WorldWideScience

Sample records for adaptive network-based fuzzy

  1. Supervisory Adaptive Network-Based Fuzzy Inference System (SANFIS Design for Empirical Test of Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yi-Jen Mon

    2012-10-01

    Full Text Available A supervisory Adaptive Network-based Fuzzy Inference System (SANFIS is proposed for the empirical control of a mobile robot. This controller includes an ANFIS controller and a supervisory controller. The ANFIS controller is off-line tuned by an adaptive fuzzy inference system, the supervisory controller is designed to compensate for the approximation error between the ANFIS controller and the ideal controller, and drive the trajectory of the system onto a specified surface (called the sliding surface or switching surface while maintaining the trajectory onto this switching surface continuously to guarantee the system stability. This SANFIS controller can achieve favourable empirical control performance of the mobile robot in the empirical tests of driving the mobile robot with a square path. Practical experimental results demonstrate that the proposed SANFIS can achieve better control performance than that achieved using an ANFIS controller for empirical control of the mobile robot.

  2. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    International Nuclear Information System (INIS)

    Ying, L.-C.; Pan, M.-C.

    2008-01-01

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads

  3. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)

    2008-02-15

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)

  4. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M.S. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Vesovic, B.V. [Inst. Mihajlo Pupin, Belgrade (Yugoslavia). Dept. of Automatic Control; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  5. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  6. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  7. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  8. A new and accurate fault location algorithm for combined transmission lines using Adaptive Network-Based Fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)

    2009-11-15

    This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)

  9. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  10. An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments

    International Nuclear Information System (INIS)

    Azadeh, A.; Asadzadeh, S.M.; Ghanbari, A.

    2010-01-01

    Accurate short-term natural gas (NG) demand estimation and forecasting is vital for policy and decision-making process in energy sector. Moreover, conventional methods may not provide accurate results. This paper presents an adaptive network-based fuzzy inference system (ANFIS) for estimation of NG demand. Standard input variables are used which are day of the week, demand of the same day in previous year, demand of a day before and demand of 2 days before. The proposed ANFIS approach is equipped with pre-processing and post-processing concepts. Moreover, input data are pre-processed (scaled) and finally output data are post-processed (returned to its original scale). The superiority and applicability of the ANFIS approach is shown for Iranian NG consumption from 22/12/2007 to 30/6/2008. Results show that ANFIS provides more accurate results than artificial neural network (ANN) and conventional time series approach. The results of this study provide policy makers with an appropriate tool to make more accurate predictions on future short-term NG demand. This is because the proposed approach is capable of handling non-linearity, complexity as well as uncertainty that may exist in actual data sets due to erratic responses and measurement errors.

  11. Nitrate leaching from a potato field using adaptive network-based fuzzy inference system

    DEFF Research Database (Denmark)

    Shekofteh, Hosein; Afyuni, Majid M; Hajabbasi, Mohammad-Ali

    2013-01-01

    and to maximize nutrient use efficiency and production. Design and operation of a drip fertigation system requires understanding of nutrient leaching behavior in cases of shallow rooted crops such as potatoes which cannot extract nutrient from a lower soil depth. This study deals with neuro-fuzzy modeling......The conventional methods of application of nitrogen fertilizers might be responsible for the increased nitrate concentration in groundwater of areas dominated by irrigated agriculture. Appropriate water and nutrient management strategies are required to minimize groundwater pollution...... of nitrate (NO3) leaching from a potato field under a drip fertigation system. In the first part of the study, a two-dimensional solute transport model was used to simulate nitrate leaching from a sandy soil with varying emitter discharge rates and fertilizer doses. The results from the modeling were used...

  12. Leuconostoc mesenteroides growth in food products: prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems.

    Directory of Open Access Journals (Sweden)

    Hue-Yu Wang

    Full Text Available BACKGROUND: An adaptive-network-based fuzzy inference system (ANFIS was compared with an artificial neural network (ANN in terms of accuracy in predicting the combined effects of temperature (10.5 to 24.5°C, pH level (5.5 to 7.5, sodium chloride level (0.25% to 6.25% and sodium nitrite level (0 to 200 ppm on the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. METHODS: THE ANFIS AND ANN MODELS WERE COMPARED IN TERMS OF SIX STATISTICAL INDICES CALCULATED BY COMPARING THEIR PREDICTION RESULTS WITH ACTUAL DATA: mean absolute percentage error (MAPE, root mean square error (RMSE, standard error of prediction percentage (SEP, bias factor (Bf, accuracy factor (Af, and absolute fraction of variance (R (2. Graphical plots were also used for model comparison. CONCLUSIONS: The learning-based systems obtained encouraging prediction results. Sensitivity analyses of the four environmental factors showed that temperature and, to a lesser extent, NaCl had the most influence on accuracy in predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions. The observed effectiveness of ANFIS for modeling microbial kinetic parameters confirms its potential use as a supplemental tool in predictive mycology. Comparisons between growth rates predicted by ANFIS and actual experimental data also confirmed the high accuracy of the Gaussian membership function in ANFIS. Comparisons of the six statistical indices under both aerobic and anaerobic conditions also showed that the ANFIS model was better than all ANN models in predicting the four kinetic parameters. Therefore, the ANFIS model is a valuable tool for quickly predicting the growth rate of Leuconostoc mesenteroides under aerobic and anaerobic conditions.

  13. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  14. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  15. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  16. Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ahcene Farah

    2002-06-01

    Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles  with more autonomy and intelligence is discussed. Second, the system  for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.

  17. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  18. Determination of Optimal Opening Scheme for Electromagnetic Loop Networks Based on Fuzzy Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-01-01

    Full Text Available Studying optimization and decision for opening electromagnetic loop networks plays an important role in planning and operation of power grids. First, the basic principle of fuzzy analytic hierarchy process (FAHP is introduced, and then an improved FAHP-based scheme evaluation method is proposed for decoupling electromagnetic loop networks based on a set of indicators reflecting the performance of the candidate schemes. The proposed method combines the advantages of analytic hierarchy process (AHP and fuzzy comprehensive evaluation. On the one hand, AHP effectively combines qualitative and quantitative analysis to ensure the rationality of the evaluation model; on the other hand, the judgment matrix and qualitative indicators are expressed with trapezoidal fuzzy numbers to make decision-making more realistic. The effectiveness of the proposed method is validated by the application results on the real power system of Liaoning province of China.

  19. Network Based Building Lighting Design and Fuzzy Logic via Remote Control

    Directory of Open Access Journals (Sweden)

    Cemal YILMAZ

    2009-02-01

    Full Text Available In this paper, a network based building lighting system is implemented. Profibus-DP network structure is used in the design and Fuzzy Logic Controller (FLC is used on control of the building lighting. Informations received from sensors which measures level of the building illumination is used on FLC and they are transferred to the system by Profibus-DP network. Control of lighting luminaries are made via Profibus-DP network. The illuminance inside the bulding is fitted required level. Energy saving and healthy lighting facilities have been obtained by the design.

  20. Optimal inverse magnetorheological damper modeling using shuffled frog-leaping algorithm–based adaptive neuro-fuzzy inference system approach

    Directory of Open Access Journals (Sweden)

    Xiufang Lin

    2016-08-01

    Full Text Available Magnetorheological dampers have become prominent semi-active control devices for vibration mitigation of structures which are subjected to severe loads. However, the damping force cannot be controlled directly due to the inherent nonlinear characteristics of the magnetorheological dampers. Therefore, for fully exploiting the capabilities of the magnetorheological dampers, one of the challenging aspects is to develop an accurate inverse model which can appropriately predict the input voltage to control the damping force. In this article, a hybrid modeling strategy combining shuffled frog-leaping algorithm and adaptive-network-based fuzzy inference system is proposed to model the inverse dynamic characteristics of the magnetorheological dampers for improving the modeling accuracy. The shuffled frog-leaping algorithm is employed to optimize the premise parameters of the adaptive-network-based fuzzy inference system while the consequent parameters are tuned by a least square estimation method, here known as shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach. To evaluate the effectiveness of the proposed approach, the inverse modeling results based on the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach are compared with those based on the adaptive-network-based fuzzy inference system and genetic algorithm–based adaptive-network-based fuzzy inference system approaches. Analysis of variance test is carried out to statistically compare the performance of the proposed methods and the results demonstrate that the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system strategy outperforms the other two methods in terms of modeling (training accuracy and checking accuracy.

  1. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  2. Modelling of Apple Scab Using Adaptive Network -Based Fuzzy ...

    African Journals Online (AJOL)

    Furkan

    2013-08-28

    Aug 28, 2013 ... A new prediction model for the early warning of apple scab is proposed in this study. The method is .... Instead of all 12-min measurements, the average values of mea- surements in .... ANFC_LH, MLPN, and Bayes for comparison. The Bayes .... Multi metric evaluation of leaf wetness models for large-area.

  3. Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic

    Science.gov (United States)

    Lara-Rosano, Felipe

    1992-01-01

    In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.

  4. Fuzzy adaptive speed control of a permanent magnet synchronous motor

    Science.gov (United States)

    Choi, Han Ho; Jung, Jin-Woo; Kim, Rae-Young

    2012-05-01

    A fuzzy adaptive speed controller is proposed for a permanent magnet synchronous motor (PMSM). The proposed fuzzy adaptive speed regulator is insensitive to model parameter and load torque variations because it does not need any accurate knowledge about the motor parameter and load torque values. The stability of the proposed control system is also proven. The proposed adaptive speed regulator system is implemented by using a TMS320F28335 floating point DSP. Simulation and experimental results are presented to verify the effectiveness of the proposed fuzzy adaptive speed controller under uncertainties such as motor parameter and load torque variations using a prototype PMSM drive system.

  5. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  6. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  7. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  8. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    The paper developed artificial intelligence technique adaptive neuro-fuzzy ... system is highly appreciated and essential in most of our daily life. ... It can construct an input-output mapping based on human knowledge and specific input-output data ... fuzzy controllers to produce desirable internal temperature and air quality, ...

  9. Active Queue Management in TCP Networks Based on Fuzzy-Pid Controller

    Directory of Open Access Journals (Sweden)

    Hossein ASHTIANI

    2012-01-01

    Full Text Available We introduce a novel and robust active queue management (AQM scheme based on a fuzzy controller, called hybrid fuzzy-PID controller. In the TCP network, AQM is important to regulate the queue length by passing or dropping the packets at the intermediate routers. RED, PI, and PID algorithms have been used for AQM. But these algorithms show weaknesses in the detection and control of congestion under dynamically changing network situations. In this paper a novel Fuzzy-based proportional-integral derivative (PID controller, which acts as an active queue manager (AQM for Internet routers, is proposed. These controllers are used to reduce packet loss and improve network utilization in TCP/IP networks. A new hybrid controller is proposed and compared with traditional RED based controller. Simulations are carried out to demonstrate the effectiveness of the proposed method and show that, the new hybrid fuzzy PID controller provides better performance than random early detection (RED and PID controllers

  10. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  11. ADAPTIVE WEB SITE DENGAN METODE FUZZY CLUSTERING

    Directory of Open Access Journals (Sweden)

    Muchammad Husni

    2004-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Ledakan pertumbuhan dan perkembangan informasi dalam dunia maya menjadikan personalisasian informasi menjadi isu yang penting. Personalisasi informasi yang akan diberikan oleh situs web akan sangat mempengaruhi pola dan perilaku pengguna dalam pencarian informasi, terutama pada perdagangan elektronis (e-commerce. Salah satu pendekatan yang memungkinkan dalam personalisasian web adalah mencari profil pengguna (user profile dari data historis yang sangat besar di file web log. Pengklasifikasian data tanpa pengawasan (unsupervised clasification atau metode metode clustering cukup baik untuk menganalisa data log akses pengguna yang semi terstruktur. Pada metode ini, didefinisikan "user session" dan juga ukuran perbedaan (dissimilarity diantara dua web session yang menggambarkan pengorganisasian sebuah web site. Untuk mendapatkan sebuah profil akses pengguna, dilakukan pembagian user session berdasarkan pasangan ketidaksamaan menggunakan algoritma Fuzzy Clustering. Kata kunci : Adaptive Website, Fuzzy Clustering, personalisasi informasi.

  12. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  13. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  14. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  15. Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique

    International Nuclear Information System (INIS)

    Feng Yi-Fu; Zhang Qing-Ling; Feng De-Zhi

    2012-01-01

    The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches

  16. Multi-Model Adaptive Fuzzy Controller for a CSTR Process

    Directory of Open Access Journals (Sweden)

    Shubham Gogoria

    2015-09-01

    Full Text Available Continuous Stirred Tank Reactors are intensively used to control exothermic reactions in chemical industries. It is a very complex multi-variable system with non-linear characteristics. This paper deals with linearization of the mathematical model of a CSTR Process. Multi model adaptive fuzzy controller has been designed to control the reactor concentration and temperature of CSTR process. This method combines the output of multiple Fuzzy controllers, which are operated at various operating points. The proposed solution is a straightforward implementation of Fuzzy controller with gain scheduler to control the linearly inseparable parameters of a highly non-linear process.

  17. Adaptive fuzzy PID control for a quadrotor stabilisation

    Science.gov (United States)

    Cherrat, N.; Boubertakh, H.; Arioui, H.

    2018-02-01

    This paper deals with the design of an adaptive fuzzy PID control law for attitude and altitude stabilization of a quadrotor despite the system model uncertainties and disturbances. To this end, a PID control with adaptive gains is used in order to approximate a virtual ideal control previously designed to achieve the predefined objective. Specifically, the control gains are estimated and adjusted by mean of a fuzzy system whose parameters are adjusted online via a gradient descent-based adaptation law. The analysis of the closed-loop system is given by the Lyapunov approach. The simulation results are presented to illustrate the efficiency of the proposed approach.

  18. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham; Khayamy, Mehdy; Aljarboua, Abdullah Abdulaziz

    2017-01-01

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory

  19. Synchronization of generalized Henon map by using adaptive fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.

  20. Synchronization of generalized Henon map by using adaptive fuzzy controller

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization

  1. Adaptation in the fuzzy self-organising controller

    DEFF Research Database (Denmark)

    Jantzen, Jan; Poulsen, Niels Kjølstad

    2003-01-01

    This simulation study provides an analysis of the adaptation mechanism in the self-organising fuzzy controller, SOC. The approach is to apply a traditional adaptive control viewpoint. A simplified performance measure in the SOC controller is used in a loss function, and thus the MIT rule implies...... an update mechanism similar to the SOC update mechanism. Two simulations of proportionally controlled systems show the behaviour of the proportional gain as it adapts to a specified behaviour....

  2. Adaptive fuzzy controller based MPPT for photovoltaic systems

    International Nuclear Information System (INIS)

    Guenounou, Ouahib; Dahhou, Boutaib; Chabour, Ferhat

    2014-01-01

    Highlights: • We propose a fuzzy controller with adaptive output scaling factor as a maximum power point tracker of photovoltaic system. • The proposed controller integrates two different rule bases defined on error and change of error. • Our controller can track the maximum power point with better performances when compared to its conventional counterpart. - Abstract: This paper presents an intelligent approach to optimize the performances of photovoltaic systems. The system consists of a PV panel, a DC–DC boost converter, a maximum power point tracker controller and a resistive load. The key idea of the proposed approach is the use of a fuzzy controller with an adaptive gain as a maximum power point tracker. The proposed controller integrates two different rule bases. The first is used to adjust the duty cycle of the boost converter as in the case of a conventional fuzzy controller while the second rule base is designed for an online adjusting of the controller’s gain. The performances of the adaptive fuzzy controller are compared with those obtained using a conventional fuzzy controllers with different gains and in each case, the proposed controller outperforms its conventional counterpart

  3. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    Indian Academy of Sciences (India)

    In this paper, an adaptive fuzzy neural controller (AFNC) for a class of unknown chaotic systems is proposed. The proposed AFNC is comprised of a fuzzy neural controller and a robust controller. The fuzzy neural controller including a fuzzy neural network identifier (FNNI) is the principal controller. The FNNI is used for ...

  4. Control of multi-machine using adaptive fuzzy

    Directory of Open Access Journals (Sweden)

    Bouchiba Bousmaha

    2011-01-01

    Full Text Available An indirect Adaptive fuzzy excitation control (IAFLC of power systems based on multi-input-multi-output linearization technique is developed in this paper. The power system considered in this paper consists of two generators and infinite bus connected through a network of transformers and transmission lines. The fuzzy controller is constructed from fuzzy feedback linearization controller whose parameters are adjusted indirectly from the estimates of plant parameters. The adaptation law adjusts the controller parameters on-line so that the plant output tracks the reference model output. Simulation results shown that the proposed controller IAFLC, compared with a controller based on tradition linearization technique can enhance the transient stability of the power system.

  5. A New Fuzzy Harmony Search Algorithm Using Fuzzy Logic for Dynamic Parameter Adaptation

    Directory of Open Access Journals (Sweden)

    Cinthia Peraza

    2016-10-01

    Full Text Available In this paper, a new fuzzy harmony search algorithm (FHS for solving optimization problems is presented. FHS is based on a recent method using fuzzy logic for dynamic adaptation of the harmony memory accepting (HMR and pitch adjustment (PArate parameters that improve the convergence rate of traditional harmony search algorithm (HS. The objective of the method is to dynamically adjust the parameters in the range from 0.7 to 1. The impact of using fixed parameters in the harmony search algorithm is discussed and a strategy for efficiently tuning these parameters using fuzzy logic is presented. The FHS algorithm was successfully applied to different benchmarking optimization problems. The results of simulation and comparison studies demonstrate the effectiveness and efficiency of the proposed approach.

  6. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  7. Determination Of Adaptive Control Parameter Using Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Omur Can Ozguney

    2017-08-01

    Full Text Available The robot industry has developed along with the increasing the use of robots in industry. This has led to increase the studies on robots. The most important part of these studies is that the robots must be work with minimum tracking trajectory error. But it is not easy for robots to track the desired trajectory because of the external disturbances and parametric uncertainty. Therefore adaptive and robust controllers are used to decrease tracking error. The aim of this study is to increase the tracking performance of the robot and minimize the trajectory tracking error. For this purpose adaptive control law for robot manipulator is identified and fuzzy logic controller is applied to find the accurate values for adaptive control parameter. Based on the Lyapunov theory stability of the uncertain system is guaranteed. In this study robot parameters are assumed to be unknown. This controller is applied to a robot model and the results of simulations are given. Controller with fuzzy logic and without fuzzy logic are compared with each other. Simulation results show that the fuzzy logic controller has improved the results.

  8. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING

    Directory of Open Access Journals (Sweden)

    ANGELOS P. MARKOPOULOS

    2016-09-01

    Full Text Available Soft computing is commonly used as a modelling method in various technological areas. Methods such as Artificial Neural Networks and Fuzzy Logic have found application in manufacturing technology as well. NeuroFuzzy systems, aimed to combine the benefits of both the aforementioned Artificial Intelligence methods, are a subject of research lately as have proven to be superior compared to other methods. In this paper an adaptive neuro-fuzzy inference system for the prediction of surface roughness in end milling is presented. Spindle speed, feed rate, depth of cut and vibrations were used as independent input variables, while roughness parameter Ra as dependent output variable. Several variations are tested and the results of the optimum system are presented. Final results indicate that the proposed model can accurately predict surface roughness, even for input that was not used in training.

  9. Neural and Fuzzy Adaptive Control of Induction Motor Drives

    International Nuclear Information System (INIS)

    Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.

    2008-01-01

    This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller

  10. Uncovering transcriptional interactions via an adaptive fuzzy logic approach

    Directory of Open Access Journals (Sweden)

    Chen Chung-Ming

    2009-12-01

    Full Text Available Abstract Background To date, only a limited number of transcriptional regulatory interactions have been uncovered. In a pilot study integrating sequence data with microarray data, a position weight matrix (PWM performed poorly in inferring transcriptional interactions (TIs, which represent physical interactions between transcription factors (TF and upstream sequences of target genes. Inferring a TI means that the promoter sequence of a target is inferred to match the consensus sequence motifs of a potential TF, and their interaction type such as AT or RT is also predicted. Thus, a robust PWM (rPWM was developed to search for consensus sequence motifs. In addition to rPWM, one feature extracted from ChIP-chip data was incorporated to identify potential TIs under specific conditions. An interaction type classifier was assembled to predict activation/repression of potential TIs using microarray data. This approach, combining an adaptive (learning fuzzy inference system and an interaction type classifier to predict transcriptional regulatory networks, was named AdaFuzzy. Results AdaFuzzy was applied to predict TIs using real genomics data from Saccharomyces cerevisiae. Following one of the latest advances in predicting TIs, constrained probabilistic sparse matrix factorization (cPSMF, and using 19 transcription factors (TFs, we compared AdaFuzzy to four well-known approaches using over-representation analysis and gene set enrichment analysis. AdaFuzzy outperformed these four algorithms. Furthermore, AdaFuzzy was shown to perform comparably to 'ChIP-experimental method' in inferring TIs identified by two sets of large scale ChIP-chip data, respectively. AdaFuzzy was also able to classify all predicted TIs into one or more of the four promoter architectures. The results coincided with known promoter architectures in yeast and provided insights into transcriptional regulatory mechanisms. Conclusion AdaFuzzy successfully integrates multiple types of

  11. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  12. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  13. Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    Directory of Open Access Journals (Sweden)

    Yongqing Fan

    2018-01-01

    Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.

  14. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Science.gov (United States)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals

  15. Introduction to n-adaptive fuzzy models to analyze public opinion on AIDS

    CERN Document Server

    Kandasamy, D W B V; Kandasamy, Dr.W.B.Vasantha; Smarandache, Dr.Florentin

    2006-01-01

    There are many fuzzy models like Fuzzy matrices, Fuzzy Cognitive Maps, Fuzzy relational Maps, Fuzzy Associative Memories, Bidirectional Associative memories and so on. But almost all these models can give only one sided solution like hidden pattern or a resultant output vector dependent on the input vector depending in the problem at hand. So for the first time we have defined a n-adaptive fuzzy model which can view or analyze the problem in n ways (n >=2) Though we have defined these n- adaptive fuzzy models theorectically we are not in a position to get a n-adaptive fuzzy model for n > 2 for practical real world problems. The highlight of this model is its capacity to analyze the same problem in different ways thereby arriving at various solutions that mirror multiple perspectives. We have used the 2-adaptive fuzzy model having the two fuzzy models, fuzzy matrices model and BAMs viz. model to analyze the views of public about HIV/ AIDS disease, patient and the awareness program. This book has five chapters ...

  16. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  17. Indirect fuzzy adaptive control of a class of SISO nonlinear systems

    International Nuclear Information System (INIS)

    Laboid, S.; Boucherit, M.S.

    2006-01-01

    This paper presents an adaptive fuzzy control scheme for a class of continuous-time single-input single-output nonlinear systems with unknown dynamics and disturbance. Within this scheme, the fuzzy systems are employed to approximate the unknown system's dynamics. The proposed controller is composed of a well-defined adaptive fuzzy control term that uses the adaptive fuzzy approximation errors and disturbance. Based on a Lyapunov synthesis method, it is shown that the proposed adaptive control scheme guarantees the convergence of the tracking error to zero and the global boundedness of all signals in the closed-loop system. Moreover, the proposed controller allows initialization by zero of all adjusted parameters in the fuzzy approximators, and does not require the knowledge of the lower bound of the control gain and upper bounds of the approximation errors and disturbance. Simulation results performed on an inverted pendulum system are given to point out the good performance of the developed adaptive controller. (author)

  18. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    Science.gov (United States)

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  19. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    Science.gov (United States)

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  20. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Chien-Hao Tseng

    2016-07-01

    Full Text Available This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF and fuzzy logic adaptive system (FLAS for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF, unscented Kalman filter (UKF, and CKF approaches.

  1. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  2. Novel Fuzzy-Modeling-Based Adaptive Synchronization of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2017-01-01

    Full Text Available In this paper, a novel fuzzy-model-based adaptive synchronization scheme and its fuzzy update laws of parameters are proposed to address the adaptive synchronization problem. The proposed fuzzy controller does not share the same premise of fuzzy system, and the numbers of fuzzy controllers is reduced effectively through the novel modeling strategy. In addition, based on the adaptive synchronization scheme, the error dynamic system can be guaranteed to be asymptotically stable and the true values of unknown parameters can be obtained. Two identical complicated dynamic systems, Mathieu-Van der pol system (M-V system with uncertainties, are illustrated for numerical simulation example to show the effectiveness and feasibility of the proposed novel adaptive control strategy.

  3. Analytic Model Predictive Control of Uncertain Nonlinear Systems: A Fuzzy Adaptive Approach

    Directory of Open Access Journals (Sweden)

    Xiuyan Peng

    2015-01-01

    Full Text Available A fuzzy adaptive analytic model predictive control method is proposed in this paper for a class of uncertain nonlinear systems. Specifically, invoking the standard results from the Moore-Penrose inverse of matrix, the unmatched problem which exists commonly in input and output dimensions of systems is firstly solved. Then, recurring to analytic model predictive control law, combined with fuzzy adaptive approach, the fuzzy adaptive predictive controller synthesis for the underlying systems is developed. To further reduce the impact of fuzzy approximation error on the system and improve the robustness of the system, the robust compensation term is introduced. It is shown that by applying the fuzzy adaptive analytic model predictive controller the rudder roll stabilization system is ultimately uniformly bounded stabilized in the H-infinity sense. Finally, simulation results demonstrate the effectiveness of the proposed method.

  4. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  5. Adaptive fuzzy control for a simulation of hydraulic analogy of a nuclear reactor

    International Nuclear Information System (INIS)

    Ruan, D.; Li, X.; Eynde, G. van den

    2000-01-01

    In the framework of the on-going R and D project on fuzzy control applications to the Belgian Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK-CEN), we have constructed a real fuzzy-logic-control demo model. The demo model is suitable for us to test and compare some new algorithms of fuzzy control and intelligent systems, which is advantageous because it is always difficult and time consuming, due to safety aspects, to do all experiments in a real nuclear environment. In this chapter, we first report briefly on the construction of the demo model, and then introduce the results of a fuzzy control, a proportional-integral-derivative (PID) control and an advanced fuzzy control, in which the advanced fuzzy control is a fuzzy control with an adaptive function that can self-regulate the fuzzy control rules. Afterwards, we present a comparative study of those three methods. The results have shown that fuzzy control has more advantages in terms of flexibility, robustness, and easily updated facilities with respect to the PID control of the demo model, but that PID control has much higher regulation resolution due to its integration terms. The adaptive fuzzy control can dynamically adjust the rule base, therefore it is more robust and suitable to those very uncertain occasions. (orig.)

  6. Quasi-adaptive fuzzy heating control of solar buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, M.M. [Faculty of Industrial Education, Cairo (Egypt); Danaher, S. [University of Northumbria, Newcastle upon Tyne, (United Kingdom). School of Engineering; Underwood, C.P. [University of Northumbria, Newcastle upon Tyne (United Kingdom). School of Built Environment and Sustainable Cities Research Institute

    2006-12-15

    Significant progress has been made on maximising passive solar heat gains to building spaces in winter. Control of the space heating in these applications is complicated due to the lagging influence of the useful solar heat gain coupled with the wide range of construction materials and heating system choices. Additionally, and in common with most building control applications, there is a need to develop control solutions that permit simple and transparent set-up and commissioning procedures. This paper addresses the development and testing of a quasi-adaptive fuzzy logic control method that addresses these issues. The controller is developed in two steps. A feed-forward neural network is used to predict the internal air temperature, in which a singular value decomposition (SVD) algorithm is used to remove the highly correlated data from the inputs of the neural network to reduce the network structure. The fuzzy controller is then designed to have two inputs: the first input being the error between the set-point temperature and the internal air temperature and the second the predicted future internal air temperature. The controller was implemented in real-time using a test cell with controlled ventilation and a modulating electric heating system. Results, compared with validated simulations of conventionally controlled heating, confirm that the proposed controller achieves superior tracking and reduced overheating when compared with the conventional method of control. (author)

  7. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    International Nuclear Information System (INIS)

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  8. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

    Science.gov (United States)

    Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

    2016-03-03

    This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

  9. Fuzzy stochastic damage mechanics (FSDM based on fuzzy auto-adaptive control theory

    Directory of Open Access Journals (Sweden)

    Ya-jun Wang

    2012-06-01

    Full Text Available In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated through β probability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which show β probability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.

  10. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  11. Robust adaptive fuzzy neural tracking control for a class of unknown ...

    Indian Academy of Sciences (India)

    In this paper, an adaptive fuzzy neural controller (AFNC) for a class of unknown chaotic systems is ... The robust controller is used to guarantee the stability and to control the per- ..... From the above analysis we have the following theorem:.

  12. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  13. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)

    2010-09-15

    Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)

  14. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    OpenAIRE

    Yong-Kun Lu

    2015-01-01

    An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The ...

  15. Fuzzy model-based adaptive synchronization of time-delayed chaotic systems

    International Nuclear Information System (INIS)

    Vasegh, Nastaran; Majd, Vahid Johari

    2009-01-01

    In this paper, fuzzy model-based synchronization of a class of first order chaotic systems described by delayed-differential equations is addressed. To design the fuzzy controller, the chaotic system is modeled by Takagi-Sugeno fuzzy system considering the properties of the nonlinear part of the system. Assuming that the parameters of the chaotic system are unknown, an adaptive law is derived to estimate these unknown parameters, and the stability of error dynamics is guaranteed by Lyapunov theory. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.

  16. Applications of Fuzzy adaptive PID control in the thermal power plant denitration liquid ammonia evaporation

    Directory of Open Access Journals (Sweden)

    Li Jing

    2016-01-01

    Full Text Available For the control of the liquid level of liquid ammonia in thermal power plant’s ammonia vaporization room, traditional PID controller parameter tuning is difficult to adapt to complex control systems, the setting of the traditional PID controller parameters is difficult to adapt to the complex control system. For the disadvantage of bad parameter setting, poor performance and so on the fuzzy adaptive PID control is proposed. Fuzzy adaptive PID control combines the advantages of traditional PID technology and fuzzy control. By using the fuzzy controller to intelligent control the object, the performance of the PID controller is further improved, and the control precision of the system is improved[1]. The simulation results show that the fuzzy adaptive PID controller not only has the advantages of high accuracy of PID controller, but also has the characteristics of fast and strong adaptability of fuzzy controller. It realizes the optimization of PID parameters which are in the optimal state, and the maximum increase production efficiency, so that are more suitable for nonlinear dynamic system.

  17. Design of a self-adaptive fuzzy PID controller for piezoelectric ceramics micro-displacement system

    Science.gov (United States)

    Zhang, Shuang; Zhong, Yuning; Xu, Zhongbao

    2008-12-01

    In order to improve control precision of the piezoelectric ceramics (PZT) micro-displacement system, a self-adaptive fuzzy Proportional Integration Differential (PID) controller is designed based on the traditional digital PID controller combining with fuzzy control. The arithmetic gives a fuzzy control rule table with the fuzzy control rule and fuzzy reasoning, through this table, the PID parameters can be adjusted online in real time control. Furthermore, the automatic selective control is achieved according to the change of the error. The controller combines the good dynamic capability of the fuzzy control and the high stable precision of the PID control, adopts the method of using fuzzy control and PID control in different segments of time. In the initial and middle stage of the transition process of system, that is, when the error is larger than the value, fuzzy control is used to adjust control variable. It makes full use of the fast response of the fuzzy control. And when the error is smaller than the value, the system is about to be in the steady state, PID control is adopted to eliminate static error. The problems of PZT existing in the field of precise positioning are overcome. The results of the experiments prove that the project is correct and practicable.

  18. Design of a modified adaptive neuro fuzzy inference system classifier for medical diagnosis of Pima Indians Diabetes

    Science.gov (United States)

    Sagir, Abdu Masanawa; Sathasivam, Saratha

    2017-08-01

    Medical diagnosis is the process of determining which disease or medical condition explains a person's determinable signs and symptoms. Diagnosis of most of the diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system with Modified Levenberg-Marquardt algorithm using analytical derivation scheme for computation of Jacobian matrix. The goal is to investigate how certain diseases are affected by patient's characteristics and measurement such as abnormalities or a decision about presence or absence of a disease. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent system was tested with Pima Indian Diabetes dataset obtained from the University of California at Irvine's (UCI) machine learning repository. The proposed method's performance was evaluated based on training and test datasets. In addition, an attempt was done to specify the effectiveness of the performance measuring total accuracy, sensitivity and specificity. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.

  19. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  20. Adaptive Functional-Based Neuro-Fuzzy-PID Incremental Controller Structure

    Directory of Open Access Journals (Sweden)

    Ashraf Ahmed Fahmy

    2014-03-01

    Full Text Available This paper presents an adaptive functional-based Neuro-fuzzy-PID incremental (NFPID controller structure that can be tuned either offline or online according to required controller performance. First, differential membership functions are used to represent the fuzzy membership functions of the input-output space of the three term controller. Second, controller rules are generated based on the discrete proportional, derivative, and integral function for the fuzzy space. Finally, a fully differentiable fuzzy neural network is constructed to represent the developed controller for either offline or online controller parameter adaptation.  Two different adaptation methods are used for controller tuning, offline method based on controller transient performance cost function optimization using Bees Algorithm, and online method based on tracking error minimization using back-propagation with momentum algorithm. The proposed control system was tested to show the validity of the controller structure over a fixed PID controller gains to control SCARA type robot arm.

  1. Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng

    2016-07-01

    In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy.

  2. Adaptive neuro-fuzzy and expert systems for power quality analysis and prediction of abnormal operation

    Science.gov (United States)

    Ibrahim, Wael Refaat Anis

    The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an

  3. Adaptive fuzzy bilinear observer based synchronization design for generalized Lorenz system

    International Nuclear Information System (INIS)

    Baek, Jaeho; Lee, Heejin; Kim, Seungwoo; Park, Mignon

    2009-01-01

    This Letter proposes an adaptive fuzzy bilinear observer (FBO) based synchronization design for generalized Lorenz system (GLS). The GLS can be described to TS fuzzy bilinear generalized Lorenz model (FBGLM) with their states immeasurable and their parameters unknown. We design an adaptive FBO based on TS FBGLM for synchronization. Lyapunov theory is employed to guarantee the stability of error dynamic system via linear matrix equalities (LMIs) and to derive the adaptive laws to estimate unknown parameters. Numerical example is given to demonstrate the validity of our proposed adaptive FBO approach for synchronization.

  4. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    Science.gov (United States)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  5. Adaptive fuzzy-neural-network control for maglev transportation system.

    Science.gov (United States)

    Wai, Rong-Jong; Lee, Jeng-Dao

    2008-01-01

    A magnetic-levitation (maglev) transportation system including levitation and propulsion control is a subject of considerable scientific interest because of highly nonlinear and unstable behaviors. In this paper, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed first. Then, a model-based sliding-mode control (SMC) strategy is introduced. In order to alleviate chattering phenomena caused by the inappropriate selection of uncertainty bound, a simple bound estimation algorithm is embedded in the SMC strategy to form an adaptive sliding-mode control (ASMC) scheme. However, this estimation algorithm is always a positive value so that tracking errors introduced by any uncertainty will cause the estimated bound increase even to infinity with time. Therefore, it further designs an adaptive fuzzy-neural-network control (AFNNC) scheme by imitating the SMC strategy for the maglev transportation system. In the model-free AFNNC, online learning algorithms are designed to cope with the problem of chattering phenomena caused by the sign action in SMC design, and to ensure the stability of the controlled system without the requirement of auxiliary compensated controllers despite the existence of uncertainties. The outputs of the AFNNC scheme can be directly supplied to the electromagnets and LIM without complicated control transformations for relaxing strict constrains in conventional model-based control methodologies. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the AFNNC scheme is indicated in comparison with the SMC and ASMC strategies.

  6. The attractor recurrent neural network based on fuzzy functions: An effective model for the classification of lung abnormalities.

    Science.gov (United States)

    Khodabakhshi, Mohammad Bagher; Moradi, Mohammad Hassan

    2017-05-01

    The respiratory system dynamic is of high significance when it comes to the detection of lung abnormalities, which highlights the importance of presenting a reliable model for it. In this paper, we introduce a novel dynamic modelling method for the characterization of the lung sounds (LS), based on the attractor recurrent neural network (ARNN). The ARNN structure allows the development of an effective LS model. Additionally, it has the capability to reproduce the distinctive features of the lung sounds using its formed attractors. Furthermore, a novel ARNN topology based on fuzzy functions (FFs-ARNN) is developed. Given the utility of the recurrent quantification analysis (RQA) as a tool to assess the nature of complex systems, it was used to evaluate the performance of both the ARNN and the FFs-ARNN models. The experimental results demonstrate the effectiveness of the proposed approaches for multichannel LS analysis. In particular, a classification accuracy of 91% was achieved using FFs-ARNN with sequences of RQA features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2016-12-01

    Full Text Available Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC, atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.

  8. Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation

    Science.gov (United States)

    Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi

    2016-01-01

    Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261

  9. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    Science.gov (United States)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  10. DESIGN OF ROBUST COMMAND TO LINE-OF-SIGHT GUIDANCE LAW: A FUZZY ADAPTIVE APPROACH

    Directory of Open Access Journals (Sweden)

    ESMAIL SADEGHINASAB

    2016-11-01

    Full Text Available In this paper, the design of command to line-of-sight (CLOS missile guidance law is addressed. Taking a three dimensional guidance model, the tracking control problem is formulated. To solve the target tracking problem, the feedback linearization controller is first designed. Although such control scheme possesses the simplicity property, but it presents the acceptable performance only in the absence of perturbations. In order to ensure the robustness properties against model uncertainties, a fuzzy adaptive algorithm is proposed with two parts including a fuzzy (Mamdani system, whose rules are constructed based on missile guidance, and a so-called rule modifier to compensate the fuzzy rules, using the negative gradient method. Compared with some previous works, such control strategy provides a faster time response without large control efforts. The performance of feedback linearization controller is also compared with that of fuzzy adaptive strategy via various simulations.

  11. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  12. Artifact reduction of compressed images and video combining adaptive fuzzy filtering and directional anisotropic diffusion

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Forchhammer, Søren; Korhonen, Jari

    2011-01-01

    and ringing artifacts, we have applied directional anisotropic diffusion. Besides that, the selection of the adaptive threshold parameter for the diffusion coefficient has also improved the performance of the algorithm. Experimental results on JPEG compressed images as well as MJPEG and H.264 compressed......Fuzzy filtering is one of the recently developed methods for reducing distortion in compressed images and video. In this paper, we combine the powerful anisotropic diffusion equations with fuzzy filtering in order to reduce the impact of artifacts. Based on the directional nature of the blocking...... videos show improvement in artifact reduction of the proposed algorithm over other directional and spatial fuzzy filters....

  13. Adaptive Fuzzy Logic based MPPT Control for PV System Under Partial Shading Condition

    OpenAIRE

    Choudhury, Subhashree; Rout, Pravat Kumar

    2016-01-01

    Partial shading causes power loss, hotspots and threatens the reliability of the Photovoltaic generation system. Moreover characteristic curves exhibit multiple peaks. Conventional MPPT techniques under this condition often fail to give optimum MPP. Focusing on the afore mentioned problem an attempt has been made to design an Adaptive Takagi-Sugeno Fuzzy Inference System based Fuzzy Logic Control MPPT.The mathematical model of PV array is simulated using in MATLAB/Simulink environment.Various...

  14. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  15. Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.

    Science.gov (United States)

    Fei, Juntao; Zhu, Yunkai

    2017-01-01

    In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.

  16. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  17. FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    A. BENNASSAR

    2016-01-01

    Full Text Available Many industrial applications require high performance speed sensorless operation and demand new control methods in order to obtain fast dynamic response and insensitive to external disturbances. The current research aims to present the performance of the sensorless direct torque control (DTC of an induction motor (IM using adaptive Luenberger observer (ALO with fuzzy logic controller (FLC for adaptation mechanism. The rotor speed is regulated by proportional integral (PI anti-windup controller. The proposed strategy is directed to reduce the ripple on the torque and the flux. Numerical simulation results show the good performance and effectiveness of the proposed sensorless control for different references of the speed even both low and high speeds.

  18. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  19. Interval type-2 fuzzy gain-adaptive controller of a Doubly Fed ...

    African Journals Online (AJOL)

    ... Interval Type-2 Fuzzy Gain Adaptive IP (IT2FGAIP) controller and a conventional IP controller ... and an adaptive IP controller is proposed for the speed control of DFIM in the presence of ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Adaptive Fuzzy Output-Feedback Method Applied to Fin Control for Time-Delay Ship Roll Stabilization

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available The ship roll stabilization by fin control system is considered in this paper. Assuming that angular velocity in roll cannot be measured, an adaptive fuzzy output-feedback control is investigated. The fuzzy logic system is used to approximate the uncertain term of the controlled system, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the fuzzy state observer and combining the adaptive backstepping technique with adaptive fuzzy control design, an observer-based adaptive fuzzy output-feedback control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB, and the control strategy is effective to decrease the roll motion. Simulation results are included to illustrate the effectiveness of the proposed approach.

  1. Adaptive neuro-fuzzy control of ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Thinh, Nguyen Truong; Yang, Young-Soo; Oh, Il-Kwon

    2009-01-01

    An adaptive neuro-fuzzy controller was newly designed to overcome the degradation of the actuation performance of ionic polymer metal composite actuators that show highly nonlinear responses such as a straightening-back problem under a step excitation. An adaptive control algorithm with the merits of fuzzy logic and neural networks was applied for controlling the tip displacement of the ionic polymer metal composite actuators. The reference and actual displacements and the change of the error with the electrical inputs were recorded to generate the training data. These data were used for training the adaptive neuro-fuzzy controller to find the membership functions in the fuzzy control algorithm. Software simulation and real-time experiments were conducted by using the Simulink and dSPACE environments. Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the reliable control of the ionic polymer metal composite actuator for which the performance degrades under long-time actuation

  2. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  3. Modeling of Activated Sludge Process Using Sequential Adaptive Neuro-fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Mahsa Vajedi

    2014-10-01

    Full Text Available In this study, an adaptive neuro-fuzzy inference system (ANFIS has been applied to model activated sludge wastewater treatment process of Mobin petrochemical company. The correlation coefficients between the input variables and the output variable were calculated to determine the input with the highest influence on the output (the quality of the outlet flow in order to compare three neuro-fuzzy structures with different number of parameters. The predictions of the neuro-fuzzy models were compared with those of multilayer artificial neural network models with similar structure. The comparison indicated that both methods resulted in flexible, robust and effective models for the activated sludge system. Moreover, the root mean square of the error for neuro-fuzzy and neural network models were 5.14 and 6.59, respectively, which means the former is the superior method.

  4. Obstacle avoidance for kinematically redundant robots using an adaptive fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Beheshti, M.T.H.; Tehrani, A.K.

    1999-05-01

    In this paper the Adaptive Fuzzy Logic approach for solving the inverse kinematics of redundant robots in an environment with obstacles is presented. The obstacles are modeled as convex bodies. A fuzzy rule base that is updated via an adaptive law is used to solve the inverse kinematic problem. Additional rules have been introduced to take care of the obstacles avoidance problem. The proposed method has advantages such as high accuracy, simplicity of computations and generality for all redundant robots. Simulation results illustrate much better tracking performance than the dynamic base solution for a given trajectory in cartesian space, while guaranteeing a collision-free trajectory and observation of a mechanical joint limit

  5. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    International Nuclear Information System (INIS)

    Xue Yueju; Yang Shiyuan

    2003-01-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization

  6. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yueju E-mail: xueyj@mail.tsinghua.edu.cn; Yang Shiyuan E-mail: ysy-dau@tsinghua.edu.cn

    2003-08-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.

  7. Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Layeghi, Hamed [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: layeghi@mech.sharif.edu; Arjmand, Mehdi Tabe [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: arjmand@mech.sharif.edu; Salarieh, Hassan [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-08-15

    In this paper by using a combination of fuzzy identification and the sliding mode control a fuzzy adaptive sliding mode scheme is designed to stabilize the unstable periodic orbits of chaotic systems. The chaotic system is assumed to have an affine form x{sup (n)} = f(X) + g(X)u where f and g are unknown functions. Using only the input-output data obtained from the underlying dynamical system, two fuzzy systems are constructed for identification of f and g. Two distinct methods are utilized for fuzzy modeling, the least squares and the gradient descent techniques. Based on the estimated fuzzy models, an adaptive controller, which works through the sliding mode control, is designed to make the system track the desired unstable periodic orbits. The stability analysis of the overall closed loop system is presented in the paper and the effectiveness of the proposed adaptive scheme is numerically investigated. As a case of study, modified Duffing system is selected for applying the proposed method to stabilize its 2{pi} and 4{pi} periodic orbits. Simulation results show the high performance of the method for stabilizing the unstable periodic orbits of unknown chaotic systems.

  8. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

    Directory of Open Access Journals (Sweden)

    Mostafa Khazaee

    Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.

  9. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    Science.gov (United States)

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  10. Model-Based Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator

    Directory of Open Access Journals (Sweden)

    Alexander Hošovský

    2012-07-01

    Full Text Available Pneumatic artificial muscle-based robotic systems usually necessitate the use of various nonlinear control techniques in order to improve their performance. Their robustness to parameter variation, which is generally difficult to predict, should also be tested. Here a fast hybrid adaptive control is proposed, where a conventional PD controller is placed into the feedforward branch and a fuzzy controller is placed into the adaptation branch. The fuzzy controller compensates for the actions of the PD controller under conditions of inertia moment variation. The fuzzy controller of Takagi-Sugeno type is evolved through a genetic algorithm using the dynamic model of a pneumatic muscle actuator. The results confirm the capability of the designed system to provide robust performance under the conditions of varying inertia.

  11. Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems

    International Nuclear Information System (INIS)

    Hyun, Chang-Ho; Kim, Jae-Hun; Kim, Euntai; Park, Mignon

    2006-01-01

    This paper proposes a synchronization design scheme based on an alternative indirect adaptive fuzzy observer and its application to secure communication of chaotic systems. It is assumed that their states are unmeasurable and their parameters are unknown. Chaotic systems and the structure of the fuzzy observer are represented by the Takagi-Sugeno fuzzy model. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed system is guaranteed. Through this process, the asymptotic synchronization of chaotic systems is achieved. The proposed observer is applied to secure communications of chaotic systems and some numerical simulation results show the validity of theoretical derivations and the performance of the proposed observer

  12. System identification and adaptive control theory and applications of the neurofuzzy and fuzzy cognitive network models

    CERN Document Server

    Boutalis, Yiannis; Kottas, Theodore; Christodoulou, Manolis A

    2014-01-01

    Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering s...

  13. Control of suspended low-gravity simulation system based on self-adaptive fuzzy PID

    Science.gov (United States)

    Chen, Zhigang; Qu, Jiangang

    2017-09-01

    In this paper, an active suspended low-gravity simulation system is proposed to follow the vertical motion of the spacecraft. Firstly, working principle and mathematical model of the low-gravity simulation system are shown. In order to establish the balance process and suppress the strong position interference of the system, the idea of self-adaptive fuzzy PID control strategy is proposed. It combines the PID controller with a fuzzy controll strategy, the control system can be automatically adjusted by changing the proportional parameter, integral parameter and differential parameter of the controller in real-time. At last, we use the Simulink tools to verify the performance of the controller. The results show that the system can reach balanced state quickly without overshoot and oscillation by the method of the self-adaptive fuzzy PID, and follow the speed of 3m/s, while simulation degree of accuracy of system can reach to 95.9% or more.

  14. Design of sewage treatment system by applying fuzzy adaptive PID controller

    Science.gov (United States)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  15. Application of adaptive fuzzy control technology to pressure control of a pressurizer

    Institute of Scientific and Technical Information of China (English)

    YANG Ben-kun; BIAN Xin-qian; GUO Wei-lai

    2005-01-01

    A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor,therefor,the study of pressurizer's pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a pressurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.

  16. Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Jani Kusanti

    2015-07-01

    Abstract             The use of Adaptive Neuro Fuzzy Inference System (ANFIS methods in the process of identifying one of neurological disorders in the head, known in medical terms ischemic stroke from the ct scan of the head in order to identify the location of ischemic stroke. The steps are performed in the extraction process of identifying, among others, the image of the ct scan of the head by using a histogram. Enhanced image of the intensity histogram image results using Otsu threshold to obtain results pixels rated 1 related to the object while pixel rated 0 associated with the measurement background. The result used for image clustering process, to process image clusters used fuzzy c-mean (FCM clustering result is a row of the cluster center, the results of the data used to construct a fuzzy inference system (FIS. Fuzzy inference system applied is fuzzy inference model of Takagi-Sugeno-Kang. In this study ANFIS is used to optimize the results of the determination of the location of the blockage ischemic stroke. Used recursive least squares estimator (RLSE for learning. RMSE results obtained in the training process of 0.0432053, while in the process of generated test accuracy rate of 98.66%   Keywords— Stroke Ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE

  17. Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    A. R Abdollahnejad Barough

    2016-04-01

    . Finally, a total amount of the second moment (m2 and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS. ANFIS provides a neural network based on Fuzzy Inference System (FIS can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.

  18. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  19. Esophageal cancer prediction based on qualitative features using adaptive fuzzy reasoning method

    Directory of Open Access Journals (Sweden)

    Raed I. Hamed

    2015-04-01

    Full Text Available Esophageal cancer is one of the most common cancers world-wide and also the most common cause of cancer death. In this paper, we present an adaptive fuzzy reasoning algorithm for rule-based systems using fuzzy Petri nets (FPNs, where the fuzzy production rules are represented by FPN. We developed an adaptive fuzzy Petri net (AFPN reasoning algorithm as a prognostic system to predict the outcome for esophageal cancer based on the serum concentrations of C-reactive protein and albumin as a set of input variables. The system can perform fuzzy reasoning automatically to evaluate the degree of truth of the proposition representing the risk degree value with a weight value to be optimally tuned based on the observed data. In addition, the implementation process for esophageal cancer prediction is fuzzily deducted by the AFPN algorithm. Performance of the composite model is evaluated through a set of experiments. Simulations and experimental results demonstrate the effectiveness and performance of the proposed algorithms. A comparison of the predictive performance of AFPN models with other methods and the analysis of the curve showed the same results with an intuitive behavior of AFPN models.

  20. Design and implementation of an adaptive critic-based neuro-fuzzy controller on an unmanned bicycle

    OpenAIRE

    Shafiekhani, Ali; Mahjoob, Mohammad J.; Akraminia, Mehdi

    2017-01-01

    Fuzzy critic-based learning forms a reinforcement learning method based on dynamic programming. In this paper, an adaptive critic-based neuro-fuzzy system is presented for an unmanned bicycle. The only information available for the critic agent is the system feedback which is interpreted as the last action performed by the controller in the previous state. The signal produced by the critic agent is used along with the error back propagation to tune (online) conclusion parts of the fuzzy infer...

  1. Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy pharmacophore triplets and adapted molecular similarity scoring schemes.

    Science.gov (United States)

    Bonachéra, Fanny; Parent, Benjamin; Barbosa, Frédérique; Froloff, Nicolas; Horvath, Dragos

    2006-01-01

    This paper introduces a novel molecular description--topological (2D) fuzzy pharmacophore triplets, 2D-FPT--using the number of interposed bonds as the measure of separation between the atoms representing pharmacophore types (hydrophobic, aromatic, hydrogen-bond donor and acceptor, cation, and anion). 2D-FPT features three key improvements with respect to the state-of-the-art pharmacophore fingerprints: (1) The first key novelty is fuzzy mapping of molecular triplets onto the basis set of pharmacophore triplets: unlike in the binary scheme where an atom triplet is set to highlight the bit of a single, best-matching basis triplet, the herein-defined fuzzy approach allows for gradual mapping of each atom triplet onto several related basis triplets, thus minimizing binary classification artifacts. (2) The second innovation is proteolytic equilibrium dependence, by explicitly considering all of the conjugated acids and bases (microspecies). 2D-FPTs are concentration-weighted (as predicted at pH=7.4) averages of microspecies fingerprints. Therefore, small structural modifications, not affecting the overall pharmacophore pattern (in the sense of classical rule-based assignment), but nevertheless triggering a pKa shift, will have a major impact on 2D-FPT. Pairs of almost identical compounds with significantly differing activities ("activity cliffs" in classical descriptor spaces) were in many cases predictable by 2D-FPT. (3) The third innovation is a new similarity scoring formula, acknowledging that the simultaneous absence of a triplet in two molecules is a less-constraining indicator of similarity than its simultaneous presence. It displays excellent neighborhood behavior, outperforming 2D or 3D two-point pharmacophore descriptors or chemical fingerprints. The 2D-FPT calculator was developed using the chemoinformatics toolkit of ChemAxon (www.chemaxon.com).

  2. Phase inductance estimation for switched reluctance motor using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Daldaban, Ferhat; Ustkoyuncu, Nurettin; Guney, Kerim

    2006-01-01

    A new method based on an adaptive neuro-fuzzy inference system (ANFIS) for estimating the phase inductance of switched reluctance motors (SRMs) is presented. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the ANFIS. The rotor position and the phase current of the 6/4 pole SRM are used to predict the phase inductance. The phase inductance results predicted by the ANFIS are in excellent agreement with the results of the finite element method

  3. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  4. Design and simplification of Adaptive Neuro-Fuzzy Inference Controllers for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alturki, F.A.; Abdennour, A. [King Saud University, Riyadh (Saudi Arabia). Electrical Engineering Dept.

    1999-10-01

    This article presents the design of an Adaptive Neuro-Fuzzy Inference Controller (ANFIC) for a 160 MW power plant. The space of operating conditions of the plant is partitioned into five regions. For each of the regions, an optimal controller is designed to meet a set of design objectives. The resulting five linear controllers are used to train the ANFIC. To enhance the applicability of the control system, a new algorithm that reduces the fuzzy rules to the most essential ones is also presented. This algorithm offers substantial savings in computation time while maintaining the performance and robustness of the original controller. (author)

  5. Performance assessment of electric power generations using an adaptive neural network algorithm and fuzzy DEA

    Energy Technology Data Exchange (ETDEWEB)

    Javaheri, Zahra

    2010-09-15

    Modeling, evaluating and analyzing performance of Iranian thermal power plants is the main goal of this study which is based on multi variant methods analysis. These methods include fuzzy DEA and adaptive neural network algorithm. At first, we determine indicators, then data is collected, next we obtained values of ranking and efficiency by Fuzzy DEA, Case study is thermal power plants In view of the fact that investment to establish on power plant is very high, and maintenance of power plant causes an expensive expenditure, moreover using fossil fuel effected environment hence optimum produce of current power plants is important.

  6. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  7. Adaptive control of discrete-time chaotic systems: a fuzzy control approach

    International Nuclear Information System (INIS)

    Feng Gang; Chen Guanrong

    2005-01-01

    This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm

  8. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Syed Zulqadar Hassan

    2017-03-01

    Full Text Available An intelligent control of photovoltaics is necessary to ensure fast response and high efficiency under different weather conditions. This is often arduous to accomplish using traditional linear controllers, as photovoltaic systems are nonlinear and contain several uncertainties. Based on the analysis of the existing literature of Maximum Power Point Tracking (MPPT techniques, a high performance neuro-fuzzy indirect wavelet-based adaptive MPPT control is developed in this work. The proposed controller combines the reasoning capability of fuzzy logic, the learning capability of neural networks and the localization properties of wavelets. In the proposed system, the Hermite Wavelet-embedded Neural Fuzzy (HWNF-based gradient estimator is adopted to estimate the gradient term and makes the controller indirect. The performance of the proposed controller is compared with different conventional and intelligent MPPT control techniques. MATLAB results show the superiority over other existing techniques in terms of fast response, power quality and efficiency.

  9. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  10. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  11. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter

    International Nuclear Information System (INIS)

    Altin, Necmi; Sefa, İbrahim

    2012-01-01

    Highlights: ► We propose a dSPACE based neuro-fuzzy controlled grid interactive inverter. ► The membership functions and rule base of fuzzy logic controller by using ANFIS. ► A LCL output filter is designed. ► A high performance controller is designed. - Abstract: In this study, design, simulation and implementation of a dSPACE based grid interactive voltage source inverter are proposed. This inverter has adaptive neuro-fuzzy controller and capable of importing electrical energy, generated from renewable energy sources such as the wind, the solar and the fuel cells to the grid. A line frequency transformer and a LCL filter are used at the output of the grid interactive inverter which is designed as current controlled to decrease the susceptibility to phase errors. Membership functions and rule base of the fuzzy logic controller, which control the inverter output current, are determined by using artificial neural networks. Both simulation and experimental results show that, the grid interactive inverter operates synchronously with the grid. The inverter output current which is imported to the grid is in sinusoidal waveform and the harmonic level of it meets the international standards (4.3 < 5.0%). In addition, simulation and experimental results of the neuro-fuzzy and the PI controlled inverter are given together and compared in detail. Simulation and experimental results show that the proposed inverter has faster response to the reference variations and lower steady state error than PI controller.

  12. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  13. Multi-GPU Development of a Neural Networks Based Reconstructor for Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Carlos González-Gutiérrez

    2018-01-01

    Full Text Available Aberrations introduced by the atmospheric turbulence in large telescopes are compensated using adaptive optics systems, where the use of deformable mirrors and multiple sensors relies on complex control systems. Recently, the development of larger scales of telescopes as the E-ELT or TMT has created a computational challenge due to the increasing complexity of the new adaptive optics systems. The Complex Atmospheric Reconstructor based on Machine Learning (CARMEN is an algorithm based on artificial neural networks, designed to compensate the atmospheric turbulence. During recent years, the use of GPUs has been proved to be a great solution to speed up the learning process of neural networks, and different frameworks have been created to ease their development. The implementation of CARMEN in different Multi-GPU frameworks is presented in this paper, along with its development in a language originally developed for GPU, like CUDA. This implementation offers the best response for all the presented cases, although its advantage of using more than one GPU occurs only in large networks.

  14. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    Science.gov (United States)

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Robust Longitudinal Aircraft- Control Based on an Adaptive Fuzzy-Logic Algorithm

    Directory of Open Access Journals (Sweden)

    Abdel- Latif Elshafei

    2002-06-01

    Full Text Available To study the aircraft response to a fast pull-up manoeuvre, a short period approximation of the longitudinal model is considered. The model is highly nonlinear and includes parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since feedback linearization is practically imperfect, robustifying and adaptive components are included in the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy systems are implemented. The first system models the nominal values of the system’s nonlinearity. The second system is an adaptive one that compensates for modeling errors. The derivation of the control law based on a dynamic game approach is given in detail. Stability of the closed-loop control system is also verified. Simulation results based on an F16-model illustrate a successful tracking performance of the proposed controller.

  16. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  17. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  18. Adaptive time-variant models for fuzzy-time-series forecasting.

    Science.gov (United States)

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  19. Adaptive Neuro-Fuzzy Computing Technique for Determining Turbulent Flow Friction Coefficient

    Directory of Open Access Journals (Sweden)

    Mohammad Givehchi

    2013-08-01

    Full Text Available Estimation of the friction coefficient in pipes is very important in many water and wastewater engineering issues, such as distribution of velocity and shear stress, erosion, sediment transport and head loss. In analyzing these problems, knowing the friction coefficient, can obtain estimates that are more accurate. In this study in order to estimate the friction coefficient in pipes, using adaptive neuro-fuzzy inference systems (ANFIS, grid partition method was used. For training and testing of neuro-fuzzy model, the data derived from the Colebrook’s equation was used. In the neuro-fuzzy approach, pipe relative roughness and Reynolds number are considered as input variables and friction coefficient as output variable is considered. Performance of the proposed approach was evaluated by using of the data obtained from the Colebrook’s equation and based on statistical indicators such as coefficient determination (R2, root mean squared error (RMSE and mean absolute error (MAE. The results showed that the adaptive nerou-fuzzy inference system with grid partition method and gauss model as an input membership function and linear as an output function could estimate friction coefficient more accurately than other conditions. The new proposed approach in this paper has capability of application in the practical design issues and can be combined with mathematical and numerical models of sediment transfer or real-time updating of these models.

  20. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  1. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2014-02-01

    Full Text Available Robust security is highly coveted in real wireless sensor network (WSN applications since wireless sensors’ sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring. The proposed framework offers: (i key initialization; (ii secure network (cluster formation (i.e., mutual authentication and dynamic key establishment; (iii key revocation; and (iv new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  2. A Bayesian Network Based Adaptability Design of Product Structures for Function Evolution

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Structure adaptability design is critical for function evolution in product families, in which many structural and functional design factors are intertwined together with manufacturing cost, customer satisfaction, and final market sales. How to achieve a delicate balance among all of these factors to maximize the market performance of the product is too complicated to address based on traditional domain experts’ knowledge or some ad hoc heuristics. Here, we propose a quantitative product evolution design model that is based on Bayesian networks to model the dynamic relationship between customer needs and product structure design. In our model, all of the structural or functional features along with customer satisfaction, manufacturing cost, sale price, market sales, and indirect factors are modeled as random variables denoted as nodes in the Bayesian networks. The structure of the Bayesian model is then determined based on the historical data, which captures the dynamic sophisticated relationship of customer demands of a product, structural design, and market performance. Application of our approach to an electric toothbrush product family evolution design problem shows that our model allows for designers to interrogate with the model and obtain theoretical and decision support for dynamic product feature design process.

  3. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  5. Imperialist Competitive Algorithm with Dynamic Parameter Adaptation Using Fuzzy Logic Applied to the Optimization of Mathematical Functions

    Directory of Open Access Journals (Sweden)

    Emer Bernal

    2017-01-01

    Full Text Available In this paper we are presenting a method using fuzzy logic for dynamic parameter adaptation in the imperialist competitive algorithm, which is usually known by its acronym ICA. The ICA algorithm was initially studied in its original form to find out how it works and what parameters have more effect upon its results. Based on this study, several designs of fuzzy systems for dynamic adjustment of the ICA parameters are proposed. The experiments were performed on the basis of solving complex optimization problems, particularly applied to benchmark mathematical functions. A comparison of the original imperialist competitive algorithm and our proposed fuzzy imperialist competitive algorithm was performed. In addition, the fuzzy ICA was compared with another metaheuristic using a statistical test to measure the advantage of the proposed fuzzy approach for dynamic parameter adaptation.

  6. Simulation of Fuzzy Adaptive PI Controlled Grid Interactive Inverter

    Directory of Open Access Journals (Sweden)

    Necmi ALTIN

    2009-03-01

    Full Text Available In this study, a voltage source grid interactive inverter is modeled and simulated in MATLAB/Simulink. Inverter is designed as current controlled and a fuzzy-PI current controller used for the generation of switching pattern to shape the inverter output current. The grid interactive inverter consists of a line frequency transformer and a LC type filter. Galvanic isolation between the grid and renewable energy source is obtained by the line frequency transformer and LC filter is employed to filter the high frequency harmonic components in current waveform due to PWM switching and to reduce the output current THD. Results of the MATLAB/Simulink simulation show that inverter output current is in sinusoidal waveform and in phase with line voltage, and current harmonics are in the limits of international standards (

  7. Adaptive neuro-fuzzy inference system based automatic generation control

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.H.; Etemadi, A.H. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2008-07-15

    Fixed gain controllers for automatic generation control are designed at nominal operating conditions and fail to provide best control performance over a wide range of operating conditions. So, to keep system performance near its optimum, it is desirable to track the operating conditions and use updated parameters to compute control gains. A control scheme based on artificial neuro-fuzzy inference system (ANFIS), which is trained by the results of off-line studies obtained using particle swarm optimization, is proposed in this paper to optimize and update control gains in real-time according to load variations. Also, frequency relaxation is implemented using ANFIS. The efficiency of the proposed method is demonstrated via simulations. Compliance of the proposed method with NERC control performance standard is verified. (author)

  8. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  9. Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes

    Science.gov (United States)

    Gao, Zilin; Wang, Yinhe; Zhang, Lili

    2018-02-01

    In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.

  10. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman

    2018-01-17

    The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were

  11. Synchronization and secure communication of chaotic systems via robust adaptive high-gain fuzzy observer

    International Nuclear Information System (INIS)

    Hyun, Chang-Ho; Park, Chang-Woo; Kim, Jae-Hun; Park, Mignon

    2009-01-01

    This paper proposes an alternative robust adaptive high-gain fuzzy observer design scheme and its application to synchronization and secure communication of chaotic systems. It is assumed that their states are immeasurable and their parameters are unknown. The structure of the proposed observer is represented by Takagi-Sugeno fuzzy model and has the integrator of the estimation error. It improves the performance of high-gain observer and makes the proposed observer robust against noisy measurements, uncertainties and parameter perturbations as well. Using Lyapunov stability theory, an adaptive law is derived to estimate the unknown parameters and the stability of the proposed observer is analyzed. Some simulation result of synchronization and secure communication of chaotic systems is given to present the validity of theoretical derivations and the performance of the proposed observer as an application.

  12. Fuzzy Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Prescribed Performance.

    Science.gov (United States)

    Zhang, Jin-Xi; Yang, Guang-Hong

    2018-05-01

    This paper investigates the tracking control problem for a family of strict-feedback systems in the presence of unknown nonlinearities and immeasurable system states. A low-complexity adaptive fuzzy output feedback control scheme is proposed, based on a backstepping method. In the control design, a fuzzy adaptive state observer is first employed to estimate the unmeasured states. Then, a novel error transformation approach together with a new modification mechanism is introduced to guarantee the finite-time convergence of the output error to a predefined region and ensure the closed-loop stability. Compared with the existing methods, the main advantages of our approach are that: 1) without using extra command filters or auxiliary dynamic surface control techniques, the problem of explosion of complexity can still be addressed and 2) the design procedures are independent of the initial conditions. Finally, two practical examples are performed to further illustrate the above theoretic findings.

  13. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  14. Fuzzy adaptive Kalman filter for indoor mobile target positioning with INS/WSN integrated method

    Institute of Scientific and Technical Information of China (English)

    杨海; 李威; 罗成名

    2015-01-01

    Pure inertial navigation system (INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network (WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter (KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system (FIS), and the fuzzy adaptive Kalman filter (FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.

  15. Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.

    Science.gov (United States)

    Shen, Qikun; Shi, Peng; Shi, Yan

    2016-12-01

    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.

  16. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  17. Fuzzy-rule-based Adaptive Resource Control for Information Sharing in P2P Networks

    Science.gov (United States)

    Wu, Zhengping; Wu, Hao

    With more and more peer-to-peer (P2P) technologies available for online collaboration and information sharing, people can launch more and more collaborative work in online social networks with friends, colleagues, and even strangers. Without face-to-face interactions, the question of who can be trusted and then share information with becomes a big concern of a user in these online social networks. This paper introduces an adaptive control service using fuzzy logic in preference definition for P2P information sharing control, and designs a novel decision-making mechanism using formal fuzzy rules and reasoning mechanisms adjusting P2P information sharing status following individual users' preferences. Applications of this adaptive control service into different information sharing environments show that this service can provide a convenient and accurate P2P information sharing control for individual users in P2P networks.

  18. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  19. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  20. Pendekatan Adaptive Neuro Fuzzy Sebagai Alternatif Bagi Bank Indonesia Dalam Menentukan Tingkat Inflasi Di Indonesia

    Directory of Open Access Journals (Sweden)

    Armaini Akhirson

    2016-10-01

    Full Text Available In uncertain economic like today, research and modeling the inflation rate is considered necessary to provide estimates and predictions of inflation rates in the future. Adaptive Neuro Fuzzy approach is a combination of  Neural Network and Fuzzy Logic. This study aims to describe the movement ofinflation(output variable  so it can beestimated by observing four Indonesia's macroeconomic data, namely the exchange rate, money supply, interbank interest rates, and the output gap (input variable. Observation period started from the data in 20011 to 20113. After the learning process is complete, fuzzy systems generate 45 fuzzy rules that can define the input-output behavior. The results of this study indicate a fairly high degree of accuracy with an average error rate is 0.5315.

  1. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2014-06-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  2. New fuzzy approximate model for indirect adaptive control of distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.

  3. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  4. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    Science.gov (United States)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  5. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  6. UAV Controller Based on Adaptive Neuro-Fuzzy Inference System and PID

    Directory of Open Access Journals (Sweden)

    Ali Moltajaei Farid

    2013-01-01

    Full Text Available ANFIS is combining a neural network with a fuzzy system results in a hybrid neuro-fuzzy system, capable of reasoning and learning in an uncertain and imprecise environment. In this paper, an adaptive neuro-fuzzy inference system (ANFIS is employed to control an unmanned aircraft vehicle (UAV.  First, autopilots structure is defined, and then ANFIS controller is applied, to control UAVs lateral position. The results of ANFIS and PID lateral controllers are compared, where it shows the two controllers have similar results. ANFIS controller is capable to adaptation in nonlinear conditions, while PID has to be tuned to preserves proper control in some conditions. The simulation results generated by Matlab using Aerosim Aeronautical Simulation Block Set, which provides a complete set of tools for development of six degree-of-freedom. Nonlinear Aerosonde unmanned aerial vehicle model with ANFIS controller is simulated to verify the capability of the system. Moreover, the results are validated by FlightGear flight simulator.

  7. Prediction of Mechanical Properties of LDPE-TPS Nanocomposites Using Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Maryam Sabetzadeh

    2012-12-01

    Full Text Available The changes in the behaviour of mechanical properties of low densitypolyethylene-thermoplastic corn starch (LDPE-TPCS nanocompositeswere studied by an adaptive neuro-fuzzy interference system. LDPE-TPCScomposites containing different quantities of nanoclay (Cloisite®15A, 0.5-3wt. % were prepared by extrusion process. In practice, it is difficult to carry out several experiments to identify the relationship between the extrusion process parameters and mechanical properties of the nanocomposites. In this paper, an adaptive neuro-fuzzy inference system (ANFIS was used for non-linear mapping between the processingparameters and the mechanical properties of LDPE-TPCS nanocomposites. ANFIS model due to possessing inference ability of fuzzy systems and also the learning feature of neural networks, could be used as a multiple inputs-multiple outputs to predict mechanical properties (such as ultimate tensile strength, elongation-at-break, Young’s modulus and relative impact strength of the nanocomposites. The proposed ANFIS model utilizes temperature, torque and Cloisite®15A contents as input parameters to predict the desired mechanical properties. The results obtained in this work indicatedthat ANFIS is an effective and intelligent method for prediction of the mechanical properties of the LDPE-TPCS nanocomposites with a good accuracy. The statistical quality of the ANFIS model was significant due to its acceptable mean square error criterion and good correlation coefficient (values > 0.8 between the experimental and simulated outputs.

  8. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    Science.gov (United States)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  9. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  10. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  11. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  12. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Science.gov (United States)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  13. A Mamdani Adaptive Neural Fuzzy Inference System for Improvement of Groundwater Vulnerability.

    Science.gov (United States)

    Agoubi, Belgacem; Dabbaghi, Radhia; Kharroubi, Adel

    2018-01-23

    Assessing groundwater vulnerability is an important procedure for sustainable water management. Various methods have been developed for effective assessment of groundwater vulnerability and protection. However, each method has its own conditions of use and, in practice; it is difficult to return the same results for the same site. The research conceptualized and developed an improved DRASTIC method using Mamdani Adaptive Neural Fuzzy Inference System (M-ANFIS-DRASTIC). DRASTIC and M-ANFIS-DRASTIC were applied in the Jorf aquifer, southeastern Tunisia, and results were compared. Results confirm that M-ANFIS-DRASTIC combined with geostatistical tools is more powerful, generated more precise vulnerability classes with very low estimation variance. Fuzzy logic has a power to produce more realistic aquifer vulnerability assessments and introduces new ways of modeling in hydrogeology using natural human language expressed by logic rules. © 2018, National Ground Water Association.

  14. Design of Immune-Algorithm-Based Adaptive Fuzzy Controllers for Active Suspension Systems

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2014-04-01

    Full Text Available The aim of this paper is to integrate the artificial immune systems and adaptive fuzzy control for the automobile suspension system, which is regarded as a multiobjective optimization problem. Moreover, the fuzzy control rules and membership controls are then introduced for identification and memorization. It leads fast convergence in the search process. Afterwards, by using the diversity of the antibody group, trapping into local optimum can be avoided, and the system possesses a global search capacity and a faster local search for finding a global optimal solution. Experimental results show that the artificial immune system with the recognition and memory functions allows the system to rapidly converge and search for the global optimal approximate solutions.

  15. Diagnosis Penyakit Jantung Menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Khadijah Fahmi Hayati Holle

    2016-09-01

    Full Text Available The number of uncertain risk factor in heart disease makes experts difficult to diagnose its disease. Computer technology in the health field is mostly used. In this paper, we implement a system to diagnose heart disease. The used method is Adaptive neuro-fuzzy inference system which combine the advantage of fuzzy and neural network. The used data is UCI Cleveland data that have 13 attributes as inputs. Output system diagnosis compared with observational data for evaluation. System performance tested by calculating accuracy. Tests were also conducted on the variation of the learning rate, iteration, minimum error, and the use of membership functions. Accuracy obtained from test is 65,657% where using membership function Beta.

  16. Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Doaa M. Atia

    2017-05-01

    Full Text Available The greenhouse is a complicated nonlinear system, which provides the plants with appropriate environmental conditions for growing. This paper presents a design of a control system for a greenhouse using geothermal energy as a power source for heating system. The greenhouse climate control problem is to create a favourable environment for the crop in order to reach predetermined results for high yield, high quality and low costs. Four controller techniques; PI control, fuzzy logic control, artificial neural network control and adaptive neuro-fuzzy control are used to adjust the greenhouse indoor temperature at the required value. MATLAB/SIMULINK is used to simulate the different types of controller techniques. Finally a comparative study between different control strategies is carried out.

  17. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  18. Adaptive QoS provision for IEEE 802.16e BWA networks based on cross-layer design

    Directory of Open Access Journals (Sweden)

    Kuo GS

    2011-01-01

    Full Text Available Abstract This article proposes an integrated framework for adaptive QoS provision in IEEE 802.16e broadband wireless access networks based on cross-layer design. On one hand, an efficient admission control (AC algorithm is proposed along with a semi-reservation scheme to guarantee the connection-level QoS. First, to guarantee the service continuity for handoff connections and resource efficiency, our semi-reservation scheme considers both users' handoff probability and average resource consumption together, which effectively avoids resource over-reservation and insufficient reservation. For AC, a new/handoff connection is accepted only when the target cell has enough resource to afford both instantaneous and average resource consumption to meet the average source rate request. On the other hand, a joint resource allocation and packet scheduling scheme is designed to provide packet-level QoS guarantee in term of "QoS rate", which can ensure fairness for the services with identical priority level in case of bandwidth shortage. Particularly, an enhanced bandwidth request scheme is designed to reduce unnecessary BR delay and redundant signaling overhead caused by the existing one in IEEE 802.16e, which further improves the packet-level QoS performance and resource efficiency for uplink transmission. Simulation results show that the proposed approach not only balances the tradeoff among connection blocking rate, connection dropping rate, and connection failure rate, but also achieves low mean packet dropping rate (PDR, small deviation of PDR, and low QoS outage rate. Moreover, high resource efficiency is ensured.

  19. Tracking Control of a 2-DOF Arm Actuated by Pneumatic Muscle Actuators Using Adaptive Fuzzy Sliding Mode Control

    Science.gov (United States)

    Chang, Ming-Kun; Wu, Jui-Chi

    Pneumatic muscle actuators (PMAs) have the highest power/weight ratio and power/volume ratio of any actuator. Therefore, they can be used not only in the rehabilitation engineering, but also as an actuator in robots, including industrial robots and therapy robots. It is difficult to achieve excellent tracking performance using classical control methods because the compressibility of gas and the nonlinear elasticity of bladder container causes parameter variations. An adaptive fuzzy sliding mode control is developed in this study. The fuzzy sliding surface can be used to reduce fuzzy rule numbers, and the adaptive control law is used to modify fuzzy rules on-line. A model matching technique is then adopted to adjust scaling factors. The experimental results show that this control strategy can attain excellent tracking performance.

  20. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  1. Design of a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological damper

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok

    2014-01-01

    This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80–99) and the control algorithm is synthesized based on the H ∞ tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches. (papers)

  2. Fetal ECG extraction via Type-2 adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Ahmadieh, Hajar; Asl, Babak Mohammadzadeh

    2017-04-01

    We proposed a noninvasive method for separating the fetal ECG (FECG) from maternal ECG (MECG) by using Type-2 adaptive neuro-fuzzy inference systems. The method can extract FECG components from abdominal signal by using one abdominal channel, including maternal and fetal cardiac signals and other environmental noise signals, and one chest channel. The proposed algorithm detects the nonlinear dynamics of the mother's body. So, the components of the MECG are estimated from the abdominal signal. By subtracting estimated mother cardiac signal from abdominal signal, fetal cardiac signal can be extracted. This algorithm was applied on synthetic ECG signals generated based on the models developed by McSharry et al. and Behar et al. and also on DaISy real database. In environments with high uncertainty, our method performs better than the Type-1 fuzzy method. Specifically, in evaluation of the algorithm with the synthetic data based on McSharry model, for input signals with SNR of -5dB, the SNR of the extracted FECG was improved by 38.38% in comparison with the Type-1 fuzzy method. Also, the results show that increasing the uncertainty or decreasing the input SNR leads to increasing the percentage of the improvement in SNR of the extracted FECG. For instance, when the SNR of the input signal decreases to -30dB, our proposed algorithm improves the SNR of the extracted FECG by 71.06% with respect to the Type-1 fuzzy method. The same results were obtained on synthetic data based on Behar model. Our results on real database reflect the success of the proposed method to separate the maternal and fetal heart signals even if their waves overlap in time. Moreover, the proposed algorithm was applied to the simulated fetal ECG with ectopic beats and achieved good results in separating FECG from MECG. The results show the superiority of the proposed Type-2 neuro-fuzzy inference method over the Type-1 neuro-fuzzy inference and the polynomial networks methods, which is due to its

  3. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  4. Adaptive neuro-fuzzy optimization of wind farm project net profit

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Ćojbašić, Žarko; Nikolić, Vlastimir; Anuar, Nor Badrul; Mohd Shuib, Nor Liyana; Mat Kiah, Miss Laiha; Akib, Shatirah

    2014-01-01

    Highlights: • Analyzing of wind farm project investment. • Net present value (NPV) maximization of the wind farm project. • Adaptive neuro-fuzzy (ANFIS) optimization of the number of wind turbines to maximize NPV. • The impact of the variation in the wind farm parameters. • Adaptive neuro fuzzy application. - Abstract: A wind power plant which consists of a group of wind turbines at a specific location is also known as wind farm. To maximize the wind farm net profit, the number of turbines installed in the wind farm should be different in depend on wind farm project investment parameters. In this paper, in order to achieve the maximal net profit of a wind farm, an intelligent optimization scheme based on the adaptive neuro-fuzzy inference system (ANFIS) is applied. As the net profit measures, net present value (NPV) and interest rate of return (IRR) are used. The NPV and IRR are two of the most important criteria for project investment estimating. The general approach in determining the accept/reject/stay in different decision for a project via NPV and IRR is to treat the cash flows as known with certainty. However, even small deviations from the predetermined values may easily invalidate the decision. In the proposed model the ANFIS estimator adjusts the number of turbines installed in the wind farm, for operating at the highest net profit point. The performance of proposed optimizer is confirmed by simulation results. Some outstanding properties of this new estimator are online implementation capability, structural simplicity and its robustness against any changes in wind farm parameters. Based on the simulation results, the effectiveness of the proposed optimization strategy is verified

  5. Adaptive complementary fuzzy self-recurrent wavelet neural network controller for the electric load simulator system

    Directory of Open Access Journals (Sweden)

    Wang Chao

    2016-03-01

    Full Text Available Due to the complexities existing in the electric load simulator, this article develops a high-performance nonlinear adaptive controller to improve the torque tracking performance of the electric load simulator, which mainly consists of an adaptive fuzzy self-recurrent wavelet neural network controller with variable structure (VSFSWC and a complementary controller. The VSFSWC is clearly and easily used for real-time systems and greatly improves the convergence rate and control precision. The complementary controller is designed to eliminate the effect of the approximation error between the proposed neural network controller and the ideal feedback controller without chattering phenomena. Moreover, adaptive learning laws are derived to guarantee the system stability in the sense of the Lyapunov theory. Finally, the hardware-in-the-loop simulations are carried out to verify the feasibility and effectiveness of the proposed algorithms in different working styles.

  6. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    International Nuclear Information System (INIS)

    Kakar, Manish; Nystroem, Haakan; Aarup, Lasse Rye; Noettrup, Trine Jakobi; Olsen, Dag Rune

    2005-01-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude

  7. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    Energy Technology Data Exchange (ETDEWEB)

    Kakar, Manish [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Nystroem, Haakan [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Aarup, Lasse Rye [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Noettrup, Trine Jakobi [Department of Radiation Oncology, The Finsen Centre, Rigshospitalet, Copenhagen (Denmark); Olsen, Dag Rune [Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway); Department of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Department of Physics, University of Oslo (Norway)

    2005-10-07

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  8. Fuzzy adaptive robust control for space robot considering the effect of the gravity

    Directory of Open Access Journals (Sweden)

    Qin Li

    2014-12-01

    Full Text Available Space robot is assembled and tested in gravity environment, and completes on-orbit service (OOS in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control (FARC strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative (PD controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.

  9. Adaptive Controller for 6-DOF Parallel Robot Using T-S Fuzzy Inference

    Directory of Open Access Journals (Sweden)

    Xue Jian

    2013-02-01

    Full Text Available 6-DOF parallel robot always appears in the form of Stewart platform. It has been widely used in industry for the benefits such as strong structural stiffness, high movement accuracy and so on. Space docking technology makes higher requirements of motion accuracy and dynamic performance to the control method on 6-DOF parallel robot. In this paper, a hydraulic 6-DOF parallel robot was used to simulate the docking process. Based on this point, this paper gave a thorough study on the design of an adaptive controller to eliminate the asymmetric of controlled plant and uncertain load force interference. Takagi-Sugeno (T-S fuzzy inference model was used to build the fuzzy adaptive controller. With T-S model, the controller directly imposes adaptive control signal on the plant to make sure that the output of plant could track the reference model output. The controller has simple structure and is easy to implement. Experiment results show that the controller can eliminate asymmetric and achieve good dynamic performance, and has good robustness to load interference.

  10. Adaptive neuro-fuzzy inference system for forecasting rubber milk production

    Science.gov (United States)

    Rahmat, R. F.; Nurmawan; Sembiring, S.; Syahputra, M. F.; Fadli

    2018-02-01

    Natural Rubber is classified as the top export commodity in Indonesia. Its high production leads to a significant contribution to Indonesia’s foreign exchange. Before natural rubber ready to be exported to another country, the production of rubber milk becomes the primary concern. In this research, we use adaptive neuro-fuzzy inference system (ANFIS) to do rubber milk production forecasting. The data presented here is taken from PT. Anglo Eastern Plantation (AEP), which has high data variance and range for rubber milk production. Our data will span from January 2009 until December 2015. The best forecasting result is 1,182% in term of Mean Absolute Percentage Error (MAPE).

  11. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2014-01-01

    Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...

  12. Adaptive neuro fuzzy system for modelling and prediction of distance pantograph catenary in railway transportation

    Science.gov (United States)

    Panoiu, M.; Panoiu, C.; Lihaciu, I. L.

    2018-01-01

    This research presents an adaptive neuro-fuzzy system which is used in the prediction of the distance between the pantograph and contact line of the electrical locomotives used in railway transportation. In railway transportation any incident that occurs in the electrical system can have major negative effects: traffic interrupts, equipment destroying. Therefore, a prediction as good as possible of such situations is very useful. In the paper was analyzing the possibility of modeling and prediction the variation of the distance between the pantograph and the contact line using intelligent techniques

  13. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...... the expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...

  14. Introduction to Fuzzy Set Theory

    Science.gov (United States)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  15. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  16. Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control

    Directory of Open Access Journals (Sweden)

    E.A. Ramadan

    2014-09-01

    Full Text Available This paper presents an improved adaptive fuzzy logic speed controller for a DC motor, based on field programmable gate array (FPGA hardware implementation. The developed controller includes an adaptive fuzzy logic control (AFLC algorithm, which is designed and verified with a nonlinear model of DC motor. Then, it has been synthesised, functionally verified and implemented using Xilinx Integrated Software Environment (ISE and Spartan-3E FPGA. The performance of this controller has been successfully validated with good tracking results under different operating conditions.

  17. Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Directory of Open Access Journals (Sweden)

    R. Razavi

    2007-01-01

    Full Text Available Bluetooth's default automatic repeat request (ARQ scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly B-slices by inspection of packet headers without the need for encoder intervention.

  18. A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO

    Directory of Open Access Journals (Sweden)

    Mehdi Neshat

    2015-11-01

    Full Text Available In this article, the objective was to present effective and optimal strategies aimed at improving the Swallow Swarm Optimization (SSO method. The SSO is one of the best optimization methods based on swarm intelligence which is inspired by the intelligent behaviors of swallows. It has been able to offer a relatively strong method for solving optimization problems. However, despite its many advantages, the SSO suffers from two shortcomings. Firstly, particles movement speed is not controlled satisfactorily during the search due to the lack of an inertia weight. Secondly, the variables of the acceleration coefficient are not able to strike a balance between the local and the global searches because they are not sufficiently flexible in complex environments. Therefore, the SSO algorithm does not provide adequate results when it searches in functions such as the Step or Quadric function. Hence, the fuzzy adaptive Swallow Swarm Optimization (FASSO method was introduced to deal with these problems. Meanwhile, results enjoy high accuracy which are obtained by using an adaptive inertia weight and through combining two fuzzy logic systems to accurately calculate the acceleration coefficients. High speed of convergence, avoidance from falling into local extremum, and high level of error tolerance are the advantages of proposed method. The FASSO was compared with eleven of the best PSO methods and SSO in 18 benchmark functions. Finally, significant results were obtained.

  19. Direct adaptive fuzzy control of a translating piezoelectric flexible manipulator driven by a pneumatic rodless cylinder

    Science.gov (United States)

    Qiu, Zhi-cheng; Wang, Bin; Zhang, Xian-min; Han, Jian-da

    2013-04-01

    This study presents a novel translating piezoelectric flexible manipulator driven by a rodless cylinder. Simultaneous positioning control and vibration suppression of the flexible manipulator is accomplished by using a hybrid driving scheme composed of the pneumatic cylinder and a piezoelectric actuator. Pulse code modulation (PCM) method is utilized for the cylinder. First, the system dynamics model is derived, and its standard multiple input multiple output (MIMO) state-space representation is provided. Second, a composite proportional derivative (PD) control algorithms and a direct adaptive fuzzy control method are designed for the MIMO system. Also, a time delay compensation algorithm, bandstop and low-pass filters are utilized, under consideration of the control hysteresis and the caused high-frequency modal vibration due to the long stroke of the cylinder, gas compression and nonlinear factors of the pneumatic system. The convergence of the closed loop system is analyzed. Finally, experimental apparatus is constructed and experiments are conducted. The effectiveness of the designed controllers and the hybrid driving scheme is verified through simulation and experimental comparison studies. The numerical simulation and experimental results demonstrate that the proposed system scheme of employing the pneumatic drive and piezoelectric actuator can suppress the vibration and achieve the desired positioning location simultaneously. Furthermore, the adopted adaptive fuzzy control algorithms can significantly enhance the control performance.

  20. Adaptive Interval Type-2 Fuzzy Logic Control for PMSM Drives with a Modified Reference Frame

    KAUST Repository

    Chaoui, Hicham

    2017-01-10

    In this paper, an adaptive interval type-2 fuzzy logic control scheme is proposed for high-performance permanent magnet synchronous machine drives. This strategy combines the power of type-2 fuzzy logic systems with the adaptive control theory to achieve accurate tracking and robustness to higher uncertainties. Unlike other controllers, the proposed strategy does not require electrical transducers and hence, no explicit currents loop regulation is needed, which yields a simplified control scheme. But, this limits the machine\\'s operation range since it results in a higher energy consumption. Therefore, a modified reference frame is also proposed in this paper to decrease the machine\\'s consumption. To better assess the performance of the new reference frame, comparison against its original counterpart is carried-out under the same conditions. Moreover, the stability of the closed-loop control scheme is guaranteed by a Lyapunov theorem. Simulation and experimental results for numerous situations highlight the effectiveness of the proposed controller in standstill, transient, and steady-state conditions.

  1. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  2. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  3. Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    This work presents a method for modeling the gas composition in a Reformed Methanol Fuel Cell system. The method is based on Adaptive Neuro-Fuzzy-Inference-Systems which are trained on experimental data. The developed models are of the H2, CO2, CO and CH3OH mass flows of the reformed gas. The ANFIS......, or fuel cell diagnostics systems....

  4. Design of neuro fuzzy fault tolerant control using an adaptive observer

    International Nuclear Information System (INIS)

    Anita, R.; Umamaheswari, B.; Viswanathan, B.

    2001-01-01

    New methodologies and concepts are developed in the control theory to meet the ever-increasing demands in industrial applications. Fault detection and diagnosis of technical processes have become important in the course of progressive automation in the operation of groups of electric drives. When a group of electric drives is under operation, fault tolerant control becomes complicated. For multiple motors in operation, fault detection and diagnosis might prove to be difficult. Estimation of all states and parameters of all drives is necessary to analyze the actuator and sensor faults. To maintain system reliability, detection and isolation of failures should be performed quickly and accurately, and hardware should be properly integrated. Luenberger full order observer can be used for estimation of the entire states in the system for the detection of actuator and sensor failures. Due to the insensitivity of the Luenberger observer to the system parameter variations, state estimation becomes inaccurate under the varying parameter conditions of the drives. Consequently, the estimation performance deteriorates, resulting in ordinary state observers unsuitable for fault detection technique. Therefore an adaptive observe, which can estimate the system states and parameter and detect the faults simultaneously, is designed in our paper. For a Group of D C drives, there may be parameter variations for some of the drives, and for other drives, there may not be parameter variations depending on load torque, friction, etc. So, estimation of all states and parameters of all drives is carried out using an adaptive observer. If there is any deviation with the estimated values, it is understood that fault has occurred and the nature of the fault, whether sensor fault or actuator fault, is determined by neural fuzzy network, and fault tolerant control is reconfigured. Experimental results with neuro fuzzy system using adaptive observer-based fault tolerant control are good, so as

  5. A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Mojarrad, Hassan Doagou; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2010-04-15

    This paper proposes a novel method for solving the Non-convex Economic Dispatch (NED) problems, by the Fuzzy Adaptive Modified Particle Swarm Optimization (FAMPSO). Practical ED problems have non-smooth cost functions with equality and inequality constraints when generator valve-point loading effects are taken into account. Modern heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution for ED problems. PSO is one of modern heuristic algorithms, in which particles change place to get close to the best position and find the global minimum point. However, the classic PSO may converge to a local optimum solution and the performance of the PSO highly depends on the internal parameters. To overcome these drawbacks, in this paper, a new mutation is proposed to improve the global searching capability and prevent the convergence to local minima. Also, a fuzzy system is used to tune its parameters such as inertia weight and learning factors. In order to evaluate the performance of the proposed algorithm, it is applied to a system consisting of 13 and 40 thermal units whose fuel cost function is calculated by taking account of the effect of valve-point loading. Simulation results demonstrate the superiority of the proposed algorithm compared to other optimization algorithms presented in literature. (author)

  6. A Modification of the Fuzzy Logic Based DASH Adaptation Scheme for Performance Improvement

    Directory of Open Access Journals (Sweden)

    Hyun Jun Kim

    2018-01-01

    Full Text Available We propose a modification of the fuzzy logic based DASH adaptation scheme (FDASH for seamless media service in time-varying network conditions. The proposed scheme (mFDASH selects a more appropriate bit-rate for the next segment by modification of the Fuzzy Logic Controller (FLC and estimates more accurate available bandwidth than FDASH scheme by using History-Based TCP Throughput Estimation. Moreover, mFDASH reduces the number of video bit-rate changes by applying Segment Bit-Rate Filtering Module (SBFM and employs Start Mechanism for clients to provide high-quality videos in the very beginning stage of the streaming service. Lastly, Sleeping Mechanism is applied to avoid any expected buffer overflow. We then use NS-3 Network Simulator to verify the performance of mFDASH. Upon the experimental results, mFDASH shows no buffer overflow within the limited buffer size, which is not guaranteed in FDASH. Also, we confirm that mFDASH provides the highest QoE to DASH clients among the three schemes (mFDASH, FDASH, and SVAA in Point-to-Point networks, Wi-Fi networks, and LTE networks, respectively.

  7. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  8. A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System

    Directory of Open Access Journals (Sweden)

    S. M. Odeh

    2015-01-01

    Full Text Available This paper presents a hybrid algorithm that combines Fuzzy Logic Controller (FLC and Genetic Algorithms (GAs and its application on a traffic signal system. FLCs have been widely used in many applications in diverse areas, such as control system, pattern recognition, signal processing, and forecasting. They are, essentially, rule-based systems, in which the definition of these rules and fuzzy membership functions is generally based on verbally formulated rules that overlap through the parameter space. They have a great influence over the performance of the system. On the other hand, the Genetic Algorithm is a metaheuristic that provides a robust search in complex spaces. In this work, it has been used to adapt the decision rules of FLCs that define an intelligent traffic signal system, obtaining a higher performance than a classical FLC-based control. The simulation results yielded by the hybrid algorithm show an improvement of up to 34% in the performance with respect to a standard traffic signal controller, Conventional Traffic Signal Controller (CTC, and up to 31% in the comparison with a traditional logic controller, FLC.

  9. interval type-2 fuzzy gain-adaptive controller of a doubly fed

    African Journals Online (AJOL)

    Loukal K and Benalia L

    2016-05-01

    May 1, 2016 ... machine a converter PWM (Pulse Width Modulation) between the machine ... operations on fuzzy sets increases with the increasing type of the fuzzy set. ...... Several simulations have been run using the Matlab and Simulink® ...

  10. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  11. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, M-Y; Chang, K-H [Department of E. E., Southern Taiwan University, 1 Nantai St., YungKang City, Tainan County 71005, Taiwan (China); Lia, Y-S [Executive Director Office, ITRI, Southern Taiwan Innovation Park, Tainan County, Taiwan (China)], E-mail: myshieh@mail.stut.edu.tw

    2008-02-15

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface.

  12. Design of a biped locomotion controller based on adaptive neuro-fuzzy inference systems

    International Nuclear Information System (INIS)

    Shieh, M-Y; Chang, K-H; Lia, Y-S

    2008-01-01

    This paper proposes a method for the design of a biped locomotion controller based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) inverse learning model. In the model developed here, an integrated ANFIS structure is trained to function as the system identifier for the modeling of the inverse dynamics of a biped robot. The parameters resulting from the modeling process are duplicated and integrated as those of the biped locomotion controller to provide favorable control action. As the simulation results show, the proposed controller is able to generate a stable walking cycle for a biped robot. Moreover, the experimental results demonstrate that the performance of the proposed controller is satisfactory under conditions when the robot stands in different postures or moves on a rugged surface

  13. An adaptive neuro-fuzzy controller for mold level control in continuous casting

    International Nuclear Information System (INIS)

    Zolghadri Jahromi, M.; Abolhassan Tash, F.

    2001-01-01

    Mold variations in continuous casting are believed to be the main cause of surface defects in the final product. Although a Pid controller is well capable of controlling the level under normal conditions, it cannot prevent large variations of mold level when a disturbance occurs in the form of nozzle unclogging. In this paper, dual controller architecture is presented, a Pid controller is used as the main controller of the plant and an adaptive neuro-fuzzy controller is used as an auxiliary controller to help the Pid during disturbed phases. The control is passed back to the Pid controller after the disturbance is being dealt with. Simulation results prove the effectiveness of this control strategy in reducing mold level variations during the unclogging period

  14. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    DEFF Research Database (Denmark)

    Achiche, S.; Shlechtingen, M.; Raison, M.

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...... obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error. The frequency domain is considered to analyze the similarity of the frequencies in the predicted...... of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...

  15. Adaptive Neuro-fuzzy Inference System as Cache Memory Replacement Policy

    Directory of Open Access Journals (Sweden)

    CHUNG, Y. M.

    2014-02-01

    Full Text Available To date, no cache memory replacement policy that can perform efficiently for all types of workloads is yet available. Replacement policies used in level 1 cache memory may not be suitable in level 2. In this study, we focused on developing an adaptive neuro-fuzzy inference system (ANFIS as a replacement policy for improving level 2 cache performance in terms of miss ratio. The recency and frequency of referenced blocks were used as input data for ANFIS to make decisions on replacement. MATLAB was employed as a training tool to obtain the trained ANFIS model. The trained ANFIS model was implemented on SimpleScalar. Simulations on SimpleScalar showed that the miss ratio improved by as high as 99.95419% and 99.95419% for instruction level 2 cache, and up to 98.04699% and 98.03467% for data level 2 cache compared with least recently used and least frequently used, respectively.

  16. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    Science.gov (United States)

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Optimized Aircraft Electric Control System Based on Adaptive Tabu Search Algorithm and Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Saifullah Khalid

    2016-09-01

    Full Text Available Three conventional control constant instantaneous power control, sinusoidal current control, and synchronous reference frame techniques for extracting reference currents for shunt active power filters have been optimized using Fuzzy Logic control and Adaptive Tabu search Algorithm and their performances have been compared. Critical analysis of Comparison of the compensation ability of different control strategies based on THD and speed will be done, and suggestions will be given for the selection of technique to be used. The simulated results using MATLAB model are presented, and they will clearly prove the value of the proposed control method of aircraft shunt APF. The waveforms observed after the application of filter will be having the harmonics within the limits and the power quality will be improved.

  18. Design of Power Cable UAV Intelligent Patrol System Based on Adaptive Kalman Filter Fuzzy PID Control

    Directory of Open Access Journals (Sweden)

    Chen Siyu

    2017-01-01

    Full Text Available Patrol UAV has poor aerial posture stability and is largely affected by anthropic factors, which lead to some shortages such as low power cable tracking precision, captured image loss and inconvenient temperature measurement, etc. In order to solve these disadvantages, this article puts forward a power cable intelligent patrol system. The core innovation of the system is a 360° platform. This collects the position information of power cables by using far infrared sensors and carries out real-time all-direction adjustment of UAV lifting platform through the adaptive Kalman filter fuzzy PID control algorithm, so that the precise tracking of power cables is achieved. An intelligent patrol system is established to detect the faults more accurately, so that a high intelligence degree of power cable patrol system is realized.

  19. Adaptation of a fuzzy controller’s scaling gains using genetic algorithms for balancing an inverted pendulum

    Directory of Open Access Journals (Sweden)

    Duka Adrian-Vasile

    2011-12-01

    Full Text Available This paper examines the development of a genetic adaptive fuzzy control system for the Inverted Pendulum. The inverted pendulum is a classical problem in Control Engineering, used for testing different control algorithms. The goal is to balance the inverted pendulum in the upright position by controlling the horizontal force applied to its cart. Because it is unstable and has a complicated nonlinear dynamics, the inverted pendulum is a good testbed for the development of nonconventional advanced control techniques. Fuzzy logic technique has been successfully applied to control this type of system, however most of the time the design of the fuzzy controller is done in an ad-hoc manner, and choosing certain parameters (controller gains, membership functions proves difficult. This paper examines the implementation of an adaptive control method based on genetic algorithms (GA, which can be used on-line to produce the adaptation of the fuzzy controller’s gains in order to achieve the stabilization of the pendulum. The performances of the proposed control algorithms are evaluated and shown by means of digital simulation.

  20. Adaptive fuzzy observer-based stabilization of a class of uncertain time-delayed chaotic systems with actuator nonlinearities

    International Nuclear Information System (INIS)

    Shahnazi, Reza; Haghani, Adel; Jeinsch, Torsten

    2015-01-01

    An observer-based output feedback adaptive fuzzy controller is proposed to stabilize a class of uncertain chaotic systems with unknown time-varying time delays, unknown actuator nonlinearities and unknown external disturbances. The actuator nonlinearity can be backlash-like hysteresis or dead-zone. Based on universal approximation property of fuzzy systems the unknown nonlinear functions are approximated by fuzzy systems, where the consequent parts of fuzzy rules are tuned with adaptive schemes. The proposed method does not need the availability of the states and an observer based output feedback approach is proposed to estimate the states. To have more robustness and at the same time to alleviate chattering an adaptive discontinuous structure is suggested. Semi-global asymptotic stability of the overall system is ensured by proposing a suitable Lyapunov–Krasovskii functional candidate. The approach is applied to stabilize the time-delayed Lorenz chaotic system with uncertain dynamics amid significant disturbances. Analysis of simulations reveals the effectiveness of the proposed method in terms of coping well with the modeling uncertainties, nonlinearities in actuators, unknown time-varying time-delays and unknown external disturbances while maintaining asymptotic convergence

  1. REPLACEMENT SPARE PART INVENTORY MONITORING USING ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Hartono Hartono

    2016-01-01

    Full Text Available Abstract   The amount of inventory is determined on the basis of the demand. So that users can know the demand forecasts need to be done on the request. This study uses the data to implement a replacement parts on the electronic module production equipment in the telecommunications transmission systems, switching, access and power, ie by replacing the electronic module in the system is trouble  or damaged parts of a good electronic module spare parts inventory, while the faulty electronic modules shipped to the Repair Center for repaired again, so that the results of these improvements can replenish spare part  inventory. Parameters speed on improvement process of electronic module broken (repaired, in the form of an average repair time at the repair centers, in order to get back into the electronic module that is ready for used as spare parts in compliance with the safe supply inventory  warehouse.  This research using the method  of  Adaptive Neuro Fuzzy Inference System (ANFIS in developing a decision support system for inventory control of spare parts available in Warehouse Inventory taking into account several parameters supporters, namely demand, improvement and fulfillment of spare parts and repair time. This study uses a recycling input parameter repair faulty electronic module of the customer to immediately replace the module in inventory warehouse,  do improvements in the Repair Center. So the acceleration restoration factor is very influential as the input spare parts inventory supply in the warehouse and using the Adaptive Neuro-Fuzzy Inference System (ANFIS method.   Keywords: ANFIS, inventory control, replacement

  2. A Fuzzy Adaptive Tightly-Coupled Integration Method for Mobile Target Localization Using SINS/WSN

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-11-01

    Full Text Available In recent years, mobile target localization for enclosed environments has been a growing interest. In this paper, we have proposed a fuzzy adaptive tightly-coupled integration (FATCI method for positioning and tracking applications using strapdown inertial navigation system (SINS and wireless sensor network (WSN. The wireless signal outage and severe multipath propagation of WSN often influence the accuracy of measured distance and lead to difficulties with the WSN positioning. Note also that the SINS are known for their drifted error over time. Using as a base the well-known loosely-coupled integration method, we have built a tightly-coupled integrated positioning system for SINS/WSN based on the measured distances between anchor nodes and mobile node. The measured distance value of WSN is corrected with a least squares regression (LSR algorithm, with the aim of decreasing the systematic error for measured distance. Additionally, the statistical covariance of measured distance value is used to adjust the observation covariance matrix of a Kalman filter using a fuzzy inference system (FIS, based on the statistical characteristics. Then the tightly-coupled integration model can adaptively adjust the confidence level for measurement according to the different measured accuracies of distance measurements. Hence the FATCI system is achieved using SINS/WSN. This innovative approach is verified in real scenarios. Experimental results show that the proposed positioning system has better accuracy and stability compared with the loosely-coupled and traditional tightly-coupled integration model for WSN short-term failure or normal conditions.

  3. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  4. High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets

    Science.gov (United States)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong

    2008-02-01

    Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.

  5. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    Science.gov (United States)

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. © 2013 Published by ISA on behalf of ISA.

  6. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  7. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Rojas R, E.

    2014-01-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n o up to a predetermined final level n f . During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  8. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  9. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    Science.gov (United States)

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model.

  10. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    Science.gov (United States)

    Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng

    2006-12-01

    An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.

  11. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    Directory of Open Access Journals (Sweden)

    Chen Yu-Fan

    2006-01-01

    Full Text Available An adaptive minimum mean-square error (MMSE array receiver based on the fuzzy-logic recursive least-squares (RLS algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ( , , into a forgetting factor . For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS algorithm using the fuzzy-inference-controlled step-size . This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS and variable forgetting factor RLS (VFF-RLS algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER for multipath fading channels.

  12. Lag synchronization of unknown chaotic delayed Yang-Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification.

    Science.gov (United States)

    Xia, Yonghui; Yang, Zijiang; Han, Maoan

    2009-07-01

    This paper considers the lag synchronization (LS) issue of unknown coupled chaotic delayed Yang-Yang-type fuzzy neural networks (YYFCNN) with noise perturbation. Separate research work has been published on the stability of fuzzy neural network and LS issue of unknown coupled chaotic neural networks, as well as its application in secure communication. However, there have not been any studies that integrate the two. Motivated by the achievements from both fields, we explored the benefits of integrating fuzzy logic theories into the study of LS problems and applied the findings to secure communication. Based on adaptive feedback control techniques and suitable parameter identification, several sufficient conditions are developed to guarantee the LS of coupled chaotic delayed YYFCNN with or without noise perturbation. The problem studied in this paper is more general in many aspects. Various problems studied extensively in the literature can be treated as special cases of the findings of this paper, such as complete synchronization (CS), effect of fuzzy logic, and noise perturbation. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed adaptive scheme. This research also demonstrates the effectiveness of application of the proposed adaptive feedback scheme in secure communication by comparing chaotic masking with fuzziness with some previous studies. Chaotic signal with fuzziness is more complex, which makes unmasking more difficult due to the added fuzzy logic.

  13. Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning for Backgammon Game

    DEFF Research Database (Denmark)

    Heinze, Mikael; Ortiz-Arroyo, Daniel; Larsen, Henrik Legind

    2005-01-01

    In this paper we investigate the effectiveness of applying fuzzy controllers to create strong computer player programs in the domain of backgammon. Fuzzeval, our proposed mechanism, consists of a fuzzy controller that dynamically evaluates the perceived strength of the board configurations it re-...

  14. Achieving transparency and adaptivity in fuzzy control framework : an application to power transformers predictive overload system

    NARCIS (Netherlands)

    Acampora, G.; Loia, V.; Ippolito, L.; Siano, P.

    2004-01-01

    From a technologic point of view, the problem of fuzzy control deals with the real implementation of a controller on a specific hardware. Today, the market of micro-controller offers different solutions able to implement a fuzzy controller varying from application domains to programming language

  15. Development of decision support system for employee selection using Adaptive Neuro Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    ‘Azzam Abdullah

    2018-01-01

    Full Text Available The number of children day care is increasing from year to year. Children day care is categorized as service industry that help parents in caring and educate children. This type of service industry plays a substitute for the family at certain hours, usually during work hours. The common problems in this industry is related to the employee performance. Most of employees have a less understanding about the whole job. Some employees only perform a routine task, i.e. feeding, cleaning and putting the child to sleep. The role in educating children is not performed as well as possible. Therefore, the employee selection is an important process to solve a children day care problem. An effective decision support system is required to optimize the employee selection process. Adaptive neuro fuzzy inference system (ANFIS is used to develop the decision support system for employee selection process. The data used to build the system is the historical data of employee selection process in children day care. The data shows the characteristic of job applicant that qualified and not qualified. From that data, the system can perform a learning process and give the right decision. The system is able to provide the right decision with an error of 0,00016249. It means that the decision support system that developed using ANFIS can give the right recommendation for employee selection process.

  16. RETRACTED: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. Sections ;1. Introduction; and ;2. Modulation transfer function;, as well as Figures 1-3, plagiarize the article published by N. Gül and M. Efe in Turk J Elec Eng & Comp Sci 18 (2010) 71 (http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-1/elk-18-1-6-0811-9.pdf). Sections ;4. Adaptive neuro-fuzzy inference system; and ;6. Conclusion; duplicate parts of the articles previously published by the corresponding author et al in ;Expert Systems with Applications; 39 (2012) 13295-13304, http://dx.doi.org/10.1016/j.eswa.2012.05.072 and ;Expert Systems with Applications; 40 (2013) 281-286, http://dx.doi.org/10.1016/j.eswa.2012.07.076. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  17. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  18. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  19. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    International Nuclear Information System (INIS)

    Rezazadeh, S.; Mirzaee, I.; Mehrabi, M.

    2012-01-01

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm 2 ) is modeled to the variation of pressure at the cathode side P C (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient α an , relative humidity of inlet fuel RH a and relative humidity of inlet air RH c which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states

  20. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  1. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  2. Improved Trust Prediction in Business Environments by Adaptive Neuro Fuzzy Inference Systems

    Directory of Open Access Journals (Sweden)

    Ali Azadeh

    2015-06-01

    Full Text Available Trust prediction turns out to be an important challenge when cooperation among intelligent agents with an impression of trust in their mind, is investigated. In other words, predicting trust values for future time slots help partners to identify the probability of continuing a relationship. Another important case to be considered is the context of trust, i.e. the services and business commitments for which a relationship is defined. Hence, intelligent agents should focus on improving trust to provide a stable and confident context. Modelling of trust between collaborating parties seems to be an important component of the business intelligence strategy. In this regard, a set of metrics have been considered by which the value of confidence level for predicted trust values has been estimated. These metrics are maturity, distance and density (MD2. Prediction of trust for future mutual relationships among agents is a problem that is addressed in this study. We introduce a simulation-based model which utilizes linguistic variables to create various scenarios. Then, future trust values among agents are predicted by the concept of adaptive neuro-fuzzy inference system (ANFIS. Mean absolute percentage errors (MAPEs resulted from ANFIS are compared with confidence levels which are determined by applying MD2. Results determine the efficiency of MD2 for forecasting trust values. This is the first study that utilizes the concept of MD2 for improvement of business trust prediction.

  3. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  4. Static security-based available transfer capability using adaptive neuro fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Venkaiah, C.; Vinod Kumar, D.M.

    2010-07-01

    In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.

  5. Estimating Longitudinal Dispersion Coefficient of Pollutants Using Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Hossein Riahi Modvar

    2008-09-01

    Full Text Available Longitudinal dispersion coefficient in rivers and natural streams is usually estimated by simple inaccurate empirical relations because of the complexity of the phenomenon. In this study, the adaptive neuro-fuzzy inference system (ANFIS is used to develop a new flexible tool for predicting the longitudinal dispersion coefficient. The system has the ability to understand and realize the phenomenon without the need for mathematical governing equations.. The training and testing of this new model are accomplished using a set of available published filed data. Several statistical and graphical criteria are used to check the accuracy of the model. The dispersion coefficient values predicted by the ANFIS model compares satisfactorily with the measured data. The predicted values are also compared with those predicted by existing empirical equations reported in the literature to find that the ANFIS model with R2=0.99 and RMSE=15.18 in training stage and R2=0.91 and RMSE=187.8 in testing stage is superior in predicting the dispersion coefficient to the most accurate empirical equation with R2=0.48 and RMSE=295.7. The proposed methodology is a new approach to estimating dispersion coefficient in streams and can be combined with mathematical models of pollutant transfer or real-time updating of these models.

  6. A novel power swing blocking scheme using adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Zadeh, Hassan Khorashadi; Li, Zuyi [Illinois Institute of Technology, Department of Electrical and Computer Engineering, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

    2008-07-15

    A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180 . (author)

  7. Adaptive Neuro-Fuzzy Based Gain Controller for Erbium-Doped Fiber Amplifiers

    Directory of Open Access Journals (Sweden)

    YUCEL, M.

    2017-02-01

    Full Text Available Erbium-doped fiber amplifiers (EDFA must have a flat gain profile which is a very important parameter such as wavelength division multiplexing (WDM and dense WDM (DWDM applications for long-haul optical communication systems and networks. For this reason, it is crucial to hold a stable signal power per optical channel. For the purpose of overcoming performance decline of optical networks and long-haul optical systems, the gain of the EDFA must be controlled for it to be fixed at a high speed. In this study, due to the signal power attenuation in long-haul fiber optic communication systems and non-equal signal amplification in each channel, an automatic gain controller (AGC is designed based on the adaptive neuro-fuzzy inference system (ANFIS for EDFAs. The intelligent gain controller is implemented and the performance of this new electronic control method is demonstrated. The proposed ANFIS-based AGC-EDFA uses the experimental dataset to produce the ANFIS-based sets and the rule base. Laser diode currents are predicted within the accuracy rating over 98 percent with the proposed ANFIS-based system. Upon comparing ANFIS-based AGC-EDFA and experimental results, they were found to be very close and compatible.

  8. Static security-based available transfer capability using adaptive neuro fuzzy inference system

    International Nuclear Information System (INIS)

    Venkaiah, C.; Vinod Kumar, D.M.

    2010-01-01

    In a deregulated power system, power transactions between a seller and a buyer can only be scheduled when there is sufficient available transfer capability (ATC). Internet-based, open access same-time information systems (OASIS) provide market participants with ATC information that is continuously updated in real time. Static security-based ATC can be computed for the base case system as well as for the critical line outages of the system. Since critical line outages are based on static security analysis, the computation of static security based ATC using conventional methods is both tedious and time consuming. In this study, static security-based ATC was computed for real-time applications using 3 artificial intelligent methods notably the back propagation algorithm (BPA), the radial basis function (RBF) neural network, and the adaptive neuro fuzzy inference system (ANFIS). An IEEE 24-bus reliability test system (RTS) and 75-bus practical system were used to test these 3 different intelligent methods. The results were compared with the conventional full alternating current (AC) load flow method for different transactions.

  9. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  10. Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system

    Directory of Open Access Journals (Sweden)

    Houman HANACHI

    2018-01-01

    Full Text Available Gas Turbine Engines (GTEs are vastly used for generation of mechanical power in a wide range of applications from airplane propulsion systems to stationary power plants. The gas-path components of a GTE are exposed to harsh operating and ambient conditions, leading to several degradation mechanisms. Because GTE components are mostly inaccessible for direct measurements and their degradation levels must be inferred from the measurements of accessible parameters, it is a challenge to acquire reliable information on the degradation conditions of the parts in different fault modes. In this work, a data-driven fault detection and degradation estimation scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System (ANFIS. To verify the performance and accuracy of the developed diagnostic framework on GTE data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE model under (a diverse ambient conditions and control settings, (b every possible combination of degradation symptoms, and (c a broad range of signal to noise ratios. The results prove the competency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic results to measurement noise for different degradation symptoms.

  11. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding.

    Science.gov (United States)

    Yin, Jun; Yang, Yuwang; Wang, Lei

    2016-04-01

    Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.

  12. Designing a Fuzzy Adaptive Controller for a Rigid joint Two Link Non-Linear Manipulator with Uncertainty

    Directory of Open Access Journals (Sweden)

    Maryam Montazeri

    2013-01-01

    Full Text Available This paper presents a control approach to the fuzzy-adaptive control scheme for rigid manipulators with unknown parameters. Lagrange’s method is employed for computing robot motion dynamics. Stability analysis guaranteed through Lyapunov’s theory using some suitable adaptive rules that make sure all signals in the closed-loop system are bounded and tracking error ones asymptotically reaches to zero. Compared with other controllers, there are some numerical simulations that verify effectiveness of the proposed method. Also, simulation results verify that the proposed controller can deal with uncertainties in the system.

  13. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    Science.gov (United States)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  14. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    Science.gov (United States)

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  15. A Supervisory Control Algorithm of Hybrid Electric Vehicle Based on Adaptive Equivalent Consumption Minimization Strategy with Fuzzy PI

    Directory of Open Access Journals (Sweden)

    Fengqi Zhang

    2016-11-01

    Full Text Available This paper presents a new energy management system based on equivalent consumption minimization strategy (ECMS for hybrid electric vehicles. The aim is to enhance fuel economy and impose state of charge (SoC charge-sustainability. First, the relationship between the equivalent factor (EF of ECMS and the co-state of pontryagin’s minimum principle (PMP is derived. Second, a new method of implementing the adaptation law using fuzzy proportional plus integral (PI controller is developed to adjust EF for ECMS in real-time. This adaptation law is more robust than one with constant EF due to the variation of EF as well as driving cycle. Finally, simulations for two driving cycles using ECMS are conducted as opposed to the commonly used rule-based (RB control strategy, indicating that the proposed adaptation law can provide a promising blend in terms of fuel economy and charge-sustainability. The results confirm that ECMS with Fuzzy PI adaptation law is more robust than ECMS with constant EF as well as PI adaptation law and it achieves significant improvements compared with RB in terms of fuel economy, which is enhanced by 4.44% and 14.7% for china city bus cycle and economic commission of Europe (ECE cycle, respectively.

  16. MRAS speed estimator with fuzzy and PI stator resistance adaptation for sensorless induction motor drives using RT-lab

    Directory of Open Access Journals (Sweden)

    S. Mohan Krishna

    2016-09-01

    Full Text Available This paper presents a real-time simulation study of Model Reference Adaptive System based rotor speed estimator with parallel stator resistance adaptation mechanism for speed sensorless induction motor drive. Both, the traditional Proportional Integral and Fuzzy logic based control mechanisms are utilised for stator resistance adaptation, while, the rotor speed is estimated parallely by means of Proportional Integral based mechanism. The estimator's response to dynamic changes in Load perturbation and doubling of the nominal value of the actual stator resistance of the motor is observed. The superiority of the fuzzy based stator resistance adaptation in the Model Reference Adaptive System estimator is proved through results validated in real-time. The purpose of employing a fairly new real-time platform is to reduce the test and prototype time. The model is initially built using Matlab/Simulink blocksets and the results are validated in real time using RT-Lab. The RT-lab blocksets are integrated into the Simulink model and then executed in real-time using the OP-4500 target developed by Opal-RT. The real-time simulation results are observed in the workstation.

  17. Speed control of permanent magnet excitation transverse flux linear motor by using adaptive neuro-fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain-shams Univ. Cairo (Egypt); Muyeen, S.M. [Department of Electrical Engineering, Petroleum Institute, Abu Dhabi (United Arab Emirates); Tamura, Junji [Department of EEE, Kitami Institute of Technology, 165 Koen Cho, Kitami 090-8507, Hokkaido (Japan)

    2010-12-15

    This paper presents a novel adaptive neuro-fuzzy controller applies on transverse flux linear motor for controlling its speed. The proposed controller presents fuzzy logic controller with self tuning scaling factors based on artificial neural network structure. It has two input variables and one control output variable. Firstly the fuzzy logic control rules are described then NN architecture is represented to self tune the output scaling factors of the controller. The application of this control technique represents the novelty of work, where this algorithm has so far not been stated before for this type of drives. This methodology solves the problem of nonlinearities and load changes of TFLM drives. The dynamic response of the motor is studied under the rated load condition as well as load disturbances. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. The dynamic response of the motor with the proposed controller is compared with PI and adaptive NN controllers. It is found that the proposed controller gives better and faster response from the viewpoint of overshoot and settling time. Matlab/Simulink tool is used for this dynamic simulation study.

  18. Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

    Directory of Open Access Journals (Sweden)

    Ulfatun Hani'ah

    2016-06-01

    Full Text Available Peramalan pemakaian air pada bulan januari 2015 sampai April 2015 dapat dilakukan menggunakan perhitungan matematika dengan bantuan ilmu komputer. Metode yang digunakan adalah Adaptive Neuro Fuzzy Inference System (ANFIS dengan bantuan software MATLAB. Untuk pengujian program, dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Simpulan yang diperoleh adalah bahwa implementasi metode Adaptive Neuro-Fuzzy Inference System dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan LSE rekursif, lalu penentuan perhitungan error menggunakan sum square error (SSE dan membuat sistem peramalan pemakaian air dengan software MATLAB. Setelah dilakukan percobaan hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0080107. Hasil peramalan pemakaian air pada bulan Januari adalah 3.836.138m3, bulan Februari adalah 3.595.188m3, bulan Maret adalah 3.596.416 m3, dan bulan April adalah 3.776.833 m3. 

  19. Using an adaptive fuzzy-logic system to optimize the performances and the reduction of chattering phenomenon in the control of induction motor

    Directory of Open Access Journals (Sweden)

    Barazane Linda

    2009-01-01

    Full Text Available Neural networks and fuzzy inference systems are becoming well recognized tools of designing an identifier/controller capable of perceiving the operating environment and imitating a human operator with high performance. Also, by combining these two features, more versatile and robust models, called 'neuro-fuzzy' architectures have been developed. The motivation behind the use of neuro-fuzzy approaches is based on the complexity of real life systems, ambiguities on sensory information or time-varying nature of the system under investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in order to perform the responses of the speed regulation and to reduce the chattering phenomenon introduced by sliding mode control, which is very harmful to the actuators in our case and may excite the unmodeled dynamics of the system. The type of the neuro-fuzzy system used here is called:' adaptive neuro fuzzy inference controller (ANFIS'. This neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. Simulation results reveal some very interesting features. .

  20. Designing an Adaptive Nuero-Fuzzy Inference System for Evaluating the Business Intelligence System Implementation in Software Industry

    Directory of Open Access Journals (Sweden)

    Iman Raeesi Vanani

    2015-03-01

    Full Text Available The main goal of research is designing an adaptive nuero-fuzzy inference system for evaluating the implementation of business intelligence systems in software industry. Iranian software development organizations have been facing a lot of problems in case of implementing business intelligence systems. This system would be helpful in recognizing the conditions and prerequisites of success or failure. Organizations can recalculate the neuro-fuzzy system outputs with some considerations on various inputs to figure out which inputs have the most effect on the implementation outputs. By resolving the problems on inputs, organizations can achieve a better level of implementation success. The designed system has been trained by a data set and afterwards, it has been evaluated. The trained system has reached the error value of 0.08. Eventually, some recommendations have been provided for software development firms on the areas that might need more considerations and improvements.

  1. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    Science.gov (United States)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  2. Indirect adaptive fuzzy fault-tolerant tracking control for MIMO nonlinear systems with actuator and sensor failures.

    Science.gov (United States)

    Bounemeur, Abdelhamid; Chemachema, Mohamed; Essounbouli, Najib

    2018-05-10

    In this paper, an active fuzzy fault tolerant tracking control (AFFTTC) scheme is developed for a class of multi-input multi-output (MIMO) unknown nonlinear systems in the presence of unknown actuator faults, sensor failures and external disturbance. The developed control scheme deals with four kinds of faults for both sensors and actuators. The bias, drift, and loss of accuracy additive faults are considered along with the loss of effectiveness multiplicative fault. A fuzzy adaptive controller based on back-stepping design is developed to deal with actuator failures and unknown system dynamics. However, an additional robust control term is added to deal with sensor faults, approximation errors, and external disturbances. Lyapunov theory is used to prove the stability of the closed loop system. Numerical simulations on a quadrotor are presented to show the effectiveness of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. An Adaptive Neuro-Fuzzy Inference System for Sea Level Prediction Considering Tide-Generating Forces and Oceanic Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Li-Ching Lin Hsien-Kuo Chang

    2008-01-01

    Full Text Available The paper presents an adaptive neuro fuzzy inference system for predicting sea level considering tide-generating forces and oceanic thermal expansion assuming a model of sea level dependence on sea surface temperature. The proposed model named TGFT-FN (Tide-Generating Forces considering sea surface Temperature and Fuzzy Neuro-network system is applied to predict tides at five tide gauge sites located in Taiwan and has the root mean square of error of about 7.3 - 15.0 cm. The capability of TGFT-FN model is superior in sea level prediction than the previous TGF-NN model developed by Chang and Lin (2006 that considers the tide-generating forces only. The TGFT-FN model is employed to train and predict the sea level of Hua-Lien station, and is also appropriate for the same prediction at the tide gauge sites next to Hua-Lien station.

  4. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    Science.gov (United States)

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  5. Estimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Somayyeh Lotfi Noghabi

    2012-07-01

    Full Text Available Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS was presented for estimating the optimal dosage of sodium valproate in IGE (Idiopathic Generalized Epilepsy patients. Methods: 40 patients with Idiopathic Generalized Epilepsy, who were referred to the neurology department of Mashhad University of Medical Sciences between the years 2006-2011, were included in this study. The function Adaptive Neuro- Fuzzy Inference System (ANFIS constructs a Fuzzy Inference System (FIS whose membership function parameters are tuned (adjusted using either a back-propagation algorithm alone, or in combination with the least squares type of method (hybrid algorithm. In this study, we used hybrid method for adjusting the parameters. Methods: The R-square of the proposed system was %598 and the Pearson correlation coefficient was significant (P 0.05. Although the accuracy of the model was not high, it wasgood enough to be applied for treating the IGE patients with sodium valproate. Discussion: This paper presented a new application of ANFIS for estimating the optimal dosage of sodium valproate in IGE patients. Fuzzy set theory plays an important role in dealing with uncertainty when making decisions in medical applications. Collectively, it seems that ANFIS has a high capacity to be applied in medical sciences, especially neurology.

  6. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-01-15

    The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the modelling of ground-coupled heat pump (GCHP) system. The GCHP system connected to a test room with 16.24 m{sup 2} floor area in Firat University, Elazig (38.41 N, 39.14 E), Turkey, was designed and constructed. The heating and cooling loads of the test room were 2.5 and 3.1 kW at design conditions, respectively. The system was commissioned in November 2002 and the performance tests have been carried out since then. The average performance coefficients of the system (COPS) for horizontal ground heat exchanger (GHE) in the different trenches, at 1 and 2 m depths, were obtained to be 2.92 and 3.2, respectively. Experimental performances were performed to verify the results from the ANFIS approach. In order to achieve the optimal result, several computer simulations have been carried out with different membership functions and various number of membership functions. The most suitable membership function and number of membership functions are found as Gauss and 2, respectively. For this number level, after the training, it is found that root-mean squared (RMS) value is 0.0047, and absolute fraction of variance (R{sup 2}) value is 0.9999 and coefficient of variation in percent (cov) value is 0.1363. This paper shows that the values predicted with the ANFIS, especially with the hybrid learning algorithm, can be used to predict the performance of the GCHP system quite accurately. (author)

  7. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    Science.gov (United States)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  8. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    Science.gov (United States)

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other

  9. An Adaptive Supervisory Sliding Fuzzy Cerebellar Model Articulation Controller for Sensorless Vector-Controlled Induction Motor Drive Systems

    Directory of Open Access Journals (Sweden)

    Shun-Yuan Wang

    2015-03-01

    Full Text Available This paper presents the implementation of an adaptive supervisory sliding fuzzy cerebellar model articulation controller (FCMAC in the speed sensorless vector control of an induction motor (IM drive system. The proposed adaptive supervisory sliding FCMAC comprised a supervisory controller, integral sliding surface, and an adaptive FCMAC. The integral sliding surface was employed to eliminate steady-state errors and enhance the responsiveness of the system. The adaptive FCMAC incorporated an FCMAC with a compensating controller to perform a desired control action. The proposed controller was derived using the Lyapunov approach, which guarantees learning-error convergence. The implementation of three intelligent control schemes—the adaptive supervisory sliding FCMAC, adaptive sliding FCMAC, and adaptive sliding CMAC—were experimentally investigated under various conditions in a realistic sensorless vector-controlled IM drive system. The root mean square error (RMSE was used as a performance index to evaluate the experimental results of each control scheme. The analysis results indicated that the proposed adaptive supervisory sliding FCMAC substantially improved the system performance compared with the other control schemes.

  10. Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources

    Directory of Open Access Journals (Sweden)

    Otilia Elena Dragomir

    2015-11-01

    Full Text Available The challenge for our paper consists in controlling the performance of the future state of a microgrid with energy produced from renewable energy sources. The added value of this proposal consists in identifying the most used criteria, related to each modeling step, able to lead us to an optimal neural network forecasting tool. In order to underline the effects of users’ decision making on the forecasting performance, in the second part of the article, two Adaptive Neuro-Fuzzy Inference System (ANFIS models are tested and evaluated. Several scenarios are built by changing: the prediction time horizon (Scenario 1 and the shape of membership functions (Scenario 2.

  11. A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting

    Directory of Open Access Journals (Sweden)

    KAMPOUROPOULOS, K.

    2014-02-01

    Full Text Available This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS and Genetic Algorithms (GA. The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.

  12. Statistical Methods for Fuzzy Data

    CERN Document Server

    Viertl, Reinhard

    2011-01-01

    Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m

  13. Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System

    Science.gov (United States)

    Hu, Qing; Hu, Yuwei

    The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.

  14. An application of adaptive neuro-fuzzy inference system to landslide susceptibility mapping (Klang valley, Malaysia)

    Science.gov (United States)

    Sezer, Ebru; Pradhan, Biswajeet; Gokceoglu, Candan

    2010-05-01

    Landslides are one of the recurrent natural hazard problems throughout most of Malaysia. Recently, the Klang Valley area of Selangor state has faced numerous landslide and mudflow events and much damage occurred in these areas. However, only little effort has been made to assess or predict these events which resulted in serious damages. Through scientific analyses of these landslides, one can assess and predict landslide-susceptible areas and even the events as such, and thus reduce landslide damages through proper preparation and/or mitigation. For this reason , the purpose of the present paper is to produce landslide susceptibility maps of a part of the Klang Valley areas in Malaysia by employing the results of the adaptive neuro-fuzzy inference system (ANFIS) analyses. Landslide locations in the study area were identified by interpreting aerial photographs and satellite images, supported by extensive field surveys. Landsat TM satellite imagery was used to map vegetation index. Maps of topography, lineaments and NDVI were constructed from the spatial datasets. Seven landslide conditioning factors such as altitude, slope angle, plan curvature, distance from drainage, soil type, distance from faults and NDVI were extracted from the spatial database. These factors were analyzed using an ANFIS to construct the landslide susceptibility maps. During the model development works, total 5 landslide susceptibility models were obtained by using ANFIS results. For verification, the results of the analyses were then compared with the field-verified landslide locations. Additionally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values was calculated. Landslide locations were used to validate results of the landslide susceptibility map and the verification results showed 98% accuracy for the model 5 employing all parameters produced in the present study as the landslide conditioning factors. The validation results showed sufficient

  15. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms.

    Science.gov (United States)

    Razavi Termeh, Seyed Vahid; Kornejady, Aiding; Pourghasemi, Hamid Reza; Keesstra, Saskia

    2018-02-15

    Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the

  16. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  17. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  18. An adaptive map-matching algorithm based on hierarchical fuzzy system from vehicular GPS data.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available An improved hierarchical fuzzy inference method based on C-measure map-matching algorithm is proposed in this paper, in which the C-measure represents the certainty or probability of the vehicle traveling on the actual road. A strategy is firstly introduced to use historical positioning information to employ curve-curve matching between vehicle trajectories and shapes of candidate roads. It improves matching performance by overcoming the disadvantage of traditional map-matching algorithm only considering current information. An average historical distance is used to measure similarity between vehicle trajectories and road shape. The input of system includes three variables: distance between position point and candidate roads, angle between driving heading and road direction, and average distance. As the number of fuzzy rules will increase exponentially when adding average distance as a variable, a hierarchical fuzzy inference system is then applied to reduce fuzzy rules and improve the calculation efficiency. Additionally, a learning process is updated to support the algorithm. Finally, a case study contains four different routes in Beijing city is used to validate the effectiveness and superiority of the proposed method.

  19. An Adaptive Fuzzy Control Scheme for Dyebath pH in Exhaust Dyeing

    African Journals Online (AJOL)

    Nafiisah

    parameters such as temperature, salt concentration, the quality of the dyed fabric, .... where the natural angular frequency, n = 0.337 rad. ... (6). Dosing pumps and dye bath. The control signal generated by the fuzzy controller, u(kT), determines ...

  20. Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering

    Directory of Open Access Journals (Sweden)

    Ahmed Elazab

    2015-01-01

    Full Text Available An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.

  1. Improvement of adaptive fuzzy control for a photovoltaic/wind/diesel generating system; Taiyoko/furyoku/diesel hatsuden system no saitekigata fuzzy seigyo no kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Nagaike, H; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan).Faculty of Engineering

    1996-10-27

    The photovoltaic/wind/diesel generating system that uses a storage battery as auxiliary power has been proposed to supply power from the system to the independent area. In this system, it is important to generate no insufficient power from the viewpoint of effective energy utilization and minimize the fuel consumption of a diesel generator. Authors have proposed the adaptive fuzzy control that changes the shape of the membership function of input variables according to the parameter indicating the system state. However, a parameter was rapidly changed in the conventional method. This badly influences the control. Therefore, the way to determine the parameter that indicates the state of this system was improved. Assume that an input value is set to the average value between a certain point of time and the {Delta}t time as the method for determining a parameter. If the {Delta}t value is lower, the change in a membership function is more effective. As a result, a greater fuel reduction effect was obtained. 4 refs., 8 figs., 1 tab.

  2. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Science.gov (United States)

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  3. A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller

    Science.gov (United States)

    Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi

    This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.

  4. Sub-module Short Circuit Fault Diagnosis in Modular Multilevel Converter Based on Wavelet Transform and Adaptive Neuro Fuzzy Inference System

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    for continuous operation and post-fault maintenance. In this article, a fault diagnosis technique is proposed for the short circuit fault in a modular multi-level converter sub-module using the wavelet transform and adaptive neuro fuzzy inference system. The fault features are extracted from output phase voltage...

  5. Adaptive Artificial intelligence based fuzzy logic MPPTcontrol for stande-alone photovoltaic system under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Zaghba Layachi

    2015-08-01

    Full Text Available there is an increased need for analysing the effect of atmospheric variables on photovoltaic (PV production and performance. The outputs from the different PV cells in different atmospheric conditions, such as irradiation and temperature , differ from each other evidencing knowledge deficiency in PV systems [14]. Maximum power point tracking (MPPT methods are used to maximize the PV array output power by tracking continuously the maximum power point (MPP. Among all MPPT methods existing in the literature, perturb and observe (P&O is the most commonly used for its simplicity and ease of implementation; however, it presents drawbacks such as slow response speed, oscillation around the MPP in steady state, and even tracking in wrong way under rapidly changing atmospheric conditions. In order to allow a functioning around the optimal point Mopt, we have inserted a DC-DC converter (Buck–Boost for a better matching between the PV and the load. This paper, we study the Maximum power point tracking using adaptive Intelligent fuzzy logic and conventional (P&O control for stande-alone photovoltaic Array system .In particular, the performances of the controllers are analyzed under variation weather conditions with are constant temperature and variable irradiation. The proposed system is simulated by using MATLAB-SIMULINK. According to the results, fuzzy logic controller has shown better performance during the optimization.

  6. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-08-22

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  7. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS with Quantum Chemical Descriptors

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    2014-08-01

    Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  8. Adaptive neuro-fuzzy inference systems for semi-automatic discrimination between seismic events: a study in Tehran region

    Science.gov (United States)

    Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro

    2012-04-01

    Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.

  9. Relative Wave Energy based Adaptive Neuro-Fuzzy Inference System model for the Estimation of Depth of Anaesthesia.

    Science.gov (United States)

    Benzy, V K; Jasmin, E A; Koshy, Rachel Cherian; Amal, Frank; Indiradevi, K P

    2018-01-01

    The advancement in medical research and intelligent modeling techniques has lead to the developments in anaesthesia management. The present study is targeted to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques. The neurophysiological signal that reflects cognitive state of anaesthetic drugs is the electroencephalogram signal. The information available on electroencephalogram signals during anaesthesia are drawn by extracting relative wave energy features from the anaesthetic electroencephalogram signals. Discrete wavelet transform is used to decomposes the electroencephalogram signals into four levels and then relative wave energy is computed from approximate and detail coefficients of sub-band signals. Relative wave energy is extracted to find out the degree of importance of different electroencephalogram frequency bands associated with different anaesthetic phases awake, induction, maintenance and recovery. The Kruskal-Wallis statistical test is applied on the relative wave energy features to check the discriminating capability of relative wave energy features as awake, light anaesthesia, moderate anaesthesia and deep anaesthesia. A novel depth of anaesthesia index is generated by implementing a Adaptive neuro-fuzzy inference system based fuzzy c-means clustering algorithm which uses relative wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available depth of anaesthesia monitor Bispectral index.

  10. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  11. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ...) to increase competitive advantage, innovation, and mission effectiveness. Network-based effectiveness occurs due to the influence of various factors such as people, procedures, technology, and organizations...

  12. Analysis prediction of Indonesian banks (BCA, BNI, MANDIRI) using adaptive neuro-fuzzy inference system (ANFIS) and investment strategies

    Science.gov (United States)

    Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep

    2015-09-01

    Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.

  13. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery.

    Science.gov (United States)

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang; Chen, Fa

    2016-12-01

    Hand physiological tremor of surgeons can cause vibration at the surgical instrument tip, which may make it difficult for the surgeon to perform fine manipulations of tissue, needles, and sutures. A zero phase adaptive fuzzy Kalman filter (ZPAFKF) is proposed to suppress hand tremor and vibration of a robotic surgical system. The involuntary motion can be reduced by adding a compensating signal that has the same magnitude and frequency but opposite phase with the tremor signal. Simulations and experiments using different filters were performed. Results show that the proposed filter can avoid the loss of useful motion information and time delay, and better suppress minor and varying tremor. The ZPAFKF can provide less error, preferred accuracy, better tremor estimation, and more desirable compensation performance, to suppress hand tremor and decrease vibration at the surgical instrument tip. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method

    DEFF Research Database (Denmark)

    Chen, Shuheng; Hu, Weihao; Su, Chi

    2015-01-01

    A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...

  15. Forecasting Water Level Fluctuations of Urmieh Lake Using Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sepideh Karimi

    2012-06-01

    Full Text Available Forecasting lake level at various prediction intervals is an essential issue in such industrial applications as navigation, water resource planning and catchment management. In the present study, two data driven techniques, namely Gene Expression Programming and Adaptive Neuro-Fuzzy Inference System, were applied for predicting daily lake levels for three prediction intervals. Daily water-level data from Urmieh Lake in Northwestern Iran were used to train, test and validate the used techniques. Three statistical indexes, coefficient of determination, root mean square error and variance accounted for were used to assess the performance of the used techniques. Technique inter-comparisons demonstrated that the GEP surpassed the ANFIS model at each of the prediction intervals. A traditional auto regressive moving average model was also applied to the same data sets; the obtained results were compared with those of the data driven approaches demonstrating superiority of the data driven models to ARMA.

  16. Deteksi Jarak Lokasi Gangguan Pada Saluran Transmisi 500 Kv Cilegon Baru - Cibinong Menggunakan Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Muhamad Otong

    2017-06-01

    Full Text Available Pada saluran transmisi diperlukan metode deteksi lokasi gangguan yang akurat dan cepat untuk mengurangi waktu pencarian, sehingga mempercepat proses perbaikan. Dengan menggunakan kombinasi metode Transformasi Park dan Adaptive Neuro Fuzzy Inference System (ANFIS, dapat dideteksi jarak lokasi gangguan secara langsung setelah terjadinya gangguan dengan cara menganalisa gelombang berjalan pada saluran transmisi. Saat terjadi gangguan, akan menyebabkan timbulnya gelombang berjalan yang berupa tegangan dan arus. Tegangan dan arus ini akan ditransformasikan oleh transformasi park pada kedua ujung saluran untuk mendapatkan waktu kedatangan gelombang berjalan, yang mana terdapat perbedaan waktu pada tiap ujung saluran dikarenakan adanya perbedaan jarak yang ada. Perbedaan waktu ini akan di input kedalam ANFIS untuk mendapatkan jarak lokasi gangguan. Dengan membandingkan jumlah nilai keanggotaan dan pemilihan input, maka diperoleh desain ANFIS terbaik adalah dengan jumlah nilai keanggotaan (MF 5 serta input perbedaan waktu ∆tV dan ∆tI (V dan I dengan nilai Mean Absolute Error (MAE sebesar 1,33.

  17. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    Directory of Open Access Journals (Sweden)

    Zhixian Yang

    2014-01-01

    Full Text Available Background electroencephalography (EEG, recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE and sample entropy (SampEn in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

  18. Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neuro-fuzzy models

    International Nuclear Information System (INIS)

    Zare, Mansour; Vahdati Khaki, Jalil

    2012-01-01

    Highlights: ► ANNs and ANFIS fairly predicted UTS and YS of warm compacted molybdenum prealloy. ► Effects of composition, temperature, compaction pressure on output were studied. ► ANFIS model was in better agreement with experimental data from published article. ► Sintering temperature had the most significant effect on UTS and YS. -- Abstract: Predictive models using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were successfully developed to predict yield strength and ultimate tensile strength of warm compacted 0.85 wt.% molybdenum prealloy samples. To construct these models, 48 different experimental data were gathered from the literature. A portion of the data set was randomly chosen to train both ANN with back propagation (BP) learning algorithm and ANFIS model with Gaussian membership function and the rest was implemented to verify the performance of the trained network against the unseen data. The generalization capability of the networks was also evaluated by applying new input data within the domain covered by the training pattern. To compare the obtained results, coefficient of determination (R 2 ), root mean squared error (RMSE) and average absolute error (AAE) indexes were chosen and calculated for both of the models. The results showed that artificial neural network and adaptive neuro-fuzzy system were both potentially strong for prediction of the mechanical properties of warm compacted 0.85 wt.% molybdenum prealloy; however, the proposed ANFIS showed better performance than the ANN model. Also, the ANFIS model was subjected to a sensitivity analysis to find the significant inputs affecting mechanical properties of the samples.

  19. Evaluation framework based on fuzzy measured method in adaptive learning systems

    OpenAIRE

    Houda Zouari Ounaies, ,; Yassine Jamoussi; Henda Hajjami Ben Ghezala

    2008-01-01

    Currently, e-learning systems are mainly web-based applications and tackle a wide range of users all over the world. Fitting learners’ needs is considered as a key issue to guaranty the success of these systems. Many researches work on providing adaptive systems. Nevertheless, evaluation of the adaptivity is still in an exploratory phase. Adaptation methods are a basic factor to guaranty an effective adaptation. This issue is referred as meta-adaptation in numerous researches. In our research...

  20. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous {sup 99m}Tc/{sup 201}Tl SPECT imaging: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2015-01-11

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  1. Fuzzy control and identification

    CERN Document Server

    Lilly, John H

    2010-01-01

    This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

  2. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  3. Foundations Of Fuzzy Control

    DEFF Research Database (Denmark)

    Jantzen, Jan

    The objective of this textbook is to acquire an understanding of the behaviour of fuzzy logic controllers. Under certain conditions a fuzzy controller is equivalent to a proportional-integral-derivative (PID) controller. Using that equivalence as a link, the book applies analysis methods from...... linear and nonlinear control theory. In the linear domain, PID tuning methods and stability analyses are transferred to linear fuzzy controllers. The Nyquist plot shows the robustness of different settings of the fuzzy gain parameters. As a result, a fuzzy controller is guaranteed to perform as well...... as any PID controller. In the nonlinear domain, the stability of four standard control surfaces is analysed by means of describing functions and Nyquist plots. The self-organizing controller (SOC) is shown to be a model reference adaptive controller. There is a possibility that a nonlinear fuzzy PID...

  4. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.

    Science.gov (United States)

    Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian

    2011-04-01

    This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.

  5. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-01-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers. (paper)

  6. A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control

    Science.gov (United States)

    Han, Dongju

    2018-05-01

    Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.

  7. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    Directory of Open Access Journals (Sweden)

    Bloch Isabelle

    2007-01-01

    Full Text Available This paper describes a system for optical music recognition (OMR in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  8. Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K-C [Department of Automation Engineering, National Formosa University, Huwei, Yunlin 63208, Taiwan (China)

    2005-01-01

    Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision {+-}0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy.

  9. Temperature dependent estimator for load cells using an adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Lee, K-C

    2005-01-01

    Accurate weighting of pieces in various temperature environments for load cells is a key feature in many industrial applications. This paper proposes a method to achieve high-precision ±0.56/3000 grams for a load-cell-based weighting system by using ANFIS. ANFIS is used to model the relationship between the reading of load cells and the actual weight of samples considering temperature-varying effect and nonlinearity of the load cells. The model of the load-cell-based weighting system can accurately estimate the weight of test samples from the load cell reading. The proposed ANFIS-based method is convenient for use and can improve the precision of digital load cell measurement systems. Experiments demonstrate the validity and effectiveness of fuzzy neural networks for modeling of load cells and the results show that the proposed ANFIS-based method outperforms some existing methods in terms of modeling and prediction accuracy

  10. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  11. A two-stage planning and control model toward Economically Adapted Power Distribution Systems using analytical hierarchy processes and fuzzy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schweickardt, Gustavo [Instituto de Economia Energetica, Fundacion Bariloche, Centro Atomico Bariloche - Pabellon 7, Av. Bustillo km 9500, 8400 Bariloche (Argentina); Miranda, Vladimiro [INESC Porto, Instituto de Engenharia de Sistemas e Computadores do Porto and FEUP, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 378, 4200-465 Porto (Portugal)

    2009-07-15

    This work presents a model to evaluate the Distribution System Dynamic De-adaptation respecting its planning for a given period of Tariff Control. The starting point for modeling is brought about by the results from a multi-criteria method based on Fuzzy Dynamic Programming and on Analytic Hierarchy Processes applied in a mid/short-term horizon (stage 1). Then, the decision-making activities using the Hierarchy Analytical Processes will allow defining, for a Control of System De-adaptation (stage 2), a Vector to evaluate the System Dynamic Adaptation. It is directly associated to an eventual series of inbalances that take place during its evolution. (author)

  12. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  13. On Modeling the Behavior of Comparators for Complex Fuzzy Objects in a Fuzzy Object-Relational Database Management System

    Directory of Open Access Journals (Sweden)

    JuanM. Medina

    2012-08-01

    Full Text Available This paper proposes a parameterized definition for fuzzy comparators on complex fuzzy datatypes like fuzzy collections with conjunctive semantics and fuzzy objects. This definition and its implementation on a Fuzzy Object-Relational Database Management System (FORDBMS provides the designer with a powerful tool to adapt the behavior of these operators to the semantics of the considered application.

  14. Adaptive fuzzy control of neutron power of the TRIGA Mark III reactor; Control difuso adaptable de la potencia neutronica del reactor Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Rojas R, E.

    2014-07-01

    The design and implementation of an identification and control scheme of the TRIGA Mark III research nuclear reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico is presented in this thesis work. The identification of the reactor dynamics is carried out using fuzzy logic based systems, in which a learning process permits the adjustment of the membership function parameters by means of techniques based on neural networks and bio-inspired algorithms. The resulting identification system is a useful tool that allows the emulation of the reactor power behavior when different types of insertions of reactivity are applied into the core. The identification of the power can also be used for the tuning of the parameters of a control system. On the other hand, the regulation of the reactor power is carried out by means of an adaptive and stable fuzzy control scheme. The control law is derived using the input-output linearization technique, which permits the introduction of a desired power profile for the plant to follow asymptotically. This characteristic is suitable for managing the ascent of power from an initial level n{sub o} up to a predetermined final level n{sub f}. During the increase of power, a constraint related to the rate of change in power is considered by the control scheme, thus minimizing the occurrence of a safety reactor shutdown due to a low reactor period value. Furthermore, the theory of stability in the sense of Lyapunov is used to obtain a supervisory control law which maintains the power error within a tolerance region, thus guaranteeing the stability of the power of the closed loop system. (Author)

  15. Evaluation Framework Based on Fuzzy Measured Method in Adaptive Learning Systems

    Science.gov (United States)

    Ounaies, Houda Zouari; Jamoussi, Yassine; Ben Ghezala, Henda Hajjami

    2008-01-01

    Currently, e-learning systems are mainly web-based applications and tackle a wide range of users all over the world. Fitting learners' needs is considered as a key issue to guaranty the success of these systems. Many researches work on providing adaptive systems. Nevertheless, evaluation of the adaptivity is still in an exploratory phase.…

  16. A STRUCTURE APPROACH FOR A PHOTOVOLTAIC STATION CONTROL BASED ON ADAPTIVE FUZZY AGENT

    Directory of Open Access Journals (Sweden)

    I. A. Elzein

    2017-01-01

    Full Text Available The solar energy is directly converted into electrical energy by solar PV module. Each type of PV module has its own specific characteristic corresponding to the surrounding condition such as irradiation, and temperature and this makes the tracking of maximum power point (MPP a complicated problem. To overcome this problem, many maximum power point tracking (MPPT control algorithms have been presented. Fuzzy logic (FL has been used for tracking the MPP of PV modules because it has the advantages of being robust, relatively simple to design and does not require the knowledge of an exact model where a mathematical model of the PV module, DC-DC converter, are used in the study of FL based MPPT algorithm. It is suggested to present this problem in the form of two-folds; first to identify the deviation of the power to maximum power point, and secondly, to control the voltage of the DC-DC converter corresponding to maximum power. In this paper, the first discussion approach will stress out the integration of model predictive control in maximum power point tracking MPPT and as progressing a second approach is identified as fuzzy logic controller FLC and perturb & Observe P&O algorithms are analyzed. All are interrelated to MPPT model for a photovoltaic module, PVM, to search for and generate the maximum power; in this case what’s called P-max. As per the first technique the focus is on the optimal duty ratio, D, for a series of multi diverse types of converters and load matching. The design of the MPPT for a stand-alone photovoltaic power generation system is applied where the system will consist of a solar array with nonlinear time varying characteristics, and a converter with appropriate filters. The integration of model predictive control will be addressed first in this paper. The second fold will implement an MPPT system that use the FLC and compare it with a classical MPPT P&O algorithm through the utilization of Simulink. The novel design in

  17. A knowledge representation approach using fuzzy cognitive maps for better navigation support in an adaptive learning system.

    Science.gov (United States)

    Chrysafiadi, Konstantina; Virvou, Maria

    2013-12-01

    In this paper a knowledge representation approach of an adaptive and/or personalized tutoring system is presented. The domain knowledge should be represented in a more realistic way in order to allow the adaptive and/or personalized tutoring system to deliver the learning material to each individual learner dynamically taking into account her/his learning needs and her/his different learning pace. To succeed this, the domain knowledge representation has to depict the possible increase or decrease of the learner's knowledge. Considering that the domain concepts that constitute the learning material are not independent from each other, the knowledge representation approach has to allow the system to recognize either the domain concepts that are already partly or completely known for a learner, or the domain concepts that s/he has forgotten, taking into account the learner's knowledge level of the related concepts. In other words, the system should be informed about the knowledge dependencies that exist among the domain concepts of the learning material, as well as the strength on impact of each domain concept on others. Fuzzy Cognitive Maps (FCMs) seem to be an ideal way for representing graphically this kind of information. The suggested knowledge representation approach has been implemented in an e-learning adaptive system for teaching computer programming. The particular system was used by the students of a postgraduate program in the field of Informatics in the University of Piraeus and was compared with a corresponding system, in which the domain knowledge was represented using the most common used technique of network of concepts. The results of the evaluation were very encouraging.

  18. Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems

    Directory of Open Access Journals (Sweden)

    Evangelos Rikos

    2017-07-01

    Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.

  19. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    Science.gov (United States)

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  20. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Vicente Hernández Díaz

    2015-09-01

    Full Text Available The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT and Cyber-Physical Systems (CPS are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container, and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  1. Using Adaptive Neural-Fuzzy Inference Systems (ANFIS for Demand Forecasting and an Application

    Directory of Open Access Journals (Sweden)

    Onur Doğan

    2016-06-01

    Full Text Available Due to the rapid increase in global competition among organizations and companies, rational approaches in decision making have become indispensable for organizations in today’s world. Establishing a safe and robust path through uncertainties and risks depends on the decision units’ ability of using scientific methods as well as technology. Demand forecasting is known to be one of the most critical problems in organizations.  A company which supports its demand forecasting mechanism with scientific methodologies could increase its productivity and efficiency in all other functions. New methods, such as fuzzy logic and artificial neural networks are frequently being used as a decision-making mechanism in organizations and companies recently.  In this study, it is aimed to solve a critical demand forecasting problem with ANFIS. In the first phase of the study, the factors which impact demand forecasting are determined, and then a database of the model is established using these factors. It has been shown that ANFIS could be used for demand forecasting.

  2. Evaluation of the Application of Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems for Rainfall-Runoff Modelling in Zayandeh_rood Dam Basin

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Dastorani

    2012-01-01

    Full Text Available During recent few decades, due to the importance of the availability of water, and therefore the necesity of predicting run off resulted from rain fall there has been an increase in developing and implementation of new suitable method for prediction of run off using precipitation data. One of these approaches that have been developed in several areas of sciences including water related fields, is soft computing techniques such as artificial neural networks and fuzzy logic systems. This research was designed to evaluate the applicability of artificial neural network and adaptive neuro –fuzzy inference system to model rainfall-runoff process in Zayandeh_rood dam basin. It must be mentioned that, data have been analysed using Wingamma software, to select appropriate type and number of training input data before they can be used in the models. Then, it has been tried to evaluated applicability of artificial neural networks and neuro-fuzzy techniques to predict runoff generated from daily rainfall. Finally, the accuracy of the results produced by these methods has been compared using statistical criterion. Results taken from this research show that artificial neural networks and neuro-fuzzy technique presented different outputs in different conditions in terms of type and number of inputs variables, but both method have been able to produce acceptable results when suitable input variables and network structures are used.

  3. Optimal Sizing for Wind/PV/Battery System Using Fuzzy c-Means Clustering with Self-Adapted Cluster Number

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-01-01

    Full Text Available Integrating wind generation, photovoltaic power, and battery storage to form hybrid power systems has been recognized to be promising in renewable energy development. However, considering the system complexity and uncertainty of renewable energies, such as wind and solar types, it is difficult to obtain practical solutions for these systems. In this paper, optimal sizing for a wind/PV/battery system is realized by trade-offs between technical and economic factors. Firstly, the fuzzy c-means clustering algorithm was modified with self-adapted parameters to extract useful information from historical data. Furthermore, the Markov model is combined to determine the chronological system states of natural resources and load. Finally, a power balance strategy is introduced to guide the optimization process with the genetic algorithm to establish the optimal configuration with minimized cost while guaranteeing reliability and environmental factors. A case of island hybrid power system is analyzed, and the simulation results are compared with the general FCM method and chronological method to validate the effectiveness of the mentioned method.

  4. Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Do, Hoang Thinh; Ahn, Kyoung Kwan [University of Ulsan, Ulsan (Korea, Republic of)

    2013-03-15

    A secondary-controlled hydrostatic transmission system (SC-HST), which considered being an energy-saving system, can recuperate most of the lost vehicle kinetic energy in decelerating and braking time and it shows advantage in fuel economy improvement of vehicle. Almost secondary control units (SCU) in SC-HST inherently contain nonlinear characteristics such as dead-zone input. Therefore, it is difficult to obtain precise position or velocity control by conventional linear controllers. This problem limits the application of SC-HST in industry and mobile vehicle. This paper gives a description of SC-HST and proposes an adaptive fuzzy sliding mode controller (AFSMC) for velocity control of SCU. Experiments were carried out in the condition of disturbance load by using both the proposed controller and PID controller for the comparison and evaluation of the effectiveness of the proposed controller. The experimental results showed that the proposed controller was excellent from the standpoints of performance and stability for the velocity control of SC-HST.

  5. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  6. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  7. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  8. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  9. Integration of Adaptive Neuro-Fuzzy Inference System, Neural Networks and Geostatistical Methods for Fracture Density Modeling

    Directory of Open Access Journals (Sweden)

    Ja’fari A.

    2014-01-01

    Full Text Available Image logs provide useful information for fracture study in naturally fractured reservoir. Fracture dip, azimuth, aperture and fracture density can be obtained from image logs and have great importance in naturally fractured reservoir characterization. Imaging all fractured parts of hydrocarbon reservoirs and interpreting the results is expensive and time consuming. In this study, an improved method to make a quantitative correlation between fracture densities obtained from image logs and conventional well log data by integration of different artificial intelligence systems was proposed. The proposed method combines the results of Adaptive Neuro-Fuzzy Inference System (ANFIS and Neural Networks (NN algorithms for overall estimation of fracture density from conventional well log data. A simple averaging method was used to obtain a better result by combining results of ANFIS and NN. The algorithm applied on other wells of the field to obtain fracture density. In order to model the fracture density in the reservoir, we used variography and sequential simulation algorithms like Sequential Indicator Simulation (SIS and Truncated Gaussian Simulation (TGS. The overall algorithm applied to Asmari reservoir one of the SW Iranian oil fields. Histogram analysis applied to control the quality of the obtained models. Results of this study show that for higher number of fracture facies the TGS algorithm works better than SIS but in small number of fracture facies both algorithms provide approximately same results.

  10. Mechanical fault diagnostics for induction motor with variable speed drives using Adaptive Neuro-fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z. [Department of Electrical & amp; Computer Engineering, Queen' s University, Kingston, Ont. (Canada K7L 3N6); Sadeghian, A. [Department of Computer Science, Ryerson University, Toronto, Ont. (Canada M5B 2K3); Wu, B. [Department of Electrical & amp; Computer Engineering, Ryerson University, Toronto, Ont. (Canada M5B 2K3)

    2006-06-15

    A novel online diagnostic algorithm for mechanical faults of electrical machines with variable speed drive systems is presented in this paper. Using Wavelet Packet Decomposition (WPD), a set of feature coefficients, represented with different frequency resolutions, related to the mechanical faults is extracted from the stator current of the induction motors operating over a wide range of speeds. A new integrated diagnostic system for electrical machine mechanical faults is then proposed using multiple Adaptive Neuro-fuzzy Inference Systems (ANFIS). This paper shows that using multiple ANFIS units significantly reduces the scale and complexity of the system and speeds up the training of the network. The diagnostic algorithm is validated on a three-phase induction motor drive system, and it is proven to be capable of detecting rotor bar breakage and air gap eccentricity faults with high accuracy. The algorithm is applicable to a variety of industrial applications where either continuous on-line monitoring or off-line fault diagnostics is required. (author)

  11. Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach

    Science.gov (United States)

    Chen, Chaochao; Vachtsevanos, George; Orchard, Marcos E.

    2012-04-01

    Machine prognosis can be considered as the generation of long-term predictions that describe the evolution in time of a fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem so that timely maintenance can be performed to avoid catastrophic failures. This paper proposes an integrated RUL prediction method using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which forecasts the time evolution of the fault indicator and estimates the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter as a model describing the fault progression. The high-order particle filter is used to estimate the current state and carry out p-step-ahead predictions via a set of particles. These predictions are used to estimate the RUL pdf. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results demonstrate that it outperforms both the conventional ANFIS predictor and the particle-filter-based predictor where the fault growth model is a first-order model that is trained via the ANFIS.

  12. Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Metin Ertunc, H. [Department of Mechatronics Engineering, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey); Hosoz, Murat [Department of Mechanical Education, Kocaeli University, Umuttepe, 41380 Kocaeli (Turkey)

    2008-12-15

    This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. (author)

  13. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  14. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  15. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean, Intruder Rear sensors active (boolean, Agent Front sensors active (boolean, Agent Rear sensors active (boolean, RSSI signal intensity/strength (integer, Elapsed time (in seconds, Distance between Agent and Intruder (m, Angle of Agent relative to Intruder (angle between vehicles °, Altitude difference between Agent and Intruder (m influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles ° is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  16. New type side weir discharge coefficient simulation using three novel hybrid adaptive neuro-fuzzy inference systems

    Science.gov (United States)

    Bonakdari, Hossein; Zaji, Amir Hossein

    2018-03-01

    In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.

  17. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  18. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    Science.gov (United States)

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Design of control system for piezoelectric deformable mirror based on fuzzy self-adaptive PID control

    Science.gov (United States)

    Xiao, Nan; Gao, Wei; Song, Zongxi

    2017-10-01

    With the rapid development of adaptive optics technology, it is widely used in the fields of astronomical telescope imaging, laser beam shaping, optical communication and so on. As the key component of adaptive optics systems, the deformable mirror plays a role in wavefront correction. In order to achieve the high speed and high precision of deformable mirror system tracking control, it is necessary to find out the influence of each link on the system performance to model the system and design the controller. This paper presents a method about the piezoelectric deformable mirror driving control system.

  20. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.

    Science.gov (United States)

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-10-01

    Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in Iran

    Directory of Open Access Journals (Sweden)

    Hojatollah Daneshmand

    2015-01-01

    Full Text Available Nowadays, a lot of attention is paid to the application of intelligent systems in predicting natural phenomena. Artificial neural network systems, fuzzy logic, and adaptive neuro-fuzzy inference are used in this field. Daily minimum temperature of the meteorology station of the city of Mashhad, in northeast of Iran, in a 42-year statistical period, 1966-2008, has been received from the Iranian meteorological organization. Adaptive neuro-fuzzy inference system is used for modeling and forecasting the monthly minimum temperature. To find appropriate inputs, three approaches, i.e. spectral analysis, correlation coefficient, and the knowledge of experts,are used. By applying fast Fourier transform to the parameter of monthly minimum temperature and climate indices, and by using correlation coefficient and the knowledge of experts, 3 indices, Nino 1 + 2, NP, and PNA, are selected as model inputs. A hybrid training algorithm is used to train the system. According to simulation results, a correlation coefficient of 0.987 between the observed values and the predicted values, as well as amean absolute percentage deviations of 27.6% indicate an acceptable estimation of the model.

  2. Web content adaptation for mobile device: A fuzzy-based approach

    Directory of Open Access Journals (Sweden)

    Frank C.C. Wu

    2012-03-01

    Full Text Available While HTML will continue to be used to develop Web content, how to effectively and efficiently transform HTML-based content automatically into formats suitable for mobile devices remains a challenge. In this paper, we introduce a concept of coherence set and propose an algorithm to automatically identify and detect coherence sets based on quantified similarity between adjacent presentation groups. Experimental results demonstrate that our method enhances Web content analysis and adaptation on the mobile Internet.

  3. An effective Load shedding technique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Foday Conteh

    2017-09-01

    Full Text Available In recent years, the use of renewable energy sources in micro-grids has become an effectivemeans of power decentralization especially in remote areas where the extension of the main power gridis an impediment. Despite the huge deposit of natural resources in Africa, the continent still remains inenergy poverty. Majority of the African countries could not meet the electricity demand of their people.Therefore, the power system is prone to frequent black out as a result of either excess load to the systemor generation failure. The imbalance of power generation and load demand has been a major factor inmaintaining the stability of the power systems and is usually responsible for the under frequency andunder voltage in power systems. Currently, load shedding is the most widely used method to balancebetween load and demand in order to prevent the system from collapsing. But the conventional methodof under frequency or under voltage load shedding faces many challenges and may not perform asexpected. This may lead to over shedding or under shedding, causing system blackout or equipmentdamage. To prevent system cascade or equipment damage, appropriate amount of load must beintentionally and automatically curtailed during instability. In this paper, an effective load sheddingtechnique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system isproposed. The combined techniques take into account the actual system state and the exact amount ofload needs to be curtailed at a faster rate as compared to the conventional method. Also, this methodis able to carry out optimal load shedding for any input range other than the trained data. Simulationresults obtained from this work, corroborate the merit of this algorithm.

  4. PERMODELAN KURVA KARAKTERISTIK INVERSE NON-STANDART PADA RELE ARUS LEBIH DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS

    Directory of Open Access Journals (Sweden)

    Erhankana Ardiana Putra

    2017-01-01

    Full Text Available Pada sistem kelistrikan terutama pada sistem proteksi kelistrikan dewasa ini sangat dibutuhkan sistem yang handal, sehingga  perkembangan pada sistem proteksi sudah semakin maju dengan adanya penggunaan rele digital. Rele digital digunakan dengan mempertimbangkan kecepatan, keakuratan dan serta flexible dalam sistem koordinasi. Flexibilitas ini dimaksudkan bahwa rele digital dapat digunakan menjadi rele arus lebih (overcurrent relay sesuai pembahasan tugas akhir ini dan dapat disetting menurut keinginan user sesuai karakteristik kurva OCR konvensional/standart (normal inverse, very inverse, long time inverse, extreme inverse yang akan digunakan dalam koordinasi. Jenis kurva pada rele digital juga dapat disetting diluar rumus kurva konvensional/standart yang seperti sudah disebutkan sebelumnya, kurva diluar rumusan standart disebut kurva rele non-standart. Kurva rele non-standart digunakan untuk memudahkan pengguna untuk menentukan waktu trip berdasarkan arus yang diinginkan dan sebagai solusi jika pada koordinasi proteksi mengalami kendala dalam koordinasi kurva rele. Pada tugas akhir ini akan dibahas bagaimana membuat atau memodelkan kurva karakteristik inverse overcurrent rele non-standart dengan menggunakan metode (Adaptive Neuro Fuzzy Inference System atau biasa disebut metode pembelajaran ANFIS. Kurva non-standart didapatkan dengan pengambilan titik-titik data baru berupa arus dan waktu trip sesuai keinginan user. Data baru tersebut akan digabungkan dengan data lama sehingga menghasilkan data non-standart yang nantinya akan dilakukan pembelajaran dengan metode ANFIS untuk mendapatkan desain kurva non-standart. Setelah didapatkan desain kurva non-standart akan dilakukan pengujian keakuratan dengan mengganti nilai MF (membership function didapatkan hasil rata-rata error terkecil 2,56% (MF=10 dan epoch=100. Pengujian selanjutnya dengan mengubah nilai epoch didapatkan nilai keakuratan dengan error terkecil pada epoch = 500. Simulasi pada

  5. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Lofman, Owe; Revhaug, Inge; Dick, Oystein B.

    2012-08-01

    The objective of this study is to investigate a potential application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Geographic Information System (GIS) as a relatively new approach for landslide susceptibility mapping in the Hoa Binh province of Vietnam. Firstly, a landslide inventory map with a total of 118 landslide locations was constructed from various sources. Then the landslide inventory was randomly split into a testing dataset 70% (82 landslide locations) for training the models and the remaining 30% (36 landslides locations) was used for validation purpose. Ten landslide conditioning factors such as slope, aspect, curvature, lithology, land use, soil type, rainfall, distance to roads, distance to rivers, and distance to faults were considered in the analysis. The hybrid learning algorithm and six different membership functions (Gaussmf, Gauss2mf, Gbellmf, Sigmf, Dsigmf, Psigmf) were applied to generate the landslide susceptibility maps. The validation dataset, which was not considered in the ANFIS modeling process, was used to validate the landslide susceptibility maps using the prediction rate method. The validation results showed that the area under the curve (AUC) for six ANFIS models vary from 0.739 to 0.848. It indicates that the prediction capability depends on the membership functions used in the ANFIS. The models with Sigmf (0.848) and Gaussmf (0.825) have shown the highest prediction capability. The results of this study show that landslide susceptibility mapping in the Hoa Binh province of Vietnam using the ANFIS approach is viable. As far as the performance of the ANFIS approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.

  6. Fuzzy Decision-Making Fuser (FDMF for Integrating Human-Machine Autonomous (HMA Systems with Adaptive Evidence Sources

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2017-06-01

    Full Text Available A brain-computer interface (BCI creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This

  7. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    Science.gov (United States)

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion

  8. Water Quality Control for Shrimp Pond Using Adaptive Neuro Fuzzy Inference System : The First Project

    Science.gov (United States)

    Umam, F.; Budiarto, H.

    2018-01-01

    Shrimp farming becomes the main commodity of society in Madura Island East Java Indonesia. Because of Madura island has a very extreme weather, farmers have difficulty in keeping the balance of pond water. As a consequence of this condition, there are some farmers experienced losses. In this study an adaptive control system was developed using ANFIS method to control pH balance (7.5-8.5), Temperature (25-31°C), water level (70-120 cm) and Dissolved Oxygen (4-7,5 ppm). Each parameter (pH, temperature, level and DO) is controlled separately but can work together. The output of the control system is in the form of pump activation which provides the antidote to the imbalance that occurs in pond water. The system is built with two modes at once, which are automatic mode and manual mode. The manual control interface based on android which is easy to use.

  9. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    Science.gov (United States)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  10. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  11. Neural-Network-Based Robust Optimal Tracking Control for MIMO Discrete-Time Systems With Unknown Uncertainty Using Adaptive Critic Design.

    Science.gov (United States)

    Liu, Lei; Wang, Zhanshan; Zhang, Huaguang

    2018-04-01

    This paper is concerned with the robust optimal tracking control strategy for a class of nonlinear multi-input multi-output discrete-time systems with unknown uncertainty via adaptive critic design (ACD) scheme. The main purpose is to establish an adaptive actor-critic control method, so that the cost function in the procedure of dealing with uncertainty is minimum and the closed-loop system is stable. Based on the neural network approximator, an action network is applied to generate the optimal control signal and a critic network is used to approximate the cost function, respectively. In contrast to the previous methods, the main features of this paper are: 1) the ACD scheme is integrated into the controllers to cope with the uncertainty and 2) a novel cost function, which is not in quadric form, is proposed so that the total cost in the design procedure is reduced. It is proved that the optimal control signals and the tracking errors are uniformly ultimately bounded even when the uncertainty exists. Finally, a numerical simulation is developed to show the effectiveness of the present approach.

  12. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  13. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    Science.gov (United States)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  14. Sistem Kontrol Robot Arm 5 DOF Berbasis Pengenalan Pola Suara Menggunakan Mel-Frequency Cepstrum Coefficients (MFCC dan Adaptive Neuro-Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    WS Mada Sanjaya

    2016-12-01

    Full Text Available Telah dilakukan penelitian yang menggambarkan implementasi pengenalan pola suara untuk mengontrol gerak robot arm 5 DoF dalam mengambil dan menyimpan benda. Dalam penelitian ini metode yang digunakan adalah Mel-Frequency Cepstrum Coefficients (MFCC dan Adaptive Neuro-Fuzzy Inferense System (ANFIS. Metode MFCC digunakan untuk ekstraksi ciri sinyal suara, sedangkan ANFIS digunakan sebagai metode pembelajaran untuk pengenalan pola suara. Pada proses pembelajaran ANFIS data latih yang digunakan sebanyak 6 ciri. Data suara terlatih dan data suara tak terlatih digunakan untuk pengujian sistem pengenalan pola suara. Hasil pengujian menunjukkan tingkat keberhasilan, untuk data suara terlatih sebesar 87,77% dan data tak terlatih sebesar 78,53%. Sistem pengenalan pola suara ini telah diaplikasikan dengan baik untuk mengerakan robot arm 5 DoF berbasis mikrokontroler Arduino. Have been implemented of sound pattern recognition to control 5 DoF of Arm Robot to pick and place an object. In this research used Mel-Frequency Cepstrum Coefficients (MFCC and Adaptive Neuro-Fuzzy Interferense System (ANFIS methods. MFCC method used for features extraction of sound signal, meanwhile ANFIS used to learn sound pattern recognition. On ANFIS method data learning use 6 features. Trained and not trained data used to examine the system of sound pattern identification. The result show the succesfull level, for trained data 87.77% and for not trained data 78.53%. Sound pattern identification system was appliedto controlled 5 DoF arm robot based Arduino microcontroller.

  15. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    Science.gov (United States)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  16. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  17. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    Science.gov (United States)

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  18. Fuzzy logic

    CERN Document Server

    Smets, P

    1995-01-01

    We start by describing the nature of imperfect data, and giving an overview of the various models that have been proposed. Fuzzy sets theory is shown to be an extension of classical set theory, and as such has a proeminent role or modelling imperfect data. The mathematic of fuzzy sets theory is detailled, in particular the role of the triangular norms. The use of fuzzy sets theory in fuzzy logic and possibility theory,the nature of the generalized modus ponens and of the implication operator for approximate reasoning are analysed. The use of fuzzy logic is detailled for application oriented towards process control and database problems.

  19. Fuzzy Languages

    Science.gov (United States)

    Rahonis, George

    The theory of fuzzy recognizable languages over bounded distributive lattices is presented as a paradigm of recognizable formal power series. Due to the idempotency properties of bounded distributive lattices, the equality of fuzzy recognizable languages is decidable, the determinization of multi-valued automata is effective, and a pumping lemma exists. Fuzzy recognizable languages over finite and infinite words are expressively equivalent to sentences of the multi-valued monadic second-order logic. Fuzzy recognizability over bounded ℓ-monoids and residuated lattices is briefly reported. The chapter concludes with two applications of fuzzy recognizable languages to real world problems in medicine.

  20. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    Science.gov (United States)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  1. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  2. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  3. Propose a Model for Customer Purchase Decision in B2C Websites Using Adaptive Neuro-Fuzzy Inference System

    OpenAIRE

    Mehrbakhsh Nilashi, Mohammad Fathian, Mohammad Reza Gholamian, Othman bin Ibrahim

    2011-01-01

    If companies are to enjoy long-term success in the Internet marketplace, they must effectivelymanage the complex, multidimensional process of building online consumer trust. The onlineenvironment and the quality and usability of websites help the browser and consumer to beattracted and accessible to the information and the product and services available online. In thisPaper a new model would be suggested based on neuro-fuzzy System which depicts some of thehidden relationships between the cri...

  4. Improved Transient Performance of a Fuzzy Modified Model Reference Adaptive Controller for an Interacting Coupled Tank System Using Real-Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Asan Mohideen Khansadurai

    2014-01-01

    Full Text Available The main objective of the paper is to design a model reference adaptive controller (MRAC with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC, an FMRAC, and a GA based FMRAC (GAFMRAC are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.

  5. Fuzzy systems for process identification and control

    International Nuclear Information System (INIS)

    Gorrini, V.; Bersini, H.

    1994-01-01

    Various issues related to the automatic construction and on-line adaptation of fuzzy controllers are addressed. A Direct Adaptive Fuzzy Control (this is an adaptive control methodology requiring a minimal knowledge of the processes to be coupled with) derived in a way reminiscent of neurocontrol methods, is presented. A classical fuzzy controller and a fuzzy realization of a PID controller is discussed. These systems implement a highly non-linear control law, and provide to be quite robust, even in the case of noisy inputs. In order to identify dynamic processes of order superior to one, we introduce a more complex architecture, called Recurrent Fuzzy System, that use some fuzzy internal variables to perform an inferential chaining.I

  6. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Zhongyi Chu

    2016-01-01

    Full Text Available To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO.

  7. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  8. Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages

    Science.gov (United States)

    Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.

    2013-09-01

    This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.

  9. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Chau, K.T.; Wu, K.C.; Chan, C.C.; Shen, W.X.

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents

  10. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Salahshoor, Karim [Department of Instrumentation and Automation, Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Kordestani, Mojtaba; Khoshro, Majid S. [Department of Control Engineering, Islamic Azad University South Tehran branch (Iran, Islamic Republic of)

    2010-12-15

    The subject of FDD (fault detection and diagnosis) has gained widespread industrial interest in machine condition monitoring applications. This is mainly due to the potential advantage to be achieved from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a new FDD scheme for condition machinery of an industrial steam turbine using a data fusion methodology. Fusion of a SVM (support vector machine) classifier with an ANFIS (adaptive neuro-fuzzy inference system) classifier, integrated into a common framework, is utilized to enhance the fault detection and diagnostic tasks. For this purpose, a multi-attribute data is fused into aggregated values of a single attribute by OWA (ordered weighted averaging) operators. The simulation studies indicate that the resulting fusion-based scheme outperforms the individual SVM and ANFIS systems to detect and diagnose incipient steam turbine faults. (author)

  11. Drought Forecasting Using Adaptive Neuro-Fuzzy Inference Systems (ANFIS, Drought Time Series and Climate Indices For Next Coming Year, (Case Study: Zahedan

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinpour Niknam

    2012-07-01

    Full Text Available In this research in order to forecast drought for the next coming year in Zahedan, using previous Standardized Precipitation Index (SPI data and 19 other climate indices were used.  For this purpose Adaptive Neuro-Fuzzy Inference System (ANFIS was applied to build the predicting model and SPI drought index for drought quantity.  At first calculating correlation approach for analysis between droughts and climate indices was used and the most suitable indices were selected. In the next stage drought prediction for period of 12 months was done. Different combinations among input variables in ANFIS models were entered. SPI drought index was the output of the model.  The results showed that just using time series like the previous year drought SPI index in forecasting the 12 month drought was effective. However among all climate indices that were used, Nino4 showed the most suitable results.

  12. A Hybrid Approach Based on the Combination of Adaptive Neuro-Fuzzy Inference System and Imperialist Competitive Algorithm: Oil Flow Rate of the Wells Prediction Case Study

    Directory of Open Access Journals (Sweden)

    Shahram Mollaiy Berneti

    2013-04-01

    Full Text Available In this paper, a novel hybrid approach composed of adaptive neuro-fuzzy inference system (ANFIS and imperialist competitive algorithm is proposed. The imperialist competitive algorithm (ICA is used in this methodology to determine the most suitable initial membership functions of the ANFIS. The proposed model combines the global search ability of ICA with local search ability of gradient descent method. To illustrate the suitability and capability of the proposed model, this model is applied to predict oil flow rate of the wells utilizing data set of 31 wells in one of the northern Persian Gulf oil fields of Iran. The data set collected in a three month period for each well from Dec. 2002 to Nov. 2010. For the sake of performance evaluation, the results of the proposed model are compared with the conventional ANFIS model. The results show that the significant improvements are achievable using the proposed model in comparison with the results obtained by conventional ANFIS.

  13. Relational Demonic Fuzzy Refinement

    Directory of Open Access Journals (Sweden)

    Fairouz Tchier

    2014-01-01

    Full Text Available We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join (⊔fuz, fuzzy demonic meet (⊓fuz, and fuzzy demonic composition (□fuz. Our definitions and properties are illustrated by some examples using mathematica software (fuzzy logic.

  14. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  15. On the Fuzzy Convergence

    Directory of Open Access Journals (Sweden)

    Abdul Hameed Q. A. Al-Tai

    2011-01-01

    Full Text Available The aim of this paper is to introduce and study the fuzzy neighborhood, the limit fuzzy number, the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence on the base which is adopted by Abdul Hameed (every real number r is replaced by a fuzzy number r¯ (either triangular fuzzy number or singleton fuzzy set (fuzzy point. And then, we will consider that some results respect effect of the upper sequence on the convergent fuzzy sequence, the bounded fuzzy sequence, and the Cauchy fuzzy sequence.

  16. Fuzzy Commitment

    Science.gov (United States)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  17. Fuzzy promises

    DEFF Research Database (Denmark)

    Anker, Thomas Boysen; Kappel, Klemens; Eadie, Douglas

    2012-01-01

    as narrative material to communicate self-identity. Finally, (c) we propose that brands deliver fuzzy experiential promises through effectively motivating consumers to adopt and play a social role implicitly suggested and facilitated by the brand. A promise is an inherently ethical concept and the article...... concludes with an in-depth discussion of fuzzy brand promises as two-way ethical commitments that put requirements on both brands and consumers....

  18. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques

    Science.gov (United States)

    Chen, Wei; Pourghasemi, Hamid Reza; Panahi, Mahdi; Kornejady, Aiding; Wang, Jiale; Xie, Xiaoshen; Cao, Shubo

    2017-11-01

    The spatial prediction of landslide susceptibility is an important prerequisite for the analysis of landslide hazards and risks in any area. This research uses three data mining techniques, such as an adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), a generalized additive model (GAM), and a support vector machine (SVM), for landslide susceptibility mapping in Hanyuan County, China. In the first step, in accordance with a review of the previous literature, twelve conditioning factors, including slope aspect, altitude, slope angle, topographic wetness index (TWI), plan curvature, profile curvature, distance to rivers, distance to faults, distance to roads, land use, normalized difference vegetation index (NDVI), and lithology, were selected. In the second step, a collinearity test and correlation analysis between the conditioning factors and landslides were applied. In the third step, we used three advanced methods, namely, ANFIS-FR, GAM, and SVM, for landslide susceptibility modeling. Subsequently, the results of their accuracy were validated using a receiver operating characteristic curve. The results showed that all three models have good prediction capabilities, while the SVM model has the highest prediction rate of 0.875, followed by the ANFIS-FR and GAM models with prediction rates of 0.851 and 0.846, respectively. Thus, the landslide susceptibility maps produced in the study area can be applied for management of hazards and risks in landslide-prone Hanyuan County.

  19. Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the state of Tamilnadu (India): a comparative study

    International Nuclear Information System (INIS)

    Sumithira, T. R.; Nirmal, Kumar A.

    2012-01-01

    Enormous potential of solar energy as a clean and pollution free source enrich the global power generation. India, being a tropical country, has high solar radiation and it lies to the north of equator between 8 degree 4' and 37 degree 6' North latitude and 68 degree 7' , and 97 degree 5' East longitude. In south india, Tamilnadu is located in the extreme south east with an average temperature of grater than 27.5 degree (> 81.5 F). In this study, an adaptive neuro-fuzzy inference system (ANFIS) based modelling approach to predict the monthly global solar radiation (MGSR) in Tamilnadu is presented using the real meteorological solar radiation data from the 31 districts of Tamilnadu with different latitude and longitude. The purpose of the study is to compare the accuracy of ANFIS and other soft computing models as found in literature to assess the solar radiation. The performance of the proposed model was tested and compared with other earth region in a case study. The statistical performance parameters such as root mean square error (RMSE), mean bias error (MBE), and coefficient of determination (R2) are presented and compared to validate the performance. The comparative test results prove the ANFIS based prediction are better than other models and furthermore proves its prediction capability for any geographical area with changing meteorological conditions. (author)

  20. Prediction of the Velocity Contours in Triangular Channel with Non-uniform Roughness Distributions by Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sara Bardestani

    2017-09-01

    Full Text Available Triangular channels have different applications in many water and wastewater engineering problems. For this purpose investigating hydraulic characteristics of flow in these sections has great importance. Researchers have presented different prediction methods for the velocity contours in prismatic sections. Most proposed methods are not able to consider the effect of walls roughness, the roughness distribution and secondary flows. However, due to complexity and nonlinearity of velocity contours in open channel flow, there is no simple relationship that can be fully able to exactly draw the velocity contours. In this paper an efficient approach for modeling velocity contours in triangular open channels with non-uniform roughness distributions by Adaptive Neuro-Fuzzy Inference System (ANFIS has been suggested. For training and testing model, the experimental data including 1703 data in triangular channels with geometric symmetry and non-uniform roughness distributions have been used. Comparing experimental results with predicted values by model indicates that ANFIS model is capable to be used in simulation of local velocity and determining velocity contours and the independent evaluation showed that the calculated values of discharge and depth-averaged velocity from model information are precisely in conformity with experimental values.

  1. A self-adaption compensation control for hysteresis nonlinearity in piezo-actuated stages based on Pi-sigma fuzzy neural network

    Science.gov (United States)

    Xu, Rui; Zhou, Miaolei

    2018-04-01

    Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.

  2. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe

    2013-12-01

    The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.

  3. Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network

    Science.gov (United States)

    Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.

    2018-04-01

    In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.

  4. The implementation of two stages clustering (k-means clustering and adaptive neuro fuzzy inference system) for prediction of medicine need based on medical data

    Science.gov (United States)

    Husein, A. M.; Harahap, M.; Aisyah, S.; Purba, W.; Muhazir, A.

    2018-03-01

    Medication planning aim to get types, amount of medicine according to needs, and avoid the emptiness medicine based on patterns of disease. In making the medicine planning is still rely on ability and leadership experience, this is due to take a long time, skill, difficult to obtain a definite disease data, need a good record keeping and reporting, and the dependence of the budget resulted in planning is not going well, and lead to frequent lack and excess of medicines. In this research, we propose Adaptive Neuro Fuzzy Inference System (ANFIS) method to predict medication needs in 2016 and 2017 based on medical data in 2015 and 2016 from two source of hospital. The framework of analysis using two approaches. The first phase is implementing ANFIS to a data source, while the second approach we keep using ANFIS, but after the process of clustering from K-Means algorithm, both approaches are calculated values of Root Mean Square Error (RMSE) for training and testing. From the testing result, the proposed method with better prediction rates based on the evaluation analysis of quantitative and qualitative compared with existing systems, however the implementation of K-Means Algorithm against ANFIS have an effect on the timing of the training process and provide a classification accuracy significantly better without clustering.

  5. Adaptive neuro-fuzzy inference systems (ANFIS) application to investigate potential use of natural ventilation in new building designs in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ayata, Tahir; Cam, Ertugrul; Yildiz, Osman [Kirikkale University, Faculty of Engineering, 71451, Campus, Kirikkale (Turkey)

    2007-05-15

    Natural ventilation in living and working places provides both circulation of clear air and a decrease of indoor temperature, especially during hot summer days. In addition to openings, the dimension ratio and position of buildings play a significant role to obtain a uniform indoor air velocity distribution. In this study, the potential use of natural ventilation as a passive cooling system in new building designs in Kayseri, a midsize city in Turkey, was investigated. First, indoor air velocity distributions with respect to changing wind direction and magnitude were simulated by the FLUENT package program, which employs finite element methods. Then, an adaptive neuro-fuzzy inference systems (ANFIS) model was employed to predict indoor average and maximum air velocities using the simulated data by FLUENT. The simulation results suggest that natural ventilation can be used to provide a thermally comfortable indoor environment during the summer season in the study area. Also, the ANFIS model can be proposed for estimation of indoor air velocity values in such studies. (author)

  6. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    Science.gov (United States)

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  7. Fuzzy logic of Aristotelian forms

    Energy Technology Data Exchange (ETDEWEB)

    Perlovsky, L.I. [Nichols Research Corp., Lexington, MA (United States)

    1996-12-31

    Model-based approaches to pattern recognition and machine vision have been proposed to overcome the exorbitant training requirements of earlier computational paradigms. However, uncertainties in data were found to lead to a combinatorial explosion of the computational complexity. This issue is related here to the roles of a priori knowledge vs. adaptive learning. What is the a-priori knowledge representation that supports learning? I introduce Modeling Field Theory (MFT), a model-based neural network whose adaptive learning is based on a priori models. These models combine deterministic, fuzzy, and statistical aspects to account for a priori knowledge, its fuzzy nature, and data uncertainties. In the process of learning, a priori fuzzy concepts converge to crisp or probabilistic concepts. The MFT is a convergent dynamical system of only linear computational complexity. Fuzzy logic turns out to be essential for reducing the combinatorial complexity to linear one. I will discuss the relationship of the new computational paradigm to two theories due to Aristotle: theory of Forms and logic. While theory of Forms argued that the mind cannot be based on ready-made a priori concepts, Aristotelian logic operated with just such concepts. I discuss an interpretation of MFT suggesting that its fuzzy logic, combining a-priority and adaptivity, implements Aristotelian theory of Forms (theory of mind). Thus, 2300 years after Aristotle, a logic is developed suitable for his theory of mind.

  8. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation

    Energy Technology Data Exchange (ETDEWEB)

    Entchev, Evgueniy; Yang, Libing [Integrated Energy Systems Laboratory, CANMET Energy Technology Centre, 1 Haanel Dr., Ottawa, Ontario (Canada)

    2007-06-30

    This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW{sub el} SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy. (author)

  9. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  10. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  11. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  12. Fuzzy control of small servo motors

    Science.gov (United States)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  13. Cheap diagnosis using structural modelling and fuzzy-logic based detection

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, Mogens; Katebi, Serajeddin

    2003-01-01

    relations for linear or non-linear dynamic behaviour, and combine this with fuzzy output observer design to provide an effective diagnostic approach. An adaptive neuro-fuzzy inference method is used. A fuzzy adaptive threshold is employed to cope with practical uncertainty. The methods are demonstrated...... using measurements on a ship propulsion system subject to simulated faults....

  14. "Fuzzy stuff"

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    "Fuzzy stuff". Exploring the displacement of the design sketch. What kind of knowledge can historical sketches reveal when they have outplayed their primary instrumental function in the design process and are moved into a museum collection? What are the rational benefits of ‘archival displacement...

  15. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon

    Science.gov (United States)

    Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.

    2014-10-01

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.

  16. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Qiuju, E-mail: xqj197610@163.com [Institute of Information Technology, Heilongjiang Bayi Agricultural University, Daqing 163319 (China); Ni, Ji-qin [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 (United States); Su, Zhongbin [Institute of Electric and Information, Northeast Agricultural University, Harbin 150030 (China)

    2017-03-05

    Highlights: • A prediction model of ammonia emission was built based on the indoor ammonia concentration prediction model using ANFIS. • Five kinds of membership functions were compared to get a well fitted prediction model. • Compared with the BP and MLRM model, the ANFIS prediction model with “gbell” membership function has the best performances. - Abstract: Ammonia (NH{sub 3}) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human’s vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with “Gbell” membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R{sup 2}) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.

  17. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  18. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    Science.gov (United States)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is

  19. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    Science.gov (United States)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  20. A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system

    International Nuclear Information System (INIS)

    Xie, Qiuju; Ni, Ji-qin; Su, Zhongbin

    2017-01-01

    Highlights: • A prediction model of ammonia emission was built based on the indoor ammonia concentration prediction model using ANFIS. • Five kinds of membership functions were compared to get a well fitted prediction model. • Compared with the BP and MLRM model, the ANFIS prediction model with “gbell” membership function has the best performances. - Abstract: Ammonia (NH_3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human’s vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with “Gbell” membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R"2) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.

  1. Modeling Relationships between Surface Water Quality and Landscape Metrics Using the Adaptive Neuro-Fuzzy Inference System, A Case Study in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    mohsen Mirzayi

    2016-03-01

    Full Text Available Landscape indices can be used as an approach for predicting water quality changes to monitor non-point source pollution. In the present study, the data collected over the period from 2012 to 2013 from 81 water quality stations along the rivers flowing in Mazandaran Province were analyzed. Upstream boundries were drawn and landscape metrics were extracted for each of the sub-watersheds at class and landscape levels. Principal component analysis was used to single out the relevant water quality parameters and forward linear regression was employed to determine the optimal metrics for the description of each parameter. The first five components were able to describe 96.61% of the variation in water quality in Mazandaran Province. Adaptive Neuro-fuzzy Inference System (ANFIS and multiple linear regression were used to model the relationship between landscape metrics and water quality parameters. The results indicate that multiple regression was able to predict SAR, TDS, pH, NO3‒, and PO43‒ in the test step, with R2 values equal to 0.81, 0.56, 0.73, 0.44. and 0.63, respectively. The corresponding R2 value of ANFIS in the test step were 0.82, 0.79, 0.82, 0.31, and 0.36, respectively. Clearly, ANFIS exhibited a better performance in each case than did the linear regression model. This indicates a nonlinear relationship between the water quality parameters and landscape metrics. Since different land cover/uses have considerable impacts on both the outflow water quality and the available and dissolved pollutants in rivers, the method can be reasonably used for regional planning and environmental impact assessment in development projects in the region.

  2. Ground Motion Prediction Model Using Adaptive Neuro-Fuzzy Inference Systems: An Example Based on the NGA-West 2 Data

    Science.gov (United States)

    Ameur, Mourad; Derras, Boumédiène; Zendagui, Djawed

    2018-03-01

    Adaptive neuro-fuzzy inference systems (ANFIS) are used here to obtain the robust ground motion prediction model (GMPM). Avoiding a priori functional form, ANFIS provides fully data-driven predictive models. A large subset of the NGA-West2 database is used, including 2335 records from 580 sites and 137 earthquakes. Only shallow earthquakes and recordings corresponding to stations with measured V s30 properties are selected. Three basics input parameters are chosen: the moment magnitude ( Mw), the Joyner-Boore distance ( R JB) and V s30. ANFIS model output is the peak ground acceleration (PGA), peak ground velocity (PGV) and 5% damped pseudo-spectral acceleration (PSA) at periods from 0.01 to 4 s. A procedure similar to the random-effects approach is developed to provide between- and within-event standard deviations. The total standard deviation (SD) varies between [0.303 and 0.360] (log10 units) depending on the period. The ground motion predictions resulting from such simple three explanatory variables ANFIS models are shown to be comparable to the most recent NGA results (e.g., Boore et al., in Earthquake Spectra 30:1057-1085, 2014; Derras et al., in Earthquake Spectra 32:2027-2056, 2016). The main advantage of ANFIS compared to artificial neuronal network (ANN) is its simple and one-off topology: five layers. Our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude and amplification on soft soils. The ability to implement ANFIS model using an analytic equation and Excel is demonstrated.

  3. Relational Demonic Fuzzy Refinement

    OpenAIRE

    Tchier, Fairouz

    2014-01-01

    We use relational algebra to define a refinement fuzzy order called demonic fuzzy refinement and also the associated fuzzy operators which are fuzzy demonic join $({\\bigsqcup }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , fuzzy demonic meet $({\\sqcap }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ , and fuzzy demonic composition $({\\square }_{\\mathrm{\\text{f}}\\mathrm{\\text{u}}\\mathrm{\\text{z}}})$ . Our definitions and properties are illustrated by some examples using ma...

  4. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2013-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...

  5. Dynamic Modeling of a Reformed Methanol Fuel Cell System using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza

    2014-01-01

    In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...

  6. Advances in type-2 fuzzy sets and systems theory and applications

    CERN Document Server

    Mendel, Jerry; Tahayori, Hooman

    2013-01-01

    This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet.  The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.

  7. An intelligent temporal pattern classification system using fuzzy ...

    Indian Academy of Sciences (India)

    In this paper, we propose a new pattern classification system by combining Temporal features with Fuzzy Min–Max (TFMM) neural network based classifier for effective decision support in medical diagnosis. Moreover, a Particle Swarm Optimization (PSO) algorithm based rule extractor is also proposed in this work for ...

  8. Intelligent neural network and fuzzy logic control of industrial and power systems

    Science.gov (United States)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  9. reactor power control using fuzzy logic

    International Nuclear Information System (INIS)

    Ahmed, A.E.E.

    2001-01-01

    power stabilization is a critical issue in nuclear reactors. convention pd- controller is currently used in egypt second testing research reactor (ETRR-2). two fuzzy controllers are proposed to control the reactor power of ETRR-2 reactor. the design of the first one is based on a set of linguistic rules that were adopted from the human operators experience. after off-line fuzzy computations, the controller is a lookup table, and thus, real time controller is achieved. comparing this f lc response with the pd-controller response, which already exists in the system, through studying the expected transients during the normal operation of ETRR-2 reactor, the simulation results show that, fl s has the better response, the second controller is adaptive fuzzy controller, which is proposed to deal with system non-linearity . The simulation results show that the proposed adaptive fuzzy controller gives a better integral square error (i se) index than the existing conventional od controller

  10. Optimization of biodiesel production from Thevetia peruviana seed oil by adaptive neuro-fuzzy inference system coupled with genetic algorithm and response surface methodology

    International Nuclear Information System (INIS)

    Ogaga Ighose, Benjamin; Adeleke, Ibrahim A.; Damos, Mueuji; Adeola Junaid, Hamidat; Ernest Okpalaeke, Kelechi; Betiku, Eriola

    2017-01-01

    Highlights: • Oil was extracted from Thevetia peruviana seeds and converted to FAME. • The FFA of the oil was first reduced to <1% by esterification process. • The conversion of the esterified oil to FAME was modeled using ANFIS and RSM. • The developed models by ANFIS and RSM for transesterification process had R"2 ≈ 1. • GA and RSM gave the maximum FAME yield of 99.8 wt.% and 98.8 wt.%, respectively. - Abstract: This work focused on the application of adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) as predictive tools for production of fatty acid methyl esters (FAME) from yellow oleander (Thevetia peruviana) seed oil. Two-step transesterification method was adopted, in the first step, the high free fatty acid (FFA) content of the oil was reduced to <1% by treating it with ferric sulfate in the presence of methanol. While in the second step, the pretreated oil was converted to FAME by reacting it with methanol using sodium methoxide as catalyst. To model the second step, central composite design was employed to study the effect of catalyst loading (1–2 wt.%), methanol/oil molar ratio (6:1–12:1) and time (20–60 min) on the T. peruviana methyl esters (TPME) yield. The reduction of FFA of the oil to 0.65 ± 0.05 wt.% was realized using ferric sulfate of 3 wt.%, methanol/FFA molar ratio of 9:1 and reaction time of 40 min. The model developed for the transesterification process by ANFIS (coefficient of determination, R"2 = 0.9999, standard error of prediction, SEP = 0.07 and mean absolute percentage deviation, MAPD = 0.05%) was significantly better than that of RSM (R"2 = 0.9670, SEP = 1.55 and MAPD = 0.84%) in terms of accuracy of the predicted TPME yield. For maximum TPME yield, the transesterification process input variables were optimized using genetic algorithm (GA) coupled with the ANFIS model and RSM optimization tool. TPME yield of 99.8 wt.% could be obtained with the combination of 0.79 w/v catalyst

  11. Introduction to fuzzy systems

    CERN Document Server

    Chen, Guanrong

    2005-01-01

    Introduction to Fuzzy Systems provides students with a self-contained introduction that requires no preliminary knowledge of fuzzy mathematics and fuzzy control systems theory. Simplified and readily accessible, it encourages both classroom and self-directed learners to build a solid foundation in fuzzy systems. After introducing the subject, the authors move directly into presenting real-world applications of fuzzy logic, revealing its practical flavor. This practicality is then followed by basic fuzzy systems theory. The book also offers a tutorial on fuzzy control theory, based mainly on th

  12. Fuzzy set theory for cumulative trauma prediction

    OpenAIRE

    Fonseca, Daniel J.; Merritt, Thomas W.; Moynihan, Gary P.

    2001-01-01

    A widely used fuzzy reasoning algorithm was modified and implemented via an expert system to assess the potential risk of employee repetitive strain injury in the workplace. This fuzzy relational model, known as the Priority First Cover Algorithm (PFC), was adapted to describe the relationship between 12 cumulative trauma disorders (CTDs) of the upper extremity, and 29 identified risk factors. The algorithm, which finds a suboptimal subset from a group of variables based on the criterion of...

  13. A version of Stone-Weierstrass theorem in Fuzzy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Font, J.J.; Sanchis, D.; Sanchis, M.

    2017-07-01

    Fuzzy numbers provide formalized tools to deal with non-precise quantities. They are indeed fuzzy sets in the real line and were introduced in 1978 by Dubois and Prade , who also defined their basic operations. Since then, Fuzzy Analysis has developed based on the notion of fuzzy number just as much as classical Real Analysis did based on the concept of real number. Such development was eased by a characterization of fuzzy numbers provided in 1986 by Goetschel and Voxman leaning on their level sets. As in the classical setting, continuous fuzzy-valued functions (fuzzy functions) are the central core of the theory. The principal difference with regard to real-valued continuous functions is the fact that the fuzzy numbers do not form a vectorial space, which determines all the results, and, especially, the proofs. The study of fuzzy functions has developed, principally, about two lines of investigation: - Differential fuzzy equations, which have turned out to be the natural way of modelling physical and engineering problems in contexts where the parameters are vague or incomplete. - The problem of approximation of fuzzy functions, basically using the approximation capability of fuzzy neural networks. We will focus on this second line of investigation, though our approach will be more general and based on an adaptation of the famous Stone-Weierstrass Theorem to the fuzzy context. This way so, we introduce the concept of “multiplier” of a set of fuzzy functions and use it to give a constructive proof of a Stone-Weiestrass type theorem for fuzzy functions. (Author)

  14. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely

  15. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    International Nuclear Information System (INIS)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  16. Life Cycle Assessment of Alfalfa Production and Prediction of Emissions using Multi-Layer Adaptive Neuro-Fuzzy Inference System in Bukan Township

    Directory of Open Access Journals (Sweden)

    O Ghaderpour

    2018-03-01

    in impact assessment. The purpose of damage assessment is to combine a number of impact category indicators into a damage category (also called area of protection. To assess the damage in this study, IMPACT 2002+ V2.12 / IMPACT 2002+ method was used. ANFIS is a multilayer feed-forward network which is applying to map an input space to an output space using a combination of neural network learning algorithms and fuzzy reasoning. In order to enable a system to deal with cognitive uncertainties in a manner more like humans, neural networks have been engaged with fuzzy logic, creating a new terminology called ‘‘neuro-fuzzy method. An ANFIS is used to map input characteristics to input membership functions (MFs, input MF to a set of if-then rules, rules to a set of output characteristics, output characteristics to output MFs, and the output MFs to a single valued output or a decision associated with the output. The main restriction of the ANFIS model is related to the number of input variables. If ANFIS inputs exceed five, the computational time and rule numbers will increase, so ANFIS will not be able to model output with respect to inputs. In this study, the number of inputs were ten, including machinery, diesel fuel, nitrogen, phosphate, electricity, water for irrigation, labor, pesticides, Manure and seed and GWP was as the model output signal. To solve this problem and employ all input variables, we proposed clustering input parameters to four groups. Correspondingly, the proposed model was developed using seven ANFIS sub-networks. To obtain the best results several modifications were made in the structure of ANFIS networks, and some parameters were calculated to compare the results of different models. Making a comparison between different topologies the employment of some indicators was a pivotal to get a good vision of various the structures, such as the correlation coefficient (R, Mean Square Error (MSE and Root Mean Square Error (RMSE. In addition, for

  17. Intuitionistic supra fuzzy topological spaces

    International Nuclear Information System (INIS)

    Abbas, S.E.

    2004-01-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space

  18. Hesitant fuzzy sets theory

    CERN Document Server

    Xu, Zeshui

    2014-01-01

    This book provides the readers with a thorough and systematic introduction to hesitant fuzzy theory. It presents the most recent research results and advanced methods in the field. These includes: hesitant fuzzy aggregation techniques, hesitant fuzzy preference relations, hesitant fuzzy measures, hesitant fuzzy clustering algorithms and hesitant fuzzy multi-attribute decision making methods. Since its introduction by Torra and Narukawa in 2009, hesitant fuzzy sets have become more and more popular and have been used for a wide range of applications, from decision-making problems to cluster analysis, from medical diagnosis to personnel appraisal and information retrieval. This book offers a comprehensive report on the state-of-the-art in hesitant fuzzy sets theory and applications, aiming at becoming a reference guide for both researchers and practitioners in the area of fuzzy mathematics and other applied research fields (e.g. operations research, information science, management science and engineering) chara...

  19. Fuzzy logic in management

    CERN Document Server

    Carlsson, Christer; Fullér, Robert

    2004-01-01

    Fuzzy Logic in Management demonstrates that difficult problems and changes in the management environment can be more easily handled by bringing fuzzy logic into the practice of management. This explicit theme is developed through the book as follows: Chapter 1, "Management and Intelligent Support Technologies", is a short survey of management leadership and what can be gained from support technologies. Chapter 2, "Fuzzy Sets and Fuzzy Logic", provides a short introduction to fuzzy sets, fuzzy relations, the extension principle, fuzzy implications and linguistic variables. Chapter 3, "Group Decision Support Systems", deals with group decision making, and discusses methods for supporting the consensus reaching processes. Chapter 4, "Fuzzy Real Options for Strategic Planning", summarizes research where the fuzzy real options theory was implemented as a series of models. These models were thoroughly tested on a number of real life investments, and validated in 2001. Chapter 5, "Soft Computing Methods for Reducing...

  20. Control of a mechanical gripper with a fuzzy controller

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-01-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  1. Why fuzzy controllers should be fuzzy

    International Nuclear Information System (INIS)

    Nowe, A.

    1996-01-01

    Fuzzy controllers are usually looked at as crisp valued mappings especially when artificial intelligence learning techniques are used to build up the controller. By doing so the semantics of a fuzzy conclusion being a fuzzy restriction on the viable control actions is non-existing. In this paper the authors criticise from an approximation point of view using a fuzzy controller to express a crisp mapping does not seem the right way to go. Secondly it is illustrated that interesting information is contained in a fuzzy conclusion when indeed this conclusion is considered as a fuzzy restriction. This information turns out to be very valuable when viability problems are concerned, i.e. problems where the objective is to keep a system within predefined boundaries

  2. Tüketici Fiyat Endeksinin Uyarlamalı Ağa Dayalı Bulanık Çıkarım Sistemi ile Kestirimi / Consumer Price Index Forecast with Adaptive Neuro Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Serenay VAROL

    2016-04-01

    Full Text Available Son yıllarda zaman serisi tahmini için birçok alternatif yöntem önerilmiştir. Uyarlamalı ağa dayalı bulanık çıkarım sistemi (ANFIS öngörü problemi için literatürde en çok uygulanan bulanık çıkarım sistemidir. Bu çalışmada tüketici fiyat endeksinin kestiriminde ANFIS’in performansı incelenmiştir. Çalışmanın sonucunda ANFIS yöntemi ile ilgilenilen zaman aralığındaki tüketici fiyat endeksinin kestiriminde ulaşılan sonuçlar yorumlanmıştır. / Alternative methods have been proposed for time series prediction in last years. Adaptive neuro fuzzy inference system (ANFIS is the most used fuzzy inference system in literature for prediction problem. In this study, the performance of ANFIS in forecasting consumer price index is examined, and the results of the consumer price index estimation in time period, on which ANFIS method is applied, are interpreted.

  3. Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2001-01-01

    Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics

  4. Fuzzy logic applications to control engineering

    Science.gov (United States)

    Langari, Reza

    1993-12-01

    This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.

  5. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    Science.gov (United States)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, , was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  6. Self tuning fuzzy PID type load and frequency controller

    International Nuclear Information System (INIS)

    Yesil, E.; Guezelkaya, M.; Eksin, I.

    2004-01-01

    In this paper, a self tuning fuzzy PID type controller is proposed for solving the load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of control rules, and the control signal is directly deduced from the knowledge base and the fuzzy inference. Moreover, there exists a self tuning mechanism that adjusts the input scaling factor corresponding to the derivative coefficient and the output scaling factor corresponding to the integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self tuning mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC problem. A two area interconnected system is assumed for demonstrations. The proposed self tuning fuzzy PID type controller has been compared with the fuzzy PID type controller without a self tuning mechanism and the conventional integral controller through some performance indices

  7. 5th International Conference on Fuzzy and Neuro Computing

    CERN Document Server

    Panigrahi, Bijaya; Das, Swagatam; Suganthan, Ponnuthurai

    2015-01-01

    This proceedings bring together contributions from researchers from academia and industry to report the latest cutting edge research made in the areas of Fuzzy Computing, Neuro Computing and hybrid Neuro-Fuzzy Computing in the paradigm of Soft Computing. The FANCCO 2015 conference explored new application areas, design novel hybrid algorithms for solving different real world application problems. After a rigorous review of the 68 submissions from all over the world, the referees panel selected 27 papers to be presented at the Conference. The accepted papers have a good, balanced mix of theory and applications. The techniques ranged from fuzzy neural networks, decision trees, spiking neural networks, self organizing feature map, support vector regression, adaptive neuro fuzzy inference system, extreme learning machine, fuzzy multi criteria decision making, machine learning, web usage mining, Takagi-Sugeno Inference system, extended Kalman filter, Goedel type logic, fuzzy formal concept analysis, biclustering e...

  8. Fuzzy Itand#244; Integral Driven by a Fuzzy Brownian Motion

    Directory of Open Access Journals (Sweden)

    Didier Kumwimba Seya

    2015-11-01

    Full Text Available In this paper we take into account the fuzzy stochastic integral driven by fuzzy Brownian motion. To define the metric between two fuzzy numbers and to take into account the limit of a sequence of fuzzy numbers, we invoke the Hausdorff metric. First this fuzzy stochastic integral is constructed for fuzzy simple stochastic functions, then the construction is done for fuzzy stochastic integrable functions.

  9. Neural Network based Minimization of BER in Multi-User Detection in SDMA

    OpenAIRE

    VENKATA REDDY METTU; KRISHAN KUMAR,; SRIKANTH PULLABHATLA

    2011-01-01

    In this paper we investigate the use of neural network based minimization of BER in MUD. Neural networks can be used for linear design, Adaptive prediction, Amplitude detection, Character Recognition and many other applications. Adaptive prediction is used in detecting the errors caused in AWGN channel. These errors are rectified by using Widrow-Hoff algorithm by updating their weights andAdaptive prediction methods. Both Widrow-Hoff and Adaptive prediction have been used for rectifying the e...

  10. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  11. Fuzzy measures and integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko

    2005-01-01

    Roč. 28, č. 156 (2005), s. 365-370 ISSN 0165-0114 R&D Projects: GA ČR(CZ) GA402/04/1026 Institutional research plan: CEZ:AV0Z10750506 Keywords : fuzzy measures * fuzzy integral * regular fuzzy integral Subject RIV: BA - General Mathematics Impact factor: 1.039, year: 2005

  12. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  13. Intuitionistic Fuzzy Subbialgebras and Duality

    Directory of Open Access Journals (Sweden)

    Wenjuan Chen

    2014-01-01

    Full Text Available We investigate connections between bialgebras and Atanassov’s intuitionistic fuzzy sets. Firstly we define an intuitionistic fuzzy subbialgebra of a bialgebra with an intuitionistic fuzzy subalgebra structure and also with an intuitionistic fuzzy subcoalgebra structure. Secondly we investigate the related properties of intuitionistic fuzzy subbialgebras. Finally we prove that the dual of an intuitionistic fuzzy strong subbialgebra is an intuitionistic fuzzy strong subbialgebra.

  14. Fuzzy model predictive control algorithm applied in nuclear power plant

    International Nuclear Information System (INIS)

    Zuheir, Ahmad

    2006-01-01

    The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)

  15. Probabilistic fuzzy systems as additive fuzzy systems

    NARCIS (Netherlands)

    Almeida, R.J.; Verbeek, N.; Kaymak, U.; Costa Sousa, da J.M.; Laurent, A.; Strauss, O.; Bouchon-Meunier, B.; Yager, R.

    2014-01-01

    Probabilistic fuzzy systems combine a linguistic description of the system behaviour with statistical properties of data. It was originally derived based on Zadeh’s concept of probability of a fuzzy event. Two possible and equivalent additive reasoning schemes were proposed, that lead to the

  16. Optimality Conditions for Fuzzy Number Quadratic Programming with Fuzzy Coefficients

    Directory of Open Access Journals (Sweden)

    Xue-Gang Zhou

    2014-01-01

    Full Text Available The purpose of the present paper is to investigate optimality conditions and duality theory in fuzzy number quadratic programming (FNQP in which the objective function is fuzzy quadratic function with fuzzy number coefficients and the constraint set is fuzzy linear functions with fuzzy number coefficients. Firstly, the equivalent quadratic programming of FNQP is presented by utilizing a linear ranking function and the dual of fuzzy number quadratic programming primal problems is introduced. Secondly, we present optimality conditions for fuzzy number quadratic programming. We then prove several duality results for fuzzy number quadratic programming problems with fuzzy coefficients.

  17. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  18. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites

    Directory of Open Access Journals (Sweden)

    C.-H. Chung

    2012-01-01

    Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (Epan at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of Epan estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of Epan and consequently provides precise Epan estimation by taking geographical features into consideration.

  19. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    Science.gov (United States)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  20. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  1. Quick fuzzy backpropagation algorithm.

    Science.gov (United States)

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  2. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  3. Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongwei Deng

    2016-06-01

    Full Text Available In the field of state of charge (SOC estimation, the Kalman filter has been widely used for many years, although its performance strongly depends on the accuracy of the battery model as well as the noise covariance. The Kalman gain determines the confidence coefficient of the battery model by adjusting the weight of open circuit voltage (OCV correction, and has a strong correlation with the measurement noise covariance (R. In this paper, the online identification method is applied to acquire the real model parameters under different operation conditions. A criterion based on the OCV error is proposed to evaluate the reliability of online parameters. Besides, the equivalent circuit model produces an intrinsic model error which is dependent on the load current, and the property that a high battery current or a large current change induces a large model error can be observed. Based on the above prior knowledge, a fuzzy model is established to compensate the model error through updating R. Combining the positive strategy (i.e., online identification and negative strategy (i.e., fuzzy model, a more reliable and robust SOC estimation algorithm is proposed. The experiment results verify the proposed reliability criterion and SOC estimation method under various conditions for LiFePO4 batteries.

  4. Fuzzy social choice theory

    CERN Document Server

    B Gibilisco, Michael; E Albert, Karen; N Mordeson, John; J Wierman, Mark; D Clark, Terry

    2014-01-01

    This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem;  the Gibbard-Satterthwaite theorem; and the median voter theorem.  After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a so...

  5. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    Science.gov (United States)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  6. Proposal of the Use of a Fuzzy Stochastic Network for the Preliminary Evaluation of the Feasibility of the Process of the Adaptation of a Historical Building to a Particular Form of Use

    Science.gov (United States)

    Radziszewska-Zielina, Elżbieta; Śladowski, Grzegorz

    2017-10-01

    The knowledge of a real estate developer regarding the possibilities of adapting a historical building to a particular form of use and the knowledge of the approximate costs associated with this process are some of the more important pieces of information that can influence the making of the final decision regarding commencing with such a project. The preliminary analysis of the process of adapting a historical building is a difficult task due to the specific character of this type of project. The specific character of such a project is proven by the fact that the often insufficient analysis of the structure and architecture of a building and its historical substance at the stage of carrying out the process of adaptation can generate the necessity to perform previously unforeseen additional actions. An equally important problem is the difficulty in estimating the funds required to conduct research and the analyses associated with developing design documentation, as well as carrying out construction and conservation work. This is why a real estate developer should analyse various scenarios of carrying out a project during the stage of the preliminary analysis of its feasibility, taking into account the fact that some of them can occur in a random manner. The authors of the paper propose the use of one of the planning tools known as stochastic networks, which can be used to model the undetermined structure of these types of projects. Fuzzy logic was used in order to estimate uncertain values of the parameters of a model (the probability of performing work and paying the associated costs). The approach proposed by the authors was used to perform a preliminary analysis of the adaptation of the Arsenal in Gdańsk to a particular form of use along with estimating the costs associated with it. The results that were obtained have confirmed the potential of this method for real-world application.

  7. Adaptation.

    Science.gov (United States)

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  8. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Kim, Chan Moon; Parnichkun, Manukid

    2017-11-01

    Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.

  9. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  10. Fuzzy risk matrix

    International Nuclear Information System (INIS)

    Markowski, Adam S.; Mannan, M. Sam

    2008-01-01

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated

  11. Intuitionistic fuzzy calculus

    CERN Document Server

    Lei, Qian

    2017-01-01

    This book offers a comprehensive and systematic review of the latest research findings in the area of intuitionistic fuzzy calculus. After introducing the intuitionistic fuzzy numbers’ operational laws and their geometrical and algebraic properties, the book defines the concept of intuitionistic fuzzy functions and presents the research on the derivative, differential, indefinite integral and definite integral of intuitionistic fuzzy functions. It also discusses some of the methods that have been successfully used to deal with continuous intuitionistic fuzzy information or data, which are different from the previous aggregation operators focusing on discrete information or data. Mainly intended for engineers and researchers in the fields of fuzzy mathematics, operations research, information science and management science, this book is also a valuable textbook for postgraduate and advanced undergraduate students alike.

  12. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  13. Adaptation

    International Development Research Centre (IDRC) Digital Library (Canada)

    building skills, knowledge or networks on adaptation, ... the African partners leading the AfricaAdapt network, together with the UK-based Institute of Development Studies; and ... UNCCD Secretariat, Regional Coordination Unit for Africa, Tunis, Tunisia .... 26 Rural–urban Cooperation on Water Management in the Context of.

  14. Metamathematics of fuzzy logic

    CERN Document Server

    Hájek, Petr

    1998-01-01

    This book presents a systematic treatment of deductive aspects and structures of fuzzy logic understood as many valued logic sui generis. Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference' can be naturally understood as logical deduction.

  15. Fuzzy Control Tutorial

    DEFF Research Database (Denmark)

    Dotoli, M.; Jantzen, Jan

    1999-01-01

    The tutorial concerns automatic control of an inverted pendulum, especially rule based control by means of fuzzy logic. A ball balancer, implemented in a software simulator in Matlab, is used as a practical case study. The objectives of the tutorial are to teach the basics of fuzzy control......, and to show how to apply fuzzy logic in automatic control. The tutorial is distance learning, where students interact one-to-one with the teacher using e-mail....

  16. Intuitionistic fuzzy logics

    CERN Document Server

    T Atanassov, Krassimir

    2017-01-01

    The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author’s research and others’ findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.

  17. Elements of Network-Based Assessment

    Science.gov (United States)

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  18. Rate adaptation in ad hoc networks based on pricing

    CSIR Research Space (South Africa)

    Awuor, F

    2011-09-01

    Full Text Available that incorporates penalty (pricing) obtruded to users’ choices of transmission parameters to curb the self-interest behaviour. Therefore users determine their data rates and transmit power based on the perceived coupled interference at the intended receiver...

  19. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  20. Relations Among Some Fuzzy Entropy Formulae

    Institute of Scientific and Technical Information of China (English)

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  1. Expert system driven fuzzy control application to power reactors

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.

    1990-01-01

    For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ''supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment

  2. On Intuitionistic Fuzzy Filters of Intuitionistic Fuzzy Coframes

    Directory of Open Access Journals (Sweden)

    Rajesh K. Thumbakara

    2013-01-01

    Full Text Available Frame theory is the study of topology based on its open set lattice, and it was studied extensively by various authors. In this paper, we study quotients of intuitionistic fuzzy filters of an intuitionistic fuzzy coframe. The quotients of intuitionistic fuzzy filters are shown to be filters of the given intuitionistic fuzzy coframe. It is shown that the collection of all intuitionistic fuzzy filters of a coframe and the collection of all intutionistic fuzzy quotient filters of an intuitionistic fuzzy filter are coframes.

  3. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  4. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  5. Properties of Bipolar Fuzzy Hypergraphs

    OpenAIRE

    Akram, M.; Dudek, W. A.; Sarwar, S.

    2013-01-01

    In this article, we apply the concept of bipolar fuzzy sets to hypergraphs and investigate some properties of bipolar fuzzy hypergraphs. We introduce the notion of $A-$ tempered bipolar fuzzy hypergraphs and present some of their properties. We also present application examples of bipolar fuzzy hypergraphs.

  6. Adaptive sensor fusion using genetic algorithms

    International Nuclear Information System (INIS)

    Fitzgerald, D.S.; Adams, D.G.

    1994-01-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ''fuzzy'' sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion

  7. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    Science.gov (United States)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  8. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  9. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    Science.gov (United States)

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    OpenAIRE

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  12. Short term load forecasting using neuro-fuzzy networks

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.; Hassan, A. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Martinez, D. [Black Hills Power and Light, Rapid City, SD (United States)

    2005-07-01

    Details of a neuro-fuzzy network-based short term load forecasting system for power utilities were presented. The fuzzy logic controller was used to fuzzify inputs representing historical temperature and load curves. The fuzzified inputs were then used to develop the fuzzy rules matrix. Output membership function values were determined by evaluating the fuzzified inputs with the fuzzy rules. Output membership function values were used as inputs for the neural network portion of the system. The training process used a back propagation gradient descent algorithm to adjust the weight values of the neural network in order to reduce the error between the neural network output and the desired output. The neural network was then used to predict future load values. Sample data were taken from a local power company's daily load curve to validate the system. A 10 per cent forecast error was introduced in the temperature values to determine the effect on load prediction. Results of the study suggest that the combined use of fuzzy logic and neural networks provide greater accuracy than studies where either approach is used alone. 6 refs., 6 figs.

  13. A fuzzy Hopfield neural network for medical image segmentation

    International Nuclear Information System (INIS)

    Lin, J.S.; Cheng, K.S.; Mao, C.W.

    1996-01-01

    In this paper, an unsupervised parallel segmentation approach using a fuzzy Hopfield neural network (FHNN) is proposed. The main purpose is to embed fuzzy clustering into neural networks so that on-line learning and parallel implementation for medical image segmentation are feasible. The idea is to cast a clustering problem as a minimization problem where the criteria for the optimum segmentation is chosen as the minimization of the Euclidean distance between samples to class centers. In order to generate feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need of finding weighting factors in the energy function, which is formulated and based on a basic concept commonly used in pattern classification, called the within-class scatter matrix principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The fuzzy Hopfield neural network based on the within-class scatter matrix shows the promising results in comparison with the hard c-means method

  14. Construction of fuzzy automata by fuzzy experiments

    International Nuclear Information System (INIS)

    Mironov, A.

    1994-01-01

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven

  15. Construction of fuzzy automata by fuzzy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, A [Moscow Univ. (Russian Federation). Dept. of Mathematics and Computer Science

    1994-12-31

    The solving the problem of canonical realization of partial reaction morphisms (PRM) for automata in toposes and fuzzy automata is addressed. This problem extends the optimal construction problem for finite deterministic automata by experiments. In the present paper the conception of canonical realization of PRM for automata in toposes is introduced and the sufficient conditions for the existence of canonical realizations for PRM in toposes are presented. As a consequence of this result the existence of canonical realizations for PRM in the category of fuzzy sets over arbitrary complete chain is proven.

  16. Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.

    Science.gov (United States)

    de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2017-01-01

    Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.

  17. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  18. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  19. Beyond fuzzy spheres

    International Nuclear Information System (INIS)

    Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T

    2010-01-01

    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.

  20. Fuzzy Rough Ring and Its Prop erties

    Institute of Scientific and Technical Information of China (English)

    REN Bi-jun; FU Yan-ling

    2013-01-01

    This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.

  1. Fuzzy data analysis

    CERN Document Server

    Bandemer, Hans

    1992-01-01

    Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.

  2. Fuzzy stochastic multiobjective programming

    CERN Document Server

    Sakawa, Masatoshi; Katagiri, Hideki

    2011-01-01

    With a stress on interactive decision-making, this work breaks new ground by covering both the random nature of events related to environments, and the fuzziness of human judgements. The text runs from mathematical preliminaries to future research directions.

  3. Aerial Object Following Using Visual Fuzzy Servoing

    OpenAIRE

    Olivares Méndez, Miguel Ángel; Mondragon Bernal, Ivan Fernando; Campoy Cervera, Pascual; Mejias Alvarez, Luis; Martínez Luna, Carol Viviana

    2011-01-01

    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintai...

  4. A fuzzy-based hybrid PLL scheme for abnormal grid conditions

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Savaghebi, Mehdi; Guerrero, Josep M.

    2015-01-01

    -sequence component of the utility voltage under unbalanced and distorted conditions as well as fast and smooth tracking of phase jump. Furthermore, to achieve the best possible performance, a fuzzy adaptive particle swarm optimization (FAPSO) algorithm is considered to optimize parameters of the fuzzy system...

  5. A TSK neuro-fuzzy approach for modeling highly dynamic systems

    NARCIS (Netherlands)

    Acampora, G.

    2011-01-01

    This paper introduces a new type of TSK-based neuro-fuzzy approach and its application to modeling highly dynamic systems. In details, our proposal performs an adaptive supervised learning on a collection of time series in order to create a so-called Timed Automata Based Fuzzy Controller, i.e. an

  6. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  7. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  8. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    Science.gov (United States)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  9. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS)

    International Nuclear Information System (INIS)

    Mostafaei, Mostafa; Javadikia, Hossein; Naderloo, Leila

    2016-01-01

    Biodiesel is as an alternative petro-diesel fuel produced from the renewable resources. The use of novel technologies such as ultrasound technology for biodiesel production intensifies the reaction and reduces the process cost. The present study is aimed to evaluate and compare the prediction and simulating efficiency of the response surface methodology (RSM) and adaptive Neuro-fuzzy inference system (ANFIS) approaches for modeling the transesterification yield achieved in ultrasonic reactor. The influence of independent variables (reactor diameter, liquid height and ultrasound intensity) on the conversion of fatty acid methyl esters (FAME) was investigated by Box-Behnken design of RSM and two ANFIS approaches (hybrid and back-propagation optimization methods). All models were compared statistically based on the training and validation data set by the coefficient of determination (R2), root mean squares error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and mean relative percent deviation (MRPD). The calculated R2 for RSM and two ANFIS models were 0.9669, 0.9812 and 0.9808, respectively. All models indicated good predictions, however, the ANFIS models were more precise compared to the RSM model, which proves that the ANFIS is a powerful tool for modeling and optimizing FAME production in ultrasound reactor. - Highlights: • The ultrasound assisted FAME conversion was modelled using RSM and ANFIS approaches. • The scatter diagrams indicate the models accurately predicted the reaction yield. • The ANFIS model (hybrid) has higher R"2 (0.9812) compared to the RSM model. • The predicted deviations and residual values are relatively small for ANFIS model. • ANFIS model was more accurate for predicting ultrasound assisted FAME conversion.

  10. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  11. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    Science.gov (United States)

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  12. Application and Simulation of Fuzzy Neural Network PID Controller in the Aircraft Cabin Temperature

    Directory of Open Access Journals (Sweden)

    Ding Fang

    2013-06-01

    Full Text Available Considering complex factors of affecting ambient temperature in Aircraft cabin, and some shortages of traditional PID control like the parameters difficult to be tuned and control ineffective, this paper puts forward the intelligent PID algorithm that makes fuzzy logic method and neural network together, scheming out the fuzzy neural net PID controller. After the correction of the fuzzy inference and dynamic learning of neural network, PID parameters of the controller get the optimal parameters. MATLAB simulation results of the cabin temperature control model show that the performance of the fuzzy neural network PID controller has been greatly improved, with faster response, smaller overshoot and better adaptability.

  13. A fuzzy logic controller for feedwater regulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Eryuerek, E.E.; Upadhyaya, B.R.; Alguindigue, I.E.

    1994-01-01

    Fuzzy control refers to the application of fuzzy logic theory to control systems. In this paper fuzzy controllers for steam generator water level control and pump speed control are presented, and their performance in the presence of perturbations is discussed. In order to test the robustness of the controllers, their performance is compared with the performance of model based adaptive controllers and traditional PID controllers. The control actions calculated by the fuzzy controllers is have the characteristic of quick and smooth control compared to the others

  14. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    Directory of Open Access Journals (Sweden)

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  15. Improved fuzzy PID controller design using predictive functional control structure.

    Science.gov (United States)

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fuzzy controller of speed-power of a synchronous micro generator; Controlador difuso de velocidad-potencia de un microgenerador sincrono

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Alvarado, Raziel

    2002-11-01

    This thesis shows the design and implementation of a speed-power fuzzy-logic controller. The controller implementation was carried out on the Schrage motor-synchronous generator set. The synchronous alternator is rated 7 kVA, 220 V, 1800 rpm, 60 Hz. Two PI like fuzzy-logic controllers were developed with 9 and 25 rules. The controllers use the speed or power error and its integral as input variables and as an output the control signal from the brush-positioner of the Schrage motor. At the controller design stage, the anfis (adaptive-network-based fuzzy inference system) learning and structure procedure was used for tuning up parameters of the membership functions used on the designed fuzzy controllers. These controllers are first-order Sugeno-type. The designed controllers were tested on the motor-generator set under loaded and no-loaded conditions. It was found that PI-9 rules fuzzy-logic controller had better performance on both operating conditions. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion de un controlador difuso de velocidad-potencia, para un grupo motor Schrage-generador sincrono de 7 kVA, 220 V, 1800 rpm, 60 Hz. Se implementaron controladores difusos del tipo PI de 9 y 25 reglas. Estos controladores utilizan como variables de entrada el error y la integral del error, de velocidad o potencia segun corresponda, y como variable de salida la senal de control del posicionador de las escobillas del motor Schrage. En la etapa de diseno de los controladores, se utilizo la estructura y el procedimiento de aprendizaje anfis (Sistema de Inferencia Difuso Basado en Redes Adaptables, por sus siglas en ingles) para sintonizar los parametros de las funciones de membresia de los controladores difusos, los cuales son del tipo Sugeno de primer orden. Con la finalidad de validar los controladores disenados, se realizaron pruebas experimentales al grupo motor-generador en condiciones de vacio y carga. Se encontro que el controlador difuso tipo

  17. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  18. Fuzzy algorithm for an automatic reactor power control in a PWR

    International Nuclear Information System (INIS)

    Hah, Yung Joon; Song, In Ho; Yu, Sung Sik; Choi, Jung In; Lee, Byong Whi

    1994-01-01

    A fuzzy algorithm is presented for automatic reactor power control in a pressurized water reactor. Automatic power shape control is complicated by the use of control rods because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability for the load - follow operation including frequency control. In an attempt to achieve automatic power shape control without any design modification of the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multi - input multi - output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to the Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of the pressurized water reactor during the load - follow operation

  19. Design and optimization of fuzzy-PID controller for the nuclear reactor power control

    International Nuclear Information System (INIS)

    Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong

    2009-01-01

    This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.

  20. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    Science.gov (United States)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.