adults. The average of resonance peak amplitude for children and adult is 17.70 dB and 17.17 dB , respectively. Conclusion: Resonant frequency and amplitude affect the hearing aid prescription and fitting process and calculating insertion gain; so, this measures seem should be considered in children hearing aid fitting.
Structure of bending resonances frequencies in supercritical rotors of gaseous centrifuges
International Nuclear Information System (INIS)
Andronov, I.N.; Grigor'ev, G.Yu.; Vyazovetskij, Yu.V.; Senchenkov, A.P.; Senchenkov, S.A.
2000-01-01
The position and the structure bending resonances for the model supercritical rotors with different construction of the tube are measured. Considerable complication of the resonance system for the tubes with nonuniform properties was established. The effect of the structure of the resonance on the complication of its realization and the ways of optimization of the rotor resonance system is discussed. Made measuring point to possibility for creation highly productive centrifuges relating to supercritical rotors with uniform concrete size carbon composite tube and structure of winding, working after the third bending resonance. The frequency of the fifth resonance falls in the zone of the performance frequency on the rotors with bellows crimps. Carbon composite tubes with the areas of raised flexibility is provided with greater in several times decrement [ru
Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I
National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...
GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I
National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...
Time-frequency analysis of the restricted three-body problem: transport and resonance transitions
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V; Marsden, Jerrold E
2004-01-01
A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space
International Nuclear Information System (INIS)
Ohta, N; Niki, T; Kirihara, S
2011-01-01
Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.
Low frequency torsional vibration gaps in the shaft with locally resonant structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing
2006-01-01
The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control
International Nuclear Information System (INIS)
Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.
2009-01-01
At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies
Use of a radio-frequency resonance circuit in studies of alkali ionization in flames
International Nuclear Information System (INIS)
Borgers, A.J.
1978-01-01
The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)
Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations
International Nuclear Information System (INIS)
Finn, J.M.; Sudan, R.N.
We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed
Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...
Deng, Wei; Wang, Ya
2017-09-01
This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.
2017-11-01
In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200433 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Zou, Yaming; Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)
2017-01-15
Highlights: • The frequency equation of isotropic multi-layer hollow spheres was derived using three-dimension (3D) elasticity theory and transfer matrix method. • The natural frequencies of the capsules with a millimeter-sized diameter are determined experimentally using resonant ultrasound spectrum (RUS) system. • The predicted natural frequencies of the frequency equation accord well with the observed results. • The theoretical and experimental investigation has proved the potential applicability of RUS to both metallic and non-metallic capsules. - Abstract: The natural frequency problem of laser inertial confinement fusion (ICF) capsules is one of the basic problems for determining non-destructively the elasticity modulus of each layer material using resonant ultrasound spectroscopy (RUS). In this paper, the frequency equation of isotropic one-layer hollow spheres was derived using three dimension (3D) elasticity theory and some simplified frequency equations were discussed under axisymmetric and spherical symmetry conditions. The corresponding equation of isotropic multi-layer hollow spheres was given employing transfer matrix method. To confirm the validity of the frequency equation and explore the feasibility of RUS for characterizing the ICF capsules, three representative capsules with a millimeter-sized diameter were determined by piezoelectric-based resonant ultrasound spectroscopy (PZT-RUS) and laser-based resonant ultrasound spectroscopy (LRUS) techniques. On the basis of both theoretical and experimental results, it is proved that the calculated and measured natural frequencies are accurate enough for determining the ICF capsules.
International Nuclear Information System (INIS)
Majewski, M; Magalas, L B
2012-01-01
In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.
Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O
2017-04-01
The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
Directory of Open Access Journals (Sweden)
Shanshan Li
2016-01-01
Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises
Institute of Scientific and Technical Information of China (English)
Jin Guo-Xiang; Zhang Liang-Ying; Cao Li
2009-01-01
By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
Experimental results of high power dual frequency resonant magnet excitation at TRIUMF
International Nuclear Information System (INIS)
Reiniger, K.W.; Heritier, G.
1988-06-01
We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)
An Adaptive Resonant Regulator for Single-phase Grid-Tied VSCs
DEFF Research Database (Denmark)
Golestan, Saeed; Ebrahimzadeh, Esmaeil; Guerrero, Josep M.
2018-01-01
The proportional-resonant (PR) controller is highly popular for controlling grid-connected voltage source converters. The resonant part of this controller provides an infinite gain at the nominal frequency and, in this way, ensures a zero steady-state tracking error when the grid frequency...... is at its nominal value. In the presence of frequency drifts, nevertheless, a zero tracking error may not be guaranteed. To deal with this problem, the resonance frequency of the PR controller may be updated using the frequency estimated by the synchronization unit, which is often a PLL. In recent years......, however, there is a growing attention towards eliminating the need for a dedicated synchronization unit and designing integrated synchronization and control structures as they benefit from a simpler and more compact structure. In this letter, based on a structural resemblance between a resonant current...
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators
Dean, L. W.
1977-01-01
Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin
2016-10-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.
International Nuclear Information System (INIS)
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin
2016-01-01
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)
International Nuclear Information System (INIS)
Li Zhikang; Zhao Libo; Ye Zhiying; Zhao Yulong; Jiang Zhuangde; Wang Hongyan
2013-01-01
The resonant frequency of a microplate is influenced by various physical parameters such as mass, surface stress, hydrostatic pressure and electrostatic force. In this paper, the effects of both electrostatic force and uniform hydrostatic pressure on the resonant frequency of a clamped circular microplate are investigated. An approximate solution is derived for the fundamental resonance frequency of the mciroplate under both types of loads using an energy equivalent method. It is found that both electrostatic force and uniform hydrostatic pressure decrease the resonant frequency of the microplate under small deflections. Additionally, the linearized expression of this solution shows that the resonant frequency varies linearly with pressure in the low and ultra-low range, and the corresponding pressure sensitivity depends on the voltage applied to the microplate. The analytical results are well validated by the finite element method. This study may be helpful for the design and optimization of electrostatically actuated resonance devices based on microplates, especially electrostatically actuated low- or ultra-low-pressure sensors. (paper)
Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD
Energy Technology Data Exchange (ETDEWEB)
Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others
1994-12-31
This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.
Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.
Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J
2012-01-11
We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society
DEFF Research Database (Denmark)
Tang, Meng; Cagliani, Alberto; Escouflaire, Marie
2010-01-01
the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...
Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy
DEFF Research Database (Denmark)
Zhang, Liang; Lu, Ping; Chen, Li
2012-01-01
A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...
Low power very high frequency resonant converter with high step down ratio
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...
Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian
2017-09-01
Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.
2011-01-01
Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.
Sok, J; Lee, E H
1998-01-01
An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.
Augmentation of Sensorimotor Adaptability Using Stochastic Resonance Technologies
National Aeronautics and Space Administration — Astronauts experience sensorimotor dysfunction during adaption to g-transitions that occur when entering and exiting microgravity. These sensorimotor disturbances...
Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications
Zhang, Yuefeng
1995-01-01
To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has
Active cooling of an audio-frequency electrical resonator to microkelvin temperatures
Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.
2010-11-01
We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.
Design and analysis of planar spiral resonator bandstop filter for microwave frequency
Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad
2017-11-01
In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.
Off-resonance frequency operation for power transfer in a loosely coupled air core transformer
Scudiere, Matthew B
2012-11-13
A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
. This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...
Improved measurements of elastic properties at acoustic resonant frequencies
International Nuclear Information System (INIS)
Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.
1976-01-01
The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)
Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei
2016-08-03
Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.
Rotstein, Horacio G
2014-01-01
We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between
Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies
Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.
2017-03-01
Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.
Resonator as high frequency electromagnetic field oscillation generator
International Nuclear Information System (INIS)
Svoroba, O.V.; Scherbina, V.O.
2007-01-01
The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control
Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John
2011-03-01
We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.
Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.
Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold
2014-09-26
We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.
A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece
Chapman, Robert C.
2004-05-01
The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.
Directory of Open Access Journals (Sweden)
Kyung Ho Sun
2014-10-01
Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Energy Technology Data Exchange (ETDEWEB)
Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
International Nuclear Information System (INIS)
Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.
2014-01-01
The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided
Energy Technology Data Exchange (ETDEWEB)
Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-05-15
The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.
Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings
Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.
2017-08-01
Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.
The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators
International Nuclear Information System (INIS)
Jin, Ke; Kou, Yong; Zheng, Xiaojing
2012-01-01
This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems. (paper)
Low frequency wireless power transfer using modified parallel resonance matching at a complex load
Directory of Open Access Journals (Sweden)
Artit Rittiplang
2016-10-01
Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.
Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo
In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.
Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment
International Nuclear Information System (INIS)
Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio
2010-01-01
Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)
Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.
2018-03-01
Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.
Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.
2011-01-01
The sonochemical oxidation efficiency (¿ox) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to
All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.
Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T
1997-10-01
A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.
An analytical model for the determination of resonance frequencies of perforated beams
International Nuclear Information System (INIS)
Luschi, Luca; Pieri, Francesco
2014-01-01
In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)
Analysis of the Behavior of Undamped and Unstable High-Frequency Resonance in DFIG System
DEFF Research Database (Denmark)
Song, Yipeng; Blaabjerg, Frede
2017-01-01
As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer Sub Synchronous Resonance (SSR) and High Frequency Resonance (HFR) in the series and parallel compensated weak network. The principle and frequency of HFR have been discussed using...... the Bode diagram as an analysis tool. However, the HFR can be categorized into two different types: undamped HFR (which exists in steady state) and unstable HFR (which eventually results in complete instability and divergence), both of them are not investigated before. Since both the undamped HFR...
International Nuclear Information System (INIS)
Maslovsky, D.; Levitt, B.; Mauel, M. E.
2003-01-01
Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)
R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes
Energy Technology Data Exchange (ETDEWEB)
Taillet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-06-15
In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)
R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes
Energy Technology Data Exchange (ETDEWEB)
Taillet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-06-15
In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)
Pulse width modulation based pneumatic frequency tuner of the superconducting resonators at IUAC
International Nuclear Information System (INIS)
Pandey, A.; Suman, S.K.; Mathuria, D.S.
2015-01-01
The existing phase locking scheme of the quarter wave resonators (QWR) used in superconducting linear accelerator (LINAC) of IUAC consists of a fast time (electronic) and a slow time (pneumatic) control. Presently, piezo based mechanical tuners are being used to phase lock the resonators installed in the second and third accelerating modules of LINAC. However, due to space constraint, the piezo tuner can't be implemented on the resonators of the first accelerating module. Therefore, helium gas operated mechanical tuners are being used to phase lock the resonators against the master oscillator (MO) frequency. The present pneumatic frequency tuner has limitations of non-linearity, hysteresis and slow response time. To overcome these problems and to improve the dynamics of the existing tuner, a new pulse width modulation (PWM) based pneumatic frequency tuning system was adopted and successfully tested. After successful test, the PWM based pneumatic frequency tuner was installed in four QWR of the first accelerating module of LINAC. During beam run the PWM based frequency tuner performed well and the cavities could be phase locked at comparatively higher accelerating fields. A comparison of the existing tuning mechanism and the PWM based tuning system along with the test results will be presented in the paper. (author)
A robust adaptive load frequency control for micro-grids
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Niknam, Taher; Blaabjerg, Frede
2016-01-01
micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI...
Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO
Directory of Open Access Journals (Sweden)
Drobakhin O. O.
2008-02-01
Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.
Lider, M. C.; Yurtseven, H.
2018-05-01
The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-09-01
In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.
Ceyhun Şahin, Fatma; Schiffmann, Jürg
2018-02-01
A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to
DEFF Research Database (Denmark)
De Poorter, J; De Wagter, C; De Deene, Y
1995-01-01
The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the...
High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network
DEFF Research Database (Denmark)
Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...
Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method
DEFF Research Database (Denmark)
Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry
2011-01-01
Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...
A study of the high frequency limitations of series resonant converters
Stuart, T. A.; King, R. J.
1982-01-01
A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.
Frequency shifts of resonant modes of the Sun due to near-surface convective scattering
Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.
FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING
International Nuclear Information System (INIS)
Bhattacharya, J.; Hanasoge, S.; Antia, H. M.
2015-01-01
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection
Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H
2014-08-01
Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.
Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter
International Nuclear Information System (INIS)
Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.
1988-05-01
The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.
2017-11-01
Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.
Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers
Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.
2018-04-01
In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.
International Nuclear Information System (INIS)
Bulgakov, M.I.; Dzheparov, F.S.; Gul'ko, A.D.; Shestopal, V.E.; Stepanov, S.V.; Trostin, S.S.
1989-01-01
β-NMR-spectroscopy investigations of the resonance at double Larmor frequency of β-active nuclei 8 Li in LiF polycrystals are presented. The qualitative analysis of the dislocation influence on this resonance is developed. An important role of correlations in dislocation distributions as well as high responsivity of this resonance to quadrupole interactions are found. 13 refs.; 2 figs
Styles of Adaptation: The Impact of Frequency and Valence of Adaptation on Preventing Substance Use
Hansen, William B.; Pankratz, Melinda M.; Dusenbury, Linda; Giles, Steven M.; Bishop, Dana C.; Albritton, Jordan; Albritton, Lauren P.; Strack, Joann
2013-01-01
Purpose: To be effective, evidence-based programs should be delivered as prescribed. This suggests that adaptations that deviate from intervention goals may limit a program's effectiveness. This study aims to examine the impact that number and quality of adaptations have on substance use outcomes. Design/methodology/approach: The authors examined…
Directory of Open Access Journals (Sweden)
N. I. Polzikova
2018-05-01
Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.
Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.
2018-05-01
We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.
Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics
International Nuclear Information System (INIS)
Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun
2015-01-01
Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)
International Nuclear Information System (INIS)
Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu
2004-01-01
We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)
Repetition rate multiplication of frequency comb using all-pass fiber resonator
International Nuclear Information System (INIS)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan
2016-01-01
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.
Repetition rate multiplication of frequency comb using all-pass fiber resonator
Energy Technology Data Exchange (ETDEWEB)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)
2016-09-15
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.
A frequency controlled LCL - T resonant converter for H- ion source
International Nuclear Information System (INIS)
Gauttam, V.K.; Kasliwal, A.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.
2013-01-01
An H - ion source is being developed at Raja Ramanna Centre for Advanced Technology, Indore. An LCL-T resonant power converter with variable frequency control is proposed which is utilized to develop a -20 kV/100 mA high voltage (HV) power supply for extraction of H - ions. The LCL-T resonant topology offers many advantages like gainful utilization of the transformer parasitics as a part of resonant network and low circulating current. The power converter is operated with variable frequency control and above resonance to get well known zero-voltage switching (ZVS) advantages for full bridge semiconductor switches in full load range. The converter energizes the symmetrical Cockcroft-Walton (CW) based HV generator to achieve required high voltage. The CW circuit is an attractive solution for HV generation since it has features like low stored energy and low output ripple. The HV power supply is operated in constant current (CC) mode with closed loop control and soft start of the power supply is achieved by sweeping the switching frequency from 40 kHz to defined operating point. Design parameters, simulation results and experimental results of the power converter are presented in this paper. (author)
Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex
Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.
2015-01-01
Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263
Frequencies of decision making and monitoring in adaptive resource management.
Directory of Open Access Journals (Sweden)
Byron K Williams
Full Text Available Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both. There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and
Frequencies of decision making and monitoring in adaptive resource management
Williams, Byron K.; Johnson, Fred A.
2017-01-01
Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management
Directory of Open Access Journals (Sweden)
Shun Sakaibara
2012-10-01
Full Text Available We previously found the effect of colorfulness-adaptation in natural images. It was observed to be stronger in natural images than unnatural images, suggesting the influence of naturalness on the adaptation. However, what characteristics of images and what levels of visual system were involved were not examined enough. This research investigates whether the effect of colorfulness-adaptation is associated with spatial frequency components in natural images. If adaptation was a mechanism in early cortical level, the effect would be strong for adaptation and test images sharing similar spatial frequency components. In the experiment, we examined how the colorfulness impression of a test image changed following adaptation images with different levels of saturation. We selected several types of natural image from a standard image database for test and adaptation images. We also processed them to make shuffled images with spatial frequency component differed from the originals and phase-scrambled images with the component similar to the originals, for both adaptation and test images. Observers evaluated whether a test image was colorful or faded. Results show that the colorfulness perception of the test images was influenced by the saturation of the adaptation images. The effect was the strongest for the combination of natural (original adaptation and natural test images regardless of image types. The effect for the combination of phase-scrambled images was weaker than those of original images and stronger than those of shuffled images. They suggest that not only the spatial frequency components of an image but also the recognition of images would contribute to colorfulness-adaptation.
DEFF Research Database (Denmark)
Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio
2013-01-01
We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...
Very High Frequency Resonant DC/DC Converters for LED Lighting
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...
Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh
2018-03-01
This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].
Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope
Directory of Open Access Journals (Sweden)
Ancheng Wang
2013-11-01
Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.
Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications
Chandran, Akhil A.
2016-09-15
Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.
International Nuclear Information System (INIS)
Krakover, Naftaly; Krylov, Slava; Ilic, B Robert
2016-01-01
The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to ≈560 Hz V −1 and results with a movable electrode allow motion sensitivity up to ≈1.5 Hz nm −1 . Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains. (paper)
HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2010-05-02
The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.
Directory of Open Access Journals (Sweden)
Kim Sun Ho
2017-01-01
Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
On-line adaptive line frequency noise cancellation from a nuclear power measuring channel
Directory of Open Access Journals (Sweden)
Qadir Javed
2011-01-01
Full Text Available On-line software for adaptively canceling 50 Hz line frequency noise has been designed and tested at Pakistan Research Reactor 1. Line frequency noise causes much problem in weak signals acquisition. Sometimes this noise is so dominant that original signal is totally corrupted. Although notch filter can be used for eliminating this noise, but if signal of interest is in close vicinity of 50 Hz, then original signal is also attenuated and hence overall performance is degraded. Adaptive noise removal is a technique which could be employed for removing line frequency without degrading the desired signal. In this paper line frequency noise has been eliminated on-line from a nuclear power measuring channel. The adaptive LMS algorithm has been used to cancel 50 Hz noise. The algorithm has been implemented in labVIEW with NI 6024 data acquisition card. The quality of the acquired signal has been improved much as can be seen in experimental results.
Adaptive Feed-Forward Control of Low Frequency Interior Noise
Kletschkowski, Thomas
2012-01-01
This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.
International Nuclear Information System (INIS)
Spirin, V V; López-Mercado, C A; Kinet, D; Mégret, P; Fotiadi, A A; Zolotovskiy, I O
2013-01-01
We demonstrate a single-longitudinal-mode Brillouin ring fiber laser passively stabilized at the resonance frequency with a 1.7 m section that is an unpumped polarization-maintaining erbium-doped fiber. The two coupled all-fiber Fabry–Perot interferometers that comprise the cavity, in combination with the dynamical population inversion gratings self-induced in the active fiber, provide adaptive pump-mode selection and Stokes wave generation at the same time. The laser is shown to emit a single-frequency Stokes wave with a linewidth narrower than 100 Hz. (letter)
Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.
2014-01-01
Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.
Wan, Chenchen
Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate
Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators
International Nuclear Information System (INIS)
Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A
2013-01-01
We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)
Energy Technology Data Exchange (ETDEWEB)
Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho, E-mail: whjhe@snu.ac.kr [Department of Physics and Astronomy, Institute of Applied Physics and Centre for THz-Bio Application Systems, Seoul National University, Seoul 151-747 (Korea, Republic of)
2016-08-21
We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.
Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring
Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.
2016-11-01
This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.
International Nuclear Information System (INIS)
Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho
2016-01-01
We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.
International Nuclear Information System (INIS)
Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.
2015-01-01
Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities
International Nuclear Information System (INIS)
Pakter, R.; Schneider, R.S.; Rizzato, F.B.
1993-01-01
The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)
Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.
Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W
2017-01-23
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm
Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong
2018-06-01
The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.
Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai
2016-04-01
We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50 mm and the reflected optical path length was 2L=100 mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6 GHz and 4 MHz/h at a detuning of -5.2 GHz were also obtained for the transmitted and reflected light Faraday signal.
Multi-cavity locally resonant structure with the low frequency and broad band-gaps
Directory of Open Access Journals (Sweden)
Jiulong Jiang
2016-11-01
Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.
Process and equipment for automatic measurement of resonant frequencies in seismic detectors
International Nuclear Information System (INIS)
Fredriksson, O.A.; Thomas, E.L.
1977-01-01
This is a process for the automatic indication of the resonant frequency of one or more detector elements which have operated inside a geophysical data-gathering system. Geophones or hydrophones or groups of both instruments are to be understood as comprising the detector elements. The invention concerns the creation of a process and of equipment working with laboratory precision, although it can be used in the field. (orig./RW) [de
Yakushin, Sergei B
2012-06-01
The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators
Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif
2011-01-01
High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown
Mutational jackpot events generate effective frequency-dependent selection in adapting populations
Hallatschek, Oskar
The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.
Adaptive nonparametric estimation for L\\'evy processes observed at low frequency
Kappus, Johanna
2013-01-01
This article deals with adaptive nonparametric estimation for L\\'evy processes observed at low frequency. For general linear functionals of the L\\'evy measure, we construct kernel estimators, provide upper risk bounds and derive rates of convergence under regularity assumptions. Our focus lies on the adaptive choice of the bandwidth, using model selection techniques. We face here a non-standard problem of model selection with unknown variance. A new approach towards this problem is proposed, ...
A study of the impact of frequency selectivity on link adaptive wireless LAN systems
Armour, SMD; Doufexi, A; Nix, AR; Bull, DR
2002-01-01
Wireless local area networks (WLANs) supporting broadband multimedia communication are being developed and standardized around the world. The HIPERLAN/2, 802.11a and HiSWANa standards provide channel adaptive data rates between 6 and 54 Mbps in the 5GHz radio band. The link adaptation mechanism is not specified in the standards. In this paper the performance of the HIPERLAN/2 system is evaluated in terms of throughput in a range of test channels with different degrees of frequency selectivity...
Generation of THz frequency using PANDA ring resonator for THz imaging
Directory of Open Access Journals (Sweden)
Ong CT
2012-02-01
Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter
Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency
Energy Technology Data Exchange (ETDEWEB)
Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2012-10-30
In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.
Capabilities, performance, and future possibilities of high frequency polyphase resonant converters
International Nuclear Information System (INIS)
Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.
2004-01-01
High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse
Interocular transfer of spatial adaptation is weak at low spatial frequencies.
Baker, Daniel H; Meese, Tim S
2012-06-15
Adapting one eye to a high contrast grating reduces sensitivity to similar target gratings shown to the same eye, and also to those shown to the opposite eye. According to the textbook account, interocular transfer (IOT) of adaptation is around 60% of the within-eye effect. However, most previous studies on this were limited to using high spatial frequencies, sustained presentation, and criterion-dependent methods for assessing threshold. Here, we measure IOT across a wide range of spatiotemporal frequencies, using a criterion-free 2AFC method. We find little or no IOT at low spatial frequencies, consistent with other recent observations. At higher spatial frequencies, IOT was present, but weaker than previously reported (around 35%, on average, at 8c/deg). Across all conditions, monocular adaptation raised thresholds by around a factor of 2, and observers showed normal binocular summation, demonstrating that they were not binocularly compromised. These findings prompt a reassessment of our understanding of the binocular architecture implied by interocular adaptation. In particular, the output of monocular channels may be available to perceptual decision making at low spatial frequencies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Field and frequency modulated sub-THz electron spin resonance spectrometer
Directory of Open Access Journals (Sweden)
Christian Caspers
2016-05-01
Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
International Nuclear Information System (INIS)
Witteveen, Jeroen A.S.; Bijl, Hester
2009-01-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
Keller, T.; Hanzo, L.
2000-01-01
A historical perspective of orthogonal frequency-division multiplexing (OFDM) is given with reference to its literature. Its advantages and disadvantages are reviewed, and its performance is characterized over highly dispersive channels. The effects of both time- and frequency-domain synchronization errors are quantified, and a range of solutions proposed in the recent literature are re-viewed. One of the main objectives of this review is to highlight the recent thinking behind adaptive bit a...
Worthmann, Brian M; Song, H C; Dowling, David R
2017-01-01
Remote source localization in the shallow ocean at frequencies significantly above 1 kHz is virtually impossible for conventional array signal processing techniques due to environmental mismatch. A recently proposed technique called frequency-difference matched field processing (Δf-MFP) [Worthmann, Song, and Dowling (2015). J. Acoust. Soc. Am. 138(6), 3549-3562] overcomes imperfect environmental knowledge by shifting the signal processing to frequencies below the signal's band through the use of a quadratic product of frequency-domain signal amplitudes called the autoproduct. This paper extends these prior Δf-MFP results to various adaptive MFP processors found in the literature, with particular emphasis on minimum variance distortionless response, multiple constraint method, multiple signal classification, and matched mode processing at signal-to-noise ratios (SNRs) from -20 to +20 dB. Using measurements from the 2011 Kauai Acoustic Communications Multiple University Research Initiative experiment, the localization performance of these techniques is analyzed and compared to Bartlett Δf-MFP. The results show that a source broadcasting a frequency sweep from 11.2 to 26.2 kHz through a 106 -m-deep sound channel over a distance of 3 km and recorded on a 16 element sparse vertical array can be localized using Δf-MFP techniques within average range and depth errors of 200 and 10 m, respectively, at SNRs down to 0 dB.
Lipovsky, Bradley P.; Dunham, Eric M.
2015-02-01
Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.
Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications
Chandran, Akhil A.; Younis, Mohammad I.
2016-01-01
Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei
2017-08-15
Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.
Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei
2018-01-01
We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.
A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode
Directory of Open Access Journals (Sweden)
DESSOUKI, A. A. S.
2014-11-01
Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.
Measurements of resonance frequencies on prestressed concrete beams during post-tensioning
International Nuclear Information System (INIS)
Lundqvist, P.; Ryden, N.
2011-01-01
The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency
Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.
Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh
2008-12-01
This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.
International Nuclear Information System (INIS)
Haverkort, Maurits W.
2016-01-01
Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)
Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current
Directory of Open Access Journals (Sweden)
Bor-Ren Lin
2018-02-01
Full Text Available This paper studies a frequency-controlled current-fed resonant circuit. The adopted direct current (DC-to-DC converter contains two boost circuits and a resonant circuit on the primary side. First, two boost circuits are connected in parallel to achieve voltage step-up and reduce input ripple current by using interleaved pulse-width modulation. Therefore, the size and current rating of boost inductors are decreased in the proposed converter. Second, the boost voltage is connected to the resonant circuit to realize the mechanism of the zero-voltage switching of all active switches and zero-current switching of all diodes. Two boost circuits and a resonant circuit use the same power devices in order to lessen the switch counts. The voltage doubler topology is adopted on the secondary side (high-voltage side. Therefore, the voltage rating of diodes on the high-voltage side is clamped at output voltage. The feasibility of the studied circuit is confirmed by the experimental tests with a 1 kW prototype circuit.
Fadel, M Ali; El-Gebaly, Reem H; Mohamed, Shaimaa A; Abdelbacki, Ashraf M M
2017-12-09
Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Kamigaito, Osamu; Goto, Akira; Miyazawa, Yoshitoshi; Chiba, Toshiya; Hemmi, Masatake; Kase, Masayuki; Kohara, Shigeo; Yano, Yasushige
1995-01-01
The beneficial effect of adding a detachable stem to the folded-coaxial resonator of the frequency-variable radio-frequency quadrupole (RFQ) linac previously reported was examined experimentally using a half-scale model as well as by numerical analyses. As a result, this simple modification was found to extend variable frequencies to a high region without increase of rf power consumption. (author)
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
Energy Technology Data Exchange (ETDEWEB)
Rekker, A., E-mail: Astrid.Rekker@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)
2015-10-28
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.
A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator
Directory of Open Access Journals (Sweden)
Xiang Zhao
2017-06-01
Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.
A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator
Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong
2017-06-01
Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
Rekker, A.; Mankin, R.
2015-10-01
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.
Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency
International Nuclear Information System (INIS)
Rekker, A.; Mankin, R.
2015-01-01
The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed
Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop
DEFF Research Database (Denmark)
Song, Yipeng; Blaabjerg, Frede
2018-01-01
compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....
Directory of Open Access Journals (Sweden)
Marco Torresi
2016-12-01
Full Text Available Among the different technologies developed in order to harness wave energy, the Oscillating Water Column devices are the most accredited for an actual diffusion. Recently, Boccotti has patented the REWEC1 (REsonant sea Wave Energy Converter solution 1, a submerged breakwater that performs an active coast protection, embedding an Oscillating Water Column device, which is capable of operating under resonant conditions with that sea state, which gives the highest yearly energy contribution. The REWEC1 dynamic behavior can be approximated by means of a mass-spring-damper system. According to this approximation, a criterion for evaluating the oscillating natural frequency of the REWEC1 has been derived. This criterion has been validated against both experimental results and computational fluid dynamics simulations, performed on a REWEC1 laboratory-scale model. The numerical simulations have shown a good agreement between measurements and predictions.
Directory of Open Access Journals (Sweden)
Yu Xu
2016-02-01
Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong
2016-02-06
For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.
Energy Technology Data Exchange (ETDEWEB)
Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)
2010-06-01
This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.
Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.
2018-05-01
Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.
Directory of Open Access Journals (Sweden)
Jingjing Xue
2017-01-01
Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.
Directory of Open Access Journals (Sweden)
Jian Li
2012-01-01
Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.
A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation
Directory of Open Access Journals (Sweden)
Cuidong Xu
2015-09-01
Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.
Czech Academy of Sciences Publication Activity Database
Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr
2012-01-01
Roč. 39, NOV (2012), s. 784-791 ISSN 1875-3892. [LANE 2012. Laser Assisted Net Shape Engineering /7./ International Conference on Photonic Technologies. Fürth, 12.11.2012-15.12.2012] Institutional support: RVO:68081731 Keywords : laser welding * feedback control * frequency analysis * adaptive beam shaping Subject RIV: BH - Optics, Masers, Lasers
Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.
Shih, Po-Jen; Guo, Yi-Ren
2016-04-01
An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.
International Nuclear Information System (INIS)
Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A
2012-01-01
We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity
Veltri, Mario; González-Martín, Oscar; Belser, Urs C
2014-08-01
This study tested the hypothesis of no differences in resonance frequency for standardized amounts of simulated bone-implant contact around implants with different diameters. In addition, it was evaluated if resonance frequency is able to detect a difference between stable and rotation mobile ("spinning") implants. Implants with diameters of 3.3, 4.1 and 4.8 mm were placed in a purposely designed metal mould where liquid polyurethane resin was then poured to obtain a simulated bone-implant specimen. By regulating the mould, it was possible to create the following simulated bone-implant contact groups: 3.3 mm (198.6 mm(2)); 4.1 mm (198.8 mm(2)); 4.8 mm (200.2 mm(2)); 4.8 mm (231.7 mm(2)); 4.8 mm (294.7 mm(2)). Each group included 10 specimens. After resin setting, resonance frequency was measured. On the last group, measurements were repeated after establishing implant rotational mobility. One-way ANOVA tests with post hoc comparisons, a Pearson's correlation coefficient and a t-test for repeated measurements were used to evaluate statistically significant differences. Implants with different diameters but with the same amount of simulated osseointegration revealed no differences in resonance frequency. On the contrary, an increase of simulated bone-implant contact resulted in significantly higher resonance frequency. A clear direct linear correlation resulted between resonance frequency and simulated bone-implant contact. Furthermore, a significant difference resulted between resonance frequency measured before and after creation of rotational mobility. Within the conditions of this study, the secondary stability was correlated with the simulated bone-implant contact. In addition, resonance frequency was able to discern between stable and rotation mobile implants. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Callens, F; Vanhaelewyn, G; Matthys, P
2002-04-01
Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.
Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses
Bouchaala, Adam M.
2016-03-21
We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler-Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities. © 2016 by ASME.
Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.
Naghiloo, M; Jordan, A N; Murch, K W
2017-11-03
Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.
Virtual Resonance and Frequency Difference Generation by van der Waals Interaction
Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.
2011-05-01
The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.
International Nuclear Information System (INIS)
Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.
1975-09-01
A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)
RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization
Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.
Transverse susceptibility as the low-frequency limit of ferromagnetic resonance
International Nuclear Information System (INIS)
Spinu, L.; Dumitru, I.; Stancu, A.; Cimpoesu, D.
2006-01-01
A new theory of transverse susceptibility (TS) based on magnetization vector dynamics, as described by the Landau-Lifshitz equation of motion, is given. It is shown that the traditional TS experiment is, in fact, the zero-frequency limit of the ferromagnetic resonance (FMR). The importance of these results resides in the generality of the approach which allows one to find the TS for virtually any magnetic system if an expression for the magnetic free-energy density is known. Moreover, the effect of the frequency of excitatory AC field on the TS experiments and the effect of energy dissipation through the imaginary part of TS emerge coherently from the new TS model
Waves on fluid-loaded shells and their resonance frequency spectrum
DEFF Research Database (Denmark)
Bao, X.L.; Uberall, H.; Raju, P.K.
2005-01-01
, or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...
DEFF Research Database (Denmark)
El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam
2017-01-01
transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...
Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise
Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En
2018-01-01
In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288
DEFF Research Database (Denmark)
Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng
2016-01-01
and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...
Directory of Open Access Journals (Sweden)
Yee-Pien Yang
2006-10-01
Full Text Available Periodic disturbance occurs in various applications on the control of the rotational mechanical systems. For optical disk drives, the spirally shaped tracks are usually not perfectly circular and the assembly of the disk and spindle motor is unavoidably eccentric. The resulting periodic disturbance is, therefore, synchronous with the disk rotation, and becomes particularly noticeable for the track following and focusing servo system. This paper applies a novel adaptive controller, namely Frequency Adaptive Control Technique (FACT, for rejecting the periodic runout and wobble effects in the optical disk drive with dual actuators. The control objective is to attenuate adaptively the specific frequency contents of periodic disturbances without amplifying its rest harmonics. FACT is implemented in a plug-in manner and provides a suitable framework for periodic disturbance rejection in the cases where the fundamental frequencies of the disturbance are alterable. It is shown that the convergence property of parameters in the proposed adaptive algorithm is exponentially stable. It is applicable to both the spindle modes of constant linear velocity (CLV and constant angular velocity (CAV for various operation speeds. The experiments showed that the proposed FACT has successful improvement on the tracking and focusing performance of the CD-ROM, and is extended to various compact disk drives.
Directory of Open Access Journals (Sweden)
Mohamed Sultan Mohamed Ali
2014-07-01
Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
Ferromagnetic resonance of a YIG film in the low frequency regime
Energy Technology Data Exchange (ETDEWEB)
Lee, Seongjae [Department of Physics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Grudichak, Scott; Sklenar, Joseph; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Tsai, C. C. [Department of Engineering and Management of Advanced Technology, Chang Jung Christian University, Tainan 71101, Taiwan (China); Jang, Moongyu [Department of Materials Science and Engineering, Hallym University, Chuncheon 200-702 (Korea, Republic of); Yang, Qinghui; Zhang, Huaiwu [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology, Chengdu, Sichuan 610054 (China)
2016-07-21
An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the ferromagnetic resonance (FMR) spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (<2 GHz) regime, and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force on the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1° change in field orientation at 0.7 GHz.
Stimulation of Protein Expression Through the Harmonic Resonance of Frequency-Specific Music.
Orhan, Ibrahim Y; Gulbahar, Burak A
2016-12-01
The use of specific frequencies for specific individual amino acids may increase the potential energy of protein molecules in the medium [1]. The resonance would also increase the movement of particles in the cytosol, increasing the collisions necessary for the conduction of protein expression. The clash of two waves that share frequencies will exhibit an increase in energy through an increase in amplitude [2]. The increase in energy would in turn increase the number of collisions forming the tRNA-amino acid, increasing the amino acid acquiry for ribosomes to improve intracellular efficiency in gene expression. To test the hypothesis, Red Fluorescent Protein (RFP) in transformated BL-21 strains of E. coli and p53 protein of MCF-7 were examined after exposure to sounds of specific frequencies. Through the exposure of the experimental systems to a sequence of sounds that match the frequencies of specific amino acids, the levels of RFP exhibition respective to the control groups in the bacterial medium increased two-fold in terms of RFU. The experiments that targeted the p53 protein with the 'music' showed a decrease in the cell prevalence in the MCF-7 type breast cancer cells by 28%, by decreasing the speed of tumour formation. Exposure to 'music' that was designed through assigning a musical note for every single one of the twenty unique amino acids, produced both an analytical and a visible shift in protein synthesis, making it as potential tool for reducing procedural time uptake.
Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal
Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling
2018-05-01
When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.
El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L
2017-06-26
Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.
INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES
International Nuclear Information System (INIS)
CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.
2003-01-01
OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results
Directory of Open Access Journals (Sweden)
Guowei Cai
2017-09-01
Full Text Available The high-frequency isolation (HFI charging DC port can serve as the interface between unipolar/bipolar DC buses and electric vehicles (EVs through the two-power-stage system structure that combines the front-end three-level converter with the back-end logical link control (LLC resonant converter. The DC output voltage can be maintained within the desired voltage range by the front-end converter. The electrical isolation can be realized by the back-end LLC converter, which has the bus converter function. According to the three-level topology, the low-voltage rating power devices can be adapted for half-voltage stress of the total DC grid, and the PWM phase-shift control can double the equivalent switching frequency to greatly reduce the filter volume. LLC resonant converters have advance characteristics of inverter-side zero-voltage-switching (ZVS and rectifier-side zero-current switching (ZCS. In particular, it can achieve better performance under quasi-resonant frequency mode. Additionally, the magnetizing current can be modified following different DC output voltages, which have the self-adaptation ZVS condition for decreasing the circulating current. Here, the principles of the proposed topology are analyzed in detail, and the design conditions of the three-level output filter and high-frequency isolation transformer are explored. Finally, a 20 kW prototype with the 760 V input and 200–500 V output are designed and tested. The experimental results are demonstrated to verify the validity and performance of this charging DC port system structure.
DEFF Research Database (Denmark)
Zhou, Leming; Zhou, Xiaoping; Chen, Yandong
2018-01-01
For the LCL-type grid-connected distributed generation system, the grid-current-feedback active damping (GCFAD) methods have a conflict between the resonance-suppression ability and harmonic-currents amplification. For this, an inverter-current-feedback reso-nance-suppression (ICFRS) method without...... additional sensors is proposed to reduce resonance-frequency offset and grid-inductance effect due to its unattenuated damping characteristic under high-frequency bandwidth. By analyzing two types of equivalent impedance models of ICFRS and GCFAD with a high-pass filter (HPF), GCFAD can suppress...
Conchouso Gonzalez, David
2016-06-28
Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.
Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System
Directory of Open Access Journals (Sweden)
Sri Maldia Hari Asti
2012-01-01
Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.
Mo, Qingkai; Zhang, Tao; Yan, Yining
2016-10-01
There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).
Energy Technology Data Exchange (ETDEWEB)
Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)
2015-05-15
The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
International Nuclear Information System (INIS)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne
2016-01-01
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
Energy Technology Data Exchange (ETDEWEB)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)
2016-07-15
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
DEFF Research Database (Denmark)
Yang, Dongsheng; Wang, Xiongfei; Blaabjerg, Frede
2017-01-01
The LCL-type grid connected inverter has been widely used as the intelligent power interface between the distributed generation unit and the power grid. To reduce the cost and volume of the filter, it is desirable to design the LCL filter with higher resonance frequency provided that the quality...... of injected grid current is not compromised. Actually, it is the typical case for the T-type or NPC three-level inverter to design its LCL resonance frequency close to half of the switching frequency. In this case, however, the sideband effect of SPWM modulation can impose a significant impact on the system...
Lazarev, L. A.
2015-07-01
An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.
Ho, Ching S.; Liou, Juin J.; Georgiopoulos, Michael; Christodoulou, Christos G.
1994-03-01
This paper presents an analog circuit design and implementation for an adaptive resonance theory neural network architecture called the augmented ART1 neural network (AART1-NN). Practical monolithic operational amplifiers (Op-Amps) LM741 and LM318 are selected to implement the circuit, and a simple compensation scheme is developed to adjust the Op-Amp electrical characteristics to meet the design requirement. A 7-node prototype circuit has been designed and verified using the Pspice circuit simulator run on a Sun workstation. Results simulated from the AART1-NN circuit using the LM741, LM318, and ideal Op-Amps are presented and compared.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
Dominant wave frequency and amplitude estimation for adaptive control of wave energy converters
Nguyen , Hoai-Nam; Tona , Paolino; Sabiron , Guillaume
2017-01-01
International audience; Adaptive control is of great interest for wave energy converters (WEC) due to the inherent time-varying nature of sea conditions. Robust and accurate estimation algorithms are required to improve the knowledge of the current sea state on a wave-to-wave basis in order to ensure power harvesting as close as possible to optimal behavior. In this paper, we present a simple but innovative approach for estimating the wave force dominant frequency and wave force dominant ampl...
Directory of Open Access Journals (Sweden)
Seunghyun Eom
2016-10-01
Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.
Non-resonant energy harvester with elastic constraints for low rotating frequencies
Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.
2017-11-01
This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.
Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting
Directory of Open Access Journals (Sweden)
Waleed Tariq Sethi
2015-01-01
Full Text Available The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.
Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.
Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo
2018-04-01
We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.
Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.
2017-08-01
The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.
Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications
International Nuclear Information System (INIS)
Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey
2016-01-01
Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped "6"0Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26
Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications
Energy Technology Data Exchange (ETDEWEB)
Acharya, Sahaja; Fischer-Valuck, Benjamin W.; Kashani, Rojano; Parikh, Parag; Yang, Deshan; Zhao, Tianyu; Green, Olga; Wooten, Omar; Li, H. Harold; Hu, Yanle; Rodriguez, Vivian; Olsen, Lindsey; Robinson, Clifford; Michalski, Jeff; Mutic, Sasa; Olsen, Jeffrey, E-mail: jolsen@radonc.wustl.edu
2016-02-01
Purpose: To demonstrate the feasibility of online adaptive magnetic resonance (MR) image guided radiation therapy (MR-IGRT) through reporting of our initial clinical experience and workflow considerations. Methods and Materials: The first clinically deployed online adaptive MR-IGRT system consisted of a split 0.35T MR scanner straddling a ring gantry with 3 multileaf collimator-equipped {sup 60}Co heads. The unit is supported by a Monte Carlo–based treatment planning system that allows real-time adaptive planning with the patient on the table. All patients undergo computed tomography and MR imaging (MRI) simulation for initial treatment planning. A volumetric MRI scan is acquired for each patient at the daily treatment setup. Deformable registration is performed using the planning computed tomography data set, which allows for the transfer of the initial contours and the electron density map to the daily MRI scan. The deformed electron density map is then used to recalculate the original plan on the daily MRI scan for physician evaluation. Recontouring and plan reoptimization are performed when required, and patient-specific quality assurance (QA) is performed using an independent in-house software system. Results: The first online adaptive MR-IGRT treatments consisted of 5 patients with abdominopelvic malignancies. The clinical setting included neoadjuvant colorectal (n=3), unresectable gastric (n=1), and unresectable pheochromocytoma (n=1). Recontouring and reoptimization were deemed necessary for 3 of 5 patients, and the initial plan was deemed sufficient for 2 of the 5 patients. The reasons for plan adaptation included tumor progression or regression and a change in small bowel anatomy. In a subsequently expanded cohort of 170 fractions (20 patients), 52 fractions (30.6%) were reoptimized online, and 92 fractions (54.1%) were treated with an online-adapted or previously adapted plan. The median time for recontouring, reoptimization, and QA was 26
Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation
International Nuclear Information System (INIS)
Li, Rui
2016-01-01
The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)
Optical sum-frequency generation in a whispering-gallery-mode resonator
International Nuclear Information System (INIS)
Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem
2014-01-01
We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)
Adjustable ferromagnetic resonance frequency in CoO/CoFeB system
Energy Technology Data Exchange (ETDEWEB)
Bonneau-Brault, A. [CEA Le Ripault, BP16, 37260 Monts (France); GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France); Dubourg, S. [CEA Le Ripault, BP16, 37260 Monts (France); Thiaville, A. [LPS, CNRS UMR 8502, University of Paris-Sud, 91405 Orsay Cedex (France); Rioual, S. [LMB EA4522, University of Brest, 6 av. Le Gorgeu, 29238 Brest Cedex 3 (France); Valente, D. [GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France)
2015-01-21
Static and dynamic properties of (CoO/CoFeB){sub n} multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained.
Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable
DEFF Research Database (Denmark)
Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede
2018-01-01
During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...
Adjustable ferromagnetic resonance frequency in CoO/CoFeB system
International Nuclear Information System (INIS)
Bonneau-Brault, A.; Dubourg, S.; Thiaville, A.; Rioual, S.; Valente, D.
2015-01-01
Static and dynamic properties of (CoO/CoFeB) n multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained
Akiel, R D; Stepanov, V; Takahashi, S
2017-06-01
Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.
Use of a radio-frequency resonance circuit in studies of alkali ionization in flames
International Nuclear Information System (INIS)
Borgers, A.J.
1978-01-01
The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)
Hirth, Michael; Kuhn, Jochen; Müller, Andreas
2015-02-01
Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.
Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus
International Nuclear Information System (INIS)
Nikolaenko, A.P.; Rabinovich, L.M.
1987-01-01
The application to experiments on Venus of methods of investigating global lightning activity that are used on earth in the ultralow-frequency range is discussed. Calculations of the electromagnetic fields in the range from a few Hertz to tens of Hertz are carried out in the framework of the model of the lower ionosphere of Venus, which generalizes the information about the planet's atmosphere which is presently available. The calculations showed that observations of global resonances on Venus must, as on the earth, allow one to obtain data about the global distribution of lightning in space and time, and to make the values of the parameters of the lower ionosphere model more precise
International Nuclear Information System (INIS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan
2016-01-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
International Nuclear Information System (INIS)
King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.
1988-01-01
The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs
Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP
Directory of Open Access Journals (Sweden)
Patrick A. Naylor
2008-05-01
Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.
Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David
2012-02-01
The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.
Directory of Open Access Journals (Sweden)
Guojun Zhang
2015-04-01
Full Text Available The MEMS vector hydrophone developed by the North University of China has advantages of high Signal to Noise Ratio, ease of array integration, etc. However, the resonance frequency of the MEMS device in the liquid is different from that in the air due to the fluid-structure interaction (FSI. Based on the theory of Fluid-Solid Coupling, a generalized distributed mass attached on the micro-structure has been found, which results in the resonance frequency of the microstructure in the liquid being lower than that in the air. Then, an FSI simulation was conducted by ANSYS software. Finally, the hydrophone was measured by using a shaking table and a vector hydrophone calibration system respectively. Results show that, due to the FSI, the resonance frequency of the MEMS devices of the bionic vector hydrophone in the liquid declines approximately 30% compared to the case in the air.
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
International Nuclear Information System (INIS)
Faucher, Olivier
1991-01-01
This research thesis reports experimental studies performed on the generation of a coherent radiation in vacuum ultraviolet (94 nm) by tripling the frequency of an ultraviolet laser focussed within a continuous supersonic free nitrogen jet. After a recall of some general issues related to non-linear optics, the evolution of the non-linear susceptibility and conditions of phase adaptation in supersonic jet have been determined. This allowed a quantitative study of the third harmonic generation for the three following types of conversion: without resonance, with resonance with two photons, and with resonance with three photons. In the first two cases, due to the absence of saturation phenomena, measuring the harmonic signal intensity allows a diagnosis of the non-linear medium internal state to the performed. As far as the third harmonic generation with resonance with three photons is concerned, the use of supersonic free jet properties leads to a perfect understanding of saturation effects by self-absorption which are at the origin of the unusual character of the obtained spectra [fr
Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator
Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.
2017-07-01
A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.
Shape of a clamped stiff harpsichord wire driven at a resonant frequency
Hanson, Roger J.; Macomber, Hilliard Kent; Boucher, Mathew A.
2002-05-01
A wire transversely driven by a sinusoidal force at the resonant frequency of a vibrational mode vibrates at the driving frequency and at harmonics generated by nonlinear processes in the wire. If the amplitude of a harmonic is measured as a function of position along the wire, its shape is revealed. It differs significantly from a sinusoid in the vicinity of either end of the wire because the ends are clamped and the wire has significant stiffness. The shapes of various harmonics have been determined for a brass harpsichord wire, 70 cm long, from optical detector measurements made at different distances from a clamped end. Knowledge of shape facilitates the determination of antinode amplitudes of harmonics when the gross motion of the wire is so large that the detectors must be positioned near an end of the wire because of their very limited dynamic range. Some observations of harmonics and related phenomena were reported previously [Hanson et al., J. Acoust Soc. Am. 108, 2592 (2000); 106, 2141 (1999)]. The shape information is also needed to help separate nonlinear effects possibly occurring in the detectors from those of interest, occurring in the wire itself.
Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers
Energy Technology Data Exchange (ETDEWEB)
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Nicu, Liviu [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Perisanu, Sorin; Vincent, Pascal [LPMCN, Universite Claude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lazarus, Arnaud; Thomas, Olivier, E-mail: sguillon@laas.fr [Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers, 2 rue Conte, 75003 Paris (France)
2011-06-17
In this paper, we investigate the effects of non-ideal clamping shapes on the dynamic behavior of silicon nanocantilevers. We fabricated silicon nanocantilevers using silicon on insulator (SOI) wafers by employing stepper ultraviolet (UV) lithography, which permits a resolution of under 100 nm. The nanocantilevers were driven by electrostatic force inside a scanning electron microscope (SEM). Both lateral and out-of-plane resonance frequencies were visually detected with the SEM. Next, we discuss overhanging of the cantilever support and curvature at the clamping point in the silicon nanocantilevers, which generally arises in the fabrication process. We found that the fundamental out-of-plane frequency of a realistically clamped cantilever is always lower than that for a perfectly clamped cantilever, and depends on the cantilever width and the geometry of the clamping point structure. Using simulation with the finite-elements method, we demonstrate that this discrepancy is attributed to the particular geometry of the clamping point (non-zero joining curvatures and a flexible overhanging) that is obtained in the fabrication process. The influence of the material orthotropy is also investigated and is shown to be negligible.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets
Lawrence, Jonathan D.
This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.
Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency
Directory of Open Access Journals (Sweden)
C. Baccouch
2016-11-01
Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.
Broadband frequency ECR ion source concepts with large resonant plasma volumes
International Nuclear Information System (INIS)
Alton, G.D.
1995-01-01
New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques
A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications
DEFF Research Database (Denmark)
Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng
2017-01-01
This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...
Beyer, Hannes; Wagner, Tino; Stemmer, Andreas
2016-01-01
Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.
Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna
2018-04-05
Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTV OPT ). The baseline GTVV 95% achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V 33 Gy ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of Plan PREDICTED1 , Plan RE-OPTIMIZED1 (inter-fractional adaptation), Plan PREDICTED2 , and Plan RE-OPTIMIZED2 (intrafractional adaptation). An offline analysis was
Directory of Open Access Journals (Sweden)
Daniel Mietchen
Full Text Available Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems.Given that non-destructive techniques like (1H Magnetic Resonance (MR imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis.In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae.These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.
International Nuclear Information System (INIS)
Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge
2010-01-01
Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.
Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.
2014-01-01
Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.
Directory of Open Access Journals (Sweden)
Nor Zakiah Yahaya
2014-01-01
Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.
Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency
Energy Technology Data Exchange (ETDEWEB)
Dial, Christian; Weiss, Elisabeth; Hugo, Geoffrey D., E-mail: gdhugo@vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Siebers, Jeffrey V. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 and Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 (United States)
2016-04-15
Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. Methods: A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a “no-adapt” scenario that simulates delivery of an initial plan throughout treatment, (2) a “midadapt” scenario that implements a single replan for fraction 18, (3) a “weekly adapt” scenario that simulates weekly adaptations, and (4) a “full-adapt” scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Results: Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20{sub lung}) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66{sub heart}), and dose received by 33% of the heart (D33{sub heart}), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120
Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency
International Nuclear Information System (INIS)
Dial, Christian; Weiss, Elisabeth; Hugo, Geoffrey D.; Siebers, Jeffrey V.
2016-01-01
Purpose: To quantify the potential benefit associated with daily replanning in lung cancer in terms of normal tissue dose sparing and to characterize the tradeoff between adaptive benefit and replanning frequency. Methods: A set of synthetic images and contours, derived from weekly active breathing control images of 12 patients who underwent radiation therapy treatment for nonsmall cell lung cancer, is generated for each fraction of treatment using principal component analysis in a way that preserves temporal anatomical trends (e.g., tumor regression). Daily synthetic images and contours are used to simulate four different treatment scenarios: (1) a “no-adapt” scenario that simulates delivery of an initial plan throughout treatment, (2) a “midadapt” scenario that implements a single replan for fraction 18, (3) a “weekly adapt” scenario that simulates weekly adaptations, and (4) a “full-adapt” scenario that simulates daily replanning. An initial intensity modulated radiation therapy plan is created for each patient and replanning is carried out in an automated fashion by reoptimizing beam apertures and weights. Dose is calculated on each image and accumulated to the first in the series using deformable mappings utilized in synthetic image creation for comparison between simulated treatments. Results: Target coverage was maintained and cord tolerance was not exceeded for any of the adaptive simulations. Average reductions in mean lung dose (MLD) and volume of lung receiving 20 Gy or more (V20_l_u_n_g) were 65 ± 49 cGy (p = 0.000 01) and 1.1% ± 1.2% (p = 0.0006), respectively, for all patients. The largest reduction in MLD for a single patient was 162 cGy, which allowed an isotoxic escalation of the target dose of 1668 cGy. Average reductions in cord max dose, mean esophageal dose (MED), dose received by 66% of the heart (D66_h_e_a_r_t), and dose received by 33% of the heart (D33_h_e_a_r_t), were 158 ± 280, 117 ± 121, 37 ± 77, and 99 ± 120 c
A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors
Directory of Open Access Journals (Sweden)
Hengwei Li
2007-02-01
Full Text Available In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR. We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT. Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that th
Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1
Directory of Open Access Journals (Sweden)
Todor Petkov
2013-12-01
Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.
Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller
DEFF Research Database (Denmark)
Yao, Wei; Jiang, L.; Fang, Jiakun
2013-01-01
This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided....
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, S.
2011-04-01
Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.
Multi-frequency Phase Unwrap from Noisy Data: Adaptive Least Squares Approach
Katkovnik, Vladimir; Bioucas-Dias, José
2010-04-01
Multiple frequency interferometry is, basically, a phase acquisition strategy aimed at reducing or eliminating the ambiguity of the wrapped phase observations or, equivalently, reducing or eliminating the fringe ambiguity order. In multiple frequency interferometry, the phase measurements are acquired at different frequencies (or wavelengths) and recorded using the corresponding sensors (measurement channels). Assuming that the absolute phase to be reconstructed is piece-wise smooth, we use a nonparametric regression technique for the phase reconstruction. The nonparametric estimates are derived from a local least squares criterion, which, when applied to the multifrequency data, yields denoised (filtered) phase estimates with extended ambiguity (periodized), compared with the phase ambiguities inherent to each measurement frequency. The filtering algorithm is based on local polynomial (LPA) approximation for design of nonlinear filters (estimators) and adaptation of these filters to unknown smoothness of the spatially varying absolute phase [9]. For phase unwrapping, from filtered periodized data, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [1]. Simulations give evidence that the proposed algorithm yields state-of-the-art performance for continuous as well as for discontinues phase surfaces, enabling phase unwrapping in extraordinary difficult situations when all other algorithms fail.
International Nuclear Information System (INIS)
Uchiyama, Yuta; Morita, Ryo
2012-01-01
Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)
DEFF Research Database (Denmark)
Liu, Qing Zhong
1992-01-01
Unified analytical expressions have been derived for calculating the resonant frequencies, transimpedance and equivalent input noise current densities of the four most widely used tuned optical receiver front ends built with FETs and p-i-n diodes. A more accurate FET model has been used to improve...
International Nuclear Information System (INIS)
Suter, J.J.
1988-01-01
This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation
Energy Technology Data Exchange (ETDEWEB)
Dewey, Marc [Departments of Radiology, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: marc.dewey@charite.de; Schink, Tania [Medical Biometry, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: tania.schink@charite.de; Dewey, Charles F. [Radiology, Outpatient Centre Loebau, Poststr. 20, 02738 Loebau (Germany)]. E-mail: dewey@t-online.de
2007-07-15
Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians.
International Nuclear Information System (INIS)
Dewey, Marc; Schink, Tania; Dewey, Charles F.
2007-01-01
Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
Directory of Open Access Journals (Sweden)
Daniela eGandolfi
2013-04-01
Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.
Melnychuk, O; Grassellino, A; Romanenko, A
2014-12-01
In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].
Shokri, Mehran; Daraeighadikolaei, Arash
2013-01-01
Background. There is no doubt that the success of the dental implants depends on the stability. The aim of this work was to measure the stability of dental implants prior to loading the implants, using a resonance frequency analysis (RFA) by Osstell mentor device. Methods. Ten healthy and nonsmoker patients over 40 years of age with at least six months of complete or partial edentulous mouth received screw-type dental implants by a 1-stage procedure. RFA measurements were obtained at surgery and 1, 2, 3, 4, 5, 7, and 11 weeks after the implant surgery. Results. Among fifteen implants, the lowest mean stability measurement was for the 4th week after surgery in all bone types. At placement, the mean ISQ obtained with the magnetic device was 77.2 with 95% confidence interval (CI) = 2.49, and then it decreased until the 4th week to 72.13 (95% CI = 2.88), and at the last measurement, the mean implant stability significantly (P value implant placement. These suggestions need to be further assessed through future studies. PMID:23737790
Varma, Ruchi; Ghosh, Jayanta
2018-06-01
A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.
Energy Technology Data Exchange (ETDEWEB)
Berthelot, J.M.; Maugars, Y.; Delecrin, Y.; Caillon, F.; Prost, A. [Hopital Hotel-Dieu de Nantes, 44 (France)
1995-10-01
Magnetic resonance imaging (MRI) has had an impressive impact on evaluation of degenerative diseases of the spine. Nevertheless, false negatives can occur on images involving lumbar discs. Degenerative disc diseases documented on discography and/or pathology examination of the discs can go unrecognized. Likewise sensitivity for the detection of protruding disc hernias is not totally satisfactory (20% false negatives). Finally, a magnetic resonance image visualizing displacement of the disc is not specific (10 to 15% false positives); images showing protrusion or hernia can be seen in 30% of asymptomatic patients. Although MRI gives slightly more information than other imaging techniques, false images do exist. Moreover, the usefulness of MRI to demonstrate disc disease in case of a negative CT-scan remains to be demonstrated. (authors). 26 refs.
Directory of Open Access Journals (Sweden)
Shichun Yang
2018-05-01
Full Text Available Wireless charging system for electric vehicles is a hot research issue in the world today. Since the existing research on wireless charging is mostly forward-looking aimed at low-power appliances like household appliances, while electric vehicles need a high-power, high-efficiency, and strong coupling wireless charging system. In this paper, we have specifically designed a 6.6 KW wireless charging system for electric vehicles and have proposed a control strategy suitable for electric vehicles according to its power charging characteristics and existing common wired charging protocol. Firstly, the influence of the equivalent load and frequency bifurcation on a wireless charging system is analyzed in this paper. Secondly, an adaptive load control strategy matching the characteristics of the battery, and the charging pile is put forward to meet the constant current and constant voltage charging requirements to improve the system efficiency. In addition, the frequency adjustment control strategy is designed to realize the real-time dynamic optimization of the entire system. It utilizes the improved methods of rapid judgment, variable step length matching and frequency splitting recognition, which are not adopted in early related researches. Finally, the results of 6.6 kW test show that the control strategy works perfectly since system response time can be reduced to less than 1 s, and the overall efficiency of the wireless charging system and the grid power supply module can reach up to 91%.
Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li
2018-03-01
Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.
Directory of Open Access Journals (Sweden)
Ahmet Kayabasi
2015-12-01
Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.
Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F
2011-01-01
The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Mantsinen, M.
1999-01-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
Energy Technology Data Exchange (ETDEWEB)
Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics
1999-06-01
Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in
International Nuclear Information System (INIS)
Küblböck, M.
2015-01-01
Over the course of the last two decades, functional magnetic resonance imaging (fMRI) has emerged as a widely used, highly accepted and very popular method for the assessment of neuronal activity in the human brain. It is a completely non-invasive imaging technique with high temporal resolution, which relies on the measurement of local differences in magnetic susceptibility between oxygenated and deoxygenated blood. Therefore, fMRI can be regarded as an indirect measure of neuronal activity via measurement of localised changes in cerebral blood flow and cerebral oxygen consumption. Maps of neuronal activity are calculated from fMRI data acquired either in the presence of an explicit task (task-based fMRI) or in absence of a task (resting-state fMRI). While in task-based fMRI task-specific patterns of brain activity are subject to research, resting-state fMRI reveals fundamental networks of intrinsic brain activity. These networks are characterized by low-frequency oscillations in the power spectrum of resting-state fMRI data. In the present work, we first introduce the physical principles and the technical background that allow us to measure these changes in blood oxygenation, followed by an introduction to the blood oxygenation level dependent (BOLD) effect and to analysis methods for both task-based and resting-state fMRI data. We also analyse the temporal signal-to-noise ratio (tSNR) of a novel 2D-EPI sequence, which allows the experimenter to acquire several slices simultaneously in order to assess the optimal parameter settings for this sequence at 3T. We then proceed to investigate the temporal properties of measures for the amplitude of low-frequency oscillations in resting-state fMRI data, which are regarded as potential biomarkers for a wide range of mental diseases in various clinical studies and show the high stability and robustness of these data, which are important prerequisites for application as a biomarker as well as their dependency on head motion
Energy Technology Data Exchange (ETDEWEB)
Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)
2017-03-15
This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)
International Nuclear Information System (INIS)
Oh, Seungjae; Wang, Semyung; Cho, Sungman
2015-01-01
Highlights: • Development of Energy Efficiency Design Map. • Experimental validation of Energy Efficiency Design Map. • Suggestion regarding the Acoustically Supercharged Energy Efficiency. • Sensitivity analysis of the Energy Efficiency Ratio with respect to acoustic pressure. • Suggestion regarding the hybrid coupling method for acoustic analysis in compressor. - Abstract: The volumetric efficiency of the Internal Combustion (IC) engine and compressor can be increased by properly adjusting the acoustic resonance frequency of the suction muffler or the suction valve timing without any additional equipment or power source. This effect is known as acoustic supercharging. However, the energy efficiency has become more important than the volumetric efficiency because of the energy shortage issue and factors influencing consumers’ purchasing decisions. Therefore, methods for increasing the energy efficiency using the acoustic effect in the suction part of IC engine and compressor should be considered. In this study, a systematic method for improving the energy efficiency using the acoustic effect in the suction part of the compressor used in refrigerators and air conditioners was developed for the first time. This effect is named as the Acoustically Supercharged Energy Efficiency (ASEE). For the ASEE, first, a hybrid coupling method was suggested for the acoustical analysis in the suction part of the compressor. Next, an Energy Efficiency Design Map (EEDM) was proposed. This can serve as a design guide for suction mufflers in terms of the energy efficiency. Finally, sensitivity analyses of the Energy Efficiency Ratio (EER) and total massflow rate with respect to the acoustic pressure were conducted to identify the relationship between the acoustic pressure and the suction valve motion. This provides the physical background for the EEDM
Directory of Open Access Journals (Sweden)
Patrick R. Steffen
2017-08-01
Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.
Bumps, breathers, and waves in a neural network with spike frequency adaptation
International Nuclear Information System (INIS)
Coombes, S.; Owen, M.R.
2005-01-01
We introduce a continuum model of neural tissue that includes the effects of spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon nonlocal network connectivity, synaptic response, and the firing rate of a single neuron. We consider a phenomenological model of SFA via a simple state-dependent threshold firing rate function. As without SFA, Mexican-hat connectivity allows for the existence of spatially localized states (bumps). Importantly recent Evans function techniques are used to show that bumps may destabilize leading to the emergence of breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Simulations confirm our theoretical predictions and illustrate the rich behavior of this model
Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J
2010-03-03
Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.
Directory of Open Access Journals (Sweden)
Krishnan Sridhar
2007-01-01
Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.
DEFF Research Database (Denmark)
Tang, Yi; Yao, Wenli; Loh, Poh Chiang
2015-01-01
, and this observation is so far not discussed in the literature. In this case, very cost-effective LCL-filter design can be achieved for grid-connected converters whose dominant switching harmonics may appear at double of the switching frequency, e.g. in unipolar modulated three-level full bridge converters and 12...
DEFF Research Database (Denmark)
Tang, Yi; Yao, Wenli; Loh, Poh Chiang
2016-01-01
, and this observation is so far not discussed in the literature. In this case, a very cost-effective LCL filter design can be achieved for the grid-connected converters, whose dominant switching harmonics may appear at double the switching frequency, e.g., in unipolar-modulated three-level full-bridge converters and 12...
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
A series-resonant converter used as an amplitude and frequency function generator
Huisman, H.; Gravendeel, B.
1988-01-01
A series-resonant power converter system is presented which allows generation of multiphase output voltages with very low distortion at high efficiency. The self-commutated resonant operation mode ensures the converter to be short-circuit proof. After a discussion of the control concept, some
Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.
Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J
2006-01-01
Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.
Directory of Open Access Journals (Sweden)
Budhitama Subagdja
2016-06-01
Full Text Available One of the fundamental challenges in reinforcement learning is to setup a proper balance between exploration and exploitation to obtain the maximum cummulative reward in the long run. Most protocols for exploration bound the overall values to a convergent level of performance. If new knowledge is inserted or the environment is suddenly changed, the issue becomes more intricate as the exploration must compromise the pre-existing knowledge. This paper presents a type of multi-channel adaptive resonance theory (ART neural network model called fusion ART which serves as a fuzzy approximator for reinforcement learning with inherent features that can regulate the exploration strategy. This intrinsic regulation is driven by the condition of the knowledge learnt so far by the agent. The model offers a stable but incremental reinforcement learning that can involve prior rules as bootstrap knowledge for guiding the agent to select the right action. Experiments in obstacle avoidance and navigation tasks demonstrate that in the configuration of learning wherein the agent learns from scratch, the inherent exploration model in fusion ART model is comparable to the basic E-greedy policy. On the other hand, the model is demonstrated to deal with prior knowledge and strike a balance between exploration and exploitation.
Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E
2008-08-22
In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.
Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.
2016-05-01
For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.
DEFF Research Database (Denmark)
Nour, Yasser; Knott, Arnold; Petersen, Lars Press
2017-01-01
The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....
International Nuclear Information System (INIS)
Melin, G.
1967-03-01
In the mere case of a cold plasma with or without static magnetic field, are given two methods of calculation of resonance frequency shift and absorption in a cylindrical cavity crossed by a plasma column: 1. A perturbation method, already known and used for electronic density measurements is restated and its application is used for several high frequency cavity modes. 2. An exact method employing Maxwell's equations, which however necessitates a computer, is compared with the first one; it permits a determination of the validity limits of the perturbation method and to draw conclusions, [fr
Xin Zhao; G. Ciovati; T. R. Bieler
2010-01-01
The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical micro...
Energy Technology Data Exchange (ETDEWEB)
Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S [Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk (Russian Federation)
2013-05-31
The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)
Directory of Open Access Journals (Sweden)
Junhao Luo
2018-05-01
Full Text Available As a key factor in the design of a voltage-adjustable LLC resonant converter, frequency regulation range is very important to the optimization of magnetic components and efficiency improvement. This paper presents a novel optimal design method for LLC resonant converters, which can narrow the frequency variation range and ensure high efficiency under the premise of a required gain achievement. A simplified gain model was utilized to simplify the calculation and the expected efficiency was initially set as 96.5%. The restricted area of parameter optimization design can be obtained by taking the intersection of the gain requirement, the efficiency requirement, and three restrictions of ZVS (Zero Voltage Switch. The proposed method was verified by simulation and experiments of a 150 W prototype. The results show that the proposed method can achieve ZVS from full-load to no-load conditions and can reach 1.6 times the normalized voltage gain in the frequency variation range of 18 kHz with a peak efficiency of up to 96.3%. Moreover, the expected efficiency is adjustable, which means a converter with a higher efficiency can be designed. The proposed method can also be used for the design of large-power LLC resonant converters to obtain a wide output voltage range and higher efficiency.
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2016-10-15
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.
DEFF Research Database (Denmark)
Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede
2016-01-01
Grid-connected power converters should employ advanced current controllers, e.g., Proportional Resonant (PR) and Repetitive Controllers (RC), in order to produce high-quality feed-in currents that are required to be synchronized with the grid. The synchronization is actually to detect...... of the resonant controllers and by approximating the fractional delay using a Lagrange interpolating polynomial for the RC, respectively, the frequency-variation-immunity of these periodic current controllers with a fixed sampling rate is improved. Experiments on a single-phase grid-connected system are presented...... the instantaneous grid information (e.g., frequency and phase of the grid voltage) for the current control, which is commonly performed by a Phase-Locked-Loop (PLL) system. Hence, harmonics and deviations in the estimated frequency by the PLL could lead to current tracking performance degradation, especially...
Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin
To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively
Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi
2004-04-01
The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.
A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2017-01-01
This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....
Directory of Open Access Journals (Sweden)
Ahmed Elazab
2015-01-01
Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.
Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M
2012-12-01
Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.
International Nuclear Information System (INIS)
Breger, M.; Montgomery, M. H.
2014-01-01
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
Energy Technology Data Exchange (ETDEWEB)
Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)
2014-03-10
In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.
Directory of Open Access Journals (Sweden)
Sridhar Krishnan
2007-07-01
Full Text Available This paper introduces a novel algorithm to excise single and multicomponent chirp-like interferences in direct sequence spread spectrum (DSSS communications. The excision algorithm consists of two stages: adaptive signal decomposition stage and directional element detection stage based on the Hough-Radon transform (HRT. Initially, the received spread spectrum signal is decomposed into its time-frequency (TF functions using an adaptive signal decomposition algorithm, and the resulting TF functions are mapped onto the TF plane. We then use a line detection algorithm based on the HRT that operates on the image of the TF plane and detects energy varying directional elements that satisfy a parametric constraint. Interference is modeled by reconstructing the corresponding TF functions detected by the HRT, and subtracted from the received signal. The proposed technique has two main advantages: (i it localizes the interferences on the TF plane with no cross-terms, thus facilitating simple filtering techniques based on thresholding of the TF functions, and is an efficient way to excise the interference; (ii it can be used for the detection of any directional interferences that can be parameterized. Simulation results with synthetic models have shown successful performance with linear and quadratic chirp interferences for single and multicomponent interference cases. The proposed method excises the interference even under very low SNR conditions of Ã¢ÂˆÂ’10Ã¢Â€Â‰dB, and the technique could be easily extended to any interferences that could be represented by a parametric equation in the TF plane.
International Nuclear Information System (INIS)
Zelenka, J.
1996-01-01
The comparison of the measured resonant frequency-temperature characteristics of the AT-and BT-cut square and circular quartz resonators with the computed ones is given in the paper. The curves which express the frequency-temperature behavior of the resonators are compared. The influence of the thickness of the silver and gold electrodes on the first order frequency temperature coefficient is presented. The influence of the dimension ratio of the wafer on the orientation for which the zero first order temperature coefficient occurs at the temperature T O = 25 O C are given. (authors)
Bouchaala, Adam M.
2016-03-18
We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes. © 2016 Springer Science+Business Media Dordrecht
Directory of Open Access Journals (Sweden)
Zisheng Wang
2018-02-01
Full Text Available We propose a novel adaptive joint time frequency algorithm combined with the neural network (AJTF-NN to focus the distorted inverse synthetic aperture radar (ISAR image. In this paper, a coefficient estimator based on the artificial neural network (ANN is firstly developed to solve the time-consuming rotational motion compensation (RMC polynomial phase coefficient estimation problem. The training method, the cost function and the structure of ANN are comprehensively discussed. In addition, we originally propose a method to generate training dataset sourcing from the ISAR signal models with randomly chosen motion characteristics. Then, prediction results of the ANN estimator is used to directly compensate the ISAR image, or to provide a more accurate initial searching range to the AJTF for possible low-performance scenarios. Finally, some simulation models including the ideal point scatterers and a realistic Airbus A380 are employed to comprehensively investigate properties of the AJTF-NN, such as the stability and the efficiency under different signal-to-noise ratios (SNRs. Results show that the proposed method is much faster than other prevalent improved searching methods, the acceleration ratio are even up to 424 times without the deterioration of compensated image quality. Therefore, the proposed method is potential to the real-time application in the RMC problem of the ISAR imaging.
D'Souza, Prashanth; Liu, Shih-Chii; Hahnloser, Richard H R
2010-03-09
It is widely believed that sensory and motor processing in the brain is based on simple computational primitives rooted in cellular and synaptic physiology. However, many gaps remain in our understanding of the connections between neural computations and biophysical properties of neurons. Here, we show that synaptic spike-time-dependent plasticity (STDP) combined with spike-frequency adaptation (SFA) in a single neuron together approximate the well-known perceptron learning rule. Our calculations and integrate-and-fire simulations reveal that delayed inputs to a neuron endowed with STDP and SFA precisely instruct neural responses to earlier arriving inputs. We demonstrate this mechanism on a developmental example of auditory map formation guided by visual inputs, as observed in the external nucleus of the inferior colliculus (ICX) of barn owls. The interplay of SFA and STDP in model ICX neurons precisely transfers the tuning curve from the visual modality onto the auditory modality, demonstrating a useful computation for multimodal and sensory-guided processing.
Katz, P S; Frost, W N
1997-10-15
For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.
Egalisation adaptative et non invasive de la reponse temps-frequence d'une petite salle
Martin, Tristan
frequency bands, the filter response arising from the inversion of the room/speaker frequency response. The resulting dynamically adapting filter has properties similar to those of the human ear, a significant spectral-resolution in lower frequencies, and high time-resolution at high frequencies. The response corrected by the filter system tends approaching to a pure pulse. Techniques explored in the context of this research led to the publication of a scientific article in a peer reviewed journal and one conference paper in which similar methods were used for mining engineering applications. (Abstract shortened by UMI.).
DEFF Research Database (Denmark)
Skovgaard, Casper; Almquist, Nicki Winfield; Bangsbo, Jens
2017-01-01
The aim of the study was, in runners accustomed to speed endurance training (SET), to examine the effect of increased and maintained frequency of SET on performance and muscular adaptations. After familiarization (FAM) to SET, eighteen male (n=14) and female (n=4) runners (VO2-max: 57.3±3.4 ml·mi...
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...
Low frequency mechanical resonance of the vocal tract in vocal exercises that apply tubes
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Radolf, Vojtěch; Laukkanen, A. M.
2017-01-01
Roč. 37, August (2017), s. 39-49 ISSN 1746-8094 R&D Projects: GA ČR(CZ) GA16-01246S Institutional support: RVO:61388998 Keywords : biomechanics of voice * vocal tract acoustics * phonation into tubes * water resistance voice therapy * bubbling frequency * formant frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.214, year: 2016
DEFF Research Database (Denmark)
Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner
2016-01-01
This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...
Vibration-induced displacement using high-frequency resonators and friction layers
DEFF Research Database (Denmark)
Thomsen, Jon Juel
1998-01-01
A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple ex...
Frequency control of a 1163 nm singly resonant OPO based on MgO:PPLN
Gross, P.; Lindsay, I.D.; Lee, Christopher James; Nittmann, M.; Bauer, T.; Bartschke, J.; Warring, U.; Fischer, A.; Kellenbauer, A.; Boller, Klaus J.
2010-01-01
We report the realization of a singly resonant optical parametric oscillator (SRO) that is designed to provide narrow-bandwidth, continuously tunable radiation at a wavelength of 1163 nm for optical cooling of osmium ions. The SRO is based on periodically poled, magnesium-oxide-doped lithium niobate
Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet
Praeg, Walter F.
1984-01-01
Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.
Chen, Jean J; Smith, Michael R; Frayne, Richard
2005-03-01
In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
Lars Neeb
2013-08-01
Full Text Available Background: The main safety aspect in the use of stroke thrombolysis and in clinical trials of new pharmaceutical or interventional stroke therapies is the incidence of hemorrhagic transformation (HT after treatment. The computed tomography (CT-based classification of the European Cooperative Acute Stroke Study (ECASS distinguishes four categories of HTs. An HT can range from a harmless spot of blood accumulation to a symptomatic space-occupying parenchymal bleeding associated with a massive deterioration of symptoms and clinical prognosis. In magnetic resonance imaging (MRI HTs are often categorized using the ECASS criteria although this classification has not been validated in MRI. We developed MRI-specific criteria for the categorization of HT and sought to assess its diagnostic reliability in a retrospective study. Methods: Consecutive acute ischemic stroke patients, who had received a 3-tesla MRI before and 12-36 h after thrombolysis, were screened retrospectively for an HT of any kind in post-treatment MRI. Intravenous tissue plasminogen activator was given to all patients within 4.5 h. HT categorization was based on a simultaneous read of 3 different MRI sequences (fluid-attenuated inversion recovery, diffusion-weighted imaging and T2* gradient-recalled echo. Categorization of HT in MRI accounted for the various aspects of the imaging pattern as the shape of the bleeding area and signal intensity on each sequence. All data sets were independently categorized in a blinded fashion by 3 expert and 3 resident observers. Interobserver reliability of this classification was determined for all observers together and for each group separately by calculating Kendall's coefficient of concordance (W. Results: Of the 186 patients screened, 39 patients (21% had an HT in post-treatment MRI and were included for the categorization of HT by experts and residents. The overall agreement of HT categorization according to the modified classification was
International Nuclear Information System (INIS)
Klofai, Yerima; Essimbi, B Z; Jaeger, D
2011-01-01
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
International Nuclear Information System (INIS)
Adrian, H.
1981-01-01
The influence of crystal defects on the phonon spectra was studied for fcc lead using superconducting tunneling spectroscopy. The theory predicts low frequency modes for the vibrational states of interstitials in (100) dumbbell configuration. Low temperature irradiation of superconducting point contacts with fast ions (point contact thickness small compared to the average ion range) showed radiation-induced structures in the low-energy part of the Eliashberg function for lead. These resonant modes are reduced by annealing at 18.5 K; they are attributed to small interstitial clusters. The radiation-induced structures are completely removed by room temperature annealing. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Marasco, Paul D; Bourbeau, Dennis J; Shell, Courtney E; Granja-Vazquez, Rafael; Ina, Jason G
2017-01-01
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.
Directory of Open Access Journals (Sweden)
Paul D Marasco
Full Text Available Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion. This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2, with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.
Singly-resonant sum frequency generation of visible light in a semiconductor disk laser
DEFF Research Database (Denmark)
Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.
2009-01-01
In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...
Perceptual Coding of Audio Signals Using Adaptive Time-Frequency Transform
Directory of Open Access Journals (Sweden)
Umapathy Karthikeyan
2007-01-01
Full Text Available Wide band digital audio signals have a very high data-rate associated with them due to their complex nature and demand for high-quality reproduction. Although recent technological advancements have significantly reduced the cost of bandwidth and miniaturized storage facilities, the rapid increase in the volume of digital audio content constantly compels the need for better compression algorithms. Over the years various perceptually lossless compression techniques have been introduced, and transform-based compression techniques have made a significant impact in recent years. In this paper, we propose one such transform-based compression technique, where the joint time-frequency (TF properties of the nonstationary nature of the audio signals were exploited in creating a compact energy representation of the signal in fewer coefficients. The decomposition coefficients were processed and perceptually filtered to retain only the relevant coefficients. Perceptual filtering (psychoacoustics was applied in a novel way by analyzing and performing TF specific psychoacoustics experiments. An added advantage of the proposed technique is that, due to its signal adaptive nature, it does not need predetermined segmentation of audio signals for processing. Eight stereo audio signal samples of different varieties were used in the study. Subjective (mean opinion score—MOS listening tests were performed and the subjective difference grades (SDG were used to compare the performance of the proposed coder with MP3, AAC, and HE-AAC encoders. Compression ratios in the range of 8 to 40 were achieved by the proposed technique with subjective difference grades (SDG ranging from –0.53 to –2.27.
Perceptual Coding of Audio Signals Using Adaptive Time-Frequency Transform
Directory of Open Access Journals (Sweden)
Karthikeyan Umapathy
2007-08-01
Full Text Available Wide band digital audio signals have a very high data-rate associated with them due to their complex nature and demand for high-quality reproduction. Although recent technological advancements have significantly reduced the cost of bandwidth and miniaturized storage facilities, the rapid increase in the volume of digital audio content constantly compels the need for better compression algorithms. Over the years various perceptually lossless compression techniques have been introduced, and transform-based compression techniques have made a significant impact in recent years. In this paper, we propose one such transform-based compression technique, where the joint time-frequency (TF properties of the nonstationary nature of the audio signals were exploited in creating a compact energy representation of the signal in fewer coefficients. The decomposition coefficients were processed and perceptually filtered to retain only the relevant coefficients. Perceptual filtering (psychoacoustics was applied in a novel way by analyzing and performing TF specific psychoacoustics experiments. An added advantage of the proposed technique is that, due to its signal adaptive nature, it does not need predetermined segmentation of audio signals for processing. Eight stereo audio signal samples of different varieties were used in the study. Subjective (mean opinion scoreÃ¢Â€Â”MOS listening tests were performed and the subjective difference grades (SDG were used to compare the performance of the proposed coder with MP3, AAC, and HE-AAC encoders. Compression ratios in the range of 8 to 40 were achieved by the proposed technique with subjective difference grades (SDG ranging from Ã¢Â€Â“0.53 to Ã¢Â€Â“2.27.
Magnetic resonance imaging of lumbar spine disc diseases. Frequency of false negatives
International Nuclear Information System (INIS)
Berthelot, J.M.; Maugars, Y.; Delecrin, Y.; Caillon, F.; Prost, A.
1995-01-01
Magnetic resonance imaging (MRI) has had an impressive impact on evaluation of degenerative diseases of the spine. Nevertheless, false negatives can occur on images involving lumbar discs. Degenerative disc diseases documented on discography and/or pathology examination of the discs can go unrecognized. Likewise sensitivity for the detection of protruding disc hernias is not totally satisfactory (20% false negatives). Finally, a magnetic resonance image visualizing displacement of the disc is not specific (10 to 15% false positives); images showing protrusion or hernia can be seen in 30% of asymptomatic patients. Although MRI gives slightly more information than other imaging techniques, false images do exist. Moreover, the usefulness of MRI to demonstrate disc disease in case of a negative CT-scan remains to be demonstrated. (authors). 26 refs
Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo
2010-05-01
A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.
High frequency, high time resolution time-to-digital converter employing passive resonating circuits
International Nuclear Information System (INIS)
Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo
2010-01-01
A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.
Laas, Katrin; Mankin, Romi; Rekker, Astrid
2009-05-01
The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
International Nuclear Information System (INIS)
Luo, Shaohua; Sun, Quanping; Cheng, Wei
2016-01-01
This paper addresses chaos control of the micro-electro- mechanical resonator by using adaptive dynamic surface technology with extended state observer. To reveal the mechanism of the micro- electro-mechanical resonator, the phase diagrams and corresponding time histories are given to research the nonlinear dynamics and chaotic behavior, and Homoclinic and heteroclinic chaos which relate closely with the appearance of chaos are presented based on the potential function. To eliminate the effect of chaos, an adaptive dynamic surface control scheme with extended state observer is designed to convert random motion into regular motion without precise system model parameters and measured variables. Putting tracking differentiator into chaos controller solves the ‘explosion of complexity’ of backstepping and poor precision of the first-order filters. Meanwhile, to obtain high performance, a neural network with adaptive law is employed to approximate unknown nonlinear function in the process of controller design. The boundedness of all the signals of the closed-loop system is proved in theoretical analysis. Finally, numerical simulations are executed and extensive results illustrate effectiveness and robustness of the proposed scheme.
Energy Technology Data Exchange (ETDEWEB)
Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)
2017-02-10
The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.
Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.
2017-09-01
Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.
International Nuclear Information System (INIS)
Zhao Ji-Cong; Yuan Quan; Wang Feng-Xiang; Kan Xiao; Han Guo-Wei; Yang Jin-Ling; Yang Fu-Hua; Sun Ling; Sun Hai-Yan
2017-01-01
In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au–Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor ( Q -factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency–temperature ( f – T ) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q -factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. (paper)
Analysis on voltage oscillation of a mid-frequency series resonant inverter for DRMP coils on J-TEXT
Energy Technology Data Exchange (ETDEWEB)
Liu, Long-jian, E-mail: liulongjian001@yeah.net [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Ke-xun; Zhang, Ming; Nan, Jie-yin; Jiang, Guo-zhong; Rao, Bo; Li, Xuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)
2016-01-15
Highlights: • The reason of high-voltage oscillation of a series resonant inverter for DRMP coils is analyzed. • The condition or method for reduction of high-voltage oscillation is discussed. • The considerations of dead time and switch frequency for reduction of high-voltage oscillation are discussed. - Abstract: This paper deals with the voltage oscillation of an AC power supply for generating dynamic magnetic perturbation (DRMP) on J-TEXT. The power supply is a series resonant inverter with a matching transformer. It was noted that the high-voltage oscillation at transformer primary side is caused by an interaction between the line inductance and the stray capacitance of the matching transformer at switching transitions. In order to reduce the high-voltage oscillation and consider the requirement for soft-switching technique simultaneously, the switching frequency should be chosen properly by fine-tuning. The dead time should be chosen according to the relative size of minimum required dead time for protection and the optimal dead time.
Zhao, Ji-Cong; Yuan, Quan; Wang, Feng-Xiang; Kan, Xiao; Han, Guo-Wei; Sun, Ling; Sun, Hai-Yan; Yang, Jin-Ling; Yang, Fu-Hua
2017-06-01
In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au-Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor (Q-factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency-temperature (f-T) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q-factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. Project supported by the National Natural Science Foundation of China (Grant Nos. 61234007, 61404136, and 61504130), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ16055103), the Key Research & Development Program of Jiangsu Province, China (Grant No. BE2016007-2), and the Major Project of Natural Science Research of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJA510006).
High speed resonant frequency determination applied to field mapping using perturbation techniques
International Nuclear Information System (INIS)
Smith, B.H.; Burton, R.J.; Hutcheon, R.M.
1992-01-01
Perturbation techniques are commonly used for measuring electric and magnetic field distributions in resonant structures. A field measurement system has been assembled using a Hewlett Packard model 8753C network analyzer interfaced via an HPIB bus to a personal computer to form an accurate, rapid and flexible system for data acquisition, control, and analysis of such measurements. Characterization of long linac structures (up to 3 m) is accomplished in about three minutes, minimizing thermal drift effects. This paper describes the system, its application and its extension to applications such as confirming the presence of weak, off-axis quadrupole fields in an on-axis coupled linac. (Author) 5 figs., 10 refs
International Nuclear Information System (INIS)
Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A
2015-01-01
The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization
Energy Technology Data Exchange (ETDEWEB)
Eriksson, Daniel
2010-07-01
Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.
DEFF Research Database (Denmark)
Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc
2014-01-01
to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....
Anderson, David A.; Paradis, Eric G.; Raithel, Georg
2018-01-01
We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...
Adaptive Tuning of Frequency Thresholds Using Voltage Drop Data in Decentralized Load Shedding
DEFF Research Database (Denmark)
Hoseinzadeh, Bakhtyar; Faria Da Silva, Filipe Miguel; Bak, Claus Leth
2015-01-01
Load shedding (LS) is the last firewall and the most expensive control action against power system blackout. In the conventional under frequency LS (UFLS) schemes, the load drop locations are already determined independently of the event location. Furthermore, the frequency thresholds of LS relays...... are prespecified and constant values which may not be a comprehensive solution for widespread range of possible events. This paper addresses the decentralized LS in which the instantaneous voltage deviation of load buses is used to determine the frequency thresholds of LS relays. The higher frequency thresholds...
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector
Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.
2018-06-01
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
Development of Integrated Electronics for Readout of High Frequency Micro/Nano-mechanical Resonator
DEFF Research Database (Denmark)
Tang, Meng
Micro størrelse bulk type resonatorer er blevet udviklet gennern de sidste fem år til anvendelse inden for elektronikbranchen til lav strøm og billige alternativer til både passive og aktive komponenter. Dog kan denne type bulk resonator også bruges til bio/kemiske sensorer hvor, da på grund af den...... fri bevægelser omkring sin resonansfrekven. Metodens evne til at måle resonans frekvens, Q-faktor og den parallel kondensator på samme tid er verificeret både teoretisk og eksperimentelt i luft ved høj hastighed. Hertil kommer, at metoden ikke har brug for nogen kompliceret form for feedback som gøre...
Frequency of bone-bruises in ankle sprains. Magnetic resonance imaging studies
International Nuclear Information System (INIS)
Uto, Yuji; Morooka, Masaaki
2002-01-01
We retrospectively studied MRI on the frequency of bone-bruises in ankle sprains, especially those of the lateral collateral ligaments of the ankle joint. Bone-bruises occurred in 3.8% (4/106) of ruptures of anterior talofibular ligament (ATFL), and 6.3% (5/79) of ruptures of ATFL and calcaneofibular ligament (CFL). Bone-bruises were more likely to be seen in ATFL and CFL ruptures than in ATFL rupture alone. (author)
Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall
Czech Academy of Sciences Publication Activity Database
Jacquet, P.; Bobkov, V.; Colas, L.; Czarnecka, A.; Lerche, E.; Mayoral, M.-L.; Monakhov, I.; Van-Eester, D.; Arnoux, G.; Brezinsek, S.; Brix, M.; Campergue, A.-L.; Devaux, S.; Drewelow, P.; Graham, M.; Klepper, C.C.; Meigs, A.; Milanesio, D.; Mlynář, Jan; Pütterich, T.; Sirinelli, A.
2014-01-01
Roč. 21, č. 6 (2014), 061510-061510 ISSN 1070-664X. [Topical conference on radio frequency power in plasmas/20./. Sorrento, 25.06.2013-28.06.2013] Institutional support: RVO:61389021 Keywords : JET * ITER-like wall * ICRF heating * impurities * sawtooth * simulation * transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/6/10.1063/1.4884354
International Nuclear Information System (INIS)
Pophof, B.; Brix, G.
2017-01-01
During the last few years, new studies on biological effects of strong static magnetic fields and on thermal effects of high-frequency electromagnetic fields used in magnetic resonance imaging (MRI) were published. Many of these studies have not yet been included in the current safety recommendations. Scientific publications since 2010 on biological effects of static and electromagnetic fields in MRI were researched and evaluated. New studies confirm older publications that have already described effects of static magnetic fields on sensory organs and the central nervous system, accompanied by sensory perceptions. A new result is the direct effect of Lorentz forces on ionic currents in the semicircular canals of the vestibular system. Recent studies of thermal effects of high-frequency electromagnetic fields were focused on the development of anatomically realistic body models and a more precise simulation of exposure scenarios. Strong static magnetic fields can cause unpleasant sensations, in particular, vertigo. In addition, they can influence the performance of the medical staff and thus potentially endanger the patient's safety. As a precaution, medical personnel should move slowly within the field gradient. High-frequency electromagnetic fields lead to an increase in the temperature of patients' tissues and organs. This should be considered especially in patients with restricted thermoregulation and in pregnant women and neonates; in these cases exposure should be kept as low as possible. (orig.) [de
Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging
Stemkens, Bjorn; Benkert, Thomas; Chandarana, Hersh; Bittman, Mark E.; Van den Berg, Cornelis A.T.; Lagendijk, Jan J.W.; Sodickson, Daniel K.; Tijssen, Rob H.N.; Block, Kai Tobias
2017-01-01
Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the
Radio frequency plasma heating in large tokamak systems near the lower hybrid resonance
International Nuclear Information System (INIS)
Deitz, A.; Hooke, W.M.
1975-01-01
The frequency range, power, efficiency, and pulse length of a high power rf system are discussed as they might be applied to the TFTR Tokamak facility as well as on a full scale reactor. Comparisons are made of the size, power output, and costs to obtain microwave power sufficient to satisfy the physics requirements. A new microwave feed concept is discussed which will improve the coupling of the microwave energy into the plasma. The unique advantages of waveguide feed systems is apparent when one considers the practical problems associated with coupling supplementary heating energy into a reactor
Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing
DEFF Research Database (Denmark)
Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin
2009-01-01
We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm N......:YVO4 laser, generating a SFG beam at 488 nm. The ECDL have MH^2=1.9 and MV^2=2.4 and the solid-state laser has M^2...
EMC Investigation of a Very High Frequency Self-oscillating Resonant Power Converter
DEFF Research Database (Denmark)
Pedersen, Jeppe Arnsdorf; Knott, Arnold; Andersen, Michael A. E.
2016-01-01
This paper focuses on the electromagnetic compatibility (EMC) performance of a Very High Frequency (VHF) converter and how to lower the emissions. To test the EMC performance a VHF converter is implemented with a Class-E inverter and a Class-DE rectifier. The converter is designed to deliver 3 W...... the regulations. This converter shows to be well below the levels for conducted emission even without filtering. For the radiated emissions the converter is above the limits without input and output filters. Several designs with different ways to lower the emissions are implemented and the different layouts...
Beiles, Avigdor; Raz, Shmuel; Ben-Abu, Yuval; Nevo, Eviatar
2015-10-14
The current analysis of transposon elements (TE) in Drosophila melanogaster at Evolution Canyon, (EC), Israel, is based on data and analysis done by our collaborators (Drs. J. Gonzalez, J. Martinez and W. Makalowski, this issue). They estimated the frequencies of 28 TEs (transposon elements) in fruit flies (D. melanogaster) from the ecologically tropic, hot, and dry south-facing slope (SFS) or "African" slope (AS) of EC and compared it with the TE frequencies on the temperate-cool and humid north-facing slope (NFS) or "European" slope (ES), separated, on average, by 250 m. The flies were sampled from two stations on each slope. We received their results, including the frequencies of each TE on each slope, and the probabilities of the statistical analyses (G-tests) of each TE separately. We continued the analysis of the inter-slope differences of the frequencies of the TEs, and based our different conclusions on that analysis and on the difference between micro (=EC) and macro (2000 km.) comparisons [Gonzalez et al. 2015 doi: 10.1186/s13062-015-0075-4 ]. Our collaborators based all their conclusions on the non-significant results of each of the individual tests of the 28 TEs. We analysed also the distribution of the TE differences between the slopes, based on their results. Thirteen TEs were more frequent on the SFS, 11 were more frequent on the NFS, and four had equal frequencies. Because of the equalizing effect of the ongoing migration, only small and temporary differences between the slopes (0 - 0.06) were regarded by us as random fluctuations (drift). Three TEs were intermediate (0.08-0.09) and await additional research. The 11 TEs with large frequency differences (0.12 - 0.22) were regarded by us as putative adaptive TEs, because the equalizing power of ongoing migration will eliminate random large differences. Five of them were higher on the SFS and six were higher on the NFS. Gaps in the distribution of the differences distinguished between the large and
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Energy Technology Data Exchange (ETDEWEB)
Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping [Hubei University, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan (China)
2017-07-15
Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe{sub 2}O{sub 4}, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe{sub 2}O{sub 4} ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices. (orig.)
International Nuclear Information System (INIS)
Wang Shumin; Duyn, Jeff H
2008-01-01
A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations
Energy Technology Data Exchange (ETDEWEB)
Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)
2006-06-21
We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.
Directory of Open Access Journals (Sweden)
Marcello Mancini
Full Text Available To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1 the petrosquamous sinus, draining into the posterior facial vein, 2 the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3 the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins.
Curadelli, O.; Ambrosini, D.; Mirasso, A.; Amani, M.
2010-01-01
In this paper, a numerical-experimental study of the overall dynamical response of elevated spherical tanks subjected to horizontal base motion is presented. The main objective is to gain insight in the physical response of this particular structural typology widely used in the petrochemical industry as liquefied petroleum gas (LPG) containers. In order to identify the natural frequencies of the modes that mainly contribute to the response, experimental free vibration tests on an elevated spherical tank model for different liquid levels were carried out. Next, a numerical model that takes into account the coupling between fluid and structure was developed and validated against the experimental results. A very good agreement between experimental and numerical results was obtained. The results obtained show the influence of liquid levels on natural frequencies and indicate that the sloshing has a significant effect on the dynamical characteristics of the analyzed system. In order to obtain a good representation of the overall dynamical behaviour of the system by means of a simplified lumped mass model, a minimum of three masses is suggested. Finally, appropriate names of these three masses are proposed in the present paper.
Tabassum, Sumera; Haider, Shahbaz
2016-01-01
To determine frequencies of different MRI patterns of tuberculous spondylitisin a public sector hospital in Karachi. This descriptive multidisciplinary case series study was done from October 25, 2011 to May 28, 2012 in Radiology Department and Department of Medicine in the Jinnah Postgraduate Medical Center Karachi. MRI scans (dorsal / lumbosacral spine) of the Patients presenting with backache in Medical OPD, were performed in Radiology Department. Axial and sagittal images of T1 weighted, T2 weighted and STIR sequences of the affected region were taken. A total of 140 patients who were diagnosed as having tuberculous spondylitis were further evaluated and analyzed for having different patterns of involvement of the spine and compared with similar studies. Among frequencies of different MRI pattern of tuberculous spondylitis, contiguous vertebral involvement was 100%, discal involvement 98.6%, paravertebral abscess 92.1% cases, epidural abscess 91.4%, spinal cord / thecal sac compression 89.3%, vertebral collapse 72.9%, gibbus deformity 42.9% and psoas abscess 36.4%. Contiguous vertebral involvement was commonest MRI pattern, followed by disk involvement, paravertebral & epidural abscesses, thecal sac compression and vertebral collapse.
High frequency bulk resonators for bio/chemical diagnostics and monitoring applications
DEFF Research Database (Denmark)
Cagliani, Alberto
In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water. The integrat......In the environmental monitoring eld there is a vast variety of possible applications for microfabricated MEMS sensors. As an example, a network of miniaturized sensors could detect toxic gases, harmful airbornes, explosives in air or, in liquid, monitor the quality of drinking water...... be operated in gaseous environments thanks to the high Qfactors and show very high mass sensitivities and very small mass resolutions. The resonators have been microfabricated at the DTU-Danchip facility exploiting the microfabrication knowledge already present in the DyNEMS group. The devices have been...... and as temperature sensors in humid environment. Moreover, they have been used as tool to investigate the interaction between water molecules and DNA. Finally, nanograss have been etched into the body of the microresonators in order to improve the mass sensitivy of the devices. On the whole, the experimental results...
Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny
2014-05-01
To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.
2012-01-01
The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938
Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.
2012-12-01
In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.
Energy Technology Data Exchange (ETDEWEB)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
International Nuclear Information System (INIS)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-01-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study
Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf
2012-01-01
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498
Walsh, Brian H; Neil, Jeffrey; Morey, JoAnn; Yang, Edward; Silvera, Michelle V; Inder, Terrie E; Ortinau, Cynthia
2017-08-01
To assess and contrast the incidence and severity of abnormalities on cerebral magnetic resonance imaging (MRI) between infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia. This retrospective cohort studied infants with mild, moderate, and severe neonatal encephalopathy who received therapeutic hypothermia at a single tertiary neonatal intensive care unit between 2013 and 2015. Two neuroradiologists masked to the clinical condition evaluated brain MRIs for cerebral injury after therapeutic hypothermia using the Barkovich classification system. Additional abnormalities not included in this classification system were also noted. The rate, pattern, and severity of abnormalities/injury were compared across the grades of neonatal encephalopathy. Eighty-nine infants received therapeutic hypothermia and met study criteria, 48 with mild neonatal encephalopathy, 35 with moderate neonatal encephalopathy, and 6 with severe neonatal encephalopathy. Forty-eight infants (54%) had an abnormality on MRI. There was no difference in the rate of overall MRI abnormalities by grade of neonatal encephalopathy (mild neonatal encephalopathy 54%, moderate neonatal encephalopathy 54%, and severe neonatal encephalopathy 50%; P= .89). Basal ganglia/thalamic injury was more common in those with severe neonatal encephalopathy (mild neonatal encephalopathy 4%, moderate neonatal encephalopathy 9%, severe neonatal encephalopathy 34%; P = .03). In contrast, watershed injury did not differ between neonatal encephalopathy grades (mild neonatal encephalopathy 36%, moderate neonatal encephalopathy 32%, severe neonatal encephalopathy 50%; P = .3). Mild neonatal encephalopathy is commonly associated with MRI abnormalities after therapeutic hypothermia. The grade of neonatal encephalopathy during the first hours of life may not discriminate adequately between infants with and without cerebral injury noted on MRI after therapeutic hypothermia
Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.
Directory of Open Access Journals (Sweden)
Davide Santoro
Full Text Available The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.
Duque, Daniel; Wang, Xin; Nieto-Diego, Javier; Krumbholz, Katrin; Malmierca, Manuel S.
2016-01-01
Electrophysiological and psychophysical responses to a low-intensity probe sound tend to be suppressed by a preceding high-intensity adaptor sound. Nevertheless, rare low-intensity deviant sounds presented among frequent high-intensity standard sounds in an intensity oddball paradigm can elicit an electroencephalographic mismatch negativity (MMN) response. This has been taken to suggest that the MMN is a correlate of true change or “deviance” detection. A key question is where in the ascending auditory pathway true deviance sensitivity first emerges. Here, we addressed this question by measuring low-intensity deviant responses from single units in the inferior colliculus (IC) of anesthetized rats. If the IC exhibits true deviance sensitivity to intensity, IC neurons should show enhanced responses to low-intensity deviant sounds presented among high-intensity standards. Contrary to this prediction, deviant responses were only enhanced when the standards and deviants differed in frequency. The results could be explained with a model assuming that IC neurons integrate over multiple frequency-tuned channels and that adaptation occurs within each channel independently. We used an adaptation paradigm with multiple repeated adaptors to measure the tuning widths of these adaption channels in relation to the neurons’ overall tuning widths. PMID:27066835
International Nuclear Information System (INIS)
Aguero, V.M.; Ng, K.Y.
1983-10-01
Keil and Zotter have analyzed the electromagnetic fields excited by the longitudinal density fluctuations of an unbunched relativistic particle beam drifting in a corrugated vacuum chamber of circular cross section. At higher frequencies, these corrugations become resonant cavities. Zotter has written a computer program known as KN7C to compute the resonant frequencies. However, in the actual use of KN7C, some difficulties are encountered. To surmount these difficulties, the program known as CAVITY was written to analyze this pill-box shaped resonant cavity. Although there are many input variables to this program, only two are essential and need to be specified. They are BD = b/d = the ratio of the circular beampipe radius to that of the pill-box cavity and GD = g/d where g is the length of the cavity. When they are specified, CAVITY will print out the dimensionless normalized fundamental resonant frequency FD, shunt impedance Z and figure of merit Q. From these, the actual resonant frequency, shunt impedance and figure of merit can be deduced. The program is described and a listing is provided
International Nuclear Information System (INIS)
Lee, S S; Iqbal, S; Kamarol, M
2011-01-01
Conventional pulse frequency modulated (PFM) zero current switching (ZCS) series resonant (SR) inverter fed high voltage dc power supplies have nearly zero switching loss. However, they have limitations of poor controllability at light loads and large output voltage ripple at low switching frequencies. To address these problems, this paper proposes a combined resonant tank capacitance and pulse frequency modulation based control approach. For the realization of the proposed control approach, the tank circuit of the resonant inverter is made up of several resonant capacitors that are switched into or out of the tank circuit by electromechanical switches. The output voltage of the converter is regulated by digitally modulating the resonant tank capacitance and narrowly varying the switching frequency. The proposed control scheme has several features, namely a wide range of controllability even at light loads, less output voltage ripple, and less current stress on the inverter's power switches at light loads. Therefore, the proposed control approach alleviates most of the problems associated with conventional PFM. Experimental results obtained from a scaled down laboratory prototype are presented to verify the effectiveness of the proposed system.
Frequency of puncture holes in peritoneal dialysis catheters related to the beta cap adapter.
Ohashi, Yasushi; Kansal, Sheru; Schreiber, Martin
2012-01-01
Between November 2009 and September 2011, 12 patients (6 women, 6 men) undergoing continuous peritoneal dialysis (PD) or automated PD developed puncture-like holes in the PD catheter near the interface of the adapter with the superior aspect of the Silastic PD catheter The adapter is used to connect the PD catheter to the PD transfer set. Over the course of 23 months, the 12 patients presented to the PD unit with 19 separate instances of catheter holes, for an event rate of 0.23 holes per patient-year Data including socio-demographic information, PD modality, need for antibiotic treatment, event recurrence, infectious complications, and time from catheter placement were collected from patients whose catheters did and did not develop holes. We observed no differences between patients whose catheters developed holes and those whose catheters did not. The location of the individual holes suggested a relationship between the adapter and the catheter holes. The holes, which led to increased patient morbidity and costs, may be related to structural changes made in 2006 to the adapter.
Decentralized & Adaptive Load-Frequency Control Scheme of Variable Speed Wind Turbines
DEFF Research Database (Denmark)
Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth
2014-01-01
and therefore determining the contribution factor of each individual WT to gain an adaptive LFC approach. The Electrical Distance (ED) concept confirms that the locally measured voltage decay is a proper criterion of closeness to the disturbance place. Numerical simulations carried out in DigSilent PowerFactory...
Broom, Donald M
2006-01-01
The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and
Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results
Energy Technology Data Exchange (ETDEWEB)
Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.
2016-12-16
For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.
Yang, Yanfu; Xiang, Qian; Zhang, Qun; Zhou, Zhongqing; Jiang, Wen; He, Qianwen; Yao, Yong
2017-09-01
We propose a joint estimation scheme for fast, accurate, and robust frequency offset (FO) estimation along with phase estimation based on modified adaptive Kalman filter (MAKF). The scheme consists of three key modules: extend Kalman filter (EKF), lock detector, and FO cycle slip recovery. The EKF module estimates time-varying phase induced by both FO and laser phase noise. The lock detector module makes decision between acquisition mode and tracking mode and consequently sets the EKF tuning parameter in an adaptive manner. The third module can detect possible cycle slip in the case of large FO and make proper correction. Based on the simulation and experimental results, the proposed MAKF has shown excellent estimation performance featuring high accuracy, fast convergence, as well as the capability of cycle slip recovery.
Gross, Mike J; Shearer, David A; Bringer, Joy D; Hall, Ross; Cook, Christian J; Kilduff, Liam P
2016-09-01
Support and management staff in elite sport experience work-related stress and emotional disturbance to a similar extent as athletes (Fletcher and Wagstaff 2009). The resonant frequency breathing technique (Lehrer et al. 2000) can inhibit autonomic changes associated with stressful situations or events and as such provides a potential emotional regulation tool. The present study utilised five practitioner-led heart rate variability (HRV) biofeedback sessions and home practice via mobile applications to train support and management staff (n = 9) in resonant frequency breathing techniques. Although baseline HRV did not change from pre to post training, participants increased total HRV (i.e., SDNN; p = .006), parasympathetic HRV (i.e., RMSSD; p = .028) and HRV reflective of baroreflex function (i.e., low frequency power; p = .018) while accurately performing resonant frequency breathing without a breath pacer. Post-intervention questionnaire data revealed an increase (p = .032) in habitual use of somatic strategies for emotional regulation, and social validation data suggested that the technique enhanced emotional regulation at home, work and during international competition. HRV biofeedback and the resonant frequency technique provided an on-demand emotional regulation technique for elite sport support and management staff.
Lee, Kevin M; Hinojosa, Kevin T; Wochner, Mark S; Argo, Theodore F; Wilson, Preston S; Mercier, Richard S
2011-11-01
The efficacy of large tethered encapsulated gas bubbles for the mitigation of low frequency underwater noise was investigated with an acoustic resonator technique. Tethered latex balloons were used as the bubbles, which had radii of approximately 5 cm. Phase speeds were inferred from the resonances of a water and balloon-filled waveguide approximately 1.8 m in length. The Commander and Prosperetti effective-medium model [J. Acoust. Soc. Am. 85, 732-746 (1989)] quantitatively described the observed dispersion from well below to just below the individual bubble resonance frequency, and it qualitatively predicted the frequency range of high attenuation for void fractions between 2% and 5% for collections of stationary balloons within the waveguide. A finite-element model was used to investigate the sensitivity of the waveguide resonance frequencies, and hence the inferred phase speeds, to changes in individual bubble size and position. The results indicate that large tethered encapsulated bubbles could be used mitigate low frequency underwater noise and that the Commander and Prosperetti model would be useful in the design of such a system.
Frequency Adaptive Repetitive Control of Grid-Tied Three-Phase PV Inverters
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2016-01-01
Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current in the prese......Repetitive control offers an accurate current control scheme for grid-tied converters to feed high quality sinusoidal current into the grid. However, with grid frequency being treated as a constant value, conventional repetitive controller fail to produce high quality feeding current...
International Development Research Centre (IDRC) Digital Library (Canada)
building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.
Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes
Kappus, Johanna
2012-01-01
For a Lévy process X having finite variation on compact sets and finite first moments, Âµ( dx) = xv( dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of Âµ and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.
DEFF Research Database (Denmark)
Orozco-Santillán, Arturo
1998-01-01
An experimental investigation of sound equalization in an extended region inside an enclosure is presented. DSP and the multiple LMS algorithm is used to obtain the optimal solution. Equalization at single frequencies in the stationary state is studied. Also analyzed is the equalization of band...
Silva, P H R; Spedo, C T; Barreira, A A; Leoni, R F
2018-02-01
The Symbol Digit Modalities Test (SDMT) is widely used for cognitive evaluation of information processing speed (IPS), required in many cognitive operations. Despite being unspecific for different neurological disorders, it is sensitive to assess impaired performance related to stroke, Parkinson's disease, traumatic brain injury, and multiple sclerosis. However, in addition to evaluate the presence and severity of IPS impairment, it is of interest to determine the localization and integration of brain regions responsible for the functions assessed by the SDMT. To review the studies that adapted the SDMT to the magnetic resonance environment and obtain the brain areas associated with the performance of the task in healthy subjects with a meta-analysis. A systematic review was performed using ten studies published between 1990 and 2017, and selected from four databases. All studies included participants of both genders and age between 18 and 50 years, used Functional Magnetic Resonance Imaging (fMRI) and SDMT adaptation and reported brain regions associated with the task. Six of them also reported the region coordinates in a standard space, so they were included in a meta-analysis. Activation Likelihood Estimation algorithm, with significance for p < 0.05 corrected for multiple comparisons, was used to identify areas that are robustly related to the performance of the SDMT. The areas predominantly reported in the studies of our meta-analysis were regions of the frontoparietal attentional network and occipital cortex, as well as cuneus, precuneus, and cerebellum. Individually all regions that survived the statistical threshold are consistent with what is expected after reviewing prospective studies. The present study allowed the identification of brain areas activated during the performance of the SDMT in healthy subjects, and therefore it will help understanding the differences in brain activation by this task in clinical populations. Moreover, it may guide future
Tucker, K L; Bianchi, L A; Maras, J; Bermudez, O I
1998-09-01
To study issues of diet and health among Hispanic adults living in the northeastern United States, the authors adapted a version of the National Cancer Institute (NCI)/Block food frequency questionnaire. Foods that contributed to nutrient intake of Puerto Rican adults in the Hispanic Health and Nutrition Examination Survey (HHANES) were ranked to identify items to be added to the food list. Portion sizes were compared across HHANES and the Second National Health and Nutrition Examination Survey (NHANES II) to assess the adequacy of the assumed values. Within line items, frequencies of consumption of individual foods were ranked and these data were used to adjust the weighting factors within the database. To test the revised form, 24-hour recalls were collected from 90 elderly Hispanics and 35 elderly non-Hispanic whites. These data were coded into the original and revised food frequency forms and nutrient intake results were compared with recall results by paired t-test, and by Pearson and intraclass correlations. Added foods include plantains, avocado, mango, cassava, empanadas, and custard. Portion sizes differed significantly between HHANES and NHANES II, and were left open-ended. Estimated mean nutrient intakes and correlations with recall data were lower with the original versus the revised form. The authors conclude that the use in minority populations of food frequency questionnaires developed for the general population is likely to result in biased estimates of intake unless modifications are made in the questionnaires.
Adaptation of Organisms by Resonance of RNA Transcription with the Cellular Redox Cycle
Stolc, Viktor
2012-01-01
Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in that cell, including energy production, DNA replication, and RNA transcription. It is shown that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.
Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems
Directory of Open Access Journals (Sweden)
Evangelos Rikos
2017-07-01
Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.
Directory of Open Access Journals (Sweden)
Jimeng Li
2016-01-01
Full Text Available The structure of mechanical equipment becomes increasingly complex, and tough environments under which it works often make bearings and gears subject to failure. However, effective extraction of useful feature information submerged in strong noise that is indicative of structural defects has remained a major challenge. Therefore, an adaptive multiscale noise control enhanced stochastic resonance (SR method based on modified ensemble empirical mode decomposition (EEMD for mechanical fault diagnosis is proposed in the paper. According to the oscillation characteristics of signal itself, the algorithm of modified EEMD can adaptively decompose the fault signals into different scales and it reduces the decomposition levels to improve calculation efficiency of the proposed method. Through filter processing with the constructed filters, the orthogonality of adjacent intrinsic mode functions (IMFs can be improved, which is conducive to enhancing the extraction of weak features from strong noise. The constructed signal obtained by using IMFs is inputted into the SR system, and the noise control parameter of different scales is optimized and selected with the help of the genetic algorithm, thus achieving the enhancement extraction of weak features. Finally, simulation experiments and engineering application of bearing fault diagnosis demonstrate the effectiveness and feasibility of the proposed method.
van Eekeren, P.; Said, C.; Tahmaseb, A.; Wismeijer, D.
2015-01-01
Purpose: Safe loading of dental implants requires an optimal osseointegration. This osseointegration process during healing could be analyzed by resonance frequency analysis (RFA). The purpose of the study was to evaluate RFA changes during healing in splinted, early-loaded, thermal acid-etched,
Savvin, Aleksandr D.
2011-03-01
A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.
Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.
2011-01-01
A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.
Morvan, Daniel; Demidem, Aicha
2007-03-01
Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.
International Nuclear Information System (INIS)
Maric, Dj.M.; Meier, P.F.; Vogel, S.; Davis, E.A.
1991-01-01
The possibility of studying impurity passivation complexes in semiconductors by quadrupole resonance spectroscopy is examined. The problem is illustrated for the case of boron in silicon passivated with hydrogen or, equivalently, with muonium, since the radioactive light isotope in principle offers a greater sensitivity for detection of the spectra. Ab initio calculations on suitable cluster models of the passivation complexes provide estimates of the electric field gradients at the quadrupolar nuclei, and thereby predictions of the quadrupole resonance frequencies. Detection via cross-relaxation techniques is proposed, notably muon level crossing resonance (μLCR), and illustrated by calculation of the time dependence of the muon polarization function. Possible reasons for the absence of quadrupolar resonances in μLCR spectra recorded in exploratory experiments are discussed; these include the existence of a local tunnelling mode for the lighter isotope. (author)
Kwak, Mu-Seung; Kim, Seok-Gyu
2013-11-01
The present study was aimed to evaluate the influence of implant contact ratio and stiffness of implant-surrounding materials on the resonance frequency analysis (RFA) values. Seventy resin blocks that had the different amounts (100, 50, 30, 15%) of resin-implant contact (RIC) were fabricated. Ten silicone putty blocks with 100% silicone-implant contact were also made. The implants with Ø5.0 mm × 13.0 mm were placed on eighty specimen blocks. The RFA value was measured on the transducer that was connected to each implant by Osstell Mentor. Kruskal-Wallis and Scheffe's tests (α=.05) were done for statistical analysis. The control resin group with 100% RIC had the highest RFA value of 83.9, which was significantly different only from the resin group with 15% RIC among the resin groups. The silicone putty group with 100% contact had the lowest RFA value of 36.6 and showed statistically significant differences from the resin groups. Within the limitations of this in vitro study, there was no significant difference in the RFA values among the resin groups with different RIC's except when the RIC difference was more than 85%. A significant increase in the RFA value was observed related to the increase in stiffness of material around implant.
Dagher, Maroun; Mokbel, Nadim; Jabbour, Gabriel; Naaman, Nada
2014-12-01
Primary stability is evaluated using resonance frequency analysis (RFA) and insertion torque (IT). Although there is a strong correlation between RFA and IT, studies failed to find a correlation between RFA and bone to implant contact (BIC) or IT and BIC. To compare RFA, IT, and BIC of SLA, SLActive, Euroteknika, and TiUnite implant surfaces and evaluate the correlation between them. Thirty-two implants were placed in 8 sheep. RFA and IT were recorded. Animals were killed at 1 and 2 months. A significant difference was found in RFA between the 4 surfaces. No significant difference was found for IT. Mean BIC was different between all 4 surfaces. A significant positive correlation was found between RFA and IT with SLA. No significant correlation was found between RFA and BIC and between IT and BIC at 1 and 2 months. Implants with 4 different surfaces have similar IT values but different RFA and BIC. Additionally irrespective of the implant surface, there is no correlation between IT and BIC and between RFA and BIC.