WorldWideScience

Sample records for adaptive notch filters

  1. Regularized Adaptive Notch Filters for Acoustic Howling Suppression

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc;

    2009-01-01

    In this paper, a method for the suppression of acoustic howling is developed, based on adaptive notch filters (ANF) with regularization (RANF). The method features three RANFs working in parallel to achieve frequency tracking, howling detection and suppression. The ANF-based approach to howling...

  2. Adaptive Notch filter based active damping for power converters using LCL filters

    DEFF Research Database (Denmark)

    Ciobotaru, M.; Rossé, A.; Bede, L.;

    2016-01-01

    This paper proposes an active damping technique for grid-connected converters using inductor-capacitor-inductor (LCL) filters. The technique relies on a discrete-time adaptive notch filter (NF) which is able to adapt its resonance frequency and bandwidth in real-time. The tuning function of this ......This paper proposes an active damping technique for grid-connected converters using inductor-capacitor-inductor (LCL) filters. The technique relies on a discrete-time adaptive notch filter (NF) which is able to adapt its resonance frequency and bandwidth in real-time. The tuning function...

  3. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  4. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.

    Science.gov (United States)

    Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin

    2011-01-01

    Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.

  5. A gradient-adaptive lattice-based complex adaptive notch filter

    Science.gov (United States)

    Zhu, Rui; Yang, Feiran; Yang, Jun

    2016-12-01

    This paper presents a new complex adaptive notch filter to estimate and track the frequency of a complex sinusoidal signal. The gradient-adaptive lattice structure instead of the traditional gradient one is adopted to accelerate the convergence rate. It is proved that the proposed algorithm results in unbiased estimations by using the ordinary differential equation approach. The closed-form expressions for the steady-state mean square error and the upper bound of step size are also derived. Simulations are conducted to validate the theoretical analysis and demonstrate that the proposed method generates considerably better convergence rates and tracking properties than existing methods, particularly in low signal-to-noise ratio environments.

  6. Automatic balancing of AMB systems using plural notch filter and adaptive synchronous compensation

    Science.gov (United States)

    Xu, Xiangbo; Chen, Shao; Zhang, Yanan

    2016-07-01

    To achieve automatic balancing in active magnetic bearing (AMB) system, a control method with notch filters and synchronous compensators is widely employed. However, the control precision is significantly affected by the synchronous compensation error, which is caused by parameter errors and variations of the power amplifiers. Furthermore, the computation effort may become intolerable if a 4-degree-of-freedom (dof) AMB system is studied. To solve these problems, an adaptive automatic balancing control method in the AMB system is presented in this study. Firstly, a 4-dof radial AMB system is described and analyzed. To simplify the controller design, the 4-dof dynamic equations are transferred into two plural functions related to translation and rotation, respectively. Next, to achieve automatic balancing of the AMB system, two synchronous equations are formed. Solution of them leads to a control strategy based on notch filters and feedforward controllers with an inverse function of the power amplifier. The feedforward controllers can be simplified as synchronous phases and amplitudes. Then, a plural phase-shift notch filter which can identify the synchronous components in 2-dof motions is formulated, and an adaptive compensation method that can form two closed-loop systems to tune the synchronous amplitude of the feedforward controller and the phase of the plural notch filter is proposed. Finally, the proposed control strategy is verified by both simulations and experiments on a test rig of magnetically suspended control moment gyro. The results indicate that this method can fulfill the automatic balancing of the AMB system with a light computational load.

  7. NOTCH FILTER USING SIMULATED INDUCTOR

    Directory of Open Access Journals (Sweden)

    D.SUSAN,

    2011-06-01

    Full Text Available The design of analog filters at low frequencies is not possible because the size of inductors becomes very large. In such cases, the simulated inductors using operational amplifiers are used. This paper deals with the implementation of notch filter using band pass filter which uses simulated inductor where the direct implementation of notch filter using simulated inductor is not possible because of floating inductor. The design of notch filter and the simulation done in PSPICE is presented.

  8. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...

  9. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  10. Algorithm for Design of Digital Notch Filter Using Simulation

    Directory of Open Access Journals (Sweden)

    Amit Verma

    2013-08-01

    Full Text Available A smooth waveform is generated of low frequency signal can be achieved through the Digital Notch Filter. Noise can be easily eliminated from a speech signal by using a Notch filter. In this paper the design of notch filter using MATLAB has been designed and implemented. The performance and characteristics of the filter has been shown in the waveform in the conclusion part of the paper.

  11. 基于自适应陷波器的噪声调频干扰抑制方法%FM Interference Noise Suppression Based on Adaptive Notch Filter

    Institute of Scientific and Technical Information of China (English)

    路翠华; 李国林; 谢鑫

    2014-01-01

    Aiming at the problem that linear frequency-modulated fuze’s ability of anti-noise interference was poor,the method of noise FM interference suppression based on adaptive notch filter was presented.According to the characteristic that the difference frequency signal of linear frequency-modulated fuze was monochromatic, an adaptive notch filter was adopted to suppress FM interference noise in linear frequency-modulated fuze. Through adj usting notch filter’s weights,the notch filter has the notch characteristics in difference frequency signal's frequency,then noise FM interference was suppressed.The simulation results showed that when SJR=-10dB,FM interference noise could be still suppressed effectively.%针对线性调频引信抗噪声干扰能力比较差的问题,提出了基于自适应陷波器的噪声调频干扰抑制方法。该方法根据线性调频引信差频信号的单频特性,将自适应陷波器应用到线性调频引信中,对噪声调频干扰进行抑制。通过自适应调整陷波器的权值,使陷波器在差频信号的频率点具有陷波特性,从而达到噪声调频干扰抑制的目的。仿真结果表明:SJB=-10 dB时,仍然能达到很好的噪声调频干扰抑制效果。

  12. Coronagraphic Notch Filter for Raman Spectroscopy

    Science.gov (United States)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  13. Active notch filter network with variable notch depth, width and frequency

    Science.gov (United States)

    Black, J. M. (Inventor)

    1980-01-01

    An active notch filter having independently adjustable notch frequency, width, and depth is provided by three equal capacitors connected in series with an operational amplifier (connected in a voltage follower configuration), a potentiometer across the series connected capacitors for notch depth adjustment, and a potentiometer (for notch frequency connected across the center capacitor); with its tap connected to receive a voltage feedback signal from a variable voltage divider comprised of another potentiometer for notch width. Adjusting the voltage dividing potentiometer will independently set the notch width, and adjusting the tap on the potentiometer across the center capacitor will independently adjust the notch frequency of the filter. A second operational amplifier connected in a voltage follower configuration may be used to connect the voltage divider output to the adjustable tap of the potentiometer across the center capacitor.

  14. Optical notch filter design based on digital signal processing

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; ZHANG Juan; LI Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure. The method is simple and effective, and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range (FSR). A design example of notch filter based on cascaded single-fiber-rings is given. On this basis, an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure. This new structure can improve the stability and applicability of system. The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.

  15. The Notched Filtering Characteristics of Stratified Volume Holographic Grating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Utilizing the tool of beam propagation method(BPM) to calculate the zeroth order diffraction beam intensity,we find SVHG displays notched diffraction response as a function of the readout wavelength.Using the method of SA and considering the variance of refractive index as the readout wavelength changes, a practiced notch filter can be designed and the period of the filter is discussed.

  16. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  17. A novel algorithm of adaptive IIR lattice notch filter and performance analysis%一种自适应IIR格型陷波器新算法及性能分析

    Institute of Scientific and Technical Information of China (English)

    秦鹏; 蔡萍

    2007-01-01

    A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method.

  18. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...... thickness. We use numerical simulations to study the sensitivity of the notch filter performance to changes in geometry and in material conductivity within a bandwidth of ±10 GHz. The constructed filter is tested successfully using a vector network analyzer monitoring a total bandwidth of 20 GHz...

  19. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  20. Design of optical notch filter based on Michelson Gires-Tournois interferometer

    Science.gov (United States)

    Guo, Sen; Zhang, Juan; Li, Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is presented for Michelson interferometer with Gires-Tournois Etalon. The method is not only effective and simple, but also can be used to implement the designing of the optical notch filter which has arbitrary numbers of notch points in one free spectrum range. As a designing example, the optical notch filter with one notch point is given in the paper. The change of output intensity spectrum is also investigated for the reflection coefficient of the mirror and the distance between the mirrors deviating from the ideal value, finally the tuning characteristics of the notch filter is discussed.

  1. HOM Coupler Notch Filter Tuning for the European XFEL Cavities

    OpenAIRE

    Sulimov, Alexey

    2015-01-01

    The notch filter (NF) tuning prevents the extraction of fundamental mode (1.3 GHz) RF power through Higher Order Modes (HOM) couplers. The procedure of NF tuning was optimized at the beginning of serial European XFEL cavities production. It allows keeping the filter more stable against temperature and pressure changes during cavity cool down. Some statistics of NF condition during cavities and modules cold tests is presented.

  2. Design and Analysis of Robust Active Damping for LCL Filters using Digital Notch Filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin;

    2017-01-01

    Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp the reso......Resonant poles of LCL filters may challenge the entire system stability especially in digital-controlled Pulse Width Modulation (PWM) inverters. In order to tackle the resonance issues, many active damping solutions have been reported. For instance, a notch filter can be employed to damp...... the resonance, where the notch frequency should be aligned exactly to the resonant frequency of the LCL filter. However, parameter variations of the LCL filter as well as the time delay appearing in digital control systems will induce resonance drifting, and thus break this alignment, possibly deteriorating...... the original damping. In this paper, the effectiveness of the notch filter based active damping is firstly explored, considering the drifts of the resonant frequency. It is revealed that, when the resonant frequency drifts away from its nominal value, the phase lead or lag introduced by the notch filter may...

  3. Chaos control using notch filter feedback.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2006-01-27

    A method for stabilizing periodic orbits and steady states of chaotic systems is presented using specifically filtered feedback signals. The efficiency of this control technique is illustrated with simulations (Rössler system, laser model) and a successful experimental application for stabilizing intensity fluctuations of an intracavity frequency-doubled Nd:YAG laser.

  4. General IIR optical notch filter based on Michelson Gires-Tournois interferometer

    Science.gov (United States)

    Zhang, Juan; Guo, Sen; Li, Xue

    2012-03-01

    A general IIR optical notch filter design is presented from a digital filter design perspective for Michelson Gires-Tournois Interferometer structure. Optical notch filter with arbitrary notch frequency, notch point number, and 3 dB rejection bandwidth can be designed easily. According to the spectral requirement of desired notch filter, in frequency domain we firstly calculate the transfer function of desired allpass filter. Then the numbers of reflectors in Gires-Tournois etalon can be determined. We calculate the transfer function of this multi-cavity Gires-Tournois etalon by using Z-transform. By making the transfer function of allpass filter in frequency domain equal to that of the multi-cavity Gires-Tournois etalon, the notch filter can be directly realized. Different design examples are given in detail in the paper. The change of output spectrum is also investigated for the reflectance of the reflectors and the distance between the reflectors deviating from the ideal value. The results show that the notch filter has the tunability of notch frequency and 3 dB rejection bandwidth. The chromatic dispersion characteristic of the notch filter is analyzed finally. It shows that the notch filter has excellent chromatic dispersion characteristic.

  5. Self-commissioning notch filter for active damping in three phase LCL-filter based grid converters

    DEFF Research Database (Denmark)

    Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede;

    2013-01-01

    challenge the LCL-filter stability. Active damping by using a notch filter on the reference voltage for the modulator is simple to implement and does not require additional sensors. With the notch frequency tuned for the resonant frequency the voltage reference does not contain any component susceptible...... of exciting the LCL-filter. However, the notch filter tuning requires considerable design effort and the variations in the resonance frequency limit the LCL-filter robustness. This paper proposes a simple tuning procedure for the notch filter that results in proper robustness. In order to cope with the grid...... inductance variations it is proposed to estimate the resonance frequency by means of Fourier analysis. The Goertzel algorithm, instead of the FFT, is used to reduce the calculation and memory requirements. Thus, the proposed self-commissioning notch filter results robust and consumes little computational...

  6. Adaptively robust filtering with classified adaptive factors

    Institute of Scientific and Technical Information of China (English)

    CUI Xianqiang; YANG Yuanxi

    2006-01-01

    The key problems in applying the adaptively robust filtering to navigation are to establish an equivalent weight matrix for the measurements and a suitable adaptive factor for balancing the contributions of the measurements and the predicted state information to the state parameter estimates. In this paper, an adaptively robust filtering with classified adaptive factors was proposed, based on the principles of the adaptively robust filtering and bi-factor robust estimation for correlated observations. According to the constant velocity model of Kalman filtering, the state parameter vector was divided into two groups, namely position and velocity. The estimator of the adaptively robust filtering with classified adaptive factors was derived, and the calculation expressions of the classified adaptive factors were presented. Test results show that the adaptively robust filtering with classified adaptive factors is not only robust in controlling the measurement outliers and the kinematic state disturbing but also reasonable in balancing the contributions of the predicted position and velocity, respectively, and its filtering accuracy is superior to the adaptively robust filter with single adaptive factor based on the discrepancy of the predicted position or the predicted velocity.

  7. A comparative performance evaluation of micro-Raman spectrograph using holographic notch filter and dielectric filter

    Indian Academy of Sciences (India)

    R P Shukla; Sanjiva Kumar; A K Sinha; Manika Mallick; S Thakur; N K Sahoo

    2006-08-01

    An indigenously designed and developed micro-Raman spectrograph, consisting of a diode-pumped solid-state green laser for the excitation of Raman scattering, a Raman imaging microscope, CCD as a detector and a notch filter, has been extensively studied to evaluate its performance. A dielectric edge filter (having 27 alternate layers of SiO2 and TiO2) and a holographic notch filter (Oriel make) have been used to block the Rayleigh scattered light from the sample to the entrance slit of the spectrograph. Holographic notch filter is found to be able to record the Raman shifts below 700 cm-1 conveniently whereas dielectric edge filter (27 layers) has enabled the spectrograph to record the Raman spectra very efficiently after a wave-number shift of 700 cm-1. It has also been observed that the instrument using the edge filter provides a peculiar spectrum consisting of three spectral lines having Raman shifts as 569, 1328 and 1393 cm-1 in the Raman spectrum of a weakly scattering sample with large reflectivity. Similarly, a spectrum consisting of multiple lines has been observed when the instrument is being operated using a holographic notch filter. These spectral lines are not observed in the case of liquid samples such as benzene, carbon tetrachloride, ethanol, diethyl ether etc. The origin of these peculiar spectral lines has been briefly discussed in the paper. Additionally, a major motivation for this work is to utilize the results for the selection of an appropriate filter depending on the type of the sample, i.e. weakly scattered and highly reflecting sample or highly scattered and low reflecting sample.

  8. A New Method for Reactive Power Measurement of Single Phase Circuit Based on Adaptive Notch Filter%基于自适应陷波器单相电路无功功率测量新方法

    Institute of Scientific and Technical Information of China (English)

    殷桂梁; 郭磊; 李相男

    2013-01-01

      传统的根据无功功率的定义来计算无功功率的方法难以满足动态无功补偿控制系统中快速响应的要求。提出了基于自适应陷波器的单相电路的无功功率检测新方法。该方法采用自适应陷波器提取出单相电压、电流及它们的90°相位变换值,然后通过单相瞬时无功功率理论计算无功功率。仿真结果表明,在幅值稳定的情况下,该方法能够以较小的误差检测出无功功率;在幅值突变和线性变化的情况下,能够根据电压变化快速追踪无功功率的变化。%The reactive power calculation method with the traditional definition is difficult to meet the rapid response of the dynamic reactive power compensation system controller. A new method for reactive power measurement of single phase circuit based on ANF (adaptive notch filter) is proposed in this paper. Achieving the single-phase voltage and current and its 90-degree phase shift value by ANF, the method calculates reactive power according to the single-phase instantaneous power theory. Simulation results indicate that the proposed method is able to measure the reactive power with less error when the voltage amplitude is steady, and track the variation of the reactive power rapidly while the voltage amplitude is changing suddenly or linearity.

  9. Adaptive filtering and change detection

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    Adaptive filtering is a classical branch of digital signal processing (DSP). Industrial interest in adaptive filtering grows continuously with the increase in computer performance that allows ever more conplex algorithms to be run in real-time. Change detection is a type of adaptive filtering for non-stationary signals and is also the basic tool in fault detection and diagnosis. Often considered as separate subjects Adaptive Filtering and Change Detection bridges a gap in the literature with a unified treatment of these areas, emphasizing that change detection is a natural extensi

  10. A Positive and Negative Sequence Component Separation Method for Grid Voltage Based on the Phase Locked Loop With an Adaptive Notch Filter%基于ANF-PLL的电网电压基波正负序分离方法

    Institute of Scientific and Technical Information of China (English)

    杜雄; 郭宏达; 孙鹏菊; 周雒维

    2013-01-01

    为了满足并网变流器在电网电压不对称情况下的控制需求,需要快速准确地提取出基波正负序分量的幅值和相位。在电网电压不对称时,负序分量会在同步参考坐标系锁相环(phase locked loop based on synchronization reference frame,SRF-PLL)的 dq 轴分量中产生2倍工频波动,影响基波分量和相位的提取结果。该文通过将自适应陷波器(adaptive notch filter,ANF)加入到同步参考坐标系锁相环的结构中,提出了一种能够实现正负序分量分离的自适应陷波器锁相环(phase locked loop with ANF,ANF-PLL)方法。该方法利用ANF陷波器的2个相互正交的输出量分别抵消电网电压dq轴分量中由于负序分量造成的2倍工频波动,以此消除了电网电压不对称对同步信号检测的影响,并且可以同时提取出基波负序分量的幅值和相位。与其它方法相比,该方法无需进行正负序解耦或瞬时对称分量分离,在单同步参考坐标系下实现了基波正负序分量的分离提取,结构更加简单,减少了计算量。实验结果表明,文中提出的方法能够在电网电压不对称与频率变化的情况下准确提取出基波正负序分量的幅值与相位,并且具有良好的动态性能。%In order to meet the unbalanced control demand of the grid-connected power converters, the fast and accurate extraction of the fundamental positive and negative sequence components of the grid voltage is necessary. Under unbalanced grid voltage condition, the negative sequence component appears as the double frequency oscillations in the d-q axes components of the phase locked loop based on synchronization reference frame (SRF-PLL), which affects the extraction of the fundamental components and the phase angle signal. By applying the adaptive notch filter (ANF) to the structure of SRF-PLL, this paper proposed a grid voltage synchronization method based on phase locked loop with

  11. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  12. Notch filtering the nuclear environment of a spin qubit

    Science.gov (United States)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S.; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2017-01-01

    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69Ga, 71Ga and 75As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.

  13. 160 Gb/s Raman-assisted notch-filtered XPM wavelength conversion and transmission

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen;

    2007-01-01

    In-line wavelength conversion of 160 Gb/s data by Raman-assisted notch-filtered XPM is demonstrated for 130 km total transmission. The improvement in system performance from applying Raman gain during conversion is shown.......In-line wavelength conversion of 160 Gb/s data by Raman-assisted notch-filtered XPM is demonstrated for 130 km total transmission. The improvement in system performance from applying Raman gain during conversion is shown....

  14. Microwave photonic notch filter with complex coefficient based on four wave mixing

    Science.gov (United States)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2016-11-01

    A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing (FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber (HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter (MPF). The complex coefficient is generated by using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range ( FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  15. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...... and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy...

  16. Tunable Microwave Photonic Notch Filter Based on a high-birefringence linearly chirped fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yongxing; Dong Xinyong; Wang Jianfeng [Institute of Optoelectronic Technology, China Jiliang University, Hangzhou (China); Zhou Junqiang, E-mail: phyjyxin@gmail.com [Network Technology Research Centre, Nanyang Technological University (Singapore)

    2011-02-01

    In this paper, a continuously tunable microwave photonic notch filter is proposed and experimentally demonstrated. This filter is based on the differential group delay generated by a high-birefringence linearly chirped fiber Bragg grating. This microwave photonic filter belongs to the orthogonal polarization approach, polarization maintaining structure ensures the filter free from the random optical interference problem. Its response is induced by the differential group delay (DGD) of the Hi-Bi LCFBG and it can be varied by tuning the grating through adding gradient strength to the grating. Free spectral range tuning by 9.27 GHz with more than 35 dB notch rejection is achieved.

  17. Frequency agile microwave photonic notch filter with anomalously-high stopband rejection

    CERN Document Server

    Marpaung, David; Pant, Ravi; Eggleton, Benjamin J

    2013-01-01

    We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (> 60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This record performance is enabled by a new concept of sidebands amplitude and phase controls using an electro-optic modulator and an optical filter. This new concept enables energy efficient operation in active MWP notch filters, and opens up the pathway to enable low-power nanophotonic devices as high performance RF filters.

  18. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection

    CERN Document Server

    Marpaung, David; Pant, Ravi; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel; Heideman, Rene; Eggleton, Benjamin J

    2013-01-01

    We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.

  19. The effects of notch filtering on electrically evoked myoelectric signals and associated motor unit index estimates

    Directory of Open Access Journals (Sweden)

    Li Xiaoyan

    2011-11-01

    Full Text Available Abstract Background Notch filtering is the most commonly used technique for suppression of power line and harmonic interference that often contaminate surface electromyogram (EMG signals. Notch filters are routinely included in EMG recording instrumentation, and are used very often during clinical recording sessions. The objective of this study was to quantitatively assess the effects of notch filtering on electrically evoked myoelectric signals and on the related motor unit index measurements. Methods The study was primarily based on an experimental comparison of M wave recordings and index estimates of motor unit number and size, with the notch filter function of the EMG machine (Sierra Wave EMG system, Cadwell Lab Inc, Kennewick, WA, USA turned on and off, respectively. The comparison was implemented in the first dorsal interosseous (FDI muscle from the dominant hand of 15 neurologically intact subjects and bilaterally in 15 hemiparetic stroke subjects. Results On average, for intact subjects, the maximum M wave amplitude and the motor unit number index (MUNIX estimate were reduced by approximately 22% and 18%, respectively, with application of the built-in notch filter function in the EMG machine. This trend held true when examining the paretic and contralateral muscles of the stroke subjects. With the notch filter on vs. off, across stroke subjects, we observed a significant decrease in both maximum M wave amplitude and MUNIX values in the paretic muscles, as compared with the contralateral muscles. However, similar reduction ratios were obtained for both maximum M wave amplitude and MUNIX estimate. Across muscles of both intact and stroke subjects, it was observed that notch filtering does not have significant effects on motor unit size index (MUSIX estimate. No significant difference was found in MUSIX values between the paretic and contralateral muscles of the stroke subjects. Conclusions The notch filter function built in the EMG

  20. Periodic Noise Suppression from ECG Signal using Novel Adaptive Filtering Techniques

    Directory of Open Access Journals (Sweden)

    Yogesh Sharma

    2012-03-01

    Full Text Available Electrocardiogram signal most commonly known recognized and used biomedical signal for medical examination of heart. The ECG signal is very sensitive in nature, and even if small noise mixed with original signal, the various characteristics of the signal changes, Data corrupted with noise must either filtered or discarded, filtering is important issue for design consideration of real time heart monitoring systems. Various filters used for removing the noise from ECG signals, most commonly used filters are Notch Filters, FIR filters, IIR filters, Wiener filter, Adaptive filters etc. Performance analysis shows that the best result is obtained by using Adaptive filter to remove various noises from ECG signal and get significant SNR andMSE results. In this paper a novel adaptive approach by using LMS algorithm and delay has shown whichcan be used for pre-processing of ECG signal and give appreciable result.

  1. On-line identification, flutter testing and adaptive notching of structural parameters for V-22 tiltrotor aircraft

    Indian Academy of Sciences (India)

    R K Mehra; P O Arambel; A M Sampath; R K Prasanth; T C Parham

    2000-04-01

    New algorithms and results are presented for flutter testing and adaptive notching of structural modes in V-22 tiltrotor aircraft based on simulated and flight-test data from Bell Helicopter Textron, Inc. (BHTI). For flutter testing and the identification of structural mode frequencies, dampings and mode shapes, time domain state space techniques based on Deterministic Stochastic Realization Algorithms (DSRA) are used to accurately identify multiple modessimultaneously from sine sweep and other multifrequency data, resulting in great savings over the conventional Prony method. Two different techniques for adaptive notching are explored in order to design an Integrated Flight Structural Control (IFSC) system. The first technique is based on on-line identification of structural mode parameters using DSRA algorithm and tuning of a notch filter. The second technique is based on decoupling rigid-body and structural modes of the aircraft by means of a Kalman filter and using rigid-body estimates in the feedback control loop. The difference between the two approaches is that on-line identification and adaptive notching in the first approach are entirely based on the knowledge of structural modes, whereas the Kalman filter design in the second approach is based on the rigid-body dynamic model only.In the first IFSC design, on-line identification is necessary for flight envelope expansion and to adjust the notch filter frequencies and suppress aero-servoelastic instabilities due to changing flight conditionssuch as gross weight, sling loads, and airspeed. It isshown that by tuning the notch filterfrequency to the identified frequency, the phase lag is reduced and the corresponding structural mode is effectively suppressed and stability is maintained. In the second IFSC design using Kalman filter design, the structural modes are again effectively suppressed. Furthermore, the rigid-body estimates are found to be fairly insensitive to both natural frequency and damping factor

  2. Frequency domain FIR and IIR adaptive filters

    Science.gov (United States)

    Lynn, D. W.

    1990-01-01

    A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.

  3. Fibre Optic Notch Filter For The Antiproton Decelerator Stochastic Cooling System

    CERN Document Server

    Simmonds, Max Vincent John

    2016-01-01

    The project scope included reverse engineering, upgrading, and recovering the operational conditions of an existing fibre optic notch filter. Once operational, tests were to be preformed to confirm the performance of the temperature stabilisation. The end goal is to use said notch filter in the Antiproton Decelerator (AD) facility at CERN to help aid antimatter research. The notch filter was successfully reverse engineered and then documented. Changes were made in order to increase performance and reliability, and also allow easy integration into the AD. An additional phase was added whereby the notch filter was to be controller via a touchscreen computer, situated next to the filter, allowing engineers to set-up each of the electronic devices used. While one of the devices (Motorised Delay Line) can be controlled by the touchscreen computer, the other two cannot.Due to time constraints and difficulties with the Beckhoff TwincatII programming language, the USB devices were not able to be controlled via the To...

  4. Adaptive Filter in SAR Interferometry Derived DEM

    Institute of Scientific and Technical Information of China (English)

    XU Caijun; WANG Hua; WANG Jianglin; GE Linlin

    2005-01-01

    In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.

  5. Design of UWB Bandpass Filter with Notched Band Using Distributed CRLH Transmission Lines

    Directory of Open Access Journals (Sweden)

    Gyuje Sung

    2015-08-01

    Full Text Available This study presents an Ultra-Wideband (UWB filter with a notched band. The filter adopts novel Composite Right/Left-Handed (CRLH Transmission Lines (TLs, the unit cell of which is theoretically analyzed to derive the design formulas. A model of the CRLH TLs is composed with distributed elements rather than lumped elements. Based on the results of the analysis, it is confirmed that the proposed structures are CRLH TLs. A UWB bandpass filter with a notched band is designed and fabricated using the induced formulas. The measurement results show that the fabricated UWB bandpass filter has an insertion loss of less than 3 dB, a bandwidth of 2.8-10.5 GHz and a rejection of greater than 27 dB at 5.75 GHz.

  6. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English

    Directory of Open Access Journals (Sweden)

    Li Wei

    2013-08-01

    Full Text Available Deceptive jamming can get vivid jamming effect on Multiple-Input Multiple-Output (MIMO radar with very low power. In order to remove those deceptive targets, one method based on signal jittering, data fusion and fake target notch filtering is proposed in this paper. Multiple orthogonal binary phase codes are used as transmitted signals, before each time of transmission each transmitter will choose one signal from all the orthogonal codes, images of echoes of all kinds of codes are detected with constant false alarm rate. Targets detected in images of echoes of all different signals are fused to determine to be real or not, fake targets will be nulled by notch filtering in the image, therefore, weak real targets can be detected in the next round of detection, in this way fusion and notch filtering are implemented again and again until no fake targets exist. The effect of deceptive jamming on radar will be removed completely. Simulation result testifies that the method based on signal jittering, data fusion and notch filtering can help MIMO radar remove deceptive jamming completely.

  7. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    with only 0.9-dB power penalty to achieve BER of 1E-9. Using the proposed labeling scheme, optical packet switching of 640 Gb/s data packets is experimentally demonstrated in which two data packets are labeled by making none and one spectral hole using a notch filter and are switched using a LiNbO$_3...

  8. Widely tunable microwave photonic notch filter based on slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    A continuously tunable microwave photonic notch filter at around 30 GHz is experimentally demonstrated and 100% fractional tuning over 360 range is achieved without changing the shape of the spectral response. The tuning mechanism is based on the use of slow and fast light effects in semiconductor...

  9. Characteristics of a Tunable Microwave Photonics Notch Filter Based on Two Fiber Bragg Gratings

    Institute of Scientific and Technical Information of China (English)

    YUXianbin; ZHANGXianmin; CHIHao; CHENKangsheng

    2005-01-01

    We investigate theoretically the characteristic of a tunable microwave fiber-optic notch flter based on two fiber gratings. The microwave frequency response based on the refiectivities of two fiber gratings is analyzed and the optimum filter condition is obtained. The refiectivity of the first fiber grating can be tuned experimentally by adjusting the wavelength of input light. Experimental results are in agreement with the theory. The largest notch depth is more than 15dB. The free-spectral range can be tuned by altering the length of fiber between two fiber gratings.

  10. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering.

    Science.gov (United States)

    Hong, Xuezhi; Wang, Dawei; Xu, Lei; He, Sailing

    2010-06-07

    A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

  11. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  12. The effects of notch filters on the correlation properties of a PN signal

    Science.gov (United States)

    Sussman, S. M.; Ferrari, E. J.

    1974-01-01

    With wideband pseudo-noise (PN) communications systems, it is sometimes desirable to supplement the inherent interference rejection capabilities by adding notch filters to attenuate relatively narrowband interference. This correspondence presents an investigation of the effects of notch filters on the performance of PN correlation receivers. A theoretical analysis of the correlation drop due to filter distortion has been conducted and confirmed by experimentation. Additional measurements and analysis have established the trade-off between correlation drop and interference suppression as a function of interference bandwidth. A typical result is that by incurring a penalty of a 1-dB drop in correlation peak, interfering signals having bandwidths of 2 to 3% of the PN chip rate can be attenuated by 25 dB.

  13. A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation

    Science.gov (United States)

    Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng

    2017-01-01

    A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range ( FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.

  14. A Self-commissioning Notch Filter for Active Damping in a Three-Phase LCL -Filter-Based Grid-Tie Converter

    DEFF Research Database (Denmark)

    Pena-Alzola, Rafael; Liserre, Marco; Blaabjerg, Frede

    2014-01-01

    LCL-filters are a cost-effective solution to mitigate harmonic current content in grid-tie converters. In order to avoid stability problems, the resonance frequency of LCL-filters can be damped with active techniques that remove dissipative elements but increase control complexity. A notch filter...... provides an effective solution, however tuning the filter requires considerable design effort and the variations in the grid impedance limit the LCL-filter robustness. This paper proposes a straightforward tuning procedure for a notch filter self-commissioning. In order to account for the grid inductance...

  15. A Review of Bandpass with Tunable Notch Microwave Filter in Wideband Application

    Directory of Open Access Journals (Sweden)

    Anthony Bruster

    2015-06-01

    Full Text Available In the last few years, several microwave filter design with band-pass response have been proposed for ultra-wideband (UWB application. Among various microwave filter design, microstrip filter are mostly used by researcher due to their low profile, light weight, easy to fabricate and low cost. Conventional microstrip filter can be in any shape whether circular, rectangular or elliptical but some modification or additional variation in their basic design can be made for different purposes for example notch response and tunable characteristic in order to eliminate undesired signal. This paper proposed a compilation of important review about filter design for band-pass filter and discussion about various design with different method or technique used in order to achieve in wideband application range and tunable capabilities. The previous work will be examined and critically analyzed in terms of insertion and return losses, bandwidth, selectivity and tuning in order to proposed novel design of microwave filter with band-pass and tunable notch response in UWB application for future research work. Through this review, we hope that a better understanding of microwave bandpass filter can be established and therefore can have a huge contribution.

  16. Adaptive Filtering Algorithms and Practical Implementation

    CERN Document Server

    Diniz, Paulo S R

    2013-01-01

    In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...

  17. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  18. Notched spectrum: from probing waveforms to receive filters

    Science.gov (United States)

    Jiang, Yi; Gianelli, Christopher D.

    2013-05-01

    The increasing demand for wireless data services and communications is expanding the frequency footprint of both civilian and military wireless networks, and hence encroaches upon spectrum traditionally reserved for radar systems. To maximize spectral efficiency, it is desirable for a modern radar system to use waveforms with the ability to fit into tightly controlled spectral regions, which requires the formation of nulls with required notching levels on prescribed frequency stop-bands. Additionally, the waveform should posses a low peak-to-average ratio (PAR), and have good auto-correlation performance. In this work, we propose a novel method for the design of such a waveform using alternating convex optimization. The core module of the proposed algorithm is a fast Fourier transform, which makes the algorithm quite efficient and can handle waveform designs with up to 105 samples. Moreover, our algorithm can achieve a flexible tradeoff between PAR and reduced pass band ripple. A simple application in synthetic aperture radar is considered to highlight the performance of the design algorithm.

  19. Elimination of Harmonic Force and Torque in Active Magnetic Bearing Systems with Repetitive Control and Notch Filters

    Directory of Open Access Journals (Sweden)

    Xiangbo Xu

    2017-04-01

    Full Text Available Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can be described in terms of the translational and rotational motions, respectively. Next, a closed-loop generalized notch filter is utilized to identify the synchronous displacement resulting from the rotor imbalance, and a feed-forward compensation of the synchronous force and torque related to the AMB displacement stiffness is formulated by using the identified synchronous displacement. Then, a plug-in repetitive controller is designed to track the synchronous feed-forward compensation adaptively and to suppress the harmonic vibrations due to the sensor runout. Finally, the proposed control method is verified by simulations and experiments. The control algorithm is insensitive to the parameter variations of the power amplifiers and can precisely suppress the harmonic force and torque. Its practicality stems from its low computational load.

  20. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  1. Adaptive filtering using Higher Order Statistics (HOS

    Directory of Open Access Journals (Sweden)

    Abdelghani Manseur

    2012-03-01

    Full Text Available The performed job, in this study, consists in studying adaptive filters and higher order statistics (HOS to ameliorate their performances, by extension of linear case to non linear filters via Volterra series. This study is, principally, axed on: „ Choice of the adaptation step and convergence conditions. „ Convergence rate. „ Adaptive variation of the convergence factor, according to the input signal. The obtained results, with real signals, have shown computationally efficient and numerically stable algorithms for adaptive nonlinear filtering while keeping relatively simple computational complexity.

  2. Homemade notch filter to suppress strong FM or DAB - T/DVB - T signals

    Science.gov (United States)

    Monstein, Christian

    2016-04-01

    Many of the current 116 solar radio spectrometer instruments in the e-Callisto network are suffering from strong interference from FM-radio, DAB-T or DVB-T broadcast stations. With simple surface mount device (SMD) components a cheap notch (trap)filter can be produced to suppress these strong signals that otherwise may saturate the low noise amplifier and/or the receiver.

  3. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  4. Tunable band notch filters by manipulating couplings of split ring resonators.

    Science.gov (United States)

    Sun, Haibin; Wen, Guangjun; Huang, Yongjun; Li, Jian; Zhu, Weiren; Si, Li-Ming

    2013-11-01

    The couplings between single/dual split ring resonators (SRRs) and their mirror images in a rectangular waveguide are systematically investigated through theoretical analysis and experimental measurements. Such couplings can be manipulated mechanically by rotating the SRRs along a dielectric rod and/or shifting the SRRs up/down along the sidewall of the rectangular waveguide, resulting in shifts of the resonant frequencies and modulations of the resonant magnitudes. These controllable properties of SRRs pave the routers toward designing tunable band notch filters. In particular, it is experimentally demonstrated that the designed filters possess 7.5% tuning range in the X-band.

  5. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  6. Adaptive Order-Statistic LMS Filters

    Directory of Open Access Journals (Sweden)

    S. Marchevsky

    2001-04-01

    Full Text Available The LMS-based adaptive order-statistic filters are presented in thispaper. The adaptive Ll-filters as extension of the adaptive L-filterfor two-dimensional filtering of noisy greyscale images is studied too.Their adaptation properties are studied by three types of noise, theadditive white Gaussian noise, the impulsive noise or both,respectively. Moreover, the impulsive noise has the fixed noise value(Salt & Pepper noise. The problem of pixel value multiplicity anddetermination its position in the ordered input vector for adaptiveLl-filter is shown in this article. The two types of images withdifferent of image complexity are used to demonstration of the power oftime-spatial ordering.

  7. Adaptive Marginal Median Filter for Colour Images

    Directory of Open Access Journals (Sweden)

    Almanzor Sapena

    2011-03-01

    Full Text Available This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  8. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  9. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    Science.gov (United States)

    Xiao, Binggang; Kong, Sheng; Xiao, Sanshui

    2016-09-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy into spoof SPP waveguide. The result shows its cut-off frequency of 17.4 GHz with the insertion loss better than 3 dB during the whole pass-band, while having more than 20 dB rejections at 5.36 GHz and 9.32 GHz with 10 dB fractional bandwidth 1.07% and 0.74% respectively to avoid the existing WLAN and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.

  10. An Adaptive Iterated Nonlocal Interferometry Filtering Method

    Directory of Open Access Journals (Sweden)

    Lin Xue

    2014-04-01

    Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.

  11. DUAL MODE WIDEBAND BAND-PASS FILTER WITH NOTCHED BAND FOR COMMUNICATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Yang Guo; Wu Wen; Ge Sheng

    2011-01-01

    This paper presents a planar microstrip wideband dual mode Band-Pass Filter (BPF) from 2 GHz to 3.4 GHz with a notched band at 2.62 GHz.The dual mode band-pass filter consists of a ring resonator with two quarter-wavelength open-circuited stubs at φ -90° and φ =0°,respectively.A square perturbation stub has been put at the corner of the ring resonator to increase the narrow stopbands and improve the performance of selectivity.By using a parallel-coupled feed line,a narrow notched band is introduced at the required frequency and its Fractional BandWidth (FBW) is about 5%.The proposed filter has a narrow notched band and a wide pass-band with a sharp cutoff frequency characteristic,the attenuation rate for the sharp cutoff frequency responses is 297.17 dB/GHz (calculated from 1.959 GHz with -34.43 dB to 2.065 GHz with -2.93 dB) and 228.10 dB/GHz (calculated from 3.395 GHz with -2.873 dB to 3.507 GHz with -28.42 dB).This filter has the advantages of good insertion loss in both operating bands and two rejections of greater than 16 dB in the range of 1.59 GHz to 1.99 GHz and 3.49 GHz to 3.98 GHz.Having been presented in this article,the measurement results agree well with the simulation results,which validates our idea.

  12. Performance Analysis of LMS Adaptive FIR Filter and RLS Adaptive FIR Filter for Noise Cancellation

    Directory of Open Access Journals (Sweden)

    Jyotsna Yadav

    2013-06-01

    Full Text Available Interest in adaptive filters continues to grow as they begin to find practical real-time applications in areas such as channel equalization, echo cancellation, noise cancellation and many other adaptive signal processing applications. The key to successful adaptive signal processing understands the fundamental properties of adaptive algorithms such as LMS, RLS etc. Adaptive filter is used for the cancellation of the noise component which is overlap with undesired signal in the same frequency range. This paper presents design, implementation and performance comparison of adaptive FIR filter using LMS and RMS algorithms. MATLAB Simulink environment are used for simulations.

  13. Performance Analysis of LMS Adaptive FIR Filter and RLS Adaptive FIR Filter for Noise Cancellation

    Directory of Open Access Journals (Sweden)

    Jyotsna Yadav

    2013-07-01

    Full Text Available Interest in adaptive filters continues to grow as they begin to find practical real-time applications in areassuch as channel equalization, echo cancellation, noise cancellation and many other adaptive signalprocessing applications. The key to successful adaptive signal processing understands the fundamentalproperties of adaptive algorithms such as LMS, RLS etc. Adaptive filter is used for the cancellation of thenoise component which is overlap with undesired signal in the same frequency range. This paper presentsdesign, implementation and performance comparison of adaptive FIR filter using LMS and RMSalgorithms. MATLAB Simulink environment are used for simulations.

  14. A new method for adaptive color image filtering

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An adaptive color image filter (ACIF) is proposed in this note. Through analyzing noise corruption of color image, efficient locally adaptive filters are chosen for image enhancement. The proposed adaptive color image filter combines advantages of both nonlinear vector filters and linear filters, it attenuates noise and preserves edges and details very well. Experimental results show that the proposed filter performs better than vector median filter, directional-distance filter, directional-magnitude vector filter, adaptive nearest-neighbor filter, and -trimmed mean filter.

  15. Improved Data Preprocessing Algorithm for Time-Domain Induced Polarization Method with Digital Notch Filter

    Science.gov (United States)

    Ge, Shuang-Chao; Deng, Ming; Chen, Kai; Li, Bin; Li, Yuan

    2016-12-01

    Time-domain induced polarization (TDIP) measurement is seriously affected by power line interference and other field noise. Moreover, existing TDIP instruments generally output only the apparent chargeability, without providing complete secondary field information. To increase the robustness of TDIP method against interference and obtain more detailed secondary field information, an improved dataprocessing algorithm is proposed here. This method includes an efficient digital notch filter which can effectively eliminate all the main components of the power line interference. Hardware model of this filter was constructed and Vhsic Hardware Description Language code for it was generated using Digital Signal Processor Builder. In addition, a time-location method was proposed to extract secondary field information in case of unexpected data loss or failure of the synchronous technologies. Finally, the validity and accuracy of the method and the notch filter were verified by using the Cole-Cole model implemented by SIMULINK software. Moreover, indoor and field tests confirmed the application effect of the algorithm in the fieldwork.

  16. Cross-sensitivity of Fiber Grating Solved by FFP Triangle Notch Filter

    Institute of Scientific and Technical Information of China (English)

    GONG Xian-feng; WANG Chang-song; CHEN Sheng-ping; LI Jia-fang

    2004-01-01

    Employing a fiber Fabry-Perot (FFP) interferometer has been considered as a triangle notch filter to demodulate the wavelength of fiber Bragg grating (FBG) sensor.The single parameter of strain has been demodulated,and the cross-sensitivity influence of temperature has been eliminated.The principle of this method is simple and easy to be implemented,and has been used to design a 30 t fiber grating weightbridge successfully.The maximal temperature drift error of the weightbridge is 4 με,which means that the full scale error is 8‰. The result reveals that the accuracy is high enough to be used in measurement.

  17. Matched filter based iterative adaptive approach

    Science.gov (United States)

    Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William

    2016-05-01

    Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.

  18. Partial update least-square adaptive filtering

    CERN Document Server

    Xie, Bei

    2014-01-01

    Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity (O(N)) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster a

  19. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  20. A Rapid Introduction to Adaptive Filtering

    CERN Document Server

    Vega, Leonardo Rey

    2013-01-01

    In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of severa...

  1. VSP wave separation by adaptive masking filters

    Science.gov (United States)

    Rao, Ying; Wang, Yanghua

    2016-06-01

    In vertical seismic profiling (VSP) data processing, the first step might be to separate the down-going wavefield from the up-going wavefield. When using a masking filter for VSP wave separation, there are difficulties associated with two termination ends of the up-going waves. A critical challenge is how the masking filter can restore the energy tails, the edge effect associated with these terminations uniquely exist in VSP data. An effective strategy is to implement masking filters in both τ-p and f-k domain sequentially. Meanwhile it uses a median filter, producing a clean but smooth version of the down-going wavefield, used as a reference data set for designing the masking filter. The masking filter is implemented adaptively and iteratively, gradually restoring the energy tails cut-out by any surgical mute. While the τ-p and the f-k domain masking filters target different depth ranges of VSP, this combination strategy can accurately perform in wave separation from field VSP data.

  2. Fast adaptive elliptical filtering using box splines

    CERN Document Server

    Chaudhury, Kunal Narayan; Unser, Michael

    2009-01-01

    We demonstrate that it is possible to filter an image with an elliptic window of varying size, elongation and orientation with a fixed computational cost per pixel. Our method involves the application of a suitable global pre-integrator followed by a pointwise-adaptive localization mesh. We present the basic theory for the 1D case using a B-spline formalism and then appropriately extend it to 2D using radially-uniform box splines. The size and ellipticity of these radially-uniform box splines is adaptively controlled. Moreover, they converge to Gaussians as the order increases. Finally, we present a fast and practical directional filtering algorithm that has the capability of adapting to the local image features.

  3. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  4. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael;

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  5. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    Science.gov (United States)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  6. Broadband light scattering spectroscopy utilizing an ultra-narrowband holographic notch filter

    Science.gov (United States)

    Fujii, Yasuhiro; Katayama, Daisuke; Koreeda, Akitoshi

    2016-10-01

    The broadband spectroscopic analysis over Brillouin, quasi-elastic, and Raman regions arising from the same position of the sample has been achieved by employing an ultra-narrowband holographic notch filter (HNF) and an optical isolator. Recently, HNFs are often employed to reject strong elastic scattering in low-frequency Raman experiments. Meanwhile, the rejected spectral component agrees with the frequency range that can be observed by a triple-pass tandem Fabry-Pérot interferometer. Thus the broadband spectroscopy can be accomplished by introducing the rejected light to the interferometer. This system, in combination with the local symmetry analysis by polarization-direction-resolved Raman spectroscopy, is particularly advantageous for the investigation of spatially inhomogeneous systems.

  7. Adaptive Filtering Using Recurrent Neural Networks

    Science.gov (United States)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  8. Kernel adaptive filtering a comprehensive introduction

    CERN Document Server

    Liu, Weifeng; Haykin, Simon

    2010-01-01

    Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, O

  9. Target Response Adaptation for Correlation Filter Tracking

    KAUST Repository

    Bibi, Adel Aamer

    2016-09-16

    Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.

  10. Adaptive Filter Based on Gradient Information

    Institute of Scientific and Technical Information of China (English)

    JINGXiaojun; LIJiangfeng; YANGYixian

    2003-01-01

    In this paper, an adaptive smoothing filter algorithm based on gradient information is proposed. The new method solves the problem of conventional filer that can't smooth noise and sharp edge simultaneously. It is based on the iterative convolution of local adaptive template and the original image signal, the template has the property of diffusing anisotropically. In each iteration, the weight coefficients of filter are determined by the gradient function of each pixel, and they vary with the variety of the gradient function, thus reflects the degree of continuity of the gray value. The weight coefficients also depend on one parameter, which controls the amplitude of the breaking point that needs to be preserved during the iteration. This algorithm sharps the edge of image by iterative computation, and after several iterations the image is adaptively smoothed according to the edge blocking. The simulation results demonstrate that this algorithm can perform filtering effectively. It has appropriate computation complexity and is suitable for real-time processing.

  11. Adaptive Filtering Queueing for Improving Fairness

    Directory of Open Access Journals (Sweden)

    Jui-Pin Yang

    2015-06-01

    Full Text Available In this paper, we propose a scalable and efficient Active Queue Management (AQM scheme to provide fair bandwidth sharing when traffic is congested dubbed Adaptive Filtering Queueing (AFQ. First, AFQ identifies the filtering level of an arriving packet by comparing it with a flow label selected at random from the first level to an estimated level in the filtering level table. Based on the accepted traffic estimation and the previous fair filtering level, AFQ updates the fair filtering level. Next, AFQ uses a simple packet-dropping algorithm to determine whether arriving packets are accepted or discarded. To enhance AFQ’s feasibility in high-speed networks, we propose a two-layer mapping mechanism to effectively simplify the packet comparison operations. Simulation results demonstrate that AFQ achieves optimal fairness when compared with Rotating Preference Queues (RPQ, Core-Stateless Fair Queueing (CSFQ, CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKe and First-In First-Out (FIFO schemes under a variety of traffic conditions.

  12. An Adaptive Nonlinear Filter for System Identification

    Directory of Open Access Journals (Sweden)

    Tokunbo Ogunfunmi

    2009-01-01

    Full Text Available The primary difficulty in the identification of Hammerstein nonlinear systems (a static memoryless nonlinear system in series with a dynamic linear system is that the output of the nonlinear system (input to the linear system is unknown. By employing the theory of affine projection, we propose a gradient-based adaptive Hammerstein algorithm with variable step-size which estimates the Hammerstein nonlinear system parameters. The adaptive Hammerstein nonlinear system parameter estimation algorithm proposed is accomplished without linearizing the systems nonlinearity. To reduce the effects of eigenvalue spread as a result of the Hammerstein system nonlinearity, a new criterion that provides a measure of how close the Hammerstein filter is to optimum performance was used to update the step-size. Experimental results are presented to validate our proposed variable step-size adaptive Hammerstein algorithm given a real life system and a hypothetical case.

  13. Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning

    Institute of Scientific and Technical Information of China (English)

    XIAO Kun; FANG Shao-ji; PANG Yong-jie

    2007-01-01

    To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.

  14. Adaptive ship autopilot with wave filter

    Directory of Open Access Journals (Sweden)

    Steinar Sælid

    1983-01-01

    Full Text Available This paper is concerned with analysis and design of an adaptive autopilot for ships. The design is based on a low and high frequency model of the vessel motion adequate to ship steering. The low frequency model describes the vessel response to rudder control and slowly varying environmental forces. The high frequency model represents the wave induced oscillatory part of the yaw motion. The models are used in a Kalman filter and the rudder control is computed from linear quadratic theory based on the low frequency part of the vector. This yields a very effective filtering of the wave component of the yaw motion. Proper operation of this filter/controller structure requires knowledge of the vessel model parameters and the dominating wave frequency. The vessel parameters are estimated on line by a recursive prediction error method. In order to reduce the computing requirements, the state estimator is operated using scheduled gains. This results in an easy and robust design. The convergence properties are investigated by using the method of Ljung. The performance is confirmed by simulation experiments.

  15. Adaptive Linear Filtering Design with Minimum Symbol Error Probability Criterion

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen

    2006-01-01

    Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE)criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sampleby-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.

  16. Adaptive Local Image Registration: Analysis on Filter Size

    OpenAIRE

    Vishnukumar S; M.Wilscy

    2012-01-01

    Adaptive Local Image Registration is a Local Image Registration based on an Adaptive Filtering frame work. A filter of appropriate size convolves with reference image and gives the pixel values corresponding to the distorted image and the filter is updated in each stage of the convolution. When the filter converges to the system model, it provides the registered image. The filter size plays an important role in this method. The analysis on the filter size is done using Peak Signal-to-Noise Ra...

  17. An Efficient Topography Adaptive Filter for Insar Processing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An efficient implementation of the topography adaptive filter based on local frequency estimation is proposed, where chirpz transform is applied to enhance the accuracy of the frequency estimation. As a byproduct of this adaptive filter, the linear approximated phase model of the interferogram is employed to improve the coherence estimation. The impacts of the adaptive filter on global and local phase unwrapping algorithms are discussed. Finally, aiming at the negative effect that the adaptive filter can bring to local phase unwrapping algorithms, a fusion scheme that takes advantage of least square and several local phase unwrapping algorithms is presented.

  18. Adaptive information filtering for dynamic recommender systems

    CERN Document Server

    Jin, Ci-Hang; Zhang, Yi-Cheng; Zhou, Tao

    2009-01-01

    The dynamic environment in the real world calls for the adaptive techniques for information filtering, namely to provide real-time responses to the changes of system data. Where many incremental algorithms are designed for this purpose, they are usually challenged by the worse and worse performance resulted from the cumulative errors over time. In this Letter, we propose two incremental diffusion-based algorithms for the personalized recommendations, which integrate some pieces of local and fast updatings to achieve the approximate results. In addition to the fast responses, the errors of the proposed algorithms do not cumulate over time, that is to say, the global recomputing is unnecessary. This remarkable advantage is demonstrated by several metrics on algorithmic accuracy for two movie recommender systems and a social bookmarking system.

  19. Adaptive Federal Kalman Filtering for SINS/GPS Integrated System

    Institute of Scientific and Technical Information of China (English)

    杨勇; 缪玲娟

    2003-01-01

    A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.

  20. A new adaptive filtering algorithm for systems with multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-li; CHEN Xi-xin; LU Qian-hao

    2005-01-01

    Presented here is a new adaptive state filtering algorithm for systems with multiplicative noise. This algorithm estimates the vector state of the system and the statistics of noise when all the statistics of noise are unknown. This filtering algorithm is a simple recursive structure. A simulation example is presented which demonstrates the effectiveness of this filtering algorithm.

  1. An Adaptive Combinatorial Morphological Filter Based on Omnidirectional Structuring Elements

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunhui; HUI Junying; SUN Shenghe

    2001-01-01

    A new adaptive morphological filter is proposed in this paper. The filter utilizes the omnidirectional structuring elements and morphological open-closing or clos-opening operations. The outputs of the morphological operations by each structuring element are linear weighted processed by means of the adaptive method under the constrained least mean absolute (CLMA) error criterion. The new filter is applied to restore a noisy image and compared with the traditional morphological filters. The simulation results have shown that the new filter possesses effective noise suppression without blurring the geometrical features of the image.

  2. Scheme of adaptive polarization filtering based on Kalman model

    Institute of Scientific and Technical Information of China (English)

    Song Lizhong; Qi Haiming; Qiao Xiaolin; Meng Xiande

    2006-01-01

    A new kind of adaptive polarization filtering algorithm in order to suppress the angle cheating interference for the active guidance radar is presented. The polarization characteristic of the interference is dynamically tracked by using Kalman estimator under variable environments with time. The polarization filter parameters are designed according to the polarization characteristic of the interference, and the polarization filtering is finished in the target cell. The system scheme of adaptive polarization filter is studied and the tracking performance of polarization filter and improvement of angle measurement precision are simulated. The research results demonstrate this technology can effectively suppress the angle cheating interference in guidance radar and is feasible in engineering.

  3. Autonomous Navigation System Using a Fuzzy Adaptive Nonlinear H∞ Filter

    Directory of Open Access Journals (Sweden)

    Fariz Outamazirt

    2014-09-01

    Full Text Available Although nonlinear H∞ (NH∞ filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞ filter is proposed for the Unmanned Aerial Vehicle (UAV localization problem. Based on a real-time Fuzzy Inference System (FIS, the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.

  4. A hybrid RNS adaptive filter for channel equalization

    DEFF Research Database (Denmark)

    Bernocchi, Gian Luca; Cardarilli, Gian Carlo; Re, Andrea Del

    2006-01-01

    In this work a hybrid Residue Number System (RNS) implementation of an adaptive FIR filter is presented. The used adaptation algorithm is the Least Mean Squares (LMS). The filter has been designed to meet the constraints of specific class of applications. In fact, it is suitable for applications...... requiring a large number of taps where a serial updating of the filter coefficients is feasible (channel equalization or echo cancellation). In the literature, it has been shown that the RNS implementation of FIR filters grants earnings in area ad power consumption due to the introduced arithmetic...... simplifications. Vice versa, the RNS implementation of the adaptation algorithm needs scaling circuits that are complex and expensive in RNS arithmetic. For this reason, a serial binary implementation of the adaptation algorithm is chosen. The advantages in terms of area and speed of the RNS adaptive filter...

  5. ADAPTIVE FILTER FOR SYSTEM IDENTIFICATION USING QUANTIZATION SCHEMES

    Directory of Open Access Journals (Sweden)

    Nitesh Mudgal

    2012-03-01

    Full Text Available The Least Mean Square (LMS Algorithm finds its application in System identification due to its simplicity.Reduction of the complexity of Adaptive Finite Impulse Response(FIR filter had received attention in the area of adative filter. This paper proposes methods of system identification using adaptive filter which are based on a Quantised version of the LMS, namely the Clipped Least Mean Square (CLMS and Modified Clipped Least Mean Square( QX-LMS algorithms. In both Algorithms coefficients of the adaptive filter are adjusted automatically by an adaptive algorithm based on the input signals. This property makes the adaptive filter has an important application in system identification.the Quantized version of Least Mean Square Algorithm increases covergence property as compared to normal Least Mean Square Algorithm.

  6. Robust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion

    Directory of Open Access Journals (Sweden)

    Zongze Wu

    2015-10-01

    Full Text Available The maximum correntropy criterion (MCC has recently been successfully applied to adaptive filtering. Adaptive algorithms under MCC show strong robustness against large outliers. In this work, we apply the MCC criterion to develop a robust Hammerstein adaptive filter. Compared with the traditional Hammerstein adaptive filters, which are usually derived based on the well-known mean square error (MSE criterion, the proposed algorithm can achieve better convergence performance especially in the presence of impulsive non-Gaussian (e.g., α-stable noises. Additionally, some theoretical results concerning the convergence behavior are also obtained. Simulation examples are presented to confirm the superior performance of the new algorithm.

  7. Synthetically adaptive robust filtering for satellite orbit determination

    Institute of Scientific and Technical Information of China (English)

    YANG; Yuanxi

    2004-01-01

    The quality of the satellite orbit determination is rested on the knowledge of perturbing forces acting on the satellite and stochastic properties of the observations, and the ability of controlling various kinds of errors. After a brief discussion on the dynamic and geometric orbit determinations, Sage adaptive filtering and robust filtering are reviewed. A new synthetically adaptive robust filtering based on a combination of robust filtering and Sage filtering is developed. It is shown, by derivations and calculations, that the synthetically adaptive robust filtering for orbit determination is not only robust but also simple in calculation. It controls the effects of the outliers of tracking observations and the satellite dynamical disturbance on the parameter estimates of the satellite orbit.

  8. Adaptive Threshold Median Filter for Multiple-Impulse Noise

    Institute of Scientific and Technical Information of China (English)

    JIANG Bo; HUANG Wei

    2007-01-01

    Attenuating the noises plays an essential role in the image processing. Almost all the traditional median filters concern the removal of impulse noise having a single layer, whose noise gray level value is constant. In this paper, a new adaptive median filter is proposed to handle those images corrupted not only by single layer noise. The adaptive threshold median filter(ATMF) has been developed by combining the adaptive median filter (AMF) and two dynamic thresholds. Because of the dynamic threshold being used, the ATMF is able to balance the removal of the multiple-impulse noise and the quality of image. Comparison of the proposed method with traditional median filters is provided. Some visual examples are given to demonstrate the performance of the proposed Filter.

  9. Real time microcontroller implementation of an adaptive myoelectric filter.

    Science.gov (United States)

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  10. Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2016-04-01

    Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.

  11. Design and performance optimization of fiber optic adaptive filters.

    Science.gov (United States)

    Paparao, P; Ghosh, A; Allen, S D

    1991-05-10

    There is a great need for easy-to-fabricate and versatile fiber optic signal processing systems in which optical fibers are used for the delay and storage of wideband guided lightwave signals. We describe the design of the least-mean-square algorithm-based fiber optic adaptive filters for processing guided lightwave signals in real time. Fiber optic adaptive filters can learn to change their parameters or to process a set of characteristics of the input signal. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in the processing speed, parallelism, and interconnection. Many schemes for optical adaptive filtering of electronic signals are available in the literature. The new optical adaptive filters described in this paper are for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the adaptive filtering process as a function of the filter parameters and the fiber optic hardware errors. From this analysis we found that the effects of the optical round-off errors and noise can be reduced, and the learning speed can be comparatively increased in our design through an optimal selection of the filter parameters. A general knowledge of the fiber optic hardware, the statistics of the lightwave signal, and the desired goal of the adaptive processing are enough for this optimum selection of the parameters. Detailed computer simulations validate the theoretical results of performance optimization.

  12. An adaptive Kalman filter for ECG signal enhancement.

    Science.gov (United States)

    Vullings, Rik; de Vries, Bert; Bergmans, Jan W M

    2011-04-01

    The ongoing trend of ECG monitoring techniques to become more ambulatory and less obtrusive generally comes at the expense of decreased signal quality. To enhance this quality, consecutive ECG complexes can be averaged triggered on the heartbeat, exploiting the quasi-periodicity of the ECG. However, this averaging constitutes a tradeoff between improvement of the SNR and loss of clinically relevant physiological signal dynamics. Using a bayesian framework, in this paper, a sequential averaging filter is developed that, in essence, adaptively varies the number of complexes included in the averaging based on the characteristics of the ECG signal. The filter has the form of an adaptive Kalman filter. The adaptive estimation of the process and measurement noise covariances is performed by maximizing the bayesian evidence function of the sequential ECG estimation and by exploiting the spatial correlation between several simultaneously recorded ECG signals, respectively. The noise covariance estimates thus obtained render the filter capable of ascribing more weight to newly arriving data when these data contain morphological variability, and of reducing this weight in cases of no morphological variability. The filter is evaluated by applying it to a variety of ECG signals. To gauge the relevance of the adaptive noise-covariance estimation, the performance of the filter is compared to that of a Kalman filter with fixed, (a posteriori) optimized noise covariance. This comparison demonstrates that, without using a priori knowledge on signal characteristics, the filter with adaptive noise estimation performs similar to the filter with optimized fixed noise covariance, favoring the adaptive filter in cases where no a priori information is available or where signal characteristics are expected to fluctuate.

  13. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear adaptive filters (NAF) can learn deterministic gyro errors and cancel the error’s effect from attitude estimates. By completely canceling...

  14. Design and Analysis of Multilayered Waveguide Structure With Metal-Dielectric Gratings for Sensing With Reflection Narrowband Notch Filter

    Directory of Open Access Journals (Sweden)

    Guiju ZHANG

    2015-11-01

    Full Text Available Developments in micro and nanofabrication technologies have led a variety of grating waveguide structures (GWS being proposed and implemented in optics and laser application systems. A new design of multilayered nanostructure double-grating is described for reflection notch filter. Thin metal film and dielectric film are used and designed with one-dimensional composite gratings. The results calculated by rigorous coupled-wave analysis (RCWA present that the thin metal film between substrate and grating can produce significant attenuated reflections and efficiency in a broad reflected spectral range. The behavior of such a reflection filter is evaluated for refractive index sensing, which can be applied inside the integrated waveguide structure while succeeding cycles in measurement. The filter peaks are designed and obtained in a visible range with full width half maximum (FWHM of several nanometers to less than one nanometer. The multilayered structure shows a sensitivity of refractive index of 220nm/RIU as changing the surroundings. The reflection spectra are studied under different periods, depths and duty cycles. The passive structure and its characteristics can achieve practical applications in various fields, such as optical sensing, color filtering, Raman spectroscopy and laser technology.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9625

  15. A hybrid method for optimization of the adaptive Goldstein filter

    Science.gov (United States)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  16. FPGA Implementation of Adaptive Filter and its Performance Analysis

    Directory of Open Access Journals (Sweden)

    J. Malarmannan

    2013-06-01

    Full Text Available Adaptive filters are used in various real-time applications such as echo cancellation, noise cancellation, system identification and prediction. Field -programmable gate arrays (FPGAs are alsoused most widely for applications where timing requirements are strict. Thus implementation of filter in real-time is needed. The objective of this paper is to design and implement an Adaptive filter which is robust to impulsive noise using hardware description language (HDL design. The design implementation and its performance analysis are presented. The targeted FPGA is Altera CycloneIV. The obtained design results in superior performance, greater data sample frequency and less logic occupation.

  17. Weighted adaptive spatial filtering in digital holographic microscopy

    Science.gov (United States)

    Hong, Yuan; Shi, Tielin; Wang, Xiao; Zhang, Yichun; Chen, Kepeng; Liao, Guanglan

    2017-01-01

    Spatial filtering, a key point to realize real-time measurement, is used commonly in digital off-axis holography to extract desired terms. In this paper, we propose a weighted adaptive spatial filtering method by weighting the adaptive filtering window (obtained from image segmentation) based on signal to noise ratio. The advantages of this method are evaluated by simulations and further verified by recorded digital image plane holograms. The results demonstrate that our method is effective in suppressing noise and retaining the sharp edges in the reconstructed 3D profiles.

  18. Adaptive filtering for air-to-ground surveillance

    Science.gov (United States)

    Rigling, Brian D.

    2004-09-01

    This paper introduces a new concept for air-to-ground noise radar based on adaptive filtering. A transmitting antenna illuminates a region of interest with a continuous, noise waveform. The processor within the receiver treats the illuminated scene as a linear system with unknown coefficients which filters the transmitted signal. Given access to the transmitted waveform and the digitized backscattered signal, the receiver adaptively estimates the unknown filter coefficients, using the same processing architecture as a wireless channel equalizer, and continues to update their values as the transmitter and receiver traverse their flight paths. The adapted filters correspond to range profiles of the illuminated scene which may be Doppler processed to yield synthetic aperture imagery.

  19. Beam Stability in Synchrotrons with Notch and All-Pass Filters in the Feedback Loop of a Transverse Damper

    CERN Document Server

    Zhabitsky, V M; Kotzian, G

    2009-01-01

    The stability of a beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processor in the feedback loop between BPM and DK ensures the adjustment of the phase advance and the correction of the time of flight for optimum damping. Digital FIR (finite impulse response) and IIR (infinite impulse response) filters are used commonly for the signal processing. A notch filter with zeros at the revolution frequency is required to remove the closed orbit content of the signal and correct for the imperfect electric centre of the BPM. Further processing is required to adjust for the betatron phase advance between ...

  20. Application of a Notch Digital Filter to Elimination of Sinusoidal Disturbances from Helicopter Flight Data.

    Science.gov (United States)

    1986-04-01

    disturbances. An optimal Kalman filtering approach was found to be impractical [2]. However, additional research showed that the .. optimal filter...Evans, R.J. - "Application of Fast Fourier Transforms to Sinusoidal Disturbance Rejection and its -. , Relationship to Kalman Filtering". University of...1206 .......... F% .9 REQUEHCY Hz Fiue9 Feunc epneo Csae oc Filtr fo ALPA=0975 nd d-0.1 I. %.0. .2

  1. Adaptive Filtering for Aeroservoelastic Response Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CSA Engineering proposes the design of an adaptive aeroelastic mode suppression for advanced fly-by-wire aircraft, which will partition the modal suppression...

  2. Adaptive filters for color image processing

    Directory of Open Access Journals (Sweden)

    Papanikolaou V.

    1998-01-01

    Full Text Available The color filters that are used to attenuate noise are usually optimized to perform extremely well when dealing with certain noise distributions. Unfortunately it is often the case that the noise corrupting the image is not known. It is thus beneficial to know a priori the type of noise corrupting the image in order to select the optimal filter. A method of extracting and characterizing the noise within a digital color image using the generalized Gaussian probability density function (pdf (B.D. Jeffs and W.H. Pun, IEEE Transactions on Image Processing, 4(10, 1451–1456, 1995 and Proceedings of the Int. Conference on Image Processing, 465–468, 1996, is presented. In this paper simulation results are included to demonstrate the effectiveness of the proposed methodology.

  3. Adaptive filters for color image processing

    Directory of Open Access Journals (Sweden)

    V. Papanikolaou

    1999-01-01

    Full Text Available The color filters that are used to attenuate noise are usually optimized to perform extremely well when dealing with certain noise distributions. Unfortunately it is often the case that the noise corrupting the image is not known. It is thus beneficial to know a priori the type of noise corrupting the image in order to select the optimal filter. A method of extracting and characterizing the noise within a digital color image using the generalized Gaussian probability density function (pdf (B.D. Jeffs and W.H. Pun, IEEE Transactions on Image Processing, 4(10, 1451–1456, 1995 and Proceedings of the Int. Conference on Image Processing, 465–468, 1996, is presented. In this paper simulation results are included to demonstrate the effectiveness of the proposed methodology.

  4. Adaptive Control Using Residual Mode Filters Applied to Wind Turbines

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.

  5. A New Adaptive Framework for Collaborative Filtering Prediction

    OpenAIRE

    Almosallam, Ibrahim A.; Shang, Yi

    2008-01-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics wi...

  6. Adaptive texture filtering for defect inspection in ultrasound images

    Science.gov (United States)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  7. Adaptive filtering for ECG rejection from surface EMG recordings.

    Science.gov (United States)

    Marque, C; Bisch, C; Dantas, R; Elayoubi, S; Brosse, V; Pérot, C

    2005-06-01

    Surface electromyograms (EMG) of back muscles are often corrupted by electrocardiogram (ECG) signals. This noise in the EMG signals does not allow to appreciate correctly the spectral content of the EMG signals and to follow its evolution during, for example, a fatigue process. Several methods have been proposed to reject the ECG noise from EMG recordings, but seldom taking into account the eventual changes in ECG characteristics during the experiment. In this paper we propose an adaptive filtering algorithm specifically developed for the rejection of the electrocardiogram corrupting surface electromyograms (SEMG). The first step of the study was to choose the ECG electrode position in order to record the ECG with a shape similar to that found in the noised SEMGs. Then, the efficiency of different algorithms were tested on 28 erector spinae SEMG recordings. The best algorithm belongs to the fast recursive least square family (FRLS). More precisely, the best results were obtained with the simplified formulation of a FRLS algorithm. As an application of the adaptive filtering, the paper compares the evolutions of spectral parameters of noised or denoised (after adaptive filtering) surface EMGs recorded on erector spinae muscles during a trunk extension. The fatigue test was analyzed on 16 EMG recordings. After adaptive filtering, mean initial values of energy and of mean power frequency (MPF) were significantly lower and higher respectively. The differences corresponded to the removal of the ECG components. Furthermore, classical fatigue criteria (increase in energy and decrease in MPF values over time during the fatigue test) were better observed on the denoised EMGs. The mean values of the slopes of the energy-time and MPF-time linear relationships differed significantly when established before and after adaptive filtering. These results account for the efficacy of the adaptive filtering method proposed here to denoise electrophysiological signals.

  8. A reduced bias delay lock loop for adaptive filters

    Science.gov (United States)

    Fan, Guangteng; Huang, Yangbo; Su, Yingxue; Li, Jingyuan; Sun, Guangfu

    2017-01-01

    Narrowband interferences (NBIs) severely degrade the quality of a received signal and can hinder the operation of GPS receivers, and therefore, they are commonly excised using an adaptive transversal filter. This filter does not cause code tracking bias in the case of an ideal analog receiver channel when its magnitude and phase response are constant; however, distortion is induced by RF cables, amplifiers, and mixers that results in an asymmetric correlation function. This correlation function is further deformed by the adaptive transversal filter, resulting in a nonzero bias. Given the adaptive nature of this transversal filter, the bias varies based on the jamming pattern. For precision navigation applications, this bias must be mitigated. With this problem in mind, a new technique called amplitude estimating delay lock loop (AEDLL) is presented. By using data related to a known structure of the adaptive transversal filter, the proposed method only needs to estimate the amplitude of the correlation function and revise the correlation function for code tracking. Simulations show that the AEDLL method is capable of reducing the RMSE of code tracking bias to less than 0.12 ns, which is significantly smaller than that achieved using existing methods.

  9. An Adaptive Kalman Filter Excisor for Suppressing Narrowband Interference

    Science.gov (United States)

    1993-11-01

    interferences in- connues. Le filtre de Kalman doit alors "apprendre" ý ajuster un de ses param~tres pour effectuer le meilleur traitement. L’erreur est...4"L l B"• -- -- - - -.- ,_, . An~. A)7cQ 0 -QGOP II liii 111111 IIa( Naional 06fenso I ’ I Deence nitonals I "It AN ADAPTIVE KALMAN FILTER EXCISOR...Ottawa 0 A o~ oO Best Available COpy 4INational Defense Defence nationals AN ADAPTIVE KALMAN FILTER EXCISOR FOR SUPPRESSING NARROWBAND INTERFERENCE by

  10. Adaptive Rate Sampling and Filtering Based on Level Crossing Sampling

    Directory of Open Access Journals (Sweden)

    Saeed Mian Qaisar

    2009-01-01

    Full Text Available The recent sophistications in areas of mobile systems and sensor networks demand more and more processing resources. In order to maintain the system autonomy, energy saving is becoming one of the most difficult industrial challenges, in mobile computing. Most of efforts to achieve this goal are focused on improving the embedded systems design and the battery technology, but very few studies target to exploit the input signal time-varying nature. This paper aims to achieve power efficiency by intelligently adapting the processing activity to the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting a non conventional sampling scheme and adaptive rate filtering. The proposed approach, based on the LCSS (Level Crossing Sampling Scheme presents two filtering techniques, able to adapt their sampling rate and filter order by online analyzing the input signal variations. Indeed, the principle is to intelligently exploit the signal local characteristics—which is usually never considered—to filter only the relevant signal parts, by employing the relevant order filters. This idea leads towards a drastic gain in the computational efficiency and hence in the processing power when compared to the classical techniques.

  11. Design of Reliable Adaptive Filter with Fault Tolerance Using DSP

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, D. W.; Lee, J. W. [Electronics and Telecommunications Research Institute, Taejon (Korea); Seo, B. H. [Kyungbok National University, Taegu (Korea)

    2001-01-01

    LSM algorithm has been used for plant identifier and noise cancellation. This algorithm has been researched for performance enhancement of filtering. The design and development of a reliable system has been becoming a key issue in industry field because the reliability of a system is considered as an important factor to perform the system's function successfully. And the computing with reliability and fault tolerance is a important factor in the case of aviation, system communication, and nuclear plant. This paper presents design of reliable adaptive filter with fault tolerance. Generally, redundancy is used for reliability. In this case it needs computing or circuit for voting mechanism or computing for fault detection or switching part. But this presented Filter is not in need of computing for voting mechanism, or fault detection. Therefore it has simple computing , and practicality for application. And in this paper, reliability of adaptive filter is analyzed. The effectiveness of the proposed adaptive filter is demonstrated to the case studies of plant identifier and noise cancellation by using DSP. (author). 9 refs., 18 figs.

  12. Adaptive Compensation of Reactive Power With Shunt Active Power Filters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Asiminoaei, Lucian; Hansen, Steffan;

    2008-01-01

    This paper describes an adaptive method for compensating the reactive power with an active power filter (APF), which is initially rated for mitigation of only the harmonic currents given by a nonlinear industrial load. It is proven that, if the harmonic currents do not load the APF at the rated...

  13. BPSK Receiver Based on Recursive Adaptive Filter with Remodulation

    Directory of Open Access Journals (Sweden)

    N. Milosevic

    2011-12-01

    Full Text Available This paper proposes a new binary phase shift keying (BPSK signal receiver intended for reception under conditions of significant carrier frequency offsets. The recursive adaptive filter with least mean squares (LMS adaptation is used. The proposed receiver has a constant, defining the balance between the recursive and the nonrecursive part of the filter, whose proper choice allows a simple construction of the receiver. The correct choice of this parameter could result in unitary length of the filter. The proposed receiver has performance very close to the performance of the BPSK receiver with perfect frequency synchronization, in a wide range of frequency offsets (plus/minus quarter of the signal bandwidth. The results obtained by the software simulation are confirmed by the experimental results measured on the receiver realized with the universal software radio peripheral (USRP, with the baseband signal processing at personal computer (PC.

  14. Robust visual tracking via adaptive kernelized correlation filter

    Science.gov (United States)

    Wang, Bo; Wang, Desheng; Liao, Qingmin

    2016-10-01

    Correlation filter based trackers have proved to be very efficient and robust in object tracking with a notable performance competitive with state-of-art trackers. In this paper, we propose a novel object tracking method named Adaptive Kernelized Correlation Filter (AKCF) via incorporating Kernelized Correlation Filter (KCF) with Structured Output Support Vector Machines (SOSVM) learning method in a collaborative and adaptive way, which can effectively handle severe object appearance changes with low computational cost. AKCF works by dynamically adjusting the learning rate of KCF and reversely verifies the intermediate tracking result by adopting online SOSVM classifier. Meanwhile, we bring Color Names in this formulation to effectively boost the performance owing to its rich feature information encoded. Experimental results on several challenging benchmark datasets reveal that our approach outperforms numerous state-of-art trackers.

  15. Interference Cancellation in Aircraft Cockpit by Adaptive Filters

    Directory of Open Access Journals (Sweden)

    Arun C.

    2016-01-01

    Full Text Available This paper investigates on the development and implementation of adaptive noise cancellation (ANC algorithm meant for mitigating the high level engine noise in the cockpit of an aircraft, which makes the speech signal unintelligible. Adaptive filters configured as interference canceller have the potential application in mitigating the above interference. A comparative study of Gradient based adaptive Infinite Impulse Response (IIR algorithm and its modified version is performed using MATLAB simulator in terms of converging speed. From the simulation result the best IIR algorithm is used for implementation in Performance Optimized with Enhanced RISC PC (Power PC 7448.

  16. Adaptive training of feedforward neural networks by Kalman filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).

  17. Comparative Evaluation of Adaptive Filter and Neuro-Fuzzy Filter in Artifacts Removal From Electroencephalogram Signal

    Directory of Open Access Journals (Sweden)

    Paulchamy Balaiah

    2012-01-01

    Full Text Available Problem statement: This study presents an effective method for removing mixed artifacts (EOG-Electro-ocular gram, ECG-Electrocardiogram, EMG-Electromyogram from the EEG-Electroencephalogram records. The noise sources increases the difficulty in analyzing the EEG and obtaining clinical information. EEG signals are multidimensional, non-stationary (i.e., statistical properties are not invariant in time, time domain biological signals, which are not reproducible. It is supposed to contain information about what is going on in the ensemble of excitatory pyramidal neuron level, at millisecond temporal resolution scale. Since scalp EEG contains considerable amount of noise and artifacts and exactly where it is coming from is poorly determined, extracting information from it is extremely challenging. For this reason it is necessary to design specific filters to decrease such artifacts in EEG records. Approach: Some of the other methods that are really appealing are artifact removal through Independent Component Analysis (ICA, Wavelet Transforms, Linear filtering and Artificial Neural Networks. ICA method could be used in situations, where large numbers of noises need to be distinguished, but it is not suitable for on-line real time application like Brain Computer Interface (BCI. Wavelet transforms are suitable for real-time application, but there all success lies in the selection of the threshold function. Linear filtering is best when; the frequency of noises does not interfere or overlap with each other. In this study we proposed adaptive filtering and neuro-fuzzy filtering method to remove artifacts from EEG. Adaptive filter performs linear filtering. Neuro-fuzzy approaches are very promising for non-linear filtering of noisy image. The multiple-output structure is based on recursive processing. It is able to adapt the filtering action to different kinds of corrupting noise. Fuzzy reasoning embedded into the network structure aims at reducing errors

  18. Junction-type photonic crystal waveguides for notch- and pass-band filtering

    KAUST Repository

    Shahid, Naeem

    2011-01-01

    Evolution of the mode gap and the associated transmission mini stop-band (MSB) as a function of photonic crystal (PhC) waveguide width is theoretically and experimentally investigated. The change of line-defect width is identified to be the most appropriate way since it offers a wide MSB wavelength tuning range. A high transmission narrow-band filter is experimentally demonstrated in a junction-type waveguide composed of two PhC waveguides with slightly different widths. The full width at half maximum is 5.6 nm; the peak transmission is attenuated by only ∼5 dB and is ∼20 dB above the MSBs. Additionally, temperature tuning of the filter were also performed. The results show red-shift of the transmission peak and the MSB edges with a gradient of dλ/dT = 0.1 nm/°C. It is proposed that the transmission MSBs in such junction-type cascaded PhC waveguides can be used to obtain different types of filters. © 2011 Optical Society of America.

  19. Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter

    Science.gov (United States)

    Chen, Yangkang

    2016-07-01

    The seislet transform has been demonstrated to have a better compression performance for seismic data compared with other well-known sparsity promoting transforms, thus it can be used to remove random noise by simply applying a thresholding operator in the seislet domain. Since the seislet transform compresses the seismic data along the local structures, the seislet thresholding can be viewed as a simple structural filtering approach. Because of the dependence on a precise local slope estimation, the seislet transform usually suffers from low compression ratio and high reconstruction error for seismic profiles that have dip conflicts. In order to remove the limitation of seislet thresholding in dealing with conflicting-dip data, I propose a dip-separated filtering strategy. In this method, I first use an adaptive empirical mode decomposition based dip filter to separate the seismic data into several dip bands (5 or 6). Next, I apply seislet thresholding to each separated dip component to remove random noise. Then I combine all the denoised components to form the final denoised data. Compared with other dip filters, the empirical mode decomposition based dip filter is data-adaptive. One only needs to specify the number of dip components to be separated. Both complicated synthetic and field data examples show superior performance of my proposed approach than the traditional alternatives. The dip-separated structural filtering is not limited to seislet thresholding, and can also be extended to all those methods that require slope information.

  20. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  1. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  2. Low-power adaptive filter based on RNS components

    DEFF Research Database (Denmark)

    Bernocchi, Gian Luca; Cardarilli, Gian Carlo; Del Re, Andrea

    2007-01-01

    on the least mean squares (LMS) algorithm, is allowed. Previous work showed that the use of the residue number system (RNS) for the variable FIR filter grants advantages both in area and power consumption. On the other hand, the use of a binary serial implementation of the adaptation algorithm eliminates...... the need for complex scaling circuits in RNS. The advantages in terms of area and speed of the presented filter, with respect to its two's complement counterpart, are evaluated for implementations in standard cells....

  3. A COMPARISON OF TWO METHODS FADING MEMORY FILTER AND ADAPTIVE KALMAN FILTER IN MONITORING CRUSTAL MOVEMENT

    Directory of Open Access Journals (Sweden)

    Cahit Tağı ÇELİK

    2004-01-01

    Full Text Available Monitoring the Crustal Movement in Geodesy is performed by the deformation survey and analysis. If monitoring the crustal movements involves more than two epochs of survey campaign then from the plate tectonic theory, stations do not move randomly from one epoch to the other, therefore Kalman Filter may be suitable to use. However, if sudden movements happened in the crust in particular earthquake happened, the crust moves very fast in a very short period of time. When Kalman Filter used for monitoring these movements, from associated epoch, for a number of epochs the results may be biased. In the paper, comparison of two methods for elimination of the above mentioned biases have been performed. These methods are Fading Memory Filter and Adaptive Kalman Filter for an unknown bias.

  4. An Affine Combination of Adaptive Filters for Channels with Different Sparsity Levels

    Directory of Open Access Journals (Sweden)

    M. Butsenko

    2016-06-01

    Full Text Available In this paper we present an affine combination strategy for two adaptive filters. One filter is designed to handle sparse impulse responses and the other one performs better if impulse response is dispersive. Filter outputs are combined using an adaptive mixing parameter and the resulting output shows a better performance than each of the combining filters separately. We also demonstrate that affine combination results in faster convergence than a convex combination of two adaptive filters.

  5. A complex multi-notch astronomical filter to suppress the bright infrared sky.

    Science.gov (United States)

    Bland-Hawthorn, J; Ellis, S C; Leon-Saval, S G; Haynes, R; Roth, M M; Löhmannsröben, H-G; Horton, A J; Cuby, J-G; Birks, T A; Lawrence, J S; Gillingham, P; Ryder, S D; Trinh, C

    2011-12-06

    A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.

  6. Kalman filtering to suppress spurious signals in Adaptive Optics control

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L; Veran, J P

    2010-03-29

    In many scenarios, an Adaptive Optics (AO) control system operates in the presence of temporally non-white noise. We use a Kalman filter with a state space formulation that allows suppression of this colored noise, hence improving residual error over the case where the noise is assumed to be white. We demonstrate the effectiveness of this new filter in the case of the estimated Gemini Planet Imager tip-tilt environment, where there are both common-path and non-common path vibrations. We discuss how this same framework can also be used to suppress spatial aliasing during predictive wavefront control assuming frozen flow in a low-order AO system without a spatially filtered wavefront sensor, and present experimental measurements from Altair that clearly reveal these aliased components.

  7. Adaptive Tracking Filter for Stabilizing a Flexible Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    ALIMohamed.s.Elmelhi; YASIR.Muhammad; JIANGYu-xiang

    2004-01-01

    The flight control system designer is increasingly concerned with the problem of providing adequate stability of the elastic modes of the flight vehicle. The problem of stabilizing bending modes can be solved by the use of different bending filters. But continuously changing behavior of the elastic modes frequencies makes it impossible to suppress the elastic modes. In this paper, adaptive tracking filter is used to solve this problem. Where it can track the frequency of predominant oscillatory component of its input signal and automatically adjust the shaping characteristics as a function of this frequency. Simulation results are presented to show the frequency tracking accuracy and response of the flight launch vehicle, which are based on the assumption that, only first bending mode is selected at a time. Comparison with the second order band pass filter is carried out in order to emphasis the effectiveness of this design methodology.

  8. Queueing interpretation of adaptive reconstructive multiparameter τ-opening filters

    Science.gov (United States)

    Chen, Yidong; Dougherty, Edward R.

    1998-04-01

    A multiparameter binary (tau) -opening is a union of parameterized openings in which parameters for each opening are individually defined and a structuring element can be parameterized relative to both size and shape. The reconstructive filter corresponding to an opening is defined by fully passing any grain not eliminated by the opening and deleting all other grains. Adaptive design results from treating the parameter vector of a reconstructive multiparameter (tau) -opening as the state space of a Markov chain. The present paper considers the relationship between Markovian queueing networks and adaptive multiparameter (tau) - openings for the signal-union-noise model.

  9. Model Adaptation for Prognostics in a Particle Filtering Framework

    Directory of Open Access Journals (Sweden)

    Bhaskar Saha

    2011-01-01

    Full Text Available One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated. This performs model adaptation in conjunction with state tracking, and thus, produces a tuned model that can used for long term predictions. This feature of particle filters works in most part due to the fact that they are not subject to the “curse of dimensionality”, i.e. the exponential growth of computational complexity with state dimension. However, in practice, this property holds for “well-designed” particle filters only as dimensionality increases. This paper explores the notion of wellness of design in the context of predicting remaining useful life for individual discharge cycles of Li-ion and Li-Polymer batteries. Prognostic metrics are used to analyze the tradeoff between different model designs and prediction performance. Results demonstrate how sensitivity analysis may be used to arrive at a well-designed prognostic model that can take advantage of the model adaptation properties of a particle filter.

  10. Using LMS Adaptive Filter in Direct Wave Cancellation

    Institute of Scientific and Technical Information of China (English)

    徐元军; 陶然; 王越; 单涛

    2003-01-01

    The way to use the least-mean-square (LMS) arithmetic to cancel the direct wave for a passive radar system is introduced. The model of the direct wave is deduced. By using the LMS adaptive FIR filter, the software solution for FM passive radar system is developed instead of the hardware consumption of the existent experiment system of passive radar. Further more some simulative results are given. The simulative results indicate that using LMS arithmetic to cancel the direct wave is effective.

  11. THE ADAPTIVE SMOOTHING FILTERS OF SENSOR SIGNALS IN THE MICROAVIONIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. A. Malkin

    2012-01-01

    Full Text Available The adaptive for intensivity of measuring noise filters for smooth of sensor signals are considered. The adaptation are realized at the expense of the statistical processing of the filtering errors. The algorithm of adaptive filter coefficients calculation and modeling results are presented.

  12. Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging

    Science.gov (United States)

    Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).

  13. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut.

    Science.gov (United States)

    Foronda, David; Weng, Ruifen; Verma, Pushpa; Chen, Ya-Wen; Cohen, Stephen M

    2014-11-01

    Homeostasis of the intestine is maintained by dynamic regulation of a pool of intestinal stem cells. The balance between stem cell self-renewal and differentiation is regulated by the Notch and insulin signaling pathways. Dependence on the insulin pathway places the stem cell pool under nutritional control, allowing gut homeostasis to adapt to environmental conditions. Here we present evidence that miR-305 is required for adaptive homeostasis of the gut. miR-305 regulates the Notch and insulin pathways in the intestinal stem cells. Notably, miR-305 expression in the stem cells is itself under nutritional control via the insulin pathway. This link places regulation of Notch pathway activity under nutritional control. These findings provide a mechanism through which the insulin pathway controls the balance between stem cell self-renewal and differentiation that is required for adaptive homeostasis in the gut in response to changing environmental conditions.

  14. Adaptive distributed Kalman filtering with wind estimation for astronomical adaptive optics.

    Science.gov (United States)

    Massioni, Paolo; Gilles, Luc; Ellerbroek, Brent

    2015-12-01

    In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

  15. A New Adaptive Framework for Collaborative Filtering Prediction.

    Science.gov (United States)

    Almosallam, Ibrahim A; Shang, Yi

    2008-06-01

    Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.

  16. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-01-01

    Full Text Available Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength. A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B, ABmm (MVNA 8-350 and Rohde&Schwarz (ZVA24 together with frequency multipliers. The

  17. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration

    Science.gov (United States)

    Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar

    2016-03-01

    The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.

  18. Coevolution-Based Adaptive Particle Filters for Global Localization

    Institute of Scientific and Technical Information of China (English)

    LUORonghua; HONGBingrong; PIAOSonghao; DAIHuming

    2005-01-01

    A coevolution mechanism derived from competition relationships between ecological species is merged into Particle filters (PF). The new version of particle filters is termed Coevolutionbased adaptive particle filters (CEAPF). In CEAPF, samples are clustered into species, each of which represents a hypothesis of state of the system in a higher level than a single sample. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence of PF can be solved. And the number of samples can be adjusted adaptively over time according to the uncertainty of the state of the system by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small number of samples can represent the desired density well enough. And CEAPF is applied to robot localization in highly symmetric environments. Experiments prove that CEAPF can considerably improve the success rate and precision of localization.

  19. Image denoising using a directional adaptive diffusion filter

    Science.gov (United States)

    Zhao, Cuifang; Shi, Caicheng; He, Peikun

    2006-11-01

    Partial differential equations (PDEs) are well-known due to their good processing results which it can not only smooth the noise but also preserve the edges. But the shortcomings of these processes came to being noticed by people. In some sense, PDE filter is called "cartoon model" as it produces an approximation of the input image, use the same diffusion model and parameters to process noise and signal because it can not differentiate them, therefore, the image is naturally modified toward piecewise constant functions. A new method called a directional adaptive diffusion filter is proposed in the paper, which combines PDE mode with wavelet transform. The undecimated discrete wavelet transform (UDWT) is carried out to get different frequency bands which have obviously directional selectivity and more redundancy details. Experimental results show that the proposed method provides a performance better to preserve textures, small details and global information.

  20. An Adaptive Multipath Mitigation Filter for GNSS Applications

    Science.gov (United States)

    Chang, Chung-Liang; Juang, Jyh-Ching

    2008-12-01

    Global navigation satellite system (GNSS) is designed to serve both civilian and military applications. However, the GNSS performance suffers from several errors, such as ionosphere delay, troposphere delay, ephemeris error, and receiver noise and multipath. Among these errors, the multipath is one of the most unpredictable error sources in high-accuracy navigation. This paper applies a modified adaptive filter to reduce code and carrier multipath errors in GPS. The filter employs a tap-delay line with an Adaline network to estimate the direction and the delayed-signal parameters. Then, the multipath effect is mitigated by subtracting the estimated multipath effects from the processed correlation function. The hardware complexity of the method is also compared with other existing methods. Simulation results show that the proposed method using field data has a significant reduction in multipath error especially in short-delay multipath scenarios.

  1. An Adaptive Multipath Mitigation Filter for GNSS Applications

    Directory of Open Access Journals (Sweden)

    Jyh-Ching Juang

    2008-02-01

    Full Text Available Global navigation satellite system (GNSS is designed to serve both civilian and military applications. However, the GNSS performance suffers from several errors, such as ionosphere delay, troposphere delay, ephemeris error, and receiver noise and multipath. Among these errors, the multipath is one of the most unpredictable error sources in high-accuracy navigation. This paper applies a modified adaptive filter to reduce code and carrier multipath errors in GPS. The filter employs a tap-delay line with an Adaline network to estimate the direction and the delayed-signal parameters. Then, the multipath effect is mitigated by subtracting the estimated multipath effects from the processed correlation function. The hardware complexity of the method is also compared with other existing methods. Simulation results show that the proposed method using field data has a significant reduction in multipath error especially in short-delay multipath scenarios.

  2. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    Science.gov (United States)

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy.

  3. An adaptive particle filter for mobile robot fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhuo-hua; FU Ming; CAI Zi-xing; YU Jin-xia

    2006-01-01

    An adaptive particle filter for fault diagnosis of dead-reckoning system was presented, which applied a general framework to integrate rule-based domain knowledge into particle filter. Domain knowledge was exploited to constrain the state space to certain subset. The state space was adjusted by setting the transition matrix. Firstly, the monitored mobile robot and its kinematics models,measurement models and fault models were given. Then, 5 kinds of planar movement states of the robot were estimated with driving speeds of left and right side. After that, the possible (or detectable) fault modes were obtained to modify the transitional probability.There are two typical advantages of this method, i.e. particles will never be drawn from hopeless area of the state space, and the particle number is reduced.

  4. 聚合物波导微环陷波滤波器研究%Research of Notch Filter Based on Polymer Micro-Ring Waveguide

    Institute of Scientific and Technical Information of China (English)

    韩秀友; 王凌华; 王瑜; 邹品; 谷一英; 王锦艳; 蹇锡高; 赵明山

    2013-01-01

    分析了全通型波导微环的滤波响应特性,该波导微环在耦合系数与微环周损耗满足临界耦合条件时可以实现陷波滤波功能.设计并制备了跑道形聚合物液态聚倍半硅氧烷(PSQ-L)波导微环谐振器.基于其陷波滤波功能,实现了14.35 GHz准单边带微波信号在长为25 km的光纤中传输,有效抑制了光纤色散导致的微波功率衰减问题.为进一步提高陷波滤波的灵活性,采用马赫-曾德尔干涉(MZI)结构代替传统定向耦合器.通过改变干涉臂和环波导上加热电极的功率实现了微环耦合状态(过耦合、临界耦合、欠耦合)与谐振波长的灵活调谐,最大陷波深度为12 dB,波长调谐效率为8.2 pm/mW.%According to the filter response analysis of the all-pass waveguide micro-ring,the notch filtering function can be achieved when the relationship between the coupling coefficient and the round trip loss meets the critical coupling condition.The micro-ring resonator based on polymer polysiloxane-liquid (PSQ-L) racetrack waveguide is designed and fabricated.With its notch filtering function,the power fading effect induced by the dispersion is suppressed effectively and the quasi-single sideband light-wave carried radio frequency (RF) signal of 14.35 GHz is transmitted through 25 km single mode fiber successively.To improve the flexibility of notch filtering,the conventional direction coupler is substituted with a Mach-Zehnder interferometer (MZI).The micro-ring coupling states,such as over,critical,and under coupling,and the resonant wavelength are tuned agilely by altering the power applied to the heating electrodes on the arm of MZI and the ring waveguide.The maximum notch depth is 12 dB,and the wavelength tuning efficiency is 8.2 pm/mW.

  5. A Reconfigurable Triple-Notch-Band Antenna Integrated with Defected Microstrip Structure Band-Stop Filter for Ultra-Wideband Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    Yingsong Li

    2013-01-01

    Full Text Available A printed reconfigurable ultra-wideband (UWB monopole antenna with triple narrow band-notched characteristics is proposed for cognitive radio applications in this paper. The triple narrow band-notched frequencies are obtained using a defected microstrip structure (DMS band stop filter (BSF embedded in the microstrip feed line and an inverted π-shaped slot etched in the rectangular radiation patch, respectively. Reconfigurable characteristics of the proposed cognitive radio antenna (CRA are achieved by means of four ideal switches integrated on the DMS-BSF and the inverted π-shaped slot. The proposed UWB CRA can work at eight modes by controlling switches ON and OFF. Moreover, impedance bandwidth, design procedures, and radiation patterns are presented for analysis and explanation of this antenna. The designed antenna operates over the frequency band between 3.1 GHz and 14 GHz (bandwidth of 127.5%, with three notched bands from 4.2 GHz to 6.2 GHz (38.5%, 6.6 GHz to 7.0 GHz (6%, and 12.2 GHz to 14 GHz (13.7%. The antenna is successfully simulated, fabricated, and measured. The results show that it has wide impedance bandwidth, multimodes characteristics, stable gain, and omnidirectional radiation patterns.

  6. A neural architecture for nonlinear adaptive filtering of time series

    DEFF Research Database (Denmark)

    Hoffmann, Nils; Larsen, Jan

    1991-01-01

    A neural architecture for adaptive filtering which incorporates a modularization principle is proposed. It facilitates a sparse parameterization, i.e. fewer parameters have to be estimated in a supervised training procedure. The main idea is to use a preprocessor which determines the dimension...... of the input space and can be designed independently of the subsequent nonlinearity. Two suggestions for the preprocessor are presented: the derivative preprocessor and the principal component analysis. A novel implementation of fixed Volterra nonlinearities is given. It forces the boundedness...

  7. Reliable hydraulic turbine governor based on identification and adaptive filtering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Doraiswami, R.

    1986-01-01

    A scheme for improving reliable operation of a PID governor of a hydraulic turbine generating unit is proposed. The parameters of governor and actuators are identified on-line to, a) detect their anomalous behaviours, b) facilitate the calibration of the proportional integral and derivative gain settings. An adaptive filter is used to detect the lightly damped oscillations of the system. The proposed scheme was verified via simulation on the real data obtained from one of Mactaquac hydro-generating units of New Brunswick Electrical Power Commission. The simulation results show that the proposed scheme can indeed provide an accurate and rapid detection of the abnormal system operations.

  8. Reduced rank adaptive filtering in impulsive noise environments

    KAUST Repository

    Soury, Hamza

    2014-11-01

    An impulsive noise environment is considered in this paper. A new aspect of signal truncation is deployed to reduce the harmful effect of the impulsive noise to the signal. A full rank direct solution is derived followed by an iterative solution. The reduced rank adaptive filter is presented in this environment by using two methods for rank reduction, while the minimized objective function is defined using the Lp norm. The results are presented and the efficiency of each method is discussed. © 2014 IEEE.

  9. MULTISTAGE ADAPTIVE HIGHER-ORDER NONLINEAR FINITE IMPULSE RESPONSE FILTERS FOR CHAOTIC TIME SERIES PREDICTIONS

    Institute of Scientific and Technical Information of China (English)

    ZHANG JIA-SHU; XIAO XIAN-CI

    2001-01-01

    A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.

  10. Suppression of Mixed Noise in the Similar Images by Using Adaptive LMS L-filters

    Directory of Open Access Journals (Sweden)

    S. Marchevsky

    2000-12-01

    Full Text Available In this paper, several adaptive least mean squares (LMSlocation-invariant filter (L-filter modifications will be described.These filters are based on linear combination of order statistics. Theadaptive L-filters are able to adapt well to variety of noiseprobability distribution, including impulsive noise. They also performwell in the case of nonstationary signals and, therefore, they aresuitable for image processing, too. Following this L-filter property,applications of the adaptive LMS L-filters for filteringtwo-dimensional static images degraded by mixed noise consisting ofadditive Gaussian white noise and impulsive noise will be presented inthis paper. Based on conveniently selected experiments intent on imagefiltering, the properties of a several adaptive L-filters modificationswill be demonstrated and compared. It will follow from experimentresults, that the L-filter modification called signal-dependent LMSL-filter yields the best results.

  11. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    Directory of Open Access Journals (Sweden)

    Jinsoo Jeong

    2011-06-01

    Full Text Available This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure.

  12. A stochastic total least squares solution of adaptive filtering problem.

    Science.gov (United States)

    Javed, Shazia; Ahmad, Noor Atinah

    2014-01-01

    An efficient and computationally linear algorithm is derived for total least squares solution of adaptive filtering problem, when both input and output signals are contaminated by noise. The proposed total least mean squares (TLMS) algorithm is designed by recursively computing an optimal solution of adaptive TLS problem by minimizing instantaneous value of weighted cost function. Convergence analysis of the algorithm is given to show the global convergence of the proposed algorithm, provided that the stepsize parameter is appropriately chosen. The TLMS algorithm is computationally simpler than the other TLS algorithms and demonstrates a better performance as compared with the least mean square (LMS) and normalized least mean square (NLMS) algorithms. It provides minimum mean square deviation by exhibiting better convergence in misalignment for unknown system identification under noisy inputs.

  13. Immune adaptive Gaussian mixture par ticle filter for state estimation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Xiaodan Wang; Yi Wang; Guohong Li

    2015-01-01

    The particle filter (PF) is a flexible and powerful sequen-tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im-poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser-vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im-prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.

  14. Multimodal Medical Image Fusion by Adaptive Manifold Filter

    Directory of Open Access Journals (Sweden)

    Peng Geng

    2015-01-01

    Full Text Available Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.

  15. An adaptive filtered back-projection for photoacoustic image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, He; Bustamante, Gilbert; Peterson, Ralph; Ye, Jing Yong, E-mail: jingyong.ye@utsa.edu [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas 78249 (United States)

    2015-05-15

    Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. Methods: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing

  16. Adaptive Neuro-Fuzzy Extended Kalman Filtering for Robot Localization

    Directory of Open Access Journals (Sweden)

    Ramazan Havangi

    2010-03-01

    Full Text Available Extended Kalman Filter (EKF has been a popular approach to localization a mobile robot. However, the performance of the EKF and the quality of the estimation depends on the correct a priori knowledge of process and measurement noise covariance matrices (Qk and Rk , respectively. Imprecise knowledge of these statistics can cause significant degradation in performance. This paper proposed the development of an Adaptive Neuro- Fuzzy Extended Kalman Filtering (ANFEKF for localization of robot. The Adaptive Neuro-Fuzzy attempts to estimate the elements of Qk and Rk matrices of the EKF algorithm, at each sampling instant when measurement update step is carried out. The ANFIS supervises the performance of the EKF with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences. The free parameters of ANFIS are trained using the steepest gradient descent (SD to minimize the differences of the actual value of the covariance of the residual with its theoretical value as much possible. The simulation results show the effectiveness of the proposed algorithm.

  17. Adaptive integrated navigation filtering based on accelerometer calibration

    Directory of Open Access Journals (Sweden)

    Qifan Zhou

    2012-11-01

    Full Text Available In this paper, a novel GPS (Global Positioning System and DR (Dead Reckoning system which was based on the accelerometer and gyroscope integrated system was designed and implemented. In this system, the odometer used in traditional DR system was replaced by a MEMS tri-axis accelerometer in order to decrease the cost and the volume of the system. The system was integrated by the Kalman filter and a new mathematical model was introduced. In order to reasonably use the GPS information, an adaptive algorithm based on single measurement system which could estimate the measurement noise covariance was obtained. On the purpose of reducing the effect of the accumulated error caused by drift and bias of accelerometer, the accelerometer was calibrated online when GPS performed well. In this way, the integrated system could not only obtain the high-precision positioning in real time, but also perform stably in practice.

  18. Adaptive filtering for white-light LED visible light communication

    Science.gov (United States)

    Hsu, Chin-Wei; Chen, Guan-Hong; Wei, Liang-Yu; Chow, Chi-Wai; Lu, I.-Cheng; Liu, Yen-Liang; Chen, Hsing-Yu; Yeh, Chien-Hung; Liu, Yang

    2017-01-01

    White-light phosphor-based light-emitting diode (LED) can be used to provide lighting and visible light communication (VLC) simultaneously. However, the long relaxation time of phosphor can reduce the modulation bandwidth and limit the VLC data rate. Recent VLC works focus on improving the LED modulation bandwidths. Here, we propose and demonstrate the use of adaptive Volterra filtering (AVF) to increase the data rate of a white-light LED VLC system. The detailed algorithm and implementation of the AVF for the VLC system have been discussed. Using our proposed electrical frontend circuit and the proposed AVF, a significant data rate enhancement to 700.68 Mbit/s is achieved after 1-m free-space transmission using a single white-light phosphor-based LED.

  19. Channel Estimation using Adaptive Filtering for LTE-Advanced

    Directory of Open Access Journals (Sweden)

    Saqib Saleem

    2011-05-01

    Full Text Available For demand of high data rates, enhanced system capacity and coverage, ITU made proposal for the standardization of next generation wireless communication systems, known as IMT-Advanced. To achieve these targets, a priori knowledge of the channel is required at the transmitter side. In this paper, three adaptive channel estimation techniques: Least Mean Square (LMS, Recursive Least Square (RLS and Kalman-Filtering Based, are compared in terms of performance and complexity. For performance, Mean Square Error (MSE and Symbol Error Rate (SER while for complexity, computational time is measured for variable channel impulse response (CIR lengths and channel taps. MATLAB Monte-Carlo Simulations are used to evaluate these techniques.

  20. Adaptive Current Control Method for Hybrid Active Power Filter

    Science.gov (United States)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  1. Application of adaptive Savitzky–Golay filter for EEG signal processing

    Directory of Open Access Journals (Sweden)

    Deepshikha Acharya

    2016-09-01

    Full Text Available A Savitzky–Golay filter typically requires pre-determined values of order and frame size for its fabrication. Generally, a random hit-and-trial method or prior experience is required to determine the suitable values of design parameters. However, the proposed adaptive Savitzky–Golay filter aims to provide a generic framework for optimal design of filter vis-à-vis the order and frame size of the filter. The algorithm uses all the possible combinations of these parameters in a certain range and the correlation coefficient is evaluated in each case to measure the filter efficiency. The parameters which provide the highest correlation coefficient are considered for filter design. In this paper the relative advantages of adaptive Savitzky–Golay filter over the standard models are also discussed. The proposed adaptive model of Savitzky–Golay filter is successfully tested for EEG signal processing.

  2. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.

    Science.gov (United States)

    Zhang, Zhen; Ma, Yaopeng

    2016-02-06

    A novel generalized play operator-based (GPO-based) nonlinear adaptive filter is proposed to model rate-dependent hysteresis nonlinearity for smart actuators. In the proposed filter, the input signal vector consists of the output of a tapped delay line. GPOs with various thresholds are used to construct a nonlinear network and connected with the input signals. The output signal of the filter is composed of a linear combination of signals from the output of GPOs. The least-mean-square (LMS) algorithm is used to adjust the weights of the nonlinear filter. The modeling results of four adaptive filter methods are compared: GPO-based adaptive filter, Volterra filter, backlash filter and linear adaptive filter. Moreover, a phenomenological operator-based model, the rate-dependent generalized Prandtl-Ishlinskii (RDGPI) model, is compared to the proposed adaptive filter. The various rate-dependent modeling methods are applied to model the rate-dependent hysteresis of a giant magnetostrictive actuator (GMA). It is shown from the modeling results that the GPO-based adaptive filter can describe the rate-dependent hysteresis nonlinear of the GMA more accurately and effectively.

  3. Theory of affine projection algorithms for adaptive filtering

    CERN Document Server

    Ozeki, Kazuhiko

    2016-01-01

    This book focuses on theoretical aspects of the affine projection algorithm (APA) for adaptive filtering. The APA is a natural generalization of the classical, normalized least-mean-squares (NLMS) algorithm. The book first explains how the APA evolved from the NLMS algorithm, where an affine projection view is emphasized. By looking at those adaptation algorithms from such a geometrical point of view, we can find many of the important properties of the APA, e.g., the improvement of the convergence rate over the NLMS algorithm especially for correlated input signals. After the birth of the APA in the mid-1980s, similar algorithms were put forward by other researchers independently from different perspectives. This book shows that they are variants of the APA, forming a family of APAs. Then it surveys research on the convergence behavior of the APA, where statistical analyses play important roles. It also reviews developments of techniques to reduce the computational complexity of the APA, which are important f...

  4. Image Enhancement Using Homomorphic Filtering and Adaptive Median Filtering for Balinese Papyrus (Lontar

    Directory of Open Access Journals (Sweden)

    Ida Bagus Ketut Surya Arnawa

    2015-08-01

    Full Text Available Balinese papyrus (Lontar is one of the most popular media to write for more than a hundred years in Indonesia. Balinese papyrus are used to document things that are considered important in the past. Most of the balinese papyrus suffered damage caused by weathering, edible fungus and insects making it is difficult to read. One of the efforts made to preserve the existence of balinese papyrus is to perform digitization of it. The problems most often encountered in the process of digitizing the image of the balinese papyrus is less good results as there is noise caused by its conditions that have been damaged and the uneven distribution illumination in this part of the image. In this study the authors propose to combine homomorphic filtering with adaptive median filtering to perform image enhancement. Surve results obtained show the percentage of the average respondents stated that the image enhancement results are good is 83.4%, the percentage of the average respondents stated that the image enhancement results are very good is 4% and the percentage of the average respondents stated that the image enhancement results are enough is 12, 6%.

  5. Simultaneous Learning and Filtering without Delusions: A Bayes-Optimal Derivation of Combining Predictive Inference and AdaptiveFiltering

    Directory of Open Access Journals (Sweden)

    Jan eKneissler

    2015-04-01

    Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  6. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    Science.gov (United States)

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  7. An adaptive demodulation approach for bearing fault detection based on adaptive wavelet filtering and spectral subtraction

    Science.gov (United States)

    Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang

    2016-02-01

    Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses

  8. Optimal adaptive normalized matched filter for large antenna arrays

    KAUST Repository

    Kammoun, Abla

    2016-09-13

    This paper focuses on the problem of detecting a target in the presence of a compound Gaussian clutter with unknown statistics. To this end, we focus on the design of the adaptive normalized matched filter (ANMF) detector which uses the regularized Tyler estimator (RTE) built from N-dimensional observations x, · · ·, x in order to estimate the clutter covariance matrix. The choice for the RTE is motivated by its possessing two major attributes: first its resilience to the presence of outliers, and second its regularization parameter that makes it more suitable to handle the scarcity in observations. In order to facilitate the design of the ANMF detector, we consider the regime in which n and N are both large. This allows us to derive closed-form expressions for the asymptotic false alarm and detection probabilities. Based on these expressions, we propose an asymptotically optimal setting for the regularization parameter of the RTE that maximizes the asymptotic detection probability while keeping the asymptotic false alarm probability below a certain threshold. Numerical results are provided in order to illustrate the gain of the proposed detector over a recently proposed setting of the regularization parameter.

  9. Study of a new fast adaptive filtering algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-li; ZHANG Xiong-wei; YANG Ji-bin; CHEN Gong

    2006-01-01

    A new fast adaptive filtering algorithm was presented by using the correlations between the signal's former and latter sampling times.The proof of the new algorithm was also presented,which showed that its optimal weight vector was the solution of generalized Wiener equation.The new algorithm was of simple structure,fast convergence,and less stable maladjustment.It can handle many signals including both uncorrelated signal and strong correlation signal.However,its computational complexity was comparable to that of the normalized least-mean-square (NLMS) algorithm.Simulation results show that for uncorrelated signals,the stable maladjustment of the proposed algorithm is less than that of the VS-NLMS algorithm,and its convergence is comparable to that of the algorithm proposed in references but faster than that of L.E-LMS algorithm.For strong correlation signal,its performance is superior to those of the NLMS algorithm and DCR-LMS algorithm.

  10. 两种渐消滤波与自适应抗差滤波的综合比较分析%Comparison of Two Fading Filters and Adaptively Robust Filter

    Institute of Scientific and Technical Information of China (English)

    杨元喜; 高为广

    2007-01-01

    Two kinds of fading filters and their principles are introduced. An adaptive robust filter is given with corresponding principle. The basic abilities of the fading filters and adaptively robust filter in controlling the influences of the kinematic model errors are analyzed. A practical example is given. The results of the fading filter and adaptively robust filter are compared and analyzed.

  11. Adaptive Line Enhancers filters for Gravitational Waves Detection from coalescing binaries

    CERN Document Server

    Acernese, F; De Rosa, R; Eleuteri, A; Milano, L

    2004-01-01

    In this paper we propose a new strategy for gravitational waves detection from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This strategy is a classical hierarchical strategy in which the ALE filters have the role of triggers, used to select data chunks which may contain gravitational events, to be further analyzed with more refined optimal techniques, like the the classical Matched Filter Technique. After a direct comparison of the performances of ALE filters with the Wiener-Komolgoroff optimum filters (matched filters), necessary to discuss their performance and to evaluate the statistical limitation in their use as triggers, we performed a series of tests, demonstrating that these filters are quite promising both for the relatively small computational power needed and for the robustness of the algorithms used. The performed tests have shown a weak point of ALE filters, that we fixed by introducing a further strategy, based on a dynamic bank of ALE filters, running simultaneously, bu...

  12. Analysis of dynamic deformation processes with adaptive KALMAN-filtering

    Science.gov (United States)

    Eichhorn, Andreas

    2007-05-01

    In this paper the approach of a full system analysis is shown quantifying a dynamic structural ("white-box"-) model for the calculation of thermal deformations of bar-shaped machine elements. The task was motivated from mechanical engineering searching new methods for the precise prediction and computational compensation of thermal influences in the heating and cooling phases of machine tools (i.e. robot arms, etc.). The quantification of thermal deformations under variable dynamic loads requires the modelling of the non-stationary spatial temperature distribution inside the object. Based upon FOURIERS law of heat flow the high-grade non-linear temperature gradient is represented by a system of partial differential equations within the framework of a dynamic Finite Element topology. It is shown that adaptive KALMAN-filtering is suitable to quantify relevant disturbance influences and to identify thermal parameters (i.e. thermal diffusivity) with a deviation of only 0,2%. As result an identified (and verified) parametric model for the realistic prediction respectively simulation of dynamic temperature processes is presented. Classifying the thermal bend as the main deformation quantity of bar-shaped machine tools, the temperature model is extended to a temperature deformation model. In lab tests thermal load steps are applied to an aluminum column. Independent control measurements show that the identified model can be used to predict the columns bend with a mean deviation (r.m.s.) smaller than 10 mgon. These results show that the deformation model is a precise predictor and suitable for realistic simulations of thermal deformations. Experiments with modified heat sources will be necessary to verify the model in further frequency spectra of dynamic thermal loads.

  13. An Adjoint-Based Adaptive Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2013-10-01

    A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR) approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF ensemble is regularly enhanced with new members generated after back projection of the EnKF analysis residuals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem, constraining the new member with model dynamics and the previous observations. This should provide more information for the estimation of the new member and reduce dependence of the AEnKF on the assumed stationary background covariance matrix. This is done by integrating the analysis residuals backward in time with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices of the assimilation system inputs and parameters.

  14. Development of adaptive IIR filtered-e LMS algorithm for active noise control

    Institute of Scientific and Technical Information of China (English)

    SUN Xu; MENG Guang; TENG Pengxiao; CHEN Duanshi

    2003-01-01

    Compared to finite impulse response (FIR) filters, infinite impulse response (IIR)filters can match the system better with much fewer coefficients, and hence the computationload is saved and the performance improves. Therefore, it is attractive to use IIR filters insteadof FIR filters in active noise control (ANC). However, filtered-U LMS (FULMS) algorithm, theIIR filter-based algorithm commonly used so far cannot ensure global convergence. A new IIRfilter based adaptive algorithm, which can ensure global convergence with computation loadonly slightly increasing, is proposed in this paper. The new algorithm is called as filtered-eLMS algorithm since the error signal of which need to be filtered. Simulation results show thatthe FELMS algorithm presents better performance than the FULMS algorithm.

  15. Comparison of Narrowband Adaptive Filter Technologies for GPS

    Science.gov (United States)

    2000-03-01

    phase filter is developed by utilizing the M taps on each side of the center tap as a 2M tap linear predictor of the value at the center tap. This...linear phase filter is realized with M complex multipliers and 2M complex adders. Complex multiplies are modeled as 6 operations (ops) and complex

  16. A Novel RSSE-PSP Equalizer with an Adaptive Pre-Filter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-qiang; RU Guo-bao; YANG Hao; XUE Ni

    2005-01-01

    A reduced-state sequence estimation (RSSE) receiver based on per-survivor processing (PSP) in conjunction with an adaptive pre-filter is proposed in this paper. In RSSE-PSP, each survivor path holds an estimated value of the channel impulse response (CIR), which is updated by adaptive algorithm during the data transmission. Based on the different estimated channel values of each survivor path, corresponding pre-filters are calculated via the Levinson-Durbin algorithm, which can track the time-varying channel adaptively. Computer simulations indicate that the RSSE-PSP equalizer with the new adaptive pre-filter works much better than those with the prevenient pre-filters in ISI channel.

  17. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    Science.gov (United States)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic

  18. A complementary least-mean-square algorithm of adaptive filtering for SQUID based magnetocardiography

    Institute of Scientific and Technical Information of China (English)

    Li Zhuo; Chen Geng-Hua; Zhang Li-Hua; Yang Qian-Sheng; Feng Ji

    2005-01-01

    We present acomplementary least-mean-square algorithm of adaptive filtering for SQUID-based magnetocardiography, in which both rapid convergence and fine tracking are realized by switching the weight parameters back and forth between two filters according to the least mean square principle.

  19. Multi-template Scale-Adaptive Kernelized Correlation Filters

    KAUST Repository

    Bibi, Adel Aamer

    2015-12-07

    This paper identifies the major drawbacks of a very computationally efficient and state-of-the-art-tracker known as the Kernelized Correlation Filter (KCF) tracker. These drawbacks include an assumed fixed scale of the target in every frame, as well as, a heuristic update strategy of the filter taps to incorporate historical tracking information (i.e. simple linear combination of taps from the previous frame). In our approach, we update the scale of the tracker by maximizing over the posterior distribution of a grid of scales. As for the filter update, we prove and show that it is possible to use all previous training examples to update the filter taps very efficiently using fixed-point optimization. We validate the efficacy of our approach on two tracking datasets, VOT2014 and VOT2015.

  20. Model Adaptation for Prognostics in a Particle Filtering Framework

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the key motivating factors for using particle filters for prognostics is the ability to include model parameters as part of the state vector to be estimated....

  1. PSO Algorithm based Adaptive Median Filter for Noise Removal in Image Processing Application

    Directory of Open Access Journals (Sweden)

    Ruby Verma

    2016-07-01

    Full Text Available A adaptive Switching median filter for salt and pepper noise removal based on genetic algorithm is presented. Proposed filter consist of two stages, a noise detector stage and a noise filtering stage. Particle swarm optimization seems to be effective for single objective problem. Noise Dictation stage works on it. In contrast to the standard median filter, the proposed algorithm generates the noise map of corrupted Image. Noise map gives information about the corrupted and non-corrupted pixels of Image. In filtering, filter calculates the median of uncorrupted neighbouring pixels and replaces the corrupted pixels. Extensive simulations are performed to validate the proposed filter. Simulated results show refinement both in Peak signal to noise ratio (PSNR and Image Quality Index value (IQI. Experimental results shown that proposed method is more effective than existing methods.

  2. IAE-adaptive Kalman filter for INS/GPS integrated navigation system

    Institute of Scientific and Technical Information of China (English)

    Bian Hongwei; Jin Zhihua; Tian Weifeng

    2006-01-01

    A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.

  3. E-mail Spam Filtering Using Adaptive Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jitendra Nath Shrivastava

    2014-01-01

    Full Text Available Now a day’s everybody email inbox is full with spam mails. The problem with spam mails is that they are not malicious in nature so generally don’t get blocked with firewall or filters etc., however, they are unwanted mails received by any internet users. In 2012, more that 50% emails of the total emails were spam emails. In this paper, a genetic algorithm based method for spam email filtering is discussed with its advantages and dis-advantages. The results presented in the paper are promising and suggested that GA can be a good option in conjunction with other e-mail filtering techniques can provide more robust solution.

  4. Adaptive Kalman Filter of Transfer Alignment with Un-modeled Wing Flexure of Aircraft

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.

  5. Research and Application on Fractional-Order Darwinian PSO Based Adaptive Extended Kalman Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    Qiguang Zhu

    2014-05-01

    Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.

  6. Stomaching Notch

    Science.gov (United States)

    Yin, Xiaolei; Karp, Jeffrey M

    2015-01-01

    The self-renewal and differentiation of tissue stem cells must be tightly controlled. Unrestrained self-renewal leads to over-proliferation of stem cells, which may cause tumor formation, while uncontrolled differentiation leads to depletion of the stem cell pool. In this issue of The EMBO Journal, Demitrack et al (2015) show that the Notch pathway is a key regulator of Lgr5 antral stem cell self-renewal and differentiation. Notch signaling controls the proliferation and differentiation of stem cells as well as gastric tissue growth, while uncontrolled Notch activity in stem cells leads to polyp formation. PMID:26358838

  7. Adaptive multiple subtraction with wavelet-based complex unary Wiener filters

    CERN Document Server

    Ventosa, Sergi; Huard, Irène; Pica, Antonio; Rabeson, Hérald; Ricarte, Patrice; Duval, Laurent

    2011-01-01

    Multiple attenuation is a crucial task in seismic data processing because multiples usually cover primaries from fundamental reflectors. Predictive multiple suppression methods remove these multiples by building an adapted model, aiming at being subtracted from the original signal. However, before the subtraction is applied, a matching filter is required to minimize amplitude differences and misalignments between actual multiples and their prediction, and thus to minimize multiples in the input dataset after the subtraction. In this work we focus on the subtraction element. We propose an adaptive multiple removal technique in a 1-D complex wavelet frame combined with a non-stationary adaptation performed via single-sample (unary) Wiener filters, consistently estimated on overlapping windows in the transformed domain. This approach greatly simplifies the matching filter estimation and, despite its simplicity, compares promisingly with standard adaptive 2-D methods, both in terms of results and retained speed a...

  8. Signal-adapted FIR Filter Banks Without Perfect-reconstruction Property

    Institute of Scientific and Technical Information of China (English)

    SHUIPenglang; ZHANGAihua

    2005-01-01

    A time-domain approach is proposed to design signal-adapted FIR (Finite impulse response) filter banks without the perfect reconstruction property. For a given Wide sense stationary (WSS) input process and a total bit budget, it is a highly nonlinear and large size optimization problem to design the optimal FIR filter bank that minimizes the sum of the quantization distortion and systematic distortion. Thus, the design algorithm is crucial, in particular, selection of the initial filter bank. Here, the FIR approximation of the optimal IIR biorthogonal filter bank is used as the initial filter bank and an ad hoc three-stage algorithm is developed to solve the optimization problem. The numerical results show: the design achieves large subband coding gains (GSBC) that are close to or exceed the GSBC's of the optimal IIR biorthogonal filter banks.

  9. 基于自由搜索算法的数字多频陷波滤波器设计%Design of Digital Multiple Frequency Notch Filter Based on Free Search Algorithm

    Institute of Scientific and Technical Information of China (English)

    任伟; 曾以成; 陈莉; 杨丹

    2014-01-01

    数字多频陷波滤波器的作用是同时处理数字信号中多个特定频率分量。传统设计方法通过级联多个单频陷波系统实现,仅适用于陷波频率间隔较大的情况,且存在频率响应不均匀、过渡带增益不对称以及陷波频率点之间增益难以控制等局限性。为此,以改进的自由搜索算法为基础,提出一种数字多频陷波滤波器的设计方法。通过改进陷波系统结构,约束参数空间,建立优化模型,优化配置极点位置,实现具有稳定特性的数字多频陷波系统。仿真实验结果表明,该设计方法在实现准确陷波的同时,可使得过渡带增益对称且可控,通带内频率响应均匀平稳。%Digital multiple notch filters are applied to process some particular frequencies in a digital signal simultaneously. The traditional design method is realized by cascading a plurality of single frequency notch system,which applies only to the larger notch frequency interval. And there are limitations such as nonuniform frequency response, asymmetrical transition band gain and hard control of gain between the notch frequency points. A novel design approach of digital multiple notch filters is proposed based on Free Search Algorithm(FSA). It improves the system structure to compensate magnitude of transition-band. Through optimal pole placement,this method can realize the optimized design of notch filters with stable characteristics. The effectiveness and practicability of the presented method are verified with simulation experiments.

  10. Delay Estimator and Improved Proportionate Multi-Delay Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    E. Verteletskaya

    2012-04-01

    Full Text Available This paper pertains to speech and acoustic signal processing, and particularly to a determination of echo path delay and operation of echo cancellers. To cancel long echoes, the number of weights in a conventional adaptive filter must be large. The length of the adaptive filter will directly affect both the degree of accuracy and the convergence speed of the adaptation process. We present a new adaptive structure which is capable to deal with multiple dispersive echo paths. An adaptive filter according to the present invention includes means for storing an impulse response in a memory, the impulse response being indicative of the characteristics of a transmission line. It also includes a delay estimator for detecting ranges of samples within the impulse response having relatively large distribution of echo energy. These ranges of samples are being indicative of echoes on the transmission line. An adaptive filter has a plurality of weighted taps, each of the weighted taps having an associated tap weight value. A tap allocation/control circuit establishes the tap weight values in response to said detecting means so that only taps within the regions of relatively large distributions of echo energy are turned on. Thus, the convergence speed and the degree of estimation in the adaptation process can be improved.

  11. An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    A. Kar

    2015-04-01

    Full Text Available In this research an advance variable structure adaptive Multiple Sub-Filters (MSF based algorithm for single channel Acoustic Echo Cancellation (AEC is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers.

  12. Stent enhancement in digital x-ray fluoroscopy using an adaptive feature enhancement filter

    Science.gov (United States)

    Jiang, Yuhao; Zachary, Josey

    2016-03-01

    Fluoroscopic images belong to the classes of low contrast and high noise. Simply lowering radiation dose will render the images unreadable. Feature enhancement filters can reduce patient dose by acquiring images at low dose settings and then digitally restoring them to the original quality. In this study, a stent contrast enhancement filter is developed to selectively improve the contrast of stent contour without dramatically boosting the image noise including quantum noise and clinical background noise. Gabor directional filter banks are implemented to detect the edges and orientations of the stent. A high orientation resolution of 9° is used. To optimize the use of the information obtained from Gabor filters, a computerized Monte Carlo simulation followed by ROC study is used to find the best nonlinear operator. The next stage of filtering process is to extract symmetrical parts in the stent. The global and local symmetry measures are used. The information gathered from previous two filter stages are used to generate a stent contour map. The contour map is then scaled and added back to the original image to get a contrast enhanced stent image. We also apply a spatio-temporal channelized Hotelling observer model and other numerical measures to characterize the response of the filters and contour map to optimize the selections of parameters for image quality. The results are compared to those filtered by an adaptive unsharp masking filter previously developed. It is shown that stent enhancement filter can effectively improve the stent detection and differentiation in the interventional fluoroscopy.

  13. Secure Tracking in Sensor Networks using Adaptive Extended Kalman Filter

    CERN Document Server

    Fard, Ali P

    2012-01-01

    Location information of sensor nodes has become an essential part of many applications in Wireless Sensor Networks (WSN). The importance of location estimation and object tracking has made them the target of many security attacks. Various methods have tried to provide location information with high accuracy, while lots of them have neglected the fact that WSNs may be deployed in hostile environments. In this paper, we address the problem of securely tracking a Mobile Node (MN) which has been noticed very little previously. A novel secure tracking algorithm is proposed based on Extended Kalman Filter (EKF) that is capable of tracking a Mobile Node (MN) with high resolution in the presence of compromised or colluding malicious beacon nodes. It filters out and identifies the malicious beacon data in the process of tracking. The proposed method considerably outperforms the previously proposed secure algorithms in terms of either detection rate or MSE. The experimental data based on different settings for the netw...

  14. Adaptive noise cancellation

    CERN Document Server

    Akram, N

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique.

  15. Adaptive high-gain extended kalman filter and applications

    OpenAIRE

    Boizot, Nicolas Richard

    2010-01-01

    The work concerns the ``observability problem” --- the reconstruction of a dynamic process's full state from a partially measured state--- for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc… We propose a solution to...

  16. Efficient implementation of adaptive filters using TMS320C6713 DSP platform

    Directory of Open Access Journals (Sweden)

    Diogo Kaoru Takayama

    2011-06-01

    Full Text Available This paper presents a methodology for accelerated development of solution associated to adaptive filtering using Matlab/Simulink, Code Composer Studio and DSK 6713 digital signal processing (DSP technologies. The purpose of this methodology is to provide an efficient and rapid method to develop and test adaptive filters in DSPs. The methodology development represents a very important tool for the engineer in charge of design-simulation-implementation of adaptive filters. Another important benefit is that it avoids low level hardware work that can be tedious and time consuming. An example of application is presented in this paper in order to illustrate the feasibility of this methodology. The methodology is applied in order to implement an adaptive filter in the DSP platform. The project steps are discussed in details, including the methods of transforming the Matlab code into DSP code. The results are analyzed in terms of accuracy and convergence speed. The TMS320C6713 development kit supplied by Spectrum Digital Inc., that includes a float point DSP, was used to implement the adaptive filter.

  17. Chi-squared smoothed adaptive particle-filtering based prognosis

    Science.gov (United States)

    Ley, Christopher P.; Orchard, Marcos E.

    2017-01-01

    This paper presents a novel form of selecting the likelihood function of the standard sequential importance sampling/re-sampling particle filter (SIR-PF) with a combination of sliding window smoothing and chi-square statistic weighting, so as to: (a) increase the rate of convergence of a flexible state model with artificial evolution for online parameter learning (b) improve the performance of a particle-filter based prognosis algorithm. This is applied and tested with real data from oil total base number (TBN) measurements from three haul trucks. The oil data has high measurement uncertainty and an unknown phenomenological state model. Performance of the proposed algorithm is benchmarked against the standard form of SIR-PF estimation which utilises the Normal (Gaussian) likelihood function. Both implementations utilise the same particle filter based prognosis algorithm so as to provide a common comparison. A sensitivity analysis is also performed to further explore the effects of the combination of sliding window smoothing and chi-square statistic weighting to the SIR-PF.

  18. Steady State Analysis of Convex Combination of Affine Projection Adaptive Filters

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2015-05-01

    Full Text Available The aim of the study is to propose an adaptive algorithm using convex combinational approach to have both fast convergence and less steady state error simultaneously. For this purpose, we have used two affine projection adaptive filters with complementary nature (both in step size and projection order as the component filters. The first component filter has high projection order and large step size which makes it to have fast convergence at the cost of more steady state error. The second component filter has slow convergence and less steady state error due to the selection of small step size and projection order. Both are combined using convex combiner so as to have best final output with fast convergence and less steady state error. Each of the component filters are updated using their own error signals and stochastic gradient approach is used to update the convex combiner so as to have minimum overall error. By using energy conservation argument, analytical treatment of the combination stage is made in stationary environment. It is found that during initial stage the proposed scheme converges to the fast filter which has good convergence later it converges to either of the two (whichever has less steady state error and towards the end, the final output converges to slow filter which is superior in lesser steady state error. Experimental results proved that the proposed algorithm has adopted the best features of the component filters.

  19. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    Science.gov (United States)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  20. An adaptive fuzzy filter for coding artifacts removal in video and image

    Institute of Scientific and Technical Information of China (English)

    WU Jing; YE Xiu-qing; GU Wei-kang

    2007-01-01

    This paper proposes a new adaptive post-filtering algorithm to remove coding artifacts in block-based video coder. The proposed method concentrates on blocking and ringing artifacts removal. For de-blocking, the blocking strength is identified to determine the filtering range, and the maximum quantization parameter of the image is used to adapt the 1D fuzzy filter. For de-ringing, besides the edge detection, a complementary ringing detection method is proposed to locate the neglected ringing blocks, and the gradient threshold is adopted to adjust the parameter of 2D fuzzy filter. Experiments are performed on the MPEG-4 sequences. Compared with other methods, the proposed one achieves better detail preservation and artifacts removal performance with lower computational cost.

  1. A SLAM Algorithm Based on Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2014-01-01

    CKF-SLAM and the adaptive estimator, the new ACKF-SLAM algorithm can reduce the state estimated error significantly and improve the navigation accuracy of the SLAM system effectively. The performance of this new algorithm has been examined through numerical simulations in different scenarios. The results have shown that the position error can be effectively reduced with the new adaptive CKF-SLAM algorithm. Compared with other traditional SLAM methods, the accuracy of the nonlinear SLAM system is significantly improved. It verifies that the proposed ACKF-SLAM algorithm is valid and feasible.

  2. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  3. Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption

    KAUST Repository

    Xie, Qing

    2016-01-12

    The problem we aim to address is the optimization of cost management for executing multiple continuous queries on data streams, where each query is defined by several filters, each of which monitors certain status of the data stream. Specially the filter can be shared by different queries and expensive to evaluate. The conventional objective for such a problem is to minimize the overall execution cost to solve all queries, by planning the order of filter evaluation in shared strategy. However, in streaming scenario, the characteristics of data items may change in process, which can bring some uncertainty to the outcome of individual filter evaluation, and affect the plan of query execution as well as the overall execution cost. In our work, considering the influence of the uncertain variation of data characteristics, we propose a framework to deal with the dynamic adjustment of filter ordering for query execution on data stream, and focus on the issues of cost management. By incrementally monitoring and analyzing the results of filter evaluation, our proposed approach can be effectively adaptive to the varied stream behavior and adjust the optimal ordering of filter evaluation, so as to optimize the execution cost. In order to achieve satisfactory performance and efficiency, we also discuss the trade-off between the adaptivity of our framework and the overhead incurred by filter adaption. The experimental results on synthetic and two real data sets (traffic and multimedia) show that our framework can effectively reduce and balance the overall query execution cost and keep high adaptivity in streaming scenario.

  4. Adaptive filter for a miniature MEMS based attitude and heading reference system

    Institute of Scientific and Technical Information of China (English)

    WANG Mei; WANG Yong-quan; ZHANG Yan-hua

    2006-01-01

    An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastic model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good estimates of the states. When the system is in the high dynamic mode and the bias has converged to an accurate estimate, the attitude calculation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance.

  5. Design of adaptive deblocking filter for H.264/AVC decoder SOC

    Institute of Scientific and Technical Information of China (English)

    YANG Kun; ZHANG Chun; WANG Zhi-hua

    2009-01-01

    In this article, a design for the adaptive deblocking filter is proposed. To understand the real-time performance, a FILTER unit that can process eight pixels beside an edge simultaneously is applied in this design to increase filtering efficiency, and local memory is used to store all temporary data generated by the FILTER to reduce access to system bus. The filter makes every 4×4 sample block pipelined through the process units and achieves an efficiency of 80% for both the FILTER unit and the bus access unit. It can fulfill filtering process for a crystallographic information file (CIF, 352×288) format picture in 95 k clock cycles. The proposed design is part of a H.264/AVC decoder system-on-chip (SOC), which is fabricated in 0.18 μm complementary metal oxide semiconductor (CMOS) process. The filter module consists of 60 k gates and 25.7 kb static random access memory (SRAM) and it can filter a macro-block in 240 clock cycles.

  6. Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising

    Directory of Open Access Journals (Sweden)

    Mr. Firas Ali

    2007-01-01

    Full Text Available Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet denoising stage . The choice of the threshold estimation is carried out by analyzing the statistical parameters of the wavelet sub band coefficients like standard deviation, arithmetic mean and geometrical mean . The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by this method .Experimental results on test image by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR. Here, to prove the efficiency of this method in image restoration , we have compared this with various restoration methods like Wiener filter alone and inverse filter.

  7. Identification and adaptive control scheme using fuzzy parameterized linear filters

    NARCIS (Netherlands)

    Papp, Z.

    1998-01-01

    A nonlinear fuzzy control structure enhanced with supervised learning and/or adaption is presented. Availability of at least a partial process model is assumed. Nonlinear process identification procedure is used to complete the partial model. Based on the identification model the system sensitivity

  8. An Application Specific Instruction Set Processor (ASIP) for Adaptive Filters in Neural Prosthetics.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Zhang, Zhaorui; Cheung, Ray C C; Song, Dong; Berger, Theodore W

    2015-01-01

    Neural coding is an essential process for neuroprosthetic design, in which adaptive filters have been widely utilized. In a practical application, it is needed to switch between different filters, which could be based on continuous observations or point process, when the neuron models, conditions, or system requirements have changed. As candidates of coding chip for neural prostheses, low-power general purpose processors are not computationally efficient especially for large scale neural population coding. Application specific integrated circuits (ASICs) do not have flexibility to switch between different adaptive filters while the cost for design and fabrication is formidable. In this research work, we explore an application specific instruction set processor (ASIP) for adaptive filters in neural decoding activity. The proposed architecture focuses on efficient computation for the most time-consuming matrix/vector operations among commonly used adaptive filters, being able to provide both flexibility and throughput. Evaluation and implementation results are provided to demonstrate that the proposed ASIP design is area-efficient while being competitive to commercial CPUs in computational performance.

  9. New cardiac MRI gating method using event-synchronous adaptive digital filter.

    Science.gov (United States)

    Park, Hodong; Park, Youngcheol; Cho, Sungpil; Jang, Bongryoel; Lee, Kyoungjoung

    2009-11-01

    When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient's heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method-a sort of topology mapping method-and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.

  10. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    Science.gov (United States)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  11. Analysis and implementation of a structural vibration control algorithm based on an IIR adaptive filter

    Science.gov (United States)

    Huang, Quanzhen; Luo, Jun; Li, Hengyu; Wang, Xiaohua

    2013-08-01

    With the wide application of large-scale flexible structures in spacecraft, vibration control problems in these structures have become important design issues. The filtered-X least mean square (FXLMS) algorithm is the most popular one in current active vibration control using adaptive filtering. It assumes that the source of interference can be measured and the interference source is considered as the reference signal input to the controller. However, in the actual control system, this assumption is not accurate, because it does not consider the impact of the reference signal on the output feedback signal. In this paper, an adaptive vibration active control algorithm based on an infinite impulse response (IIR) filter structure (FULMS, filtered-U least mean square) is proposed. The algorithm is based on an FXLMS algorithm framework, which replaces the finite impulse response (FIR) filter with an IIR filter. This paper focuses on the structural design of the controller, the process of the FULMS filtering control method, the design of the experimental model object, and the experimental platform construction for the entire control system. The comparison of the FXLMS algorithm with FULMS is theoretically analyzed and experimentally validated. The results show that the FULMS algorithm converges faster and controls better. The design of the FULMS controller is feasible and effective and has greater value in practical applications of aerospace engineering.

  12. Stent enhancement using a locally adaptive unsharp masking filter in digital x-ray fluoroscopy

    Science.gov (United States)

    Jiang, Yuhao; Ekanayake, Eranda

    2014-03-01

    Low exposure X-ray fluoroscopy is used to guide some complicate interventional procedures. Due to the inherent high levels of noise, improving the visibility of some interventional devices such as stent will greatly benefit those interventional procedures. Stent, which is made up of tiny steel wires, is also suffered from contrast dilutions of large flat panel detector pixels. A novel adaptive unsharp masking filter has been developed to improve stent contrast in real-time applications. In unsharp masking processing, the background is estimated and subtracted from the original input image to create a foreground image containing objects of interest. A background estimator is therefore critical in the unsharp masking processing. In this specific study, orientation filter kernels are used as the background estimator. To make the process simple and fast, the kernels average along a line of pixels. A high orientation resolution of 18° is used. A nonlinear operator is then used to combine the information from the images generated from convolving the original background and noise only images with orientation filters. A computerized Monte Carlo simulation followed by ROC study is used to identify the best nonlinear operator. We then apply the unsharp masking filter to the images with stents present. It is shown that the locally adaptive unsharp making filter is an effective filter for improving stent visibility in the interventional fluoroscopy. We also apply a spatio-temporal channelized human observer model to quantitatively optimize and evaluate the filter.

  13. An Experimental Assessment of Transverse Adaptive Fir Filters as Applied to Vibrating Structures Identification

    Directory of Open Access Journals (Sweden)

    Daniel A. Castello

    2005-01-01

    Full Text Available The present work is aimed at assessing the performance of adaptive Finite Impulse Response (FIR filters on the identification of vibrating structures. Four adaptive algorithms were used: Least Mean Squares (LMS, Normalized Least Mean Squares (NLMS, Transform-Domain Least Mean Squares (TD – LMS and Set-Membership Binormalized Data-Reusing LMS Algorithm (SM – BNDRLMS. The capability of these filters to perform the identification of vibrating structures is shown on real experiments. The first experiment consists of an aluminum cantilever beam containing piezoelectric sensors and actuators and the second one is a steel pinned-pinned beam instrumented with accelerometers and an electromechanical shaker.

  14. An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation

    Institute of Scientific and Technical Information of China (English)

    Xiaogu ZHENG

    2009-01-01

    An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assimilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts. This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by minimizing -2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied to Kalman filtering data assimilation with imperfect models when the model error statistics are not known. A simple nonlinear model (Burgers' equation model) is used to demonstrate the efficacy of the proposed approach.

  15. Performance Analysis of Adaptive Volterra Filters in the Finite-Alphabet Input Case

    Directory of Open Access Journals (Sweden)

    Jaïdane Mériem

    2004-01-01

    Full Text Available This paper deals with the analysis of adaptive Volterra filters, driven by the LMS algorithm, in the finite-alphabet inputs case. A tailored approach for the input context is presented and used to analyze the behavior of this nonlinear adaptive filter. Complete and rigorous mean square analysis is provided without any constraining independence assumption. Exact transient and steady-state performances expressed in terms of critical step size, rate of transient decrease, optimal step size, excess mean square error in stationary mode, and tracking nonstationarities are deduced.

  16. Adaptive Non-Linear Bayesian Filter for ECG Denoising

    Directory of Open Access Journals (Sweden)

    Mitesh Kumar Sao

    2014-06-01

    Full Text Available The cycles of an electrocardiogram (ECG signal contain three components P-wave, QRS complex and the T-wave. Noise is present in cardiograph as signals being measured in which biological resources (muscle contraction, base line drift, motion noise and environmental resources (power line interference, electrode contact noise, instrumentation noise are normally pollute ECG signal detected at the electrode. Visu-Shrink thresholding and Bayesian thresholding are the two filters based technique on wavelet method which is denoising the PLI noisy ECG signal. So thresholding techniques are applied for the effectiveness of ECG interval and compared the results with the wavelet soft and hard thresholding methods. The outputs are evaluated by calculating the root mean square (RMS, signal to noise ratio (SNR, correlation coefficient (CC and power spectral density (PSD using MATLAB software. The clean ECG signal shows Bayesian thresholding technique is more powerful algorithm for denoising.

  17. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  18. Filtering and tracking with trinion-valued adaptive algorithms

    Institute of Scientific and Technical Information of China (English)

    Xiao-ming GOU; Zhi-wen LIU; Wei LIU; You-gen XU

    2016-01-01

    A new model for three-dimensional processes based on the trinion algebra is introduced for the fi rst time. Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient, while having similar or comparable performance in terms of adaptive linear fi ltering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman fi ltering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.

  19. Application of Adaptive Filters to Active Noise Control

    Institute of Scientific and Technical Information of China (English)

    PEI Bingnan; LI Chuanguang

    2001-01-01

    A modified LMS algorithm for noise-control is suggested after a mathematical model ofsound-cancellation is established, on the basis of thesound wave interference principle and the physicalmodel of progressive waves in a duct. Its applicationin controlling noise with the frequency range from 100to 800 Hz can be implemented by using the adaptivedigital signal processing technique. The experimentson a pink noise, a broadband noise and a noise takenfrom a tank were made, which show that there existsan attenuation of 11 dB at the frequency of 500 Hzor so, and that the proposed adaptive noise controltechnique is very effective and valid.

  20. Notch Antennas

    Science.gov (United States)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  1. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    Energy Technology Data Exchange (ETDEWEB)

    Zurbenko, I.; Chen, J.; Rao, S.T. [State Univ. of New York, Albany, NY (United States)] [and others

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  2. Adaptive error covariances estimation methods for ensemble Kalman filters

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Yicun, E-mail: zhen@math.psu.edu [Department of Mathematics, The Pennsylvania State University, University Park, PA 16802 (United States); Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  3. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  4. Adaptive Conflict-Free Optimization of Rule Sets for Network Security Packet Filtering Devices

    Directory of Open Access Journals (Sweden)

    Andrea Baiocchi

    2015-01-01

    Full Text Available Packet filtering and processing rules management in firewalls and security gateways has become commonplace in increasingly complex networks. On one side there is a need to maintain the logic of high level policies, which requires administrators to implement and update a large amount of filtering rules while keeping them conflict-free, that is, avoiding security inconsistencies. On the other side, traffic adaptive optimization of large rule lists is useful for general purpose computers used as filtering devices, without specific designed hardware, to face growing link speeds and to harden filtering devices against DoS and DDoS attacks. Our work joins the two issues in an innovative way and defines a traffic adaptive algorithm to find conflict-free optimized rule sets, by relying on information gathered with traffic logs. The proposed approach suits current technology architectures and exploits available features, like traffic log databases, to minimize the impact of ACO development on the packet filtering devices. We demonstrate the benefit entailed by the proposed algorithm through measurements on a test bed made up of real-life, commercial packet filtering devices.

  5. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  6. Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics.

    Science.gov (United States)

    Thakur, A; Anand, R S

    2007-01-01

    This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.

  7. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  8. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    Science.gov (United States)

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  9. Methodology for adapting the parameters of a fuzzy system using the extended Kalman filter

    OpenAIRE

    2011-01-01

    When we try to analyze and to control a system whose model was obtained only based on input/output data, accuracy is essential in the model. On the other hand, to make the procedure practical, the modeling stage must be computationally efficient. In this regard, this paper presents the application of extended Kalman filter for the parametric adaptation of a fuzzy model.

  10. An adaptive Multiplicative Extened Kalman Filter for Attitude Estimation of Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    , an adaptive Multiplicative Extended Kalman Filter (MEKF) for attitude estimation of Marine Satellite Tracking Antenna (MSTA) is presented with the measurement noise covariance matrix adjusted according to the norm of accelerometer measurements, which can significantly reduce the slamming influence from waves...

  11. Design of adaptive filter amplifier in UV communication based on DSP

    Science.gov (United States)

    Lv, Zhaoshun; Wu, Hanping; Li, Junyu

    2016-10-01

    According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.

  12. Multidimensional Systolic Arrays of LMS AlgorithmAdaptive (FIR Digital Filters

    Directory of Open Access Journals (Sweden)

    Bakir A. R. Al-Hashemy

    2009-01-01

    Full Text Available A multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR filter may be opposed the fundamental requirements of fast convergence rate in most adaptive filter applications.

  13. Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method

    Institute of Scientific and Technical Information of China (English)

    杨海; 李威; 罗成名

    2015-01-01

    Pure inertial navigation system (INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network (WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter (KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system (FIS), and the fuzzy adaptive Kalman filter (FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.

  14. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    Science.gov (United States)

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.

    2016-05-01

    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  15. A globally stable autopilot with wave filter using only yaw angle measurements

    Directory of Open Access Journals (Sweden)

    Trygve Lauvdal

    1996-04-01

    Full Text Available A stable minimum phase transfer function from rudder angle to yaw angle is used to design a globally stable adaptive ship autopilot. First-order wave disturbances in yaw are filtered by applying a notch filter. Integral action is introduced by using a reference model technique. Global stability is proven for the total system which include the yaw rate observer, the parameter update law, the feedback controller, the notch filter and the integral part of the controller. The simulation results showed that the performance is excellent, even with no a priori knowledge of the ship parameters.

  16. A new learning statistic for adaptive filter based on predicted residuals

    Institute of Scientific and Technical Information of China (English)

    YANG Yuanxi; GAO Weiguang

    2006-01-01

    A key problem for an adaptive filter is to establish a suitable adaptive factor for balancing the contributions of the measurements and the predicted state information from some kinematic models. The reasonable adaptive factor needs a reliable learning statistics to judge the state kinematic model errors. After analyzing the existing two kinds of learning statistics based on the state discrepancy and variance component ratio, a new learning statistic based on predicted residuals is set up, which is different from the exiting learning statistics. The new learning statistic does not need to estimate the kinemetic state parameters before the filtering process, Of course, it does not need necessary measurements to estimate state parameters for all observation epochs. The new learning statistic can be applied together with the learning factor constructed by the state discrepancy. The advantages and shortcomings of the new learning factor are analyzed, and an example is given.

  17. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter.

    Science.gov (United States)

    Guo, Qing; Sun, Ping; Yin, Jing-Min; Yu, Tian; Jiang, Dan

    2016-05-01

    Some unknown parameter estimation of electro-hydraulic system (EHS) should be considered in hydraulic controller design due to many parameter uncertainties in practice. In this study, a parametric adaptive backstepping control method is proposed to improve the dynamic behavior of EHS under parametric uncertainties and unknown disturbance (i.e., hydraulic parameters and external load). The unknown parameters of EHS model are estimated by the parametric adaptive estimation law. Then the recursive backstepping controller is designed by Lyapunov technique to realize the displacement control of EHS. To avoid explosion of virtual control in traditional backstepping, a decayed memory filter is presented to re-estimate the virtual control and the dynamic external load. The effectiveness of the proposed controller has been demonstrated by comparison with the controller without adaptive and filter estimation. The comparative experimental results in critical working conditions indicate the proposed approach can achieve better dynamic performance on the motion control of Two-DOF robotic arm.

  18. Adaptive Current Control with PI-Fuzzy Compound Controller for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-01-01

    Full Text Available An adaptive control technology and PI-fuzzy compound control technology are proposed to control an active power filter (APF. AC side current compensation and DC capacitor voltage tracking control strategy are discussed and analyzed. Model reference adaptive controller for the AC side current compensation is derived and established based on Lyapunov stability theory; proportional and integral (PI fuzzy compound controller is designed for the DC side capacitor voltage control. The adaptive current controller based on PI-fuzzy compound system is compared with the conventional PI controller for active power filter. Simulation results demonstrate the feasibility and satisfactory performance of the proposed control strategies. It is shown that the proposed control method has an excellent dynamic performance such as small current tracking error, reduced total harmonic distortion (THD, and strong robustness in the presence of parameters variation and nonlinear load.

  19. Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering.

    Science.gov (United States)

    Spors, Sascha; Buchner, Herbert; Rabenstein, Rudolf; Herbordt, Wolfgang

    2007-07-01

    The acoustic theory for multichannel sound reproduction systems usually assumes free-field conditions for the listening environment. However, their performance in real-world listening environments may be impaired by reflections at the walls. This impairment can be reduced by suitable compensation measures. For systems with many channels, active compensation is an option, since the compensating waves can be created by the reproduction loudspeakers. Due to the time-varying nature of room acoustics, the compensation signals have to be determined by an adaptive system. The problems associated with the successful operation of multichannel adaptive systems are addressed in this contribution. First, a method for decoupling the adaptation problem is introduced. It is based on a generalized singular value decomposition and is called eigenspace adaptive filtering. Unfortunately, it cannot be implemented in its pure form, since the continuous adaptation of the generalized singular value decomposition matrices to the variable room acoustics is numerically very demanding. However, a combination of this mathematical technique with the physical description of wave propagation yields a realizable multichannel adaptation method with good decoupling properties. It is called wave domain adaptive filtering and is discussed here in the context of wave field synthesis.

  20. Automatic speech signal segmentation based on the innovation adaptive filter

    Directory of Open Access Journals (Sweden)

    Makowski Ryszard

    2014-06-01

    Full Text Available Speech segmentation is an essential stage in designing automatic speech recognition systems and one can find several algorithms proposed in the literature. It is a difficult problem, as speech is immensely variable. The aim of the authors’ studies was to design an algorithm that could be employed at the stage of automatic speech recognition. This would make it possible to avoid some problems related to speech signal parametrization. Posing the problem in such a way requires the algorithm to be capable of working in real time. The only such algorithm was proposed by Tyagi et al., (2006, and it is a modified version of Brandt’s algorithm. The article presents a new algorithm for unsupervised automatic speech signal segmentation. It performs segmentation without access to information about the phonetic content of the utterances, relying exclusively on second-order statistics of a speech signal. The starting point for the proposed method is time-varying Schur coefficients of an innovation adaptive filter. The Schur algorithm is known to be fast, precise, stable and capable of rapidly tracking changes in second order signal statistics. A transfer from one phoneme to another in the speech signal always indicates a change in signal statistics caused by vocal track changes. In order to allow for the properties of human hearing, detection of inter-phoneme boundaries is performed based on statistics defined on the mel spectrum determined from the reflection coefficients. The paper presents the structure of the algorithm, defines its properties, lists parameter values, describes detection efficiency results, and compares them with those for another algorithm. The obtained segmentation results, are satisfactory.

  1. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.

    Science.gov (United States)

    Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen

    2010-10-01

    The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation.

  2. Tap-Length Optimization of Adaptive Filter in Stereophonic Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Kar, Asutosh; Swamy, M.N.S.

    2017-01-01

    An adaptive filter with a large number of weights or taps is necessary for stereophonic acoustic echo cancellation (SAEC), depending on the room impulse response and acoustic path where the cancellation is performed. However, a large tap-length results in slow convergence and increases the comple......An adaptive filter with a large number of weights or taps is necessary for stereophonic acoustic echo cancellation (SAEC), depending on the room impulse response and acoustic path where the cancellation is performed. However, a large tap-length results in slow convergence and increases...... of acoustic echo paths. The tap-length optimization is applied to a single long adaptive filter with thousands of coefficients to decrease the total number of weights, which in turn reduces the computational load. To further increase the convergence rate, the proposed tap-length-optimization algorithm...... is applied to an existing multiple sub-filter-based echo canceller, for which we present a convergence analysis. Computer simulations are also presented, comparing the proposed approach with related work....

  3. Design of Semi-Adaptive 190-200 KHz Digital Band Pass Filters for SAR Applications

    Directory of Open Access Journals (Sweden)

    P Yadav

    2013-04-01

    Full Text Available Technologies have advanced rapidly in the field of digital signal processing due to advances made in high speed, low cost digital integrated chips. These technologies have further stimulated ever increasing use of signal representation in digital form for purposes of transmission, measurement, control and storage. Design of digital filters especially adaptive or semi adaptive is the necessity of the hour for SAR applications. The aim of this research work is to design and performance evaluation of 380-400 KHz Bartlett, Blackman and Chebyshev digital semi adaptive filters. For this work XILINX and MATLAB softwares were used for the design. As pert of practical research work these designs were translated using FPGA hardware SPARTAN-3E kit. These were optimized, analyzed, compared and evaluated keeping the sampling frequency at 5 MHz for 64 order. Both these filters designed using software and hardware were tested by passing a sinusoidal test signal of 381 KHz along with noise and the filtered output signals are presented.

  4. A novel methodology for adaptive wave filtering of marine vessels: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Pascoal, A.M.; Sorensen, A.J.

    A Novel Methodology for Adaptive Wave Filtering of Marine Vessels: Theory and Experiments⋆ Vahid Hassani� Vahid.Hassani@marintek.sintef.no Anto´nio M. Pascoal�� antonio@isr.ist.utl.pt Asgeir J. Sørensen��� asgeir.sorensen@ntnu.no Abstract—This paper... in performance was achieved by exploiting more advanced control techniques based on optimal control and Kalman filtering (KF) theory, see [1]. These techniques were later modified and extended in [2]–[9]. For a survey of dynamic positioning control systems, see...

  5. Defect Detection and Localization of Nonlinear System Based on Particle Filter with an Adaptive Parametric Model

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2015-01-01

    Full Text Available A robust particle filter (PF and its application to fault/defect detection of nonlinear system are investigated in this paper. First, an adaptive parametric model is exploited as the observation model for a nonlinear system. Second, by incorporating the parametric model, particle filter is employed to estimate more accurate hidden states for the nonlinear stochastic system. Third, by formulating the problem of defect detection within the hypothesis testing framework, the statistical properties of the proposed testing are established. Finally, experimental results demonstrate the effectiveness and robustness of the proposed detector on real defect detection and localization in images.

  6. Adaptive Filters with Error Nonlinearities: Mean-Square Analysis and Optimum Design

    Directory of Open Access Journals (Sweden)

    Ali H. Sayed

    2001-01-01

    Full Text Available This paper develops a unified approach to the analysis and design of adaptive filters with error nonlinearities. In particular, the paper performs stability and steady-state analysis of this class of filters under weaker conditions than what is usually encountered in the literature, and without imposing any restriction on the color or statistics of the input. The analysis results are subsequently used to derive an expression for the optimum nonlinearity, which turns out to be a function of the probability density function of the estimation error. Some common nonlinearities are shown to be approximations to the optimum nonlinearity. The framework pursued here is based on energy conservation arguments.

  7. Speed Estimation of Induction Motor Using Model Reference Adaptive System with Kalman Filter

    Directory of Open Access Journals (Sweden)

    Pavel Brandstetter

    2013-01-01

    Full Text Available The paper deals with a speed estimation of the induction motor using observer with Model Reference Adaptive System and Kalman Filter. For simulation, Hardware in Loop Simulation method is used. The first part of the paper includes the mathematical description of the observer for the speed estimation of the induction motor. The second part describes Kalman filter. The third part describes Hardware in Loop Simulation method and its realization using multifunction card MF 624. In the last section of the paper, simulation results are shown for different changes of the induction motor speed which confirm high dynamic properties of the induction motor drive with sensorless control.

  8. Adaptive filtering and feed-forward control for suppression of vibration and jitter

    Science.gov (United States)

    Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.

    2007-04-01

    This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.

  9. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We

  10. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    Science.gov (United States)

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  11. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    Science.gov (United States)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  12. Adaptive nonlocal means filtering based on local noise level for CT denoising

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando, E-mail: manduca.armando@mayo.edu [Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905 (United States); Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  13. An adaptive nonlocal filtering for low-dose CT in both image and projection domains

    Directory of Open Access Journals (Sweden)

    Yingmei Wang

    2015-04-01

    Full Text Available An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection reconstructed from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and projection domains has a better performance in noise reduction and details preservation in reconstructed images.

  14. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  15. Ensembles of adaptive spatial filters increase BCI performance: an online evaluation

    Science.gov (United States)

    Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin

    2016-08-01

    Objective: In electroencephalographic (EEG) data, signals from distinct sources within the brain are widely spread by volume conduction and superimposed such that sensors receive mixtures of a multitude of signals. This reduction of spatial information strongly hampers single-trial analysis of EEG data as, for example, required for brain-computer interfacing (BCI) when using features from spontaneous brain rhythms. Spatial filtering techniques are therefore greatly needed to extract meaningful information from EEG. Our goal is to show, in online operation, that common spatial pattern patches (CSPP) are valuable to counteract this problem. Approach: Even though the effect of spatial mixing can be encountered by spatial filters, there is a trade-off between performance and the requirement of calibration data. Laplacian derivations do not require calibration data at all, but their performance for single-trial classification is limited. Conversely, data-driven spatial filters, such as common spatial patterns (CSP), can lead to highly distinctive features; however they require a considerable amount of training data. Recently, we showed in an offline analysis that CSPP can establish a valuable compromise. In this paper, we confirm these results in an online BCI study. In order to demonstrate the paramount feature that CSPP requires little training data, we used them in an adaptive setting with 20 participants and focused on users who did not have success with previous BCI approaches. Main results: The results of the study show that CSPP adapts faster and thereby allows users to achieve better feedback within a shorter time than previous approaches performed with Laplacian derivations and CSP filters. The success of the experiment highlights that CSPP has the potential to further reduce BCI inefficiency. Significance: CSPP are a valuable compromise between CSP and Laplacian filters. They allow users to attain better feedback within a shorter time and thus reduce BCI

  16. Video Enhancement Using Adaptive Spatio-Temporal Connective Filter and Piecewise Mapping

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2008-01-01

    Full Text Available This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC noise filter and an adaptive piecewise mapping function (APMF. For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises—Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results.

  17. Video Enhancement Using Adaptive Spatio-Temporal Connective Filter and Piecewise Mapping

    Directory of Open Access Journals (Sweden)

    Shi-Qiang Yang

    2008-06-01

    Full Text Available This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC noise filter and an adaptive piecewise mapping function (APMF. For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises—Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results.

  18. Adaptive control of a flexible beam using least square lattice filters

    Science.gov (United States)

    Sundararajan, N.; Montgomery, R. C.

    1983-01-01

    This paper presents an indirect adaptive control scheme for the control of flexible structures using recursive least square lattice filters. The identification scheme uses lattice filters which provide an on-line estimate of the number of modes, mode shapes and modal amplitudes. These modes are coupled and a transformation to decouple them in order to obtain the natural modes is presented. The decoupled modal amplitude time series are then used in an equation error identification scheme to identify the model parameters in an autoregressive moving average (ARMA) form. The control is based on modal pole placement scheme with the objective of vibration suppression. The control gains are calculated based on the identified ARMA parameters. Before using the identified parameters for control, detailed testing and validation procedures are carried out on the identified parameters. The full adaptive control scheme is demonstrated using the simulation for the 12 foot free-free beam apparatus at NASA Langley Research Center.

  19. Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum

    Science.gov (United States)

    Penland, Cecile; Ghil, Michael; Weickmann, Klaus M.

    1991-01-01

    The spectral resolution and statistical significance of a harmonic analysis obtained by low-order MEM can be improved by subjecting the data to an adaptive filter. This adaptive filter consists of projecting the data onto the leading temporal empirical orthogonal functions obtained from singular spectrum analysis (SSA). The combined SSA-MEM method is applied both to a synthetic time series and a time series of AAM data. The procedure is very effective when the background noise is white and less so when the background noise is red. The latter case obtains in the AAM data. Nevertheless, reliable evidence for intraseasonal and interannual oscillations in AAM is detected. The interannual periods include a quasi-biennial one and an LF one, of 5 years, both related to the El Nino/Southern Oscillation. In the intraseasonal band, separate oscillations of about 48.5 and 51 days are ascertained.

  20. A New Subband Adaptive Filtering Algorithm for Sparse System Identification with Impulsive Noise

    Directory of Open Access Journals (Sweden)

    Young-Seok Choi

    2014-01-01

    Full Text Available This paper presents a novel subband adaptive filter (SAF for system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF achieves both robustness against impulsive noise and remarkably improved convergence behavior more than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.

  1. Particle filter based visual tracking with multi-cue adaptive fusion

    Institute of Scientific and Technical Information of China (English)

    Anping Li; Zhongliang Jing; Shiqiang Hu

    2005-01-01

    @@ To improve the robustness of visual tracking in complex environments such as: cluttered backgrounds, partial occlusions, similar distraction and pose variations, a novel tracking method based on adaptive fusion and particle filter is proposed in this paper. In this method, the image color and shape cues are adaptively fused to represent the target observation; fuzzy logic is applied to dynamically adjust each cue weight according to its associated reliability in the past frame; particle filter is adopted to deal with non-linear and non-Gaussian problems in visual tracking. The method is demonstrated to be robust to illumination changes, pose variations, partial occlusions, cluttered backgrounds and camera motion for a test image sequence.

  2. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  3. An Adaptive Unscented Particle Filter Algorithm through Relative Entropy for Mobile Robot Self-Localization

    Directory of Open Access Journals (Sweden)

    Wentao Yu

    2013-01-01

    high. In order to reduce the computation cost of UPF and meanwhile maintain the accuracy, we propose an adaptive unscented particle filter (AUPF algorithm through relative entropy. AUPF can adaptively adjust the number of particles during filtering to reduce the necessary computation and hence improve the real-time capability of UPF. In AUPF, the relative entropy is used to measure the distance between the empirical distribution and the true posterior distribution. The least number of particles for the next step is then decided according to the relative entropy. In order to offset the difference between the proposal distribution, and the true distribution the least number is adjusted thereafter. The ideal performance of AUPF in real robot self-localization is demonstrated.

  4. Biohybrid control of general linear systems using the adaptive filter model of cerebellum

    Directory of Open Access Journals (Sweden)

    Emma D. Wilson

    2015-07-01

    Full Text Available The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems such as the vestibulo-ocular reflex (VOR and to sensory processing problems such as the adaptive cancellation of reafferent noise. It has also been successfully applied to problems in robotics such as adaptive camera stabilisation and sensor noise cancellation. In previous applications to inverse control problems the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity control of this plant results in unstable learning and control. To be more generally useful in engineering problems it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC scheme, which stabilises the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.

  5. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.

    Science.gov (United States)

    Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.

  6. Adaptive Controller for Vehicle Active Suspension Generated Through LMS Filter Algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Jianmin; SHU Gequn

    2006-01-01

    The least means squares (LMS) adaptive filter algorithm was used in active suspension system.By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained.For two-degree-of-freedom vehicle suspension model, LMS adaptive controller was designed.The acceleration of the sprung mass,the dynamic tyre load between wheels and road,and the dynamic deflection between sprung mass and unsprung mass were determined as the evaluation targets of suspension performance.For LMS adaptive control suspension, compared with passive suspension, acceleration power spectral density of sprung mass acceleration under the road input model decreased 8-10 times in high frequency resonance band or low frequency resonance band.The simulation results show that LMS adaptive control is simple and remarkably effective.It further proves that the active control suspension system can improve both the riding comfort and handling safety in various operation conditions, and the method is fit for the active control of the suspension system.

  7. Adaptive filter design based on the LMS algorithm for delay elimination in TCR/FC compensators.

    Science.gov (United States)

    Hooshmand, Rahmat Allah; Torabian Esfahani, Mahdi

    2011-04-01

    Thyristor controlled reactor with fixed capacitor (TCR/FC) compensators have the capability of compensating reactive power and improving power quality phenomena. Delay in the response of such compensators degrades their performance. In this paper, a new method based on adaptive filters (AF) is proposed in order to eliminate delay and increase the response of the TCR compensator. The algorithm designed for the adaptive filters is performed based on the least mean square (LMS) algorithm. In this design, instead of fixed capacitors, band-pass LC filters are used. To evaluate the filter, a TCR/FC compensator was used for nonlinear and time varying loads of electric arc furnaces (EAFs). These loads caused occurrence of power quality phenomena in the supplying system, such as voltage fluctuation and flicker, odd and even harmonics and unbalancing in voltage and current. The above design was implemented in a realistic system model of a steel complex. The simulation results show that applying the proposed control in the TCR/FC compensator efficiently eliminated delay in the response and improved the performance of the compensator in the power system.

  8. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-06-01

    Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.

  9. Real-time adaptive filtering of dental drill noise using a digital signal processor

    OpenAIRE

    2006-01-01

    The application of noise reduction methods requires the integration of acoustics engineering and digital signal processing, which is well served by a mechatronic approach as described in this paper. The Normalised Least Mean Square (NLMS) algorithm is implemented on the Texas Instruments TMS320C6713 DSK Digital Signal Processor (DSP) as an adaptive digital filter for dental drill noise. Blocks within the Matlab/Simulink Signal Processing Blockset and the Embedded Target for TI C6000 DSP famil...

  10. 1-D Systolic Arrays Design of LMS Adaptive (FIR Digital Filtering

    Directory of Open Access Journals (Sweden)

    Ali H. Mahdi

    2010-01-01

    Full Text Available This paper extends the 1-D systolic array approach with a method of systematic linear design of systolic algorithms. Past methods for mapping the Least-Mean-Square (LMS Adaptive Finite-Impulse-Response (FIR filter onto parallel and pipelined architectures either introduce delays in the coefficients updates or have excessive hardware requirements. In this article, we describe an efficient 1-D systolic array for the LMS adaptive FIR filter that produces the same output and error signals as produced by the standard LMS adaptive filter architecture with single assignment form of processor functions.The proposed systolic architectures that are designed operate on a block-by-block basis and makes use of the flexibility in the design, which takes the inner product step (convolution sum of the tap weight vector and the tap input vector in the design consideration. It enables us to extract more than one algorithm for the same problem. The input and output data flow sequentially and continuously into and out of the systolic arrays at the system clock rates, during each clock period, processing element of the same type operates in parallel. The most computationally demanding among them performs only two consecutive multiplications and two additions/subtractions per clock period, thereby allowing a very high throughput and very fast block signal processing to be achieved at the expense of a delay of L samples between the input and output and 100% utilization, L being the block size.

  11. Adaptive filter based two-probe noise suppression system for transient evoked otoacoustic emission detection.

    Science.gov (United States)

    Subotić, Miško; Šarić, Zoran; Jovičić, Slobodan T

    2012-03-01

    Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.

  12. Adaptive system noise covariance for performance enhancement of Kalman filter-based algorithms

    Science.gov (United States)

    Lee, Vika; Chan, Keith C. C.; Leung, Henry

    1996-06-01

    Several designs of Kalman filters and the interacting multiple models algorithm were used in real tracking tasks involving high dynamic targets. The data were obtained through the joint effort of the defense departments of Canada and the US. Their performance, measured in terms of positional deviation and the number of track losses, are rather unsatisfactory even though they perform particularly well when using simulated data. To identify the reasons behind, we compared and analyzed the differences between the model assumptions behind the design of these Kalman filters and the model required for accurate tracking of these targets. In this paper, we discussed our findings. Moreover, based on the characteristics of real tracking data, we present an alternative methodology for measuring the effectiveness of various Kalman filter based trackers in stressful environmental. It can also be used to explain the well known characteristics of Kalman filter. A lower bound for the deviation, obtained from this equation, shows that deviation could be too large to manage if noise bandwidth is as high as the real data instead of a pre-assumed magnitude. Instead of having to redesign many existing Kalman filters to suit for stressful environment, we developed a design-independent module that can be added to different types of Kalman filters based trackers to enhance their performance in the tracking high dynamic targets. The module is called adaptive systems noise covariance estimation. It is not only safe (i.e. almost no negative effect) but it can sometimes even double the performance of trackers in stressful environment.

  13. Hybrid Adaptive Filter development for the minimisation of transient fluctuations superimposed on electrotelluric field recordings mainly by magnetic storms

    Directory of Open Access Journals (Sweden)

    A. Konstantaras

    2006-01-01

    Full Text Available The method of Hybrid Adaptive Filtering (HAF aims to recover the recorded electric field signals from anomalies of magnetotelluric origin induced mainly by magnetic storms. An adaptive filter incorporating neuro-fuzzy technology has been developed to remove any significant distortions from the equivalent magnetic field signal, as retrieved from the original electric field signal by reversing the magnetotelluric method. Testing with further unseen data verifies the reliability of the model and demonstrates the effectiveness of the HAF method.

  14. Adaptive Particle Filter for Nonparametric Estimation with Measurement Uncertainty in Wireless Sensor Networks.

    Science.gov (United States)

    Li, Xiaofan; Zhao, Yubin; Zhang, Sha; Fan, Xiaopeng

    2016-05-30

    Particle filters (PFs) are widely used for nonlinear signal processing in wireless sensor networks (WSNs). However, the measurement uncertainty makes the WSN observations unreliable to the actual case and also degrades the estimation accuracy of the PFs. In addition to the algorithm design, few works focus on improving the likelihood calculation method, since it can be pre-assumed by a given distribution model. In this paper, we propose a novel PF method, which is based on a new likelihood fusion method for WSNs and can further improve the estimation performance. We firstly use a dynamic Gaussian model to describe the nonparametric features of the measurement uncertainty. Then, we propose a likelihood adaptation method that employs the prior information and a belief factor to reduce the measurement noise. The optimal belief factor is attained by deriving the minimum Kullback-Leibler divergence. The likelihood adaptation method can be integrated into any PFs, and we use our method to develop three versions of adaptive PFs for a target tracking system using wireless sensor network. The simulation and experimental results demonstrate that our likelihood adaptation method has greatly improved the estimation performance of PFs in a high noise environment. In addition, the adaptive PFs are highly adaptable to the environment without imposing computational complexity.

  15. Improving the response of accelerometers for automotive applications by using LMS adaptive filters.

    Science.gov (United States)

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg; Fernández, Eduardo

    2010-01-01

    In this paper, the least-mean-squares (LMS) algorithm was used to eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications. This kind of accelerometer is designed to be easily mounted in hard to reach places on vehicles under test, and they usually feature ranges from 50 to 2,000 g (where is the gravitational acceleration, 9.81 m/s(2)) and frequency responses to 3,000 Hz or higher, with DC response, durable cables, reliable performance and relatively low cost. However, here we show that the response of the sensor under test had a lot of noise and we carried out the signal processing stage by using both conventional and optimal adaptive filtering. Usually, designers have to build their specific analog and digital signal processing circuits, and this fact increases considerably the cost of the entire sensor system and the results are not always satisfactory, because the relevant signal is sometimes buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency band. Thus, in order to deal with this problem, here we used the LMS adaptive filtering algorithm and compare it with others based on the kind of filters that are typically used for automotive applications. The experimental results are satisfactory.

  16. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    Science.gov (United States)

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  17. Data assimilation for unsaturated flow models with restart adaptive probabilistic collocation based Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Man, Jun; Li, Weixuan; Zeng, Lingzao; Wu, Laosheng

    2016-06-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  18. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    Science.gov (United States)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  19. Locally adaptive regression filter-based infrared focal plane array non-uniformity correction

    Science.gov (United States)

    Li, Jia; Qin, Hanlin; Yan, Xiang; Huang, He; Zhao, Yingjuan; Zhou, Huixin

    2015-10-01

    Due to the limitations of the manufacturing technology, the response rates to the same infrared radiation intensity in each infrared detector unit are not identical. As a result, the non-uniformity of infrared focal plane array, also known as fixed pattern noise (FPN), is generated. To solve this problem, correcting the non-uniformity in infrared image is a promising approach, and many non-uniformity correction (NUC) methods have been proposed. However, they have some defects such as slow convergence, ghosting and scene degradation. To overcome these defects, a novel non-uniformity correction method based on locally adaptive regression filter is proposed. First, locally adaptive regression method is used to separate the infrared image into base layer containing main scene information and the detail layer containing detailed scene with FPN. Then, the detail layer sequence is filtered by non-linear temporal filter to obtain the non-uniformity. Finally, the high quality infrared image is obtained by subtracting non-uniformity component from original image. The experimental results show that the proposed method can significantly eliminate the ghosting and the scene degradation. The results of correction are superior to the THPF-NUC and NN-NUC in the aspects of subjective visual and objective evaluation index.

  20. Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems

    Science.gov (United States)

    Imani, Mahdi; Braga-Neto, Ulisses M.

    2017-01-01

    Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear models with application in estimation and control of Boolean processes based on noisy and incomplete measurements. The optimal minimum mean square error (MMSE) algorithms for POBDS state estimation, namely, the Boolean Kalman filter (BKF) and Boolean Kalman smoother (BKS), are intractable in the case of large systems, due to computational and memory requirements. To address this, we propose approximate MMSE filtering and smoothing algorithms based on the auxiliary particle filter (APF) method from sequential Monte-Carlo theory. These algorithms are used jointly with maximum-likelihood (ML) methods for simultaneous state and parameter estimation in POBDS models. In the presence of continuous parameters, ML estimation is performed using the expectation-maximization (EM) algorithm; we develop for this purpose a special smoother which reduces the computational complexity of the EM algorithm. The resulting particle-based adaptive filter is applied to a POBDS model of Boolean gene regulatory networks observed through noisy RNA-Seq time series data, and performance is assessed through a series of numerical experiments using the well-known cell cycle gene regulatory model.

  1. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  2. Estimation, filtering and adaptative control of a waste water processing process; Estimation, filtrage et commande adaptive d`un procede de traitement des eaux usees

    Energy Technology Data Exchange (ETDEWEB)

    Ben Youssef, C.; Dahhou, B.; Roux, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Rols, J.L. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    Controlling the process of a fixed bed bioreactor imply solving filtering and adaptative control problems. Estimation processes have been developed for unmeasurable parameters. An adaptative non linear control has been built, instead of conventional approaches trying to linearize the system and apply a linear control system. (D.L.) 10 refs.

  3. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    Directory of Open Access Journals (Sweden)

    Hairong Chu

    2017-01-01

    Full Text Available In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  4. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    Science.gov (United States)

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  5. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles.

    Science.gov (United States)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  6. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    Science.gov (United States)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  7. Removal of noises from electromagnetic radiation of coal or rock with EEMD-adaptive morphological filter

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-hai; WANG En-yuan

    2012-01-01

    The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines.The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster.With the aim of removing these noises,an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed.From the result of the simulation and the experiment,it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively.The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.

  8. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    Energy Technology Data Exchange (ETDEWEB)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-06-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems.

  9. Adaptive Command-Filtered Backstepping Control for Linear Induction Motor via Projection Algorithm

    Directory of Open Access Journals (Sweden)

    Wenxu Yan

    2016-01-01

    Full Text Available A theoretical framework of the position control for linear induction motors (LIM has been proposed. First, indirect field-oriented control of LIM is described. Then, the backstepping approach is used to ensure the convergence and robustness of the proposed control scheme against the external time-varying disturbances via Lyapunov stability theory. At the same time, in order to solve the differential expansion and the control saturation problems in the traditional backstepping, command filter is designed in the control and compensating signals are presented to eliminate the influence of the errors caused by command filters. Next, unknown total mass of the mover, viscous friction, and load disturbances are estimated by the projection-based adaptive law which bounds the estimated function and simultaneously guarantees the robustness of the proposed controller against the parameter uncertainties. Finally, simulation results are given to illustrate the validity and potential of the designed control scheme.

  10. Adaptive Robust Tracking Control of Pressure Trajectory Based on Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; ZHU Xiaocong; TAO Guoliang; YAO Bin

    2009-01-01

    When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking of rodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.

  11. An Adaptive Least-Error Squares Filter-Based Phase-Locked Loop for Synchronization and Signal Decomposition Purposes

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ebrahimzadeh, Esmaeil; Guerrero, Josep M.

    2017-01-01

    Without any doubt, phase-locked loops (PLLs) are the most popular and widely used technique for the synchronization purposes in the power and energy areas. They are also popular for the selective extraction of fundamental and harmonic/disturbance components of the grid voltage and current. Like...... input. A filtering technique that has received a little attention for this purpose is the least-error squares (LES)-based filter. In this paper, an adaptive LES filter-based PLL, briefly called the LES-PLL, for the synchronization and signal decomposition purposes is presented. The proposed LES filter...

  12. Single Channel Fetal ECG Detection Using LMS and RLS Adaptive Filters

    Institute of Scientific and Technical Information of China (English)

    Alaa Aldoori; Ali Buniya; ZHENG Zheng

    2015-01-01

    ECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84%of LMS and 88%of RLS while PhysioNet was up to 98%and 96%for LMS and RLS respectively.

  13. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering.

    Science.gov (United States)

    Liu, Yan; Pecht, Michael G

    2006-01-01

    The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts which can cause misdiagnoses, lead to inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The results demonstrate that this device and method can significantly reduce skin strain induced ECG artifacts.

  14. SOGI-FLL Based Adaptive Filter for DSTATCOM Under Variable Supply Frequency

    Science.gov (United States)

    Puranik, Vishal; Arya, Sabha Raj

    2016-12-01

    This paper presents an adaptive filter based on second order generalized integrator-frequency locked loop (SOGI-FLL) for distribution static compensator (DSTATCOM) operating under variable supply frequency with nonlinear load. It is observed that under variable supply frequency, the FLL provides an excellent frequency tracking performance. Necessary compensation can be provided by DSTATCOM at any frequency with the help of SOGI-FLL. The MATLAB simulink model of DSTATCOM is developed with SOGI-FLL based control algorithm and rectifier based nonlinear load. This three wire system is simulated in power factor correction and zero voltage regulation mode under variable supply frequency.

  15. Scale-Adaptive filters for the detection/separation of compact sources

    CERN Document Server

    Herranz, D; Barreiro, R B; Martínez-González, E

    2002-01-01

    This paper presents scale-adaptive filters that optimize the detection/separation of compact sources on a background. We assume that the sources have a multiquadric profile, i. e. $\\tau (x) = {[1 + {(x/r_c)}^2]}^{-\\lambda}, \\lambda \\geq {1/2}, x\\equiv |\\vec{x}|$, and a background modeled by a homogeneous and isotropic random field, characterized by a power spectrum $P(q)\\propto q^{-\\gamma}, \\gamma \\geq 0, q\\equiv |\\vec{q}|$. We make an n-dimensional treatment but consider two interesting astrophysical applications related to clusters of galaxies (Sunyaev-Zel'dovich effect and X-ray emission).

  16. Conventional Synchronous Reference Frame Phase-Locked Loop Is An Adaptive Complex Filter

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.

    2015-01-01

    Despite the wide acceptance and use of the conventional synchronous reference frame phase-locked loop (SRFPLL) no transfer function describing its actual input-output relationship has been developed so far. Arguably, the absence of such transfer function has hampered the application of SRF......-PLL as a filter or controller inside the closed-loop control systems. In this letter, the transfer function describing the actual inputoutput relationship of the conventional SRF-PLL is presented. Using this transfer function, it is shown that the conventional SRF-PLL is a first-order adaptive complex bandpass...

  17. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    Science.gov (United States)

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  18. Weld Defect Extraction Based on Adaptive Morphology Filtering and Edge Detection by Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    WANGDonghua; ZHOUYuanhua; GANGTie

    2003-01-01

    One of the most key steps in X-ray au-tomatic inspection and intelligent recognition systems is how to extract defects and detect their edges effectively.In this paper, a novel method of defect extraction based on the adaptive morphology filtering (DEAMF) is pro-posed, whose structuring elements can be changed with the sizes of defects adaptively. By this method, defects in X-ray weld inspection images are extracted with well-kept shapes and high speeds. Then according to the theory of edge detection based on wavelet transform modulus max-ima, a locally supported wavelet with good antisymmetry is developed to extract edges of defects and the results are satisfying.

  19. ICA Based Speckle Filtering for Target Extraction in SAR Images Using Adaptive Space Separation

    Institute of Scientific and Technical Information of China (English)

    LI Yu-tong; ZHOU Yue; YANG Lei

    2008-01-01

    A novel approach based on independent component analysis (ICA) for speckle filtering and target extraction of synthetic aperture radar (SAR) images is proposed using adaptive space separation with weighted information entropy (WIE) incorporated. First the basis and the independent components are respectively obtained by ICA technique, and WIE of the image is computed; then based on the threshold computed from function T-WIE (threshold versus weighted-information-entropy), independent components are adaptively separated and the bases are classified accordingly. Thus, the image space is separated into two subspaces: "clean" and "noise". Then, a proposed nonlinear operator ABO is applied on each component of the 'clean' subspace for further optimization. Finally, recovery image is obtained reconstructing this subspace and target is easily extracted with binarisation. Note that here T-WIE is an interpolated function based on several representative target SAR images using proposed space separation algorithm.

  20. Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    Directory of Open Access Journals (Sweden)

    Jérôme Van Zaen

    Full Text Available Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

  1. Adaptive filtering methods for identifying cross-frequency couplings in human EEG.

    Science.gov (United States)

    Van Zaen, Jérôme; Murray, Micah M; Meuli, Reto A; Vesin, Jean-Marc

    2013-01-01

    Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

  2. Real-time scale-adaptive correlation filters tracker with depth information to handle occlusion

    Science.gov (United States)

    Pi, Jiatian; Gu, Yuzhang; Hu, Keli; Cheng, Xiaoliu; Zhan, Yunlong; Wang, Yingguan

    2016-07-01

    In visual object tracking, occlusions significantly undermine the performance of tracking algorithms. RGB-D cameras, such as Microsoft Kinect or the related PrimeSense camera, are widely available to consumers. Great attention has been focused on exploiting depth information for object tracking in recent years. We propose an algorithm that improves the existing correlation filter-based tracker for scale-adaptive tracking. Moreover, we utilize depth information provided by the Kinect camera to handle various types of occlusions. First, the optimal location of the target is obtained by the conventional kernelized correlation filter tracker. Then, we make use of the discriminative correlation filter for scale estimation as an independent part. At last, to further improve the tracking performance under occlusions, we present a simple yet effective occlusion handling mechanism to detect occlusion and recovery. In this mechanism, cluster analysis and object segmentation by K-means method have been applied to depth data. Numerous experiments on Princeton RGB-D tracking dataset demonstrate that the proposed algorithm outperforms several state-of-the-art trackers by successfully dealing with occlusions.

  3. Color Image Denoising Using Stationary Wavelet Transform and Adaptive Wiener Filter

    Directory of Open Access Journals (Sweden)

    Iman M.G. Alwan

    2012-01-01

    Full Text Available The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by using MATLAB R2010a with color images contaminated by white Gaussian noise. Compared with stationary wavelet and wiener filter algorithms, the experimental results show that the proposed method provides better subjective and objective quality, and obtain up to 3.5 dB PSNR improvement.

  4. Point source detection and extraction from simulated Planck TOD using optimal adaptive filters

    CERN Document Server

    Herranz, D; Sanz, J L; Martínez-González, E

    2002-01-01

    Wavelet-related techniques have proven useful in the processing and analysis of one and two dimensional data sets (spectra in the former case, images in the latter). In this work we apply adaptive filters, introduced in a previous work (Sanz et al. 2001), to optimize the detection and extraction of point sources from a one-dimensional array of time-ordered data such as the one that will be produced by the future 30 GHz LFI28 channel of the ESA Planck mission. At a $4\\sigma$ detection level 224 sources over a flux of 0.88 Jy are detected with a mean relative error (in absolute value) of 21% and a systematic bias of -7.7%. The position of the sources in the sky is determined with errors inferior to the size of the pixel. The catalogue of detected sources is complete at fluxes $\\geq$ 4.3 Jy. The number of spurious detections is less than a 10% of the true detections. We compared the results with the ones obtained by filtering with a Gaussian filter and a Mexican Hat Wavelet of width equal to the scale of the sou...

  5. Three-State Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing

    Directory of Open Access Journals (Sweden)

    Jaakko T. Astola

    2005-05-01

    Full Text Available Textural features are one of the most important types of useful information contained in images. In practice, these features are commonly masked by noise. Relatively little attention has been paid to texture preserving properties of noise attenuation methods. This stimulates solving the following tasks: (1 to analyze the texture preservation properties of various filters; and (2 to design image processing methods capable to preserve texture features well and to effectively reduce noise. This paper deals with examining texture feature preserving properties of different filters. The study is performed for a set of texture samples and different noise variances. The locally adaptive three-state schemes are proposed for which texture is considered as a particular class. For “detection” of texture regions, several classifiers are proposed and analyzed. As shown, an appropriate trade-off of the designed filter properties is provided. This is demonstrated quantitatively for artificial test images and is confirmed visually for real-life images.

  6. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    Science.gov (United States)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  7. A measurement-driven adaptive probability hypothesis density filter for multitarget tracking

    Institute of Scientific and Technical Information of China (English)

    Si Weijian; Wang Liwei; Qu Zhiyu

    2015-01-01

    This paper studies the dynamic estimation problem for multitarget tracking. A novel gat-ing strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measure-ments. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estima-tion algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investi-gated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm. ? 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA&BUAA. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  8. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    Science.gov (United States)

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  9. An Adaptive Approach to Mitigate Background Covariance Limitations in the Ensemble Kalman Filter

    KAUST Repository

    Song, Hajoon

    2010-07-01

    A new approach is proposed to address the background covariance limitations arising from undersampled ensembles and unaccounted model errors in the ensemble Kalman filter (EnKF). The method enhances the representativeness of the EnKF ensemble by augmenting it with new members chosen adaptively to add missing information that prevents the EnKF from fully fitting the data to the ensemble. The vectors to be added are obtained by back projecting the residuals of the observation misfits from the EnKF analysis step onto the state space. The back projection is done using an optimal interpolation (OI) scheme based on an estimated covariance of the subspace missing from the ensemble. In the experiments reported here, the OI uses a preselected stationary background covariance matrix, as in the hybrid EnKF–three-dimensional variational data assimilation (3DVAR) approach, but the resulting correction is included as a new ensemble member instead of being added to all existing ensemble members. The adaptive approach is tested with the Lorenz-96 model. The hybrid EnKF–3DVAR is used as a benchmark to evaluate the performance of the adaptive approach. Assimilation experiments suggest that the new adaptive scheme significantly improves the EnKF behavior when it suffers from small size ensembles and neglected model errors. It was further found to be competitive with the hybrid EnKF–3DVAR approach, depending on ensemble size and data coverage.

  10. Dynamic Adaptive Median Filter (DAMF for Removal of High Density Impulse Noise

    Directory of Open Access Journals (Sweden)

    Punyaban Patel

    2012-10-01

    Full Text Available This paper proposes a novel adaptive filtering scheme to remove impulse noise from images. The scheme replaces the corrupted test pixel with the median value of non-corrupted neighboring pixels selected from a window dynamically. If the number of non-corrupted pixels in the selected window is not sufficient, a window of next higher size is chosen. Thus window size is automatically adapted based on the density of noise in the image as well as the density of corruption local to a window. As a result window size may vary pixel to pixel while filtering. The scheme is simple to implement and do not require multiple iterations. The efficacy of the proposed scheme is evaluated with respect to subjective as well as objective parameters on standard images on various noise densities. Comparative analysis reveals that the proposed scheme has improved performance over other schemes, preferably in high density impulse noise cases. Further, the computational overhead is also less as compared its competent scheme.

  11. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    Science.gov (United States)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  12. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  13. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    Science.gov (United States)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  14. Block-Sparsity-Induced Adaptive Filter for Multi-Clustering System Identification

    Science.gov (United States)

    Jiang, Shuyang; Gu, Yuantao

    2015-10-01

    In order to improve the performance of least mean square (LMS)-based adaptive filtering for identifying block-sparse systems, a new adaptive algorithm called block-sparse LMS (BS-LMS) is proposed in this paper. The basis of the proposed algorithm is to insert a penalty of block-sparsity, which is a mixed \\$l_{2, 0}\\$ norm of adaptive tap-weights with equal group partition sizes, into the cost function of traditional LMS algorithm. To describe a block-sparse system response, we first propose a Markov-Gaussian model, which can generate a kind of system responses of arbitrary average sparsity and arbitrary average block length using given parameters. Then we present theoretical expressions of the steady-state misadjustment and transient convergence behavior of BS-LMS with an appropriate group partition size for white Gaussian input data. Based on the above results, we theoretically demonstrate that BS-LMS has much better convergence behavior than \\$l_0\\$-LMS with the same small level of misadjustment. Finally, numerical experiments verify that all of the theoretical analysis agrees well with simulation results in a large range of parameters.

  15. An Improved WiFi/PDR Integrated System Using an Adaptive and Robust Filter for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Zengke Li

    2016-11-01

    Full Text Available Location-based services (LBS are services offered through a mobile device that take into account a device’s geographical location. To provide position information for these services, location is a key process. GNSS (Global Navigation Satellite System can provide sub-meter accuracy in open-sky areas using satellite signals. However, for indoor and dense urban environments, the accuracy deteriorates significantly because of weak signals and dense multipaths. The situation becomes worse in indoor environments where the GNSS signals are unreliable or totally blocked. To improve the accuracy of indoor positioning for location-based services, an improved WiFi/Pedestrian Dead Reckoning (PDR integrated positioning and navigation system using an adaptive and robust filter is presented. The adaptive filter is based on scenario and motion state recognition and the robust filter is based on the Mahalanobis distance. They are combined and used in the WiFi/PDR integrated system to weaken the effect of gross errors on the dynamic and observation models. To validate their performance in the WiFi/PDR integrated system, a real indoor localization experiment is conducted. The results indicate that the adaptive filter is better able to adapt to the circumstances of the dynamic model by adjusting the covariance of the process noise and the robust Kalman filter is able to mitigate the harmful effect of gross errors from the WiFi positioning.

  16. A MIT-Based Nonlinear Adaptive Set-Membership Filter for the Ellipsoidal Estimation of Mobile Robots’ States

    Directory of Open Access Journals (Sweden)

    Dalei Song

    2012-10-01

    Full Text Available The adaptive extended set‐membership filter (AESMF for nonlinear ellipsoidal estimation suffers a mismatch between real process noise and its set boundaries, which may result in unstable estimation. In this paper, a MIT method‐based adaptive set‐membership filter, for the optimization of the set boundaries of process noise, is developed and applied to the nonlinear joint estimation of both time‐varying states and parameters. As a result of using the proposed MIT‐AESMF, the estimation effectiveness and boundary accuracy of traditional AESMF are substantially improved. Simulation results have shown the efficiency and robustness of the proposed method.

  17. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter.

    Science.gov (United States)

    Shabbouei Hagh, Yashar; Mohammadi Asl, Reza; Cocquempot, Vincent

    2017-01-01

    In this paper, a new hybrid robust fault tolerant control scheme is proposed. A robust H∞ control law is used in non-faulty situation, while a Non-Singular Terminal Sliding Mode (NTSM) controller is activated as soon as an actuator fault is detected. Since a linear robust controller is designed, the system is first linearized through the feedback linearization method. To switch from one controller to the other, a fuzzy based switching system is used. An Adaptive Joint Unscented Kalman Filter (AJUKF) is used for fault detection and diagnosis. The proposed method is based on the simultaneous estimation of the system states and parameters. In order to show the efficiency of the proposed scheme, a simulated 3-DOF robotic manipulator is used.

  18. Adaptation of Gabor filters for simulation of human preattentive mechanism for a mobile robot

    Science.gov (United States)

    Kulkarni, Naren; Naghdy, Golshah A.

    1993-08-01

    Vision guided mobile robot navigation is complex and requires analysis of tremendous amounts of information in real time. In order to simplify the task and reduce the amount of information, human preattentive mechanism can be adapted [Nag90]. During the preattentive search the scene is analyzed rapidly but in sufficient detail for the attention to be focused on the `area of interest.' The `area of interest' can further be scrutinized in more detail for recognition purposes. This `area of interest' can be a text message to facilitate navigation. Gabor filters and an automated turning mechanism are used to isolate the `area of interest.' These regions are subsequently processed with optimal spatial resolution for perception tasks. This method has clear advantages over the global operators in that, after an initial search, it scans each region of interest with optimum resolution. This reduces the volume of information for recognition stages and ensures that no region is over or under estimated.

  19. Subband Adaptive Filtering with l1-Norm Constraint for Sparse System Identification

    Directory of Open Access Journals (Sweden)

    Young-Seok Choi

    2013-01-01

    Full Text Available This paper presents a new approach of the normalized subband adaptive filter (NSAF which directly exploits the sparsity condition of an underlying system for sparse system identification. The proposed NSAF integrates a weighted l1-norm constraint into the cost function of the NSAF algorithm. To get the optimum solution of the weighted l1-norm regularized cost function, a subgradient calculus is employed, resulting in a stochastic gradient based update recursion of the weighted l1-norm regularized NSAF. The choice of distinct weighted l1-norm regularization leads to two versions of the l1-norm regularized NSAF. Numerical results clearly indicate the superior convergence of the l1-norm regularized NSAFs over the classical NSAF especially when identifying a sparse system.

  20. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    Science.gov (United States)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  1. Adaptive update using visual models for lifting-based motion-compensated temporal filtering

    Science.gov (United States)

    Li, Song; Xiong, H. K.; Wu, Feng; Chen, Hong

    2005-03-01

    Motion compensated temporal filtering is a useful framework for fully scalable video compression schemes. However, when supposed motion models cannot represent a real motion perfectly, both the temporal high and the temporal low frequency sub-bands may contain artificial edges, which possibly lead to a decreased coding efficiency, and ghost artifacts appear in the reconstructed video sequence at lower bit rates or in case of temporal scaling. We propose a new technique that is based on utilizing visual models to mitigate ghosting artifacts in the temporal low frequency sub-bands. Specifically, we propose content adaptive update schemes where visual models are used to determine image dependent upper bounds on information to be updated. Experimental results show that the proposed algorithm can significantly improve subjective visual quality of the low-pass temporal frames and at the same time, coding performance can catch or exceed the classical update steps.

  2. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    Science.gov (United States)

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods.

  3. Propagating adaptive-weighted vector median filter for motion-field smoothing

    Institute of Scientific and Technical Information of China (English)

    林梦冬; 余松煜

    2004-01-01

    In the field of predictive video coding and format conversion, there is an increasing attention towards estimation of the true inter-frame motion. The restoration of motion vector field computed by 3-D RS is addressed and a propagating adaptive-weighted vector median (PAWVM) post-filter is proposed. This approach decomposes blocks to make a betteres timation on object borders and propagates good vectors in the scanning direction. Furthermore, a hard-thresholding method is introduced into calculating vector weights to improve the propagating. By exploiting both the spatial correlation of the vector field and the matching error of candidate vectors, PAWVM makes a good balance between the smoothness of vector field and the prediction error, and the output vector field is more valid to reflect the true motion.

  4. Adaptive UAV attitude estimation employing unscented Kalman Filter, FOAM and low-cost MEMS sensors.

    Science.gov (United States)

    de Marina, Héctor García; Espinosa, Felipe; Santos, Carlos

    2012-01-01

    Navigation employing low cost MicroElectroMechanical Systems (MEMS) sensors in Unmanned Aerial Vehicles (UAVs) is an uprising challenge. One important part of this navigation is the right estimation of the attitude angles. Most of the existent algorithms handle the sensor readings in a fixed way, leading to large errors in different mission stages like take-off aerobatic maneuvers. This paper presents an adaptive method to estimate these angles using off-the-shelf components. This paper introduces an Attitude Heading Reference System (AHRS) based on the Unscented Kalman Filter (UKF) using the Fast Optimal Attitude Matrix (FOAM) algorithm as the observation model. The performance of the method is assessed through simulations. Moreover, field experiments are presented using a real fixed-wing UAV. The proposed low cost solution, implemented in a microcontroller, shows a satisfactory real time performance.

  5. An Adaptive Channel Interpolator Based on Kalman Filter for LTE Uplink in High Doppler Spread Environments

    Directory of Open Access Journals (Sweden)

    Arslan Hüseyin

    2009-01-01

    Full Text Available Long-Term Evolution (LTE systems will employ single carrier frequency division multiple access (SC-FDMA for the uplink. Similar to the Orthogonal frequency-division multiple access (OFDMA technology, SC-FDMA is sensitive to frequency offsets leading to intercarrier interference (ICI. In this paper, we propose a Kalman filter-based approach in order to mitigate ICI under high Doppler spread scenarios by tracking the variation of channel taps jointly in time domain for LTE uplink systems. Upon acquiring the estimates of channel taps from the Kalman tracker, we employ an interpolation algorithm based on polynomial fitting whose order is changed adaptively. The proposed method is evaluated under four different scenarios with different settings in order to reflect the impact of various critical parameters on the performance such as propagation environment, speed, and size of resource block (RB assignments. Results are given along with discussions.

  6. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.

    Science.gov (United States)

    Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J

    2015-08-01

    This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.

  7. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    Science.gov (United States)

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  8. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi

    2016-04-01

    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  9. Notch Inhibitors for Cancer Treatment

    OpenAIRE

    Espinoza, Ingrid; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been de...

  10. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Jay, E-mail: jwu@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China)

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  11. Gearbox fault diagnosis using adaptive zero phase time-varying filter based on multi-scale chirplet sparse signal decomposition

    Science.gov (United States)

    Wu, Chunyan; Liu, Jian; Peng, Fuqiang; Yu, Dejie; Li, Rong

    2013-07-01

    When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.

  12. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  13. Planetary gearbox fault feature enhancement based on combined adaptive filter method

    Directory of Open Access Journals (Sweden)

    Shuangshu Tian

    2015-12-01

    Full Text Available The reliability of vibration signals acquired from a planetary gear system (the indispensable part of wind turbine gearbox is directly related to the accuracy of fault diagnosis. The complex operation environment leads to lots of interference signals which are included in the vibration signals. Furthermore, both multiple gears meshing with each other and the differences in transmission rout produce strong nonlinearity in the vibration signals, which makes it difficult to eliminate the noise. This article presents a combined adaptive filter method by taking a delayed signal as reference signal, the Self-Adaptive Noise Cancellation method is adopted to eliminate the white noise. In the meanwhile, by applying Gaussian function to transform the input signal into high-dimension feature-space signal, the kernel least mean square algorithm is used to cancel the nonlinear interference. Effectiveness of the method has been verified by simulation signals and test rig signals. By dealing with simulation signal, the signal-to-noise ratio can be improved around 30 dB (white noise and the amplitude of nonlinear interference signal can be depressed up to 50%. Experimental results show remarkable improvements and enhance gear fault features.

  14. Adaptive filtering for deformation parameter estimation in consideration of geometrical measurements and geophysical models

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    There are two kinds of methods in researching the crust deformation: geophysical method and geometrical (or observational) method. Considerable differences usually exist between the two kinds of results, because of the datum differences, geophysical model errors, observational model errors, and so on. Thus, it is reasonable to combine the two kinds of information to collect the crust deformation information. To use the reliable geometrical and geophysical information, we have to control the observational and geophysical model error influences on the estimated deformation parameters, and to balance their contributions to the evaluated parameters. A hybrid estimation strategy is proposed here for evaluating the deformation parameters employing an adaptively robust filtering. The effects of measurement outliers on the estimated parameters are controlled by robust equivalent weights. Adaptive factors are introduced to balance the contribution of the geophysical model information and the geometrical measurements to the model parameters. The datum for the local deformation analysis is mainly determined by the highly accurate IGS station velocities. The hybrid estimation strategy is applied in an actual GPS monitoring network. It is shown that the hybrid technique employs locally repeated geometrical displacements to reduce the displacement errors caused by the mis-modeling of geophysical technique, and thus improves the precision of the estimated crust deformation parameters.

  15. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  16. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou

    2011-09-01

    To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.

  17. Sensor and Actuator Fault Detection and Isolation in Nonlinear System using Multi Model Adaptive Linear Kalman Filter

    Directory of Open Access Journals (Sweden)

    M. Manimozhi

    2014-05-01

    Full Text Available Fault Detection and Isolation (FDI using Linear Kalman Filter (LKF is not sufficient for effective monitoring of nonlinear processes. Most of the chemical plants are nonlinear in nature while operating the plant in a wide range of process variables. In this study we present an approach for designing of Multi Model Adaptive Linear Kalman Filter (MMALKF for Fault Detection and Isolation (FDI of a nonlinear system. The uses a bank of adaptive Kalman filter, with each model based on different fault hypothesis. In this study the effectiveness of the MMALKF has been demonstrated on a spherical tank system. The proposed method is detecting and isolating the sensor and actuator soft faults which occur sequentially or simultaneously.

  18. A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    CERN Document Server

    Pham, Mai Quyen; Chaux, Caroline; Pesquet, Jean-Christophe

    2014-01-01

    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. Th...

  19. 一种卡尔曼滤波自适应算法%An adaptive Algorithm on Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    黄波; 郑新星; 刘凤伟

    2012-01-01

    自适应滤波是指随着外部信号的变化,滤波器能够自我调节滤波参数,使得滤波器的某一性能指标达到最优。文章以卡尔曼滤波理论为基础,给出一种新的自适应卡尔曼滤波算法。%Adaptive-filtering means the filter could adjust filtration parameters by itself and make some performance index optimal when the external signals vary.This paper will give a new Kalman filter algorithm whose base is Kalman filter theory.

  20. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    Science.gov (United States)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  1. Adaptive linear predictor FIR filter based on the Cyclone V FPGA with HPS to reduce narrow band RFI in AERA radio detection of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew [University of Lodz, Department of Physics and Applied Informatics, 90-236 Lodz, (Poland)

    2015-07-01

    We present the new approach to a filtering of radio frequency interferences (RFI) in the Auger Engineering Radio Array (AERA) which study the electromagnetic part of the Extensive Air Showers. The radio stations can observe radio signals caused by coherent emissions due to geomagnetic radiation and charge excess processes. AERA observes frequency band from 30 to 80 MHz. This range is highly contaminated by human-made RFI. In order to improve the signal to noise ratio RFI filters are used in AERA to suppress this contamination. The first kind of filter used by AERA was the Median one, based on the Fast Fourier Transform (FFT) technique. The second one, which is currently in use, is the infinite impulse response (IIR) notch filter. The proposed new filter is a finite impulse response (FIR) filter based on a linear prediction (LP). A periodic contamination hidden in a registered signal (digitized in the ADC) can be extracted and next subtracted to make signal cleaner. The FIR filter requires a calculation of n=32, 64 or even 128 coefficients (dependent on a required speed or accuracy) by solving of n linear equations with coefficients built from the covariance Toeplitz matrix. This matrix can be solved by the Levinson recursion, which is much faster than the Gauss procedure. The filter has been already tested in the real AERA radio stations on Argentinean pampas with a very successful results. The linear equations were solved either in the virtual soft-core NIOSR processor (implemented in the FPGA chip as a net of logic elements) or in the external Voipac PXA270M ARM processor. The NIOS processor is relatively slow (50 MHz internal clock), calculations performed in an external processor consume a significant amount of time for data exchange between the FPGA and the processor. Test showed a very good efficiency of the RFI suppression for stationary (long-term) contaminations. However, we observed a short-time contaminations, which could not be suppressed either by the

  2. A new adaptive method to filter terrestrial laser scanner point clouds using morphological filters and spectral information to conserve surface micro-topography

    Science.gov (United States)

    Rodríguez-Caballero, E.; Afana, A.; Chamizo, S.; Solé-Benet, A.; Canton, Y.

    2016-07-01

    Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by ∼30% under dense canopy plants and over ∼40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies.

  3. Complex Membership Grades with an Application to the Design of Adaptive Filters

    Directory of Open Access Journals (Sweden)

    D. Moses

    1999-12-01

    Full Text Available In this paper, complex membership grades are introduced for the extension of fuzzy set theory to the complex domain. This model is based on the idea of viewing the complex domain in a linguistic manner, where two linguistic terms are required to define an object. Thus, as opposed to Buckley's model, after fuzzification the two- dimensionality of the universe of discourse is still apparent. One form for representing a complex fuzzy set is using the Cartesian Complex Fuzzy Set representation, which produces complex sets of the form [Z\\tilde]c = [X\\tilde] + j[Y\\tilde]. The motivation for this aberrant representation is oriented from the limitations in using a direct extension to Zadeh, that Buckley introduced. These limitations pose the guidelines for Complex Membership Grades and, therefore, are initially discussed in this paper. Complex Fuzzy Sets are defined and a technique for converting between Complex Fuzzy Sets and Fuzzy Relations is developed based on Cylindrical Extensions and Projections defined by Zadeh. Next, linguistic coordinate transformations are discussed and exemplified by a rule-base coordinate transformation between Polar and Cartesian Complex Fuzzy Sets. Arithmetic operations and defuzzification are demonstrated. The simplicity of these latter operations is crucial when considering implementation prospects. Finally, Complex Membership Grades are applied to the design of adaptive filters. It is shown that a logically derived rule-base can be described, using the linguistic complex domain, for the adaptation process. Emphasis, in this part, is put on the unique characteristics of the complex membership grades model.

  4. Low-cost adaptive square-root cubature Kalman filter for systems with process model uncer tainty

    Institute of Scientific and Technical Information of China (English)

    An Zhang; Shuida Bao; Wenhao Bi; Yuan Yuan

    2016-01-01

    A novel low-cost adaptive square-root cubature Kalman filter (LCASCKF) is proposed to enhance the robustness of pro-cess models while only increasing the computational load slightly. It is wel-known that the Kalman filter cannot handle uncertainties in a process model, such as initial state estimation errors, parameter mismatch and abrupt state changes. These uncertainties severely affect filter performance and may even provoke divergence. A strong tracking filter (STF), which utilizes a suboptimal fading fac-tor, is an adaptive approach that is commonly adopted to solve this problem. However, if the strong tracking SCKF (STSCKF) uses the same method as the extended Kalman filter (EKF) to introduce the suboptimal fading factor, it greatly increases the computational load. To avoid this problem, a low-cost introductory method is proposed and a hypothesis testing theory is applied to detect uncertainties. The computational load analysis is performed by counting the total number of floating-point operations and it is found that the computational load of LCASCKF is close to that of SCKF. Experimental results prove that the LCASCKF performs as wel as STSCKF, while the increase in computational load is much lower than STSCKF.

  5. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    Science.gov (United States)

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  6. A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering

    Science.gov (United States)

    Ouisse, Morvan; Collet, Manuel; Scarpa, Fabrizio

    2016-11-01

    Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant approach for optimizing mechanical components with regards to vibroacoustic propagation. Architectured materials as pyramidal core kirigami cells combined with smart systems may represent a promising way to improve the vibroacoustic quality of structural components. This paper describes the design and modeling of a pyramidal core with auxetic (negative Poisson’s ratio) characteristics and distributed shunted piezoelectric patches that allow for wave propagation control. The core is produced using a kirigami technique, inspired by the cutting/folding processes of the ancient Japanese art. The kirigami structure has a pyramidal unit cell shape that creates an in-plane negative Poisson’s ratio macroscopic behavior. This structure exhibits in-plane elastic properties (Young’s and shear modulus) which are higher than the out-of-plane ones, and hence this lattice has very specific properties in terms of wave propagation that are investigated in this work. The short-circuited configuration is first analyzed, before using negative capacitance and resistance as a shunt which provides impressive band gaps in the low frequency range. All configurations are investigated by using a full analysis of the Brillouin zone, rendering possible the deep understanding of the dynamical properties of the smart lattice. The results are presented in terms of dispersion and directivity diagrams, and the smart lattice shows quite interesting properties for the adaptive filtering of elastic waves at low frequencies bandwidths.

  7. Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters

    Directory of Open Access Journals (Sweden)

    Muhammad Ammirrul Atiqi Mohd Zainuri

    2016-05-01

    Full Text Available This paper presents improvement of a harmonics extraction algorithm, known as the fundamental active current (FAC adaptive linear element (ADALINE neural network with the integration of photovoltaic (PV to shunt active power filters (SAPFs as active current source. Active PV injection in SAPFs should reduce dependency on grid supply current to supply the system. In addition, with a better and faster harmonics extraction algorithm, the SAPF should perform well, especially under dynamic PV and load conditions. The role of the actual injection current from SAPF after connecting PVs will be evaluated, and the better effect of using FAC ADALINE will be confirmed. The proposed SAPF was simulated and evaluated in MATLAB/Simulink first. Then, an experimental laboratory prototype was also developed to be tested with a PV simulator (CHROMA 62100H-600S, and the algorithm was implemented using a TMS320F28335 Digital Signal Processor (DSP. From simulation and experimental results, significant improvements in terms of total harmonic distortion (THD, time response and reduction of source power from grid have successfully been verified and achieved.

  8. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Pipa Daniel

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  9. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter

    Science.gov (United States)

    Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin

    2017-02-01

    This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.

  10. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  11. Alternative Adaptive Filter Structures for Improved Radio Frequency Interference Cancellation in Radio Astronomy

    CERN Document Server

    Mitchell, D A; Sault, R J

    2010-01-01

    In radio astronomy, reference signals from auxiliary antennas that receive only the radio frequency interference (RFI) can be modified to model the RFI environment at the astronomy receivers. The RFI can then be canceled from the astronomy signal paths. However, astronomers typically only require signal statistics. If the RFI statistics are changing slowly, the cancellation can be applied to the signal correlations at a much lower rate than is required for standard adaptive filters. In this paper we describe five canceler setups; precorrelation and postcorrelation cancelers that use one or two reference signals in different ways. The theoretical residual RFI and added noise levels are examined and are demonstrated using microwave television RFI at the Australia Telescope Compact Array. The RFI is attenuated to below the system noise, a reduction of at least 20 dB. While dual-reference cancelers add more reference noise than single-reference cancelers, this noise is zero-mean and only adds to the system noise,...

  12. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    Science.gov (United States)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  13. Application of subband adaptive filtering techniques to ultrasonic detection in multilayers

    Institute of Scientific and Technical Information of China (English)

    MAO Jie; LI Mingxuan

    2003-01-01

    The ultrasonic testing for the defects of complete disbond in multi-layered structure with lower acoustic impedance beneath a high acoustic impedance overburden is one of the difficult problems in ultrasonic nondestructive testing field. A model of a multi-layered steel-rubber composite plate is depicted. Because the acoustic impedance of the steel differs far from that of the couplant water and the rubber, the energy of the signal reflected from the debonded rubber layers is very weak. More over, the flaw echoes are masked by the strong echoes reverberated in the steel plate. It's nearly impossible to identify the debonding echoes directly. The subband adaptive filtering method is discussed in the paper, where the subband decomposition is performed by mutual wavelet packets decomposition on the criterion of maximizing the cross-correlation between the signals. The simulations on both synthetic and real signals are presented. The echoes from the delaminated flaw at the depth of 5 mm in the rubber from the calculated signal, and echoes from the flaw at the depth of 3 mm from the real signal are extracted successfully.

  14. Design of adaptive reconfigurable control systems using extended-Kalman-filter-based system identification and eigenstructure assignments

    Science.gov (United States)

    Wang, Xudong; Syrmos, Vassilis L.

    2004-07-01

    In this paper, an adaptive reconfigurable control system based on extended Kalman filter approach and eigenstructure assignments is proposed. System identification is carried out using an extended Kalman filter (EKF) approach. An eigenstructure assignment (EA) technique is applied for reconfigurable feedback control law design to recover the system dynamic performance. The reconfigurable feedforward controllers are designed to achieve the steady-state tracking using input weighting approach. The proposed scheme can identify not only actuator and sensor variations, but also changes in the system structures using the extended Kalman filtering method. The overall design is robust with respect to uncertainties in the state-space matrices of the reconfigured system. To illustrate the effectiveness of the proposed reconfigurable control system design technique, an aircraft longitudinal vertical takeoff and landing (VTOL) control system is used to demonstrate the reconfiguration procedure.

  15. A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering

    Science.gov (United States)

    Ushaq, Muhammad; Fang, Jiancheng

    2013-10-01

    Integrated navigation systems for various applications, generally employs the centralized Kalman filter (CKF) wherein all measured sensor data are communicated to a single central Kalman filter. The advantage of CKF is that there is a minimal loss of information and high precision under benign conditions. But CKF may suffer computational overloading, and poor fault tolerance. The alternative is the federated Kalman filter (FKF) wherein the local estimates can deliver optimal or suboptimal state estimate as per certain information fusion criterion. FKF has enhanced throughput and multiple level fault detection capability. The Standard CKF or FKF require that the system noise and the measurement noise are zero-mean and Gaussian. Moreover it is assumed that covariance of system and measurement noises remain constant. But if the theoretical and actual statistical features employed in Kalman filter are not compatible, the Kalman filter does not render satisfactory solutions and divergence problems also occur. To resolve such problems, in this paper, an adaptive Kalman filter scheme strengthened with fuzzy inference system (FIS) is employed to adapt the statistical features of contributing sensors, online, in the light of real system dynamics and varying measurement noises. The excessive faults are detected and isolated by employing Chi Square test method. As a case study, the presented scheme has been implemented on Strapdown Inertial Navigation System (SINS) integrated with the Celestial Navigation System (CNS), GPS and Doppler radar using FKF. Collectively the overall system can be termed as SINS/CNS/GPS/Doppler integrated navigation system. The simulation results have validated the effectiveness of the presented scheme with significantly enhanced precision, reliability and fault tolerance. Effectiveness of the scheme has been tested against simulated abnormal errors/noises during different time segments of flight. It is believed that the presented scheme can be

  16. A method of adaptive wavelet filtering of the peripheral blood flow oscillations under stationary and non-stationary conditions.

    Science.gov (United States)

    Tankanag, Arina V; Chemeris, Nikolay K

    2009-10-01

    The paper describes an original method for analysis of the peripheral blood flow oscillations measured with the laser Doppler flowmetry (LDF) technique. The method is based on the continuous wavelet transform and adaptive wavelet theory and applies an adaptive wavelet filtering to the LDF data. The method developed allows one to examine the dynamics of amplitude oscillations in a wide frequency range (from 0.007 to 2 Hz) and to process both stationary and non-stationary short (6 min) signals. The capabilities of the method have been demonstrated by analyzing LDF signals registered in the state of rest and upon humeral occlusion. The paper shows the main advantage of the method proposed, which is the significant reduction of 'border effects', as compared to the traditional wavelet analysis. It was found that the low-frequency amplitudes obtained by adaptive wavelets are significantly higher than those obtained by non-adaptive ones. The method suggested would be useful for the analysis of low-frequency components of the short-living transitional processes under the conditions of functional tests. The method of adaptive wavelet filtering can be used to process stationary and non-stationary biomedical signals (cardiograms, encephalograms, myograms, etc), as well as signals studied in the other fields of science and engineering.

  17. Adaptive Iterated Square-Root Cubature Kalman Filter and Its Application to SLAM of a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Zuguo Chen

    2013-07-01

    Full Text Available For the mobile robot Simultaneous Localization and Mapping(SLAM,a new algorithm is proposed, and named Adaptive Iterated Square-Root Cubature Kalman Filter based SLAM algorithm(AISRCKF-SLAM. The main contribution of the algorithm is that the numerical integration method based on cubature rule is directly used to calculate the SLAM posterior probability density. To improve innovation covariance and cross-covariance, the latest measurements are iteratively used in the measurement updating. The algorithm can reduce linearization error and improve the accuracy of the SLAM algorithm. The algorithm also used adaptive iterating estimation restricted by the iterative sentencing guideline to adjust the proportion of the observation and dynamic model, to make the estimated square root of the error covariance more accurate and reasonable. In experiments, the proposed algorithm is compared with Extended Kalman Filter based SLAM algorithm (EKF-SLAM, Unscented Kalman Filter based SLAM algorithm (UKF-SLAM and Square-Root Cubature Kalman Filter based SLAM algorithm (SRCKF-SLAM. The results indicate that the proposed algorithm having with the higher accuracy of the state estimation is obtained to compare with the EKF-SLAM algorithm, the UKF-SLAM algorithm and the SRCKF-SLAM algorithm.

  18. Self adaptive multi-scale morphology AVG-Hat filter and its application to fault feature extraction for wheel bearing

    Science.gov (United States)

    Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang

    2017-04-01

    Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.

  19. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  20. Application of equalization notch to improve synthetic aperture radar coherent data products

    Science.gov (United States)

    Musgrove, Cameron; West, James C.

    2015-05-01

    Interference and interference mitigation techniques degrade synthetic aperture radar (SAR) coherent data products. Radars utilizing stretch processing present a unique challenge for many mitigation techniques because the interference signal itself is modified through stretch processing from its original signal characteristics. Many sources of interference, including constant tones, are only present within the fast-time sample data for a limited number of samples, depending on the radar and interference bandwidth. Adaptive filtering algorithms to estimate and remove the interference signal that rely upon assuming stationary interference signal characteristics can be ineffective. An effective mitigation method, called notching, forces the value of the data samples containing interference to zero. However, as the number of data samples set to zero increases, image distortion and loss of resolution degrade both the image product and any second order image products. Techniques to repair image distortions,1 are effective for point-like targets. However, these techniques are not designed to model and repair distortions in SAR image terrain. Good terrain coherence is important for SAR second order image products because terrain occupies the majority of many scenes. For the case of coherent change detection it is the terrain coherence itself that determines the quality of the change detection image. This paper proposes an unique equalization technique that improves coherence over existing notching techniques. First, the proposed algorithm limits mitigation to only the samples containing interference, unlike adaptive filtering algorithms, so the remaining samples are not modified. Additionally, the mitigation adapts to changing interference power such that the resulting correction equalizes the power across the data samples. The result is reduced distortion and improved coherence for the terrain. SAR data demonstrates improved coherence from the proposed equalization

  1. Analysis of ECG Using Filter Bank Approach

    Directory of Open Access Journals (Sweden)

    S. Thulasi Prasad

    2014-01-01

    Full Text Available In recent years scientists and engineers are facing several problems in the biomedical field. However Digital Signal Processing is solving many of those problems easily and effectively. The signal processing of ECG is very useful in detecting selected arrhythmia conditions from a patient’s electrocardiograph (ECG signals. In this paper we performed analysis of noisy ECG by filtering of 50 Hz power line interference using an adaptive LMS notch filter. This is very meaningful in the measurement of biomedical events, particularly when the recorded ECG signal is very weak. The basic ECG has the frequency range from 5 Hz to 100 Hz. It becomes difficult for the Specialist to diagnose the diseases if the artifacts are present in the ECG signal. Methods of noise reduction have decisive influence on performance of all electro-cardio-graphic (ECG signal processing systems. After removing 50/60 Hz powerline interference, the ECG is lowpass filtered in a digital FIR filter. We designed a Filter Bank to separate frequency ranges of ECG signal to enhance the occurrences QRS complexes. Later the positions of R-peaks are identified and shown plotted. The result shows the ECG signal before filtering and after filtering with their frequency spectrums which clearly indicates the reduction of the power line interference in the ECG signal and a filtered ECG with identified R-peaks.

  2. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    Science.gov (United States)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-03-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be

  3. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter

    Directory of Open Access Journals (Sweden)

    Álvaro Moreno

    2014-08-01

    Full Text Available Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted local regression filter (LOESS and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG, smoothing spline (SSP, Interpolation for Data Reconstruction (IDR and adaptive Savitzky-Golay (ASG. This paper evaluates the main advantages and drawbacks of the considered techniques. The results have shown that ASG and the adapted LOESS perform better in recovering fAPAR time series over multiple controlled noisy scenarios. Both methods can robustly reconstruct the fAPAR trajectories, reducing the noise up to 80% in the worst simulation scenario, which might be attributed to the quality control (QC MODIS information incorporated into these filtering algorithms, their flexibility and adaptation to the upper envelope. The adapted LOESS is particularly resistant to outliers. This method clearly outperforms the other considered methods to deal with the high presence of gaps and noise in satellite data records. The low RMSE and biases obtained with the LOESS method (|rMBE| < 8%; rRMSE < 20% reveals an optimal reconstruction even in most extreme situations with long seasonal gaps. An example of application of the LOESS method to fill in invalid values in real MODIS images presenting persistent cloud and snow coverage is also shown. The LOESS approach is recommended in most remote sensing applications, such as gap-filling, cloud-replacement, and observing temporal

  4. Artifact reduction of compressed images and video combining adaptive fuzzy filtering and directional anisotropic diffusion

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Forchhammer, Søren; Korhonen, Jari

    2011-01-01

    Fuzzy filtering is one of the recently developed methods for reducing distortion in compressed images and video. In this paper, we combine the powerful anisotropic diffusion equations with fuzzy filtering in order to reduce the impact of artifacts. Based on the directional nature of the blocking ...

  5. Adaptive angular-velocity Vold-Kalman filter order tracking - Theoretical basis, numerical implementation and parameter investigation

    Science.gov (United States)

    Pan, M.-Ch.; Chu, W.-Ch.; Le, Duc-Do

    2016-12-01

    The paper presents an alternative Vold-Kalman filter order tracking (VKF_OT) method, i.e. adaptive angular-velocity VKF_OT technique, to extract and characterize order components in an adaptive manner for the condition monitoring and fault diagnosis of rotary machinery. The order/spectral waveforms to be tracked can be recursively solved by using Kalman filter based on the one-step state prediction. The paper comprises theoretical derivation of computation scheme, numerical implementation, and parameter investigation. Comparisons of the adaptive VKF_OT scheme with two other ones are performed through processing synthetic signals of designated order components. Processing parameters such as the weighting factor and the correlation matrix of process noise, and data conditions like the sampling frequency, which influence tracking behavior, are explored. The merits such as adaptive processing nature and computation efficiency brought by the proposed scheme are addressed although the computation was performed in off-line conditions. The proposed scheme can simultaneously extract multiple spectral components, and effectively decouple close and crossing orders associated with multi-axial reference rotating speeds.

  6. Digital filters in radio detectors of the Pierre Auger Observatory

    Science.gov (United States)

    Szadkowski, Zbigniew; Głas, Dariusz

    2016-09-01

    Ultra-high energy cosmic rays (UHECR) are the most energetic observable particles in Universe. The main challenge in detecting such energetic particles is very small flux. Most experiments focus on detecting Extensive Air Showers (EAS), initiated by primary UHECR particle in interaction with particles of the atmosphere. One of the observation method is detecting the radio emission from the EAS. This emission was theoretically suggested in 1960's, but technological development allow successful detection only in the last several years. This detection technique is used by Auger Engineering Radio Array (AERA). Most of the emission can be observed in frequency band 30 - 80 MHz, however this range is contaminated by radio frequency interferences (RFI). These contaminations must be reduced to decrease false trigger rate. Currently, there are two kind of digital filters used in AERA. One of them is median filter, based on Fast Fourier Transform. Second one is the notch filter, which is a composition of four infinite impulse response filters. Those filters have properly work in AERA radio detectors for many years. Dynamic progress in electronics allows to use more sophisticated algorithms of RFI reduction. Planned modernization of the AERA radio detectors' electronic allows to use finte impulse response (FIR) filters, which can fast adapt to environment conditions. These filters are: Least Mean Squares (LMS) filter and filter based on linear prediction (LP). Tests of new kind of filters are promising and show that FIR filters can be used in next generation radio detectors in AERA experiment.

  7. 合肥光源横向束流反馈系统中矢量运算单元和光纤陷波滤波器的研制%Development of vector calculation function and fiber notch filter at Hefei light source

    Institute of Scientific and Technical Information of China (English)

    黄龙君; 王筠华; 郑凯; 杨永良; 周泽然; 陈园博

    2008-01-01

    合肥光源横向束流反馈系统已经建成,着重介绍了系统中矢量运算单元和光纤陷波滤波器的研制.矢量运算单元中使用混频器控制信号的衰减,调节控制电压的大小以控制反馈信号的相位;光纤陷波滤波器创新性地提出用光纤延时制作陷波滤波器,很好地滤除了信号中的回旋频率分量,节省了反馈功率.%The transverse bunchbybunch feedback system has been constructed at Hefei light source to cure and damp the coupled bunch instability. There are two important modules in the system: the vector calculation module and the notch filter. The vector calculation module is a signal processing module used to adjust the phase of the feedback signals and the notch filter can filter the revolution frequency component in a signal, which will save the feedback power.

  8. FOG Random Drift Signal Denoising Based on the Improved AR Model and Modified Sage-Husa Adaptive Kalman Filter.

    Science.gov (United States)

    Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao

    2016-07-12

    In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.

  9. Adaptive Filtering for FSCW Signal-to-noise Ratio Enhancement of SAW Interrogation Units

    Directory of Open Access Journals (Sweden)

    Díaz Luis

    2016-01-01

    Full Text Available A digital filter that improves the signal-to-noise ratio of the response of a FSCW (Frequency Stepped Continuous Wave scheme is presented. An improvement in signal-to-noise ratio represents an enhanced readout distance. This work considers this architecture as an interrogation unit for SAW tags with time and phase encoding. The parameters of the proposed digital filter, which is a non-linear edge preserving filter, were studied and tested for this specific application. An improvement of around 20dB in the SNR level was achieved. This filter preserves the phase of the signal at the time position of the reflectors, which is critical for correct identification of the code in phase encoding schemes.

  10. A digital filtering scheme for SQUID based magnetocardiography

    Institute of Scientific and Technical Information of China (English)

    Zhu Xue-Min; Ren Yu-Feng; Yu Hong-Wei; Zhao Shi-Ping; Chen Geng-Hua; Zhang Li-Hua; Yang Qian-Sheng

    2006-01-01

    Considering the properties of slow change and quasi-periodicity of magnetocardiography (MCG) signal, we use an integrated technique of adaptive and low-pass filtering in dealing with two-channel MCG data measured by high Tc SQUIDs, The adaptive filter in the time domain is based on a noise feedback normalized least-mean-square (NLMS) algorithm, and the low-pass filter with a cutoff at 100Hz in the frequency domain characterized by Gaussian functions is combined with a notch at the power line frequency. In this way, both relevant and irrelevant noises in original MCG data are largely eliminated. The method may also be useful for other slowly varying quasi-periodical signals.

  11. Investigation on improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering

    Science.gov (United States)

    Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan

    2014-11-01

    Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.

  12. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    Science.gov (United States)

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.

  13. Dynamic Harmonic and Reactive Power Compensation with an Adaptive Shunt Active Filter for Variable Speed Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Sindhu M R

    2014-12-01

    Full Text Available Variable speed drives are mostly preferred in industries, while considering energy saving, smooth control, flexible operation and fast response. On the other hand, this equipment generates dynamic harmonic distortions in source currents and draws variable reactive power demand depending on variation in load condition. These distortions propagate throughout the system and affect all the loads connected to the point of common coupling. Hence a dynamic harmonic and reactive compensator is necessary to enhance power quality to meet current and voltage distortion limits at point of common coupling as per IEEE standard. The most common choice for adjustable speed drives in industries is three phase voltage source inverter based induction motor drives which uses PWM technique for voltage, frequency and current control. This paper presents harmonic analysis of an induction motor drive in an industrial plant and development of adaptive dynamic harmonic and reactive compensator to improve power quality. A digital controller which is programmed with adaptive Artificial Neural Network (ANN based control algorithm is used for controlling shunt active filter. The simulation and experimental results show that the adaptive shunt active filter provides effective harmonic and reactive compensation in the system under steady state and dynamic load conditions.

  14. Guided filter and adaptive learning rate based non-uniformity correction algorithm for infrared focal plane array

    Science.gov (United States)

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.

  15. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, Daniel; Scherpen, Jacquelien M.A.; van der Schaft, Abraham; Steinbuch, M.

    2012-01-01

    Network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, i.e., port-Hamiltonian (PH) systems [4, 6]. The PH modeling framework describes a large class of (nonlinear) systems including passive mechanical systems, electrical systems, electromec

  16. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Winston Y. [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  17. Compact tunable microwave filter using retroreflective acousto-optic filtering and delay controls.

    Science.gov (United States)

    Riza, Nabeel A; Ghauri, Farzan N

    2007-03-01

    Programmable broadband rf filters are demonstrated using a compact retroreflective optical design with an acousto-optic tunable filter and a chirped fiber Bragg grating. This design enables fast 34 micros domain analog-mode control of rf filter time delays and weights. Two proof-of-concept filters are demonstrated including a two-tap notch filter with >35 dB notch depth and a four-tap bandpass filter. Both filters have 2-8 GHz tunability and a 34 micros reset time.

  18. Optical axis jitter rejection for double overlapped adaptive optics systems

    Science.gov (United States)

    Luo, Qi; Luo, Xi; Li, Xinyang

    2016-04-01

    Optical axis jitters, or vibrations, which arise from wind shaking and structural oscillations of optical platforms, etc., cause a deleterious impact on the performance of adaptive optics systems. When conventional integrators are utilized to reject such high frequency and narrow-band disturbance, the benefits are quite small despite their acceptable capabilities to reject atmospheric turbulence. In our case, two suits of complete adaptive optics systems called double overlapped adaptive optics systems (DOAOS) are used to counteract both optical jitters and atmospheric turbulence. A novel algorithm aiming to remove vibrations is proposed by resorting to combine the Smith predictor and notch filer. With the help of loop shaping method, the algorithm will lead to an effective and stable controller, which makes the characteristics of error transfer function close to notch filters. On the basis of the spectral analysis of observed data, the peak frequency and bandwidth of vibrations can be identified in advance. Afterwards, the number of notch filters and their parameters will be determined using coordination descending method. The relationship between controller parameters and filtering features is discussed, and the robustness of the controller against varying parameters of the control object is investigated. Preliminary experiments are carried out to validate the proposed algorithms. The overall control performance of DOAOS is simulated. Results show that time delays are a limit of the performance, but the algorithm can be successfully implemented on our systems, which indicate that it has a great potential to reject jitters.

  19. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    as spofisor of kApglrci afid AkmSL margin. An improvement in performance was achieved by exploiting more advanced control techniques based on optimal control and Kalman filter (KF) theory, see Balchen et al. (1976). These techniques were later mod- ified...). In Sørensen et al. (1996), Wave Filtering (WF) was done by exploiting the use of KF theory under the assumption that the kinematic equations of the ship’s motion can be linearized about a set of predefined constant yaw angles (36 operating points in steps...

  20. An Adaptive Systematic Lossy Error Protection Scheme for Broadcast Applications Based on Frequency Filtering and Unequal Picture Protection

    Directory of Open Access Journals (Sweden)

    Marie Ramon

    2009-01-01

    Full Text Available Systematic lossy error protection (SLEP is a robust error resilient mechanism based on principles of Wyner-Ziv (WZ coding for video transmission over error-prone networks. In an SLEP scheme, the video bitstream is separated into two parts: a systematic part consisting of a video sequence transmitted without channel coding, and additional information consisting of a WZ supplementary stream. This paper presents an adaptive SLEP scheme in which the WZ stream is obtained by frequency filtering in the transform domain. Additionally, error resilience varies adaptively depending on the characteristics of compressed video. We show that the proposed SLEP architecture achieves graceful degradation of reconstructed video quality in the presence of increasing transmission errors. Moreover, it provides good performances in terms of error protection as well as reconstructed video quality if compared to solutions based on coarser quantization, while offering an interesting embedded scheme to apply digital video format conversion.

  1. Kick it up a notch: Notch signaling and kidney fibrosis

    OpenAIRE

    2014-01-01

    Notch is a critical regulator of kidney development, but the pathway is mostly silenced once kidney maturation is achieved. Recent reports demonstrated increased expression of Notch receptors and ligands both in acute and chronic kidney injury. In vivo studies indicated that Notch activation might contribute to regeneration after acute kidney injury; on the other hand, sustained Notch expression is causally associated with interstitial fibrosis and glomerulosclerosis. This review will summari...

  2. Improved prediction error filters for adaptive feedback cancellation in hearing aids

    DEFF Research Database (Denmark)

    Ngo, Kim; van Waterschoot, Toon; Christensen, Mads Græsbøll;

    2013-01-01

    and the loudspeaker signal caused by the closed signal loop, in particular when the near-end signal is spectrally colored as is the case for a speech signal. This paper adopts a prediction-error method (PEM)-based approach to AFC, which is based on the use of decorrelating prediction error filters (PEFs). We propose...

  3. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica

    Science.gov (United States)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2015-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  4. Integrated WiFi/PDR/Smartphone Using an Adaptive System Noise Extended Kalman Filter Algorithm for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-02-01

    Full Text Available Wireless signal strength is susceptible to the phenomena of interference, jumping, and instability, which often appear in the positioning results based on Wi-Fi field strength fingerprint database technology for indoor positioning. Therefore, a Wi-Fi and PDR (pedestrian dead reckoning real-time fusion scheme is proposed in this paper to perform fusing calculation by adaptively determining the dynamic noise of a filtering system according to pedestrian movement (straight or turning, which can effectively restrain the jumping or accumulation phenomena of wireless positioning and the PDR error accumulation problem. Wi-Fi fingerprint matching typically requires a quite high computational burden: To reduce the computational complexity of this step, the affinity propagation clustering algorithm is adopted to cluster the fingerprint database and integrate the information of the position domain and signal domain of respective points. An experiment performed in a fourth-floor corridor at the School of Environment and Spatial Informatics, China University of Mining and Technology, shows that the traverse points of the clustered positioning system decrease by 65%–80%, which greatly improves the time efficiency. In terms of positioning accuracy, the average error is 4.09 m through the Wi-Fi positioning method. However, the positioning error can be reduced to 2.32 m after integration of the PDR algorithm with the adaptive noise extended Kalman filter (EKF.

  5. Wavelet domain adaptive filtering algorithm for removing the seamless pipe noise contained in the magnetic flux leakage data

    Institute of Scientific and Technical Information of China (English)

    Han Wenhua; Que Peiwen

    2006-01-01

    With the widespread application and fast development of gas and oil pipeline network in China, the pipeline inspection technology has been used more extensively. The magnetic flux leakage (MFL) method has established itself as the most widely used in-line inspection technique for the evaluation of gas and oil pipelines. The MFL data obtained from seamless pipeline inspection is usually contaminated by the seamless pipe noise (SPN). SPN can in some cases completely mask MFL signals from certain type of defects,and therefore considerably reduces the detectability of the defect signals. In this paper, a new de-noising algorithm called wavelet domain adaptive filtering is proposed for removing the SPN contained in the MFL data. The new algorithm results from combining the wavelet transform with the adaptive filtering technique. Results from application of the proposed algorithm to the MFL data from field tests show that the proposed algorithm has good performance and considerably improves the detectability of the defect signals in the MFL data.

  6. Notch Signaling in Pancreatic Development

    OpenAIRE

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion...

  7. Stress concentration at notches

    CERN Document Server

    Savruk, Mykhaylo P

    2017-01-01

    This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation ...

  8. Simulation and Performance Analysis of Adaptive Filtering Algorithms in Noise Cancellation

    CERN Document Server

    Ferdouse, Lilatul; Nipa, Tamanna Haque; Jaigirdar, Fariha Tasmin

    2011-01-01

    Noise problems in signals have gained huge attention due to the need of noise-free output signal in numerous communication systems. The principal of adaptive noise cancellation is to acquire an estimation of the unwanted interfering signal and subtract it from the corrupted signal. Noise cancellation operation is controlled adaptively with the target of achieving improved signal to noise ratio. This paper concentrates upon the analysis of adaptive noise canceller using Recursive Least Square (RLS), Fast Transversal Recursive Least Square (FTRLS) and Gradient Adaptive Lattice (GAL) algorithms. The performance analysis of the algorithms is done based on convergence behavior, convergence time, correlation coefficients and signal to noise ratio. After comparing all the simulated results we observed that GAL performs the best in noise cancellation in terms of Correlation Coefficient, SNR and Convergence Time. RLS, FTRLS and GAL were never evaluated and compared before on their performance in noise cancellation in ...

  9. Design of the Adaptive Low-pass Filter%自适应低通滤波器的设计

    Institute of Scientific and Technical Information of China (English)

    马胜前; 冉兴萍; 范满红; 张维昭

    2013-01-01

    This paper presents the structure and implementation of an adaptive low-pass filter. After the input signal is pre-processed and shaped,the frequency signal is generated; the frequency signal then is converted into voltage signal through F/V circuit. Then the voltage signal is input into the voltage-controlled low-pass filter circuit which is mainly constituted by the analog multiplier MLT04 and the current feedback amplifier AD844. The cutoff frequency of the low-pass filter can be adjusted by the voltage signal, thus the frequency of the filter can be tracking atuomatically. In this paper,the design principle is introduced in detail,the design formulas are derived and the circuit of second order from tracking low-pass filter is given. When the input signal's frequency is in the range of 100 Hz to 10 kHz, the measured results are in good agreement with the theoretical results. If the value of timeing resistance in the F/V circuit is changed,the operating frequency of the filter can be extended to 100 kHz.%提出了一种自适应低通滤波器的结构和实现方法,输入信号预处理并整形后产生频率信号,频率信号经频率电压转换(F/V)电路转换成电压信号,再将该电压信号输入到模拟乘法器MLT04和电流反馈运算放大器AD844为核心构成的压控低通滤波电路.通过该电压信号调节滤波器的截止频率,从而实现滤波器频率的自动跟踪.介绍了设计原理,推导出设计公式并设计了自适应二阶低通滤波器电路.经过测试,输入信号的频率为100 Hz~10 kHz,实测结果与理论符合良好.改变F/V电路的定时电阻的阻值,电路工作频率可扩展到100 kHz.

  10. Noise adaptive fading Kalman filter for free-space laser communication beacon tracking.

    Science.gov (United States)

    Li, Lixing; Huang, Yongmei; Wang, Qiang; Yang, Fasheng

    2016-10-20

    We proposed a prediction algorithm for laser communication pointing, acquisition, and tracking (PAT) subsystems in order to further improve PAT accuracy and reduce the effect of processing delay. In terms of this prediction algorithm, a fading Kalman filter is employed, with the observation noise obtained by the gray value distribution of the laser images. Moreover, to better fit the dynamics of a laser target, the two-stage dynamic model has been chosen as the state transition model for Kalman filtering. In addition, the two-stage dynamic model has been modified by accommodating its form to a change of time lag, thereby compensating the effect of time delay. A series of horizontal path (17 km) experiments under different atmospheric conditions were conducted in the fields. According to the experimental results, the algorithm we proposed could effectively reduce the tracking error and improve pointing accuracy.

  11. Improved maximum average correlation height filter with adaptive log base selection for object recognition

    Science.gov (United States)

    Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia

    2016-04-01

    Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.

  12. Comparison of various schema of filter adaptivity for the tracking of maneuvering targets

    Science.gov (United States)

    Jouan, Alexandre; Bosse, Eloi; Simard, Marc-Alain; Shahbazian, Elisa

    1998-09-01

    Tracking maneuvering targets is a complex problem which has generated a great deal of effort over the past several years. It has now been well established that in terms of tracking accuracy, the Interacting Multiple Model (IMM) algorithm, where state estimates are mixed, performs significantly better for maneuvering targets than other types of filters. However, the complexity of the IMM algorithm can prohibit its use in these applications of which similar algorithms cannot provide the necessary accuracy and which can ont afford the computational load of IMM algorithm. This paper presents the evaluation of the tracking accuracy of a multiple model track filter using three different constant-velocity models running in parallel and a maneuver detector. The output estimate is defined by selecting the model whose likelihood function is lower than a target maneuver threshold.

  13. Comparative Notched Box Plots.

    Science.gov (United States)

    1983-06-01

    provides a 95.1% confidence interval. See Noether (1976, Table E). Furthermore, this notch is not necessarily sym- metric about the sample median as in...distribution of the sign test). ( Noether 1976, Chapter 12; Lehmann 1975, Chapter 4; Hollander and Wolfe 1972, Chapter 3.) Thus, exact rather than approximate...binomial with parameters n and .5, i.e., b(n, .5). We will refer to dx as the notch depth. Noether (1978, Table E) provides the d. values; otherwise, they

  14. 自适应IIR陷波器在信号检测中的应用%Signal Detection Based on Adaptive IIR Notch Filter

    Institute of Scientific and Technical Information of China (English)

    韩慧鹏; 梁红; 胡旭娟

    2008-01-01

    自适应格型IIR滤波器算法具有快速收敛和优良的数值特性,并能跟踪时变信号.文中在基于简化格型IIR滤波器的自适应陷波器的基础上,提出了基于自相关预处理后的自适应IIR陷波器.通过自相关预处理可以抑制噪声,提高信噪比.仿真结果表明:该算法可以在很大程度上提高检测能力.

  15. An Adaptive Compensation Algorithm for Temperature Drift of Micro-Electro-Mechanical Systems Gyroscopes Using a Strong Tracking Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yibo Feng

    2015-05-01

    Full Text Available We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF, the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to −2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  16. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking Kalman filter.

    Science.gov (United States)

    Feng, Yibo; Li, Xisheng; Zhang, Xiaojuan

    2015-05-13

    We present an adaptive algorithm for a system integrated with micro-electro-mechanical systems (MEMS) gyroscopes and a compass to eliminate the influence from the environment, compensate the temperature drift precisely, and improve the accuracy of the MEMS gyroscope. We use a simplified drift model and changing but appropriate model parameters to implement this algorithm. The model of MEMS gyroscope temperature drift is constructed mostly on the basis of the temperature sensitivity of the gyroscope. As the state variables of a strong tracking Kalman filter (STKF), the parameters of the temperature drift model can be calculated to adapt to the environment under the support of the compass. These parameters change intelligently with the environment to maintain the precision of the MEMS gyroscope in the changing temperature. The heading error is less than 0.6° in the static temperature experiment, and also is kept in the range from 5° to -2° in the dynamic outdoor experiment. This demonstrates that the proposed algorithm exhibits strong adaptability to a changing temperature, and performs significantly better than KF and MLR to compensate the temperature drift of a gyroscope and eliminate the influence of temperature variation.

  17. Adaptive-filtering of trisomy 21: risk of Down syndrome depends on family size and age of previous child

    Science.gov (United States)

    Neuhäuser, Markus; Krackow, Sven

    2007-02-01

    The neonatal incidence rate of Down syndrome (DS) is well-known to accelerate strongly with maternal age. This non-linearity renders mere accumulation of defects at recombination during prolonged first meiotic prophase implausible as an explanation for DS rate increase with maternal age, but might be anticipated from chromosomal drive (CD) for trisomy 21. Alternatively, as there is selection against genetically disadvantaged embryos, the screening system that eliminates embryos with trisomy 21 might decay with maternal age. In this paper, we provide the first evidence for relaxed filtering stringency (RFS) to represent an adaptive maternal response that could explain accelerating DS rates with maternal age. Using historical data, we show that the proportion of aberrant live births decrease with increased family size in older mothers, that inter-birth intervals are longer before affected neonates than before normal ones, and that primiparae exhibit elevated levels of DS incidence at higher age. These findings are predicted by adaptive RFS but cannot be explained by the currently available alternative non-adaptive hypotheses, including CD. The identification of the relaxation control mechanism and therapeutic restoration of a stringent screen may have considerable medical implications.

  18. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  19. Electrochemical polishing of notches

    Science.gov (United States)

    Kephart, Alan R.; Alberts, Alfred H.

    1989-01-01

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip.

  20. Notch strength of composites

    Science.gov (United States)

    Whitney, J. M.

    1983-01-01

    The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.

  1. 机器人定位中的自适应粒子滤波算法%Novel Adaptive Particle Filters in Robot Localization

    Institute of Scientific and Technical Information of China (English)

    蒋正伟; 谷源涛

    2005-01-01

    The research of robot localization aims at accuracy, simplicity and robustness. This article improves the performance of particle filters in robot localization via the utilization of novel adaptive technique. The proposed algorithm introduces probability retracing to initialize particle sets, uses consecutive window filtering to update particle sets, and refreshes the size of particle set according to the estimation state. Extensive simulations show that the proposed algorithm is much more effective than the traditional particle filters. The proposed algorithm successfully solves the nonlinear, non-Gaussian state estimation problem of robot localization.

  2. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    Science.gov (United States)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  3. 自适应滤波在有源消声中的应用%Application of adaptive filter in active noise control

    Institute of Scientific and Technical Information of China (English)

    于华民; 朱海潮; 施引; 吴正国

    2001-01-01

    从分析有源消声的难点出发,综述了自适应滤波算法在有源消声中的应用,给出了相应的实例.对自适应滤波在有源消声中应用的未来发展趋势作了展望.%With focus on the difficulties of ANC(active noise control), the application of adaptive filter in active noise control is reviewed, and some practical examples are also displayed. Finally, prospect of adaptive filter in ANC is proposed.

  4. A Study on Maneuvering Obstacle Motion State Estimation for Intelligent Vehicle Using Adaptive Kalman Filter Based on Current Statistical Model

    Directory of Open Access Journals (Sweden)

    Bao Han

    2015-01-01

    Full Text Available The obstacle motion state estimation is an essential task in intelligent vehicle. The ASCL group has developed such a system that uses a radar and GPS/INS. When running on the road, the acceleration of the vehicle is always changing, so it is hard for constant velocity (CV model and constant acceleration (CA model to describe the motion state of the vehicle. This paper introduced Current Statistical (CS model from military field, which uses the modified Rayleigh distribution to describe acceleration. The adaptive Kalman filter based on CS model was used to estimate the motion state of the target. We conducted simulation experiments and real vehicle tests, and the results showed that the estimation of position, velocity, and acceleration can be precise.

  5. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    Science.gov (United States)

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption.

  6. Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method

    Science.gov (United States)

    Flad, David; Beck, Andrea; Munz, Claus-Dieter

    2016-05-01

    Scale-resolving simulations of turbulent flows in complex domains demand accurate and efficient numerical schemes, as well as geometrical flexibility. For underresolved situations, the avoidance of aliasing errors is a strong demand for stability. For continuous and discontinuous Galerkin schemes, an effective way to prevent aliasing errors is to increase the quadrature precision of the projection operator to account for the non-linearity of the operands (polynomial dealiasing, overintegration). But this increases the computational costs extensively. In this work, we present a novel spatially and temporally adaptive dealiasing strategy by projection filtering. We show this to be more efficient for underresolved turbulence than the classical overintegration strategy. For this novel approach, we discuss the implementation strategy and the indicator details, show its accuracy and efficiency for a decaying homogeneous isotropic turbulence and the transitional Taylor-Green vortex and compare it to the original overintegration approach and a state of the art variational multi-scale eddy viscosity formulation.

  7. Compression of seismic data: filter banks and extended transforms, synthesis and adaptation; Compression de donnees sismiques: bancs de filtres et transformees etendues, synthese et adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Duval, L.

    2000-11-01

    Wavelet and wavelet packet transforms are the most commonly used algorithms for seismic data compression. Wavelet coefficients are generally quantized and encoded by classical entropy coding techniques. We first propose in this work a compression algorithm based on the wavelet transform. The wavelet transform is used together with a zero-tree type coding, with first use in seismic applications. Classical wavelet transforms nevertheless yield a quite rigid approach, since it is often desirable to adapt the transform stage to the properties of each type of signal. We thus propose a second algorithm using, instead of wavelets, a set of so called 'extended transforms'. These transforms, originating from the filter bank theory, are parameterized. Classical examples are Malvar's Lapped Orthogonal Transforms (LOT) or de Queiroz et al. Generalized Lapped Orthogonal Transforms (GenLOT). We propose several optimization criteria to build 'extended transforms' which are adapted the properties of seismic signals. We further show that these transforms can be used with the same zero-tree type coding technique as used with wavelets. Both proposed algorithms provide exact compression rate choice, block-wise compression (in the case of extended transforms) and partial decompression for quality control or visualization. Performances are tested on a set of actual seismic data. They are evaluated for several quality measures. We also compare them to other seismic compression algorithms. (author)

  8. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  9. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks

    Science.gov (United States)

    Sbarufatti, Claudio; Corbetta, Matteo; Giglio, Marco; Cadini, Francesco

    2017-03-01

    Lithium-Ion rechargeable batteries are widespread power sources with applications to consumer electronics, electrical vehicles, unmanned aerial and spatial vehicles, etc. The failure to supply the required power levels may lead to severe safety and economical consequences. Thus, in view of the implementation of adequate maintenance strategies, the development of diagnostic and prognostic tools for monitoring the state of health of the batteries and predicting their remaining useful life is becoming a crucial task. Here, we propose a method for predicting the end of discharge of Li-Ion batteries, which stems from the combination of particle filters with radial basis function neural networks. The major innovation lies in the fact that the radial basis function model is adaptively trained on-line, i.e., its parameters are identified in real time by the particle filter as new observations of the battery terminal voltage become available. By doing so, the prognostic algorithm achieves the flexibility needed to provide sound end-of-discharge time predictions as the charge-discharge cycles progress, even in presence of anomalous behaviors due to failures or unforeseen operating conditions. The method is demonstrated with reference to actual Li-Ion battery discharge data contained in the prognostics data repository of the NASA Ames Research Center database.

  10. A heuristic reference recursive recipe for adaptively tuning the Kalman filter statistics part-2: real data studies

    Indian Academy of Sciences (India)

    M SHYAM MOHAN; NAREN NAIK; R M O GEMSON; M R ANANTHASAYANAM

    2016-12-01

    In part-1 of this paper an adaptive filtering based on a reference recursive recipe (RRR) was developed and tested on a simulated dynamics of a spring, mass and damper with a weak nonlinear spring. In this paper the above recipe is applied to a more involved case of three sets of airplane data that have a larger number of state, measurements and unknown parameters. The flight tests cannot always be conducted in an idealsituation of the process noise and the measurement noises being white Gaussian as is generally assumed in the Kalman filter. The measurements may not be available with respect to the center of gravity and possess scale and bias factors, which will have to be modelled and estimated as well. The coupling between the longitudinal andlateral motion brings in added difficulty but makes the problem more interesting. It turns out that even a parameter that strongly affects the airplane dynamics is estimated which vary widely among the approaches. The RRR has been shown to be better than the earlier approaches in estimating the unknowns. The generalized cost functions that are introduced in the present work help identify definitive results from deceptive results.

  11. Application and improvement of an adaptive ensemble Kalman filter for soil moisture data assimilation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Accurate assignment of model and observation errors is crucial for the successful application of land surface data assimilation algorithms. Poorly-specified model and observation errors can significantly degrade assimilation results. In 2008, Reichle et al. developed an operational procedure to adaptively tune model and observation errors. In this paper, we modified and applied Reichle’s procedure in the Noah land surface model to assimilate observed surface soil moisture data. Numerical simulations showed that: (1) the best estimate of model and observation errors appears when the empirical factor β equals 1.02; (2) the Reichle procedure can be deployed to adaptively tune errors if their true values change slowly; and (3) convergence of the Reichle procedure was improved using better initial errors achieved by iterative computations.

  12. Mie Light-Scattering Granulometer with an Adaptive Numerical Filtering Method. II. Experiments

    Science.gov (United States)

    Hespel, Laurent; Delfour, André; Guillame, Bernard

    2001-02-01

    A nephelometer is presented that theoretically requires no absolute calibration. This instrument is used for determining the particle-size distribution of various scattering media (aerosols, fogs, rocket exhausts, engine plumes, and the like) from angular static light-scattering measurements. An inverse procedure is used, which consists of a least-squares method and a regularization scheme based on numerical filtering. To retrieve the distribution function one matches the experimental data with theoretical patterns derived from Mie theory. The main principles of the inverse method are briefly presented, and the nephelometer is then described with the associated partial calibration procedure. Finally, the whole granulometer system (inverse method and nephelometer) is validated by comparison of measurements of scattering media with calibrated monodisperse or known size distribution functions.

  13. Adaptive time-domain filtering for real-time spectral discrimination in a Michelson interferometer.

    Science.gov (United States)

    Bhalotra, Sameer R; Kung, Helen L; Jiao, Yang; Miller, David A B

    2002-07-01

    We present a method of spectral discrimination that employs time-domain processing instead of the typical frequency-domain analysis and implement the method in a Michelson interferometer with a nonlinear mirror scan. The technique yields one analog output value per scan instead of a complete interferogram by directly filtering a measured scan with a reference function in the time domain. Such a procedure drastically reduces data-processing requirements downstream. Additionally, using prerecorded interferograms as references eliminates the need to compensate for scan nonlinearities, which broadens the field of usable components for implementation in miniaturized sensing systems. With our efficient use of known spectral signatures, we demonstrate real-time discrimination of 633- and 663-nm laser sources with a mirror scan length of 1 microm , compared with the Rayleigh criterion of 7 microm.

  14. Notch in Pathological Angiogenesis and Lymphangiogenesis

    Science.gov (United States)

    2012-05-01

    endothelial cells ( HUVEC ). Notch family receptors and ligands (Notch 1, Notch 4, Dll-4, Jag1) are present in HUVEC . Activation of Notch in HUVEC inhibits...associated gene, which is also repressed in HUVEC upon Notch activation) (data not shown). Figure 2a

  15. Local ensemble transform Kalman filter, a fast non-stationary control law for adaptive optics on ELTs: theoretical aspects and first simulation results

    CERN Document Server

    Gray, Morgan; Rodionov, Sergey; Bocquet, Marc; Bertino, Laurent; Ferrari, Marc; Fusco, Thierry

    2014-01-01

    We propose a new algorithm for an adaptive optics system control law, based on the Linear Quadratic Gaussian approach and a Kalman Filter adaptation with localizations. It allows to handle non-stationary behaviors, to obtain performance close to the optimality defined with the residual phase variance minimization criterion, and to reduce the computational burden with an intrinsically parallel implementation on the Extremely Large Telescopes (ELTs).

  16. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    Directory of Open Access Journals (Sweden)

    Haiying Zhao

    2016-07-01

    Full Text Available Visual odometry (VO estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD, to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms.

  17. An Adaptive Particle Filtering Approach to Tracking Modes in a Varying Shallow Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V

    2011-03-22

    The shallow ocean environment is ever changing mostly due to temperature variations in its upper layers (< 100m) directly affecting sound propagation throughout. The need to develop processors that are capable of tracking these changes implies a stochastic as well as an 'adaptive' design. The stochastic requirement follows directly from the multitude of variations created by uncertain parameters and noise. Some work has been accomplished in this area, but the stochastic nature was constrained to Gaussian uncertainties. It has been clear for a long time that this constraint was not particularly realistic leading a Bayesian approach that enables the representation of any uncertainty distribution. Sequential Bayesian techniques enable a class of processors capable of performing in an uncertain, nonstationary (varying statistics), non-Gaussian, variable shallow ocean. In this paper adaptive processors providing enhanced signals for acoustic hydrophonemeasurements on a vertical array as well as enhanced modal function estimates are developed. Synthetic data is provided to demonstrate that this approach is viable.

  18. FPGA/NIOS Implementation of an Adaptive FIR Filter Using Linear Prediction to Reduce Narrow-Band RFI for Radio Detection of Cosmic Rays

    NARCIS (Netherlands)

    Szadkowski, Zbigniew; Fraenkel, E. D.; van den Berg, Ad M.

    2013-01-01

    We present the FPGA/NIOS implementation of an adaptive finite impulse response (FIR) filter based on linear prediction to suppress radio frequency interference (RFI). This technique will be used for experiments that observe coherent radio emission from extensive air showers induced by ultra-high-ene

  19. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-01-01

    Full Text Available As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF which used the noise statistics estimator in the iterated extended Kalman (IEKF, and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS/wireless sensors networks (WSNs-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

  20. Adaptive iterated extended Kalman filter and its application to autonomous integrated navigation for indoor robot.

    Science.gov (United States)

    Xu, Yuan; Chen, Xiyuan; Li, Qinghua

    2014-01-01

    As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF) which used the noise statistics estimator in the iterated extended Kalman (IEKF), and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS)/wireless sensors networks (WSNs)-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE) of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

  1. Signal quality estimation with multichannel adaptive filtering in intensive care settings.

    Science.gov (United States)

    Silva, Ikaro; Lee, Joon; Mark, Roger G

    2012-09-01

    A signal quality estimate of a physiological waveform can be an important initial step for automated processing of real-world data. This paper presents a new generic point-by-point signal quality index (SQI) based on adaptive multichannel prediction that does not rely on ad hoc morphological feature extraction from the target waveform. An application of this new SQI to photoplethysmograms (PPG), arterial blood pressure (ABP) measurements, and ECG showed that the SQI is monotonically related to signal-to-noise ratio (simulated by adding white Gaussian noise) and to subjective human quality assessment of 1361 multichannel waveform epochs. A receiver-operating-characteristic (ROC) curve analysis, with the human "bad" quality label as positive and the "good" quality label as negative, yielded areas under the ROC curve of 0.86 (PPG), 0.82 (ABP), and 0.68 (ECG).

  2. Notch Charge-Coupled Devices

    Science.gov (United States)

    Janesick, James

    1992-01-01

    Notch charge-coupled devices are imaging arrays of photodetectors designed to exhibit high charge-transfer efficiencies necessary for operation in ultra-large array, and less vulnerable to degradation by energetic protons, neutrons, and electrons. Main channel of horizontal register includes deep narrow inner channel (notch). Small packets of charge remain confined to notch. Larger packets spill into rest of channel; transferred in usual way. Degradation of charge-transfer efficiency by energetic particles reduced.

  3. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-12-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  4. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Energy Technology Data Exchange (ETDEWEB)

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  5. Non-Maximally Decimated Filter Banks Enable Adaptive Frequency Hopping for Unmanned Aircraft Vehicles

    Science.gov (United States)

    Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan

    2017-01-01

    In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.

  6. Digital hum filtering

    Science.gov (United States)

    Knapp, R.W.; Anderson, N.L.

    1994-01-01

    Data may be overprinted by a steady-state cyclical noise (hum). Steady-state indicates that the noise is invariant with time; its attributes, frequency, amplitude, and phase, do not change with time. Hum recorded on seismic data usually is powerline noise and associated higher harmonics; leakage from full-waveform rectified cathodic protection devices that contain the odd higher harmonics of powerline frequencies; or vibrational noise from mechanical devices. The fundamental frequency of powerline hum may be removed during data acquisition with the use of notch filters. Unfortunately, notch filters do not discriminate signal and noise, attenuating both. They also distort adjacent frequencies by phase shifting. Finally, they attenuate only the fundamental mode of the powerline noise; higher harmonics and frequencies other than that of powerlines are not removed. Digital notch filters, applied during processing, have many of the same problems as analog filters applied in the field. The method described here removes hum of a particular frequency. Hum attributes are measured by discrete Fourier analysis, and the hum is canceled from the data by subtraction. Errors are slight and the result of the presence of (random) noise in the window or asynchrony of the hum and data sampling. Error is minimized by increasing window size or by resampling to a finer interval. Errors affect the degree of hum attenuation, not the signal. The residual is steady-state hum of the same frequency. ?? 1994.

  7. Notch as a tumour suppressor.

    Science.gov (United States)

    Nowell, Craig S; Radtke, Freddy

    2017-03-01

    The Notch signalling cascade is an evolutionarily conserved pathway that has a crucial role in regulating development and homeostasis in various tissues. The cellular processes and events that it controls are diverse, and continued investigation over recent decades has revealed how the role of Notch signalling is multifaceted and highly context dependent. Consistent with the far-reaching impact that Notch has on development and homeostasis, aberrant activity of the pathway is also linked to the initiation and progression of several malignancies, and Notch can in fact be either oncogenic or tumour suppressive depending on the tissue and cellular context. The Notch pathway therefore represents an important target for therapeutic agents designed to treat many types of cancer. In this Review, we focus on the latest developments relating specifically to the tumour-suppressor activity of Notch signalling and discuss the potential mechanisms by which Notch can inhibit carcinogenesis in various tissues. Potential therapeutic strategies aimed at restoring or augmenting Notch-mediated tumour suppression will also be highlighted.

  8. Application of Helmert Variance Component Based Adaptive Kalman Filter in Multi-GNSS PPP/INS Tightly Coupled Integration

    Directory of Open Access Journals (Sweden)

    Zhouzheng Gao

    2016-06-01

    Full Text Available The integration of the Global Positioning System (GPS and the Inertial Navigation System (INS based on Real-time Kinematic (RTK and Single Point Positioning (SPP technology have been applied as a powerful approach in kinematic positioning and attitude determination. However, the accuracy of RTK and SPP based GPS/INS integration mode will degrade visibly along with the increasing user-base distance and the quality of pseudo-range. In order to overcome such weaknesses, the tightly coupled integration between GPS Precise Point Positioning (PPP and INS was proposed recently. Because of the rapid development of the multi-constellation Global Navigation Satellite System (multi-GNSS, we introduce the multi-GNSS into the tightly coupled integration of PPP and INS in this paper. Meanwhile, in order to weaken the impacts of the GNSS observations with low quality and the inaccurate state model on the performance of the multi-GNSS PPP/INS tightly coupled integration, the Helmert variance component estimation based adaptive Kalman filter is employed in the algorithm implementation. Finally, a set of vehicle-borne GPS + BeiDou + GLONASS and Micro-Electro-Mechanical-Systems (MEMS INS data is analyzed to evaluate the performance of such algorithm. The statistics indicate that the performance of the multi-GNSS PPP/INS tightly coupled integration can be enhanced significantly in terms of both position accuracy and convergence time.

  9. Adaptive filtering techniques for gravitational wave interferometric data Removing long-term sinusoidal disturbances and oscillatory transients

    CERN Document Server

    Chassande-Mottin, E

    2001-01-01

    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data prep...

  10. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    Directory of Open Access Journals (Sweden)

    Bing Luo

    2012-07-01

    Full Text Available COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System. Since the ultra-tight GPS/INS (Inertial Navigation System integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF, and INS’s accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load.

  11. A simplified baseband prefilter model with adaptive Kalman Filter for ultra-tight COMPASS/INS integration.

    Science.gov (United States)

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load.

  12. An Improved PDR/Magnetometer/Floor Map Integration Algorithm for Ubiquitous Positioning Using the Adaptive Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-11-01

    Full Text Available In this paper, a scheme is presented for fusing a foot-mounted Inertial Measurement Unit (IMU and a floor map to provide ubiquitous positioning in a number of settings, such as in a supermarket as a shopping guide, in a fire emergency service for navigation, or with a hospital patient to be tracked. First, several Zero-Velocity Detection (ZDET algorithms are compared and discussed when used in the static detection of a pedestrian. By introducing information on the Zero Velocity of the pedestrian, fused with a magnetometer measurement, an improved Pedestrian Dead Reckoning (PDR model is developed to constrain the accumulating errors associated with the PDR positioning. Second, a Correlation Matching Algorithm based on map projection (CMAP is presented, and a zone division of a floor map is demonstrated for fusion of the PDR algorithm. Finally, in order to use the dynamic characteristics of a pedestrian’s trajectory, the Adaptive Unscented Kalman Filter (A-UKF is applied to tightly integrate the IMU, magnetometers and floor map for ubiquitous positioning. The results of a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI building on the China University of Mining and Technology (CUMT campus confirm that the proposed scheme can reliably achieve meter-level positioning.

  13. Notch Signaling in Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Judy Sue Crabtree

    2016-04-01

    Full Text Available Carcinoids and neuroendocrine tumors (NETs are a heterogeneous group of tumors that arise from the neuroendocrine cells of the GI tract, endocrine pancreas and the respiratory system. NETs remain significantly understudied with respect to molecular mechanisms of pathogenesis, particularly the role of cell fate signaling systems like Notch. The abundance of literature on the Notch pathway is a testament to its complexity in different cellular environments. Notch receptors can function as oncogenes in some contexts, and tumor suppressors in others. The genetic heterogeneity of NETs suggests that to fully understand the roles and the potential therapeutic implications of Notch signaling in NETs, a comprehensive analysis of Notch expression patterns and potential roles across all NET subtypes is required.

  14. Notch sensitivity of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, J.; Gaymans, R.J.

    2004-01-01

    The notch sensitivity of aliphatic polyketone (PK) terpolymers was investigated in this article. The notch-tip radius was varied between the size of an actual propagating crack tip of 1-2 m and the largest notch tip of 1000 m radius. The larger notch-tip radii (1000-15 m) were milled into the polyme

  15. 红外图像的自适应混合双边滤波算法%Adaptive hybrid bilateral filtering algorithm for infrared image

    Institute of Scientific and Technical Information of China (English)

    余博; 郭雷; 赵天云; 钱晓亮

    2012-01-01

    针对红外图像中的混合噪声,提出了一种自适应混合双边滤波算法.首先对双边滤波原理进行了分析,提出不能滤除强高斯噪声和脉冲噪声是由于双边滤波引入灰度域权值而带来的固有不足,因此根据双边滤波算法的特点设置了一种像素间的相似度,并以该相似度为基础将双边滤波不能滤除的强噪声点进行了标记,仅对红外图像中标记出的强噪声点进行中值滤波以减少图像模糊,对普通噪声点采用灰度方差自适应双边滤波以保留更多边缘特征.自适应混合双边滤波能够有效滤除红外图像中的高斯噪声、脉冲噪声以及由其组成的混合噪声,同时在滤波过程中并不降低双边滤波保留红外图像边缘特征的性能.仿真实验结果表明,与传统双边滤波、改进的双边滤波以及各项异性扩散-中值滤波算法相比,该算法无论是滤除红外图像的混合噪声还是保留边缘特征都较为优越.%In view of the mixed noise in the infrared image, the adaptive hybrid bilateral filtering was proposed. The principle of bilateral filter was analyzed. It was put forward that the shortage of bilateral filtering which couldn' t filter out strong Gauss noise and impulse noise was inherent. Therefore, the average similarity was defined for bilateral filtering. On the basis of the average similarity, noise points were marked with strong noise points which couldn't be filtered out by bilateral filtering and ordinary noise points which could be filtered out by bilateral filtering. To reduce image fuzzy, only the strong noise points were filtered by median filtering. To keep more edge character, ordinary noise points were filtered by adaptive bilateral filtering. Simulation results show that the hybrid bilateral filtering keeps more edge character, and filters out Gaussian noise and the mixed noise which consist of Gaussian noise and impulse noise effectively. The algorithm is superior to

  16. Segmentation of left ventricle in short-axis echocardiographic sequences by weighted radial edge filtering and adaptive recovery of dropout regions.

    Science.gov (United States)

    Bansod, Prashant; Desai, U B; Merchant, S N; Burkule, Nitin

    2011-07-01

    In this paper, we present a weighted radial edge filtering algorithm with adaptive recovery of dropout regions for the semi-automatic delineation of endocardial contours in short-axis echocardiographic image sequences. The proposed algorithm requires minimal user intervention at the end diastolic frame of the image sequence for specifying the candidate points of the contour. The region of interest is identified by fitting an ellipse in the region defined by the specified points. Subsequently, the ellipse centre is used for originating the radial lines for filtering. A weighted radial edge filter is employed for the detection of edge points. The outliers are corrected by global as well as local statistics. Dropout regions are recovered by incorporating the important temporal information from the previous frame by means of recursive least squares adaptive filter. This ensures fairly accurate segmentation of the cardiac structures for further determination of the functional cardiac parameters. The proposed algorithm was applied to 10 data-sets over a full cardiac cycle and the results were validated by comparing computer-generated boundaries to those manually outlined by two experts using Hausdorff distance (HD) measure, radial mean square error (rmse) and contour similarity index. The rmse was 1.83 mm with a HD of 5.12 ± 1.21 mm. We have also compared our results with two existing approaches, level set and optical flow. The results indicate an improvement when compared with ground truth due to incorporation of temporal clues. The weighted radial edge filtering algorithm in conjunction with adaptive dropout recovery offers semi-automatic segmentation of heart chambers in 2D echocardiography sequences for accurate assessment of global left ventricular function to guide therapy and staging of the cardiovascular diseases.

  17. 基于数学形态学的自适应彩色图像滤波%Adaptive Color Image Filter Based on Mathematics Morphology

    Institute of Scientific and Technical Information of China (English)

    史延新; 孔晓荣

    2012-01-01

    For the color vector representation and impulse noise value of the color image, an adaptive algorithm, which filters impulse noise of color image,is proposed to solve the problem of the color image filtering. Firstly, morphology is used to detect the impulse noise, then, according to the result, an improved method of vector median filter adjusts the filter window adaptively for filtering impulse noise. Experimental results indicate that the proposed method can suppress impulse noise in color images effectively. It provides a better restoration performance than many other filters used for removing impulse noise from color images.%为了解决彩色图像滤波问题,针对彩色图像的颜色矢量表示形式和彩色图像中的脉冲噪声的数值特征,提出一种滤除彩色图像的脉冲噪声的自适应算法.首先应用数学形态工具对脉冲噪声进行检测,再根据检测结果,用改进的矢量中值滤波方法自适应地调整滤波窗口,以符合人眼视觉特性的颜色相似性度量方法选择颜色距离最接近的样本像素,对脉冲噪声给予有选择的滤除.通过实验及与其它算法比较,结果表明该算法对于彩色图像中的脉冲噪声有较好的滤除效果.

  18. The seismic signal technology with variable velocity FK filtering-the auto-adapted polarization filtering%微地震信号的变速FK滤波-自适应极化滤波方法

    Institute of Scientific and Technical Information of China (English)

    朱卫星; 张春晓; 邱铁成; 修金磊; 朱雪梅

    2009-01-01

    In view of the characteristic micro-seismic signal, this article has designed the method of variable velocity FK filtering-the auto-adapted polarization filtering. When we design the FK filter factor, we determine the signal speed range in each aperture through computation of the signal mutual correlation coefficient at glide aperture in the adjacent channel. In order to remove the alias and divulging which is created by the two-dimensional fft transformation when we make the two-dimensional fft transformation to the window, we make the zero sufficient position in vertical and horizontal direction in the time window. In view of question which complex wave field wave expectation direction is indefinite when we design the auto-adapted polarization filtering factor, we compute adjacent channel polarization projection mutual correlation coefficient to confirm wave track component and then choose expectation direction in the convention polarization filtering factor for the track component direction. And then we realize the auto-adapted polarization filtering. The effect has the distinct improvement when this method is used to process the theoretical model and actual material.%针对微地震信号的特点,研究了变速FK滤波-自适应极化滤波方法.在设计FK滤波因子时,通过计算相邻道滑动时窗内信号的互相关系数,确定时窗内信号的视速度范围,实现变速FK滤波;对时窗内的信号进行二维FFT变换时,分别在时窗的纵横向上补零充位,消除信号在二维变换时造成的时空域的混跌和泄漏;在设计自适应极化滤波因子时,针对复杂波场中波的偏振方向的不确定性问题,本文通过计算相邻道信号偏振投影的最大互相关系数,确定波的跟踪分量;把波的跟踪分量作为极化滤波因子里的期望方向,改进常规滤波因子,实现自适应极化滤波.对理论模型和实际资料的处理结果表明,该方法理论正确,实际资料的处理效果也得到了明显的改善.

  19. On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

    Directory of Open Access Journals (Sweden)

    Mark Frogley

    2013-01-01

    Full Text Available To reduce the maintenance cost, avoid catastrophic failure, and improve the wind transmission system reliability, online condition monitoring system is critical important. In the real applications, many rotating mechanical faults, such as bearing surface defect, gear tooth crack, chipped gear tooth and so on generate impulsive signals. When there are these types of faults developing inside rotating machinery, each time the rotating components pass over the damage point, an impact force could be generated. The impact force will cause a ringing of the support structure at the structural natural frequency. By effectively detecting those periodic impulse signals, one group of rotating machine faults could be detected and diagnosed. However, in real wind turbine operations, impulsive fault signals are usually relatively weak to the background noise and vibration signals generated from other healthy components, such as shaft, blades, gears and so on. Moreover, wind turbine transmission systems work under dynamic operating conditions. This will further increase the difficulties in fault detection and diagnostics. Therefore, developing advanced signal processing methods to enhance the impulsive signals is in great needs.In this paper, an adaptive filtering technique will be applied for enhancing the fault impulse signals-to-noise ratio in wind turbine gear transmission systems. Multiple statistical features designed to quantify the impulsive signals of the processed signal are extracted for bearing fault detection. The multiple dimensional features are then transformed into one dimensional feature. A minimum error rate classifier will be designed based on the compressed feature to identify the gear transmission system with defect. Real wind turbine vibration signals will be used to demonstrate the effectiveness of the presented methodology.

  20. Adaptive Hybrid Fuzzy-Proportional Plus Crisp-Integral Current Control Algorithm for Shunt Active Power Filter Operation

    Directory of Open Access Journals (Sweden)

    Nor Farahaida Abdul Rahman

    2016-09-01

    Full Text Available An adaptive hybrid fuzzy-proportional plus crisp-integral current control algorithm (CCA for regulating supply current and enhancing the operation of a shunt active power filter (SAPF is presented. It introduces a unique integration of fuzzy-proportional (Fuzzy-P and crisp-integral (Crisp-I current controllers. The Fuzzy-P current controller is developed to perform gain tuning procedure and proportional control action. This controller inherits the simplest configuration; it is constructed using a single-input single-output fuzzy rule configuration. Thus, an execution of few fuzzy rules is sufficient for the controller’s operation. Furthermore, the fuzzy rule is developed using the relationship of currents only. Hence, it simplifies the controller development. Meanwhile, the Crisp-I current controller is developed to perform integral control action using a controllable gain value; to improve the steady-state control mechanism. The gain value is modified and controlled using the Fuzzy-P current controller’s output variable. Therefore, the gain value will continuously be adjusted at every sample period (or throughout the SAPF operation. The effectiveness of the proposed CCA in regulating supply current is validated in both simulation and experimental work. All results have proven that the SAPF using the proposed CCA is capable to regulate supply current during steady-state and dynamic-state operations. At the same time, the SAPF is able to enhance its operation in compensating harmonic currents and reactive power. Furthermore, the implementation of the proposed CCA has resulted more stable dc-link voltage waveform.

  1. Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

    Science.gov (United States)

    Fan, Xing; Mikolaenko, Irina; Elhassan, Ihab; Ni, Xingzhi; Wang, Yunyue; Ball, Douglas; Brat, Daniel J; Perry, Arie; Eberhart, Charles G

    2004-11-01

    The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

  2. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner.

    Science.gov (United States)

    Sjöqvist, Marika; Antfolk, Daniel; Ferraris, Saima; Rraklli, Vilma; Haga, Cecilia; Antila, Christian; Mutvei, Anders; Imanishi, Susumu Y; Holmberg, Johan; Jin, Shaobo; Eriksson, John E; Lendahl, Urban; Sahlgren, Cecilia

    2014-04-01

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.

  3. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    NARCIS (Netherlands)

    Li, H.; Koo, Y.; Mao, X.; Sifuentes-Dominguez, L.; Morris, L.L.; Jia, D.; Miyata, N; Faulkner, R.A.; Deursen, J.M.A. van; Vooijs, M.; Billadeau, D.D.; Sluis, B. van de; Cleaver, O.; Burstein, E.

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosom

  4. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.

    Science.gov (United States)

    Correia, Carlos M; Teixeira, Joel

    2014-12-01

    Computationally efficient wave-front reconstruction techniques for astronomical adaptive-optics (AO) systems have seen great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered much attention, especially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl ratio) and further develop formulae for the anti-aliasing (AA) Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e., discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise, and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of forward models for the Shack-Hartmann wave-front sensor (using sparse and nonsparse representations) and compute point-spread-function raw intensities. We find that for a 32×32 single-conjugated AOs system the aliasing propagation coefficient is roughly 60% of the least-squares filters, whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in the H band. For current and next-generation high-contrast imagers, despite better aliasing mitigation, AA Wiener filtering cannot be used as a standalone method and must therefore be used in combination with optical spatial filters deployed before image formation actually takes place.

  5. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    Science.gov (United States)

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-02-06

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  6. Shunt Active Filter in Damping Harmonics Propagation

    Directory of Open Access Journals (Sweden)

    BERBAOUI, B.

    2010-08-01

    Full Text Available This paper deals with a hybrid shunt active power filter applied on 500 kV HVDC, after a description of the causes and effects harmonic pollution which may damage equipments and interrupt electric power customers service; in this paper we present the deferent solutions of this problem among one has to study the two most recent types of filtering: passive and hybrid filter. The hybrid filter consists of active filter connected in shunt with passive filter. The hybrid shunt active filter proposed is based on three levels PWM inverter and characterized by detecting the harmonic current flowing into the passive filter and controlled by notch algorithm. This structure has been applied on a test HVDC power system, is presented as a technical solution makes it possible to eliminate the disadvantages from passive filtering, and also economic price of active filtering part. The simulation results justified the effectiveness of this type of filter face of the classic passive filter.

  7. Notch2 and Notch3 Function Together to Regulate Vascular Smooth Muscle Development

    OpenAIRE

    Qingqing Wang; Ning Zhao; Simone Kennard; Brenda Lilly

    2012-01-01

    Notch signaling has been implicated in the regulation of smooth muscle differentiation, but the precise role of Notch receptors is ill defined. Although Notch3 receptor expression is high in smooth muscle, Notch3 mutant mice are viable and display only mild defects in vascular patterning and smooth muscle differentiation. Notch2 is also expressed in smooth muscle and Notch2 mutant mice show cardiovascular abnormalities indicative of smooth muscle defects. Together, these findings infer that N...

  8. African Swine Fever Diagnosis Adapted to Tropical Conditions by the Use of Dried-blood Filter Papers.

    Science.gov (United States)

    Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E

    2016-08-01

    The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation.

  9. FOUR NOTCH ROADLESS AREA, TEXAS.

    Science.gov (United States)

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Four Notch Roadless Area, Texas, was conducted. The area has a probable resource potential for oil and gas. There is, however, little promise for the occurrence of metallic mineral resources or other energy resources. Acquisition of seismic data and detailed comparisons with logs from wells from the vicinity of the Four Notch Roadless Area is necessary to better determine if the subsurface stratigraphy and structures are favorable for the accumulation of oil or gas.

  10. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    Science.gov (United States)

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.

  11. Notch, lipids, and endothelial cells

    Science.gov (United States)

    Briot, Anaïs; Bouloumié, Anne; Iruela-Arispe, M. Luisa

    2017-01-01

    Purpose of review Notch signaling is an evolutionary conserved pathway critical for cardiovascular development and angiogenesis. More recently, the contribution of Notch signaling to the homeostasis of the adult vasculature has emerged as an important novel paradigm, but much remains to be understood. Recent findings Recent findings shed light on the impact of Notch in vascular and immune responses to microenvironmental signals as well as on the onset of atherosclerosis. In the past year, studies in human and mice explored the role of Notch in the maintenance of a nonactivated endothelium. Novel pieces of evidence suggest that this pathway is sensitive to environmental factors, including inflammatory mediators and diet-derived by-products. Summary An emerging theme is the ability of Notch to respond to changes in the microenvironment, including glucose and lipid metabolites. In turn, alterations in Notch enable an important link between metabolism and transcriptional changes, thus this receptor appears to function as a metabolic sensor with direct implications to gene expression. PMID:27454451

  12. Study of the algorithm of backtracking decoupling and adaptive extended Kalman filter based on the quaternion expanded to the state variable for underwater glider navigation.

    Science.gov (United States)

    Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping

    2014-12-03

    High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.

  13. Peripheral adaptive filtering in human olfaction? Three studies on prevalence and effects of olfactory training in specific anosmia in more than 1600 participants.

    Science.gov (United States)

    Croy, Ilona; Olgun, Selda; Mueller, Laura; Schmidt, Anna; Muench, Marcus; Hummel, Cornelia; Gisselmann, Guenter; Hatt, Hanns; Hummel, Thomas

    2015-12-01

    Selective processing of environmental stimuli improves processing capacity and allows adaptive modulation of behavior. The thalamus provides an effective filter of central sensory information processing. As olfactory projections, however, largely bypass the thalamus, other filter mechanisms must consequently have evolved for the sense of smell. We investigated whether specific anosmia - the inability to perceive a specific odor whereas detection of other substances is unaffected - represents an effective peripheral filter of olfactory information processing. In contrast to previous studies, we showed in a sample of 1600 normosmic subjects, that specific anosmia is by no means a rare phenomenon. Instead, while the affected odor is highly individual, the general probability of occurrence of specific anosmia is close to 1. In addition, 25 subjects performed daily olfactory training sessions with enhanced exposure to their particular "missing" smells for the duration of three months. This resulted in a significant improvement of sensitivity towards the respective specific odors. We propose specific anosmia to occur as a rule, rather than an exception, in the sense of smell. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be altered by exposure.

  14. Research of Image Filtering Algorithm Based on Adaptive Detail Preserving%自适应保细节的图像滤波算法研究

    Institute of Scientific and Technical Information of China (English)

    王志; 汪青

    2016-01-01

    本文利用Matlab软件,结合多尺度和多方向模板,提出了一种新的自适应保细节滤波算法,提高了图像信噪比。本文介绍了数字图像处理的方法和常用的去噪模型并给出了一种改进的中值滤波的特征与描述。%This paper used Matlab software, combining with multi-scale and multi-direction template, a new adaptive filtering algorithm was proposed, which improved the image signal to noise ratio.In this paper, we introduced the method of digital image processing and the commonly used denoising model and gave an im-proved median filter.

  15. Clinical significance of NOTCH1 and NOTCH2 expression in gastric carcinomas: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Lukas eBauer

    2015-04-01

    Full Text Available Background: Notch signaling can exert oncogenic or tumor suppressive functions and can contribute to chemotherapy resistance in cancer. In this study, we aimed to clarify the clinicopathological significance and the prognostic and predictive value of NOTCH1 and NOTCH2 expression in gastric carcinoma (GC. Methods: NOTCH1 and NOTCH2 expression was determined immunohistochemically in 142 primarily resected GCs using tissue microarrays and in 84 pretherapeutic biopsies from patients treated by neoadjuvant chemotherapy. The results were correlated with survival, response to therapy and clinico-pathological features.Results: Primarily resected patients with NOTCH1-negative tumors demonstrated worse survival. High NOTCH1 expression was associated with early-stage tumors and with significantly increased survival in this subgroup.Higher NOTCH2 expression was associated with early-stage and intestinal-type tumors and with better survival in the subgroup of intestinal-type tumors.In pretherapeutic biopsies, higher NOTCH1 and NOTCH2 expression was more frequent in nonresponding patients, but these differences were statistically not significant. Conclusion: Our findings suggested that, in particular NOTCH1 expression indicated good prognosis in GC. The close relationship of high NOTCH1 and NOTCH2 expression with early tumor stages may indicate a tumor-suppressive role of Notch signaling in GC. The role of NOTCH1 and NOTCH2 in neoadjuvantly treated GC is limited.

  16. 一种自适应窗口滤波算法研究%Research on a novel adaptive window for image filter algorithm

    Institute of Scientific and Technical Information of China (English)

    赵立兴; 唐英干; 王洪瑞; 王正峰

    2013-01-01

    A novel on-off image filter algorithm is introduced in this paper, whose shape, size and orientation can vary with the image's regional structure. The filter window's size vary with the corresponding pixel's gradient magnitude, and it's shape, orientation is adjusted in such a way as to lie in the direction of the least gradient. Meanwhile, a criterion and flowchart which can classify pixels into noise-pixels and structure pixels is also proposed. Compare with the traditional mean filter, the traditional median filter and the method of an adaptive smooth filter algorithm of still images, the simulation results prove that the proposed adaptive window image filter algorithm have a better resolution and it can protects image's structure more well.%提出了一种滤波窗口方位、尺寸和形状都可随图像纹理结构自适应变化的开关滤波算法。滤波窗的尺寸可随图像梯度值的变化而变化,滤波窗方位排列与图像对应点像素最小梯度值方向一致。同时,为了将受噪声污染的点和图像的细节纹理像素点分开,给出了一种噪声点检测判据和开关算法流程。与传统均值、中值及相关文献提出的自适应平滑滤波算法相比,由于本文算法在降噪的同时兼顾了图像的局部纹理分布结构,因此在保护图像细节方面做得更好。仿真实验结果证明了本文算法的有效性。

  17. The Expression of Notch 1 and Notch 3 in Gallbladder Cancer and Their Clinicopathological Significance.

    Science.gov (United States)

    Liu, Luyao; Yang, Zhu-Lin; Wang, Chunwei; Miao, Xiongying; Liu, Zhiyu; Li, Daiqiang; Zou, Qiong; Li, Jinghe; Liang, Lufeng; Zeng, Guixiang; Chen, Senlin

    2016-07-01

    Gallbladder cancers (GBCs) are highly malignant gastrointestinal cancers. The biological makers for the prognosis and targeting therapy of GBCs have not been established. The protein expression of Notch 1 and Notch 3 in 46 squamous cell/adenosquamous carcinomas (SC/ASCs) and 80 adenocarcinomas (AC) was measured using immunohistochemistry. Positive Notch 1 and Notch 3 expression in both SC/ASC and AC was significantly associated with large tumor size, invasion, metastasis, and low surgical curability (P Notch 1 and Notch 3 expression was significantly associated with mean survival of SC/ASC and AC patients (P Notch 1 and Notch 3 expression, as well as low differentiation, large tumor size, high TNM stage, invasion, lymph node metastasis, and surgical curability are independent poor-prognostic factors in both SC/ASC and AC patients. Positive Notch 1 and Notch 3 expression is closely correlated with severe clinicopathological characteristics and poor prognosis in both SC/ASC and AC patients.

  18. Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM Generation

    Directory of Open Access Journals (Sweden)

    Junichi Susaki

    2012-06-01

    Full Text Available A filtering algorithm is proposed that accurately extracts ground data from airborne light detection and ranging (LiDAR measurements and generates an estimated digital terrain model (DTM. The proposed algorithm utilizes planar surface features and connectivity with locally lowest points to improve the extraction of ground points (GPs. A slope parameter used in the proposed algorithm is updated after an initial estimation of the DTM, and thus local terrain information can be included. As a result, the proposed algorithm can extract GPs from areas where different degrees of slope variation are interspersed. Specifically, along roads and streets, GPs were extracted from urban areas, from hilly areas such as forests, and from flat area such as riverbanks. Validation using reference data showed that, compared with commercial filtering software, the proposed algorithm extracts GPs with higher accuracy. Therefore, the proposed filtering algorithm effectively generates DTMs, even for dense urban areas, from airborne LiDAR data.

  19. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  20. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    We present an all-optical adaptive-antenna radio over fiber transport system that uses proven, commercially-available components to effectively deliver standard-compliant optical signaling to adaptive multiantenna arrays for current and emerging radio technology implementations. The system is based...

  1. New Adaptive Active Queue Management Algorithm with Kalman Filter%自适应卡尔曼滤波的主动队列管理算法

    Institute of Scientific and Technical Information of China (English)

    闫巧; 胡晓娟; 雷琼钰

    2012-01-01

    controller accelerates the regulation speed of the controller through differential factor. But the parameters of PID controller are fixed,they can't be adapted with dynamic network,so the stability of the queue can't be controlled effectively. A new adaptive active queue management(AQM) algorithm with Kalman filter was presented according to the adaptivity of the neural network The new algorithm combines Kalman filter law with neural network, which has the merits of both. It can determinate future queue length based on queue lengths and some rates of change in the queue length. The results of simulation show that the new AQM algorithm is superior to the typical PID controller on the queue stability, time delay and link utilization.%PID控制器通过微分环节加快了控制器的调节速度,但PID的参数是固定的,不能根据动态的网络自调整参数,故不能有效控制队列的稳定性.由于神经元网络有自适应性,提出了一种自适应卡尔曼滤波的主动队列管理算法(adaptive-KF-AQM).它结合卡尔曼滤波和神经元网络方法,根据队列长度及其变化率来估计下一时刻的队列长度,使队列长度在期望值附近波动.仿真结果表明,该算法在队列稳定性、收敛速度、延时和链路利用率等方面都明显优于传统的PID算法.

  2. Boosting particle filter-based eye tracker performance through adapted likelihood function to reflexions and light changes

    DEFF Research Database (Denmark)

    Hammoud, Riad; Hansen, Dan Witzner

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model...

  3. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    Science.gov (United States)

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  4. Multideimensional adaptive filtering for noise reduction in computerized tomography. Comparison and combination of convolution based and spline based approaches; Multidimensionale adaptive Filterung zur Rauschreduktion in der Computertomographie. Vergleich und Kombination faltungs- und splinebasierter Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Henke, Maria

    2009-07-01

    Since a few years there is the possibility of tomographic imaging with a C-Arm-system in addition to the conventional X-ray-computed tomography. By the use of a flatpanel detector the C-Arm-CT offers a high isotropic resolution. Besides the reduction of dose the improvement of image quality is on the top of the user's list of wishes. To improve the image quality at constant dose or allow dose reduction at changeless image quality methods of noise reduction are used in conventional CT-imaging. To reduce overall measurement- and reconstruction-time so-called on-line-compliant systems are developed which start reconstruction before the measurement is competed. The aim of this work is the development of algorithms for noise reduction in projection data which shall be applied especially to flatpanel-CT and fit in into online-compliant systems. Among the so far known noise reduction methods are the convolution based multidimensional adaptive filtering by Kachelries, Watzke and Kalender (MAF{sup KWK}) and the spline and statistic based filtering by La Riviere and Billmire (SSAF{sup RB}). The former can not be applied for on-line-reconstruction, the latter can be applied to one-dimensional data only. Both methods are developed further to overcome these restrictions. In addition a hybrid method from a combination of a convolution based and the spline and statistic approach is developed. The impact of the algorithms to noise and resolution is characterized using so-called {sigma}-FWHM-curves from simulated and measured one- and two-dimensional data, respectively. The change in noise impression and structure is considered by means of slices. Examples of the application to clinical data rounds out the comparison. The results of this work are a new convolution based adaptive filtering (CAF), which is on-line-compliant, a spline and statistic based filtering for two-dimensional data (SSAF{sup B2d}) and a hybrid method (Hybrid{sup CAF}). These new adaptive algorithms for

  5. 分维自适应稀疏网格积分非线性滤波器%Dimension-wise Adaptive Spare Grid Quadrature Nonlinear Filter

    Institute of Scientific and Technical Information of China (English)

    徐嵩; 孙秀霞; 刘树光; 刘希; 蔡鸣

    2014-01-01

    For nonlinear discrete systems with addictive Gaus-sian noises, a new quadrature filter is proposed, which can fix sample points according to each dimension0s nonlinear function, respectively. In order to match higher-order terms of the nonlin-ear function0s Taylor expanding with reusing the sample points matching lower-order ones, an adaptive sampled multi variable quadrature rule is designed based on the embedded Gaussian sampled quadrature and the spare grid quadrature (SGQ) for-mula. A group of effective data structures and traversal algo-rithms are proposed for the sampled quadrature rule to be used for calculating the predict expectations of the states and mea-surements with their covariances. This filter could not only fix sampled points for different dimensions separately, but also reuse these points and their weights completely, thus enhancing the ef-ficiency of the filter. This filter achieves a higher accuracy than the unscented Kalman filter (UKF) , more effciency than the fixed SGQ filter, as well as generalized form of these two filters. The calculating cost of adaptive steps is much less than comput-ing the function sampled values. Simulations also validates the accuracy and effciency of this filter.%针对含加性高斯噪声的非线性离散系统,提出了可分别根据各维状态及量测方程的非线性函数特性来确定采样点及其权重的积分滤波器。设计了基于嵌入式高斯采样积分和稀疏网格法则的自适应多变量采样积分方法,可在匹配函数高阶泰勒展开项时,利用低阶采样点,提出了高效的数据结构和遍历算法,便于采用该积分方法分别估计系统状态/量测的预测均值和协方差矩阵。该滤波器既能根据各维非线性函数的特性确定采样点,又实现了对采样值和权重的完全复用,保证了算法效率。理论分析和仿真表明,该滤波算法中自适应调整的运算量小于计算非线性函数采样值。该滤

  6. 一种基于NiosII软核的自适应滤波器实现%The Realization of self-adapting filter based on Nios II Soft Processor

    Institute of Scientific and Technical Information of China (English)

    杨秀增

    2013-01-01

      为了有效地滤除心电信号的50Hz工频干扰,设计一种基于NiosII的自适应滤波器。利用QuartusII8.0开发工具进行硬件系统的开发;利用NiosII作为运算器来实现自适应滤波器算法;采用了自定义浮点指令的方法,提高滤波速度。测试了基于Nios II/e、Nios II/s和Nios II/f三种CPU的自适应滤波器性能,测试结果表明,三种自适应滤波器滤波效果良好,执行速度比用软件实现的要都快10倍以上。%  A kind of self-adapting filter based on FPGA is designed to filter the undesired 50Hz power signal in the ECG signal .Quartus II 8.0 is used to develop the hardware of this filter.The Nios II processor is adoped to implement adaptive filter algorithm in design,and the custom floating-point instruction is used to accelerated the execution speed of adaptive filtering algorithm.Three different self_adaption filters with diffferent Nios II,such asNios II/e、Nios II/s和Nios II/f are tested in the paper.Testing results show that the filtering effects of there self-adapting filters are good,and the execution speed is faster more 10 times than software machine.

  7. Notch Signaling in Bone Regeneration

    Science.gov (United States)

    2011-10-01

    Notch delivery, a large animal model (e.g., sheep ) could be developed and tested in another 2 years. Within five years, we will have a product to...phenotype ( macrophage , endothelial cell, osteoblast, chondrocyte) using dual antibody labeling with antibodies for specific cell types. Additionally, we

  8. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  9. NOTCH pathway inactivation promotes bladder cancer progression.

    Science.gov (United States)

    Maraver, Antonio; Fernandez-Marcos, Pablo J; Cash, Timothy P; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M; Real, Francisco X; Serrano, Manuel

    2015-02-01

    NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features.

  10. Anabolic actions of Notch on mature bone

    Science.gov (United States)

    Liu, Peng; Ping, Yilin; Ma, Meng; Zhang, Demao; Liu, Connie; Zaidi, Samir; Gao, Song; Ji, Yaoting; Lou, Feng; Yu, Fanyuan; Lu, Ping; Stachnik, Agnes; Bai, Mingru; Wei, Chengguo; Zhang, Liaoran; Wang, Ke; Chen, Rong; New, Maria I.; Rowe, David W.; Yuen, Tony; Sun, Li; Zaidi, Mone

    2016-01-01

    Notch controls skeletogenesis, but its role in the remodeling of adult bone remains conflicting. In mature mice, the skeleton can become osteopenic or osteosclerotic depending on the time point at which Notch is activated or inactivated. Using adult EGFP reporter mice, we find that Notch expression is localized to osteocytes embedded within bone matrix. Conditional activation of Notch signaling in osteocytes triggers profound bone formation, mainly due to increased mineralization, which rescues both age-associated and ovariectomy-induced bone loss and promotes bone healing following osteotomy. In parallel, mice rendered haploinsufficient in γ-secretase presenilin-1 (Psen1), which inhibits downstream Notch activation, display almost-absent terminal osteoblast differentiation. Consistent with this finding, pharmacologic or genetic disruption of Notch or its ligand Jagged1 inhibits mineralization. We suggest that stimulation of Notch signaling in osteocytes initiates a profound, therapeutically relevant, anabolic response. PMID:27036007

  11. Mechanical behaviors of notched composite laminates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents the study on the mechanical behaviors of composite laminates with both static and fatigue tests per formed with different notched specimens and concludes with experimental results that ultimate strength and initial stiff ness of various notched composite laminates is almost as same as un-notched ones but the fatigue life of notched speci mens is much higher than un-notched ones. Compared with metals, composite materials are notch insensitive. The properties measured by using bar type specimens can not represent the real properties of composite laminates. Notches on the free edge may be helpful to the structure. The fatigue life can be predicted through theoretical models estab lished using the residual stiffness model.

  12. Adaptive morphology filter applied in thermal ghost imaging%应用于热光鬼成像的自适应形态学滤波器

    Institute of Scientific and Technical Information of China (English)

    陈智鹏; 娄鹏; 贺婷婷

    2012-01-01

    鬼成像是一种新的成像机制,但研究人员主要注重研究鬼成像的理论价值.传统的鬼成像从工程上讲质量通常较差,为了提高成像质量,提出一种新的自适应形态学滤波算法.该算法自动估计斑点的大小,作为形态学滤波中的结构体的大小.对该算法进行了仿真,实验结果表明,应用于热光鬼成像的形态学滤波器可以很好滤除噪声.并对几种典型的鬼成像处理方法进行对比,对比结果显示了该算法的有效性.%Ghost imaging is a kind of new imaging mechanism, but researcher mainly pay attention to theoretical value of ghost imaging. Hence traditional ghost imaging quality is usually poor, from the engineering perspective in order to improve imaging quality, a novel adaptive morphology filter algorithm is proposed, which is applied in post processing of ghost imaging. Which automatically estimates the size of spots, as in the morphological structure of the filter size, erosion and dilation. The algorithm for simulation, the experimental results show that: thermal light ghost imaging applied to the morphological filter can filter out the noise very well. And several typical ghost image processing method are compared, which the results show the effectiveness of the algorithm.

  13. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations

    OpenAIRE

    Kofler, Natalie M.; Henar Cuervo; Uh, Minji K.; Aino Murtomäki; Jan Kitajewski

    2015-01-01

    Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1 +/−; Notch3 −/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothel...

  14. Notching on Cancer’s Door: Notch Signaling in Brain Tumors

    OpenAIRE

    2015-01-01

    Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differ...

  15. Notched strength of beryllium powder and ingot sheets.

    Science.gov (United States)

    Moss, R. G.

    1972-01-01

    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  16. Application of Self-adaptive Control in Active Power Filter%自适应控制在有源电力滤波器中的应用

    Institute of Scientific and Technical Information of China (English)

    顾雪晨

    2015-01-01

    自适应控制在工程和科技领域得到了越来越多的应用,当系统存在参数、结构以及环境的不确定因素时,自适应控制提供相应的自适应调节机制,通过调整控制器参数来获得期望的系统特性。本文在总结自适应控制的主要内容的基础上,以有源电力滤波器为例,分析自适应控制原理、设计方法和应用机理。%Self-adaptive control is widely applied in engineering and technology. When uncertain factors such as parameters, structure and operating environment exist, self-adaptive regulating mechanism will be provided correspondingly, and the control parameters can be adjusted automatically. Thus, expected systematic characteristic is obtained. In this paper, the fundamentals of self-adaptive control are concluded with its principle, design method and applying mechanism by taking active power filter as an example.

  17. Adaptive spatial filtering for off-axis digital holographic microscopy based on region recognition approach with iterative thresholding

    Science.gov (United States)

    He, Xuefei; Nguyen, Chuong Vinh; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R.; Rug, Melanie; Maier, Alexander G.; Lee, Woei Ming

    2016-12-01

    Here we propose a region-recognition approach with iterative thresholding, which is adaptively tailored to extract the appropriate region or shape of spatial frequency. In order to justify the method, we tested it with different samples and imaging conditions (different objectives). We demonstrate that our method provides a useful method for rapid imaging of cellular dynamics in microfluidic and cell cultures.

  18. 简化的Sage-Husa自适应滤波算法在组合导航中的应用及仿真%APPLICATION AND SIMULATION OF SIMPLIFIED SAGE-HUSA ADAPTIVE FILTER IN INTEGRATED NAVIGATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    沈云峰; 朱海; 莫军; 宋裕农

    2001-01-01

    讨论一种简化的Sage-Husa自适应Kalman滤波算法,它可对系统的量测噪声和系统干扰进行实时估计,同时在工程中又比较易实现与调整,通过在组合导航舰船运动模型的仿真发现,可以明显提高滤波精度与稳定性。%A simplified adaptive Sage-Husa filter is discussed.Generally the method of increasing the adaptive ability of normal Kalman filter is to do optimal estimation of the statistical feature of measurement noise and inteference.This way the complication of filter is enhanced also.This influences the real-time chasasteristics of the filtering.The simplified Sage-Husa filter can solve this problem partly because of its simple structure.The result of computer simulation shows the simplified filter is useful,effective and adaptive when it is applied in the ship integrated navigation system.

  19. 基于Sage-Husa的线性自适应平方根卡尔曼滤波算法%A Novel Algorithm of Linear Adaptive Square-Root Kalman Filtering Based on Sage-Husa

    Institute of Scientific and Technical Information of China (English)

    周勇; 张玉峰; 张超; 张举中

    2013-01-01

    Aiming at the flaws of the standard Kalman Filter(KF) and Extended Kalman Filter (EKF) , and based on the square-root filtering algorithm, we modify traditional Sage-Husa adaptive filter and present a novel algorithm of Linear Adaptive Square-Root Kalman Filtering( LASRKF) in this paper. With this new filter, the square root of system state covariance matrix is calculated recursively and the estimation of the square root of the system noise co-variance matrix is obtained straightforwardly. Then the positive semi-definiteness of system state and noise covariance matrix are guaranteed; the stability and the adaptability of filter are also enhanced. Compared with the traditional Sage-Husa adaptive filtering algorithm, LASRKF algorithm improves the anti-divergence capability. Simulation results show preliminarily that the stability, accuracy and adaptability of the filter are improved greatly.%针对标准卡尔曼滤波和扩展卡尔曼滤波存在的局限性,结合平方根滤波的思想,对传统Sage-Husa估计器进行改进,提出了一种新的线性自适应平方根卡尔曼滤波(Linear Adaptive Square-Root Kalman Filtering,LASRKF)算法.该算法直接对系统状态方差阵和噪声方差阵的平方根进行递推与估算,确保了状态和噪声方差阵的对称性和非负定性;算法还增添了对系统噪声统计特性估计的计算,强化了滤波器的稳定性和自适应能力;与传统Sage-Husa自适应滤波算法相比LASRKF可提高滤波器抗发散的能力.仿真实验表明,LASRKF可有效提高滤波器的精确性、稳定性和自适应能力.

  20. Si-based infrared optical filters

    Science.gov (United States)

    Balčytis, Armandas; Ryu, Meguya; Seniutinas, Gediminas; Nishijima, Yoshiaki; Hikima, Yuta; Zamengo, Massimiliano; Petruškevičius, Raimondas; Morikawa, Junko; Juodkazis, Saulius

    2015-12-01

    Pyramidal silicon nanospikes, termed black-Si (b-Si), with controlled height of 0.2 to 1 μm, were fabricated by plasma etching over 3-in wafers and were shown to act as variable density filters in a wide range of the IR spectrum 2.5 to 20 μm, with transmission and its spectral gradient dependent on the height of the spikes. Such variable density IR filters can be utilized for imaging and monitoring applications. Narrow IR notch filters were realized with gold mesh arrays on Si wafers prospective for applications in surface-enhanced IR absorption sensing and "cold materials" for heat radiation into atmospheric IR transmission window. Both types of filters for IR: spectrally variable and notch are made by simple fabrication methods.