WorldWideScience

Sample records for adaptive metabolism reduction

  1. Alzheimer's disease and natural cognitive aging may represent adaptive metabolism reduction programs

    Directory of Open Access Journals (Sweden)

    Reser Jared

    2009-02-01

    Full Text Available Abstract The present article examines several lines of converging evidence suggesting that the slow and insidious brain changes that accumulate over the lifespan, resulting in both natural cognitive aging and Alzheimer's disease (AD, represent a metabolism reduction program. A number of such adaptive programs are known to accompany aging and are thought to have decreased energy requirements for ancestral hunter-gatherers in their 30s, 40s and 50s. Foraging ability in modern hunter-gatherers declines rapidly, more than a decade before the average terminal age of 55 years. Given this, the human brain would have been a tremendous metabolic liability that must have been advantageously tempered by the early cellular and molecular changes of AD which begin to accumulate in all humans during early adulthood. Before the recent lengthening of life span, individuals in the ancestral environment died well before this metabolism reduction program resulted in clinical AD, thus there was never any selective pressure to keep adaptive changes from progressing to a maladaptive extent. Aging foragers may not have needed the same cognitive capacities as their younger counterparts because of the benefits of accumulated learning and life experience. It is known that during both childhood and adulthood metabolic rate in the brain decreases linearly with age. This trend is thought to reflect the fact that children have more to learn. AD "pathology" may be a natural continuation of this trend. It is characterized by decreasing cerebral metabolism, selective elimination of synapses and reliance on accumulating knowledge (especially implicit and procedural over raw brain power (working memory. Over decades of subsistence, the behaviors of aging foragers became routinized, their motor movements automated and their expertise ingrained to a point where they no longer necessitated the first-rate working memory they possessed when younger and learning actively. Alzheimer

  2. Metabolic Adaptation to Muscle Ischemia

    Science.gov (United States)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  3. Evolutionary dynamics of metabolic adaptation

    NARCIS (Netherlands)

    van Hoek, M.J.A.

    2008-01-01

    In this thesis we study how organisms adapt their metabolism to a changing environment. Metabolic adaptation occurs at different timescales. Organisms adapt their metabolism via metabolic regulation, which happens in the order of minutes to hours and via evolution, which takes many generations. Here

  4. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  5. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    reactions involving 680 metabolites distributed in 6 subcellular locations. iJC568 was used to quantify metabolic fluxes under PLG conditions, and we observed a close correspondence between experimental and computed fluxes. We found that MED4 has minimized its dependence on intracellular phosphate, not only...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. ...

  6. Endocrine and metabolic adaptations to pregnancy; impact of obesity.

    Science.gov (United States)

    Mouzon, Sylvie Hauguel-de; Lassance, Luciana

    2015-10-01

    Adaptations of maternal endocrine and metabolic homeostasis are central to successful pregnancy. They insure that an adequate and continuous supply of metabolic fuels is available for the growing fetus. Healthy pregnancy is classically described as a mild diabetogenic state with significant adjustments in both insulin production and sensitivity. The placenta contributes to the endocrine adaptations to pregnancy through the synthesis of various hormones which may impact insulin action. Obesity has the highest prevalence among metabolic disease in pregnancy. This article summarizes the literature addressing the endocrine and metabolic adaptations implemented during normal pregnancy. Mechanisms of regulation are further examined in the context of maternal obesity.

  7. Adaptive Liners for Broadband Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will combine the advantages of adaptive materials with the simplistic passive design of state-of-the-art acoustic liners to provide the ability to tune...

  8. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  9. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer.

    Science.gov (United States)

    Deblois, Geneviève; Smith, Harvey W; Tam, Ingrid S; Gravel, Simon-Pierre; Caron, Maxime; Savage, Paul; Labbé, David P; Bégin, Louis R; Tremblay, Michel L; Park, Morag; Bourque, Guillaume; St-Pierre, Julie; Muller, William J; Giguère, Vincent

    2016-07-12

    Despite the initial benefits of treating HER2-amplified breast cancer patients with the tyrosine kinase inhibitor lapatinib, resistance inevitably develops. Here we report that lapatinib induces the degradation of the nuclear receptor ERRα, a master regulator of cellular metabolism, and that the expression of ERRα is restored in lapatinib-resistant breast cancer cells through reactivation of mTOR signalling. Re-expression of ERRα in resistant cells triggers metabolic adaptations favouring mitochondrial energy metabolism through increased glutamine metabolism, as well as ROS detoxification required for cell survival under therapeutic stress conditions. An ERRα inverse agonist counteracts these metabolic adaptations and overcomes lapatinib resistance in a HER2-induced mammary tumour mouse model. This work reveals a molecular mechanism by which ERRα-induced metabolic reprogramming promotes survival of lapatinib-resistant cancer cells and demonstrates the potential of ERRα inhibition as an effective adjuvant therapy in poor outcome HER2-positive breast cancer.

  10. A striking reduction of simple loudness adaptation in autism.

    Science.gov (United States)

    Lawson, Rebecca P; Aylward, Jessica; White, Sarah; Rees, Geraint

    2015-11-05

    Reports of sensory disturbance, such as loudness sensitivity or sound intolerance, are ubiquitous in Autism Spectrum Disorder (ASD) but a mechanistic explanation for these perceptual differences is lacking. Here we tested adaptation to loudness, a process that regulates incoming sensory input, in adults with ASD and matched controls. Simple loudness adaptation (SLA) is a fundamental adaptive process that reduces the subjective loudness of quiet steady-state sounds in the environment over time, whereas induced loudness adaptation (ILA) is a means of generating a reduction in the perceived volume of louder sounds. ASD participants showed a striking reduction in magnitude and rate of SLA relative to age and ability-matched typical adults, but in contrast ILA remained intact. Furthermore, rate of SLA predicted sensory sensitivity coping strategies in the ASD group. These results provide the first evidence that compromised neural mechanisms governing fundamental adaptive processes might account for sound sensitivity in ASD.

  11. Metabolic Adaptation after Whole Genome Duplication

    NARCIS (Netherlands)

    Hoek, M.J.A. van; Hogeweg, P.

    2009-01-01

    Whole genome duplications (WGDs) have been hypothesized to be responsible for major transitions in evolution. However, the effects of WGD and subsequent gene loss on cellular behavior and metabolism are still poorly understood. Here we develop a genome scale evolutionary model to study the dynamics

  12. Impact of genome reduction on bacterial metabolism and its regulation.

    Science.gov (United States)

    Yus, Eva; Maier, Tobias; Michalodimitrakis, Konstantinos; van Noort, Vera; Yamada, Takuji; Chen, Wei-Hua; Wodke, Judith A H; Güell, Marc; Martínez, Sira; Bourgeois, Ronan; Kühner, Sebastian; Raineri, Emanuele; Letunic, Ivica; Kalinina, Olga V; Rode, Michaela; Herrmann, Richard; Gutiérrez-Gallego, Ricardo; Russell, Robert B; Gavin, Anne-Claude; Bork, Peer; Serrano, Luis

    2009-11-27

    To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations. Measurements of biomass indicators, metabolites, and 13C-glucose experiments provided information on directionality, fluxes, and energetics; integration with transcription profiling enabled the global analysis of metabolic regulation. Compared with more complex bacteria, the M. pneumoniae metabolic network has a more linear topology and contains a higher fraction of multifunctional enzymes; general features such as metabolite concentrations, cellular energetics, adaptability, and global gene expression responses are similar, however.

  13. Adaptive deployment of model reductions for tau-leaping simulation

    Science.gov (United States)

    Wu, Sheng; Fu, Jin; Petzold, Linda R.

    2015-05-01

    Multiple time scales in cellular chemical reaction systems often render the tau-leaping algorithm inefficient. Various model reductions have been proposed to accelerate tau-leaping simulations. However, these are often identified and deployed manually, requiring expert knowledge. This is time-consuming and prone to error. In previous work, we proposed a methodology for automatic identification and validation of model reduction opportunities for tau-leaping simulation. Here, we show how the model reductions can be automatically and adaptively deployed during the time course of a simulation. For multiscale systems, this can result in substantial speedups.

  14. Adaptive deployment of model reductions for tau-leaping simulation.

    Science.gov (United States)

    Wu, Sheng; Fu, Jin; Petzold, Linda R

    2015-05-28

    Multiple time scales in cellular chemical reaction systems often render the tau-leaping algorithm inefficient. Various model reductions have been proposed to accelerate tau-leaping simulations. However, these are often identified and deployed manually, requiring expert knowledge. This is time-consuming and prone to error. In previous work, we proposed a methodology for automatic identification and validation of model reduction opportunities for tau-leaping simulation. Here, we show how the model reductions can be automatically and adaptively deployed during the time course of a simulation. For multiscale systems, this can result in substantial speedups.

  15. Adaptive Noise Reduction Scheme for Salt and Pepper

    CERN Document Server

    Gebreyohannes, Tina

    2012-01-01

    In this paper, a new adaptive noise reduction scheme for images corrupted by impulse noise is presented. The proposed scheme efficiently identifies and reduces salt and pepper noise. MAG (Mean Absolute Gradient) is used to identify pixels which are most likely corrupted by salt and pepper noise that are candidates for further median based noise reduction processing. Directional filtering is then applied after noise reduction to achieve a good tradeoff between detail preservation and noise removal. The proposed scheme can remove salt and pepper noise with noise density as high as 90% and produce better result in terms of qualitative and quantitative measures of images.

  16. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  17. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and mo

  18. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Science.gov (United States)

    Rommelaere, Samuel; Millet, Virginie; Vu Manh, Thien-Phong; Gensollen, Thomas; Andreoletti, Pierre; Cherkaoui-Malki, Mustapha; Bourges, Christophe; Escalière, Bertrand; Du, Xin; Xia, Yu; Imbert, Jean; Beutler, Bruce; Kanai, Yoshiakira; Malissen, Bernard; Malissen, Marie; Tailleux, Anne; Staels, Bart; Galland, Franck; Naquet, Philippe

    2014-01-01

    Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  19. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  20. Metabolic adaption of ethanol-tolerant Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Xinshu Zhu

    Full Text Available Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT strain and an ethanol-tolerant strain cultivated without (ET0 or with (ET3 3% (v/v exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.

  1. Adaptive model reduction for nonsmooth discrete element simulation

    Science.gov (United States)

    Servin, Martin; Wang, Da

    2016-03-01

    A method for adaptive model order reduction for nonsmooth discrete element simulation is developed and analysed in numerical experiments. Regions of the granular media that collectively move as rigid bodies are substituted with rigid bodies of the corresponding shape and mass distribution. The method also support particles merging with articulated multibody systems. A model approximation error is defined and used to derive conditions for when and where to apply reduction and refinement back into particles and smaller rigid bodies. Three methods for refinement are proposed and tested: prediction from contact events, trial solutions computed in the background and using split sensors. The computational performance can be increased by 5-50 times for model reduction level between 70-95 %.

  2. Adaptive model reduction for nonsmooth discrete element simulation

    CERN Document Server

    Servin, Martin

    2015-01-01

    A method for adaptive model order reduction for nonsmooth discrete element simulation is developed and analysed in numerical experiments. Regions of the granular media that collectively move as rigid bodies are substituted with rigid bodies of the corresponding shape and mass distribution. The method also support particles merging with articulated multibody systems. A model approximation error is defined used for deriving and conditions for when and where to apply model reduction and refinement back into particles and smaller rigid bodies. Three methods for refinement are proposed and tested: prediction from contact events, trial solutions computed in the background and using split sensors. The computational performance can be increased by 5 - 50 times for model reduction level between 70 - 95 %.

  3. Correlation between metabolic reduction rates and electron affinity of nitroheterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Olive, P.L.

    1979-11-01

    Nitroheterocyclic compounds can selectively sensitize hypoxic (tumor) cells to radiation damage in vitro. However, results in vivo have generally been less optimistic, inasmuch as metabolic reduction of these drugs not only limits effective lifetime but also produces metabolic intermediates with marked cytotoxic and carcinogenic activity. With three reducing systems in vitro, E. coli B/r, mouse L-929 cells, and mouse liver microsomes, the rate of nitroreduction of several nitroheterocycles was found to be proportional to their electron affinity. Since nitroreduction has previously been correlated with subsequent cytotoxicity, DNA damage, and mutagenicity, the present results suggest that improvements in the therapeutic efficacy of nitroheterocycles (i.e., sensitization without toxicity and carcinogenicity) will be dependent on development of drugs with more appropriate pharmacological properties.

  4. Coastal community resilience in climate adaptation and risk reduction

    DEFF Research Database (Denmark)

    Thomsen, Mie; Sørensen, Carlo Sass

    resilience to an undesired extent. In conclusion, the study points to the potential in combining and merging natural and social science approaches for climate adaptation and disaster risk management to strengthen municipal decision-making, allow for better planning measures, and to strengthen community...... the local municipalities to implement additional measures. For the fjord towns of Thyborøn (pop. 2100, located towards the North Sea by the Thyborøn Channel) and Løgstør (pop. 4000, located approximately 80 km east from the North Sea) flood hazard, vulnerability, and risk assessments and mapping...... are combined with community resilience studies to provide the corresponding municipalities with a more elaborate knowledge platform for climate adaptation and disaster risk reduction. Community resilience is investigated in four dimensions (information & communication, community competence, social capital...

  5. Dose reduction with adaptive bolus chasing computed tomography angiography.

    Science.gov (United States)

    Cai, Zhijun; Bai, Er-Wei; Wang, Ge; Sharafuddin, Melhem J; Abada, Hicham T

    2010-01-01

    Computed Tomography (CT) has become an effective diagnosis and evaluating tool in clinical; however, its radiation exposure has drawn great attention as more and more CT scans are performed every year. How to reduce the radiation dose and meanwhile keep the resultant CT images diagnosable becomes an important research topic. In this paper, we propose a dose reduction approach along with the adaptive bolus chasing CT Angiography (CTA) techniques, which are capable of tracking the contrast bolus peak over all the blood vessel segments during the CTA scan. By modulating the tube current (and collimator width) online, we can reduce the total radiation dose and maintain the contrast to noise ratio (CNR) of the blood vessel. Numerical experiments on reference DSA data sets show that by using the proposed dose reduction method, the effective radiation dose can be saved about 39%.

  6. Adaptations to pressure in the RBC metabolism of diving mammals.

    Science.gov (United States)

    Castellini, M A; Castellini, J M; Rivera, P M

    2001-07-01

    Marine mammals are known to dive up to 2000 m and, therefore, tolerate as much as 200 atm. of hydrostatic pressure. To examine possible metabolic adaptations to these elevated pressures, fresh blood samples from marine and terrestrial mammals were incubated for 2 h at 37 degrees C under 136 atm (2000 psi) of hydrostatic pressure. The consumption of plasma glucose and the production of lactate over the 2-h period were used to assess glycolytic flux in the red cells. The results indicate that glycolytic flux as measured by lactate production under pressure can be significantly depressed in most terrestrial mammals and either not altered or accelerated in marine mammals. The data also suggest that there is a significant shift in the ratio of lactate produced to glucose consumed under pressure. Interestingly, human and dolphin blood do not react to pressure. These combined data imply a metabolic adaptation to pressure in marine mammal RBC that may not be necessary in human or dolphin cells due to their unique patterns of glucose metabolism.

  7. Relationship of MTT reduction to stimulants of muscle metabolism.

    Science.gov (United States)

    Newman, J M; DiMaria, C A; Rattigan, S; Steen, J T; Miller, K A; Eldershaw, T P; Clark, M G

    2000-10-16

    MTT, a positively charged tetrazolium salt, is widely used as an indicator of cell viability and metabolism and has potential for histochemical identification of tissue regions of hypermetabolism. In the present study, MTT was infused in the constant-flow perfused rat hindlimb to assess the effect of various agents and particularly vasoconstrictors that increase muscle metabolism. Reduction of MTT to the insoluble formazan in muscles assessed at the end of experiments was linear over a 30 min period and production rates were greater in red fibre types than white fibre types. The vasoconstrictors, norepinephrine (100 nM) and angiotensin (10 nM) decreased MTT formazan production in all muscles but increased hindlimb oxygen uptake and lactate efflux. Veratridine, a Na(+) channel opener that increases hindlimb oxygen uptake and lactate efflux without increases in perfusion pressure, also decreased MTT formazan production. Membrane stabilizing doses (100 microM) of (+/-)-propranolol reversed the inhibitory effects of angiotensin and veratridine on MTT formazan production. Muscle contractions elicited by stimulation of the sciatic nerve, reversed the norepinephrine-mediated inhibitory effects on MTT formazan production, even though oxygen consumption and lactate efflux were further stimulated. Stimulation of hindlimb muscle oxygen uptake by pentachlorophenol, a mitochondrial uncoupler, was not associated with alterations in MTT formazan production. It is concluded that apart from muscle contractions MTT formazan production does not increase with increased muscle metabolism. Since the vasoconstrictors angiotensin and norepinephrine as well as veratridine activate Na(+) channels and the Na(+)/K(+) pump, energy required for Na(+) pumping may be required for MTT reduction. It is unlikely that vasoconstrictors that stimulate oxygen uptake do so by uncoupling respiration.

  8. Forecasting societies' adaptive capacities through a demographic metabolism model

    Science.gov (United States)

    Lutz, Wolfgang; Muttarak, Raya

    2017-03-01

    In seeking to understand how future societies will be affected by climate change we cannot simply assume they will be identical to those of today, because climate and societies are both dynamic. Here we propose that the concept of demographic metabolism and the associated methods of multi-dimensional population projections provide an effective analytical toolbox to forecast important aspects of societal change that affect adaptive capacity. We present an example of how the changing educational composition of future populations can influence societies' adaptive capacity. Multi-dimensional population projections form the human core of the Shared Socioeconomic Pathways scenarios, and knowledge and analytical tools from demography have great value in assessing the likely implications of climate change on future human well-being.

  9. Genomics of metabolic adaptations in the peripartal cow.

    Science.gov (United States)

    Loor, J J

    2010-07-01

    The peripartal period is characterized by dramatic alterations in metabolism and function of key tissues such as liver, adipose and mammary. Metabolic regulation relies partly on transcriptional control of gene networks, a collection of DNA segments, which interact with a transcription factor or nuclear receptor, as a mechanism controlling the concentration of key enzymes in cells. These 'global' interactions can govern the rates at which genes in the network are transcribed into mRNA. The study of the entire genome, sub-networks or candidate genes at the mRNA level encompasses the broad field of genomics. Genomics of peripartal metabolic adaptations has traditionally been focused on candidate genes and more recently, using microarrays, on the broader transcriptome landscape. The candidate gene approach has expanded our knowledge on the functional adaptations of ureagenesis, fatty acid oxidation, gluconeogenesis, inflammation and growth hormone signaling in liver. More recent work with peripartal mammary tissue has used a gene network approach to study milk fat synthesis regulation as well as a candidate gene approach to study lipid transport, glucose uptake and inflammatory response. Network and pathway analysis of microarray data from cows fed different levels of dietary energy pre partum has revealed unique clusters encompassing functional categories including signal transduction, endoplasmic reticulum stress, peroxisome proliferator-activated receptors (PPARγ) signaling, PPARα signaling, immune or inflammatory processes and cell death in subcutaneous adipose tissue as well as liver. Of interest from a nutritional perspective is the potential to alter PPARγ signaling in adipose and PPARα signaling in liver as a means to enhance insulin sensitivity as well as fatty acid oxidation post partum. Major advances in understanding the metabolic adaptations of peripartal cows will come from using a systems biology approach to integrate data generated at the m

  10. Adaptation of Myocardial Substrate Metabolism to a Ketogenic Nutrient Environment*

    Science.gov (United States)

    Wentz, Anna E.; d'Avignon, D. André; Weber, Mary L.; Cotter, David G.; Doherty, Jason M.; Kerns, Robnet; Nagarajan, Rakesh; Reddy, Naveen; Sambandam, Nandakumar; Crawford, Peter A.

    2010-01-01

    Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor α-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial 13C enrichment of glutamate when 13C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states. PMID:20529848

  11. Adaptive sampling for nonlinear dimensionality reduction based on manifold learning

    DEFF Research Database (Denmark)

    Franz, Thomas; Zimmermann, Ralf; Goertz, Stefan

    2017-01-01

    We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space...... that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric...... to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime....

  12. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  13. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  14. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    Science.gov (United States)

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  15. Quantifying environmental adaptation of metabolic pathways in metagenomics

    DEFF Research Database (Denmark)

    Gianoulis, Tara A; Raes, Jeroen; Patel, Prianka V;

    2009-01-01

    of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats-i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched......Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage...... of weighted pathways that maximally covaries with a combination of environmental variables (many-to-many), which we term a metabolic footprint. Applied to available aquatic datasets, we identified footprints predictive of their environment that can potentially be used as biosensors. For example, we show...

  16. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis.

    Directory of Open Access Journals (Sweden)

    Niraj K Nirala

    2013-06-01

    Full Text Available The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in

  17. Current understanding of the formation and adaptation of metabolic systems based on network theory.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2012-07-12

    Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  18. Metabolic adaptations to heat stress in growing cattle.

    Science.gov (United States)

    O'Brien, M D; Rhoads, R P; Sanders, S R; Duff, G C; Baumgard, L H

    2010-02-01

    To differentiate between the effects of heat stress (HS) and decreased dry matter intake (DMI) on physiological and metabolic variables in growing beef cattle, we conducted an experiment in which a thermoneutral (TN) control group (n=6) was pair fed (PF) to match nutrient intake with heat-stressed Holstein bull calves (n=6). Bulls (4 to 5 mo old, 135 kg body weight [BW]) housed in climate-controlled chambers were subjected to 2 experimental periods (P): (1) TN (18 degrees C to 20 degrees C) and ad libitum intake for 9 d, and (2) HS (cyclical daily temperatures ranging from 29.4 degrees C to 40.0 degrees C) and ad libitum intake or PF (in TN conditions) for 9 d. During each period, blood was collected daily and all calves were subjected to an intravenous insulin tolerance test (ITT) on day 7 and a glucose tolerance test (GTT) on day 8. Heat stress reduced (12%) DMI and by design, PF calves had similar nutrient intake reductions. During P1, BW gain was similar between environments and averaged 1.25 kg/d, and both HS and PF reduced (Pcalves had a greater (67%; Pcalves in both environments tended (P=0.11) to have a blunted overall glucose response to the ITT. Independent of reduced nutrient intake, HS alters post-absorptive carbohydrate (basal and stimulated) metabolism, characterized primarily by increased basal insulin concentrations and insulin response to a GTT. However, HS-induced reduction in feed intake appears to fully explain decreased average daily gain in Holstein bull calves.

  19. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-01-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature (P < 0.05). This result indicated that repeated local muscle cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  20. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    Science.gov (United States)

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  1. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D

    2011-01-22

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30-40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and -0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis.

  2. An Adaptive Design Methodology for Reduction of Product Development Risk

    CERN Document Server

    Pakala, Hara Gopal Mani; Kvsvn, Dr Raju; Khan, Dr Ibrahim; 10.5121/ijasuc.2011.2303

    2011-01-01

    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compar...

  3. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.

  4. Adaptation of carbon allocation under light and nutrient reduction

    Science.gov (United States)

    Wegener, Frederik; Werner, Christiane

    2015-04-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. Whereas shifts in the allocation of photosynthates induced by reduced water availability, enhanced temperature and CO2 concentration were recently investigated in various studies, less is known about the response to light and nutrient reduction. We induced different allocation patterns in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analysed allocation parameters as well as morphological and physiological traits for 15 months. Finally, we conducted a 13CO2 pulse-labelling and followed the fate of recently assimilated carbon to eight different classes of plant tissues and respiration for 13 days. The results revealed a high intraspecific variability in C distribution to tissues and in respiration. Allocation changes even varied within leaf and stem tissue classes (e.g. more C in main stems, less in lateral stems). These results show that the common separation of plant tissues in only three classes, i.e. root, shoot and leaf tissues, can result in missing information about allocation changes. The nutrient reduction enhanced the transport of recently assimilated C from leaves to roots in terms of quantity (c. 200%) and velocity compared to control plants. Interestingly, a 57% light reduction enhanced photosynthetic capacity and caused no change in final biomass after 15 months. Therefore, our results support the recently discussed sink regulation of photosynthesis. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C loss from storage and structural C pools and therefore enhance the fraction of recent assimilates used for respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a control mechanism for C

  5. Metabolic crosstalk between host and pathogen: sensing, adapting and competing.

    Science.gov (United States)

    Olive, Andrew J; Sassetti, Christopher M

    2016-04-01

    Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.

  6. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  7. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  8. Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training.

    Science.gov (United States)

    Mohktar, Ruzaidi A M; Montgomery, Magda K; Murphy, Robyn M; Watt, Matthew J

    2016-07-01

    Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training.

  9. Glucocorticoids, metabolic adaptations and recovery : studies in specific mouse models

    NARCIS (Netherlands)

    Auvinen, Hanna Elina

    2013-01-01

    Today’s Western society and work promotes a sedentary lifestyle. This, coupled with high caloric food availability has increased obesity followed by an increased prevalence of the metabolic syndrome (MetS), type 2 diabetes (T2D) and cardiovascular diseases (CVD). Epidemiological data show a clear as

  10. Bacterial adaptation through distributed sensing of metabolic fluxes

    NARCIS (Netherlands)

    Kotte, Oliver; Zaugg, Judith B.; Heinemann, Matthias

    2010-01-01

    The recognition of carbon sources and the regulatory adjustments to recognized changes are of particular importance for bacterial survival in fluctuating environments. Despite a thorough knowledge base of Escherichia coli’s central metabolism and its regulation, fundamental aspects of the employed s

  11. Adaptations to climate in candidate genes for common metabolic disorders.

    Directory of Open Access Journals (Sweden)

    Angela M Hancock

    2008-02-01

    Full Text Available Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.

  12. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    Science.gov (United States)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  13. Adaptive comb filtering for motion artifact reduction from PPG with a structure of adaptive lattice IIR notch filter.

    Science.gov (United States)

    Lee, Boreom; Kee, Youngwook; Han, Jonghee; Yi, Won Jin

    2011-01-01

    Photoplethysmographic (PPG) signal can provide important information about cardiovascular and respiratory conditions of individuals in a hospital or daily life. However, PPG can be distorted by motion artifacts significantly. Therefore, the reduction of the effects of motion artifacts is very important procedure for monitoring cardio-respiratory system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signal including normalized least mean squares (NLMS) method, recursive least squares (RLS) filter, and Kalman filter. In the present study, we propose the adaptive comb filter (ACF) for reducing the effects of motion artifacts from PPG signal. ACF with adaptive lattice infinite impulse response (IIR) notch filter (ALNF) successfully reduced the motion artifacts from the quasi-periodic PPG signal.

  14. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...... to phenotype at a systemic level. Particular metabolic subsystems were identified as important for metabolic adaptation in P. aeruginosa. One altered metabolic phenotype was connected to a genetic change; a finding that was possible through the systems characterization and which was not identi-­‐ fied...... by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....

  15. AMPKα in Exercise-Induced Substrate Metabolism and Exercise Training-Induced Metabolic and Mitochondrial Adaptations

    DEFF Research Database (Denmark)

    Fentz, Joachim

    A bout of exercise potently stimulates skeletal muscle energy metabolism. The ATP turnover may rise up to0 ~100 fold compared to the resting state and this presents a substantial stress on skeletal muscle ATP regeneration. To prepare for future events of metabolic stress, the muscle increases its...

  16. Parallel structures for disaster risk reduction and climate change adaptation in Southern Africa

    Directory of Open Access Journals (Sweden)

    Per Becker

    2013-01-01

    Full Text Available During the last decade, the interest of the international community in the concepts of disaster risk reduction and climate change adaptation has been growing immensely. Even though an increasing number of scholars seem to view these concepts as two sides of the same coin (at least when not considering the potentially positive effects of climate change, in practice the two concepts have developed in parallel rather than in an integrated manner when it comes to policy, rhetoric and funding opportunities amongst international organisations and donors. This study investigates the extent of the creation of parallel structures for disaster risk reduction and climate change adaptation in the Southern African Development Community (SADC region. The chosen methodology for the study is a comparative case study and the data are collected through focus groups and content analysis of documentary sources, as well as interviews with key informants. The results indicate that parallel structures for disaster risk reduction and climate change adaptation have been established in all but one of the studied countries. The qualitative interviews performed in some of the countries indicate that stakeholders in disaster risk reduction view this duplication of structures as unfortunate, inefficient and a fertile setup for conflict over resources for the implementation of similar activities. Additional research is called for in order to study the concrete effects of having these parallel structures as a foundation for advocacy for more efficient future disaster risk reduction and climate change adaptation.

  17. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    Science.gov (United States)

    Őri, Zsolt P

    2016-08-03

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  18. Transcriptomic Analysis Reveals Selective Metabolic Adaptation of Streptococcus suis to Porcine Blood and Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Anna Koczula

    2017-02-01

    Full Text Available Streptococcus suis is a zoonotic pathogen that can cause severe pathologies such as septicemia and meningitis in its natural porcine host as well as in humans. Establishment of disease requires not only virulence of the infecting strain but also an appropriate metabolic activity of the pathogen in its host environment. However, it is yet largely unknown how the streptococcal metabolism adapts to the different host niches encountered during infection. Our previous isotopologue profiling studies on S. suis grown in porcine blood and cerebrospinal fluid (CSF revealed conserved activities of central carbon metabolism in both body fluids. On the other hand, they suggested differences in the de novo amino acid biosynthesis. This prompted us to further dissect S. suis adaptation to porcine blood and CSF by RNA deep sequencing (RNA-seq. In blood, the majority of differentially expressed genes were associated with transport of alternative carbohydrate sources and the carbohydrate metabolism (pentose phosphate pathway, glycogen metabolism. In CSF, predominantly genes involved in the biosynthesis of branched-chain and aromatic amino acids were differentially expressed. Especially, isoleucine biosynthesis seems to be of major importance for S. suis in CSF because several related biosynthetic genes were more highly expressed. In conclusion, our data revealed niche-specific metabolic gene activity which emphasizes a selective adaptation of S. suis to host environments.

  19. Metabolic adaptation of skeletal muscles to gravitational unloading

    Science.gov (United States)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  20. Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia

    Science.gov (United States)

    2012-09-13

    Tuberculosis in humans and its epidemiology , diagnosis and treatment in the United States. Int J Tuberc Lung Dis 14: 1226–1232. 4. Horsburgh CR, Jr., Rubin...Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia Xin Fang, Anders Wallqvist, Jaques Reifman* DoD... tuberculosis , the causative agent of tuberculosis (TB), to successfully infect human hosts. Adaptations allow the organism to evade the host immune

  1. Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation.

    Science.gov (United States)

    Mercer, Jessica; Kelman, Ilan; do Rosario, Francisco; de Deus de Jesus Lima, Abilio; da Silva, Augusto; Beloff, Anna-Maija; McClean, Alex

    2014-10-01

    Few studies have explored the relationships between nation-building, disaster risk reduction and climate change adaptation. Focusing on small island developing states, this paper examines nation-building in Timor-Leste, a small island developing state that recently achieved independence. Nation-building in Timor-Leste is explored in the context of disaster risk reduction, which necessarily includes climate change adaptation. The study presents a synopsis of Timor-Leste's history and its nation-building efforts as well as an overview of the state of knowledge of disaster risk reduction including climate change adaptation. It also offers an analysis of significant gaps and challenges in terms of vertical and horizontal governance, large donor presence, data availability and the integration of disaster risk reduction and climate change adaptation for nation-building in Timor-Leste. Relevant and applicable lessons are provided from other small island developing states to assist Timor-Leste in identifying its own trajectory out of underdevelopment while it builds on existing strengths.

  2. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  3. Pancreatic β- and α-cell adaptation in response to metabolic changes

    OpenAIRE

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia and eventually diabetes mellitus. Therefore, it is critical to understand how the β-cell mass is regulated. We investigated β- and α-cell adaptation in response to different metabolic changes. We fo...

  4. Adaptative diversity of calcium metabolism in gammarus fossarum populations

    Energy Technology Data Exchange (ETDEWEB)

    Meyran, J.C. [Grenoble-1 Univ., 38 (France)

    1994-11-01

    Analysis of Gammarus fossarum populations from mountain torrents in the Grenoble region reveals some morphological and eco physiological diversity which appears to be related to the calcium concentration of the water after both field and laboratory experimentation. Animals from waters with a high calcium concentration (located in Chartreuse and Vercors) show larger size and a longer molt cycle than those from low calcium concentrated waters (located in Belledonne); their calcium balance during the molt cycle is different. Translocation experiments confirm these differences: a significant increase of the duration of the molt cycle is observed in animals translocated to lower calcium concentrated waters and vice-versa whereas no significant difference is observed between controls and animals translocated within comparably calcium concentrated waters. The causes of such an adaptative diversity between Gammarus fossarum populations will be researched at the genetic level, namely through mitochondrial DNA investigations. (author). 25 refs., 2 tabs., 2 figs.

  5. Recovery of Phenotypes Obtained by Adaptive Evolution through Inverse Metabolic Engineering

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-01-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the...

  6. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Science.gov (United States)

    Liu, Wenqin; Shi, Jian; Zhu, Lijun; Dong, Lingna; Luo, Feifei; Zhao, Min; Wang, Ying; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2015-01-01

    Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT. PMID:26586934

  7. Cholesterol Metabolism and Weight Reduction in Subjects with Mild Obstructive Sleep Apnoea: A Randomised, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available To evaluate whether parameters of obstructive sleep apnoea (OSA associate with cholesterol metabolism before and after weight reduction, 42 middle-aged overweight subjects with mild OSA were randomised to intensive lifestyle intervention (N=23 or to control group (N=18 with routine lifestyle counselling only. Cholesterol metabolism was evaluated with serum noncholesterol sterol ratios to cholesterol, surrogate markers of cholesterol absorption (cholestanol and plant sterols and synthesis (cholestenol, desmosterol, and lathosterol at baseline and after 1-year intervention. At baseline, arterial oxygen saturation (SaO2 was associated with serum campesterol (P<0.05 and inversely with desmosterol ratios (P<0.001 independently of gender, BMI, and homeostasis model assessment index of insulin resistance (HOMA-IR. Apnoea-hypopnoea index (AHI was not associated with cholesterol metabolism. Weight reduction significantly increased SaO2and serum cholestanol and decreased AHI and serum cholestenol ratios. In the groups combined, the changes in AHI were inversely associated with changes of cholestanol and positively with cholestenol ratios independent of gender and the changes of BMI and HOMA-IR (P<0.05. In conclusion, mild OSA seemed to be associated with cholesterol metabolism independent of BMI and HOMA-IR. Weight reduction increased the markers of cholesterol absorption and decreased those of cholesterol synthesis in the overweight subjects with mild OSA.

  8. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  9. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-10-01

    Full Text Available Wenqin Liu,1,2,* Jian Shi,1,2,* Lijun Zhu,2 Lingna Dong,1 Feifei Luo,2 Min Zhao,2 Ying Wang,2 Ming Hu,2,3 Linlin Lu,2 Zhongqiu Liu1,2 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China; 2International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 3Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA *These authors contributed equally to this work Abstract: Oxymatrine (OMT is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT, and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs and human intestinal microsomes (HIMs and the cytochrome P450 (CYP isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT

  10. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Justin D Crane

    Full Text Available Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/- mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/- mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/- mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  11. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows’ Ability to Adapt is Overstressed

    Directory of Open Access Journals (Sweden)

    Albert Sundrum

    2015-10-01

    Full Text Available Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals’ adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

  12. Metabolic Disorders in the Transition Period Indicate that the Dairy Cows' Ability to Adapt is Overstressed.

    Science.gov (United States)

    Sundrum, Albert

    2015-10-09

    Metabolic disorders are a key problem in the transition period of dairy cows and often appear before the onset of further health problems. They mainly derive from difficulties the animals have in adapting to changes and disturbances occurring both outside and inside the organisms and due to varying gaps between nutrient supply and demand. Adaptation is a functional and target-oriented process involving the whole organism and thus cannot be narrowed down to single factors. Most problems which challenge the organisms can be solved in a number of different ways. To understand the mechanisms of adaptation, the interconnectedness of variables and the nutrient flow within a metabolic network need to be considered. Metabolic disorders indicate an overstressed ability to balance input, partitioning and output variables. Dairy cows will more easily succeed in adapting and in avoiding dysfunctional processes in the transition period when the gap between nutrient and energy demands and their supply is restricted. Dairy farms vary widely in relation to the living conditions of the animals. The complexity of nutritional and metabolic processes Animals 2015, 5 979 and their large variations on various scales contradict any attempts to predict the outcome of animals' adaptation in a farm specific situation. Any attempts to reduce the prevalence of metabolic disorders and associated production diseases should rely on continuous and comprehensive monitoring with appropriate indicators on the farm level. Furthermore, low levels of disorders and diseases should be seen as a further significant goal which carries weight in addition to productivity goals. In the long run, low disease levels can only be expected when farmers realize that they can gain a competitive advantage over competitors with higher levels of disease.

  13. p300 is not required for metabolic adaptation to endurance exercise training.

    Science.gov (United States)

    LaBarge, Samuel A; Migdal, Christopher W; Buckner, Elisa H; Okuno, Hiroshi; Gertsman, Ilya; Stocks, Ben; Barshop, Bruce A; Nalbandian, Sarah R; Philp, Andrew; McCurdy, Carrie E; Schenk, Simon

    2016-04-01

    The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.

  14. Adaptive speckle reduction of ultrasound images based on maximum likelihood estimation

    Institute of Scientific and Technical Information of China (English)

    Xu Liu(刘旭); Yongfeng Huang(黄永锋); Wende Shou(寿文德); Tao Ying(应涛)

    2004-01-01

    A method has been developed in this paper to gain effective speckle reduction in medical ultrasound images.To exploit full knowledge of the speckle distribution, here maximum likelihood was used to estimate speckle parameters corresponding to its statistical mode. Then the results were incorporated into the nonlinear anisotropic diffusion to achieve adaptive speckle reduction. Verified with simulated and ultrasound images,we show that this algorithm is capable of enhancing features of clinical interest and reduces speckle noise more efficiently than just applying classical filters. To avoid edge contribution, changes of contrast-to-noise ratio of different regions are also compared to investigate the performance of this approach.

  15. Effects of three types of physical activity on reduction of metabolic parameters involved in cardiovascular risk

    OpenAIRE

    Petrović-Oggiano Gordana; Damjanov Vlasta; Vučić Vesna; Debeljak-Martačić Jasmina; Pavlović Mirjana; Glibetić Marija

    2009-01-01

    The aim of present study was to investigate the effects of three different types of physical activity on reduction of the metabolic parameters mainly responsible for cardiovascular diseases. This prospective-intervention study was performed at the 'ČIGOTA' Thyroid Institute on Mt. Zlatibor (Serbia) between August 2004 and June 2006. Sixty-eight overweight/obese patients aged 40-70 years with hyperlipidemia were divided into three groups according to their weight and overall health. The progra...

  16. Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Andersen, T; McNair, P;

    1993-01-01

    A non-invasive evaluation of bone metabolism was performed in 44 morbidly obese patients before and after a mean weight loss of 22.4 kg (range 7.9-43.4 kg) after 2 months and a further weight loss of 7.3 kg after 8 months (0.8-20.0 kg). This weight reduction was obtained by a nutritionally adequa...

  17. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae

    Directory of Open Access Journals (Sweden)

    Ann Kathrin eHeroven

    2014-10-01

    Full Text Available Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Y. pseudotuberculosis and Y. enterocolitica and the causative agent of plague, Y. pestis, are able to survive in a large variety of environmental reservoirs (e.g. soil, plants, insects as well as warm-blooded animals (e.g. rodents, pigs, humans with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and inter-bacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp and the carbon storage regulator (Csr system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.

  18. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Jiyoti Verma-Gaur

    2015-10-01

    Full Text Available The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease.

  19. Adaptive Bayesian-based speck-reduction in SAR images using complex wavelet transform

    Science.gov (United States)

    Ma, Ning; Yan, Wei; Zhang, Peng

    2005-10-01

    In this paper, an improved adaptive speckle reduction method is presented based on dual tree complex wavelet transform (CWT). It combines the characteristics of additive noise reduction of soft thresholding with the CWT's directional selectivity, being its main contribution to adapt the effective threshold to preserve the edge detail. A Bayesian estimator is applied to the decomposed data also to estimate the best value for the noise-free complex wavelet coefficients. This estimation is based on alpha-stable and Gaussian distribution hypotheses for complex wavelet coefficients of the signal and noise, respectively. Experimental results show that the denoising performance is among the state-of-the-art techniques based on real discrete wavelet transform (DWT).

  20. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    Science.gov (United States)

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  1. Sustainable development through a gendered lens: climate change adaptation and disaster risk reduction.

    Science.gov (United States)

    Lewis, Nancy D

    2016-03-01

    The UN General Assembly has just adopted the post 2015 Sustainable Development Agenda articulated in the 17 Sustainable Development Goals (SDGs). Achieving the SDGs will be furthered by the closer integration of the climate change adaptation (CCA) and disaster risk reduction (DRR) agendas. Gender provides us a valuable portal for considering this integration. Acknowledging that gender relaters to both women and men and that men and women experience climate variability and disasters differently, in this paper the role of women in both CCA and DRR is explored, shifting the focus from women as vulnerable victims to women as critical agents for change with respect to climate change mitigation and adaptation and reduction of disaster risks. Appropriately targeted interventions can also empower women and contribute to more just and inclusive sustainable development.

  2. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    Science.gov (United States)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  3. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  4. Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.

    Science.gov (United States)

    Charusanti, Pep; Conrad, Tom M; Knight, Eric M; Venkataraman, Karthik; Fong, Nicole L; Xie, Bin; Gao, Yuan; Palsson, Bernhard Ø

    2010-11-04

    Bacterial survival requires adaptation to different environmental perturbations such as exposure to antibiotics, changes in temperature or oxygen levels, DNA damage, and alternative nutrient sources. During adaptation, bacteria often develop beneficial mutations that confer increased fitness in the new environment. Adaptation to the loss of a major non-essential gene product that cripples growth, however, has not been studied at the whole-genome level. We investigated the ability of Escherichia coli K-12 MG1655 to overcome the loss of phosphoglucose isomerase (pgi) by adaptively evolving ten replicates of E. coli lacking pgi for 50 days in glucose M9 minimal medium and by characterizing endpoint clones through whole-genome re-sequencing and phenotype profiling. We found that 1) the growth rates for all ten endpoint clones increased approximately 3-fold over the 50-day period; 2) two to five mutations arose during adaptation, most frequently in the NADH/NADPH transhydrogenases udhA and pntAB and in the stress-associated sigma factor rpoS; and 3) despite similar growth rates, at least three distinct endpoint phenotypes developed as defined by different rates of acetate and formate secretion. These results demonstrate that E. coli can adapt to the loss of a major metabolic gene product with only a handful of mutations and that adaptation can result in multiple, alternative phenotypes.

  5. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  6. Beneficial metabolic adaptations due to endurance exercise training in the fasted state

    OpenAIRE

    Van Proeyen, Karen; Szlufcik, Karolina; Nielens, Henri; Ramaekers, Monique; Hespel, Peter

    2010-01-01

    Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Hal...

  7. Increased adaptation rates and reduction in trial-by-trial variability in subjects with Cerebral Palsy following a multi-session locomotor adaptation training

    Directory of Open Access Journals (Sweden)

    Firas eMawase

    2016-05-01

    Full Text Available Cerebral Palsy (CP results from an insult to the developing brain and is associated with deficits in locomotor and manual skills and in sensorimotor adaptation. We hypothesized that the poor sensorimotor adaptation in persons with CP is related to their high execution variability and does not reflect a general impairment in adaptation learning. We studied the interaction between performance variability and adaptation deficits using a multi-session locomotor adaptation design in persons with CP. Six adolescents with diplegic CP were exposed, during a period of 15 weeks, to a repeated split-belt treadmill perturbation spread over 30 sessions and were tested again 6 months after the end of training. Compared to age-matched healthy controls, subjects with CP showed poor adaptation and high execution variability in the first exposure to the perturbation. Following training they showed marked reduction in execution variability and an increase in learning rates. The reduction in variability and the improvement in adaptation were highly correlated in the CP group and were retained 6 months after training. Interestingly, despite reducing their variability in the washout phase, subjects with CP did not improve learning rates during washout phases that were introduced only 4 times during the experiment. Our results suggest that locomotor adaptation in subjects with CP is related to their execution variability. Nevertheless, while variability reduction is generalized to other locomotor contexts, the development of savings requires both reduction in execution variability and multiple exposures to the perturbation.

  8. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption......Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...

  9. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.

    2017-04-01

    Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We

  10. Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media

    KAUST Repository

    Efendiev, Yalchin R.

    2016-06-07

    We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1) developing local indicators that are used for both local and global updates (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.

  11. A vertical parallax reduction method for stereoscopic video based on adaptive interpolation

    Science.gov (United States)

    Li, Qingyu; Zhao, Yan

    2016-10-01

    The existence of vertical parallax is the main factor of affecting the viewing comfort of stereo video. Visual fatigue is gaining widespread attention with the booming development of 3D stereoscopic video technology. In order to reduce the vertical parallax without affecting the horizontal parallax, a self-adaptive image scaling algorithm is proposed, which can use the edge characteristics efficiently. In the meantime, the nonlinear Levenberg-Marquardt (L-M) algorithm is introduced in this paper to improve the accuracy of the transformation matrix. Firstly, the self-adaptive scaling algorithm is used for the original image interpolation. When the pixel point of original image is in the edge areas, the interpretation is implemented adaptively along the edge direction obtained by Sobel operator. Secondly the SIFT algorithm, which is invariant to scaling, rotation and affine transformation, is used to detect the feature matching points from the binocular images. Then according to the coordinate position of matching points, the transformation matrix, which can reduce the vertical parallax, is calculated using Levenberg-Marquardt algorithm. Finally, the transformation matrix is applied to target image to calculate the new coordinate position of each pixel from the view image. The experimental results show that: comparing with the method which reduces the vertical parallax using linear algorithm to calculate two-dimensional projective transformation, the proposed method improves the vertical parallax reduction obviously. At the same time, in terms of the impact on horizontal parallax, the proposed method has more similar horizontal parallax to that of the original image after vertical parallax reduction. Therefore, the proposed method can optimize the vertical parallax reduction.

  12. ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC OBSTACLE PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Dietrich Braess; Carsten Carstensen; Ronald H.W. Hoppe

    2009-01-01

    We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.

  13. Context-Adaptive Arithmetic Coding Scheme for Lossless Bit Rate Reduction of MPEG Surround in USAC

    Science.gov (United States)

    Yoon, Sungyong; Pang, Hee-Suk; Sung, Koeng-Mo

    We propose a new coding scheme for lossless bit rate reduction of the MPEG Surround module in unified speech and audio coding (USAC). The proposed scheme is based on context-adaptive arithmetic coding for efficient bit stream composition of spatial parameters. Experiments show that it achieves the significant lossless bit reduction of 9.93% to 12.14% for spatial parameters and 8.64% to 8.96% for the overall MPEG Surround bit streams compared to the original scheme. The proposed scheme, which is not currently included in USAC, can be used for the improved coding efficiency of MPEG Surround in USAC, where the saved bits can be utilized by the other modules in USAC.

  14. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    Science.gov (United States)

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods.

  15. A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces

    Science.gov (United States)

    Cusher, Aaron Anthony

    Adaptive lifting surfaces, which can be tailored for different flight conditions, have been shown to be beneficial for drag reduction when compared with conventional non-adaptive surfaces. Applying multiple trailing-edge flaps along the wing span allows for the redistribution of lift to suit different flight conditions. The current approach uses the trailing-edge flap distribution to reduce both induced- and profile- components of drag with a trim constraint. Induced drag is reduced by optimally redistributing the lift between the lifting surfaces and along the span of each surface. Profile drag is reduced through the use of natural laminar flow airfoils, which maintain distinct low-drag-ranges (drag buckets) surrounding design lift values. The low-drag-ranges can be extended to include off-design values through small flap deflections, similar to cruise flaps. Trim is constrained for a given static margin by considering longitudinal pitching moment contributions from changes in airfoil section due to individual flap deflections, and from the redistribution of fore-and-aft lift due to combination of flap deflections. The approach uses the concept of basic and additional lift to linearlize the problem, which allows for standard constrained-minimization theory to be employed for determining optimal flap-angle solutions. The resulting expressions for optimal flap-angle solutions are presented as simple matrix equations. This work presents a design and analysis approach which is used to produce flap-angle solutions that independently reduce induced, profile, and total drag. Total drag is defined to be the sum of the induced- and profile-components of drag. The general drag reduction approach is adapted for each specific situation to develop specific drag reduction schemes that are applied to single- and multiple-surface configurations. Successful results show that, for the application of the induced drag reduction schemes on a tailless aircraft, near-elliptical lift

  16. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    Science.gov (United States)

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  17. Effects of three types of physical activity on reduction of metabolic parameters involved in cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Petrović-Oggiano Gordana

    2009-01-01

    Full Text Available The aim of present study was to investigate the effects of three different types of physical activity on reduction of the metabolic parameters mainly responsible for cardiovascular diseases. This prospective-intervention study was performed at the 'ČIGOTA' Thyroid Institute on Mt. Zlatibor (Serbia between August 2004 and June 2006. Sixty-eight overweight/obese patients aged 40-70 years with hyperlipidemia were divided into three groups according to their weight and overall health. The program of physical workout included: group I - fast walking; group II - gymnastic exercises and specially chosen exercises in the swimming pool; and group III - combined physical training of higher intensity and greater length. All patients were also on a special reduced diet of 1000 kcal per day, the AHA step-2 diet. We monitored the body mass index, body composition, glucose, cholesterol (total, LDL-, and HDL-, and triglycerides before, during, and after the intervention. After 2 and particularly 12 weeks of intervention, a significant improvement of all metabolic parameters was achieved in all three groups of patients. Although most patients completed the study with normal values of all parameters, the most desirable results were achieved in group III (combined exercises with an average energy expenditure of 900 kcal per day. Our research indicates that a specially conceived program of physical activity and diet intervention resulted in significant reduction of cardiovascular risk factors.

  18. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    Science.gov (United States)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  19. Relation Between Obesity, Metabolic Syndrome, Successful Long-Term Weight Reduction, and Right Ventricular Function.

    Science.gov (United States)

    Zeller, Judith; Strack, Christina; Fenk, Sabine; Mohr, Margareta; Loew, Thomas; Schmitz, Gerd; Maier, Lars; Fischer, Marcus; Baessler, Andrea

    2016-07-27

    This study sought to examine the relationships between right ventricular (RV) function and geometry, morbid obesity with and without the metabolic syndrome, and the effect of long-term weight loss. Obese (n = 153, BMI 41.2 ± 8.7 kg/m(2)) and healthy non-obese control subjects (n = 38, BMI 25.5 ± 3.3 kg/m(2)) of similar age and gender distribution were prospectively studied during the course of a 1-year weight reduction program with echocardiography at baseline and after one year of follow up. Function and geometry of the right heart were evaluated by tricuspid annular plane systolic excursion (TAPSE), tricuspid annular systolic velocity (TDI S'), RV myocardial performance index (TEI), RV end-diastolic (RVEDD) and end-systolic diameter (RVESD), area of the right atrium (RAA), and systolic pulmonary artery pressure (PAP). Whereas parameters of systolic and diastolic LV function were significantly worse in the obese subjects than those in the non-obese subjects (EF 66 ± 6 versus 69 ± 6%, P = 0.004; E/E' 7.4 ± 2.5 versus 6.3 ± 2.6, P = 0.010), parameters of RV function (TAPSE 25.6 ± 4.5 versus 25.1 ± 3.5 mm, P = 0.528; TDI S' 13.5 ± 2.9 versus 13.8 ± 2.9 mm/second, P = 0.553; TEI 0.25 ± 0.13 versus 0.28 ± 0.09, P = 0.283) as well as geometry measurements were comparable between the obese and non-obese participants and also in obese subjects with full blown metabolic syndrome. Additionally, successful weight reduction did not alter the RV parameters. Nevertheless, in the few obese subjects with RV dysfunction (n = 7), metabolic syndrome parameters were more pronounced than in obese with normal RV function.Morbid obesity with and without the metabolic syndrome is accompanied by an impaired LV systolic and diastolic function. In contrast, RV function appears to be less affected by obesity independent of the presence of the metabolic syndrome.

  20. Integrating community based disaster risk reduction and climate change adaptation: examples from the Pacific

    Science.gov (United States)

    Gero, A.; Méheux, K.; Dominey-Howes, D.

    2011-01-01

    It is acknowledged by academics and development practitioners alike that many common strategies addressing community based disaster risk reduction and climate change adaptation duplicate each other. Thus, there is a strong push to integrate the two fields to enhance aid effectiveness and reduce confusion for communities. Examples of community based disaster risk reduction (DRR) and climate change adaptation (CCA) projects are presented to highlight some of the ways these issues are tackled in the Pacific. Various approaches are employed but all aim to reduce the vulnerability and enhance the resilience of local communities to the impacts of climate change and disasters. By focusing on three case studies, elements of best practice are drawn out to illustrate how DRR and CCA can be integrated for enhanced aid effectiveness, and also look at ways in which these two often overlapping fields can be better coordinated in ongoing and future projects. Projects that address vulnerability holistically, and target the overall needs and capacity of the community are found to be effective in enhancing the resilience of communities. By strategically developing a multi-stakeholder and multi-sector approach, community projects are likely to encapsulate a range of experience and skills that will benefit the community. Furthermore, by incorporating local knowledge, communities are far more likely to be engaged and actively participate in the project. From selected case studies, commonly occurring best practice methods to integrate DRR and CCA are identified and discussed and recommendations on how to overcome the common challenges also presented.

  1. Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics.

    Science.gov (United States)

    Thakur, A; Anand, R S

    2007-01-01

    This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.

  2. Integrating community based disaster risk reduction and climate change adaptation: examples from the Pacific

    Directory of Open Access Journals (Sweden)

    A. Gero

    2011-01-01

    Full Text Available It is acknowledged by academics and development practitioners alike that many common strategies addressing community based disaster risk reduction and climate change adaptation duplicate each other. Thus, there is a strong push to integrate the two fields to enhance aid effectiveness and reduce confusion for communities. Examples of community based disaster risk reduction (DRR and climate change adaptation (CCA projects are presented to highlight some of the ways these issues are tackled in the Pacific. Various approaches are employed but all aim to reduce the vulnerability and enhance the resilience of local communities to the impacts of climate change and disasters. By focusing on three case studies, elements of best practice are drawn out to illustrate how DRR and CCA can be integrated for enhanced aid effectiveness, and also look at ways in which these two often overlapping fields can be better coordinated in ongoing and future projects. Projects that address vulnerability holistically, and target the overall needs and capacity of the community are found to be effective in enhancing the resilience of communities. By strategically developing a multi-stakeholder and multi-sector approach, community projects are likely to encapsulate a range of experience and skills that will benefit the community. Furthermore, by incorporating local knowledge, communities are far more likely to be engaged and actively participate in the project. From selected case studies, commonly occurring best practice methods to integrate DRR and CCA are identified and discussed and recommendations on how to overcome the common challenges also presented.

  3. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    Science.gov (United States)

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation.

  4. Experience of Climate Change Adaptation; Emic Perception of Community Based Disaster Risk Reduction Programs in Bangladesh

    Directory of Open Access Journals (Sweden)

    Rathana peou van den Heuvel

    2013-04-01

    Full Text Available Over 40 years (I/ NGOs together with the Government of Bangladesh (GoB have been working to build the capacity of population at risk to cope with natural disasters. From a response rationale to preparedness one, (I/NGOs together with the GoB struggled to integrate adaptation frame into Disaster Risk Reduction program. Those initial steps were mainly lead by a top down approach. Bangladesh usually pointed as the most vulnerable country in the world, has a long history of different frame of actions and practices toward building both community and individual resilience. Structural poverty and low good governance mechanisms are just some of the factors that jeopardize the gains of development project in general in Bangladesh. Donors and (I/NGO play major roles by shaping not only the national discourse but as well by leading the practices and the methodology that needs to be used at the field. Within couple of years, community based approach has been largely adopted by different institutions as being the right way to deliver intervention that aims at reducing the vulnerability and the enhancing the resilience. It is in this context that this paper offers an insight on how DRR and adaptation is translated at the field level. Through an emic perspective this research aims at confronting the realities of the practices of DRR/ Adaptation by (I/NGOs to the discourse that they communicate.

  5. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  6. The limits of poverty reduction in support of climate change adaptation

    Science.gov (United States)

    Nelson, Donald R.; Lemos, Maria Carmen; Eakin, Hallie; Lo, Yun-Jia

    2016-09-01

    The relationship between poverty and climate change vulnerability is complex and though not commensurate, the distinctions between the two are often blurred. There is widespread recognition of the need to better understand poverty-vulnerability dynamics in order to improve risk management and poverty reduction investments. This is challenging due to the latent nature of adaptive capacities, frequent lack of baseline data, and the need for high-resolution studies. Here we respond to these challenges by analyzing household-level data in Northeast Brazil to compare drought events 14 years apart. In the period between droughts, the government implemented an aggressive anti-poverty program that includes financial and human capital investments. Poverty declined significantly, but the expected reduction in vulnerability did not occur, in part because the households were not investing in risk management strategies. Our findings complement other research that shows that households make rational decisions that may not correspond with policymaker expectations. We emphasize the need for complementary investments to help channel increased household wealth into risk reduction, and to ensure that the public sector itself continues to prioritize the public functions of risk management, especially in areas where the social cost of climatic risk is high.

  7. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

    Science.gov (United States)

    Burgomaster, Kirsten A; Howarth, Krista R; Phillips, Stuart M; Rakobowchuk, Mark; Macdonald, Maureen J; McGee, Sean L; Gibala, Martin J

    2008-01-01

    Low-volume 'sprint' interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 +/- 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake (.VO(2peak)) before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s 'all out' Wingate Test (mean power output approximately 500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40-60 min of continuous cycling at a workload that elicited approximately 65% (mean power output approximately 150 W) per day, 5 days per week. Weekly time commitment (approximately 1.5 versus approximately 4.5 h) and total training volume (approximately 225 versus approximately 2250 kJ week(-1)) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1alpha protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-gamma coactivator-1alpha. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time

  8. Metabolic and adaptive immune responses induced in mice infected with tissue-dwelling nematode Trichinella zimbabwensis

    Science.gov (United States)

    Onkoba, N.; Chimbari, M.J.; Kamau, J.M.; Mukaratirwa, S.

    2016-01-01

    Tissue-dwelling helminths are known to induce intestinal and systemic inflammation accompanied with host compensatory mechanisms to counter balance nutritional and metabolic deficiencies. The metabolic and immune responses of the host depend on parasite species and tissues affected by the parasite. This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were randomly assigned into T. zimbabwensis-infected and control groups. Levels of Th1 (interferon-γ) and Th17 (interleukin-17) cytokines, insulin and blood glucose were determined as well as measurements of body weight, food and water intake. Results showed that during the enteric phase of infection, insulin and IFN-γ levels were significantly higher in the Trichinella infected group accompanied with a reduction in the trends of food intake and weight loss compared with the control group. During systemic larval migration, trends in food and water intake were significantly altered and this was attributed to compensatory feeding resulting in weight gain, reduced insulin levels and increased IL-17 levels. Larval migration also induced a Th1/Th17 derived inflammatory response. It was concluded that T. zimbabwensis alters metabolic parameters by instigating host compensatory feeding. Furthermore, we showed for the first time that non-encapsulated T. zimbabwensis parasite plays a role in immunomodulating host Th1/Th17 type responses during chronic infection. PMID:27882304

  9. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till

    DEFF Research Database (Denmark)

    Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.;

    2012-01-01

    ). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand......A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation...... efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers...

  10. Chemotactic signal transduction and phosphate metabolism as adaptive strategies during citrus canker induction by Xanthomonas citri.

    Science.gov (United States)

    Moreira, Leandro Marcio; Facincani, Agda Paula; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marine; Ferro, Maria Inês Tiraboshi; Gozzo, Fabio Cesar; de Oliveira, Julio Cezar Franco; Ferro, Jesus Aparecido; Soares, Márcia Regina

    2015-03-01

    The genome of Xanthomonas citri subsp. Citri strain 306 pathotype A (Xac) was completely sequenced more than 10 years; to date, few studies involving functional genomics Xac and its host compatible have been developed, specially related to adaptive events that allow the survival of Xac within the plant. Proteomic analysis of Xac showed that the processes of chemotactic signal transduction and phosphate metabolism are key adaptive strategies during the interaction of a pathogenic bacterium with its plant host. The results also indicate the importance of a group of proteins that may not be directly related to the classical virulence factors, but that are likely fundamental to the success of the initial stages of the infection, such as methyl-accepting chemotaxis protein (Mcp) and phosphate specific transport (Pst). Furthermore, the analysis of the mutant of the gene pstB which codifies to an ABC phosphate transporter subunit revealed a complete absence of citrus canker symptoms when inoculated in compatible hosts. We also conducted an in silico analysis which established the possible network of genes regulated by two-component systems PhoPQ and PhoBR (related to phosphate metabolism), and possible transcriptional factor binding site (TFBS) motifs of regulatory proteins PhoB and PhoP, detaching high degree of conservation of PhoB TFBS in 84 genes of Xac genome. This is the first time that chemotaxis signal transduction and phosphate metabolism were therefore indicated to be fundamental to the process of colonization of plant tissue during the induction of disease associated with Xanthomonas genus bacteria.

  11. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  12. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    Science.gov (United States)

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  13. X-ray dose reduction by adaptive source equalization and electronic region-of-interest control

    Science.gov (United States)

    Burion, Steve; Sandman, Anne; Bechtel, Kate; Solomon, Edward; Funk, Tobias

    2011-03-01

    Radiation dose is particularly a concern in pediatric cardiac fluoroscopy procedures, which account for 7% of all cardiac procedures performed. The Scanning-Beam Digital X-ray (SBDX) fluoroscopy system has already demonstrated reduced dose in adult patients owing to its high-DQE photon-counting detector, reduced detected scatter, and the elimination of the anti-scatter grid. Here we show that the unique flexible illumination platform of the SBDX system will enable further dose area product reduction, which we are currently developing for pediatric patients, but which will ultimately benefit all patients. The SBDX system has a small-area detector array and a large-area X-ray source with up to 9,000 individually-controlled X-ray focal spots. Each focal spot illuminates a small fraction of the full field of view. To acquire a frame, each focal spot is activated for a fixed number of 1-microsecond periods. Dose reduction is made possible by reducing the number of activations of some of the X-ray focal spots during each frame time. This can be done dynamically to reduce the exposure in areas of low patient attenuation, such as the lung field. This spatially-adaptive illumination also reduces the dynamic range in the full image, which is visually pleasing. Dose can also be reduced by the user selecting a region of interest (ROI) where full image quality is to be maintained. Outside the ROI, the number of activations of each X-ray focal spot is reduced and the image gain is correspondingly increased to maintain consistent image brightness. Dose reduction is dependent on the size of the ROI and the desired image quality outside the ROI. We have developed simulation software that is based on real data and can simulate the performance of the equalization and ROI filtration. This software represents a first step toward real-time implementation of these dose-reduction methods. Our simulations have shown that dose area product reductions of 40% are possible using equalization

  14. Complex adaptive HIV/AIDS risk reduction: Plausible implications from findings in Limpopo Province, South Africa.

    Science.gov (United States)

    Burman, Chris J; Aphane, Marota A

    2016-05-16

    This article emphasises that when working with complex adaptive systems it is possible to stimulate new social practices and/or cognitive perspectives that contribute to risk reduction, associated with reducing aggregate community viral loads. The process of achieving this is highly participatory and is methodologically possible because evidence of 'attractors' that influence the social practices can be identified using qualitative research techniques. Using findings from Limpopo Province, South Africa, we argue that working with 'wellness attractors' and increasing their presence within the HIV/AIDS landscape could influence aggregate community viral loads. While the analysis that is presented is unconventional, it is plausible that this perspective may hold potential to develop a biosocial response - which the Joint United Nations Programme on HIV and AIDS (UNAIDS) has called for - that reinforces the biomedical opportunities that are now available to achieve the ambition of ending AIDS by 2030.

  15. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    Science.gov (United States)

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise.

  16. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  17. Metabolic adaptation of Mycobacterium avium subsp. paratuberculosis to the gut environment.

    Science.gov (United States)

    Weigoldt, Mathias; Meens, Jochen; Bange, Franz-Christoph; Pich, Andreas; Gerlach, Gerald F; Goethe, Ralph

    2013-02-01

    Knowledge on the proteome level about the adaptation of pathogenic mycobacteria to the environment in their natural hosts is limited. Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic and incurable granulomatous enteritis of ruminants, and has been suggested to be a putative aetiological agent of Crohn's disease in humans. Using a comprehensive LC-MS-MS and 2D difference gel electrophoresis (DIGE) approach, we compared the protein profiles of clinical strains of MAP prepared from the gastrointestinal tract of diseased cows with the protein profiles of the same strains after they were grown in vitro. LC-MS-MS analyses revealed that the principal enzymes for the central carbon metabolic pathways, including glycolysis, gluconeogenesis, the tricaboxylic acid cycle and the pentose phosphate pathway, were present under both conditions. Moreover, a broad spectrum of enzymes for β-oxidation of lipids, nine of which have been shown to be necessary for mycobacterial growth on cholesterol, were detected in vivo and in vitro. Using 2D-DIGE we found increased levels of several key enzymes that indicated adaptation of MAP to the host. Among these, FadE5, FadE25 and AdhB indicated that cholesterol is used as a carbon source in the bovine intestinal mucosa; the respiratory enzymes AtpA, NuoG and SdhA suggested increased respiration during infection. Furthermore higher levels of the pentose phosphate pathway enzymes Gnd2, Zwf and Tal as well as of KatG, SodA and GroEL indicated a vigorous stress response of MAP in vivo. In conclusion, our results provide novel insights into the metabolic adaptation of a pathogenic mycobacterium in its natural host.

  18. β-Cell adaptation in a mouse model of glucocorticoid-induced metabolic syndrome.

    Science.gov (United States)

    Fransson, Liselotte; Franzén, Stephanie; Rosengren, Victoria; Wolbert, Petra; Sjöholm, Åke; Ortsäter, Henrik

    2013-12-01

    Glucocorticoids (GCs) are stress hormones primarily responsible for mobilizing glucose to the circulation. Due to this effect, insulin resistance and glucose intolerance are concerns in patients with endogenous overproduction of GCs and in patients prescribed GC-based therapy. In addition, hypercortisolemic conditions share many characteristics with the metabolic syndrome. This study reports on a thorough characterization, in terms of glucose control and lipid handling, of a mouse model where corticosterone is given via the drinking water. C57BL/6J mice were treated with corticosterone (100 or 25 μg/ml) or vehicle in their drinking water for 5 weeks after which they were subjected to insulin or glucose tolerance tests. GC-treated mice displayed increased food intake, body weight gain, and central fat deposit accumulations. In addition, the GC treatment led to dyslipidemia as well as accumulation of ectopic fat in the liver and skeletal muscle, having a substantial negative effect on insulin sensitivity. Also glucose intolerance and hypertension, both part of the metabolic syndrome, were evident in the GC-treated mice. However, the observed effects of corticosterone were reversed after drug removal. Furthermore, this study reveals insights into β-cell adaptation to the GC-induced insulin resistance. Increased pancreatic islet volume due to cell proliferation, increased insulin secretion capacity, and increased islet chaperone expression were found in GC-treated animals. This model mimics the human metabolic syndrome. It could be a valuable model for studying the complex mechanisms behind the development of the metabolic syndrome and type 2 diabetes, as well as the multifaceted relations between GC excess and disease.

  19. Metabolic and respiratory adaptations during intense exercise following long-sprint training of short duration.

    Science.gov (United States)

    Thomas, Claire; Bernard, Olivier; Enea, Carina; Jalab, Chadi; Hanon, Christine

    2012-02-01

    This study aimed to determine metabolic and respiratory adaptations during intense exercise and improvement of long-sprint performance following six sessions of long-sprint training. Nine subjects performed before and after training (1) a 300-m test, (2) an incremental exercise up to exhaustion to determine the velocity associated with maximal oxygen uptake (v-VO(2max)), (3) a 70-s constant exercise at intensity halfway between the v-VO(2max) and the velocity performed during the 300-m test, followed by a 60-min passive recovery to determine an individual blood lactate recovery curve fitted to the bi-exponential time function: [Formula: see text], and blood metabolic and gas exchange responses. The training program consisted of 3-6 repetitions of 150-250 m interspersed with rest periods with a duration ratio superior or equal to 1:10, 3 days a week, for 2 weeks. After sprint training, reduced metabolic disturbances, characterized by a lower peak expired ventilation and carbon dioxide output, in addition to a reduced peak lactate (P < 0.05), was observed. Training also induced significant decrease in the net amount of lactate released at the beginning of recovery (P < 0.05), and significant decrease in the net lactate release rate (NLRR) (P < 0.05). Lastly, a significant improvement of the 300-m performance was observed after training. These results suggest that long-sprint training of short durations was effective to rapidly prevent metabolic disturbances, with alterations in lactate accumulation and gas exchange, and improvement of the NLRR. Furthermore, only six long-sprint training sessions allow long-sprint performance improvement in active subjects.

  20. Improvement in DMSA imaging using adaptive noise reduction: an ROC analysis.

    Science.gov (United States)

    Lorimer, Lisa; Gemmell, Howard G; Sharp, Peter F; McKiddie, Fergus I; Staff, Roger T

    2012-11-01

    Dimercaptosuccinic acid imaging is the 'gold standard' for the detection of cortical defects and diagnosis of scarring of the kidneys. The Siemens planar processing package, which implements adaptive noise reduction using the Pixon algorithm, is designed to allow a reduction in image noise, enabling improved image quality and reduced acquisition time/injected activity. This study aimed to establish the level of improvement in image quality achievable using this algorithm. Images were acquired of a phantom simulating a single kidney with a range of defects of varying sizes, positions and contrasts. These images were processed using the Pixon processing software and shown to 12 observers (six experienced and six novices) who were asked to rate the images on a six-point scale depending on their confidence that a defect was present. The data were analysed using a receiver operating characteristic approach. Results showed that processed images significantly improved the performance of the experienced observers in terms of their sensitivity and specificity. Although novice observers showed significant increase in sensitivity when using the software, a significant decrease in specificity was also seen. This study concludes that the Pixon software can be used to improve the assessment of cortical defects in dimercaptosuccinic acid imaging by suitably trained observers.

  1. Predator-induced phenotypic plasticity in metabolism and rate of growth: rapid adaptation to a novel environment.

    Science.gov (United States)

    Handelsman, Corey A; Broder, E Dale; Dalton, Christopher M; Ruell, Emily W; Myrick, Christopher A; Reznick, David N; Ghalambor, Cameron K

    2013-12-01

    Novel environments often impose directional selection for a new phenotypic optimum. Novel environments, however, can also change the distribution of phenotypes exposed to selection by inducing phenotypic plasticity. Plasticity can produce phenotypes that either align with or oppose the direction of selection. When plasticity and selection are parallel, plasticity is considered adaptive because it provides a better pairing between the phenotype and the environment. If the plastic response is incomplete and falls short of producing the optimum phenotype, synergistic selection can lead to genetic divergence and bring the phenotype closer to the optimum. In contrast, non-adaptive plasticity should increase the strength of selection, because phenotypes will be further from the local optimum, requiring antagonistic selection to overcome the phenotype-environment mismatch and facilitate adaptive divergence. We test these ideas by documenting predator-induced plasticity for resting metabolic rate and growth rate in populations of the Trinidadian guppy (Poecilia reticulata) adapted to high and low predation. We find reduced metabolic rates and growth rates when cues from a predator are present during development, a pattern suggestive of adaptive and non-adaptive plasticity, respectively. When we compared populations recently transplanted from a high-predation environment into four streams lacking predators, we found evidence for rapid adaptive evolution both in metabolism and growth rate. We discuss the implications for predicting how traits will respond to selection, depending on the type of plasticity they exhibit.

  2. Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae

    Directory of Open Access Journals (Sweden)

    WALTER DIAS JUNIOR

    2016-01-01

    Full Text Available ABSTRACT Adaptive changes of carbohydrate and lipid metabolism induced by 7, 15, 30, 60, 90, 150 and 200 days of fasting were investigated in red tilapia (Oreochromis sp.. Plasma glucose, lactate and free fatty acids (FFA levels, liver and muscle glycogen and total lipid contents and rates of FFA release from mesenteric adipose tissue (MAT were measured. Plasma glucose levels showed significant differences only after 90 days of fasting, when glycemia was 34% lower (50±5mg.dL-1 than fed fish values (74±1mg.dL-1, remaining relatively constant until 200 days of fasting. The content of liver glycogen ("15% in fed tilapia fell 40% in 7 days of food deprivation. In 60, 90 and 150 days of fasting, plasma FFA levels increased 49%, 64% and 90%, respectively, compared to fed fish values. In agreement with the increase in plasma FFA, fasting induced a clear increase in lipolytic activity of MAT incubated in vitro. Addition of isobutylmethylxanthine (cAMP-phosphodiesterase inhibitor and isoproterenol (non selective beta adrenergic agonist to the incubation medium induced a reduction of lipolysis in fasted fish, differently to what was observed in mammal adipose tissue. This study allowed a physiological assessment of red tilapia response to starvation.

  3. Analysis of anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    Full Text Available Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.

  4. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    Science.gov (United States)

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  5. PROX1 Promotes Metabolic Adaptation and Fuels Outgrowth of Wnthigh Metastatic Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simone Ragusa

    2014-09-01

    Full Text Available The Wnt pathway is abnormally activated in the majority of colorectal cancers, and significant knowledge has been gained in understanding its role in tumor initiation. However, the mechanisms of metastatic outgrowth in colorectal cancer remain a major challenge. We report that autophagy-dependent metabolic adaptation and survival of metastatic colorectal cancer cells is regulated by the target of oncogenic Wnt signaling, homeobox transcription factor PROX1, expressed by a subpopulation of colon cancer progenitor/stem cells. We identify direct PROX1 target genes and show that repression of a pro-apoptotic member of the BCL2 family, BCL2L15, is important for survival of PROX1+ cells under metabolic stress. PROX1 inactivation after the establishment of metastases prevented further growth of lesions. Furthermore, autophagy inhibition efficiently targeted metastatic PROX1+ cells, suggesting a potential therapeutic approach. These data identify PROX1 as a key regulator of the transcriptional network contributing to metastases outgrowth in colorectal cancer.

  6. Beneficial metabolic adaptations due to endurance exercise training in the fasted state.

    Science.gov (United States)

    Van Proeyen, Karen; Szlufcik, Karolina; Nielens, Henri; Ramaekers, Monique; Hespel, Peter

    2011-01-01

    Training with limited carbohydrate availability can stimulate adaptations in muscle cells to facilitate energy production via fat oxidation. Here we investigated the effect of consistent training in the fasted state, vs. training in the fed state, on muscle metabolism and substrate selection during fasted exercise. Twenty young male volunteers participated in a 6-wk endurance training program (1-1.5 h cycling at ∼70% Vo(₂max), 4 days/wk) while receiving isocaloric carbohydrate-rich diets. Half of the subjects trained in the fasted state (F; n = 10), while the others ingested ample carbohydrates before (∼160 g) and during (1 g·kg body wt⁻¹·h⁻¹) the training sessions (CHO; n = 10). The training similarly increased Vo(₂max) (+9%) and performance in a 60-min simulated time trial (+8%) in both groups (P Metabolic measurements were made during a 2-h constant-load exercise bout in the fasted state at ∼65% pretraining Vo(₂max). In F, exercise-induced intramyocellular lipid (IMCL) breakdown was enhanced in type I fibers (P Training did not affect IMCL breakdown in CHO. In addition, F (+21%) increased the exercise intensity corresponding to the maximal rate of fat oxidation more than did CHO (+6%) (P exercise-induced drop in blood glucose concentration (P exercise-induced net IMCL degradation. In addition, F but not CHO prevented drop of blood glucose concentration during fasting exercise.

  7. Cannabimimetic phytochemicals in the diet - an evolutionary link to food selection and metabolic stress adaptation?

    Science.gov (United States)

    Gertsch, Jürg

    2016-11-27

    The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pastoralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agriculturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of cannabinoid-type 2 (CB2 ) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast, chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipidaemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able to modulate the CB1 /CB2 receptor activation ratio may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is critically discussed.

  8. Effective long term adaptation and metabolic state regulation of ski-racers

    Directory of Open Access Journals (Sweden)

    Bakhareva A.S.

    2016-06-01

    Full Text Available Purpose: to scientifically substantiate effective mechanisms of organism’s bio-chemical adaptation of ski-racers in competition period with the help of lipid peroxidation indicators, oxidative modification of proteins and activity of hypothalamus pituitary adrenocortical system. Material: in the research 14 sportsmen of 18-25 years’ age (combined team of university with different level of sportsmanship participated. Assessment of free radical oxidation, anti-oxidant system, cortisol level was fulfilled with the help of indicators’ quantitative analysis by bio-chemical methods applied to blood serum samples. Results: it was found that in the basis of bio-chemical changes under intensive physical loads is increase of catabolic processes’ speed. Change of organism’s metabolic orientation of ski racers at optimal level results in working muscles’ energy supply improvement, increase of energy systems’ power and sports efficiency. Conclusions: Application of interval trainings at stages of preparation to special significant competitions results in expected adaptation and increase of sports efficiency. We also showed their effective role in ensuring long term reactions, conditioning high sports efficiency.

  9. Hominids adapted to metabolize ethanol long before human-directed fermentation

    Science.gov (United States)

    Carrigan, Matthew A.; Uryasev, Oleg; Frye, Carole B.; Eckman, Blair L.; Myers, Candace R.; Hurley, Thomas D.; Benner, Steven A.

    2015-01-01

    Paleogenetics is an emerging field that resurrects ancestral proteins from now-extinct organisms to test, in the laboratory, models of protein function based on natural history and Darwinian evolution. Here, we resurrect digestive alcohol dehydrogenases (ADH4) from our primate ancestors to explore the history of primate–ethanol interactions. The evolving catalytic properties of these resurrected enzymes show that our ape ancestors gained a digestive dehydrogenase enzyme capable of metabolizing ethanol near the time that they began using the forest floor, about 10 million y ago. The ADH4 enzyme in our more ancient and arboreal ancestors did not efficiently oxidize ethanol. This change suggests that exposure to dietary sources of ethanol increased in hominids during the early stages of our adaptation to a terrestrial lifestyle. Because fruit collected from the forest floor is expected to contain higher concentrations of fermenting yeast and ethanol than similar fruits hanging on trees, this transition may also be the first time our ancestors were exposed to (and adapted to) substantial amounts of dietary ethanol. PMID:25453080

  10. Lifestyle modification and weight reduction among low-income patients with the metabolic syndrome: the CHARMS randomized controlled trial.

    Science.gov (United States)

    Chirinos, Diana A; Goldberg, Ronald B; Llabre, Maria M; Gellman, Marc; Gutt, Miriam; McCalla, Judith; Mendez, Armando; Schneiderman, Neil

    2016-06-01

    Although weight is an important intervention target among patients with metabolic syndrome, few trials have recruited low-income minority populations. The Community Health and Risk-reduction for Metabolic Syndrome randomized controlled trial aimed to examine the effects of a lifestyle intervention on weight and metabolic syndrome components among low-income minority adults. We randomized 120 adults with metabolic syndrome to standard medical care (N = 60) or a lifestyle intervention (N = 60). Using an intent-to-treat approach, we found significant intervention effects on weight [B = -0.452; SE = 0.122; 95 % confidence intervals (CI) -0.653 to -0.251) and glucose levels at 6-months (B = -0.522, SE = 0.234, 95 % CI -0.907 to -0.138). These changes were maintained through the 12-month assessment. No significant effects were observed on insulin resistance or other metabolic syndrome components. Our intervention was successful in achieving modest but significant weight loss and reduction in fasting glucose among low-income minority subjects with metabolic syndrome.

  11. Multi-omic profiling of EPO-producing CHO cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    expressed genes related to secretory protein processing. However, when inspecting the gene expression landscape of the aminoacid catabolism, we observed an apparent adaptation in favor of EPO production. That is, we discovered that the gene expression levels of amino acid catabolic genes had adapted...... to preserve the most abundant aminoacids in EPO in the high producing clone relative to the low producing clone. Based on these data, we speculate that the amino acid metabolism in CHO cells may undergo adaptation in favor of heterologous protein production during long-term cultivation....

  12. Incentivising flood risk adaptation through risk based insurance premiums : Trade-offs between affordability and risk reduction

    NARCIS (Netherlands)

    Hudson, Paul F.; Botzen, W.J.W.; Feyen, L.; Aerts, Jeroen C.J.H.

    2016-01-01

    The financial incentives offered by the risk-based pricing of insurance can stimulate policyholder adaptation to flood risk while potentially conflicting with affordability. We examine the trade-off between risk reduction and affordability in a model of public-private flood insurance in France and G

  13. Biomimetic bluff body drag reduction by self-adaptive porous flaps

    CERN Document Server

    Mazellier, Nicolas; Kourta, Azeddine

    2011-01-01

    The performances of an original passive control system based on a biomimetic approach are assessed by investigating the flow over a bluff-body. This control device consists in a couple of flaps made from the combination of a rigid plastic skeleton coated with a porous fabric mimicking the shaft and the vane of the bird's feathers, respectively. The sides of a square cylinder have been fitted with this system so as to enable the flaps to freely rotate around their leading edge. This feature allows the movable flaps to self-adapt to the flow conditions. Comparing both the uncontrolled and the controlled flow, a significant drag reduction (up to 22%) has been obtained over a broad range of Reynolds number. The investigation of the mean flow reveals a noticeable modification of the flow topology at large scale in the vicinity of the controlled cylinder accounting for the increase of the pressure base in comparison with the natural flow. Meanwhile, the study of the relative motion of both flaps points out that the...

  14. Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery

    Directory of Open Access Journals (Sweden)

    DeMeo Dawn L

    2007-08-01

    Full Text Available Abstract Background In the National Emphysema Treatment Trial (NETT, marked variability in response to lung volume reduction surgery (LVRS was observed. We sought to identify genetic differences which may explain some of this variability. Methods In 203 subjects from the NETT Genetics Ancillary Study, four outcome measures were used to define response to LVRS at six months: modified BODE index, post-bronchodilator FEV1, maximum work achieved on a cardiopulmonary exercise test, and University of California, San Diego shortness of breath questionnaire. Sixty-four single nucleotide polymorphisms (SNPs were genotyped in five genes previously shown to be associated with chronic obstructive pulmonary disease susceptibility, exercise capacity, or emphysema distribution. Results A SNP upstream from glutathione S-transferase pi (GSTP1; p = 0.003 and a coding SNP in microsomal epoxide hydrolase (EPHX1; p = 0.02 were each associated with change in BODE score. These effects appeared to be strongest in patients in the non-upper lobe predominant, low exercise subgroup. A promoter SNP in EPHX1 was associated with change in BODE score (p = 0.008, with the strongest effects in patients with upper lobe predominant emphysema and low exercise capacity. One additional SNP in GSTP1 and three additional SNPs in EPHX1 were associated (p Conclusion Genetic variants in GSTP1 and EPHX1, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.

  15. An Adaptive Management Approach for Summer Water Level Reductions on the Upper Mississippi River System

    Science.gov (United States)

    Johnson, B.L.; Barko, J.W.; Clevenstine, R.; Davis, M.; Galat, D.L.; Lubinski, S.J.; Nestler, J.M.

    2010-01-01

    The primary purpose of this report is to provide an adaptive management approach for learning more about summer water level reductions (drawdowns) as a management tool, including where and how drawdowns can be applied most effectively within the Upper Mississippi River System. The report reviews previous drawdowns conducted within the system and provides specific recommendations for learning more about the lesser known effects of drawdowns and how the outcomes can be influenced by different implementation strategies and local conditions. The knowledge gained can be used by managers to determine how best to implement drawdowns in different parts of the UMRS to help achieve management goals. The information and recommendations contained in the report are derived from results of previous drawdown projects, insights from regional disciplinary experts, and the experience of the authors in experimental design, modeling, and monitoring. Modeling is a critical part of adaptive management and can involve conceptual models, simulation models, and empirical models. In this report we present conceptual models that express current understanding regarding functioning of the UMRS as related to drawdowns and highlight interactions among key ecological components of the system. The models were developed within the constraints of drawdown timing, magnitude (depth), and spatial differences in effects (longitudinal and lateral) with attention to ecological processes affected by drawdowns. With input from regional experts we focused on the responses of vegetation, fish, mussels, other invertebrates, and birds. The conceptual models reflect current understanding about relations and interactions among system components, the expected strength of those interactions, potential responses of system components to drawdowns, likelihood of the response occurring, and key uncertainties that limit our ability to make accurate predictions of effects (Table 1, Fig. 4-10). Based on this current

  16. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    Science.gov (United States)

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R.; Georgiou, Konstantina; MacRae, James I.; Barrett, Michael P.; McConville, Malcolm J.

    2016-01-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. PMID:28027318

  17. A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment

    Science.gov (United States)

    2013-01-01

    Background Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation, deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. Results We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to identify the metabolic pathways induced by this environment, versus control cultures maintained in spent culture medium. We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response were down-regulated and genes specifically expressed during cell division were induced, suggesting that P. freudenreichii adapted its metabolism to the conditions encountered in the colon. Conclusions This study constitutes the first molecular demonstration of P. freudenreichii activity and physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition but opens an avenue towards understanding probiotic action within the gut

  18. Fungal Inositol Pyrophosphate IP7 Is Crucial for Metabolic Adaptation to the Host Environment and Pathogenicity

    Science.gov (United States)

    Lev, Sophie; Li, Cecilia; Desmarini, Desmarini; Saiardi, Adolfo; Fewings, Nicole L.; Schibeci, Stephen D.; Sharma, Raghwa; Sorrell, Tania C.

    2015-01-01

    ABSTRACT Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. PMID:26037119

  19. Assessment of Disaster Risk Reduction and Climate Change Adaptation policy integration in Zambia

    Science.gov (United States)

    Pilli-Sihvola, K.; Väätäinen-Chimpuku, S.

    2015-12-01

    Integration of Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) policies, their implementation measures and the contribution of these to development has been gaining attention recently. Due to the shared objectives of CCA and particularly Disaster Risk Reduction (DRR), a component of DRM, their integration provides many benefits. At the implementation level, DRR and CCA are usually integrated. Policy integration, however, is often lacking. This study presents a novel analysis of the policy integration of DRR and CCA by 1) suggesting a definition for their integration at a general and further at horizontal and vertical levels, 2) using an analysis framework for policy integration cycle, which separates the policy formulation and implementation processes, and 3) applying these to a case study in Zambia. Moreover, the study identifies the key gaps in the integration process, obtains an understanding of identified key factors for creating an enabling environment for the integration, and provides recommendations for further progress. The study is based on a document analysis of the relevant DRM, climate change (CC), agriculture, forestry, water management and meteorology policy documents and Acts, and 21 semi-structured interviews with key stakeholders. Horizontal integration has occurred both ways, as the revised DRM policy draft has incorporated CCA, and the new CC policy draft has incorporated DRR. This is not necessarily an optimal strategy and unless carefully implemented, it may create pressure on institutional structures and duplication of efforts in the implementation. Much less vertical integration takes place, and where it does, no guidance on how potential goal conflicts with sectorial and development objectives ought to be handled. The objectives of the instruments show convergence. At the programme stage, the measures are fully integrated as they can be classified as robust CCA measures, providing benefits in the current and future

  20. Climate Change Adaptation and Climate Related Disaster Risk Reduction Strategies in Zimbabwe and Malawi

    Science.gov (United States)

    Mubaya, C. P.; Ngepah, N.; Seyama, W.

    2015-12-01

    Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR) have similar aims and mutual benefits, and there is a very strong rationale for adopting a more integrated approach to these issues rather than analysing each of them as distinct from the other. One of the gaps that have been noted in this context is the lack of evidence in systematic integration of CCA and DRR in Southern Africa. In this regard, this study builds on understanding CCA and DRR policies from the perspectives of vulnerable groups- women and smallholder farmers, and conducts institutional and policy analysis of CCA and DRR in southern Africa, with specific focus on Malawi and Zimbabwe. Both quantitative and qualitative methodologies were employed to collect data for this study in the two countries. The analysis is centred on the conceptualization of DRR in the context of recovery time and CCA on livelihood changes. Findings of the study show that drought is no longer viewed as a hazard as it is a perennial and chronic occurrence in selected climate hotspots, with heightened intensity in certain identified years. Households are able to quickly recover from slow onset hazards such as droughts and dry spells more than they are able to recover from sudden onset floods, implying more capacity towards CCA than DRR. Government programmes and policies are also focused more on CCA than on DRR efforts that appear not to be a priority. Findings point towards female vulnerability from perceptions and practice where males tend to dominate where they are set to benefit from external assistance. We need to strengthen government capacity in implementation of DRR programmes, which is currently limited and development initiatives must deliberately target building the resilience of women.

  1. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.

    Science.gov (United States)

    Matsumoto, Kaori; Hasegawa, Tetsuya; Koyanagi, Junichi; Takahashi, Tamiko; Akimoto, Masayuki; Sugibayashi, Kenji

    2015-06-01

    The metabolic reduction of nabumetone was examined by inhibition and correlation studies using human liver microsomes and cytosol. This reduction was observed in both fractions, with the V(max) values for reduction activity being approximately fourfold higher, and the V(max)/K(m) values approximately three-fold higher, in the microsomes than in the cytosol. The reduction of nabumetone was inhibited by 18β-glycyrrhetinic acid, an 11β-hydroxysteroid dehydrogenase (11β-HSD) inhibitor, in the microsomal fraction. The reduction activity was also inhibited by quercetin and menadione [carbonyl reductase (CBR) inhibitors], and by phenolphthalein and medroxyprogesterone acetate [potent inhibitors of aldo-keto reductase (AKR) 1C1, 1C2 and 1C4] in the cytosol. A good correlation (r² = 0.93) was observed between the reduction of nabumetone and of cortisone, as a marker of 11β-HSD activity, in the microsomal fractions. There was also an excellent relationship between reduction of nabumetone and of the AKR1C substrates, acetohexamide, and ethacrynic acid (r 2 = 0.92 and 0.93, respectively), in the cytosol fractions. However, a poor correlation was observed between the formation of 4-(6-methoxy-2-naphthyl)-butan-2-ol (MNBO) from nabumetone and CBR activity (with 4-benzoyl pyridine reduction as a CBR substrate) in the cytosol fractions (r² = 0.24). These findings indicate that nabumetone may be metabolized by 11β-HSD in human liver microsomes, and primarily by AKR1C4 in human liver cytosol, although multiple enzymes in the AKR1C subfamily may be involved. It cannot be completely denied that CBR is involved to some extent in the formation of MNBO from nabumetone in the cytosol fraction.

  2. Noninvasive Monitoring of Training Induced Muscle Adaptation with -MRS: Fibre Type Shifts Correlate with Metabolic Changes

    Directory of Open Access Journals (Sweden)

    Eike Hoff

    2013-01-01

    Full Text Available Purpose. To evaluate training induced metabolic changes noninvasively with magnetic resonance spectroscopy (-MRS for measuring muscle fibre type adaptation. Methods. Eleven volunteers underwent a 24-week training, consisting of speed-strength, endurance, and detraining (each 8 weeks. Prior to and following each training period, needle biopsies and -MRS of the resting gastrocnemius muscle were performed. Fibre type distribution was analyzed histologically and tested for correlation with the ratios of high energy phosphates ([PCr]/[], [PCr]/[βATP] and [PCr + ]/[βATP]. The correlation between the changes of the -MRS parameters during training and the resulting changes in fibre composition were also analysed. Results. We observed an increased type-II-fibre proportion after speed-strength and detraining. After endurance training the percentage of fast-twitch fibres was reduced. The progression of the [PCr]/[]-ratio was similar to that of the fast-twitch fibres during the training. We found a correlation between the type-II-fibre proportion and [PCr]/[] (, or [PCr]/[βATP] (, ; the correlations between its changes (delta and the fibre-shift were significant as well (delta[PCr]/[] , delta[PCr]/[βATP] , . Conclusion. Shifts in fibre type composition and high energy phosphate metabolite content covary in human gastrocnemius muscle. Therefore -MRS might be a feasible method for noninvasive monitoring of exercise-induced fibre type transformation.

  3. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off.

  4. Metabolic Adaptation of the Small Intestine to Short- and Medium-Term High-Fat Diet Exposure.

    Science.gov (United States)

    Clara, Rosmarie; Schumacher, Manuel; Ramachandran, Deepti; Fedele, Shahana; Krieger, Jean-Philippe; Langhans, Wolfgang; Mansouri, Abdelhak

    2017-01-01

    The small intestine is the main organ involved in the digestion and absorption of nutrients. It is in an ideal position to sense the availability of energy in the lumen in addition to its absorptive function. Consumption of a high-fat diet (HFD) influences the metabolic characteristics of the small intestine. Therefore, to better understand the metabolic features of the small intestine and their changes in response to dietary fat, we characterized the metabolism of duodenal, jejunal, and hepatic cell lines and assessed the metabolic changes in the enterocytes and the liver after short-term (3 days) or medium-term (14 days) HFD feeding in mice. Experiments with immortalized enterocytes indicated a higher glycolytic capacity in the duodenal cell line compared to the other two cell lines, whereas the jejunal cell line exhibited a high oxidative metabolism. Short-term HFD feeding induced changes in the expression of glucose and lipid metabolism-related genes in the duodenum and the jejunum of mice, but not in the liver. When focusing on fatty acid oxidation both, short- and medium-term HFD feeding induced an upregulation of 3-hydroxy-3-methylglutaryl-coenzyme A, the key enzyme of ketogenesis, at the protein level in the intestinal epithelial cells, but not in the liver. These results suggest that HFD feeding induces an early adaptation of the small intestine rather than the liver in response to a substantial fat load. This highlights the importance of the small intestine in the adaptation of the body to the metabolic changes induced by HFD exposure. J. Cell. Physiol. 232: 167-175, 2017. © 2016 Wiley Periodicals, Inc.

  5. Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold

    DEFF Research Database (Denmark)

    Pedersen, Anders N; Korreman, Stine; Nyström, Håkan

    2004-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy of breast cancer using wide tangential photon fields implies a risk of late cardiac and pulmonary toxicity. This CT-study evaluates the detailed potential dosimetric consequences of applying breathing adapted radiotherapy (BART), and the feasibility......%. CONCLUSIONS: Irradiated cardiac volumes can consistently be reduced for left-sided breast cancers using DIBH for wide tangential treatment fields. Additionally, substantial dose reductions in the lung are observed for both right- and left-sided tumours....

  6. Reduction of reactive oxygen species ameliorates metabolism-secretion coupling in islets of diabetic GK rats by suppressing lactate overproduction.

    Science.gov (United States)

    Sasaki, Mayumi; Fujimoto, Shimpei; Sato, Yuichi; Nishi, Yuichi; Mukai, Eri; Yamano, Gen; Sato, Hiroki; Tahara, Yumiko; Ogura, Kasane; Nagashima, Kazuaki; Inagaki, Nobuya

    2013-06-01

    We previously demonstrated that impaired glucose-induced insulin secretion (IS) and ATP elevation in islets of Goto-Kakizaki (GK) rats, a nonobese model of diabetes, were significantly restored by 30-60-min suppression of endogenous reactive oxygen species (ROS) overproduction. In this study, we investigated the effect of a longer (12 h) suppression of ROS on metabolism-secretion coupling in β-cells by exposure to tempol, a superoxide (O2(-)) dismutase mimic, plus ebselen, a glutathione peroxidase mimic (TE treatment). In GK islets, both H2O2 and O2(-) were sufficiently reduced and glucose-induced IS and ATP elevation were improved by TE treatment. Glucose oxidation, an indicator of Krebs cycle velocity, also was improved by TE treatment at high glucose, whereas glucokinase activity, which determines glycolytic velocity, was not affected. Lactate production was markedly increased in GK islets, and TE treatment reduced lactate production and protein expression of lactate dehydrogenase and hypoxia-inducible factor 1α (HIF1α). These results indicate that the Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondria metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells and suggest that ROS reduction can improve mitochondrial metabolism by suppressing lactate overproduction through the inhibition of HIF1α stabilization.

  7. Differential molecular responses of rapeseed cotyledons to light and dark reveal metabolic adaptations towards autotrophy establishment

    Directory of Open Access Journals (Sweden)

    Dongli He

    2016-07-01

    Full Text Available Photosynthesis competent autotrophy should be established during the postgerminative stage of plant growth. Among the multiple factors, light plays a decisive role in the switch from heterotrophic to autotrophic growth. Under dark condition, the rapeseed hypocotyl extends quickly with an apical hook, and the cotyledon is yellow and folded, and maintains high level of the isocitrate lyase (ICL. By contrast, in the light, the hypocotyl extends slowly, the cotyledon unfolds and turns green, the ICL content changes in parallel with the cotyledon greening. To reveal metabolic adaptations during the establishment of postgerminative autotrophy in rapeseed, we conducted comparative proteomic and metabolomic analyses of the cotyledons of seedlings grown under light versus dark conditions. Under both conditions, the increase of the protease, fatty acids β-oxidation and glyoxylate-cycle related proteins was accompanied with rapid degradation of the stored proteins and lipids with an accumulation of the amino acids, while light condition partially retarded these conversions. Light significantly induced the expression of chlorophyll-binding and photorespiration related proteins, resulting in an increase of the reducing-sugar. However, the levels of some chlide conversion, Calvin-cycle and photorespiration related proteins also accumulated in dark grown cotyledons, implying that the transition from heterotrophy to autotrophy is programmed in the seed rather than induced by light. Various anti-stress systems, e.g., redox related proteins, salicylic acid, proline and chaperones, were employed to release the oxidative stress, which was mainly derived from lipid oxidation or photorespiration, under both conditions. This study provides a comprehensive understanding of the differential molecular responses of rapeseed cotyledons to light and dark conditions, which will facilitate further study on the complex mechanism underlying the transition from heterotrophy to

  8. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  9. [Adaptive reactions of lipid metabolism in native and alien female representatives of Tofalaria population living under extreme environmental conditions].

    Science.gov (United States)

    Kolesnikova, L I; Darenskaya, M A; Grebenkina, L A; Dolgikh, M I; Semenova, N V

    2014-01-01

    Peculiarities of the state of lipid metabolism and of processes of lipid peroxidation--the antioxidant protection have been considered in female representatives of the native and alien population of Tofalaria in the age aspects. The obtained data indicate specificity of changes of level of parameters lipid metabolism not only in response to duration of effect of climatic factors, but also depending on belonging to different ethnic groups. Thus, in girls of the natural population of Tofalaria there is noted activation of adaptational-compensatory processes as compared with the alien ones, which is expressed as a significant decrease of atherogenic blood fractions and the general activation of the system of antioxidant protection. However, with age, in both ethnic groups a change of character of reactions of lipid peroxidation and lipid metabolism is noted, which is more expressed in the alien population.

  10. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Chi; Gong, Ting; Zuo, Zhenqiang; Zhao, Fengjie; Fan, Xu; Yang, Chao; Song, Cunjiang

    2015-06-01

    A markerless gene replacement method was adapted by combining a suicide plasmid, pEX18Tc, with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the medium-chain length polyhydroxyalkanoates (PHA(MCL))-producing strain Pseudomonas mendocina NK-01. An NK-01 5-fluorouracil (5-FU) resistant background strain was first constructed by deleting the chromosomal upp gene. The suicide plasmid pEX18Tc, carrying a functional allele of the upp gene of P. mendocina NK-01, was used to construct the vectors to delete the algA (encoding mannose-1-phosphate guanylyltransferase) and phaZ (encoding PHA(MCL) depolymerase) genes, and a 30 kb chromosomal fragment in the 5-FU resistant background host. The genes were removed efficiently from the genome of P. mendocina NK-01 and left a markerless chromosomal mutant. In addition, two exogenous genes were inserted into the phaC1 (PHA(MCL) polymerase) loci of Pseudomonas putida KT-∆UPP simultaneously. Thus, we constructed a genetically stable and marker-free P. putida KT2440 mutant with integrated mpd (encoding methyl parathion hydrolase (MPH)) and pytH (encoding a pyrethroid-hydrolyzing carboxylesterase (PytH)) gene on the chromosome. The upp-based counterselection system could be further adapted for P. mendocina NK-01 and P. putida KT2440 and used for genome reduction and metabolic pathway engineering.

  11. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  12. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  13. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis.

    Science.gov (United States)

    Sanchez, Diego H; Pieckenstain, Fernando L; Escaray, Francisco; Erban, Alexander; Kraemer, Ute; Udvardi, Michael K; Kopka, Joachim

    2011-04-01

    The legume genus Lotus includes glycophytic forage crops and other species adapted to extreme environments, such as saline soils. Understanding salt tolerance mechanisms will contribute to the discovery of new traits which may enhance the breeding efforts towards improved performance of legumes in marginal agricultural environments. Here, we used a combination of ionomic and gas chromatography-mass spectrometry (GC-MS)-based metabolite profilings of complete shoots (pooling leaves, petioles and stems) to compare the extremophile Lotus creticus, adapted to highly saline coastal regions, and two cultivated glycophytic grassland forage species, Lotus corniculatus and Lotus tenuis. L. creticus exhibited better survival after exposure to long-term lethal salinity and was more efficient at excluding Cl⁻ from the shoots than the glycophytes. In contrast, Na+ levels were higher in the extremophile under both control and salt stress, a trait often observed in halophytes. Ionomics demonstrated a differential rearrangement of shoot nutrient levels in the extremophile upon salt exposure. Metabolite profiling showed that responses to NaCl in L. creticus shoots were globally similar to those of the glycophytes, providing little evidence for metabolic pre-adaptation to salinity. This study is the first comparing salt acclimation responses between extremophile and non-extremophile legumes, and challenges the generalization of the metabolic salt pre-adaptation hypothesis.

  14. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring

  15. Ferric ions accumulate in the walls of metabolically inactivating Saccharomyces cerevisiae cells and are reductively mobilized during reactivation.

    Science.gov (United States)

    Wofford, Joshua D; Park, Jinkyu; McCormick, Sean P; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2016-07-13

    Mössbauer and EPR spectra of fermenting yeast cells before and after cell wall (CW) digestion revealed that CWs accumulated iron as cells transitioned from exponential to post-exponential growth. Most CW iron was mononuclear nonheme high-spin (NHHS) Fe(III), some was diamagnetic and some was superparamagnetic. A significant portion of CW Fe was removable by EDTA. Simulations using an ordinary-differential-equations-based model suggested that cells accumulate Fe as they become metabolically inactive. When dormant Fe-loaded cells were metabolically reactivated in Fe-deficient bathophenanthroline disulfonate (BPS)-treated medium, they grew using Fe that had been mobilized from their CWs AND using trace amounts of Fe in the Fe-deficient medium. When grown in Fe-deficient medium, Fe-starved cells contained the lowest cellular Fe concentrations reported for a eukaryotic cell. During metabolic reactivation of Fe-loaded dormant cells, Fe(III) ions in the CWs of these cells were mobilized by reduction to Fe(II), followed by release from the CW and reimport into the cell. BPS short-circuited this process by chelating mobilized and released Fe(II) ions before reimport; the resulting Fe(II)(BPS)3 complex adsorbed on the cell surface. NHHS Fe(II) ions appeared transiently during mobilization, suggesting that these ions were intermediates in this process. In the presence of chelators and at high pH, metabolically inactive cells leached CW Fe; this phenomenon probably differs from metabolic mobilization. The iron regulon, as reported by Fet3p levels, was not expressed during post-exponential conditions; Fet3p was maximally expressed in exponentially growing cells. Decreased expression of the iron regulon and metabolic decline combine to promote CW Fe accumulation.

  16. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Korreman, Stine S; Pedersen, Anders N; Juhler-Nøttrup, Trine

    2006-01-01

    PURPOSE: Substantial reductions of cardio-pulmonary radiation doses can be achieved using voluntary deep inspiration breath-hold (DIBH) or free breathing inspiration gating (IG) in radiotherapy after conserving surgery for breast cancer. The purpose of this study is to evaluate the radiobiological...... tomography studies showed that both voluntary DIBH and IG provided reduction of the lung V50 (relative volume receiving more than 50% of prescription dose) on the order of 30-40%, and a 80-90% reduction of the heart V50 for left-sided cancers. Corresponding pneumonitis probability of 28.1% (range, 0...

  17. Flux analysis of central metabolic pathways in Geobactermetallireducens during reduction of solubleFe(III)-NTA

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Chakraborty, Romy; Garcia-Martin, Hector; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-01-01

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The tracer experiments showed that G. metallireducens containedcomplete biosynthesis pathways for essential metabolism, and this strainmight also have an unusual isoleucine biosynthesis route (usingacetyl-CoA and pyruvate as the precursors). The model indicated that over90 percent of the acetate was completely oxidized to CO2 via a completetricarboxylic acid (TCA) cycle while reducing iron. Pyruvate carboxylaseand phosphoenolpyruvate carboxykinase were present under theseconditions, but enzymes in the glyoxylate shunt and malic enzyme wereabsent. Gluconeogenesis and the pentose phosphate pathway were mainlyemployed for biosynthesis and accounted for less than 3 percent of totalcarbon consumption. The model also indicated surprisingly highreversibility in the reaction between oxoglutarate and succinate. Thisstep operates close to the thermodynamic equilibrium possibly becausesuccinate is synthesized via a transferase reaction, and the conversionof oxoglutarate to succinate is a rate limiting step for carbonmetabolism. These findings enable a better understanding of therelationship between genome annotation and extant metabolic pathways inG. metallireducens.

  18. Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana.

    Directory of Open Access Journals (Sweden)

    Mariusz A Bromke

    Full Text Available This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I removal of nitrogen, (II lower iron concentration, (III addition of sea salt, (IV addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions.

  19. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    Science.gov (United States)

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  20. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  1. Metabolic adaptations in the adipose tissue that underlie the body fat mass gain in middle-aged rats.

    Science.gov (United States)

    Sertié, Rogério Antonio Laurato; Caminhotto, Rennan de Oliveira; Andreotti, Sandra; Campaña, Amanda Baron; de Proença, André Ricardo Gomes; de Castro, Natalie Carolina; Lima, Fábio Bessa

    2015-10-01

    Little is known about adipocyte metabolism during aging process and whether this can influence body fat redistribution and systemic metabolism. To better understand this phenomenon, two animal groups were studied: young-14 weeks old-and middle-aged-16 months old. Periepididymal (PE) and subcutaneous (SC) adipocytes were isolated and tested for their capacities to perform lipolysis and to incorporate D-[U-(14)C]-glucose, D-[U-(14)C]-lactate, and [9,10(n)-(3)H]-oleic acid into lipids. Additionally, the morphometric characteristics of the adipose tissues, glucose tolerance tests, and biochemical determinations (fasting glucose, triglycerides, insulin) in blood were performed. The middle-aged rats showed adipocyte (PE and SC) hypertrophy and glucose intolerance, although there were no significant changes in fasting glycemia and insulin. Furthermore, PE tissue revealed elevated rates (+50 %) of lipolysis during beta-adrenergic-stimulation. There was also an increase (+62 %) in the baseline rate of glucose incorporation into lipids in the PE adipocytes, while these PE cells were almost unresponsive to insulin stimulation and less responsive (a 34 % decrease) in the SC tissue. Also, the capacity of oleic acid esterification was elevated in baseline state and with insulin stimulus in the PE tissue (+90 and 82 %, respectively). Likewise, spontaneous incorporation of lactate into lipids in the PE and SC tissues was higher (+100 and 11 %, respectively) in middle-aged rats. We concluded that adipocyte metabolism of middle-aged animals seems to strongly favor cellular hypertrophy and increased adipose mass, particularly the intra-abdominal PE fat pad. In discussion, we have interpreted all these results as a metabolic adaptations to avoid the spreading of fat that can reach tissues beyond adipose protecting them against ectopic fat accumulation. However, these adaptations may have the potential to lead to future metabolic dysfunctions seen in the senescence.

  2. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Richter, Erik; Wojtaszewski, Jørgen

    2006-01-01

    The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism dur...

  3. Metabolic adaptations in models of fatty liver disease : Of mice and math

    NARCIS (Netherlands)

    Hijmans, Brenda

    2017-01-01

    The increasing incidence of overweight is accompanied by a plethora of medical symptoms together called the metabolic syndrome. Non-alcoholic fatty liver disease, characterized by persistent storage of lipids in the liver, is regarded as the hepatic component of the metabolic syndrome. An imbalance

  4. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    CERN Document Server

    Davis, L C

    2015-01-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested stat...

  5. Rician noise reduction in magnetic resonance images using adaptive non-local mean and guided image filtering

    Science.gov (United States)

    Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu

    2016-06-01

    This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.

  6. A Cardiovascular Risk Reduction Program for American Indians with Metabolic Syndrome: The Balance Study

    Science.gov (United States)

    Lee, Elisa T.; Jobe, Jared B.; Yeh, Jeunliang; Ali, Tauqeer; Rhoades, Everett R.; Knehans, Allen W.; Willis, Diane J.; Johnson, Melanie R.; Zhang, Ying; Poolaw, Bryce; Rogers, Billy

    2012-01-01

    The Balance Study is a randomized controlled trial designed to reduce cardiovascular disease (CVD) risk in 200 American Indian (AI) participants with metabolic syndrome who reside in southwestern Oklahoma. Major risk factors targeted include weight, diet, and physical activity. Participants are assigned randomly to one of two groups, a guided or a…

  7. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    Science.gov (United States)

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  8. Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering.

    Science.gov (United States)

    Ekman, Martin; Ow, Saw Yen; Holmqvist, Marie; Zhang, Xiaohui; van Wagenen, Jon; Wright, Phillip C; Stensjö, Karin

    2011-04-01

    Nostoc punctiforme ATCC 29133 is a photoautotrophic cyanobacterium with the ability to fix atmospheric nitrogen and photoproduce hydrogen through the enzyme nitrogenase. The H(2) produced is reoxidized by an uptake hydrogenase. Inactivation of the uptake hydrogenase in N. punctiforme leads to increased H(2) release but unchanged rates of N(2) fixation, indicating redirected metabolism. System-wide understanding of the mechanisms of this metabolic redirection was obtained using complementary quantitative proteomic approaches, at both the filament and the heterocyst level. Of the total 1070 identified and quantified proteins, 239 were differentially expressed in the uptake hydrogenase mutant (NHM5) as compared to wild type. Our results indicate that the inactivation of uptake hydrogenase in N. punctiforme changes the overall metabolic equilibrium, affecting both oxygen reduction mechanisms in heterocysts as well as processes providing reducing equivalents for metabolic functions such as N(2) fixation. We identify specific metabolic processes used by NHM5 to maintain a high rate of N(2) fixation, and thereby potential targets for further improvement of nitrogenase based H(2) photogeneration. These targets include, but are not limited to, components of the oxygen scavenging capacity and cell envelope of heterocysts and proteins directly or indirectly involved in reduced carbon transport from vegetative cells to heterocysts.

  9. Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia.

    Science.gov (United States)

    Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine

    2016-10-01

    While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker If current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB(+/+);LDLR(-/-)). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with (13)C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression.

  10. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastora, I.; Remy-Jardin, M.; Remy, J. [Dept. of Radiology, University Center Hospital Calmette, Lille (France); Medical Research Group, Lille (France); Suess, C.; Scherf, C. [Siemens Medical Systems, Forcheim (Germany); Guillot, J.P. [Dept. of Radiology, University Center Hospital Calmette, Lille (France)

    2001-04-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  11. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    Science.gov (United States)

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.

  12. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  13. Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data

    NARCIS (Netherlands)

    Bunte, Kerstin; Hammer, Barbara; Wismueller, Axel; Biehl, Michael

    2010-01-01

    Due to the tremendous increase of electronic information with respect to the size of data sets as well as their dimension, dimension reduction and visualization of high-dimensional data has become one of the key problems of data mining. Since embedding in lower dimensions necessarily includes a loss

  14. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  15. Pancreatic β- and α-cell adaptation in response to metabolic changes

    NARCIS (Netherlands)

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia a

  16. FGF21 as a Stress Hormone: The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Kook Hwan Kim

    2014-08-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an endocrine hormone that is primarily expressed in the liver and exerts beneficial effects on obesity and related metabolic diseases. In addition to its remarkable pharmacologic actions, the physiological roles of FGF21 include the maintenance of energy homeostasis in the body in conditions of metabolic or environmental stress. The expression of FGF21 is induced in multiple organs in response to diverse physiological or pathological stressors, such as starvation, nutrient excess, autophagy deficiency, mitochondrial stress, exercise, and cold exposure. Thus, the FGF21 induction caused by stress plays an important role in adaptive response to these stimuli. Here, we highlight our current understanding of the functional importance of the induction of FGF21 by diverse stressors as a feedback mechanism that prevents excessive stress.

  17. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation.

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2014-12-01

    Full Text Available Cystic hydatid disease (CHD is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs released by the parasite.A large number of nonredundant sequences as unigenes were generated (26,514, of which 22,910 (86.4% were mapped to the newly published E. granulosus genome and 17,705 (66.8% were distributed within the coding sequence (CDS regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways.This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control.

  18. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats.

    Science.gov (United States)

    Baechli, Heidi; Behzad, Melika; Schreckenberger, Matthias; Buchholz, Hans-Georg; Heimann, Axel; Kempski, Oliver; Alessandri, Beat

    2010-03-01

    Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.

  19. Disruption of the Acyl-CoA binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Marcher, Ann-Britt; Bloksgaard, Maria;

    -CoA esters between different enzymatic systems. However, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice show decreased growth...... to target sites in chromatin. In conclusion, lack of ACBP causes elevated levels of plasma and hepatic lipids during weaning, which interferes with the normal metabolic adaptation to weaning by delaying induction of the lipogenic gene programs in the liver....

  20. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek;

    2011-01-01

    , little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice go through a crisis with overall weakness, and a slightly decreased growth...... rate. Using microarray analysis we show that the liver of ACBP-/- mice display a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning....... The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads...

  1. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering.

    Science.gov (United States)

    Liu, Yan; Pecht, Michael G

    2006-01-01

    The effectiveness of electrocardiogram (ECG) monitors can be significantly impaired by motion artifacts which can cause misdiagnoses, lead to inappropriate treatment decisions, and trigger false alarms. Skin stretch associated with patient motion is a significant source of motion artifacts in current ECG monitoring. In this study, motion artifacts are adaptively filtered by using skin strain as the reference variable. Skin strain is measured non-invasively using a light emitting diode (LED) and an optical sensor incorporated in an ECG electrode. The results demonstrate that this device and method can significantly reduce skin strain induced ECG artifacts.

  2. Improved Reproduction of Stops in Noise Reduction Systems with Adaptive Windows and Nonstationarity Detection

    Directory of Open Access Journals (Sweden)

    Dirk Mauler

    2009-01-01

    Full Text Available A new block-based noise reduction system is proposed which focuses on the preservation of transient sounds like stops or speech onsets. The power level of consonants has been shown to be important for speech intelligibility. In single-channel noise reduction systems, however, these sounds are frequently severely attenuated. The main reasons for this are an insufficient temporal resolution of transient sounds and a delayed tracking of important control parameters. The key idea of the proposed system is the detection of non-stationary input data. Depending on that decision, a pair of spectral analysis-synthesis windows is selected which either provides high temporal or high spectral resolution. Furthermore, the decision-directed approach for the estimation of the a priori SNR is modified so that speech onsets are tracked more quickly without sacrificing performance in stationary signal regions. The proposed solution shows significant improvements in the preservation of stops with an overall system delay (input-output, excluding group delay of noise reduction filter of only 10 milliseconds.

  3. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer.

    Science.gov (United States)

    Carus, Jana; Paul, Maike; Schröder, Boris

    2016-03-01

    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.

  4. Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Crta. Valencia Km-7, Madrid 28031 (Spain)], E-mail: mariano.ruiz@upm.es; Lopez, JM.; Arcas, G. de [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Crta. Valencia Km-7, Madrid 28031 (Spain); Barrera, E. [Departamento de Sistemas Electronicos y de Control, Universidad Politecnica de Madrid (UPM), Crta. Valencia Km-7, Madrid 28031 (Spain); Melendez, R. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (UPM), Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2008-04-15

    Long pulse or steady state operation of fusion experiments require data acquisition and processing systems that reduce the volume of data involved. The availability of self-adaptive sampling rate systems and the use of real-time lossless data compression techniques can help solve these problems. The former is important for continuous adaptation of sampling frequency for experimental requirements. The latter allows the maintenance of continuous digitization under limited memory conditions. This can be achieved by permanent transmission of compressed data to other systems. The compacted transfer ensures the use of minimum bandwidth. This paper presents an implementation based on intelligent test and measurement system (ITMS), a data acquisition system architecture with multiprocessing capabilities that permits it to adapt the system's sampling frequency throughout the experiment. The sampling rate can be controlled depending on the experiment's specific requirements by using an external dc voltage signal or by defining user events through software. The system takes advantage of the high processing capabilities of the ITMS platform to implement a data reduction mechanism based in lossless data compression algorithms which are themselves based in periodic deltas.

  5. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression.

    Science.gov (United States)

    Valentine, J L; Lee, S S; Seaton, M J; Asgharian, B; Farris, G; Corton, J C; Gonzalez, F J; Medinsky, M A

    1996-11-01

    Transgenic CYP2E1 knockout mice (cyp2e1-/-) were used to investigate the involvement of CYP2E1 in the in vivo metabolism of benzene and in the development of benzene-induced toxicity. After benzene exposure, absence of CYP2E1 protein was confirmed by Western blot analysis of mouse liver samples. For the metabolism studies, male cyp2e1-/- and wild-type control mice were exposed to 200 ppm benzene, along with a radiolabeled tracer dose of [14C]benzene (1.0 Ci/mol) by nose-only inhalation for 6 hr. Total urinary radioactivity and all radiolabeled individual metabolites were reduced in urine of cyp2e1-/- mice compared to wild-type controls during the 48-hr period after benzene exposure. In addition, a significantly greater percentage of total urinary radioactivity could be accounted for as phenylsulfate conjugates in cyp2e1-/- mice compared to wild-type mice, indicating the importance of CYP2E1 in oxidation of phenol following benzene exposure in normal mice. For the toxicity studies, male cyp2e1-/-, wild-type, and B6C3F1 mice were exposed by whole-body inhalation to 0 ppm (control) or 200 ppm benzene, 6 hr/day for 5 days. On Day 5, blood, bone marrow, thymus, and spleen were removed for evaluation of micronuclei frequencies and tissue cellularities. No benzene-induced cytotoxicity or genotoxicity was observed in cyp2e1-/- mice. In contrast, benzene exposure resulted in severe genotoxicity and cytotoxicity in both wild-type and B6C3F1 mice. These studies conclusively demonstrate that CYP2E1 is the major determinant of in vivo benzene metabolism and benzene-induced myelotoxicity in mice.

  6. Adaptive trade-offs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams.

    Science.gov (United States)

    Van Leeuwen, Travis E; Rosenfeld, Jordan S; Richards, Jeffrey G

    2011-09-01

    1. Adaptive trade-offs are fundamental to the evolution of diversity and the coexistence of similar taxa and occur when complimentary combinations of traits maximize efficiency of resource exploitation or survival at different points on environmental gradients. 2. Standard metabolic rate (SMR) is a key physiological trait that reflects adaptations to baseline metabolic performance, whereas active metabolism reflects adaptations to variable metabolic output associated with performance related to foraging, predator avoidance, aggressive interactions or migratory movements. Benefits of high SMR and active metabolism may change along a resource (productivity) gradient, indicating that a trade-off exists among active metabolism, resting metabolism and energy intake. 3. We measured and compared SMR, maximal metabolic rate (MMR), aerobic scope (AS), swim performance (UCrit) and growth of juvenile hatchery and wild steelhead and coho salmon held on high- and low-food rations in order to better understand the potential significance of variation in SMR to growth, differentiation between species, and patterns of habitat use along a productivity gradient. 4. We found that differences in SMR, MMR, AS, swim performance and growth rate between steelhead trout and coho salmon were reduced in hatchery-reared fish compared with wild fish. Wild steelhead had a higher MMR, AS, swim performance and growth rate than wild coho, but adaptations between species do not appear to involve differences in SMR or to trade-off increased growth rate against lower swim performance, as commonly observed for high-growth strains. Instead, we hypothesize that wild steelhead may be trading off higher growth rate for lower food consumption efficiency, similar to strategies adopted by anadromous vs. resident brook trout and Atlantic salmon vs. brook trout. This highlights potential differences in food consumption and digestion strategies as cryptic adaptations ecologically differentiating salmonid species

  7. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  8. Brief Communication: CATALYST - a multi-regional stakeholder think tank for fostering capacity development in disaster risk reduction and climate change adaptation

    Science.gov (United States)

    Hare, M. P.; van Bers, C.; van der Keur, P.; Henriksen, H. J.; Luther, J.; Kuhlicke, C.; Jaspers, F.; Terwisscha van Scheltinga, C.; Mysiak, J.; Calliari, E.; Warner, K.; Daniel, H.; Coppola, J.; McGrath, P. F.

    2014-08-01

    This brief communication presents the work and objectives of the CATALYST project on "Capacity Development for Hazard Risk Reduction and Adaptation" funded by the European Commission (October 2011-September 2013). CATALYST set up a multi-regional think tank covering four regions (Central America and the Caribbean, East and West Africa, the European Mediterranean, and South and Southeast Asia), intending to strengthen capacity development for stakeholders involved in disaster risk reduction (DRR) and climate change adaptation, in the context of natural hazards. This communication concludes with a selection of recommendations for capacity development in DRR and climate change adaptation from the perspective of governance issues.

  9. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  10. Reductions in knee joint forces with weight loss are attenuated by gait adaptations in class III obesity.

    Science.gov (United States)

    DeVita, Paul; Rider, Patrick; Hortobágyi, Tibor

    2016-03-01

    A consensus exists that high knee joint forces are a precursor to knee osteoarthritis and weight loss reduces these forces. Because large weight loss also leads to increased step length and walking velocity, knee contact forces may be reduced less than predicted by the magnitude of weight loss. The purpose was to determine the effects of weight loss on knee muscle and joint loads during walking in Class III obese adults. We determined through motion capture, force platform measures and biomechanical modeling the effects of weight loss produced by gastric bypass surgery over one year on knee muscle and joint loads during walking at a standard, controlled velocity and at self-selected walking velocities. Weight loss equaling 412 N or 34% of initial body weight reduced maximum knee compressive force by 824 N or 67% of initial body weight when walking at the controlled velocity. These changes represent a 2:1 reduction in knee force relative to weight loss when walking velocity is constrained to the baseline value. However, behavioral adaptations including increased stride length and walking velocity in the self-selected velocity condition attenuated this effect by ∼50% leading to a 392 N or 32% initial body weight reduction in compressive force in the knee joint. Thus, unconstrained walking elicited approximately 1:1 ratio of reduction in knee force relative to weight loss and is more indicative of walking behavior than the standard velocity condition. In conclusion, massive weight loss produces dramatic reductions in knee forces during walking but when patients stride out and walk faster, these favorable reductions become substantially attenuated.

  11. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities

    Science.gov (United States)

    Bowles, Marshall W.; Mogollón, José M.; Kasten, Sabine; Zabel, Matthias; Hinrichs, Kai-Uwe

    2014-05-01

    Sulfate reduction is a globally important redox process in marine sediments, yet global rates are poorly quantified. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate-reduction rate distributions. Globally, 11.3 teramoles of sulfate are reduced yearly (~15% of previous estimates), accounting for the oxidation of 12 to 29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub-sea-floor prokaryote habitats: In continental margins, global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by one order of magnitude, whereas in the abyss, most life occurs in oxic and/or sulfate-reducing sediments.

  12. The Microbial Metabolic Characteristics in the Course of Sulfate-Reduction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Acid-producing phase reactor of two-phase anaerobic treatment process has remarkable advantages treating sulfate-laden wastewater. In order to investigate SRB population's capability of utilizing substrate and the microbial acidification type formed during the course of sulfate reduction, continuous-flow and batch tests were conducted in a continuous stirred tank bio-film reactor supplied with sodium sulfate as electron acceptor. The experimental results demonstrated that the acidification type formed b...

  13. Reductions in urban outdoor water use as an adaptation to declining water supplies in southern California

    Science.gov (United States)

    Pataki, D. E.; Hogue, T. S.; Litvak, E.; Mini, C.; Pincetl, S.

    2012-12-01

    Many irrigated cities in the semi-arid west wish to reduce their water consumption by more efficiently planning and managing outdoor landscapes. This requires accurate information about the actual water budget of these landscapes, which is still quite uncertain. We evaluated urban water use and the potential for reductions in outdoor water use in Los Angeles, which relies heavily on imported water from high elevation recharge outside the urban area, and is therefore very sensitive to declining snowpack as a result of climate change. Most landscapes in Los Angeles are irrigated, and outdoor water use constitutes a significant fraction of total municipal water use. Quantifying the fate of this water and the implications for water-conserving landscape designs requires a combination of direct measurements, hydrologic modeling, and analysis of water consumption data. We analyzed water billing records in relation to climatic and land use characteristics, directly measured transpiration in a variety of species and landscape types, and characterized regional evapotranspiration (ET) with a remote-sensing based model. We found that climate variables explaining approximately 1-30% of the variability in residential water use depending on neighborhood. Over a 10 year period, there was no correlation between interannual variability in water use and interannual variability in remote-sensing based vegetation greenness. Following the implementation of conservation measures, residential water use declined throughout the city, but greenness remained constant. Direct measurements of plant water use and plant water relations confirmed that most vegetation was well-watered and showed few signs of water stress. Transpiration rates were highly species specific, with the highest transpiration rates and lowest water use efficiency found in species originating from humid environments or from riparian habitats. Unshaded turfgrass showed the highest rates of ET in any measured landscape, but

  14. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    Science.gov (United States)

    Davis, L. C.

    2016-06-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.

  15. [An adaptive scaling hybrid algorithm for reduction of CT artifacts caused by metal objects].

    Science.gov (United States)

    Chen, Yu; Luo, Hai; Zhou, He-qin

    2009-03-01

    A new adaptively hybrid filtering algorithm is proposed to reduce the artifacts caused by metal in CT image. Firstly, the method is used to preprocess the projection data of metal region and is reconstruct by filtered back projection (FBP) method. Then the expectation maximization algorithm (EM) is performed on the iterative original metal project data. Finally, a compensating procedure is applied to the reconstructed metal region. The simulation result has demonstrated that the proposed algorithm can remove the metal artifacts and keep the structure information of metal object effectively. It ensures that the tissues around the metal will not be distorted. The method is also computational efficient and effective for the CT images which contains several metal objects.

  16. MicroRNA-Mediated Regulation of Dp53 in the Drosophila Fat Body Contributes to Metabolic Adaptation to Nutrient Deprivation

    Directory of Open Access Journals (Sweden)

    Lara Barrio

    2014-07-01

    Full Text Available Multiple conserved mechanisms sense nutritional conditions and coordinate metabolic changes in the whole organism. We unravel a role for the Drosophila homolog of p53 (Dp53 in the fat body (FB; a functional analog of vertebrate adipose and hepatic tissues in starvation adaptation. Under nutrient deprivation, FB-specific depletion of Dp53 accelerates consumption of major energy stores and reduces survival rates of adult flies. We show that Dp53 is regulated by the microRNA (miRNA machinery and miR-305 in a nutrition-dependent manner. In well-fed animals, TOR signaling contributes to miR-305-mediated inhibition of Dp53. Nutrient deprivation reduces the levels of miRNA machinery components and leads to Dp53 derepression. Our results uncover an organism-wide role for Dp53 in nutrient sensing and metabolic adaptation and open up avenues toward understanding the molecular mechanisms underlying p53 activation under nutrient deprivation.

  17. Differential metabolic and endocrine adaptations in llamas, sheep, and goats fed high- and low-protein grass-based diets.

    Science.gov (United States)

    Kiani, A; Alstrup, L; Nielsen, M O

    2015-10-01

    This study aimed to elucidate whether distinct endocrine and metabolic adaptations provide llamas superior ability to adapt to low protein content grass-based diets as compared with the true ruminants. Eighteen adult, nonpregnant females (6 llamas, 6 goats, and 6 sheep) were fed either green grass hay with (HP) or grass seed straw (LP) in a cross-over design experiment over 2 periods of 21 d. Blood samples were taken on day 21 in each period at -30, 60, 150, and 240 min after feeding the morning meal and analyzed for plasma contents of glucose, triglyceride, nonesterified fatty acids, β-hydroxy butyrate (BOHB), urea, creatinine, insulin, and leptin. Results showed that llamas vs sheep and goats had higher plasma concentrations of glucose (7.1 vs 3.5 and 3.6 ± 0.18 mmol/L), creatinine (209 vs 110 and 103 ± 10 μmol/L), and urea (6.7 vs 5.6 and 4.9 ± 0.5 mmol/L) but lower leptin (0.33 vs 1.49 and 1.05 ± 0.1 ng/mL) and BOHB (0.05 vs 0.26 and 0.12 ± 0.02 mmol/L), respectively. BOHB in llamas was extremely low for a ruminating animal. Llamas showed that hyperglycemia coexisted with hyperinsulinemia (in general on the HP diet; postprandially on the LP diet). Llamas were clearly hypercreatinemic compared with the true ruminants, which became further exacerbated on the LP diet, where they also sustained plasma urea at markedly higher concentrations. However, llamas had markedly lower leptin concentrations than the true ruminants. In conclusion, llamas appear to have an intrinsic insulin resistant phenotype. Augmentation of creatinine and sustenance of elevated plasma urea concentrations in llamas when fed the LP diet must reflect distinct metabolic adaptations of intermediary protein and/or nitrogen metabolism, not observed in the true ruminants. These features can contribute to explain lower metabolic rates in llamas compared with the true ruminants, which must improve the chances of survival on low protein content diets.

  18. Comprehensive Cardiovascular Risk Reduction and Cardiac Rehabilitation in Diabetes and the Metabolic Syndrome

    Science.gov (United States)

    Heinl, Robert E.; Dhindsa, Devinder S.; Mahlof, Elliot N.; Schultz, William M.; Ricketts, Johnathan C.; Varghese, Tina; Esmaeeli, Amirhossein; Allard-Ratick, Marc P.; Millard, Anthony J.; Kelli, Heval M.; Sandesara, Pratik B.; Eapen, Danny J.; Sperling, Laurence

    2017-01-01

    The epidemic of obesity has contributed to a growing burden of metabolic syndrome (MetS) and diabetes mellitus (DM) worldwide. MetS is defined as central obesity along with associated factors such as hypertriglyceridemia, low high-density lipoprotein cholesterol, hyperglycemia, and hypertension. MetS and DM are associated with significant cardiovascular morbidity and mortality. Healthy behavioural modification is the cornerstone for reducing the atherosclerotic cardiovascular disease burden in this population. Comprehensive, multi-disciplinary cardiac rehabilitation (CR) programs reduce mortality and hospitalizations in patients with MetS and DM. Despite this benefit, patients with MetS and DM are less likely to attend and complete CR because of numerous barriers. Implementation of innovative CR delivery models might improve utilization of CR and cardiovascular outcomes in this high-risk population. PMID:27692115

  19. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Umemura, Akira; Sasaki, Akira; Nitta, Hiroyuki; Baba, Shigeaki; Ando, Taro; Kajiwara, Takashi; Ishigaki, Yasushi

    2017-03-17

    This study aimed to assess the relationship between the metabolic effect after laparoscopic sleeve gastrectomy (LSG) in morbidly obese Japanese patients, with or without type 2 diabetes mellitus (T2DM), and improved pancreatic steatosis (PS). The study enrolled 27 morbidly obese Japanese patients who were undergoing LSG. Their clinical and metabolic effects were evaluated at baseline and six months after LSG. Pancreas volume (PV), pancreatic attenuation (PA), and splenic attenuation (SA) were measured using a 64-row computed tomography (CT). Changes in PV, PA-SA, and PA/SA were evaluated. The mean body-weight loss, body mass index loss, and percentage of excess weight loss (%EWL) were -34.4 kg (p < 0.001), -11.0 kg/m(2) (p < 0.001), and 43.7%, respectively. The mean PV was 96.7 mL at baseline, and it decreased six months after LSG (-16.3mL, p < 0.001). The mean PA significantly increased six months after LSG (9.5 HU, p < 0.001). PA-SA (-23.2 HU vs. -13.3 HU, p = 0.003), and PA/SA (0.54 vs. 0.73, p < 0.001) also significantly increased six months after LSG. In T2DM patients, decreased PV correlated with decreased fasting blood sugar, decreased insulin, and reduced liver volume. In conclusion, PV significantly decreased after LSG in morbidly obese Japanese patients, and that decrease correlated with improvements in PS. In addition, PS plays an important role of development and progression of insulin resistance and T2DM.

  20. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment.

    NARCIS (Netherlands)

    Degens, H.; Gilde, A.J.; Lindhout, M.; Willemsen, P.H.; Vusse, G.J. van der; Bilsen, M. van

    2003-01-01

    In heart failure, thyroid hormone (TH) treatment improves cardiac performance. The long-term effects of TH on cardiac function and metabolism, however, are incompletely known. To investigate the effects of up to 28 days of TH treatment, male Wistar rats received 3,3',5-triiodo-l-thyronine (200 micro

  1. A PPAR gamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis

    NARCIS (Netherlands)

    Jonker, Johan W.; Suh, Jae Myoung; Atkins, Annette R.; Ahmadian, Maryam; Li, Pingping; Whyte, Jamie; He, Mingxiao; Juguilon, Henry; Yin, Yun-Qiang; Phillips, Colin T.; Yu, Ruth T.; Olefsky, Jerrold M.; Henry, Robert R.; Downes, Michael; Evans, Ronald M.

    2012-01-01

    Although feast and famine cycles illustrate that remodelling of adipose tissue in response to fluctuations in nutrient availability is essential for maintaining metabolic homeostasis, the underlying mechanisms remain poorly understood(1,2). Here we identify fibroblast growth factor 1 (FGF1) as a cri

  2. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    DEFF Research Database (Denmark)

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif

    2011-01-01

    Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful...

  3. Metabolic and endocrine adaptations to fasting in lean and obese individuals

    NARCIS (Netherlands)

    Wijngaarden, Marjolein A.

    2015-01-01

    In this thesis we examined several effects of fasting in lean and obese individuals. As expected, both the hormonal response as well as the metabolic shift from glucose towards lipid oxidation was impaired in obese individuals. At baseline, mitochondrial protein content in skeletal muscle of obese s

  4. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    Science.gov (United States)

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components.

  5. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium.

    Science.gov (United States)

    Morland, Cecilie; Pettersen, Mi Nguyen; Hassel, Bjørnar

    2016-05-01

    Elevation of serum sodium, hypernatremia, which may occur during dehydration or treatment with sodium chloride, may cause brain dysfunction and damage, but toxic mechanisms are poorly understood. We found that exposure to excess NaCl, 10-100mmol/L, for 20h caused cell death in cultured cerebellar granule cells (neurons). Toxicity was due to Na(+), since substituting excess Na(+) with choline reduced cell death to control levels, whereas gluconate instead of excess Cl(-) did not. Prior to cell death from hyperosmolar NaCl, glucose consumption and lactate formation were reduced, and intracellular aspartate levels were elevated, consistent with reduced glycolysis or glucose uptake. Concomitantly, the level of ATP became reduced. Pyruvate, 10mmol/L, reduced NaCl-induced cell death. The extracellular levels of glutamate, taurine, and GABA were concentration-dependently reduced by excess NaCl; high-affinity glutamate uptake increased. High extracellular [Na(+)] caused reduction in intracellular free [Ca(2+)], but a similar effect was seen with mannitol, which was not neurotoxic. We suggest that inhibition of glucose metabolism with ensuing loss of ATP is a neurotoxic mechanism of hyperosmolar sodium, whereas increased uptake of extracellular neuroactive amino acids and reduced intracellular [Ca(2+)] may, if they occur in vivo, contribute to the cerebral dysfunction and delirium described in hypernatremia.

  6. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Winston Y. [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  7. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.

    Science.gov (United States)

    Wijngaarden, Marjolein A; Bakker, Leontine E H; van der Zon, Gerard C; 't Hoen, Peter A C; van Dijk, Ko Willems; Jazet, Ingrid M; Pijl, Hanno; Guigas, Bruno

    2014-11-15

    During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.

  8. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola

    Directory of Open Access Journals (Sweden)

    Goryanin Igor

    2009-02-01

    Full Text Available Abstract Background In silico analyses provide valuable insight into the biology of obligately intracellular pathogens and symbionts with small genomes. There is a particular opportunity to apply systems-level tools developed for the model bacterium Escherichia coli to study the evolution and function of symbiotic bacteria which are metabolically specialised to overproduce specific nutrients for their host and, remarkably, have a gene complement that is a subset of the E. coli genome. Results We have reconstructed and analysed the metabolic network of the γ-proteobacterium Buchnera aphidicola (symbiont of the pea aphid as a model for using systems-level approaches to discover key traits of symbionts with small genomes. The metabolic network is extremely fragile with > 90% of the reactions essential for viability in silico; and it is structured so that the bacterium cannot grow without producing the essential amino acid, histidine, which is released to the insect host. Further, the amount of essential amino acid produced by the bacterium in silico can be controlled by host supply of carbon and nitrogen substrates. Conclusion This systems-level analysis predicts that the fragility of the bacterial metabolic network renders the symbiotic bacterium intolerant of drastic environmental fluctuations, whilst the coupling of histidine production to growth prevents the bacterium from exploiting host nutrients without reciprocating. These metabolic traits underpin the sustained nutritional contribution of B. aphidicola to the host and, together with the impact of host-derived substrates on the profile of nutrients released from the bacteria, point to a dominant role of the host in controlling the symbiosis.

  9. PGC-1alpha in exercise- and exercise training-induced metabolic adaptations

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm

    and interferes with the exercise-induced adaptive response in human skeletal muscle. Study II demonstrates that mouse liver glucose-6-phosphatase (G6Pase) mRNA content increased in recovery from acute exercise in both wildtype (WT) and PGC-1α knockout (KO) mice, while phosphoenolpyruvate carboxykinase (PEPCK...... content in WT, but not in PGC-1α KO mice. This shows that exercise training increases UCP1, COXIV and CD31 protein in mouse iWAT, likely as a cumulative effect of transient increases in mRNA expression after each exercise bout, and that PGC-1α is required for these adaptations. Study IV demonstrates...

  10. Partial restoration of dietary fat induced metabolic adaptations to training by 7 days of carbohydrate diet

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Watt, Peter W; Richter, Erik A

    2002-01-01

    We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high...... +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels...

  11. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models

    Science.gov (United States)

    Santillana, Mauricio; Le Sager, Philippe; Jacob, Daniel J.; Brenner, Michael P.

    2010-11-01

    We present a computationally efficient adaptive method for calculating the time evolution of the concentrations of chemical species in global 3-D models of atmospheric chemistry. Our strategy consists of partitioning the computational domain into fast and slow regions for each chemical species at every time step. In each grid box, we group the fast species and solve for their concentration in a coupled fashion. Concentrations of the slow species are calculated using a simple semi-implicit formula. Separation of species between fast and slow is done on the fly based on their local production and loss rates. This allows for example to exclude short-lived volatile organic compounds (VOCs) and their oxidation products from chemical calculations in the remote troposphere where their concentrations are negligible, letting the simulation determine the exclusion domain and allowing species to drop out individually from the coupled chemical calculation as their production/loss rates decline. We applied our method to a 1-year simulation of global tropospheric ozone-NO x-VOC-aerosol chemistry using the GEOS-Chem model. Results show a 50% improvement in computational performance for the chemical solver, with no significant added error.

  12. Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome.

    Directory of Open Access Journals (Sweden)

    Lisa M Nigro

    2016-08-01

    Full Text Available Deep-sea hypersaline anoxic basins (DHABs and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that has been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome (SAG of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.

  13. Regional difference of glucose metabolism reduction in equivocal Alzheimer's disease and elderly depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. S.; Kang, E. J.; Lee, J. S.; Lee, D. S.; Lee, K. U.; Chung, J. K.; Woo, J. I.; Lee, M. C. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2001-07-01

    The aim of this study was to investigate the difference in cerebral glucose metabolism between patients with equivocal Alzheimer's disease (eAD) and those with elderly major depression (DEP). 31 patients with eAD, 7 patients with DEP, and 15 age matched normal controls were scanned with FDG-PET. Each FDG-PET images was normalized to the cerebellar activity before voxel-voxel analysis using SPM99. In comparison with normal controls, the eAD patents showed the most significant reduction of glucose metabolism (hypometabolism) in anterior inferior temporal gyrus in left, followed by bilateral posterior cingulate, left thalamus, and inferior parietal lobe. Patients with DEP showed hypometabolism in precuneus, inferior and middle frontal gyri in left, and right angular gyrus. Significantly lower activity was found in left inferior temporal gyrus in DEP in comparison to the eAD. Patients with eAD and DEP showed different pattern of hypometabolism, especially in inferior temporal gyrus. FDG brain PET may be useful in differential diagnosis between equivocal Alzheimer's disease and elderly depression.

  14. Responses of mouse skeletal muscle to endurance exercise. Functional, metabolic, and genomic adaptations

    NARCIS (Netherlands)

    de Snoo, M.W.

    2009-01-01

    Endurance exercise is commonly known to improve skeletal muscle performance with respect to fatigue resistance. The exact mechanisms, however, as to how skeletal muscle adapts to increased physical demand are still largely unknown, despite extensive research. These processes were originally studied

  15. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Edith E., E-mail: ed.mueller@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Mayr, Johannes A., E-mail: h.mayr@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Zimmermann, Franz A., E-mail: f.zimmermann@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Feichtinger, Rene G., E-mail: r.feichtinger@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Stanger, Olaf, E-mail: o.stanger@rbht.nhs.uk [Department of Cardiac Surgery, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Sperl, Wolfgang, E-mail: w.sperl@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Kofler, Barbara, E-mail: b.kofler@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

  16. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  17. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction?

    Science.gov (United States)

    Schuldt, Bernhard; Knutzen, Florian; Delzon, Sylvain; Jansen, Steven; Müller-Haubold, Hilmar; Burlett, Régis; Clough, Yann; Leuschner, Christoph

    2016-04-01

    Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance.

  18. Proteomic analysis of the metabolic adaptation of the biocontrol agent Pseudozyma flocculosa leading to glycolipid production

    Directory of Open Access Journals (Sweden)

    Bélanger Richard R

    2010-02-01

    Full Text Available Abstract The yeast-like epiphytic fungus Pseudozyma flocculosa is known to antagonize powdery mildew fungi through proliferation on colonies presumably preceded by the release of an antifungal glycolipid (flocculosin. In culture conditions, P. flocculosa can be induced to produce or not flocculosin through manipulation of the culture medium nutrients. In order to characterize and understand the metabolic changes in P. flocculosa linked to glycolipid production, we conducted a 2-DE proteomic analysis and compared the proteomic profile of P. flocculosa growing under conditions favoring the development of the fungus (control or conducive to flocculosin synthesis (stress. A large number of protein spots (771 were detected in protein extracts of the control treatment compared to only 435 matched protein spots in extracts of the stress cultures, which clearly suggests an important metabolic reorganization in slow-growing cells producing flocculosin. From the latter treatment, we were able to identify 21 protein spots that were either specific to the treatment or up-regulated significantly (2-fold increase. All of them were identified based on similarity between predicted ORF of the newly sequenced genome of P. flocculosa with Ustilago maydis' available annotated sequences. These proteins were associated with the carbon and fatty acid metabolism, and also with the filamentous change of the fungus leading to flocculosin production. This first look into the proteome of P. flocculosa suggests that flocculosin synthesis is elicited in response to specific stress or limiting conditions.

  19. Curcuminoid binding to embryonal carcinoma cells: reductive metabolism, induction of apoptosis, senescence, and inhibition of cell proliferation.

    Directory of Open Access Journals (Sweden)

    Wolfgang W Quitschke

    Full Text Available Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60% or bisdemethoxycurcumin (55%. Continual exposure of NT2/D1 cells for 4-6 days to either preparation in cell culture media reduced cell division (1-5 µM, induced senescence (6-7 µM or comprehensive cell death (8-10 µM in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM for 0.5-4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6-10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are

  20. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation.

    Science.gov (United States)

    Winter, A G; V; Deits, R L H; Dorsch, D S; Slocum, A H; Hosoi, A E

    2014-09-01

    Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus) indicate that the animal's burrow depth should be physically limited to a few centimeters; yet razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing E. directus, we have found the animal reduces drag by contracting its valves to initially fail, and then fluidize, the surrounding substrate. The characteristic contraction time to achieve fluidization can be calculated directly from soil properties. The geometry of the fluidized zone is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth pressure and friction angle. Calculations using full ranges for both parameters indicate that the fluidized zone is a local effect, occurring between 1-5 body radii away from the animal. The energy associated with motion through fluidized substrate-characterized by a depth-independent density and viscosity-scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce energy costs associated with digging. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging kinematics, RoboClam has achieved localized fluidization burrowing performance comparable to that of the animal, with a linear energy-depth relationship, in both idealized granular glass beads and E. directus' native cohesive mudflat habitat.

  1. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats

    DEFF Research Database (Denmark)

    Schultz, R L; Kullman, E L; Waters, Ryan

    2013-01-01

    The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female......, but was increased (Panimals. Citrate synthase protein and gene expression were unchanged in SHHFex animals, but were increased in WFex rats (Panimals muscle glycogen was significantly depleted after exercise (P... robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal...

  2. Effects of adaptive statistical iterative reconstruction on radiation dose reduction and diagnostic accuracy of pediatric abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sohi; Kim, Myung-Joon; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Dong Wook; Hong, Jung Hwa [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2014-12-15

    Since children are more radio-sensitive than adults, there is a need to minimize radiation exposure during CT exams. To evaluate the effects of adaptive statistical iterative reconstruction (ASIR) on radiation dose reduction, image quality and diagnostic accuracy in pediatric abdominal CT. We retrospectively reviewed the abdominal CT examinations of 41 children (24 boys and 17 girls; mean age: 10 years) with a low-dose radiation protocol and reconstructed with ASIR (the ASIR group). We also reviewed routine-dose abdominal CT examinations of 41 age- and sex-matched controls reconstructed with filtered-back projection (control group). Image quality was assessed objectively as noise measured in the liver, spleen and aorta, as well as subjectively by three pediatric radiologists for diagnostic acceptability using a four-point scale. Radiation dose and objective image qualities of each group were compared with the paired t-test. Diagnostic accuracy was evaluated by reviewing follow-up imaging studies and medical records in 2012 and 2013. There was 46.3% dose reduction of size-specific dose estimates in ASIR group (from 13.4 to 7.2 mGy) compared with the control group. Objective noise was higher in the liver, spleen and aorta of the ASIR group (P < 0.001). However, the subjective image quality was average or superior in 84-100% of studies. Only one image was subjectively rated as unacceptable by one reviewer. There was only one case with interpretational error in the control group and none in the ASIR group. Use of the ASIR technique resulted in greater than a 45% reduction in radiation dose without impairing subjective image quality or diagnostic accuracy in pediatric abdominal CT, despite increased objective image noise. (orig.)

  3. Loss of CD24 in Mice Leads to Metabolic Dysfunctions and a Reduction in White Adipocyte Tissue.

    Directory of Open Access Journals (Sweden)

    Nicholas A Fairbridge

    Full Text Available CD24 is a glycophosphatidylinositol (GPI-linked cell surface receptor that is involved in regulating the survival or differentiation of several different cell types. CD24 has been used to identify pre-adipocytes that are able to reconstitute white adipose tissue (WAT in vivo. Moreover, we recently found that the dynamic upregulation of CD24 in vitro during early phases of adipogenesis is necessary for mature adipocyte development. To determine the role of CD24 in adipocyte development in vivo, we evaluated the development of the inguinal and interscapular subcutaneous WAT and the epididymal visceral WAT in mice with a homozygous deletion of CD24 (CD24KO. We observed a significant decrease in WAT mass of 40% to 74% in WAT mass from both visceral and subcutaneous depots in male mice, with no significant effect in female mice, compared to wild-type (WT sex- and age-matched controls. We also found that CD24KO mice had increased fasting glucose and free fatty acids, decreased fasting insulin, and plasma leptin. No major differences were observed in the sensitivity to insulin or glucose, or in circulating triglycerides, total cholesterol, HDL-cholesterol, or LDL-cholesterol levels between WT and CD24KO mice. Challenging the CD24KO mice with either high sucrose (35% or high fat (45% diets that promote increased adiposity, increased WAT mass and fasting insulin, adiponectin and leptin levels, as well as reduced the sensitivity to insulin and glucose, to the levels of WT mice on the same diets. The CD24-mediated reduction in fat pad size was due to a reduction in adipocyte cell size in all depots with no significant reduction pre-adipocyte or adipocyte cell number. Thus, we have clearly demonstrated that the global absence of CD24 affects adipocyte cell size in vivo in a sex- and diet-dependent manner, as well as causing metabolic disturbances in glucose homeostasis and free fatty acid levels.

  4. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Heng B Xie

    2013-06-01

    Full Text Available Dominant mutations in the alpha-B crystallin (CryAB gene are responsible for a number of inherited human disorders, including cardiomyopathy, skeletal muscle myopathy, and cataracts. The cellular mechanisms of disease pathology for these disorders are not well understood. Among recent advances is that the disease state can be linked to a disturbance in the oxidation/reduction environment of the cell. In a mouse model, cardiomyopathy caused by the dominant CryAB(R120G missense mutation was suppressed by mutation of the gene that encodes glucose 6-phosphate dehydrogenase (G6PD, one of the cell's primary sources of reducing equivalents in the form of NADPH. Here, we report the development of a Drosophila model for cellular dysfunction caused by this CryAB mutation. With this model, we confirmed the link between G6PD and mutant CryAB pathology by finding that reduction of G6PD expression suppressed the phenotype while overexpression enhanced it. Moreover, we find that expression of mutant CryAB in the Drosophila heart impaired cardiac function and increased heart tube dimensions, similar to the effects produced in mice and humans, and that reduction of G6PD ameliorated these effects. Finally, to determine whether CryAB pathology responds generally to NADPH levels we tested mutants or RNAi-mediated knockdowns of phosphogluconate dehydrogenase (PGD, isocitrate dehydrogenase (IDH, and malic enzyme (MEN, the other major enzymatic sources of NADPH, and we found that all are capable of suppressing CryAB(R120G pathology, confirming the link between NADP/H metabolism and CryAB.

  5. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster.

    Science.gov (United States)

    Xie, Heng B; Cammarato, Anthony; Rajasekaran, Namakkal S; Zhang, Huali; Suggs, Jennifer A; Lin, Ho-Chen; Bernstein, Sanford I; Benjamin, Ivor J; Golic, Kent G

    2013-06-01

    Dominant mutations in the alpha-B crystallin (CryAB) gene are responsible for a number of inherited human disorders, including cardiomyopathy, skeletal muscle myopathy, and cataracts. The cellular mechanisms of disease pathology for these disorders are not well understood. Among recent advances is that the disease state can be linked to a disturbance in the oxidation/reduction environment of the cell. In a mouse model, cardiomyopathy caused by the dominant CryAB(R120G) missense mutation was suppressed by mutation of the gene that encodes glucose 6-phosphate dehydrogenase (G6PD), one of the cell's primary sources of reducing equivalents in the form of NADPH. Here, we report the development of a Drosophila model for cellular dysfunction caused by this CryAB mutation. With this model, we confirmed the link between G6PD and mutant CryAB pathology by finding that reduction of G6PD expression suppressed the phenotype while overexpression enhanced it. Moreover, we find that expression of mutant CryAB in the Drosophila heart impaired cardiac function and increased heart tube dimensions, similar to the effects produced in mice and humans, and that reduction of G6PD ameliorated these effects. Finally, to determine whether CryAB pathology responds generally to NADPH levels we tested mutants or RNAi-mediated knockdowns of phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (IDH), and malic enzyme (MEN), the other major enzymatic sources of NADPH, and we found that all are capable of suppressing CryAB(R120G) pathology, confirming the link between NADP/H metabolism and CryAB.

  6. Changes in C-N metabolism under elevated CO2 and temperature in Indian mustard (Brassica juncea L.): an adaptation strategy under climate change scenario.

    Science.gov (United States)

    Seth, Chandra Shekhar; Misra, Virendra

    2014-11-01

    The present study was performed to investigate the possible role of carbon (C) and nitrogen (N) metabolism in adaptation of Indian mustard (Brassica juncea L.) growing under ambient (370 ± 15 ppm) and elevated CO2 (700 ± 15 ppm), and jointly in elevated CO2 and temperature (30/22 °C for day/night). The key enzymes responsible for C-N metabolism were studied in different samples of Brassica juncea L. collected from ambient (AMB), elevated (ELE) and ELExT growth conditions. Total percent amount of C and N in leaves were particularly estimated to establish a clear understanding of aforesaid metabolism in plant adaptation. Furthermore, key morphological and physiological parameters such as plant height, leaf area index, dry biomass, net photosynthetic rate, stomatal conductance, transpiration, total protein and chlorophyll contents were also studied in relation to C/N metabolism. The results indicated that the C-metabolizing enzymes, such as (ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NAD-malic enzyme, NADP-malic enzyme and citrate synthase) and the N-metabolizing enzymes, such as (aspartate amino transferase, glutamine synthetase, nitrate reductase and nitrite reductase) showed significantly (P ELExT > AMB growth conditions. This is also evident by significant (P adaptation in Brassica juncea L. against elevated CO2 and temperature prevailing in climate change scenarios.

  7. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    Science.gov (United States)

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity.

  8. The Mediator subunit MDT-15 confers metabolic adaptation to ingested material.

    Directory of Open Access Journals (Sweden)

    Stefan Taubert

    2008-02-01

    Full Text Available In eukaryotes, RNA polymerase II (Pol(II dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to Pol(II-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds.

  9. Adaptive Reprogramming of De Novo Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Brown, Kristin K; Spinelli, Jessica B; Asara, John M; Toker, Alex

    2017-04-01

    Chemotherapy resistance is a major barrier to the treatment of triple-negative breast cancer (TNBC), and strategies to circumvent resistance are required. Using in vitro and in vivo metabolic profiling of TNBC cells, we show that an increase in the abundance of pyrimidine nucleotides occurs in response to chemotherapy exposure. Mechanistically, elevation of pyrimidine nucleotides induced by chemotherapy is dependent on increased activity of the de novo pyrimidine synthesis pathway. Pharmacologic inhibition of de novo pyrimidine synthesis sensitizes TNBC cells to genotoxic chemotherapy agents by exacerbating DNA damage. Moreover, combined treatment with doxorubicin and leflunomide, a clinically approved inhibitor of the de novo pyrimidine synthesis pathway, induces regression of TNBC xenografts. Thus, the increase in pyrimidine nucleotide levels observed following chemotherapy exposure represents a metabolic vulnerability that can be exploited to enhance the efficacy of chemotherapy for the treatment of TNBC.Significance: The prognosis for patients with TNBC with residual disease after chemotherapy is poor. We find that chemotherapy agents induce adaptive reprogramming of de novo pyrimidine synthesis and show that this response can be exploited pharmacologically, using clinically approved inhibitors of de novo pyrimidine synthesis, to sensitize TNBC cells to chemotherapy. Cancer Discov; 7(4); 391-9. ©2017 AACR.See related article by Mathur et al., p. 380This article is highlighted in the In This Issue feature, p. 339.

  10. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    Science.gov (United States)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, Pfatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  11. Involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of Reaumuria soongorica to salt stress

    Institute of Scientific and Technical Information of China (English)

    YuBing Liu; Bo Cao; MeiLing Liu

    2013-01-01

    Reaumuria soongorica is a short woody shrub widely found in semi-arid areas of China. It can survive severe environ-mental stress including high salinity in its natural habitat. Thus, we investigated the involvement of anti-oxidative enzymes, photosynthetic pigments and flavonoid metabolism in the adaptation of R. soongorica to saline environments. R. soon-gorica was treated with 0, 100, 200 and 400 mM NaCl solutions for 14 days. Soil salt content increased significantly by watering with high content of NaCl solution, and no variation between 8 and 14 days during treatment. The levels of pe-roxidation of lipid membranes (measured by malondialdehyde content) and the activities of three antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX)) increased under salt stress. Chlorophyll and carotenoid content decreased with increasing salt content. The ratio of Chl a/Chl b and carotenoid/Chl exhibited sig-nificant increase under 400 mM NaCl. However, total flavonoid and anthocyanin contents and key enzyme activities in the flavonoid pathway including phenylalanine ammonialyase (PAL) and Chalcone isomerase (CHI) decreased under salt stress. These findings possibly suggest that R. soongorica has an adaptation protection mechanism against salt-induced oxidative damage by inducing the activity of antioxidant enzymes and maintaining a steady level of carotenoid/Chl.

  12. Reproductive and metabolic responses of desert adapted common spiny male mice (Acomys cahirinus) to vasopressin treatment.

    Science.gov (United States)

    Bukovetzky, Elena; Fares, Fuad; Schwimmer, Hagit; Haim, Abraham

    2012-08-01

    Sufficient amounts of water and food are important cues for reproduction in an unpredictable environment. We previously demonstrated that increased osmolarity levels, or exogenous vasopressin (VP) treatment halt reproduction of desert adapted golden spiny mice Acomys russatus. In this research we studied gonad regulation by VP and food restriction (FR) in desert adapted common spiny mouse (A. cahirinus) males, kept under two different photoperiod regimes-short (SD-8L:16D) and long (LD-16L:8D) days. Mice were treated with VP, FR, and VP+FR for three weeks. Response was assessed from changes in relative testis mass, serum testosterone levels and mRNA receptor gene expression of VP, aldosterone and leptin in treated groups, compared with their controls. SD-acclimation increased testosterone levels, VP treatment decreased expression of aldosterone mRNA receptor in the testes of SD-acclimated males. FR under SD-conditions resulted in testosterone decrease and elevation of VP- receptor gene expression in testes. Aldosterone receptor mRNA expression was also detected in WAT. These results support the idea that water and food availability in the habitat may be used as signals for activating the reproductive system through direct effects of VP, aldosterone and leptin on the testes or through WAT by indirect effects.

  13. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate?

    Science.gov (United States)

    Lütz, C; Engel, L

    2007-01-01

    The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.

  14. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...... expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain....

  15. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir, E-mail: wsol@faf.cuni.cz

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  16. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Science.gov (United States)

    Gürke, Jacqueline; Hirche, Frank; Thieme, René; Haucke, Elisa; Schindler, Maria; Stangl, Gabriele I; Fischer, Bernd; Navarrete Santos, Anne

    2015-01-01

    During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA) metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2), branched chain ketoacid dehydrogenase (Bckdha) and dehydrolipoyl dehydrogenase (Dld), were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR) was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  17. Maternal Diabetes Leads to Adaptation in Embryonic Amino Acid Metabolism during Early Pregnancy.

    Directory of Open Access Journals (Sweden)

    Jacqueline Gürke

    Full Text Available During pregnancy an adequate amino acid supply is essential for embryo development and fetal growth. We have studied amino acid composition and branched chain amino acid (BCAA metabolism at day 6 p.c. in diabetic rabbits and blastocysts. In the plasma of diabetic rabbits the concentrations of 12 amino acids were altered in comparison to the controls. Notably, the concentrations of the BCAA leucine, isoleucine and valine were approximately three-fold higher in diabetic rabbits than in the control. In the cavity fluid of blastocysts from diabetic rabbits BCAA concentrations were twice as high as those from controls, indicating a close link between maternal diabetes and embryonic BCAA metabolism. The expression of BCAA oxidizing enzymes and BCAA transporter was analysed in maternal tissues and in blastocysts. The RNA amounts of three oxidizing enzymes, i.e. branched chain aminotransferase 2 (Bcat2, branched chain ketoacid dehydrogenase (Bckdha and dehydrolipoyl dehydrogenase (Dld, were markedly increased in maternal adipose tissue and decreased in liver and skeletal muscle of diabetic rabbits than in those of controls. Blastocysts of diabetic rabbits revealed a higher Bcat2 mRNA and protein abundance in comparison to control blastocysts. The expression of BCAA transporter LAT1 and LAT2 were unaltered in endometrium of diabetic and healthy rabbits, whereas LAT2 transcripts were increased in blastocysts of diabetic rabbits. In correlation to high embryonic BCAA levels the phosphorylation amount of the nutrient sensor mammalian target of rapamycin (mTOR was enhanced in blastocysts caused by maternal diabetes. These results demonstrate a direct impact of maternal diabetes on BCAA concentrations and degradation in mammalian blastocysts with influence on embryonic mTOR signalling.

  18. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose.

    Directory of Open Access Journals (Sweden)

    Bernhard Krismer

    2014-01-01

    Full Text Available Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3 was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche

  19. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D improves chest CT image quality and reduces radiation exposure.

    Directory of Open Access Journals (Sweden)

    Tsuneo Yamashiro

    Full Text Available To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D for image quality improvement and dose reduction for chest computed tomography (CT.Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D. Using a 5-point scale from 1 (non-diagnostic to 5 (excellent, three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease, and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts. Differences in these scores were assessed by Scheffe's test.At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001 and all mediastinal measurements (p<0.01. For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001, and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA.For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.

  20. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life

    DEFF Research Database (Denmark)

    Husted, Sanne Munch; Nielsen, Mette Benedicte Olaf; Blache, D.

    2008-01-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level...

  1. Brief Communication: CATALYST - a multi-regional stakeholder Think Tank for fostering capacity development in disaster risk reduction and climate change adaptation

    NARCIS (Netherlands)

    Terwisscha van Scheltinga, C.T.H.M.; Hare, M.P.; Bers, van C.; Keur, van der P.

    2014-01-01

    This brief communication presents the work and objectives of the CATALYST project on "Capacity Development for Hazard Risk Reduction and Adaptation" funded by the European Commission (October 2011–September 2013). CATALYST set up a multi-regional think tank covering four regions (Central America and

  2. A Best Practices Notebook for Disaster Risk Reduction and Climate Change Adaptation: Guidance and Insights for Policy and Practice from the CATALYST Project

    NARCIS (Netherlands)

    Hare, M.; Bers, van C.; Mysiak, J.; Calliari, E.; Haque, A.; Warner, K.; Yuzva, K.; Zissener, M.; Jaspers, A.M.J.; Timmerman, J.G.

    2014-01-01

    This publication, A Best Practices Notebook for Disaster Risk Reduction and Climate Change Adaptation: Guidance and Insights for Policy and Practice from the CATALYST Project is one of two main CATALYST knowledge products that focus on the transformative approaches and measures that can support Disa

  3. Possible Association of High Urinary Magnesium and Taurine to Creatinine Ratios with Metabolic Syndrome Risk Reduction in Australian Aboriginals

    Directory of Open Access Journals (Sweden)

    Atsumi Hamada

    2011-01-01

    Full Text Available Background. Because of the epidemic of metabolic syndrome (MS in Australian Aboriginals known for their higher cardiovascular mortality and shorter life expectancy, we analyzed the possible relationship of their MS risks with the current dietary custom. Methods. The subjects were 84 people aged 16–79 years. The health examination was conducted according to the basic protocol of WHO-CARDIAC (Cardiovascular Diseases and Alimentary Comparison Study. Results. The highest prevalence among MS risks was abdominal obesity (over 60%. After controlling for age and sex, the odds of obesity decreased significantly with high level of urinary magnesium/creatinine ratio (Mg/cre (OR, 0.11; 95% CI, 0.02–0.57; P<.05. The significant inverse associations of fat intake with Mg/cre and of fast food intake with urinary taurine/creatinine ratio were revealed. Conclusions. The high prevalence of obesity in the Aboriginal people of this area may partly be due to the reduction of beneficial nutrients intake including Mg and taurine.

  4. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    Science.gov (United States)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  5. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism.

    Science.gov (United States)

    Reuß, Daniel R; Altenbuchner, Josef; Mäder, Ulrike; Rath, Hermann; Ischebeck, Till; Sappa, Praveen Kumar; Thürmer, Andrea; Guérin, Cyprien; Nicolas, Pierre; Steil, Leif; Zhu, Bingyao; Feussner, Ivo; Klumpp, Stefan; Daniel, Rolf; Commichau, Fabian M; Völker, Uwe; Stülke, Jörg

    2017-02-01

    Understanding cellular life requires a comprehensive knowledge of the essential cellular functions, the components involved, and their interactions. Minimized genomes are an important tool to gain this knowledge. We have constructed strains of the model bacterium, Bacillus subtilis, whose genomes have been reduced by ∼36%. These strains are fully viable, and their growth rates in complex medium are comparable to those of wild type strains. An in-depth multi-omics analysis of the genome reduced strains revealed how the deletions affect the transcription regulatory network of the cell, translation resource allocation, and metabolism. A comparison of gene counts and resource allocation demonstrates drastic differences in the two parameters, with 50% of the genes using as little as 10% of translation capacity, whereas the 6% essential genes require 57% of the translation resources. Taken together, the results are a valuable resource on gene dispensability in B. subtilis, and they suggest the roads to further genome reduction to approach the final aim of a minimal cell in which all functions are understood.

  6. Effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    陈志刚; 卢亦成; 朱诚; 张光霁; 丁学华; 江基尧

    2003-01-01

    Objective: To observe the effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury (TBI).Methods: An acute experimental closed TBI model in rats was induced by a fluid-percussion brain injury model. At five and sixty minutes after TBI, the animals were intraperitoneally injected by ganglioside GM1 (30 mg/kg) or the same volume of saline. At the 6th hour after TBI, effects of ganglioside GM1 or saline on changes of mean arterial pressure (MAP), contents of water, lactic acid (LA) and lipid peroxidation (LPO) in the injured cerebral tissues were observed.Results: After TBI, MAP decreased and contents of water, LA and LPO increased in brain injury group; however, MAP was back to normal levels and contents of water, LA and LPO decreased in ganglioside GM1 treated group, compared with those in brain injury group (P0.05) was observed.Conclusions: Ganglioside GM1 does have obvious neuroprotective effect on early TBI.

  7. Fat adaptation in well-trained athletes: effects on cell metabolism.

    Science.gov (United States)

    Yeo, Wee Kian; Carey, Andrew L; Burke, Louise; Spriet, Lawrence L; Hawley, John A

    2011-02-01

    The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.

  8. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  9. Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome.

    Science.gov (United States)

    Medina-Gomez, Gema; Yetukuri, Laxman; Velagapudi, Vidya; Campbell, Mark; Blount, Margaret; Jimenez-Linan, Mercedes; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio

    2009-01-01

    The events that contribute to the expansion of beta-cell mass and enhanced beta-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that beta-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of beta cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the beta cells, (2) identify molecular effectors that contribute to increasing beta-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate beta-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of beta-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult beta cells contribute to the failure of the POKO beta cell. Our results indicate that the rapid development of insulin resistance and beta-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and beta-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms

  10. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  11. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  12. Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources.

    Science.gov (United States)

    LeMoine, Christophe M R; Walsh, Patrick J

    2015-06-01

    In the two decades since the first cloning of the mammalian kidney urea transporter (UT-A), UT genes have been identified in a plethora of organisms, ranging from single-celled bacteria to metazoans. In this review, focusing mainly on vertebrates, we first reiterate the multiple catabolic and anabolic pathways that produce urea, then we reconstruct the phylogenetic history of UTs, and finally we examine the tissue distribution of UTs in selected vertebrate species. Our analysis reveals that from an ancestral UT, three homologues evolved in piscine lineages (UT-A, UT-C and UT-D), followed by a subsequent reduction to a single UT-A in lobe-finned fish and amphibians. A later internal tandem duplication of UT-A occurred in the amniote lineage (UT-A1), followed by a second tandem duplication in mammals to give rise to UT-B. While the expected UT expression is evident in excretory and osmoregulatory tissues in ureotelic taxa, UTs are also expressed ubiquitously in non-ureotelic taxa, and in tissues without a complete ornithine-urea cycle (OUC). We posit that non-OUC production of urea from arginine by arginase, an important pathway to generate ornithine for synthesis of molecules such as polyamines for highly proliferative tissues (e.g. testis, embryos), and neurotransmitters such as glutamate for neural tissues, is an important evolutionary driving force for the expression of UTs in these taxa and tissues.

  13. NAD(PH-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation.

    Directory of Open Access Journals (Sweden)

    Miroslava Petrovova

    Full Text Available BACKGROUND: One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR, which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase, which was recently assigned in vitro as an ADP/ATP-dependent NAD(PH-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS: We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin, citrate cycle (isocitrate dehydrogenase, malate dehydrogenase, glycolysis (phosphoglycerate kinase, and decomposition of Amadori products (fructosamine-6-phosphate deglycase. Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase were altered after ethanol stress. CONCLUSION: We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

  14. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images.

    Science.gov (United States)

    Hannequin, Pascal Paul

    2015-06-07

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images.Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable.The proposed filters have been applied to nuclear

  15. KLIMA 2050: a research-based innovation centre for risk reduction through climate adaptation of infrastructure and buildings

    Science.gov (United States)

    Solheim, Anders; Time, Berit; Kvande, Tore; Sivertsen, Edvard; Cepeda, Jose; Lappegard Hauge, Åshild; Bygballe, Lena; Almås, Anders-Johan

    2016-04-01

    Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research based Innovation (SFI), funded jointly by the Research Council of Norway (RCN) and the partners of the centre. The aim of Klima 2050 is to reduce the societal risks associated with climate changes, including enhanced precipitation and flood water exposure within the built environment. The Centre will strengthen companies' innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between Research & Development, performing companies, public entities, and prominent research groups. Emphasis will be placed on development of moisture-resilient buildings, storm-water management, blue-green solutions, mitigation measures for water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual climatic changes will be addressed. The Centre consists of a consortium of 18 partners from three sectors: industry, public entities and research/education organizations. The partners from the industry/private sector include a variety of companies from the building industry. The public entities comprise the most important infrastructure owners in Norway (public roads, railroads, buildings, airports), as well as the directorate for water and energy. The research and education partners are SINTEF Building and Infrastructure, the Norwegian Business School, the Norwegian University of Science and Technology, the Norwegian Meteorological Institute, and the Norwegian Geotechnical Institute. This contribution presents the main research plans and activities of this Centre, which was started in 2015 and will run for 8 years, until 2023. The presentation also includes options for international cooperation in the Centre via PhD and postdoctoral positions, MSc projects and guest-researcher stays with Klima 2050 partners.

  16. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding

    Science.gov (United States)

    McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R.; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S.; Boutagy, Nabil E.; Mynatt, Randall L.; Frisard, Madlyn I.

    2015-01-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. PMID:26084695

  17. Sterol Lipid Metabolism in Down Syndrome Revisited: Down Syndrome Is Associated with a Selective Reduction in Serum Brassicasterol Levels

    OpenAIRE

    2012-01-01

    Over the past 15 years, insights into sterol metabolism have improved our understanding of the relationship between lipids and common conditions such as atherosclerosis and Alzheimer’s Disease (AD). A better understanding of sterol lipid metabolism in individuals with Down Syndrome (DS) may help elucidate how this population’s unique metabolic characteristics influence their risks for atherosclerosis and AD. To revisit the question of whether sterol lipid parameters may be altered in DS subje...

  18. Intrinsic and TME-induced metabolism adaptations of T cells and impact on their differentiation and function

    Directory of Open Access Journals (Sweden)

    soumaya ekouidhi

    2016-03-01

    Full Text Available It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T cell metabolism drives T cell–mediated immunity and how the manipulation of metabolic programming for therapeutic purposes will be also discussed.

  19. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function

    Science.gov (United States)

    Kouidhi, Soumaya; Noman, Muhammad Zaeem; Kieda, Claudine; Elgaaied, Amel Benammar; Chouaib, Salem

    2016-01-01

    It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed. PMID:27066006

  20. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells.

    Science.gov (United States)

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents - extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9-22.6 fold down-regulation), cholesterol ester transfer protein (5.1-10.6 fold down-regulation), heat shock protein Hsp70 (3.0-45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2-6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic

  1. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep

    OpenAIRE

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until ...

  2. Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2009-11-01

    Full Text Available Abstract Background Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA representation. The optimization task is posed as a nonconvex nonlinear programming (NLP problem that is solved by an outer-approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion Our results

  3. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  4. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  5. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki; Kono, Atsushi K. [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Ishii, Kazunari [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Neuroimaging Research, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Institute for Aging Brain and Cognitive Disorders, Division of Clinical Neurosciences, Himeji, Hyogo (Japan); Tohoku University Graduate School of Medicine, Behavioral Neurology and Cognitive Neuroscience, Sendai, Miyagi (Japan)

    2008-12-15

    The aim of this study was to investigate the regional differences between the morphologic and functional changes in the same patients with frontotemporal dementia (FTD) using statistical parametric mapping and voxel-based morphometry (VBM). Thirteen FTD patients (mean age, 64.9 years old; mean MMSE score, 17.7), 20 sex-matched Alzheimer's disease (AD) patients (mean age, 65.0 years old; mean MMSE score, 17.5), and 20 normal volunteers (mean age, 65.2 years old; mean MMSE score, 29.0) underwent both [{sup 18}F]FDG positron emission tomography and three-dimensional spoiled gradient echo MRI. Statistical parametric mapping was used to conduct a VBM analysis of the morphologic data, which were compared voxel by voxel with the results of a similar analysis of glucose metabolic data. FTD patients showed decreased grey matter volume and decreased glucose metabolism in the frontal lobe and anterior temporal lobe. In addition, there was a clear asymmetry in grey matter volume in FTD patients by the VBM analysis while the glucose metabolic data showed little asymmetry. In AD patients, glucose metabolic reduction occurred in the bilateral posterior cingulate gyri and parietal lobules while grey matter density decreased the least in the same patients. In FTD, metabolic and morphologic changes occur in the bilateral frontal lobe and temporal lobe with a limited asymmetry whereas there was considerable discordance in the AD group. (orig.)

  6. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land

    Directory of Open Access Journals (Sweden)

    Gribaldo Simonetta

    2009-02-01

    Full Text Available Abstract Background The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. Results We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL, which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Conclusion Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV. Reviewers This article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.

  7. Sterol Lipid Metabolism in Down Syndrome Revisited: Down Syndrome Is Associated with a Selective Reduction in Serum Brassicasterol Levels

    Directory of Open Access Journals (Sweden)

    Gavin Tansley

    2012-01-01

    Full Text Available Over the past 15 years, insights into sterol metabolism have improved our understanding of the relationship between lipids and common conditions such as atherosclerosis and Alzheimer’s Disease (AD. A better understanding of sterol lipid metabolism in individuals with Down Syndrome (DS may help elucidate how this population’s unique metabolic characteristics influence their risks for atherosclerosis and AD. To revisit the question of whether sterol lipid parameters may be altered in DS subjects, we performed a pilot study to assess traditional serum sterol lipids and lipoproteins, as well as markers of sterol biosynthesis, metabolites, and plant sterols in 20 subjects with DS compared to age-matched controls. Here we report that the levels of nearly all lipids and lipoproteins examined are similar to control subjects, suggesting that trisomy 21 does not lead to pronounced general alterations in sterol lipid metabolism. However, the levels of serum brassicasterol were markedly reduced in DS subjects.

  8. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    Science.gov (United States)

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration.

  9. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress.

    Science.gov (United States)

    Liu, Dong; Chan, Sic L; de Souza-Pinto, Nadja C; Slevin, John R; Wersto, Robert P; Zhan, Ming; Mustafa, Khadija; de Cabo, Rafael; Mattson, Mark P

    2006-01-01

    The high-metabolic demand of neurons and their reliance on glucose as an energy source places them at risk for dysfunction and death under conditions of metabolic and oxidative stress. Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins implicated in the regulation of mitochondrial membrane potential (Deltapsim) and cellular energy metabolism. The authors cloned UCP4 cDNA from mouse and rat brain, and demonstrate that UCP4 mRNA is expressed abundantly in brain and at particularly high levels in populations of neurons believed to have high-energy requirements. Neural cells with increased levels of UCP4 exhibit decreased Deltapsim, reduced reactive oxygen species (ROS) production and decreased mitochondrial calcium accumulation. UCP4 expressing cells also exhibited changes of oxygen-consumption rate, GDP sensitivity, and response of Deltapsim to oligomycin that were consistent with mitochondrial uncoupling. UCP4 modulates neuronal energy metabolism by increasing glucose uptake and shifting the mode of ATP production from mitochondrial respiration to glycolysis, thereby maintaining cellular ATP levels. The UCP4-mediated shift in energy metabolism reduces ROS production and increases the resistance of neurons to oxidative and mitochondrial stress. Knockdown of UCP4 expression by RNA interference in primary hippocampal neurons results in mitochondrial calcium overload and cell death. UCP4-mRNA expression is increased in neurons exposed to cold temperatures and in brain cells of rats maintained on caloric restriction, suggesting a role for UCP4 in the previously reported antiageing and neuroprotective effects of caloric restriction. By shifting energy metabolism to reduce ROS production and cellular reliance on mitochondrial respiration, UCP4 can protect neurons against oxidative stress and calcium overload.

  10. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows

    Science.gov (United States)

    Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows. PMID:25938406

  11. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  12. Polish country study to address climate change: Strategies of the GHG`s emission reduction and adaptation of the Polish economy to the changed climate. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Polish Country Study Project was initiated in 1992 as a result of the US Country Study Initiative whose objective was to grant the countries -- signatories of the United Nations` Framework Convention on Climate Change -- assistance that will allow them to fulfill their obligations in terms of greenhouse gases (GHG`s) inventory, preparation of strategies for the reduction of their emission, and adapting their economies to the changed climatic conditions. In February 1993, in reply to the offer from the United States Government, the Polish Government expressed interest in participation in this program. The Study proposal, prepared by the Ministry of Environmental Protection, Natural Resources and Forestry was presented to the US partner. The program proposal assumed implementation of sixteen elements of the study, encompassing elaboration of scenarios for the strategy of mission reduction in energy sector, industry, municipal management, road transport, forestry, and agriculture, as well as adaptations to be introduced in agriculture, forestry, water management, and coastal management. The entire concept was incorporated in macroeconomic strategy scenarios. A complementary element was the elaboration of a proposal for economic and legal instruments to implement the proposed strategies. An additional element was proposed, namely the preparation of a scenario of adapting the society to the expected climate changes.

  13. Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter

    Directory of Open Access Journals (Sweden)

    Álvaro Moreno

    2014-08-01

    Full Text Available Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted local regression filter (LOESS and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG, smoothing spline (SSP, Interpolation for Data Reconstruction (IDR and adaptive Savitzky-Golay (ASG. This paper evaluates the main advantages and drawbacks of the considered techniques. The results have shown that ASG and the adapted LOESS perform better in recovering fAPAR time series over multiple controlled noisy scenarios. Both methods can robustly reconstruct the fAPAR trajectories, reducing the noise up to 80% in the worst simulation scenario, which might be attributed to the quality control (QC MODIS information incorporated into these filtering algorithms, their flexibility and adaptation to the upper envelope. The adapted LOESS is particularly resistant to outliers. This method clearly outperforms the other considered methods to deal with the high presence of gaps and noise in satellite data records. The low RMSE and biases obtained with the LOESS method (|rMBE| < 8%; rRMSE < 20% reveals an optimal reconstruction even in most extreme situations with long seasonal gaps. An example of application of the LOESS method to fill in invalid values in real MODIS images presenting persistent cloud and snow coverage is also shown. The LOESS approach is recommended in most remote sensing applications, such as gap-filling, cloud-replacement, and observing temporal

  14. Fuel cycle analysis based evaluation of the fuel and emissions reduction potential of adapting the hybrid technology to tricycles

    Energy Technology Data Exchange (ETDEWEB)

    Biona, J.B.M. [Don Bosco Technical College, Mandaluyong City (Philippines); De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Culaba, A.B. [De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Purvis, M.R.I. [University of Portsmouth, Department of Mechanical Design and Engineering, Portsmouth (United Kingdom)

    2008-02-15

    A preliminary analysis has been conducted to investigate the fuel use and emissions reduction potential of incorporating hybrid systems to two stroke powered tricycles in Metro Manila. Carbureted and direct injection two stroke engine hybrid systems were investigated and compared with the impact of shifting to four stroke engines. Results showed that hybridized direct injection retrofitted two stroke powered systems would be able to provide far better environmental and fuel reduction benefits than the shift to new four strokes tricycles. It is thus recommended that the development of such technology specifically for tricycles be seriously pursued. (orig.)

  15. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance

    DEFF Research Database (Denmark)

    Vollaard, Niels B J; Constantin-Teodosiu, Dimitru; Fredriksson, Katarina

    2009-01-01

    not been examined in a longitudinal study. In the present study we hypothesized that improvements in aerobic capacity (Vo(2max)) and metabolic control would combine equally to explain enhanced aerobic performance. Twenty-four sedentary males (24 +/- 2 yr; 1.81 +/- 0.08 m; 76.6 +/- 11.3 kg) undertook...... supervised cycling training (45 min at 70% of pretraining Vo(2max)) 4 times/wk for 6 wk. Performance was determined using a 15-min cycling time trial, and muscle biopsies were taken before and after a 10-min cycle at 70% of pretraining Vo(2max) to quantify substrate metabolism. Substantial interindividual...... variability in training-induced adaptations was observed for most parameters, yet "low responders" for DeltaVo(2max) were not consistently low responders for other variables. While Vo(2max) and time trial performance were related at baseline (r(2) = 0.80, P Vo(2max) was completely...

  16. Active and passive biomonitoring suggest metabolic adaptation in blue mussels (Mytilus spp.) chronically exposed to a moderate contamination in Brest harbor (France).

    Science.gov (United States)

    Lacroix, Camille; Richard, Gaëlle; Seguineau, Catherine; Guyomarch, Julien; Moraga, Dario; Auffret, Michel

    2015-05-01

    oxidative stress and energy-related biomarkers were observed compared to native harbor mussels. Overall, these results suggested mussels chronically exposed to contamination have set up metabolic adaptation, which may contribute to their survival in the moderately contaminated harbor of Brest. Whether these adaptive traits result from phenotypic plasticity or genetic adaptation needs to be further investigated.

  17. High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression.

    Science.gov (United States)

    Abe, Takaaki; Kitaoka, Yu; Kikuchi, Dale Manjiro; Takeda, Kohei; Numata, Osamu; Takemasa, Tohru

    2015-12-01

    It is known that repeated bouts of high-intensity interval training (HIIT) lead to enhanced levels of glycolysis, glycogenesis, and lactate transport proteins in skeletal muscle; however, little is known about the molecular mechanisms underlying these adaptations. To decipher the mechanism leading to improvement of skeletal muscle glycolytic capacity associated with HIIT, we examined the role of hypoxia-inducible factor-1α (Hif-1α), the major transcription factor regulating the expression of genes related to anaerobic metabolism, in the adaptation to HIIT. First, we induced Hif-1α accumulation using ethyl 3,4-dihydroxybenzoate (EDHB) to assess the potential role of Hif-1α in skeletal muscle. Treatment with EDHB significantly increased the protein levels of Hif-1α in gastrocnemius muscles, accompanied by elevated expression of genes related to glycolysis, glycogenesis, and lactate transport. Daily administration of EDHB for 1 wk resulted in elevated glycolytic enzyme activity in gastrocnemius muscles. Second, we examined whether a single bout of HIIT could induce Hif-1α protein accumulation and subsequent increase in the expression of genes related to anaerobic metabolism in skeletal muscle. We observed that the protein levels of Hif-1α and expression of the target genes were elevated 3 h after an acute bout of HIIT in gastrocnemius muscles. Last, we examined the effects of long-term HIIT. We found that long-term HIIT increased the basal levels of Hif-1α as well as the glycolytic capacity in gastrocnemius muscles. Our results suggest that Hif-1α is a key regulator in the metabolic adaptation to high-intensity training.

  18. The Genome Sequence of Bacillus cereus ATCC 10987 Reveals Metabolic Adaptations and a Large Plasmid Related to Bacillus anthracis pXO1

    Science.gov (United States)

    2004-01-01

    R.L. and Waites,K.B. (2003) Bacillus cereus bacteremia in a preterm neonate. J. Clin. Microbiol., 41, 3441±3444. 9. Ginsburg,A.S., Salazar,L.G., True... bacteremia and pneumonia due to Bacillus cereus . J. Clin. Microbiol., 35, 504±507. 12. Okinaka,R., Cloud,K., Hampton,O., Hoffmaster,A., Hill,K., Keim,P...The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1 David A. Rasko

  19. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Kung, Daniel W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Esler, William P. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Amor, Paul A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Bagley, Scott W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Beysen, Carine [KineMed Inc., Emeryville, CA (United States); Carvajal-Gonzalez, Santos [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Doran, Shawn D. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Limberakis, Chris [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Mathiowetz, Alan M. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); McPherson, Kirk [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Price, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Ravussin, Eric [Louisiana State Univ., Baton Rouge, LA (United States); Sonnenberg, Gabriele E. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Southers, James A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Sweet, Laurel J. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Turner, Scott M. [KineMed Inc., Emeryville, CA (United States); Vajdos, Felix F. [Pfizer Worldwide Research and Development, Cambridge, MA (United States)

    2014-12-26

    We found that Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. Here, we disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.

  20. Multideimensional adaptive filtering for noise reduction in computerized tomography. Comparison and combination of convolution based and spline based approaches; Multidimensionale adaptive Filterung zur Rauschreduktion in der Computertomographie. Vergleich und Kombination faltungs- und splinebasierter Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Henke, Maria

    2009-07-01

    Since a few years there is the possibility of tomographic imaging with a C-Arm-system in addition to the conventional X-ray-computed tomography. By the use of a flatpanel detector the C-Arm-CT offers a high isotropic resolution. Besides the reduction of dose the improvement of image quality is on the top of the user's list of wishes. To improve the image quality at constant dose or allow dose reduction at changeless image quality methods of noise reduction are used in conventional CT-imaging. To reduce overall measurement- and reconstruction-time so-called on-line-compliant systems are developed which start reconstruction before the measurement is competed. The aim of this work is the development of algorithms for noise reduction in projection data which shall be applied especially to flatpanel-CT and fit in into online-compliant systems. Among the so far known noise reduction methods are the convolution based multidimensional adaptive filtering by Kachelries, Watzke and Kalender (MAF{sup KWK}) and the spline and statistic based filtering by La Riviere and Billmire (SSAF{sup RB}). The former can not be applied for on-line-reconstruction, the latter can be applied to one-dimensional data only. Both methods are developed further to overcome these restrictions. In addition a hybrid method from a combination of a convolution based and the spline and statistic approach is developed. The impact of the algorithms to noise and resolution is characterized using so-called {sigma}-FWHM-curves from simulated and measured one- and two-dimensional data, respectively. The change in noise impression and structure is considered by means of slices. Examples of the application to clinical data rounds out the comparison. The results of this work are a new convolution based adaptive filtering (CAF), which is on-line-compliant, a spline and statistic based filtering for two-dimensional data (SSAF{sup B2d}) and a hybrid method (Hybrid{sup CAF}). These new adaptive algorithms for

  1. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma

    Directory of Open Access Journals (Sweden)

    Lance A. Johnson

    2016-01-01

    Full Text Available Obesity, metabolic syndrome (MetS and type 2 diabetes (T2D are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D, multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV, a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  2. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma.

    Science.gov (United States)

    Johnson, Lance A; Zuloaga, Kristen L; Kugelman, Tara L; Mader, Kevin S; Morré, Jeff T; Zuloaga, Damian G; Weber, Sydney; Marzulla, Tessa; Mulford, Amelia; Button, Dana; Lindner, Jonathan R; Alkayed, Nabil J; Stevens, Jan F; Raber, Jacob

    2016-01-01

    Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  3. Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT): measurement of CFU in about 200 s.

    Science.gov (United States)

    Bapat, Prashant; Nandy, Subir Kumar; Wangikar, Pramod; Venkatesh, K V

    2006-04-01

    Quantification of viable cells is a critical step in almost all biological experiments. Despite its importance, the methods developed so far to differentiate between viable and non-viable cells suffer from major limitations such as being time intensive, inaccurate and expensive. Here, we present a method to quantify viable cells based on reduction of methylene blue dye in cell cultures. Although the methylene blue reduction method is well known to check the bacterial load in milk, its application in the quantification of viable cells has not been reported. We have developed and standardized this method by monitoring the dye reduction rate at each time point for growth of Escherichia coli. The standard growth curve was monitored using this technique. The Methylene Blue dye Reduction Test (MBRT) correlates very well with Colony Forming Units (CFU) up to a 800 live cells as established by plating. The test developed is simple, accurate and fast (200 s) as compared to available techniques. We demonstrate the utility of the developed assay to monitor CFU rapidly and accurately for E. coli, Bacillus subtilis and a mixed culture of E. coli and B. subtilis. This assay, thus, has a wide applicability to all types of aerobic organisms.

  4. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    Science.gov (United States)

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.

  5. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    Science.gov (United States)

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control.

  6. Metabolic substrates are not mobilized from the osmoregulatory organs (gills and kidney of the estuarine pufferfishes Sphoeroides greeleyi and S. testudineus upon short-term salinity reduction

    Directory of Open Access Journals (Sweden)

    Viviane Prodocimo

    Full Text Available The marine-estuarine species of pufferfishes Sphoeroides testudineus and S. greeleyi are very efficient osmoregulators. However, they differ with respect to their tolerance of salinity reduction. During low tide S. testudineus remains in diluted estuarine waters, whereas S. greeleyi returns to seawater (SW. The hypothesis tested here was that the short-term mobilization of metabolic substrates stored in their main osmoregulatory organs would correlate with this differential tolerance. Fishes exposed to 5‰ (for 6 h were compared to those kept in 35‰. Branchial and renal contents of triglycerides, protein and glycogen were evaluated, and total ATPase activity accounted for the tissues' metabolism. Plasma osmolality, chloride and glucose, hematocrit, and muscle water content were also measured. Total triacylglycerol content was higher in S. greeleyi than in S. testudineus in both salinities and in both organs. Kidney glycogen contents were higher in S. greeleyi than in S. testudineus in 5 and 35‰. Total ATPase activity was reduced in 5‰ when compared to 35‰ in the kidney of S. greeleyi, and was higher in the gills of S. greeleyi than in those of S. testudineus, in both salinities. Upon exposure to dilute SW, both species displayed a similar osmoregulatory pattern: plasma osmolality and chloride were reduced. Again in both species, stability in muscle water content indicated cellular water content control. Although the metabolic substrates stored in the osmoregulatory organs of both species were not mobilized during these short-term sea water dilution events, some differences could be revealed between the two species. S. greeleyi showed more metabolic reserves (essentially triacylglycerols in these organs, and its gills showed higher total ATPase activity than those S. testudineus.

  7. Relevance of monitoring metabolic reduction in patients with relapsed or refractory follicular and mantle cell lymphoma receiving bendamustine: a multicenter study.

    Science.gov (United States)

    Tateishi, Ukihide; Tatsumi, Mitsuaki; Terauchi, Takashi; Ishizawa, Kenichi; Ogura, Michinori; Tobinai, Kensei

    2011-02-01

    The aim of the present study was to investigate the relevance of monitoring metabolic reduction evaluated by (18) F-fluorodeoxyglucose ((18) F-FDG) PET/CT in relapsed or refractory patients with follicular lymphoma (FL) and mantle cell lymphoma (MCL) who received bendamustine. We conducted a phantom study of 18F-FDG PET/CT to ensure quality control for performing a multicenter clinical study. We analyzed 49 patients with relapsed or refractory FL and MCL who received bendamustine (120 mg/m(2)) on days 1-2 of a 21-day cycle for up to six cycles as a licensing phase II study. 18F-FDG PET/CT scans were acquired before the first and after the last cycle. In a total of 175 target lesions, the maximum perpendicular diameter (Max PD), minimum PD (Min PD), sum of the products of the Max PD (SPD), maximum standardized uptake value (SUVmax), and the percentage reduction rates of Max PD (%Max PD), SPD (%SPD) and SUVmax (%SUVmax) were evaluated for the response to treatment. The therapeutic response was assessed after the last cycle of treatment according to the revised response criteria for malignant lymphoma (revised RC). We evaluated 134 lesions in 39 patients (76%) achieving complete response (CR) and 41 lesions in 10 patients (24%) not achieving CR. The Max PD, Min PD, SPD and SUVmax of the lesions after the last cycle were significantly higher in patients with non-CR than in patients with CR. The %MPD, %SPD and %SUVmax of the lesions were significantly greater in patients with CR than in patients with non-CR (P < 0.0001). Metabolic reduction was observed in all target lesions of relapsed or refractory patients with FL and MCL who achieved CR after bendamustine therapy.

  8. The Reduction of the Effect of the Müller—Lyer Illusion on Saccade Amplitude by Classic Adaptation

    Directory of Open Access Journals (Sweden)

    Paul C Knox

    2010-08-01

    Full Text Available The effect of Müller—Lyer stimuli on saccade amplitude varies across studies. One methodological difference between studies is stimulus display time; studies with long stimulus display times tend to report smaller effects than studies with short display times. Is it possible that long display times might provide conditions in which saccade adaption takes place? Five adult subjects were exposed to runs of the same illusion-inducing Müller—Lyer stimulus, presented for 1 s, interspersed with probe trials in which a point target was presented for 200 ms. While saccade amplitude was consistently larger with ‘in-configurations’ than with ‘out-configurations’ at the beginning of runs, amplitude declined over runs with the in-configuration. On average, it was constant in out-configuration runs. The net effect was a decline in the apparent effect size (in-amp - out-amp / out-amp of the Müller—Lyer stimulus. Probe trial saccade amplitude increased in ‘out’ runs and decreased in ‘in’ runs. These effects were not present in control experiments, in which stimulus display time was 200 ms. One explanation for this pattern of results is that long stimulus presentation times allow for the generation of retinal error signals. This in turn leads to saccade adaptation, causing an underestimation of the effect of this type of stimulus on saccade amplitude.

  9. Reduction of uncertainty for estimating runoff with the NRCS CN model by the adaptation to local climatic conditions

    Science.gov (United States)

    Durán-Barroso, Pablo; González, Javier; Valdés, Juan B.

    2016-04-01

    Rainfall-runoff quantification is one of the most important tasks in both engineering and watershed management as it allows to identify, forecast and explain watershed response. For that purpose, the Natural Resources Conservation Service Curve Number method (NRCS CN) is the conceptual lumped model more recognized in the field of rainfall-runoff estimation. Furthermore, there is still an ongoing discussion about the procedure to determine the portion of rainfall retained in the watershed before runoff is generated, called as initial abstractions. This concept is computed as a ratio (λ) of the soil potential maximum retention S of the watershed. Initially, this ratio was assumed to be 0.2, but later it has been proposed to be modified to 0.05. However, the actual procedures to convert NRCS CN model parameters obtained under a different hypothesis about λ do not incorporate any adaptation of climatic conditions of each watershed. By this reason, we propose a new simple method for computing model parameters which is adapted to local conditions taking into account regional patterns of climate conditions. After checking the goodness of this procedure against the actual ones in 34 different watersheds located in Ohio and Texas (United States), we concluded that this novel methodology represents the most accurate and efficient alternative to refit the initial abstraction ratio.

  10. Reduction in patient burdens with graphical computerized adaptive testing on the ADL scale: tool development and simulation

    Directory of Open Access Journals (Sweden)

    Wang Weng-Chung

    2009-05-01

    Full Text Available Abstract Background The aim of this study was to verify the effectiveness and efficacy of saving time and reducing burden for patients, nurses, and even occupational therapists through computer adaptive testing (CAT. Methods Based on an item bank of the Barthel Index (BI and the Frenchay Activities Index (FAI for assessing comprehensive activities of daily living (ADL function in stroke patients, we developed a visual basic application (VBA-Excel CAT module, and (1 investigated whether the averaged test length via CAT is shorter than that of the traditional all-item-answered non-adaptive testing (NAT approach through simulation, (2 illustrated the CAT multimedia on a tablet PC showing data collection and response errors of ADL clinical functional measures in stroke patients, and (3 demonstrated the quality control of endorsing scale with fit statistics to detect responding errors, which will be further immediately reconfirmed by technicians once patient ends the CAT assessment. Results The results show that endorsed items could be shorter on CAT (M = 13.42 than on NAT (M = 23 at 41.64% efficiency in test length. However, averaged ability estimations reveal insignificant differences between CAT and NAT. Conclusion This study found that mobile nursing services, placed at the bedsides of patients could, through the programmed VBA-Excel CAT module, reduce the burden to patients and save time, more so than the traditional NAT paper-and-pencil testing appraisals.

  11. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Rysgaard, Søren; Blicher, Martin;

    2015-01-01

    and plasticity of blue mussels across latitudes spanning from 56 to 77ºN. This indicates that low ocean temperature per se does not constrain metabolic activity of Mytilus in the Arctic; rather, we speculate that maturation of reproductive tissues, larval supply and annual energy budgets are the most relevant......The blue mussel (Mytilus edulis) has recently expanded its northern distribution in the Arctic and is therefore considered to be a sensitive indicator of climate changes in this region. In this study, we compared aerobic performance of blue mussels from High Arctic, Subarctic and temperate...... populations at different temperatures. Standard metabolic rates (SMR) and active metabolic rates (AMR) were measured for each population, and absolute (AMR − SMR) and factorial (AMR/SMR) scopes were calculated. Blue mussels from the temperate population had the lowest Q10 (= 1.8) and the largest thermal...

  12. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    Science.gov (United States)

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption.

  13. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Waldemar, E-mail: waldemar.hosch@med.uni-heidelberg.de [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Stiller, Wolfram [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Mueller, Dirk [Philips GmbH Healthcare Division, Hamburg (Germany); Gitsioudis, Gitsios [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Welzel, Johanna; Dadrich, Monika [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Buss, Sebastian J.; Giannitsis, Evangelos [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Kauczor, Hans U. [University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Katus, Hugo A. [University of Heidelberg, Department of Cardiology, Heidelberg (Germany); Korosoglou, Grigorios, E-mail: gkorosoglou@hotmail.com [University of Heidelberg, Department of Cardiology, Heidelberg (Germany)

    2012-11-15

    Purpose: To assess the impact of body mass index (BMI)-adapted protocols and iterative reconstruction algorithms (iDose) on patient radiation exposure and image quality in patients undergoing prospective ECG-triggered 256-slice coronary computed tomography angiography (CCTA). Methods: Image quality and radiation exposure were systematically analyzed in 100 patients. 60 Patients underwent prospective ECG-triggered CCTA using a non-tailored protocol and served as a 'control' group (Group 1: 120 kV, 200 mA s). 40 Consecutive patients with suspected coronary artery disease (CAD) underwent prospective CCTA, using BMI-adapted tube voltage and standard (Group 2: 100/120 kV, 100-200 mA s) versus reduced tube current (Group 3: 100/120 kV, 75-150 mA s). Iterative reconstructions were provided with different iDose levels and were compared to filtered back projection (FBP) reconstructions. Image quality was assessed in consensus of 2 experienced observers and using a 5-grade scale (1 = best to 5 = worse), and signal- and contrast-to-noise ratios (SNR and CNR) were quantified. Results: CCTA was performed without adverse events in all patients (n = 100, heart rate of 47-87 bpm and BMI of 19-38 kg/m{sup 2}). Patients examined using the non-tailored protocol in Group 1 had the highest radiation exposure (3.2 {+-} 0.4 mSv), followed by Group 2 (1.7 {+-} 0.7 mSv) and Group 3 (1.2 {+-} 0.6 mSv) (radiation savings of 47% and 63%, respectively, p < 0.001). Iterative reconstructions provided increased SNR and CNR, particularly when higher iDose level 5 was applied with Multi-Frequency reconstruction (iDose5 MFR) (14.1 {+-} 4.6 versus 21.2 {+-} 7.3 for SNR and 12.0 {+-} 4.2 versus 18.1 {+-} 6.6 for CNR, for FBP versus iDose5 MFR, respectively, p < 0.001). The combination of BMI adaptation with iterative reconstruction reduced radiation exposure and simultaneously improved image quality (subjective image quality of 1.4 {+-} 0.4 versus 1.9 {+-} 0.5 for Group 2 reconstructed using

  14. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men.

    Science.gov (United States)

    Heiskanen, Marja A; Leskinen, Tuija; Heinonen, Ilkka H A; Löyttyniemi, Eliisa; Eskelinen, Jari-Joonas; Virtanen, Kirsi; Hannukainen, Jarna C; Kalliokoski, Kari K

    2016-09-01

    Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV.

  15. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled...... were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined...... nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus...

  16. Reduction of specific circulating lymphocyte populations with metabolic risk factors in patients at risk to develop type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Helena Cucak

    Full Text Available Low-grade inflammation, characterized by increased pro-inflammatory cytokine levels, is present in patients with obesity-linked insulin resistance, hyperglycemia and hyperlipidemia and considered to play a leading role to progression into type 2 diabetes (T2D. In adipose tissue in obese patients and in pancreatic islets in T2D patients cellular inflammation is present. However, the systemic leukocyte compartment and the circulating endothelial/precursor compartment in patients at risk to develop T2D has so far not been analyzed in detail. To address this, peripheral blood cells from a cohort of 20 subjects at risk to develop diabetes with normal to impaired glucose tolerance were analyzed by flow cytometry using a wide range of cellular markers and correlated to known metabolic risk factors for T2D i.e. fasting plasma glucose (FPG, 2 h plasma glucose (2 h PG, HbA1c, body mass index (BMI, homeostasis model assessment of β-cell function (HOMA-B, homeostasis model assessment of insulin sensitivity (HOMA-IS and fasting insulin (FI. The four highest ranked cell markers for each risk factor were identified by random forest analysis. In the cohort, a significant negative correlation between the number of TLR4(+ CD4 T cells and increased FPG was demonstrated. Similarly, with increased BMI the frequency of TLR4(+ B cells was significantly decreased, as was the frequency of IL-21R(+ CD4 T cells. Unlinked to metabolic risk factors, the frequency of regulatory T cells was reduced and TLR4(+ CD4 T cells were increased with age. Taken together, in this small cohort of subjects at risk to develop T2D, a modulation of the circulating immune cell pool was demonstrated to correlate with risk factors like FPG and BMI. This may provide novel insights into the inflammatory mechanisms involved in the progression to diabetes in subjects at risk.

  17. METABOLIC EFFECT OF FOS (FRUCTOOLIGOSACCHARIDE IN TERMS OF GUT INCRETIN (GLP-1 GUT MICROFLORA AND WEIGHT REDUCTION IN OBESE ADULTS

    Directory of Open Access Journals (Sweden)

    Mini K.Sheth

    2014-09-01

    Full Text Available In the recent years, obesity has increased beyond imagination. Appropriate dietary strategies which have the potential for weight loss demand patience and strong determination on part of the individual, however inclusion of functional foods like FOS that modulate gut hormones have a promising role in weight management. Methods: A randomized double-blind placebo-controlled trial was used as the study design wherein 65 obese adults were divided into experimental group (which was given 12 g of FOS and a placebo group (which was fed with 12 g dextrose. The subjects were given the supplements daily for 12 week period. Their plasma samples were anlaysed for GLP-1 and microbial count in fecal samples were determined in terms of lactic acid bacteria, bifidobacteria and enteric pathogens. Hunger scores, dietary intake, and anthropometric parameters were assessed using standard techniques. Results: FOS supplementation resulted in improved plasma GLP-1 level by 17.0%. Significant improvement was observed in hunger score by 3.15% (p<0.05 along with reduction in dietary intake of energy (kcal by 8%, carbohydrate (g by 8%, protein (g by 6% and fat (g by 2%. Further, reductions were observed in total body weight (kg, BMI, % body fat and waist circumference (cm levels by 4%, 1.06%, 4% and 1.66% respectively (p<0.001, p<0.001, p<0.001, p<0.05. The mean log counts of beneficial gut microbiota i.e. lactic acid bacteria and bifidobacteria increased significantly by 14 % and 10 % respectively along with 20% reduction in enteric pathogen. Conclusion: Daily intake of 12 gm FOS for 12 weeks helps in improving gut health and weight loss through increased satiety in obese individuals.

  18. Adaptation of ASTC in a Correlated Rayleigh Frequency-Selective Fading Channels in OFDM systems with PAPR Reduction

    Directory of Open Access Journals (Sweden)

    Ahmed BANNOUR

    2010-05-01

    Full Text Available In this paper we suggest to use the ASTC (Algebraic Space Time Codes as powerful coding technique for IEEE802.11x OFDM standard combined with PAPR reduction scheme. ASTC with their very Algebraic- constructionbased on Quaternionic algebra, have a full rate, full diversity, non-vanishing constant minimum determinant forincreasing spectral efficiency, uniform average transmitted energy per antenna and good shaping, readily lendthemselves to high data rate situations. However, by their construction they require a nonselective flat fadingchannels belonging to narrow-band systems. In fact, such systems are not readily found in airs interfaces. Inopen air we have what are commonly called frequency-selective fading channels. As a matter of fact, it becomesextremely necessary to harness their power for wide-band systems.

  19. The energetics of the reductive citric acid cycle in the pyrite-pulled surface metabolism in the early stage of evolution.

    Science.gov (United States)

    Kalapos, Miklós Péter

    2007-09-21

    The chemoautotrophic theory concerning the origin of life postulates that a central role is played in the prebiotic chemical machinery by a reductive citric acid cycle operating without enzymes. The crucial point in this scenario is the formation of pyrite from hydrogen sulfide and ferrous sulfide, a reaction suggested to be linked to endergonic reactions, making them exergonic. This mechanism is believed to provide the driving force for the cycle to operate as a carbon dioxide fixation network. The present paper criticizes the thermodynamic calculations and their presentation in the original version of the archaic reductive citric acid cycle [Wächtershäuser, 1990. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200-204.]. The most significant differences between the Wächtershäuser hypothesis and the present proposal: Wächtershäuser did not consider individual reactions in his calculations. A particularly questionable feature is the involvement of seven molecules of pyrite which does not emerge as a direct consequence of the chemical reactions presented in the archaic reductive citric acid cycle. The involvement of a considerable number of sulfur-containing organic intermediates as building blocks is also disputed. In the new scheme of the cycle proposed here, less free energy is liberated than hypothesized by Wächtershäuser, but it has the advantages that the free energy changes for the individual reactions can be calculated, the number of pyrite molecules involved in the cycle is reduced, and fewer sulfur-containing intermediates are required for the cycle to operate. In combination with a plausible route for the anaplerotic reactions [Kalapos, 1997a. Possible evolutionary role of methylglyoxalase pathway: anaplerotic route for reductive citric acid cycle of surface metabolists. J. Theor. Biol. 188, 201-206.], this new presentation of the cycle assigns a special meaning to hydrogen sulfide formation in the early stage of biochemical

  20. Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge : a multi-omics perspective

    NARCIS (Netherlands)

    Kohlstedt, Michael; Sappa, Praveen K; Meyer, Hanna; Maaß, Sandra; Zaprasis, Adrienne; Hoffmann, Tamara; Becker, Judith; Steil, Leif; Hecker, Michael; van Dijl, Jan Maarten; Lalk, Michael; Mäder, Ulrike; Stülke, Jörg; Bremer, Erhard; Völker, Uwe; Wittmann, Christoph

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B.subtilis to different, simulta

  1. 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage

    Directory of Open Access Journals (Sweden)

    Lyudmila Petrova Simova-Stoilova

    2015-08-01

    Full Text Available Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, the dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and subjected to two-dimensional electrophoresis. Coomassie colloidal stained gel images were analysed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in the three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS. For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defence against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defence system in roots to actively counteract

  2. External factors inducing metabolic adaptations in white adipose tissue in wildtype C57BL/6J mice housed at thermoneutrality

    OpenAIRE

    Schothorst, van, E.M.

    2014-01-01

    This SuperSeries is composed of the following subset Series: Subseries: GSE53802 Hypoxia-induced metabolic dysfunction in WAT GSM1301058 HFD control, normoxia, replicate 1 GSM1301059 HFD control, normoxia, replicate 2 GSM1301060 HFD control, normoxia, replicate 3 GSM1301061 HFD control, normoxia, replicate 4 GSM1301062 HFD control, normoxia, replicate 5 GSM1301063 HFD control, normoxia, replicate 6 GSM1301064 HFD control, normoxia, replicate 7 GSM1301065 HFD control, normoxia, replicate 8 GSM...

  3. Biochar as a Strategy for Sustainable Land Management, Poverty Reduction and Climate Change Mitigation/Adaptation? Thermolysis of lignin for value-added products

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Tejerina, V.M.

    2010-08-15

    In the context of current concerns about food security, energy security and environmental degradation, the characteristics of biochar are analyzed to determine if biochar systems are a possible solution to these interlinked global issues. With this purpose, the mechanisms by which biochar can affect global biogeochemical cycles are revised. Feasibility of biochar production and application to soil, among other options, is then examined under the criteria of energy, greenhouse gas emissions and financial performance. This is carried out by using life-cycle assessments (LCA) from the literature and by performing a cost-benefit analysis, in the context of a developing country. It is determined that, under certain conditions detailed in the body of the work, biochar can be well suited as a strategy for promoting sustainable land management, climate change mitigation and adaptation, and subsequently, poverty reduction. Among the relevant variables that determine the feasibility of biochar systems are: feedstock; production conditions; geographic context; and current management of biomass.

  4. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.

    Science.gov (United States)

    Veit, Andrea; Polen, Tino; Wendisch, Volker F

    2007-02-01

    During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acs-yjcH-actP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDAB-b0725-sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates.

  5. Yoga for Risk Reduction of Metabolic Syndrome: Patient-Reported Outcomes from a Randomized Controlled Pilot Study

    Directory of Open Access Journals (Sweden)

    Stephanie J. Sohl

    2016-01-01

    Full Text Available Lifestyle change is recommended as treatment for adults at risk for metabolic syndrome (MetS, although adoption of new behavioral patterns is limited. In addition, most existing lifestyle interventions do not address psychological stress or quality of life, both of which impact the burden of MetS. Yoga, a form of physical activity that incorporates psychological components (e.g., maintaining attention, relaxation, is a promising intervention for improving the burden of MetS. This randomized controlled trial assessed the feasibility and preliminary efficacy of a 12-week yoga program coupled with an evidence-based health education program (HED compared to HED alone. A secondary, exploratory aim examined perceived stress, quality of life, and related psychological outcomes (mindfulness, perceived health competence, and mood. Sixty-seven adults at risk for MetS enrolled (mean age [SD]: 58 [10] years; 50% male; 79% non-Hispanic White. Preliminary results revealed significantly larger improvements in two quality of life domains (role-physical and general health perceptions in the HED plus yoga group versus HED alone (ps<0.05. This is the first study that implemented lifestyle education along with yoga to evaluate the potential unique effects of yoga on participants at risk for MetS. A larger clinical trial is warranted to further investigate these promising patient-reported outcomes.

  6. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, Joan M. [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Salomon, Arthur R. [Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States); Department of Chemistry, Brown University, Providence, RI (United States); Tantravahi, Umadevi [Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI (United States); Gruppuso, Philip A., E-mail: philip_gruppuso@brown.edu [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States)

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  7. An adapted mindfulness-based stress reduction program for elders in a continuing care retirement community: quantitative and qualitative results from a pilot randomized controlled trial.

    Science.gov (United States)

    Moss, Aleezé S; Reibel, Diane K; Greeson, Jeffrey M; Thapar, Anjali; Bubb, Rebecca; Salmon, Jacqueline; Newberg, Andrew B

    2015-06-01

    The purpose of this study was to test the feasibility and effectiveness of an adapted 8-week Mindfulness-Based Stress Reduction (MBSR) program for elders in a continuing care community. This mixed-methods study used both quantitative and qualitative measures. A randomized waitlist control design was used for the quantitative aspect of the study. Thirty-nine elderly were randomized to MBSR (n = 20) or a waitlist control group (n = 19), mean age was 82 years. Both groups completed pre-post measures of health-related quality of life, acceptance and psychological flexibility, facets of mindfulness, self-compassion, and psychological distress. A subset of MBSR participants completed qualitative interviews. MBSR participants showed significantly greater improvement in acceptance and psychological flexibility and in role limitations due to physical health. In the qualitative interviews, MBSR participants reported increased awareness, less judgment, and greater self-compassion. Study results demonstrate the feasibility and potential effectiveness of an adapted MBSR program in promoting mind-body health for elders.

  8. Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.).

    Science.gov (United States)

    Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino

    2012-11-15

    Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions.

  9. Synergy and antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells.

    OpenAIRE

    Alexander George Panossian; Rebecca eHamm; Onat eKadioglu; Georg Carl Wikman; Thomas eEfferth

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor (GPCR) signaling pathways, i.e. cAMP, phosph...

  10. Synergy and Antagonism of Active Constituents of ADAPT-232 on Transcriptional Level of Metabolic Regulation of Isolated Neuroglial Cells

    OpenAIRE

    Panossian, Alexander; Hamm, Rebecca; Kadioglu, Onat; Wikman, Georg; Efferth, Thomas

    2013-01-01

    Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipas...

  11. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit.

    Science.gov (United States)

    Boylan, Joan M; Salomon, Arthur R; Tantravahi, Umadevi; Gruppuso, Philip A

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders.

  12. Magnesium ions improving the growth and organics reduction of Rhodospirillum rubrum cultivated in sewage through regulating energy metabolism pathways.

    Science.gov (United States)

    Xu, Chang-Ru; Wu, Pan; Lang, Lang; Liu, Ri-Jia; Li, Jian-Zheng; Ji, Yu-Bin

    2015-01-01

    Rhodospirillum rubrum has the potential for biomass resource recycling combined with sewage purification. However, low biomass production and yield restricts the potential for sewage purification. This research investigated the improvement of biomass production, yield and organics reduction by Mg²⁺ in R. rubrum wastewater treatment. Results showed that with optimal dosage (120 mg/L), biomass production reached 4,000 mg/L, which was 1.5 times of that of the control group. Biomass yield was improved by 43.3%. Chemical oxygen demand (COD) removal reached over 90%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that Mg²⁺ enhanced the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content on respiration and photophosphorylation. These effects then enhanced ATP production, which led to more biomass accumulation and COD removal. With 120 mg/L Mg²⁺ dosage, the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content, ATP production were improved, respectively, by 33.3%, 50%, 67%, 41.3% compared to those of the control group.

  13. Successful application of adaptive emotion regulation skills predicts the subsequent reduction of depressive symptom severity but neither the reduction of anxiety nor the reduction of general distress during the treatment of major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Carolin M Wirtz

    Full Text Available OBJECTIVE: Deficits in general emotion regulation (ER skills have been linked to symptoms of depression and are thus considered a promising target in the treatment of Major depressive disorder (MDD. However, at this point, the extent to which such skills are relevant for coping with depression and whether they should instead be considered a transdiagnostic factor remain unclear. Therefore, the present study aimed to investigate whether successful ER skills application is associated with changes in depressive symptom severity (DSS, anxiety symptom severity (ASS, and general distress severity (GDS over the course of treatment for MDD. METHODS: Successful ER skills application, DSS, ASS, and GDS were assessed four times during the first three weeks of treatment in 175 inpatients who met the criteria for MDD. We computed Pearson correlations to test whether successful ER skills application and the three indicators of psychopathology are cross-sectionally associated. We then performed latent growth curve modelling to test whether changes in successful ER skills application are negatively associated with a reduction of DSS, ASS, or GDS. Finally, we utilized latent change score models to examine whether successful ER skills application predicts subsequent reduction of DSS, ASS, or GDS. RESULTS: Successful ER skills application was cross-sectionally associated with lower levels of DSS, ASS, and GDS at all points of assessment. An increase in successful skills application during treatment was associated with a decrease in DSS and GDS but not ASS. Finally, successful ER skills application predicted changes in subsequent DSS but neither changes in ASS nor changes in GDS. CONCLUSIONS: Although general ER skills might be relevant for a broad range of psychopathological symptoms, they might be particularly important for the maintenance and treatment of depressive symptoms.

  14. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells

    Directory of Open Access Journals (Sweden)

    Zinkl Daniela

    2008-10-01

    Full Text Available Abstract Background The luxS/AI-2 signaling pathway has been reported to interfere with important physiological and pathogenic functions in a variety of bacteria. In the present study, we investigated the functional role of the streptococcal luxS/AI-2 system in metabolism and diverse aspects of pathogenicity including the adaptation of the organism to stress conditions using two serotypes of Streptococcus pyogenes, M1 and M19. Results Exposing wild-type and isogenic luxS-deficient strains to sulfur-limited media suggested a limited role for luxS in streptococcal activated methyl cycle metabolism. Interestingly, loss of luxS led to an increased acid tolerance in both serotypes. Accordingly, luxS expression and AI-2 production were reduced at lower pH, thus linking the luxS/AI-2 system to stress adaptation in S. pyogenes. luxS expression and AI-2 production also decreased when cells were grown in RPMI medium supplemented with 10% serum, considered to be a host environment-mimicking medium. Furthermore, interaction analysis with epithelial cells and macrophages showed a clear advantage of the luxS-deficient mutants to be internalized and survive intracellularly in the host cells compared to the wild-type parents. In addition, our data revealed that luxS influences the expression of two virulence-associated factors, the fasX regulatory RNA and the virulence gene sibA (psp. Conclusion Here, we suggest that the group A streptococcal luxS/AI-2 system is not only involved in the regulation of virulence factor expression but in addition low level of luxS expression seems to provide an advantage for bacterial survival in conditions that can be encountered during infections.

  15. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice.

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Singh, Pradyumna Kumar; Kumar, Smita; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Norton, Gareth John; Dhankher, Om Parkash; Tripathi, Rudra Deo

    2015-11-15

    Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5mM), normal sulfur (3.5mM) and high sulfur (5.0mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain.

  16. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Directory of Open Access Journals (Sweden)

    Supriya V Bhat

    Full Text Available There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D, as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  17. The effects of ingested petroleum on the maphthalene-metabolizing properties of the liver tissue in seawater-adapted mallard ducks (Anas platyrhynchos)

    Science.gov (United States)

    Gorsline, J.; Holmes, W.N.; Cronshaw, J.

    1981-01-01

    Hepatic mixed function oxidase activities were estimated in seawater-adapted mallard ducks (Anas platyrhynchos) that had been consuming food contaminated with one of five different types of crude oil. After 50 days of exposure to contaminated food, enzyme activities of liver microsomal preparations were assessed in terms of their naphthalenemetabolizing properties in vitro. Although dose-dependent increases in the total hepatic enzyme activities (nmole naphthalene metabolized per minute per unit mass body weight) were observed in birds consuming food contaminated with each type of crude oil, three patterns of response were apparent. Crude oils from South Louisiana and Kuwait stimulated large and significant increases in the specific activity of the enzyme system (nmole naphthalene metabolized per minute per unit mass microsomal protein), whereas little or no increase in either microsomal protein content or relative liver weight were observed. In contrast, two crude oils from Santa Barbara, Calif., induced only small increases in specific activity but significant increases occurred in hepatic microsomal protein concentration and relative liver weight. The crude oil from Prudhoe Bay, Ala., evoked intermediate patterns of response. The possible significance of these data is discussed in relation to the survival of seabirds consuming petroleum-contaminated food and drinking water.

  18. Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism.

    Science.gov (United States)

    Mesa-Torres, Noel; Calvo, Ana C; Oppici, Elisa; Titelbaum, Nicholas; Montioli, Riccardo; Miranda-Vizuete, Antonio; Cellini, Barbara; Salido, Eduardo; Pey, Angel L

    2016-09-01

    In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.

  19. Oxidative stress indicators and metabolic adaptations in response to the omission of the dry period in dairy cows.

    Science.gov (United States)

    Mantovani, Roberto; Sgorlon, Sandy; Marinelli, Lieta; Bailoni, Lucia; Bittante, Giovanni; Gabai, Gianfranco

    2010-08-01

    The effects of dry period omission on oxidative stress and metabolic indicators around calving were studied. Seventeen Italian Friesian cows were randomly assigned to two groups, homogeneous for milk yield and parity, and managed either with a traditional 55-d dry off period (n=8) or continuously milked till parturition (n=9). Between 60 d before expected calving and 90 d after calving, body condition (BCS) was recorded and blood samples were collected to measure cortisol, urea, cholesterol, glucose, NEFA, triglycerides, insulin, malondialdehyde (MDA), total glutathione (GSH) and glutathione peroxidase (GPx) activity. BCS changes after calving were not different between the two groups. The normally dried group showed lower (Pmilked cows after calving (Pmilking up to parturition (Pmilk secretion. The differences in plasma GSH observed after calving may depend upon sulphur amino acid sparing in continuously milked cows.

  20. Baseline leptin and leptin reduction predict improvements in metabolic variables and long-term fat loss in obese children and adolescents: a prospective study of an inpatient weight-loss program

    NARCIS (Netherlands)

    Murer, S.B.; Knopfli, B.H.; Aeberli, I.; Jung, A.; Wildhaber, J.; Wildhaber-Brooks, J.; Zimmermann, M.B.

    2011-01-01

    Background: It is unclear whether high plasma leptin in obese individuals represents leptin resistance or whether individuals with marked reductions in leptin concentrations in response to weight loss may be at greater risk of regaining weight. Moreover, whether changes in leptin predict metabolic i

  1. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    Science.gov (United States)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  2. Influence of dietary sugar on cholesterol and bile acid metabolism in the rat: Marked reduction of hepatic Abcg5/8 expression following sucrose ingestion.

    Science.gov (United States)

    Apro, Johanna; Beckman, Lena; Angelin, Bo; Rudling, Mats

    2015-06-12

    Previous studies have indicated that dietary intake of sugar may lower bile acid production, and may promote cholesterol gallstone formation in humans. We studied the influence of dietary sucrose on cholesterol and bile acid metabolism in the rat. In two different experiments, rats received high-sucrose diets. In the first, 60% of the weight of standard rat chow was replaced with sucrose (high-sucrose diet). In the second, rats received a diet either containing 65% sucrose (controlled high-sucrose diet) or 65% complex carbohydrates, in order to keep other dietary components constant. Bile acid synthesis, evaluated by measurements of the serum marker 7-alpha-hydroxy-4-cholesten-3-one (C4) and of the hepatic mRNA expression of Cyp7a1, was markedly reduced by the high-sucrose diet, but not by the controlled high-sucrose diet. Both diets strongly reduced the hepatic - but not the intestinal - mRNA levels of Abcg5 and Abcg8. The differential patterns of regulation of bile acid synthesis induced by the two sucrose-enriched diets indicate that it is not sugar per se in the high-sucrose diet that reduces bile acid synthesis, but rather the reduced content of fiber or fat. In contrast, the marked reduction of hepatic Abcg5/8 observed is an effect of the high sugar content of the diets.

  3. Reduction of Mitochondrial Function by FCCP During Mouse Cleavage Stage Embryo Culture Reduces Birth Weight and Impairs the Metabolic Health of Offspring.

    Science.gov (United States)

    Zander-Fox, Deirdre L; Fullston, Tod; McPherson, Nicole O; Sandeman, Lauren; Kang, Wan Xian; Good, Suzanne B; Spillane, Marni; Lane, Michelle

    2015-05-01

    The periconceptual environment represents a critical window for programming fetal growth trajectories and susceptibility to disease; however, the underlying mechanism responsible for programming remains elusive. This study demonstrates a causal link between reduction of precompaction embryonic mitochondrial function and perturbed offspring growth trajectories and subsequent metabolic dysfunction. Incubation of embryos with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which uncouples mitochondrial oxidative phosphorylation, significantly reduced mitochondrial membrane potential and ATP production in 8-cell embryos and the number of inner cell mass cells within blastocysts; however, blastocyst development was unchanged. This perturbed embryonic mitochondrial function was concomitant with reduced birth weight in female offspring following embryo transfer, which persisted until weaning. FCCP-treated females also exhibited increased adiposity at 4 wk, increased adiposity gain between 4 and 14 wk, glucose intolerance at 8 wk, and insulin resistance at 14 wk. Although FCCP-treated males also exhibited reduced glucose tolerance, but their insulin sensitivity and adiposity gain between 4 and 14 wk was unchanged. To our knowledge, this is one of the first studies to demonstrate that reducing mitochondrial function and, thus, decreasing ATP output in the precompacting embryo can influence offspring phenotype. This is of great significance as a large proportion of patients requiring assisted reproductive technologies are of advanced maternal age or have a high body mass index, both of which have been independently linked with perturbed early embryonic mitochondrial function.

  4. The Effects of Sprint Interval vs. Continuous Endurance Training on Physiological and Metabolic Adaptations in Young Healthy Adults

    Directory of Open Access Journals (Sweden)

    Nalcakan Gulbin Rudarli

    2014-12-01

    Full Text Available The purpose of this study was to compare the effects of sprint interval training (SIT and continuous endurance training (CET on selected anthropometric, aerobic, and anaerobic performance indices as well as the blood lipid profile, inflammatory and muscle damage markers in healthy young males. Fifteen recreationally active male volunteers (age: 21.7 ±2.2 years, body mass: 83.0 ±8.0 kg, body height: 1.82 ±0.05 m were divided into two groups according to their initial VO2max levels. Training programs were conducted 3 times per week for 7 weeks. The SIT program consisted of 4-6 Wingate anaerobic sprints with a 4.5 min recovery, while CET consisted of 30-50 min cycling at 60% VO2max. Biochemical, anthropometric and fitness assessments were performed both pre and post-intervention. Significant improvements in VO2max, anaerobic power and capacity, and VO2 utilization during the submaximal workout and significant decreases in body fat and in waist circumference after the intervention occurred in both SIT and CET groups. Significantly greater gross efficiency was measured in the CET group. No differences in the lipid profile or serum levels of inflammatory, myocardial and skeletal muscle damage markers were observed after the training period. The study results agree with the effectiveness of a 30 s all-out training program with a reduced time commitment for anthropometric, aerobic and anaerobic adaptation and eliminate doubts about its safety as a model.

  5. Synergy and antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells.

    Directory of Open Access Journals (Sweden)

    Alexander George Panossian

    2013-02-01

    Full Text Available Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents – extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor (GPCR signaling pathways, i.e. cAMP, phospholipase C and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by downregulation of adenylate cyclase gene ADC2Y and upregulation of phosphodiestherase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific phospholipase C (PLC and phosphatidylinositol 3-kinases (PI3Ks, key players for the regulation of NF-B-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor(2.9-22.6 fold down-regulation, cholesterol ester transfer protein (5.1-10.6 fold down-regulation, heat shock protein Hsp70 (3.0-45.0 fold up-regulation, serpin peptidase inhibitor (neuroserpin, and 5-HT3 receptor of serotonin (2.2-6.6 fold down-regulation. These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic interactions result in suppression some genes activated by individual substances. Merging of deregulated genes array profiles and intracellular networks is specific to the new substance with unique pharmacological

  6. The reoxygenation of hypoxia and the reduction of glucose metabolism in head and neck cancer by fractionated radiotherapy with intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shozo; Shiga, Tohru; Watanabe, Shiro; Hirata, Kenji; Magota, Keiichi; Kasai, Katsuhiko; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Hokkaido (Japan); Yasuda, Koichi; Onimaru, Rikiya; Tuchiya, Kazuhiko; Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Department of Radiology, Hokkaido (Japan); Nishijima, Ken-ichi; Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Hokkaido (Japan)

    2016-11-15

    The purpose of this study was to prospectively investigate reoxygenation in the early phase of fractionated radiotherapy and serial changes of tumoricidal effects associated with intensity-modulated radiation therapy (IMRT) in patients with head and neck cancer (HNC) using F-18 fluoromisonidazole (FMISO) PET and F-18 fluorodeoxyglucose (FDG) PET. Patients with untreated HNC underwent FMISO-PET and FDG-PET studies prospectively. A PET evaluation was conducted before each IMRT (Pre-IMRT), during IMRT (at 30 Gy/15 fr) (Inter-IMRT), and after completion of IMRT (70 Gy/35 fr) (Post-IMRT). FMISO-PET images were scanned by a PET/CT scanner at 4 h after the FMISO injection. We quantitatively analyzed the FMISO-PET images of the primary lesion using the maximum standardized uptake (SUVmax) and tumor-to-muscle ratio (TMR). The hypoxic volume (HV) was calculated as an index of tumor hypoxia, and was defined as the volume when the TMR was ≥ 1.25. Each FDG-PET scan was started 1 h after injection. The SUVmax and metabolic tumor volume (MTV) values obtained by FDG-PET were analyzed. Twenty patients finished the complete PET study protocol. At Pre-IMRT, 19 patients had tumor hypoxia in the primary tumor. In ten patients, the tumor hypoxia disappeared at Inter-IMRT. Another seven patients showed the disappearance of tumor hypoxia at Post-IMRT. Two patients showed tumor hypoxia at Post-IMRT. The FMISO-PET results showed that the reduction rates of both SUVmax and TMR from Pre-IMRT to Inter-IMRT were significantly higher than the corresponding reductions from Inter-IMRT to Post-IMRT (SUVmax: 27 % vs. 10 %, p = 0.025; TMR: 26 % vs. 12 %, p = 0.048). The reduction rate of SUVmax in FDG-PET from Pre-IMRT to Inter-IMRT was similar to that from Inter-IMRT to Post-IMRT (47 % vs. 48 %, p = 0.778). The reduction rate of the HV in FMISO-PET from Pre-IMRT to Inter-IMRT tended to be larger than that from Inter-IMRT to Post-IMRT (63 % vs. 40 %, p = 0.490). Conversely, the reduction rate of

  7. Metabolic Fingerprinting of Pseudomonas putida DOT-T1E Strains: Understanding the Influence of Divalent Cations in Adaptation Mechanisms Following Exposure to Toluene

    Directory of Open Access Journals (Sweden)

    Ali Sayqal

    2016-04-01

    Full Text Available Pseudomonas putida strains can adapt and overcome the activity of toxic organic solvents by the employment of several resistant mechanisms including efflux pumps and modification to lipopolysaccharides (LPS in their membranes. Divalent cations such as magnesium and calcium play a crucial role in the development of solvent tolerance in bacterial cells. Here, we have used Fourier transform infrared (FT-IR spectroscopy directly on cells (metabolic fingerprinting to monitor bacterial response to the absence and presence of toluene, along with the influence of divalent cations present in the growth media. Multivariate analysis of the data using principal component-discriminant function analysis (PC-DFA showed trends in scores plots, illustrating phenotypic alterations related to the effect of Mg2+, Ca2+ and toluene on cultures. Inspection of PC-DFA loadings plots revealed that several IR spectral regions including lipids, proteins and polysaccharides contribute to the separation in PC-DFA space, thereby indicating large phenotypic response to toluene and these cations. Finally, the saturated fatty acid ratio from the FT-IR spectra showed that upon toluene exposure, the saturated fatty acid ratio was reduced, while it increased in the presence of divalent cations. This study clearly demonstrates that the combination of metabolic fingerprinting with appropriate chemometric analysis can result in practicable knowledge on the responses of important environmental bacteria to external stress from pollutants such as highly toxic organic solvents, and indicates that these changes are manifest in the bacterial cell membrane. Finally, we demonstrate that divalent cations improve solvent tolerance in P. putida DOT‑T1E strains.

  8. Glucose homeostasis and metabolic adaptation in the pregnant and lactating sheep are affected by the level of nutrition previously provided during her late fetal life.

    Science.gov (United States)

    Husted, S M; Nielsen, M O; Blache, D; Ingvartsen, K L

    2008-05-01

    This study investigated whether undernutrition (UN) during late fetal life can programme the subsequent adult life adaptation of glucose homeostasis and metabolism during pregnancy and lactation. Twenty-four primiparous experimental ewes were used. Twelve had been exposed to a prenatal NORM level of nutrition (maternal diet approximately 15 MJME/d) and 12 to a LOW level of nutrition (maternal diet approximately 7 MJME/d) during the last 6 weeks pre-partum. The experimental ewes were subjected to two intravenous glucose tolerance tests (IGTT) in late gestation (one prior to (G-IGTT) and one by the end of a feed restriction period (RG-IGTT)), and a third around peak lactation (L-IGTT). LOW had lower basal insulin concentrations during lactation, and significantly decreased absolute insulin secretion during the L-IGTT in spite of similar glucose tolerance, indicating increased insulin sensitivity in LOW during lactation. There was no effect of prenatal UN on glucose tolerance during G-IGTT, however, during RG-IGTT LOW was more glucose intolerant and apparently more insulin resistant compared to NORM. In conclusion, UN during late fetal life in sheep impairs subsequent pancreatic insulin secretory capacity during adult life, and reduces plasticity of down-regulation of insulin secretion in response to a metabolic challenge. Furthermore, prenatal UN appears to programme mechanisms, which in young adult females can shift the insulin hypersensitivity observed during early lactation into an insulin resistance observed during late gestation and feed restriction. Early postnatal UN caused by lowered milk intake in early postnatal life may have contributed to these phenomena.

  9. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep.

    Science.gov (United States)

    Khanal, Prabhat; Johnsen, Lærke; Axel, Anne Marie Dixen; Hansen, Pernille Willert; Kongsted, Anna Hauntoft; Lyckegaard, Nette Brinch; Nielsen, Mette Olaf

    2016-01-01

    We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein requirements) diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF) or moderate (CONV) diets until 6 months of age, and a moderate (obesity correcting) diet thereafter. At 2½ years of age (adulthood), plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states) tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights.

  10. Long-Term Impacts of Foetal Malnutrition Followed by Early Postnatal Obesity on Fat Distribution Pattern and Metabolic Adaptability in Adult Sheep.

    Directory of Open Access Journals (Sweden)

    Prabhat Khanal

    Full Text Available We aimed to investigate whether over- versus undernutrition in late foetal life combined with obesity development in early postnatal life have differential implications for fat distribution and metabolic adaptability in adulthood. Twin-pregnant ewes were fed NORM (100% of daily energy and protein requirements, LOW (50% of NORM or HIGH (150%/110% of energy/protein requirements diets during the last trimester. Postnatally, twin-lambs received obesogenic (HCHF or moderate (CONV diets until 6 months of age, and a moderate (obesity correcting diet thereafter. At 2½ years of age (adulthood, plasma metabolite profiles during fasting, glucose, insulin and propionate (in fed and fasted states tolerance tests were examined. Organ weights were determined at autopsy. Early obesity development was associated with lack of expansion of perirenal, but not other adipose tissues from adolescence to adulthood, resulting in 10% unit increased proportion of mesenteric of intra-abdominal fat. Prenatal undernutrition had a similar but much less pronounced effect. Across tolerance tests, LOW-HCHF sheep had highest plasma levels of cholesterol, urea-nitrogen, creatinine, and lactate. Sex specific differences were observed, particularly with respect to fat deposition, but direction of responses to early nutrition impacts were similar. However, prenatal undernutrition induced greater metabolic alterations in adult females than males. Foetal undernutrition, but not overnutrition, predisposed for adult hypercholesterolaemia, hyperureaemia, hypercreatinaemia and hyperlactataemia, which became manifested only in combination with early obesity development. Perirenal expandability may play a special role in this context. Differential nutrition recommendations may be advisable for individuals with low versus high birth weights.

  11. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished.

  12. The use of the rare UUA codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in streptomyces.

    Science.gov (United States)

    Chater, Keith F; Chandra, Govind

    2008-02-01

    In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development, as revealed by the phenotypes of bldA mutants in diverse streptomycetes. This article is a comprehensive review of out understanding of this unusual situation. Based on information from four sequenced genomes it now appears that, typically, about 2 approximately 3% of genes in any one streptomycete contain a TTA codon, most having been acquired through species-specific horizontal gene transfer. Among the few widely conserved TTA-containing genes, mutations in just one, the pleiotropic regulatory gene adpA, give an obvious phenotype: such mutants are defective in aerial growth and sporulation, but vary in the extent of their impairment in secondary metabolism in different streptomycetes. The TTA codon in adpA is largely responsible for the morphological phenotype of a bldA mutant of S. coelicolor. AdpA-dependent targets include several genes involved in the integrated action of extracellular proteases that, at least in some species, are involved in the conversion of primary biomass into spores. The effects of bldA mutations on secondary metabolism are mostly attributable to the presence of TTA codons in pathway-specific genes, particularly in transcriptional activator genes. This is not confined to S. coelicolor-it is true for about half of all known antibiotic biosynthetic gene sets from streptomycetes. Combined microarray and proteomic analysis of liquid (and therefore non-sporulating) S. coelicolor bldA mutant cultures revealed effects of the mutation during rapid growth, during transition phase, and in stationary phase. Some of these effects may be secondary consequences of changes in the pattern of ppGpp accumulation. It is argued that the preferential accumulation of the bldA tRNA under conditions in which growth is significantly constrained has evolved

  13. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: the MEtabolic Syndrome REduction in NAvarra (RESMENA) project.

    Science.gov (United States)

    de la Iglesia, Rocio; Lopez-Legarrea, Patricia; Abete, Itziar; Bondia-Pons, Isabel; Navas-Carretero, Santiago; Forga, Luis; Martinez, J Alfredo; Zulet, M Angeles

    2014-02-01

    The long-term effects of dietary strategies designed to combat the metabolic syndrome (MetS) remain unknown. The present study evaluated the effectiveness of a new dietary strategy based on macronutrient distribution, antioxidant capacity and meal frequency (MEtabolic Syndrome REduction in NAvarra (RESMENA) diet) for the treatment of the MetS when compared with the American Heart Association guidelines, used as Control. Subjects with the MetS (fifty-two men and forty-one women, age 49 (se 1) years, BMI 36·11 (se 0·5) kg/m²) were randomly assigned to one of two dietary groups. After a 2-month nutritional-learning intervention period, during which a nutritional assessment was made for the participants every 15 d, a 4-month self-control period began. No significant differences were found between the groups concerning anthropometry, but only the RESMENA group exhibited a significant decrease in body weight ( - 1·7%; P= 0·018), BMI ( - 1·7%; P= 0·019), waist circumference ( - 1·8%; P= 0·021), waist:hip ratio ( - 1·4%; P= 0·035) and android fat mass ( - 6·9%; P= 0·008). The RESMENA group exhibited a significant decrease in alanine aminotransferase and aspartate aminotransferase (AST) concentrations ( - 26·8%; P= 0·008 and - 14·0%; P= 0·018, respectively), while the Control group exhibited a significant increase in glucose (7·9%; P= 0·011), AST (11·3%; P= 0·045) and uric acid (9·0%; P< 0·001) concentrations. LDL-cholesterol (LDL-C) concentrations were increased (Control group: 34·4%; P< 0·001 and RESMENA group: 33·8%; P< 0·001), but interestingly so were the LDL-C:apoB ratio (Control group: 28·7%; P< 0·001, RESMENA group: 17·1%; P= 0·009) and HDL-cholesterol concentrations (Control group: 21·1%; P< 0·001, RESMENA group: 8·7; P= 0·001). Fibre was the dietary component that most contributed to the improvement of anthropometry, while body-weight loss explained changes in some biochemical markers. In conclusion, the RESMENA diet is a good

  14. Feasibility study of radiation dose reduction in adult female pelvic CT scan with low tube-voltage and adaptive statistical iterative econstruction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin Lian; He, Wen; Chen, Jian Hong; Hu, Zhi Hai; Zhao, Li Qin [Dept. of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing (China)

    2015-10-15

    To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan.

  15. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.

    Science.gov (United States)

    Jiang, Lei; Shestov, Alexander A; Swain, Pamela; Yang, Chendong; Parker, Seth J; Wang, Qiong A; Terada, Lance S; Adams, Nicholas D; McCabe, Michael T; Pietrak, Beth; Schmidt, Stan; Metallo, Christian M; Dranka, Brian P; Schwartz, Benjamin; DeBerardinis, Ralph J

    2016-04-14

    Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism. Here we identify an unconventional pathway that supports redox homeostasis and growth during adaptation to anchorage independence. We observed that detachment from monolayer culture and growth as anchorage-independent tumour spheroids was accompanied by changes in both glucose and glutamine metabolism. Specifically, oxidation of both nutrients was suppressed in spheroids, whereas reductive formation of citrate from glutamine was enhanced. Reductive glutamine metabolism was highly dependent on cytosolic isocitrate dehydrogenase-1 (IDH1), because the activity was suppressed in cells homozygous null for IDH1 or treated with an IDH1 inhibitor. This activity occurred in absence of hypoxia, a well-known inducer of reductive metabolism. Rather, IDH1 mitigated mitochondrial ROS in spheroids, and suppressing IDH1 reduced spheroid growth through a mechanism requiring mitochondrial ROS. Isotope tracing revealed that in spheroids, isocitrate/citrate produced reductively in the cytosol could enter the mitochondria and participate in oxidative metabolism, including oxidation by IDH2. This generates NADPH in the mitochondria, enabling cells to mitigate mitochondrial ROS and maximize growth. Neither IDH1 nor IDH2 was necessary for monolayer growth, but deleting either one enhanced mitochondrial ROS and reduced spheroid size, as did deletion of the mitochondrial citrate transporter protein. Together, the data indicate that adaptation to anchorage independence requires a fundamental change in citrate metabolism, initiated by IDH1-dependent reductive carboxylation and culminating in suppression of mitochondrial ROS.

  16. Stress-induced changes in glutamate dehydrogenase activity imply its role in adaptation to C and N metabolism in lupine embryos.

    Science.gov (United States)

    Lehmann, Teresa; Skrok, Albert; Dabert, Mirosława

    2010-01-01

    The modifying effect of sucrose on glutamate dehydrogenase (GDH) activity and isoenzyme pattern was investigated in isolated embryos of lupine (Lupinus luteus L.), cultured in vitro in a medium with sucrose (+S) or without sucrose (-S) and exposed to cadmium (Cd) and lead (Pb) stress. Sucrose starvation of lupine embryos led to a rapid increase in the specific activity of GDH, immunoreactive beta-polypeptide and it was accompanied by appearance of new cathodal isoforms of enzyme. This suggests that isoenzymes induced in lupine embryos by sucrose starvation combine into GDH hexamers with the predominance of beta-GDH subunits synthetized under GDH1 gene control. The addition of sucrose to the medium caused an opposite effect. Along with upregulation of catabolic activity of GDH by sucrose starvation, activity of proteolytic enzymes was also induced. These data can point to regulatory mechanism implying a sucrose dependent repression of the GDH1 gene according to the mechanism of catabolic repression. Treatment of embryos with Cd(2+) or Pb(2+) resulted in ammonium accumulation in the tissues, accompanied by an increase in anabolic activity of GDH and activity of anodal isoenzymes, in both (+S) and (-S) embryos without new de novo synthesis of alpha subunit proteins. Thus, GDH isoenzyme profiles may reflect the physiological function of GDH, which appears to be an important link of metabolic adaptation in cells, aimed at using carbon sources other than sugar during carbohydrate starvation (catabolic activity of GDH) and protecting plant tissues against ammonium accumulated because of heavy metal stress (anabolic activity of GDH).

  17. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    Full Text Available Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm-mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

  18. Using an Adaptative Fuzzy-Logic System to Optimize the Performances and the Reduction of Chattering Phenomenon in the Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    M. M. Krishan

    2010-01-01

    Full Text Available Problem statement: Neural networks and fuzzy inference systems are becoming well-recognized tools of designing an identifier/controller capable of perceiving the operating environment and imitating a human operator with high performance. Also, by combining these two features, more versatile and robust models, called neuro-fuzzy architectures have been developed. The mo Approach: Motivation behind the use of neuro-fuzzy approaches was based on the complexity of real life systems, ambiguities on sensory information or time-varying nature of the system under investigation. In this way, the present contribution concerns the application of neuro-fuzzy approach in order to perform the responses of the speed regulation, ensure more robustness of the overall system and to reduce the chattering phenomenon introduced by sliding mode control which is very harmful to the actuators in our case and may excite the unmodeled dynamics of the system. Results: In fact, the aim of such a research consists first in simplifying the control of the motor by decoupling between two principles variables which provoque the torque in the motor by using the feedback linearization method. Then, using sliding mode controllers to give our process more robustness towards the variation of different parameters of the motor. However, the latter technique of control called sliding mode control caused an indesirable phenomenon which harmful and could leads to the deterioration of the inverters components called chattering. So, here the authors propose to use neuro-fuzzy systems to reduce this phenomenon and perform the performances of the adopted control process. The type of the neuro-fuzzy system used here is called: Adaptive Neuro Fuzzy Inference System (ANFIS. This neuro-fuzzy is destined to replace the speed fuzzy sliding mode controller after its training process. Conclusion: Therefore, from a control design consideration, the adopted neuro-fuzzy system has opened up a new

  19. Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition.

    Science.gov (United States)

    Tian, Yu; Zhang, Jun; Wu, Di; Li, Zhipeng; Cui, Yanni

    2013-01-01

    Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP), in long-term sludge culture was studied, and the effects on sludge reduction and biological inhibition of this chemical during the 90-day operation were established. The extracellular polymeric substance (EPS) matrix functioned as a protective barrier for the bacteria inside sludge flocs to 2,6-DCP, resulting in the transfer of 2,6-DCP from the liquid phase to the activated sludge fraction. Significant sludge reduction (about 40%) was observed after the addition of 2,6-DCP in the first 40 days, while the ineffective function of 2,6-DCP in sludge reduction (days 70-90) might be correlated to the EPS protection mechanism. The inhibitory effect of 2,6-DCP on the COD removal was extremely lower than on the nitrification performance due to the fact that 2,6-DCP was much more toxic to autotrophic microorganisms than heterotrophic microorganisms. Moreover, both of them recovered to a higher level again with the transfer potential of 2,6-DCP to sludge. Thus, the application of metabolic uncoupler for excess sludge reduction should be cautious.

  20. Metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gogia Atul

    2006-02-01

    Full Text Available The Metabolic syndrome is a widely prevalent and multi-factorial disorder. The syndrome has been given several names, including- the metabolic syndrome, the insulin resistance syndrome, the plurimetabolic syndrome, and the deadly quartet. With the formulation of NCEP/ATP III guidelines, some uniformity and standardization has occurred in the definition of metabolic syndrome and has been very useful for epidemiological purposes. The mechanisms underlying the metabolic syndrome are not fully known; however resistance to insulin stimulated glucose uptake seems to modify biochemical responses in a way that predisposes to metabolic risk factors. The clinical relevance of the metabolic syndrome is related to its role in the development of cardiovascular disease. Management of the metabolic syndrome involves patient-education and intervention at various levels. Weight reduction is one of the main stays of treatment. In this article we comprehensively discuss this syndrome- the epidemiology, pathogenesis, clinical relevance and management. The need to do a comprehensive review of this particular syndrome has arisen in view of the ever increasing incidence of this entitiy. Soon, metabolic syndrome will overtake cigarette smoking as the number one risk factor for heart disease among the US population. Hardly any issue of any primary care medical journal can be opened without encountering an article on type 2 diabetes, dyslipidemia or hypertension. It is rare to see type 2 diabetes, dyslipidemia, obesity or hypertension in isolation. Insulin resistance and resulting hyperinsulinemia have been implicated in the development of glucose intolerance (and progression to type 2 diabetes, hypertriglyceridemia, hypertension, polycystic ovary yndrome, hypercoagulability and vascular inflammation, as well as the eventual development of atherosclerotic cardiovascular disease manifested as myocardial infarction, stroke and myriad end organ diseases. Conversely

  1. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.

    Science.gov (United States)

    Dash, Ranjan K; Li, Yanjun; Kim, Jaeyeon; Beard, Daniel A; Saidel, Gerald M; Cabrera, Marco E

    2008-09-09

    Control mechanisms of cellular metabolism and energetics in skeletal muscle that may become evident in response to physiological stresses such as reduction in blood flow and oxygen supply to mitochondria can be quantitatively understood using a multi-scale computational model. The analysis of dynamic responses from such a model can provide insights into mechanisms of metabolic regulation that may not be evident from experimental studies. For the purpose, a physiologically-based, multi-scale computational model of skeletal muscle cellular metabolism and energetics was developed to describe dynamic responses of key chemical species and reaction fluxes to muscle ischemia. The model, which incorporates key transport and metabolic processes and subcellular compartmentalization, is based on dynamic mass balances of 30 chemical species in both capillary blood and tissue cells (cytosol and mitochondria) domains. The reaction fluxes in cytosol and mitochondria are expressed in terms of a general phenomenological Michaelis-Menten equation involving the compartmentalized energy controller ratios ATP/ADP and NADH/NAD(+). The unknown transport and reaction parameters in the model are estimated simultaneously by minimizing the differences between available in vivo experimental data on muscle ischemia and corresponding model outputs in coupled with the resting linear flux balance constraints using a robust, nonlinear, constrained-based, reduced gradient optimization algorithm. With the optimal parameter values, the model is able to simulate dynamic responses to reduced blood flow and oxygen supply to mitochondria associated with muscle ischemia of several key metabolite concentrations and metabolic fluxes in the subcellular cytosolic and mitochondrial compartments, some that can be measured and others that can not be measured with the current experimental techniques. The model can be applied to test complex hypotheses involving dynamic regulation of cellular metabolism and

  2. Hedonic "adaptation"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2008-02-01

    Full Text Available People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to dead bodies as disgust elicitors, by measuring specific types of disgust sensitivity in medical students before and after they have spent a few months dissecting a cadaver. Using the Disgust Scale, we find a significant reduction in disgust responses to death and body envelope violation elicitors, but no significant change in any other specific type of disgust. There is a clear reduction in discomfort at touching a cold dead body, but not in touching a human body which is still warm after death.

  3. USING BASE-SPECIFIC SALMONELLA TESTER STRAINS TO CHARACTERIZE THE TYPES OF MUTATION INDUCED BY BENZIDINE AND BENZIDINE CONGENERS AFTER REDUCTIVE METABOLISM

    Science.gov (United States)

    Abstract Benzidine, 4-aminobiphenyl, 3,3'-dichlorobenzidine HCl, 3,3'-dimethylbenzidine, 3,3'- dimethoxybenzidine and benzidine congener-based dye trypan blue were mutagenic in Salmonella typhimurium TAl 00 only with metabolic activation. It was found that a hamster liver 89 ...

  4. Assessing Psychological Functioning in Metabolic Disorders: Validation of the Adaptive Behavior Assessment System, Second Edition (ABAS-II), and the Behavior Rating Inventory of Executive Function (BRIEF) for Identification of Individuals at Risk.

    Science.gov (United States)

    Waisbren, Susan E; He, Jianping; McCarter, Robert

    2015-01-01

    Long-term follow-up of neuropsychological functioning in metabolic disorders remains difficult due to limited opportunities for comprehensive neuropsychological evaluations. This study examined the validity of using the Adaptive Behavior Assessment System, Second Edition (ABAS-II), and the Behavior Rating Inventory of Executive Function (BRIEF) for assessing developmental status in metabolic disorders and for identifying individuals at risk for cognitive deficits. Results from individuals with urea cycle disorders, phenylketonuria, galactosemia, and fatty acid oxidation disorders were obtained on the ABAS-II and BRIEF and were compared to results obtained from neuropsychological testing performed on the same day. Correlations between scores on the ABAS-II and developmental or IQ tests for individuals with urea cycle disorders ranged from 0.48 to 0.72 and concordance rates for scores greater than a standard deviation below the normative mean ranged from 69 to 89%. Correlations ranged from 0.20 to 0.68 with concordance ranging from 73 to 90% in the other metabolic disorders. For the BRIEF, correlations with other tests of executive functioning were significant for urea cycle disorders, with concordance ranging from 52 to 80%. For the other metabolic disorders, correlations ranged from -0.09 to -0.55. Concordance rates for at-risk status on the BRIEF and executive functioning tests ranged from 55% in adults to 80% in children with other metabolic disorders. These results indicate that the ABAS-II and BRIEF together can confidently be used as an adjunct or supplementary method for clinical follow-up and for research on functional status involving infants, children, and adults with metabolic disorders.

  5. Environmental re-adaptations of farms seeking to the water contamination reduction (Itaipu/UNIOESTE integrated project); Readequacao ambiental de propriedades rurais visando a reducao de contaminacao das aguas (Projeto integrado Itaipu/UNIOESTE)

    Energy Technology Data Exchange (ETDEWEB)

    Daga, Jacir; Campos, Alessandro Torres; Navarini, Franciele; Matsuo, Melissa [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Grupo de Pesquisas em Ambiencia; Feiden, Armin [Universidade Estadual do Oeste do Paran (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias

    2004-07-01

    The work is destined to diagnose and to elaborate environmental adaptation projects in agricultural properties located in the micro basins: Arroio Fundo, Corregos Curvado and Ajuricaba, selected and located in the Rio Sao Francisco Verdadeiro basin, in the west Parana State area, by means of accord between ITAIPU Binational and UNIOESTE (West Parana State University). Four hundred and forty farms properties will be visited in a eleven months period. It will be lifted up environmental problems, in what it refers the ciliary forest, law reserves, fishing, crops, production and handling of dejections by: swine, dairy cattle, as well as readaptations projects of the farms in the areas of the micro basins, seeking to the environmental adaptation, reducing, consequently, the contamination of the waters that provisions the ITAIPU reservoir. The projects will be leaded to the IAP (Parana State environmental organ), by ITAIPU, for the environmental norms adaptation of the farms. Besides the environmental preservation and sustainability, with the environmental adaptations, ITAIPU will also benefit with the reduction of the ITAIPU lake water contamination, which arrives to the turbines. (author)

  6. Adapting an evidence-based intervention for HIV to avail access to testing and risk-reduction counseling for female victims of sexual violence in post-earthquake Haiti.

    Science.gov (United States)

    Rahill, Guitele J; Joshi, Manisha; Hernandez, Anthony

    2016-01-01

    Haiti has the highest prevalence of HIV/AIDS in the Caribbean. Before the 2010 earthquake, Haitian women bore a disproportionate burden of HIV/AIDS, had lower HIV knowledge, less capacity to negotiate for safer sex, and limited access to HIV testing and risk-reduction (RR) counseling. Since 2010, there has been an increase in sexual violence against women, characterized by deliberate vaginal injuries by non-intimate partners, increasing victims' risk of sexually transmitted infections including HIV/AIDS. Needed is an adaptation of evidence-based interventions for HIV that include HIV testing and counseling for this stigmatized population. We reviewed several features of Centers for Disease Control and Prevention's 103 evidence-based interventions for HIV (e.g., measures used, participant risk characteristics, theoretical framework, outcome variables, and evidence tier) in an attempt to seek a feasibly adaptable evidence-based intervention for HIV that could be used for victims of sexual violence (VOSV). RESPECT, one of the reviewed evidence-based HIV interventions, comprises of one-on-one, client-focused HIV prevention/RR counseling, and RAPID HIV testing. Adapting RESPECT can enhance access to testing for Haitian VOSV and can influence their perceptions of HIV risk, and establishment of RR goals for future consensual intimate relations. Adapting and implementing RESPECT can increase uptake of evidence-based HIV interventions among Haitians and positively affect a region with high HIV prevalence and increased rates of sexual violence.

  7. Highly Efficient Inversion of the C-3 Configuration in 1,2-O-Isopropylidenefuranose Derivatives by an Adapted Swern Oxidation/Sodium Borohydride Reduction Protocol in One Pot

    OpenAIRE

    Silvano Cruz-Gregorio; Luis Hernández; Mónica Vargas; Leticia Quintero; Fernando Sartillo-Piscil

    2005-01-01

    One pot Swern oxidation-sodium borohydride reduction of 1,2-O-isopropylidenefuranose derivatives having the D-gluco or Dxylo configurations led to the corresponding stereoisomers resulting from the stereoselective inversion of C-3. This method is a simple adaptation to the traditional procedure that consists in quenching the Swern oxidation at -60 ºC with a mixture of H2O/EtOH (1:4), in which NaBH4 is dissolved. Thus, the inversion of the configuration at C-3 of 1,2-O-isopropylidenefuranose d...

  8. Reduction of cardiovascular risk in patients with metabolic syndrome in a community health center after a pharmaceutical care program of pharmacotherapy follow-up

    OpenAIRE

    Camila Pedro Plaster; Danilo Travassos Melo; Veraci Boldt; Karla Oliveira dos Santos Cassaro; Fernanda Campos Rosetti Lessa; Giovanna Assis Pererira Boëchat; Nazaré Souza Bissoli; Tadeu Uggere de Andrade

    2012-01-01

    The objective of this study was to determine the impact of a pharmaceutical care (PC) program in a sample of public outpatients with metabolic syndrome (MS) who were being treated in Brazil's health system; the patients were randomized into PC or standard care. The pharmacotherapy follow-up (PF) was performed in a total of 120 patients with type 2 diabetes for 6 months. Adherence to treatment (measured with the Morisky test), negative outcomes associated with medication (NOM) and anthropometr...

  9. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin.

    Science.gov (United States)

    Uesugi, T; Toda, T; Tsuji, K; Ishida, H

    2001-04-01

    The effects of the soy isoflavone glycoside, daidzin, genistin, and glycitin on bone loss and lipid metabolism in ovariectomized (ovx) rats were compared with those of estrone. Thirty-six 11-week-old female Sprague-Dawley rats were assigned to six groups, sham-operated, ovx, ovx+glycitin, ovx+daidzin, ovx+genistin, and ovx+estrone and fed matched amounts of a commercial calcium-deficient diet for 4 weeks. Throughout this period, daidzin, genistin or glycitin (25, 50 or 100 mg/kg/d) was given orally using a stomach tube, or estrone (7.5 microg/kg/d) was administered subcutaneously. Daidzin, genistin and glycitin significantly prevented bone loss in ovx rats at a dose of 50 mg/kg/d, like estrone. At this dose glycitin and daidzin also prevented ovx-induced uterine atrophy and increases in body weight gain, abdominal fat, serum total cholesterol and triglyceride, and urinary excretion of pyridinoline and deoxypyridinoline with statistical significance, like estrone. On the other hand, genistin prevented ovx-induced uterine atrophy only at a dose of 100 mg/kg, but did not block any other change of ovx rats at a dose of 50 or 100 mg/kg. These findings indicate that daidzin, glycitin, and genistin are effective in preventing bone loss and the former two compounds are effective in reversing the unfavorable changes of lipid metabolism in this model. It is suggested that the preventive effect of daidzin or glycitin on bone loss in ovx rats is due to suppression of bone turnover, as in the case of estrone, but genistin has a different mechanism of action from the other compounds. Soy isoflavone glycosides may represent a potential alternative therapy in the treatment of bone loss and lipid metabolism abnormality in ovarian hormone-deficient women.

  10. Elevated pCO(2 )favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots.

    Science.gov (United States)

    Kruse, Jörg; Hetzger, Ilka; Hänsch, Robert; Mendel, Ralf-R; Walch-Liu, Pia; Engels, Christof; Rennenberg, Heinz

    2002-12-01

    The impact of elevated pCO(2 )on N-metabolism of hydroponically grown wild-type and transformed tobacco plants lacking root nitrate reduction was studied in order to elucidate the effects on (i) nitrate uptake, (ii) long-distance transport of N, (iii) nitrate reduction with emphasis on root-NR, and (iv) the allocation of N between the root and shoot. The findings were related to alterations of growth rates. At elevated pCO(2 )the wild type exhibited higher growth rates, which were accompanied by an increase of NO(3)(-)-uptake per plant, due to a higher root:shoot ratio. Furthermore, elevated pCO(2 )enhanced nitrate reduction in the roots of the wild type, resulting in enhanced xylem-loading of organic N (amino-N) to supply the shoot with sufficient nitrogen, and decreased phloem-transport of organic N in a basipetal direction. Transformed tobacco plants lacking root nitrate reduction were smaller than the wild type and exhibited lower growth rates. Nitrate uptake per plant was decreased in transformed plants as a consequence of an impeded root growth and, thus, a significantly decreased root:shoot ratio. Surprisingly, transformed plants showed an altered allocation of amino-N between the root and the shoot, with an increase of amino-N in the root and a substantial decrease of amino-N in the shoot. In transformed plants, xylem-loading of nitrate was increased and the roots were supplied with organic N via phloem transport. Elevated pCO(2 )increased shoot-NR, but only slightly affected the growth rates of transformed plants, whereas carbohydrates accumulated at elevated pCO(2 )as indicated by a significant increase of the C/N ratio in the leaves of transformed plants. Unexpectedly, the C/N balance and the functional equilibrium between root and shoot growth was disturbed dramatically by the loss of nitrate reduction in the root.

  11. Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice

    NARCIS (Netherlands)

    Wilde, de J.; Mohren, R.; Berg, van den S.; Boekschoten, M.V.; Willems van Dijk, K.; Groot, de P.J.; Müller, M.R.; Mariman, E.; Smit, E.

    2008-01-01

    The prevalence of the metabolic syndrome (MS) is rapidly increasing all over the world. Consequently, there is an urgent need for more effective intervention strategies. Both animal and human studies indicate that lipid oversupply to skeletal muscle can result in insulin resistance which is one of t

  12. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2016-01-01

    cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those...

  13. Adaptation to thermotolerance in Rhizopus coincides with virulence as revealed by avian and invertebrate infection models, phylogeny, physiological and metabolic flexibility.

    Science.gov (United States)

    Kaerger, Kerstin; Schwartze, Volker U; Dolatabadi, Somayeh; Nyilasi, Ildikó; Kovács, Stella A; Binder, Ulrike; Papp, Tamás; Hoog, Sybren de; Jacobsen, Ilse D; Voigt, Kerstin

    2015-01-01

    Mucormycoses are fungal infections caused by the ancient Mucorales. They are rare, but increasingly reported. Predisposing conditions supporting and favoring mucormycoses in humans and animals include diabetic ketoacidosis, immunosuppression and haematological malignancies. However, comprehensive surveys to elucidate fungal virulence in ancient fungi are limited and so far focused on Lichtheimia and Mucor. The presented study focused on one of the most important causative agent of mucormycoses, the genus Rhizopus (Rhizopodaceae). All known clinically-relevant species are thermotolerant and are monophyletic. They are more virulent compared to non-clinically, mesophilic species. Although adaptation to elevated temperatures correlated with the virulence of the species, mesophilic strains showed also lower virulence in Galleria mellonella incubated at permissive temperatures indicating the existence of additional factors involved in the pathogenesis of clinical Rhizopus species. However, neither specific adaptation to nutritional requirements nor stress resistance correlated with virulence, supporting the idea that Mucorales are predominantly saprotrophs without a specific adaptation to warm blooded hosts.

  14. CT urography in the urinary bladder: To compare excretory phase images using a low noise index and a high noise index with adaptive noise reduction filter

    Energy Technology Data Exchange (ETDEWEB)

    Takeyama, Nobuyuki; Hayashi, Takaki (Dept. of Radiology, Showa Univ. Fujigaoka Hospital, Yokohama (Japan)), email: momiji@mtc.biglobe.ne.jp; Ohgiya, Yoshimitsu (Dept. of Radiology, Showa Univ. School of Medicine, Tokyo (Japan)) (and others)

    2011-07-15

    Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDI{sub vol}) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDI{sub vol} demonstrated a 73% reduction in group B (4.6 +- 1.1 mGy) compared with group A (16.9 +- 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 +- 5.1) and group B (16.6 +- 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise

  15. The reduction in postprandial lipemia after exercise is independent of the relative contributions of fat and carbohydrate to energy metabolism during exercise.

    Science.gov (United States)

    Malkova, D; Hardman, A E; Bowness, R J; Macdonald, I A

    1999-02-01

    A single session of exercise several hours before a high-fat meal reduces postprandial lipemia. The purpose of the present study was to test the hypothesis that this effect is independent of substrate metabolism during exercise. Twelve men aged 21 to 36 years underwent three oral fat tolerance tests with intervals of at least 1 week. On one occasion, only activities of daily living were allowed the preceding day (control). On the other two occasions, subjects ran on a treadmill for 90 minutes on the afternoon preceding the fat tolerance test; 90 minutes before running, they ingested either acipimox, an inhibitor of lipolysis in adipose tissue, or placebo. Acipimox abolished the increase in the nonesterified fatty acid (NEFA) concentration observed during the run after placebo and reduced lipid oxidation (placebo, 37 +/- 7 g; acipimox, 21 +/- 3 g; P postprandially with acipimox, compared with control and placebo (P response to the meal was lower in placebo compared with control and acipimox (P responses, postprandial lipemia was reduced to the same degree (compared with control, P exercise preceded by acipimox and by exercise preceded by placebo (area under the plasma triacylglycerol concentration v time curve: control, 8.77 +/- 1.17 mmol/L x 6 h; placebo, 6.95 +/- 0.97 mmol/L x 6 h; acipimox, 6.81 +/- 0.81 mmol/L x 6 h). These findings suggest that some factor other than the nature of the metabolic substrate used during exercise determines the attenuating effect of prior exercise on postprandial lipemia.

  16. Metabolism at Evolutionary Optimal States

    Directory of Open Access Journals (Sweden)

    Iraes Rabbers

    2015-06-01

    Full Text Available Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies, adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization.

  17. The Cornell High-order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems-I: Observations, Data Reduction, and Detection Analysis

    CERN Document Server

    Carson, J C; Brandl, B R; Wilson, J C; Hayward, T L

    2005-01-01

    In this first of a two-paper sequence, we report techniques and results of the Cornell High-order Adaptive Optics Survey for brown dwarf companions (CHAOS). At the time of this writing, this study represents the most sensitive published population survey of brown dwarf companions to main sequence stars, for separation akin to our own outer solar system. The survey, conducted using the Palomar 200-inch Hale Telescope, consists of K-short coronagraphic observations of 80 main sequence stars out to 22 parsecs. At 1 arcsecond separations from a typical target system, the survey achieves median sensitivities 10 magnitudes fainter than the parent star. In terms of companion mass, the survey achieves typical sensitivities of 25 Jupiter masses (1 Gyr), 50 Jupiter masses (solar age), and 60 Jupiter masses (10 Gyr), using evolutionary models of Baraffe et al. (2003). Using common proper motion to distinguish companions from field stars, we find that no systems show positive evidence of a substellar companion (searchabl...

  18. 自适应理论在过热器减温调节中的应用%Application of Self-adapting theory To Temperature Reduction Regulation of Overheater

    Institute of Scientific and Technical Information of China (English)

    李向东; 阎明; 邵春江; 宋海龙

    2000-01-01

    Discusses the actual application of self-adapting theory from the temperature automatic reduction regulation of overheater at thermal power plant and with reference made to operating characteristics of collecting and rediating system itself, and its test method and test process as information to automatic control specialists.%从火力发电厂过热器减温自动调节入手,参照集散系统自身的运行特点,对自适应理论的实际应用做了初步研究,其试验方法及试验过程对电厂的自动控制专业人员具有一定的参考价值。

  19. Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, L-NAME, and L-arginine treatments.

    Science.gov (United States)

    Zaobornyj, Tamara; Valdez, Laura B; Iglesias, Darío E; Gasco, Manuel; Gonzales, Gustavo F; Boveris, Alberto

    2009-06-01

    Rats submitted to high altitude (Cerro de Pasco, Perú, 4,340 m, Po(2) = 12.2 kPa) for up to 84 days showed a physiological adaptive response with decreased body weight gain (15%), increased right ventricle weight (100%), and increased hematocrit (40%) compared with sea level animals. These classical parameters of adaptation to high altitude were accompanied by an increase in heart mitochondrial enzymes: complexes I-III activity by 34% and mitochondrial nitric oxide synthase (mtNOS) activity and expression by >75%. The hyperbolic increase for mtNOS activity during adaptation to high altitude was similar to the observed pattern for hematocrit. Hematocrit and mtNOS activity mean values correlated linearly (r(2) = 0.75, P adaptive response to sustained heart hypoxia that is susceptible to be modified by pharmacological treatments.

  20. Strengthening Voices: How patoralist communities and local government are shaping strategies for adaptive environmental management and poverty reduction in Tanzania's drylands

    Energy Technology Data Exchange (ETDEWEB)

    Jode, Helen de; Hesse, Ced

    2011-06-15

    Across Tanzania, climate change is being felt in the changing patterns and intensity of rainfall, and in the growing unpredictability of the seasons. The drylands are being increasingly affected, and there is an urgent need to strengthen institutional capacity and good governance for drylands planning. Pastoralism provides over 90% of the meat and milk products consumed nationally in Tanzania. The pastoralist production system successfully exploits and adapts to the disequilibrium in the dryland ecosystems, but pastoralist voices are frequently excluded from the decision-making and management of dryland resources. The marginalisation of pastoralists is resulting in falling production levels. Since 2007, IIED, the Kimmage Development Studies Centre and the Tanzania Natural Resource Forum have been undertaking a project with their partners with the specific goal of generating more informed and equitable discussion and debate on pastoralism. Using local government reform processes, the 'Strengthening Voices' project works at the community, local government and national levels - addressing the lack of knowledge and power imbalances within all three. The central pillar of the project is a training course on the economic and ecological processes at the heart of pastoral systems — clarifying the rationale that underpins livelihood strategies. National politicians, local district officials and community participants have all benefited from the training. At the end of its 1st three-year phase good progress has been made in designing and implementing tools and approaches that promote citizen access to decision-making. With their new evidence, training and advocacy skills, people are now better able to inform policy of the economic and environmental benefits of dryland livelihood systems. This booklet and accompanying DVD explain the background to the project, its achievements, and how it plans to build on its successes to roll out the project to other districts in Tanzania

  1. Metabolic Syndrome, Androgens, and Hypertension

    OpenAIRE

    Moulana, Mohadetheh; Lima, Roberta; Reckelhoff, Jane F.

    2011-01-01

    Obesity is one of the constellation of factors that make up the definition of the metabolic syndrome. Metabolic syndrome is also associated with insulin resistance, dyslipidemia, hypertriglyceridemia, and type 2 diabetes mellitus. The presence of obesity and metabolic syndrome in men and women is also associated with increased risk of cardiovascular disease and hypertension. In men, obesity and metabolic syndrome are associated with reductions in testosterone levels. In women, obesity and met...

  2. Telephone-adapted mindfulness-based stress reduction (tMBSR) for patients awaiting kidney transplantation: trial design, rationale and feasibility

    Science.gov (United States)

    Reilly-Spong, Maryanne; Reibel, Diane; Pearson, Terry; Koppa, Pat; Gross, Cynthia R.

    2015-01-01

    Background Mindfulness-based stress reduction (MBSR) has demonstrated benefits for stress-related symptoms; however, for patients with burdensome treatment regimens, multiple co-morbidities and mobility impairment, time and travel requirements pose barriers to MBSR training. Purpose To describe the design, rationale and feasibility results of Journeys to Wellness, a clinical trial of mindfulness training delivered in a novel workshop and teleconference format. The trial aim is to reduce symptoms and improve quality of life in people waiting for a kidney transplant. Methods The standard 8-week MBSR program was reconfigured for delivery as two in-person workshops separated in time by six weekly teleconferences (tMBSR). A time and attention comparison condition (tSupport) was created using the workshop-telephone format. Feasibility results Kidney transplant candidates (N=63) were randomly assigned to tMBSR or tSupport: 87% (n=55) attended ≥1 class, and for these, attendance was high (6.6 ± 1.8 tMBSR and 7.0 ± 1.4 tSupport sessions). Fidelity monitoring found all treatment elements were delivered as planned and few technical problems occurred. Patients in both groups reported high treatment satisfaction, but more tMBSR (83%) than tSupport (43%) participants expected their intervention to be quite a bit or extremely useful for managing their health. Symptoms and quality of life outcomes collected before (baseline, 8 weeks and 6 months) and after kidney transplantation (2, 6 and 12 months) will be analyzed for efficacy. Conclusions tMBSR is an accessible intervention that may be useful to people with a wide spectrum of health conditions. Clinicaltrials.gov: NCT01254214 PMID:25847578

  3. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity.

    Science.gov (United States)

    Heyman, E; Gamelin, F-X; Aucouturier, J; Di Marzo, V

    2012-12-01

    The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids. However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARγ, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists.

  4. Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    Science.gov (United States)

    McGill, Anne-Thea

    2014-01-01

    Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts

  5. Reduction of cardiovascular risk in patients with metabolic syndrome in a community health center after a pharmaceutical care program of pharmacotherapy follow-up

    Directory of Open Access Journals (Sweden)

    Camila Pedro Plaster

    2012-09-01

    Full Text Available The objective of this study was to determine the impact of a pharmaceutical care (PC program in a sample of public outpatients with metabolic syndrome (MS who were being treated in Brazil's health system; the patients were randomized into PC or standard care. The pharmacotherapy follow-up (PF was performed in a total of 120 patients with type 2 diabetes for 6 months. Adherence to treatment (measured with the Morisky test, negative outcomes associated with medication (NOM and anthropometric and biochemical parameters were measured before and after PF. The Framingham scoring method was used to estimate changes in 10-year coronary heart disease risk scores in all patients. Ninety-six of 120 patients had characteristics of MS and were randomized into two groups (G: the control group (CG: 36 and the intervention group (IG: 38. Among the MS patients, 100% were taking a glucose-lowering drug; many were also taking anti-hypertensive drugs (CG: 72%; IG: 73%, and some patients were also taking hypolipemic drugs (CG: 12.0%; IG: 14.7%. Only 20.7% of the IG patients were considered adherent to their prescribed drugs. In the CG, an increase of coronary heart disease (CHD risk (22±2 to 26±3; pO objetivo deste estudo foi o de determinar o impacto de um Programa de atenção Farmacêutica (AF em uma amostra de pacientes ambulatoriais de Sistema Público de Saúde do Brasil portadores de Síndrome Metabólica, randomizados em AF ou atenção à saúde usual. Realizou-se o seguimento farmacoterapêutico com 120 pacientes com diabetes tipo 2 durante seis meses. Avaliou-se o nível de aderência ao tratamento (teste Morisky, resultados clínicos negativos associados a medicamentos (RNM, parâmetros bioquímicos e antropométricos, antes e após o seguimento. O método de Framingham foi usado para calcular as variações no risco de doenças coronarianas em 10 anos em todos os pacientes. Dos 120 pacientes, 96 tiveram características de SM e foram ent

  6. 自适应迭代降剂量技术在克罗恩病CT小肠造影中的临床应用%Application of adaptive iterative dose reduction technique in CT enterography in diagnosing Crohn disease

    Institute of Scientific and Technical Information of China (English)

    练延帮; 曹务腾; 朱珊珊; 林杨皓; 刘得超; 王馨华; 邱建平; 周智洋

    2014-01-01

    目的 评价自适应迭代降剂量(AIDR)技术在克罗恩病CT小肠造影中的应用.方法 回顾性分析2013年1-3月间中山大学附属第六医院收治并经炎性肠病多学科诊疗小组确诊为克罗恩病的26例患者的临床和影像资料,所有病例均采用AIDR技术行CT小肠造影检查.由两名诊断克罗恩病经验丰富的放射科医生分别阅片,计算每例患者所受电离辐射总量,并分析克罗恩病影像学特点.结果 26例患者辐射剂量为5.58~12.90(9.00±2.00) mSv,明显低于常规使用剂量(15 mSv).克罗恩病CT小肠造影检查发现,26例患者中,1例患者处于静止期,另外25例共出现109处节段性肠壁增厚,合并系膜侧淋巴结肿大,同时出现异常强化现象.其中16例发现肠腔狭窄,12例肠壁呈分层样强化,14例出现“梳样征”;8例出现系膜侧脂肪密度增高,7例肠瘘,6例腹腔脓肿,3例肛瘘.结论 低剂量AIDR技术CT小肠造影技术不会损失图像质量,能够有效诊断克罗恩病并明显降低辐射剂量.%Objective To evaluate the application of low-dose CT enterography with adaptive iterative dose reduction (AIDR) technique in diagnosing Crohn's disease Methods Retrospective analysis was performed on 26 patients diagnosed as Crohn's disease by the multidisciplinary team in our hospital.Low-dose CT enterography with 640-slice MDCT was performed on these 26 patients using adaptive iterative dose reduction (AIDR) technique.Characteristics of Crohn's disease in CT enterography images were independently analyzed by two radiologists who were experienced in Crohn' s disease with calculating the total radiation dosage.Results The radiation dosage of 26 patients ranged from 5.58 to 12.90 [mean(9.00±2.00)] mSv,which was lower than conventional scan (around 15 mSv) known from the literatures.According to the images of CT enterography of 26 cases,bowel wall thickening with abnormal enhancement and lymphadenectasis were found in 25 cases with

  7. Adaptation to anaerobic metabolism in two mussel species, Mytilus edulis and Mytilus galloprovincialis, from the tidal zone at Arcachon Bay, France

    Science.gov (United States)

    de Vooys, C. G. N.

    Aspects of anaerobic metabolism were investigated in two sympatric mussel species, viz. Mytilus edulis and Mytilus galloprovincialis, living in the tidal zone in Arcachon Bay, France. Specific activities of pyruvate kinase (PK) and phosphoenolpyruvate kinase (PEP-CK) were remarkably similar in the two sympatric species and generally corresponded more closely to those observed in M. galloprovincialis in the Mediterranean than with M. edulis in the Dutch Wadden Sea. However, the values for the radio PK: PEP-CK for the two species in Arcachon Bay agreed with those of intertidal M. edulis from the Dutch Wadden Sea. Succinate accumulation during the first 24 h of anaerobicsis was about the same as in M. galloprovincialis in the Mediterranean, but decreased during the second 24 h, particularly in M. edulis, obviously due to propionate formation. Decrease in ATP concentrations in the tissues during anaerobiosis corresponded to that of intertidal M. edulis from the Dutch Wadden Sea. With the exception of specific activities of PK and PEP-CK, all properties investigated in both species were as expected in intertidal mussels.

  8. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    KAUST Repository

    Abdallah, Abdallah M.

    2015-10-21

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

  9. Metabolic acidosis

    Science.gov (United States)

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  10. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way.

    Science.gov (United States)

    Lu, Leifang; Wei, Liujing; Zhu, Kun; Wei, Dongzhi; Hua, Qiang

    2012-08-01

    Gluconobacter oxydans can rapidly and effectively transform glycerol to dihydroxyacetone (DHA) by membrane-bound quinoprotein sorbitol dehydrogenase (mSLDH). Two mutant strains of GDHE Δadh pBBR-PtufBsldAB and GDHE Δadh pBBR-sldAB derived from the GDHE strain were constructed for the enhancement of DHA production. Growth performances of both strains were largely improved after adaptively growing in the medium with glucose as the sole carbon source. The resulting GAT and GAN strains exhibited better catalytic property than the GDHE strain in the presence of a high concentration of glycerol. All strains of GDHE, GAT and GAN cultivated on glucose showed enhanced catalytic capacity than those grown on sorbitol, indicating a favorable prospect of using glucose as carbon source to reduce the cost in industrial production. It was also the first time to reveal that the expression level of the sldAB gene in glucose-growing strains were higher than that of the strains cultivated on sorbitol.

  11. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption.

    Science.gov (United States)

    McGill, Anne-Thea

    2014-01-01

    The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and

  12. Energy metabolism pathway related genes and adaptive evolution of tumor cells%能量代谢途径相关基因变异与肿瘤细胞适应性进化

    Institute of Scientific and Technical Information of China (English)

    刘佳; 孔庆鹏

    2012-01-01

    The proliferation of tumor cells is an extremely energy-consuming process. However, different from normal cells, tumor cells generate energy via glycolysis even under aerobic conditions, which is one of the ten hallmarks of tumor cells. The switch of energy metabolism results in a series of physiological changes in tumor cells, including rapid generation of ATP and abundent biomass for cell proliferation, which form the basis of tumor cells to successfully adapt to their extreme microenvironment (e.g. lack of oxygen). In this review, we will introduce recent progress in studying somatic mutations on the energy metabolism related genes in tumors, with special focus on the potential factors involving in the "switch" and to decipher the genetic adaptive footprint of the "switch" from the angle of molecular evolution.%肿瘤细胞的快速增殖是一个极其耗能的过程,尽管如此,肿瘤细胞即便在有氧条件下也主要以糖酵解获取能量(有氧糖酵解),这是肿瘤细胞的显著特征之一.这种产能方式转变导致肿瘤细胞内部发生一系列生理变化,为其快速增殖提供能量物质和用于新细胞合成所需的生物大分子,同时为有效适应肿瘤微环境改变奠定基础.该文通过介绍能量代谢相关基因变异研究进展,基于分子进化视角探讨肿瘤细胞中相关基因可能存在的适应性进化遗传印记,为诠释肿瘤细胞能量代谢方式发生转变的可能机制提供新的视角和证据.

  13. Reduction of Photodiode Nonlinearities by Adaptive Biasing

    Science.gov (United States)

    2016-10-14

    7 Bias setting from current detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Ghost detection...noise floor for a 5V bias. In other words, this IMD2 signal would present a ghost signal and would degrade the system’s SFDR. We are thus led to the...here, we only mention this as a possibility and will not describe it further. 10 Frigo, Hutchinson, Williams Ghost detection through interactive

  14. A PRACTICAL MODEL OF LOW-VOLUME HIGH-INTENSITY INTERVAL TRAINING INDUCES PERFORMANCE AND METABOLIC ADAPTATIONS THAT RESEMBLE 'ALL-OUT' SPRINT INTERVAL TRAINING

    Directory of Open Access Journals (Sweden)

    Mahdi Bayati

    2011-09-01

    Full Text Available Recently, a novel type of high-intensity interval training known as sprint interval training has demonstrated increases in aerobic and anaerobic performance with very low time commitment. However, this type of training program is unpractical for general populations. The present study compared the impact of a low-volume high-intensity interval training to a "all-out" sprint interval training. Twenty-four active young males were recruited and randomized into three groups: (G1: 3-5 cycling bouts × 30-s all-out with 4 min recovery; G2: 6- 10 cycling bouts × 125% Pmax with 2 min recovery and a non-trained control group. They all performed a VO2max test, a time to exhaustion at Pmax (Tmax and a Wingate test before and after the intervention. Capillary blood lactate was taken at rest, 3, and 20 min after the Wingate trial. Training was performed 3 sessions per week for 4 weeks. In G1, significant improvements (p < 0.05 following training were found in VO2max (9.6%, power at VO2max (12.8%, Tmax (48.4%, peak power output (10.3% and mean power output (17.1%. In G2, significant improvements following training were found in VO2max (9.7%, power at VO2max (16.1%, Tmax (54.2%, peak power output (7.4%; p < 0.05, but mean power output did not change significantly. Blood lactate recovery (20th min significantly decreased in G1 and G2 when compared with pre-testing and the CON group (p < 0.05. In conclusion, the results of the current study agree with earlier work demonstrating the effectiveness of 30-s all-out training program to aerobic and anaerobic adaptations. Of substantial interest is that the low volume high intensity training provides similar results but involves only half the intensity with double the repetitions

  15. Gait Dynamics and Locomotor Metabolism

    Science.gov (United States)

    2009-05-01

    field settings from simple technologies such as gps monitors and pedometers. 15. SUBJECT TERMS Locomotion, gait, metabolism, body size, load...a reduction in exercise intensity. REFERENCES: 1. Alexander, RM. Sprinting and endurance for runners and cyclists . American Journal of

  16. Metabolic syndrome, androgens, and hypertension.

    Science.gov (United States)

    Moulana, Mohadetheh; Lima, Roberta; Reckelhoff, Jane F

    2011-04-01

    Obesity is one of the constellation of factors that make up the definition of the metabolic syndrome. Metabolic syndrome is also associated with insulin resistance, dyslipidemia, hypertriglyceridemia, and type 2 diabetes mellitus. The presence of obesity and metabolic syndrome in men and women is also associated with increased risk of cardiovascular disease and hypertension. In men, obesity and metabolic syndrome are associated with reductions in testosterone levels. In women, obesity and metabolic syndrome are associated with increases in androgen levels. In men, reductions in androgen levels are associated with inflammation, and androgen supplements reduce inflammation. In women, increases in androgens are associated with increases in inflammatory cytokines, and reducing androgens reduces inflammation. This review discusses the possibility that the effects of androgens on metabolic syndrome and its sequelae may differ between males and females.

  17. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  18. Poverty Reduction

    OpenAIRE

    Ortiz, Isabel

    2007-01-01

    The paper reviews poverty trends and measurements, poverty reduction in historical perspective, the poverty-inequality-growth debate, national poverty reduction strategies, criticisms of the agenda and the need for redistribution, international policies for poverty reduction, and ultimately understanding poverty at a global scale. It belongs to a series of backgrounders developed at Joseph Stiglitz's Initiative for Policy Dialogue.

  19. REDUCTION ALGORITHM OF POINT CLOUD SEGMENTATION BASED ON ADAPTIVE ELLIPTICAL DISTANCE%基于自适应椭圆距离的点云分区精简算法

    Institute of Scientific and Technical Information of China (English)

    吴禄慎; 俞涛; 陈华伟

    2016-01-01

    Applying traditional point cloud reduction algorithm to reducing scattered point cloud will lead to missing or fuzzy of some detail features of the point cloud model and affecting the smoothness of non planar region.Aiming at these problems,we put forward the adaptive elliptical distance-based point cloud segmentation reduction algorithm.First,by fitting the tangent plane and local surface on neighbourhood set,it calculates the normal vector and curvature of each point;secondly,it uses the derived geometric feature information to extract point cloud boundary characteristics and to complete the partition of planar regions and non planar regions of point cloud;finally,it uses the improved reduction algorithm to simplify different regions.Experimental results show that the algorithm can not only rapidly accomplish data simplification in accord with the required reduction rate,but can also protect the detail characteristics of point cloud model and ensure the smoothness of non planar portion of model.Through software analysis,it is found that the standard deviation between the reduced model and the original model is 0.015 mm.%利用传统点云精简算法进行散乱点云简化会导致点云模型部分细节特征的丢失或模糊以及影响非平面区域的光顺性。针对这些问题,提出基于自适应椭圆距离的点云分区精简算法。首先,通过对邻域点集进行微切平面与局部曲面的拟合,计算出各点的法矢及曲率等;其次,利用所得几何特征信息,提取点云边界特征以及完成点云平面区域与非平面区域的划分;最后,采用改进后的精简算法对不同区域进行简化。实验结果表明,该算法不但能够快速完成符合要求精简率的数据简化,还能保护点云模型的细节特征以及保证模型非平面部分的光顺性。经过软件分析得出,精简后模型与原始模型的距离误差的标准偏差为0.015 mm。

  20. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.

    Science.gov (United States)

    Shen, Tie; Rui, Bin; Zhou, Hong; Zhang, Ximing; Yi, Yin; Wen, Han; Zheng, Haoran; Wu, Jihui; Shi, Yunyu

    2013-01-27

    The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E

  1. 基于视觉适应的隧道入口外段遮光构件设计研究%Research of Light Reduction Components Applied on Highway Tunnel Portals Based on the Visual Adaptation

    Institute of Scientific and Technical Information of China (English)

    玮宝; 翁季; 黄新月; 王梦颖

    2014-01-01

    隧道入口处白昼亮度悬殊,导致驾驶员产生“黑洞效应”,难以应对突发事件,历来成为交通事故的多发区。解决上述问题的普遍做法是在入口段内加以大量的人工照明以减弱光差,但此方法不仅缺乏高效性,更会带来严重的能耗问题。该文简要论述了在入口接近段设置遮光构件的方法,保证行车安全,优化行车环境,同时达到节能效果。本研究致力于设计在隧道接近段形成光过渡带的减光构件,以此解决光差大的问题,并在此基础上根据人眼暗适应曲线,应用模型模拟对比测试的方式进行实测,将实验结果和节能效果进行量化。%there is a significant difference in brightness between day and night which leads to the black-hole effect on drivers at the Highway Tunnel Portals, an area with frequent traffic accident.Because of this drivers have hard time to handle the emergency. The common method to tackle this problem is to use artificial lighting to weaken the light equation at Highway Tunnel Portals. However, this method is not only short of efficiency but it also triggers a sever problem of energy consumption. In this essay, study briefly discuss the effect on the driving safety, the driving environment and the energy conservation after setting the lighting reduction compo⁃nents. The research concentrates on the light reduction components which can turn the tunnel entrance section into the light transition section in order to deal with the problem of high light equation. Furthermore, accord⁃ing to the human eye dark adaption curves, we apply the contrasting model for the experimental test in order to quantify the experimental results and the energy conservation effect.

  2. Emphysema quantification on low-dose CT using percentage of low-attenuation volume and size distribution of low-attenuation lung regions: Effects of adaptive iterative dose reduction using 3D processing

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Mizuho, E-mail: nmizuho@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Matsumoto, Sumiaki, E-mail: sumatsu@med.kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Seki, Shinichiro, E-mail: sshin@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Fujisawa, Yasuko, E-mail: yasuko1.fujisawa@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550 (Japan); and others

    2014-12-15

    Highlights: • Emphysema quantification (LAV% and D) was affected by image noise on low-dose CT. • For LAV% and D, AIDR 3D improved agreement of quantification on low-dose CT. • AIDR 3D has the potential to quantify emphysema accurately on low-dose CT. - Abstract: Purpose: To evaluate the effects of adaptive iterative dose reduction using 3D processing (AIDR 3D) for quantification of two measures of emphysema: percentage of low-attenuation volume (LAV%) and size distribution of low-attenuation lung regions. Method and materials: : Fifty-two patients who underwent standard-dose (SDCT) and low-dose CT (LDCT) were included. SDCT without AIDR 3D, LDCT without AIDR 3D, and LDCT with AIDR 3D were used for emphysema quantification. First, LAV% was computed at 10 thresholds from −990 to −900 HU. Next, at the same thresholds, linear regression on a log–log plot was used to compute the power law exponent (D) for the cumulative frequency-size distribution of low-attenuation lung regions. Bland–Altman analysis was used to assess whether AIDR 3D improved agreement between LDCT and SDCT for emphysema quantification of LAV% and D. Results: The mean relative differences in LAV% between LDCT without AIDR 3D and SDCT were 3.73%–88.18% and between LDCT with AIDR 3D and SDCT were −6.61% to 0.406%. The mean relative differences in D between LDCT without AIDR 3D and SDCT were 8.22%–19.11% and between LDCT with AIDR 3D and SDCT were 1.82%–4.79%. AIDR 3D improved agreement between LDCT and SDCT at thresholds from −930 to −990 HU for LAV% and at all thresholds for D. Conclusion: AIDR 3D improved the consistency between LDCT and SDCT for emphysema quantification of LAV% and D.

  3. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...

  4. Adaptation of thermal power plants

    NARCIS (Netherlands)

    Bogmans, Christian W.J.; Dijkema, Gerard P.J.; Vliet, van Michelle T.H.

    2017-01-01

    When does climate change information lead to adaptation? We analyze thermal power plant adaptation by means of investing in water-saving (cooling) technology to prevent a decrease in plant efficiency and load reduction. A comprehensive power plant investment model, forced with downscaled climate

  5. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These ... doctors agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  6. Metabolic Panel

    Science.gov (United States)

    ... basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP checks your blood sugar, calcium, and ... as creatinine to check your kidney function. The CMP includes all of those tests, as well as ...

  7. Metabolic Disorders

    Science.gov (United States)

    ... as your liver, muscles, and body fat. A metabolic disorder occurs when abnormal chemical reactions in your body ... that produce the energy. You can develop a metabolic disorder when some organs, such as your liver or ...

  8. Phenotypic bistability in Escherichia coli's central carbon metabolism

    NARCIS (Netherlands)

    Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L.; Heinemann, Matthias

    2014-01-01

    Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is

  9. The suckling piglet as an agrimedical model for the study of pediatric nutrition and metabolism.

    Science.gov (United States)

    Odle, Jack; Lin, Xi; Jacobi, Sheila K; Kim, Sung Woo; Stahl, Chad H

    2014-02-01

    The neonatal pig ranks among the most prominent research models for the study of pediatric nutrition and metabolism. Its precocial development at birth affords ready adaptation to artificial rearing systems, and research using this model spans a wide array of nutrients. Sophisticated in vitro and in vivo methodologies supporting both invasive, reduction-science research as well as whole-animal preclinical investigations have been developed. Potential applications may dually benefit both agricultural and medical sciences (e.g., "agrimedical research"). The broad scope of this review is to outline the fundamental elements of the piglet model and to highlight key aspects of relevance to various macronutrients, including lipids, carbohydrates, proteins/amino acids, and calcium/phosphorus. The review examines similarities between piglets and infants and also piglet idiosyncrasies, concluding that, overall, the piglet represents an adaptable and robust model for pediatric nutrition and metabolism research.

  10. [Metabolic syndrome].

    Science.gov (United States)

    Mitsuishi, Masanori; Miyashita, Kazutoshi; Itoh, Hiroshi

    2009-02-01

    Metabolic syndrome, which is consisted of hypertension, dyslipidemia and impaired glucose tolerance, is one of the most significant lifestyle-related disorders that lead to cardiovascular diseases. Among many upstream factors that are related to metabolic syndrome, obesity, especially visceral obesity, plays an essential role in its pathogenesis. In recent studies, possible mechanisms which connect obesity to metabolic syndrome have been elucidated, such as inflammation, abnormal secretion of adipokines and mitochondrial dysfunction. In this review, we focus on the relationship between obesity and metabolic syndrome; and illustrate how visceral obesity contributes to, and how the treatments for obesity act on metabolic syndrome.

  11. 视频解码系统中读写带宽压缩算法设计%An adaptive bandwidth reduction scheme with reference frame compression for video decoding

    Institute of Scientific and Technical Information of China (English)

    宋柳; 刘佩林

    2012-01-01

    Nowadays, as more and more portable consumer electronics video devices are becoming popular, power becomes the primary design issue for video coders/decoders. The state-of-the-art video coding standard H. 264/AVC achieved high compression efficiency by applying a number of highlighted coding strategies. Due to these new features, the decoder requires high memory bandwidth to off-chip memory or large amounts of on-chip cache memory. Therefore, memory bandwidth becomes a critical factor of whole system cost, especially for those battery-operated consumer electronic video devices with high-definition (HD) display capability. In this research, an adaptive bandwidth reduction scheme is proposed.%随着人们更多地使用携带式消费电子产品,电子产品中的电力消耗问题已经渐渐成为视频编解码器设计中关注的最主要的设计问题.特别是在最新的编码标准H.264/AVC中,由于采用了多种新的先进的压缩策略,编码器达到了更高的压缩效率的同时,由于这些新的性能,使H.264/AVC的解码器需要对外部存储进行大量的读取.所以,内存读取带宽成为对于整个系统成本的关键问题,具体如在使用电池提供高清视频播放的消费者电子产品中,需要以更低的电力提供更好更长时间的视频.在这个研究中,提出了针对于视频压缩解码系统中内存读写带宽问题所设计的可调的参考帧压缩算法设计的方案,通过降低系统读取外部内存的带宽而达到降低视频解码系统电力消耗的目的.

  12. Adaptive Lighting

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Kongshaug, Jesper

    2015-01-01

    Adaptive Lighting Adaptive lighting is based on a partial automation of the possibilities to adjust the colour tone and brightness levels of light in order to adapt to people’s needs and desires. IT support is key to the technical developments that afford adaptive control systems. The possibilities...... offered by adaptive lighting control are created by the ways that the system components, the network and data flow can be coordinated through software so that the dynamic variations are controlled in ways that meaningfully adapt according to people’s situations and design intentions. This book discusses...... differently into an architectural body. We also examine what might occur when light is dynamic and able to change colour, intensity and direction, and when it is adaptive and can be brought into interaction with its surroundings. In short, what happens to an architectural space when artificial lighting ceases...

  13. Adaptation: Needs, Financing and Institutions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Richard J.T.; Kartha, Sivan; Persson, Aasa; Watkiss, Paul; Ackerman, Frank; Downing, Thomas E.; Kjellen, Bo; Schipper, Lisa (Stockholm Environment Institute, Stockholm (SE))

    2008-07-01

    Regardless of the efforts put into mitigation, some impacts of climate change are already unavoidable. Adaptation to climate change has therefore become a key component of domestic climate policy, along with mitigation. Adaptation has also become key to the success of global climate policy. Without an agreement on supporting adaptation in developing countries, there will be no agreement on mitigation. Strong mitigation efforts make it more likely that adaptation will be effective and affordable. The world cannot rely on adaptation alone: it would eventually lead to a level of climate change to which adaptation is no longer feasible. Government action is needed to create an enabling environment for adaptation. This includes removing existing financial, legal, institutional and knowledge barriers to adaptation, and strengthening the capacity of people and organisations to adapt. The success of adaptation relies on the success of development, and vice versa. Poverty reduction, good governance, education, environmental protection, health and gender equality all contribute to adaptive capacity. Substantially more money is needed to support adaptation in developing countries. Current levels of funding will soon have to be scaled up by two orders of magnitude (from US$ hundreds of million to US$ tens of billion per year). An agreement on adaptation in Copenhagen in 2009 will need to include concrete steps towards a strengthened knowledge base for adaptation, substantially more funding for developing countries, and enhanced adaptation planning and implementation at the national level. Recommendations: Developed countries should accept a transparent, principle-based allocation of responsibility for adaptation funding, resulting in adequate, new and additional money to support adaptation programmes in developing countries. Levies on carbon market transactions and auctioning emission permits are two existing mechanisms of generating new and additional funds consistent with

  14. Adaptations of the aging animal to exercise: role of daily supplementation with melatonin.

    Science.gov (United States)

    Mendes, Caroline; Lopes, Ana Maria de Souza; do Amaral, Fernanda Gaspar; Peliciari-Garcia, Rodrigo A; Turati, Ariane de Oliveira; Hirabara, Sandro M; Scialfa Falcão, Julieta H; Cipolla-Neto, José

    2013-10-01

    The pineal gland, through melatonin, seems to be of fundamental importance in determining the metabolic adaptations of adipose and muscle tissues to physical training. Evidence shows that pinealectomized animals fail to develop adaptive metabolic changes in response to aerobic exercise and therefore do not exhibit the same performance as control-trained animals. The known prominent reduction in melatonin synthesis in aging animals led us to investigate the metabolic adaptations to physical training in aged animals with and without daily melatonin replacement. Male Wistar rats were assigned to four groups: sedentary control (SC), trained control (TC), sedentary treated with melatonin (SM), and trained treated with melatonin (TM). Melatonin supplementation lasted 16 wk, and the animals were subjected to exercise during the last 8 wk of the experiment. After euthanasia, samples of liver, muscle, and adipose tissues were collected for analysis. Trained animals treated with melatonin presented better results in the following parameters: glucose tolerance, physical capacity, citrate synthase activity, hepatic and muscular glycogen content, body weight, protein expression of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and protein kinase activated by adenosine monophosphate (AMPK) in the liver, as well as the protein expression of the glucose transporter type 4 (GLUT4) and AMPK in the muscle. In conclusion, these results demonstrate that melatonin supplementation in aging animals is of great importance for the required metabolic adaptations induced by aerobic exercise. Adequate levels of circulating melatonin are, therefore, necessary to improve energetic metabolism efficiency, reducing body weight and increasing insulin sensitivity.

  15. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark.

  16. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism....... The aim of this article is to provide knowledge of nucleotide metabolism and its regulation to facilitate interpretation of data arising from genetics, proteomics, and transcriptomics in connection with biotechnological processes and beyond....

  17. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    Energy Technology Data Exchange (ETDEWEB)

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.; Gargas, M L.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations

  18. ADAPT Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Diagnostics and Prognostics Testbed (ADAPT) Project Lead: Scott Poll Subject Fault diagnosis in electrical power systems Description The Advanced...

  19. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    Science.gov (United States)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  20. Late gestation under- and overnutrition have differential impacts when combined with a post-natal obesogenic diet on glucose-lactate-insulin adaptations during metabolic challenges in adolescent sheep

    DEFF Research Database (Denmark)

    Khanal, Prabhat; Axel, Anne Marie Dixen; Kongsted, Anna Hauntoft

    2015-01-01

    AIM: To determine whether late gestation under- and overnutrition programme metabolic plasticity in a similar way, and whether metabolic responses to an obesogenic diet in early post-natal life depend on the foetal nutrition history. METHODS: In a 3 × 2 factorial design, twin-pregnant ewes were f...

  1. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    2005-01-01

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  2. Metabolic acidosis.

    Science.gov (United States)

    Lim, Salim

    2007-01-01

    Acute metabolic acidosis is frequently encountered in critically ill patients. Metabolic acidosis can occur as a result of either the accumulation of endogenous acids that consumes bicarbonate (high anion gap metabolic acidosis) or loss of bicarbonate from the gastrointestinal tract or the kidney (hyperchloremic or normal anion gap metabolic acidosis). The cause of high anion gap metabolic acidosis includes lactic acidosis, ketoacidosis, renal failure and intoxication with ethylene glycol, methanol, salicylate and less commonly with pyroglutamic acid (5-oxoproline), propylene glycole or djenkol bean (gjenkolism). The most common causes of hyperchloremic metabolic acidosis are gastrointestinal bicarbonate loss, renal tubular acidosis, drugs-induced hyperkalemia, early renal failure and administration of acids. The appropriate treatment of acute metabolic acidosis, in particular organic form of acidosis such as lactic acidosis, has been very controversial. The only effective treatment for organic acidosis is cessation of acid production via improvement of tissue oxygenation. Treatment of acute organic acidosis with sodium bicarbonate failed to reduce the morbidity and mortality despite improvement in acid-base parameters. Further studies are required to determine the optimal treatment strategies for acute metabolic acidosis.

  3. Flux-dependent graphs for metabolic networks

    OpenAIRE

    Beguerisse-Díaz, Mariano; Bosque, Gabriel; Oyarzún, Diego; Picó, Jesús; Barahona, Mauricio

    2016-01-01

    Cells adapt their metabolic fluxes in response to changes in the environment. We present a systematic flux-based framework for the construction of graphs to represent organism-wide metabolic networks. Our graphs encode the directionality of metabolic fluxes via links that represent the flow of metabolites from source to target reactions. The methodology can be applied in the absence of a specific biological context by modelling fluxes as probabilities, or tailored to different environmental c...

  4. Multi-Directional Motion Adaptation

    Directory of Open Access Journals (Sweden)

    David Patrick McGovern

    2012-05-01

    Full Text Available The direction aftereffect (DAE is a phenomenon whereby prolonged exposure to a moving stimulus biases the perceived direction of subsequent stimuli. It is believed to arise through a selective suppression of directionally tuned neurons in the visual cortex, causing shifts in the population response away from the adapted direction. Whereas most studies consider only unidirectional adaptation, here we examine how concurrent adaptation to multiple directions affects the DAE. Observers were required to judge whether a random dot kinematogram (RDK moved clockwise or counter-clockwise relative to upwards. In different conditions, observers adapted to a stimulus comprised of directions drawn from a distribution or to bidirectional motion. Increasing the variance of normally distributed directions reduced the magnitude of the peak DAE and broadened its tuning profile. Asymmetric sampling of Gaussian and uniform distributions resulted in shifts of DAE tuning profiles consistent with changes in the perceived global direction of the adapting stimulus. Discrimination thresholds were elevated by an amount that related to the magnitude of the bias. For bidirectional adaptors, adding dots in directions away from the adapting motion led to a pronounced reduction in the DAE. This reduction was observed when dots were added in opposite or orthogonal directions to the adaptor suggesting that it may arise via inhibition from a broadly tuned normalisation pool. Preliminary simulations with a population coding model, where the gain of a direction-selective neuron is inversely proportional to its response to the adapting stimulus, suggest that it provides a parsimonious account of these adaptation effects.

  5. Metabolic encephalopathies.

    Science.gov (United States)

    Angel, Michael J; Young, G Bryan

    2011-11-01

    Kinnier Wilson coined the term metabolic encephalopathy to describe a clinical state of global cerebral dysfunction induced by systemic stress that can vary in clinical presentation from mild executive dysfunction to deep coma with decerebrate posturing; the causes are numerous. Some mechanisms by which cerebral dysfunction occurs in metabolic encephalopathies include focal or global cerebral edema, alterations in transmitter function, the accumulation of uncleared toxic metabolites, postcapillary venule vasogenic edema, and energy failure. This article focuses on common causes of metabolic encephalopathy, and reviews common causes, clinical presentations and, where relevant, management.

  6. High-fat diet-induced reduction of peroxisome proliferator-activated receptor-γ coactivator-1α messenger RNA levels and oxidative capacity in the soleus muscle of rats with metabolic syndrome.

    Science.gov (United States)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-02-01

    Animal models of type 2 diabetes exhibit reduced peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) messenger RNA (mRNA) levels, which are associated with decreased oxidative capacity, in skeletal muscles. In contrast, animal models with metabolic syndrome show normal PGC-1α mRNA levels. We hypothesized that a high-fat diet decreases PGC-1α mRNA levels in skeletal muscles of rats with metabolic syndrome, reducing muscle oxidative capacity and accelerating metabolic syndrome or inducing type 2 diabetes. We examined mRNA levels and fiber profiles in the soleus muscles of rats with metabolic syndrome (SHR/NDmcr-cp [cp/cp]; CP) fed a high-fat diet. Five-week-old CP rats were assigned to a sedentary group (CP-N) that was fed a standard diet (15.1 kJ/g, 23.6% protein, 5.3% fat, and 54.4% carbohydrates) or a sedentary group (CP-H) that was fed a high-fat diet (21.6 kJ/g, 23.6% protein, 34.9% fat, and 25.9% carbohydrates) and were housed for 10 weeks. Body weight, energy intake, and systolic blood pressure were higher in the CP-H group than in the CP-N group. Nonfasting glucose, triglyceride, total cholesterol, and leptin levels were higher in the CP-H group than in the CP-N group. There was no difference in insulin levels between the CP-N and CP-H groups. Muscle PGC-1α mRNA levels and succinate dehydrogenase activity were lower in the CP-H group than in the CP-N group. We concluded that a high-fat diet reduces PGC-1α mRNA levels and oxidative capacity in skeletal muscles and accelerates metabolic syndrome.

  7. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    Directory of Open Access Journals (Sweden)

    Peter J. McGuire

    2014-02-01

    Full Text Available The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA. A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza using spf-ash mice, a model of OTC deficiency. Both wild-type (WT and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other

  8. Toothbrush Adaptations.

    Science.gov (United States)

    Exceptional Parent, 1987

    1987-01-01

    Suggestions are presented for helping disabled individuals learn to use or adapt toothbrushes for proper dental care. A directory lists dental health instructional materials available from various organizations. (CB)

  9. Ambiguous Adaptation

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Lyngsie, Jacob

    We investigate why some exchange relationships terminate prematurely. We argue that investments in informal governance structures induce premature termination in relationships already governed by formal contracts. The formalized adaptive behavior of formal governance structures and the flexible a...

  10. Hedonic "adaptation"

    OpenAIRE

    2008-01-01

    People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to d...

  11. Strategic Adaptation

    DEFF Research Database (Denmark)

    Andersen, Torben Juul

    2015-01-01

    This article provides an overview of theoretical contributions that have influenced the discourse around strategic adaptation including contingency perspectives, strategic fit reasoning, decision structure, information processing, corporate entrepreneurship, and strategy process. The related...... concepts of strategic renewal, dynamic managerial capabilities, dynamic capabilities, and strategic response capabilities are discussed and contextualized against strategic responsiveness. The insights derived from this article are used to outline the contours of a dynamic process of strategic adaptation...

  12. Metabolic neuropathies

    Science.gov (United States)

    ... as porphyria Severe infection throughout the body ( sepsis ) Thyroid disease Vitamin deficiencies (including vitamins B12 , B6 , E , and B1 ) Some metabolic disorders are passed down through families (inherited), while others ...

  13. Metabolic Syndrome

    Science.gov (United States)

    ... hypertension, hypertriglyceridemia, insulin resistance syndrome, low HDL cholesterol, Metabolic Syndrome, overweight, syndrome x, type 2 diabetes Family Health, Kids and Teens, Men, Women January 2005 Copyright © American Academy of Family PhysiciansThis ...

  14. Widespread rapid reductions in body size of adult salamanders in response to climate change.

    Science.gov (United States)

    Caruso, Nicholas M; Sears, Michael W; Adams, Dean C; Lips, Karen R

    2014-06-01

    Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1-7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future.

  15. Metabolism of hyperthermophiles.

    Science.gov (United States)

    Schönheit, P; Schäfer, T

    1995-01-01

    Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 (sup2-) , CO2 and NO inf3 (sup-) but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The 'classical' Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is

  16. Lipid Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008393 Effects of angiotensin Ⅱ type 1 receptor blocker on triglyceride metabolism in the liver: experiment with Zucker fatty rats. RAN Jianmin(冉建民), et al. Dept Endocrinol, Guangzhou Red Cross Hosp, 4th Hosp Med Coll, Jinan Univ, Guangzhou 510220. Natl Med J China 2008;88(22):1557-1561. Objective To investigate the effects of angiotensin receptor blocker (ARB) on triglyceride (TG) metabolism and mechanism thereof.

  17. Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana.

    Science.gov (United States)

    Freschi, Luciano; Rodrigues, Maria Aurineide; Tiné, Marco Aurélio Silva; Mercier, Helenice

    2010-12-15

    Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO₂ concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana; a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate.

  18. Time-of-day-dependent adaptation of the HPA axis to predictable social defeat stress.

    Science.gov (United States)

    Koch, C E; Bartlang, M S; Kiehn, J T; Lucke, L; Naujokat, N; Helfrich-Förster, C; Reber, S O; Oster, H

    2016-12-01

    In modern societies, the risk of developing a whole array of affective and somatic disorders is associated with the prevalence of frequent psychosocial stress. Therefore, a better understanding of adaptive stress responses and their underlying molecular mechanisms is of high clinical interest. In response to an acute stressor, each organism can either show passive freezing or active fight-or-flight behaviour, with activation of sympathetic nervous system and the hypothalamus-pituitary-adrenal (HPA) axis providing the necessary energy for the latter by releasing catecholamines and glucocorticoids (GC). Recent data suggest that stress responses are also regulated by the endogenous circadian clock. In consequence, the timing of stress may critically affect adaptive responses to and/or pathological effects of repetitive stressor exposure. In this article, we characterize the impact of predictable social defeat stress during daytime versus nighttime on bodyweight development and HPA axis activity in mice. While 19 days of social daytime stress led to a transient reduction in bodyweight without altering HPA axis activity at the predicted time of stressor exposure, more detrimental effects were seen in anticipation of nighttime stress. Repeated nighttime stressor exposure led to alterations in food metabolization and reduced HPA axis activity with lower circulating adrenocorticotropic hormone (ACTH) and GC concentrations at the time of predicted stressor exposure. Our data reveal a circadian gating of stress adaptation to predictable social defeat stress at the level of the HPA axis with impact on metabolic homeostasis underpinning the importance of timing for the body's adaptability to repetitive stress.

  19. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...

  20. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knoblauch, C.; Joergensen, B.B.; Harder, J.

    1999-09-01

    The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and {minus}1.7C were determined. Most-probable-number counts were higher at 10 C than at 20 C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.

  1. Is adaptation. Truly an adaptation? Is adaptation. Truly an adaptation?

    Directory of Open Access Journals (Sweden)

    Thais Flores Nogueira Diniz

    2008-04-01

    Full Text Available The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition, joined with the study of recycling, remaking, and every form of retelling. The film deals with the attempt by the scriptwriter Charles Kaufman, cast by Nicholas Cage, to adapt/translate a non-fictional book to the cinema, but ends up with a kind of film which is by no means what it intended to be: a film of action in the model of Hollywood productions. During the process of creation, Charles and his twin brother, Donald, undergo a series of adventures involving some real persons from the world of film, the author and the protagonist of the book, all of them turning into fictional characters in the film. In the film, adaptation then signifies something different from itstraditional meaning. The article begins by historicizing film adaptation from the arrival of cinema, pointing out the many theoretical approaches under which the process has been seen: from the concept of “the same story told in a different medium” to a comprehensible definition such as “the process through which works can be transformed, forming an intersection of textual surfaces, quotations, conflations and inversions of other texts”. To illustrate this new concept, the article discusses Spike Jonze’s film Adaptation. according to James Naremore’s proposal which considers the study of adaptation as part of a general theory of repetition

  2. Context-dependent metabolic networks

    CERN Document Server

    Beguerisse-Díaz, Mariano; Oyarzún, Diego; Picó, Jesús; Barahona, Mauricio

    2016-01-01

    Cells adapt their metabolism to survive changes in their environment. We present a framework for the construction and analysis of metabolic reaction networks that can be tailored to reflect different environmental conditions. Using context-dependent flux distributions from Flux Balance Analysis (FBA), we produce directed networks with weighted links representing the amount of metabolite flowing from a source reaction to a target reaction per unit time. Such networks are analyzed with tools from network theory to reveal salient features of metabolite flows in each biological context. We illustrate our approach with the directed network of the central carbon metabolism of Escherichia coli, and study its properties in four relevant biological scenarios. Our results show that both flow and network structure depend drastically on the environment: networks produced from the same metabolic model in different contexts have different edges, components, and flow communities, capturing the biological re-routing of metab...

  3. Exercise training in metabolic myopathies

    DEFF Research Database (Denmark)

    Vissing, J

    2016-01-01

    , patients with FAODs typically develop symptoms later in exercise than patients with GSDs. Due to the exercise-related symptoms in metabolic myopathies, patients generally have been advised to shun physical training. However, immobility is associated with multiple health issues, and may even cause unwanted...... metabolic adaptations, such as increased dependence on glycogen use and a reduced capacity for fatty acid oxidation, which is detrimental in GSDs. Training has not been studied systematically in any FAODs and in just a few GSDs. However, studies on single bouts of exercise in most metabolic myopathies show...... that particularly moderate intensity aerobic exercise is well tolerated in these conditions. Even low-intensity resistance training of short duration is tolerated in McArdle disease. Training in patients with FAOD potentially can also expand the metabolic bottleneck by increasing expression of the defective...

  4. The 482Ser of PPARGC1A and 12Pro of PPARG2 Alleles Are Associated with Reduction of Metabolic Risk Factors Even Obesity in a Mexican-Mestizo Population

    Directory of Open Access Journals (Sweden)

    Mónica Vázquez-Del Mercado

    2015-01-01

    Full Text Available The aim of this study was to investigate the relationship between functional polymorphisms Gly482Ser in PPARGC1A and Pro12Ala in PPARG2 with the presence of obesity and metabolic risk factors. We included 375 individuals characterized as Mexican-Mestizos and classified by the body mass index (BMI. Body dimensions and distribution of body fat were measured. The HOMA-IR and adiposity indexes were calculated. Adipokines and metabolic profile quantification were performed by ELISA and routine methods. Genetic polymorphisms were determined by polymerase chain reaction restriction fragment length polymorphism analysis. A difference between obese and nonobese subjects in polymorphism PPARGC1A distribution was observed. Among obese individuals, carriers of genotype 482Gly/Gly were observed to have decreased body fat, BMI, and body fat ratio versus 482Ser/Ser carriers and increased resistin and leptin levels in carriers Gly+ phenotype versus Gly− phenotype. Subjects with PPARG2 Ala− phenotype (genotype 12Pro/Pro showed a decreased HOMA-IR index versus individuals with Ala+ phenotype (genotypes 12Pro/Ala plus 12Ala/Ala. We propose that, in obese Mexican-Mestizos, the combination of alleles 482Ser in PPARGC1A and 12Pro in PPARG2 represents a reduced metabolic risk profile, even when the adiposity indexes are increased.

  5. Metabolic Syndrome (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Metabolic Syndrome KidsHealth > For Parents > Metabolic Syndrome A A A ... this is a condition called metabolic syndrome . About Metabolic Syndrome Not to be confused with metabolic disease (which ...

  6. Metabolic Syndrome (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Metabolic Syndrome KidsHealth > For Parents > Metabolic Syndrome Print A A ... this is a condition called metabolic syndrome . About Metabolic Syndrome Not to be confused with metabolic disease (which ...

  7. An economic assessment of losartan-based versus atenolol-based therapy in patients with hypertension and left-ventricular hypertrophy : Results from the Losartan Intervention For Endpoint reduction (LIFE) study adapted to The Netherlands

    NARCIS (Netherlands)

    Boersma, Cornelis; Carides, George W.; Atthobari, Jarir; Voors, Adriaan A.; Postma, Maarten J.

    2007-01-01

    Background: The Losartan Intervention For Endpoint reduction (LIFE) study was a randomized, doubleblind trial that compared the effects of losartan-based treatment with those of atenolol-based treatment on cardiovascular disease (CVD)-related morbidity and mortality in 9193 patients with hypertensio

  8. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis.

    Science.gov (United States)

    Tivendale, Nathan D; Jewett, Erin M; Hegeman, Adrian D; Cohen, Jerry D

    2016-08-15

    Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize β-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.

  9. 肥胖者内脂素基因多态性对糖脂代谢及运动减肥效果的影响%Effects of visfatin gene polymorphisms on glycolipid metabolism and exerciseinduced weight reduction in obesity

    Institute of Scientific and Technical Information of China (English)

    赖爱萍; 陈文鹤

    2012-01-01

    内脂素(visfatin),又被称为尼克酰胺磷酸核糖转移酶(nicotinamide phosphoribosyl transferase,NAMPT),是由脂肪组织分泌的细胞因子,在体内进行免疫调节,还可以作为NAMPT调节NAD+补救途径,同时也可影响糖脂代谢及运动减肥效果.本文旨在对肥胖者内脂素基因多态性与糖脂代谢及运动减肥效果的相关研究进行综述.%Visfatin, also named nicotinamide phosphoribosyl transferase (NAMPT), is a cytokine secreted from adipose tissue. Visfa-tin can regulate immune action and is involved in the NAD+ salvage pathway. In addition, recent researches have shown that visfatin helps the regulation of glucose and lipid metabolism, especially in exercise-induced weight reduction for obesity. The aim of this review is to provide an overview of the contribution of visfatin gene polymorphisms to glucose and lipid metabolism and exercise-induced weight reduction in obesity.

  10. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  11. Risk of stroke and cardiovascular events after ischemic stroke or transient ischemic attack in patients with type 2 diabetes or metabolic syndrome: secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial

    DEFF Research Database (Denmark)

    Callahan, Alfred; Amarenco, Pierre; Goldstein, Larry B;

    2011-01-01

    To perform a secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial, which tested the effect of treatment with atorvastatin in reducing stroke in subjects with a recent stroke or transient ischemic attack, to explore the effects of treatment in su...

  12. Adaptive test

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter; Rose, Mette

    2010-01-01

    Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale.......Artikelen er en evaluering af de adaptive tests, som blev indført i folkeskolen. Artiklen sætter særligt fokus på evaluering i folkeskolen, herunder bidrager den med vejledning til evaluering, evalueringsværktøjer og fagspecifkt evalueringsmateriale....

  13. Adaptive manifold learning.

    Science.gov (United States)

    Zhang, Zhenyue; Wang, Jing; Zha, Hongyuan

    2012-02-01

    Manifold learning algorithms seek to find a low-dimensional parameterization of high-dimensional data. They heavily rely on the notion of what can be considered as local, how accurately the manifold can be approximated locally, and, last but not least, how the local structures can be patched together to produce the global parameterization. In this paper, we develop algorithms that address two key issues in manifold learning: 1) the adaptive selection of the local neighborhood sizes when imposing a connectivity structure on the given set of high-dimensional data points and 2) the adaptive bias reduction in the local low-dimensional embedding by accounting for the variations in the curvature of the manifold as well as its interplay with the sampling density of the data set. We demonstrate the effectiveness of our methods for improving the performance of manifold learning algorithms using both synthetic and real-world data sets.

  14. Speaker Adaptation with Transformation Matrix Linear Interpolation

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-hua; ZHU Jie

    2004-01-01

    A transformation matrix linear interpolation (TMLI) approach for speaker adaptation is proposed. TMLI uses the transformation matrixes produced by MLLR from selected training speakers and the testing speaker. With only 3 adaptation sentences, the performance shows a 12.12% word error rate reduction. As the number of adaptation sentences increases, the performance saturates quickly. To improve the behavior of TMLI for large amounts of adaptation data, the TMLI+MAP method which combines TMLI with MAP technique is proposed. Experimental results show TMLI+MAP achieved better recognition accuracy than MAP and MLLR+MAP for both small and large amounts of adaptation data.

  15. Exceptional Reductions

    CERN Document Server

    Marrani, Alessio; Riccioni, Fabio

    2011-01-01

    Starting from basic identities of the group E8, we perform progressive reductions, namely decompositions with respect to the maximal and symmetric embeddings of E7xSU(2) and then of E6xU(1). This procedure provides a systematic approach to the basic identities involving invariant primitive tensor structures of various irreprs. of finite-dimensional exceptional Lie groups. We derive novel identities for E7 and E6, highlighting the E8 origin of some well known ones. In order to elucidate the connections of this formalism to four-dimensional Maxwell-Einstein supergravity theories based on symmetric scalar manifolds (and related to irreducible Euclidean Jordan algebras, the unique exception being the triality-symmetric N = 2 stu model), we then derive a fundamental identity involving the unique rank-4 symmetric invariant tensor of the 0-brane charge symplectic irrepr. of U-duality groups, with potential applications in the quantization of the charge orbits of supergravity theories, as well as in the study of mult...

  16. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  17. Metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Charles Shaeffer

    2004-01-01

    @@ The emergence of cardiac disease as the number one world-wide cause of death justifies efforts to identify individuals at higher risk for preventive therapy. The metabolic syndrome, originally described by Reaven, 1 has been associated with higher cardiovascular disease risk. 2 Type Ⅱ diabetes is also a frequent sequela. 3

  18. Evolutionary Adaptations to Dietary Changes

    OpenAIRE

    De Luca, F; Perry, G. H.; Di Rienzo, A.

    2010-01-01

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human...

  19. Uranium isotopes fingerprint biotic reduction

    Science.gov (United States)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  20. Metabolic markers in sports medicine.

    Science.gov (United States)

    Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna

    2012-01-01

    Physical exercise induces adaptations in metabolism considered beneficial for health. Athletic performance is linked to adaptations, training, and correct nutrition in individuals with genetic traits that can facilitate such adaptations. Intense and continuous exercise, training, and competitions, however, can induce changes in the serum concentrations of numerous laboratory parameters. When these modifications, especially elevated laboratory levels, result outside the reference range, further examinations are ordered or participation in training and competition is discontinued or sports practice loses its appeal. In order to correctly interpret commonly used laboratory data, laboratory professionals and sport physicians need to know the behavior of laboratory parameters during and after practice and competition. We reviewed the literature on liver, kidney, muscle, heart, energy, and bone parameters in athletes with a view to increase the knowledge about clinical chemistry applied to sport and to stimulate studies in this field. In liver metabolism, the interpretation of serum aminotransferases concentration in athletes should consider the release of aspartate aminotransferase (AST) from muscle and of alanine aminotransferase (ALT) mainly from the liver, when bilirubin can be elevated because of continuous hemolysis, which is typical of exercise. Muscle metabolism parameters such as creatine kinase (CK) are typically increased after exercise. This parameter can be used to interpret the physiological release of CK from muscle, its altered release due to rhabdomyolysis, or incomplete recovery due to overreaching or trauma. Cardiac markers are released during exercise, and especially endurance training. Increases in these markers should not simply be interpreted as a signal of cardiac damage or wall stress but rather as a sign of regulation of myocardial adaptation. Renal function can be followed in athletes by measuring serum creatinine concentration, but it should

  1. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    Science.gov (United States)

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  2. Adaptation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul

    2011-11-15

    Efforts to help the world's poor will face crises in coming decades as climate change radically alters conditions. Action Research for Community Adapation in Bangladesh (ARCAB) is an action-research programme on responding to climate change impacts through community-based adaptation. Set in Bangladesh at 20 sites that are vulnerable to floods, droughts, cyclones and sea level rise, ARCAB will follow impacts and adaptation as they evolve over half a century or more. National and international 'research partners', collaborating with ten NGO 'action partners' with global reach, seek knowledge and solutions applicable worldwide. After a year setting up ARCAB, we share lessons on the programme's design and move into our first research cycle.

  3. Metabolic management of brain cancer.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael A; Marsh, Jeremy; Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna

    2011-06-01

    Malignant brain tumors are a significant health problem in children and adults. Conventional therapeutic approaches have been largely unsuccessful in providing long-term management. As primarily a metabolic disease, malignant brain cancer can be managed through changes in metabolic environment. In contrast to normal neurons and glia, which readily transition to ketone bodies (β-hydroxybutyrate) for energy under reduced glucose, malignant brain tumors are strongly dependent on glycolysis for energy. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome and normal mitochondria can effectively transition from one energy state to another. Mutations restrict genomic and metabolic flexibility thus making tumor cells more vulnerable to energy stress than normal cells. We propose an alternative approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and metabolically challenged tumor cells. This approach to brain cancer management is supported from recent studies in mice and humans treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are presented for the metabolic management of brain cancer.

  4. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.

    Science.gov (United States)

    Nikiforova, Victoria J; Kopka, Joachim; Tolstikov, Vladimir; Fiehn, Oliver; Hopkins, Laura; Hawkesford, Malcolm J; Hesse, Holger; Hoefgen, Rainer

    2005-05-01

    Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production.

  5. Adaptive flood risk management in urban areas

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.

    2012-01-01

    In recent times a shift has occurred from traditional flood management focused on the prevention of flooding (reduction of the probability) only, to more adaptive strategies focused on the reduction of the impacts of floods as a means to improve the resilience of occupied flood plains to increased r

  6. Pseudomonas genomes: diverse and adaptable.

    Science.gov (United States)

    Silby, Mark W; Winstanley, Craig; Godfrey, Scott A C; Levy, Stuart B; Jackson, Robert W

    2011-07-01

    Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

  7. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    OpenAIRE

    Kogadeeva, Maria; Zamboni, Nicola

    2016-01-01

    Author Summary Living cells adapt to ever-changing environments by regulating metabolic fluxes, the rates of nutrient flow through the metabolic network, to produce metabolites that are currently in demand. 13C-labeling techniques coupled with metabolic flux analyses are widely used to estimate metabolic fluxes and provide insights into cellular physiology and adaptation relevant in biological, biomedical and biotechnological applications. However, the existing methods are either computationa...

  8. Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Sevil Ikinci

    2010-10-01

    Full Text Available Metabolic Syndrome is a combination of risk factors including common etiopathogenesis. These risk factors play different roles in occurence of atherosclerotic diseases, type 2 diabetes, and cancers. Although a compromise can not be achieved on differential diagnosis for MS, the existence of any three criterias enable to diagnose MS. These are abdominal obesity, dislipidemia (hypertrigliceridemia, hypercholesterolemia, and reduced high density lipoprotein hypertension, and elevated fasting blood glucose. According to the results of Metabolic Syndrome Research (METSAR, the overall prevalence of MS in Turkey is 34%; in females 40%, and in males it is 28%. As a result of “Western” diet, and increased frequency of obesity, MS is observed in children and in adolescents both in the world and in Turkey. Resulting in chronic diseases, it is thought that the syndrome can be prevented by healthy lifestyle behaviours. [TAF Prev Med Bull 2010; 9(5.000: 535-540

  9. What is Metabolic Syndrome?

    Science.gov (United States)

    ... from the NHLBI on Twitter. What Is Metabolic Syndrome? Metabolic syndrome is the name for a group of ... that may play a role in causing metabolic syndrome. Outlook Metabolic syndrome is becoming more common due to a ...

  10. Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Schlager, Stefanie; Haberbauer, Marianne; Fuchsbauer, Anita; Hemmelmair, Christine; Dumitru, Liviu Mihai; Hinterberger, Gabriele; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2017-01-10

    We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2 . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long-term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This "electrometabolism" in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of -700 mV vs. Ag/AgCl for CH4 generation at 30-35 °C. The experiments were performed by using two-compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed.

  11. Bio‐Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane

    Science.gov (United States)

    Haberbauer, Marianne; Fuchsbauer, Anita; Hemmelmair, Christine; Dumitru, Liviu Mihai; Hinterberger, Gabriele; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2016-01-01

    Abstract We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2. This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long‐term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This “electrometabolism” in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of −700 mV vs. Ag/AgCl for CH4 generation at 30–35 °C. The experiments were performed by using two‐compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed. PMID:27792284

  12. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.

    Directory of Open Access Journals (Sweden)

    Michael Berney

    Full Text Available Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their

  13. Adaptive GA-ADRC in Torque Ripple Reduction of Brushless DC Motor%自适应GA-ADRC在无刷直流电机转矩脉动抑制中的研究

    Institute of Scientific and Technical Information of China (English)

    刘慧博; 王静

    2012-01-01

    提出一种新型的无刷直流电机电磁转矩脉动抑制方法,该方法通过控制无刷直流电机导通相线电流跟踪给定电流来抑制电机的电磁转矩脉动.首先分析无刷直流电机数学模型,建立基于自适应遗传算法的无刷直流电机控制系统模型,由于自适应GA-ADRC控制器不需要无刷直流电机模型参数就可以实现干扰补偿,因此可以独立设计自适应GA-ADRC控制器.对文中所提出自适应GA-ADRC控制算法与经典PID控制算法的控制效果对比分析,控制效果明显优于传统PID控制效果.%The traditional PID control algorithm cannot satisfy the performance index of the brushless DC motor system because of the disadvantages of electromagnetic torque ripple, high complexity of detection method and control algorithm, and higher cost of current brushless DC motor. A novel electromagnet torque ripple suppression method of brushless DC motor was proposed in this paper. By virtue of controlling the conduction phase current of the brushless DC motor to track the given current, the motor electromagnet torque ripple was suppressed. The mathematical model of the motor was analyzed and a control system model of the brushless DC motor based on adaptive genetic algorithm was established. Since the adaptive GA-ADRC controller can realize disturbance compensation without model parameters of brushless DC motor, the GA-ADRC controller was independently designed. The comparative analysis shows that the proposed GA-ADRC control algorithm is obviously superior to that of the classical PID control algorithm.

  14. Pomegranate: a fruit that ameliorates metabolic syndrome.

    Science.gov (United States)

    Medjakovic, Svjetlana; Jungbauer, Alois

    2013-01-01

    Pomegranate is an ancient fruit that is still part of the diet in the Mediterranean area, the Middle East, and India. Health-promoting effects have long been attributed to this fruit. Modern research corroborates the use of pomegranate as a folk remedy for diabetes and metabolic syndrome, and is responsible for a new evaluation of nutritional and pharmaceutical aspects of pomegranate in the general public. In the last decade, industry and agricultural production have been adapted to meet higher market demands for pomegranate. In vivo and in vitro studies have demonstrated that pomegranate exerts hypoglycaemic effects, including increased insulin sensitivity, inhibition of α-glucosidase, and impact on glucose transporter type 4 function, but is also responsible for a reduction of total cholesterol, and the improvement of blood lipid profiles, as well as anti-inflammatory effects through the modulation of peroxisome proliferator-activated receptor pathways. These effects may also explain how pomegranate-derived compounds function in the amelioration of adverse health effects caused by metabolic syndrome. Pomegranate contains polyphenols such as ellagitannins and anthocyanins, as well as phenolic acids, fatty acids and a variety of volatile compounds. Ellagitannins are some of the most prevalent compounds present in pomegranate, and may be responsible for certain benevolent characteristics associated with pomegranate. A brief overview of rising health problems due to obesity will be provided, followed by characterisation of the biological activity, bioavailability, and safety of pomegranate and pomegranate-derived compounds. Although the fruit is consumed in many countries, epidemiological and clinical studies are unavailable. Additional research is necessary to corroborate the promise of current in vivo and in vitro findings.

  15. RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations.

    Science.gov (United States)

    Kim, Joonhoon; Reed, Jennifer L

    2012-07-05

    Predicting cellular responses to perturbations is an important task in systems biology. We report a new approach, RELATCH, which uses flux and gene expression data from a reference state to predict metabolic responses in a genetically or environmentally perturbed state. Using the concept of relative optimality, which considers relative flux changes from a reference state, we hypothesize a relative metabolic flux pattern is maintained from one state to another, and that cells adapt to perturbations using metabolic and regulatory reprogramming to preserve this relative flux pattern. This constraint-based approach will have broad utility where predictions of metabolic responses are needed.

  16. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  17. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    Science.gov (United States)

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  18. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Moon

    2015-04-01

    Full Text Available The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins was found to be significantly up-regulated (≥1.5-fold under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.

  19. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  20. Response to trauma and metabolic changes: posttraumatic metabolism.

    Science.gov (United States)

    Şimşek, Turgay; Şimşek, Hayal Uzelli; Cantürk, Nuh Zafer

    2014-01-01

    Stress response caused by events such as surgical trauma includes endocrine, metabolic and immunological changes. Stress hormones and cytokines play a role in these reactions. More reactions are induced by greater stress, ultimately leading to greater catabolic effects. Cuthbertson reported the characteristic response that occurs in trauma patients: protein and fat consumption and protection of body fluids and electrolytes because of hypermetabolism in the early period. The oxygen and energy requirement increases in proportion to the severity of trauma. The awareness of alterations in amino acid, lipid, and carbohydrate metabolism changes in surgical patients is important in determining metabolic and nutritional support. The main metabolic change in response to injury that leads to a series of reactions is the reduction of the normal anabolic effect of insulin, i.e. the development of insulin resistance. Free fatty acids are primary sources of energy after trauma. Triglycerides meet 50 to 80 % of the consumed energy after trauma and in critical illness. Surgical stress and trauma result in a reduction in protein synthesis and moderate protein degradation. Severe trauma, burns and sepsis result in increased protein degradation. The aim of glucose administration to surgical patients during fasting is to reduce proteolysis and to prevent loss of muscle mass. In major stress such as sepsis and trauma, it is important both to reduce the catabolic response that is the key to faster healing after surgery and to obtain a balanced metabolism in the shortest possible time with minimum loss. For these reasons, the details of metabolic response to trauma should be known in managing these situations and patients should be treated accordingly.

  1. Efeitos da redução de peso superior a 5% nos perfis hemodinâmico, metabólico e neuroendócrino de obesos grau I Effects of greater-than-5% weight reduction on hemodynamic, metabolic and neuroendocrine profiles of grade I obese subjects

    Directory of Open Access Journals (Sweden)

    Kelly Biancardini Gomes Barbato

    2006-07-01

    Full Text Available OBJETIVO: Avaliar os efeitos da redução de peso superior a 5% nos perfis hemodinâmico, metabólico e neuroendócrino de obesos grau I. MÉTODOS: Estudo observacional com 47 obesos grau I, média de idade de 33 anos, submetidos a orientação mensal quanto a dieta, exercício físico e comportamento alimentar, durante quatro meses. A pressão arterial, pelo método auscultatório, e a freqüência cardíaca, pelo método palpatório, foram avaliadas mensalmente, enquanto as seguintes variáveis (e respectivos métodos foram medidas no início e final do estudo: colesterol total, triglicerídeos, HDL-colesterol (enzimático, LDL-colesterol (fórmula de Friedwald, glicemia (enzimático hexoquinase, leptina, adiponectina, renina, aldosterona, insulina (radioimunoensaio e índice de resistência à insulina (HOMA. RESULTADOS: Observamos, após ajuste para outras variáveis, reduções significativas de 6 mmHg na pressão arterial diastólica, 7 pg/ml na renina, 13 mg/dl no colesterol total e 12 mg/dl no LDL-colesterol, no grupo com redução de peso superior a 5%. Notamos, também nesse grupo, tendência ao aumento de maior magnitude da adiponectina ao final do estudo, bem como diminuição três vezes maior dos níveis de glicemia, insulina e HOMA, e seis vezes maior da leptina. CONCLUSÃO: Medidas não-farmacológicas capazes de promover redução de peso superior a 5% produzem efeitos hemodinâmicos, metabólicos e neuroendócrinos que melhoram o risco cardiovascular de obesos.OBJECTIVE: To evaluate the effects of a greater-than-5% weight reduction in hemodynamic, metabolic, and neuroendocrine profiles of grade I obese subjects. METHODS: Observational study with 47 grade I obese subjects, with mean age of 33 years who received monthly orientation regarding diet, physical exercises, and eating behavior for four months. Blood pressure using the auscultatory method and pulse rate were assessed monthly, whereas the following variables (and

  2. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days.

    Science.gov (United States)

    Moreau, Manon; Azzopardi, Marianne; Clément, Gilles; Dobrenel, Thomas; Marchive, Chloé; Renne, Charlotte; Martin-Magniette, Marie-Laure; Taconnat, Ludivine; Renou, Jean-Pierre; Robaglia, Christophe; Meyer, Christian

    2012-02-01

    The conserved Target of Rapamycin (TOR) kinase forms high molecular mass complexes and is a major regulator of cellular adaptations to environmental cues. The Lethal with Sec Thirteen 8/G protein β subunit-like (LST8/GβL) protein is a member of the TOR complexes, and two putative LST8 genes are present in Arabidopsis thaliana, of which only one (LST8-1) is significantly expressed. The Arabidopsis LST8-1 protein is able to complement yeast lst8 mutations and interacts with the TOR kinase. Mutations in the LST8-1 gene resulted in reduced vegetative growth and apical dominance with abnormal development of flowers. Mutant plants were also highly sensitive to long days and accumulated, like TOR RNA interference lines, higher amounts of starch and amino acids, including proline and glutamine, while showing reduced concentrations of inositol and raffinose. Accordingly, transcriptomic and enzymatic analyses revealed a higher expression of genes involved in nitrate assimilation when lst8-1 mutants were shifted to long days. The transcriptome of lst8-1 mutants in long days was found to share similarities with that of a myo-inositol 1 phosphate synthase mutant that is also sensitive to the extension of the light period. It thus appears that the LST8-1 protein has an important role in regulating amino acid accumulation and the synthesis of myo-inositol and raffinose during plant adaptation to long days.

  3. Metabolic acidosis: pathophysiology, diagnosis and management.

    Science.gov (United States)

    Kraut, Jeffrey A; Madias, Nicolaos E

    2010-05-01

    Metabolic acidosis is characterized by a primary reduction in serum bicarbonate (HCO(3)(-)) concentration, a secondary decrease in the arterial partial pressure of carbon dioxide (PaCO(2)) of approximately 1 mmHg for every 1 mmol/l fall in serum HCO(3)(-) concentration, and a reduction in blood pH. Acute forms (lasting minutes to several days) and chronic forms (lasting weeks to years) of the disorder can occur, for which the underlying cause/s and resulting adverse effects may differ. Acute forms of metabolic acidosis most frequently result from the overproduction of organic acids such as ketoacids or lactic acid; by contrast, chronic metabolic acidosis often reflects bicarbonate wasting and/or impaired renal acidification. The calculation of the serum anion gap, calculated as [Na(+)] - ([HCO(3)(-)] + [Cl(-)]), aids diagnosis by classifying the disorders into categories of normal (hyperchloremic) anion gap or elevated anion gap. These categories can overlap, however. Adverse effects of acute metabolic acidosis primarily include decreased cardiac output, arterial dilatation with hypotension, altered oxygen delivery, decreased ATP production, predisposition to arrhythmias, and impairment of the immune response. The main adverse effects of chronic metabolic acidosis are increased muscle degradation and abnormal bone metabolism. Using base to treat acute metabolic acidosis is controversial because of a lack of definitive benefit and because of potential complications. By contrast, the administration of base for the treatment of chronic metabolic acidosis is associated with improved cellular function and few complications.

  4. Adaptive management

    DEFF Research Database (Denmark)

    Rist, Lucy; Campbell, Bruce Morgan; Frost, Peter

    2013-01-01

    in scientific articles, policy documents and management plans, but both understanding and application of the concept is mixed. This paper reviews recent literature from conservation and natural resource management journals to assess diversity in how the term is used, highlight ambiguities and consider how...... the concept might be further assessed. AM is currently being used to describe many different management contexts, scales and locations. Few authors define the term explicitly or describe how it offers a means to improve management outcomes in their specific management context. Many do not adhere to the idea......Adaptive management (AM) emerged in the literature in the mid-1970s in response both to a realization of the extent of uncertainty involved in management, and a frustration with attempts to use modelling to integrate knowledge and make predictions. The term has since become increasingly widely used...

  5. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  6. Metabolism and virulence in Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Christoph eSchoen

    2014-08-01

    Full Text Available A longstanding question in infection biology addresses the genetic basis for invasive behaviour in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.

  7. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  8. Dietary quality improvement after a short-term nutritional counseling program in individuals with metabolic syndrome.

    Science.gov (United States)

    Piovesan, Carla H; Macagnan, Fabricio E; Bodanese, Luiz Carlos; Feoli, Ana Maria P

    2014-06-01

    Metabolic Syndrome is a complex clinical condition that brings together a set of cardiovascular risk factors. Lifestyle changes, such as eating habit improvements, are first-choice therapies for the treatment of this clinical condition. This study aimed to evaluate the effect of short-term nutritional counseling, on the diet quality and total energetic value (TEV) in individuals with Metabolic Syndrome. Eighty subjects (men and women) aged 30 to 60 years with metabolic syndrome were followed over three months. The Healthy Eating Index tool adapted to the Brazilian population was used for the evaluation of diet quality. Mean age was 51 + 6 years, and 68.6% were women. The mean score of the dietary quality of the population studied increased significantly from 53.02 to 61.65 after intervention. The amount of individuals classified as Inappropriate Diet decreased significantly six-fold, the amount of individuals classified as Healthy Diet increased four-fold, and the percent of diets classified as Diet that Needs Change decreased by 25% when compared to the beginning of the study. Adequate intake of vegetables was inversely associated to abdominal circumference, as well as adequate intake of sodium and fasting serum insulin. The amount of TEV presented a significant reduction (p metabolic syndrome.

  9. 阻断集胞藻6803PHB合成途径提高胞内NADPH含量%Increasing reductant NADPH content via metabolic engineering of PHB synthesis pathway in Synechocystis sp.PCC 6803

    Institute of Scientific and Technical Information of China (English)

    解鹃; 周杰; 张海峰; 李寅

    2011-01-01

    蓝藻是探索利用太阳能生产化学品的重要微生物,但产量低限制了蓝藻化学品的工业应用.提高宿主还原力水平是提高微生物合成化学品产量的重要手段.为提高集胞藻细胞内NADPH含量,利用同源重组方法,获得敲除聚羟基丁酸酯PHB合酶编码基因phaC和phaE的集胞藻Synechocystis sp.PCC 6803突变体S.△phaC&E.PCR结果证明突变体S.△phaC&E基因组中phaC和phaE已完全被氯霉素抗性基因取代.生长曲线结果显示S.△phaC&E的生长与野生型无明显差异,说明敲除phaC和phaE对蓝藻生长的影响很小.用气相色谱检测胞内PHB含量,野生藻S.wt中PHB为细胞干重的2.3%,而突变体S.△phaC&E中没有PHB生成,该结果说明敲除phaC和phaE能够有效阻断集胞藻中PHB合成.通过对野生藻与突变体进一步比较分析,发现S.△phaC&E胞内NADPH浓度明显提高,在第3天时差异最为明显,S.△phaC&E胞内NADPH浓度是S.wt的2.85倍.总之,敲除phaC和phaE不仅可以通过阻断副产物PHB的合成,而且还节约了NADPH,使胞内还原力NADPH的水平明显提高.因此为提高蓝藻化学品产量提供了可以改变碳流向和具有充足还原力的工程集胞藻.%Cyanobacteria have become attractive hosts for renewable chemicals production. The low productivity, however, prevents it from industrial application. Reductant NAD(P)H availability is a chief hurdle for the production of reductive metabolites in microbes. To increase NADPH content in Synechocystis sp. PCC 6803, PHB synthase encoding gene phaC and phaE in Synechocystis was inactivated by replacing phaC&E genes with chloromycetin resistance cassette via homologous recombination. PCR analysis showed that mutant S.AphaC&E with complete genome segregation was generated. The comparison between growth curves of S.wt and S.AphaC&E indicated the knockout of phaC & phaE genes did not affect obviously the cell growth. Gas chromatography analysis showed that the

  10. Skeletal Adaptation to Daily Activity: A Biochemical Perspective

    Science.gov (United States)

    Whalen, Robert T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Musculoskeletal forces generated by normal daily activity on Earth maintain the functional and structural properties of muscle and bone throughout most of one's adult life. A reduction in the level of cumulative daily loading caused by space flight, bed rest or spinal cord injury induces rapid muscle atrophy, functional changes in muscle, and bone resorption in regions subjected to the reduced loading. Bone cells in culture and bone tissue reportedly respond to a wide variety of non-mechanical and mechanical stimuli ranging, from electromagnetic fields, and hormones to small amplitude, high frequency vibrations, fluid flow, strain rate, and stress/strain magnitude. However, neither the transduction mechanism that transforms the mechanical input into a muscle or bone metabolic response nor the characteristics, of the loading history that directly or indirectly stimulates the cell is known. Identifying the factors contributing to the input stimulus will have a major impact on the design of effective countermeasures for long duration space flight. This talk will present a brief overview of current theories of bone remodeling and functional adaptation to mechanical loading. Work from our lab will be presented from the perspective of daily cumulative loading on Earth and its relationship to bone density and structure. Our objective is to use the tibia and calcaneus as model bone sites of cortical and cancellous bone adaptation, loaded daily by musculoskeletal forces in equilibrium with the ground reaction force. All materials that will be discussed are in the open scientific literature.

  11. A biofilm model to understand the onset of sulfate reduction in denitrifying membrane biofilm reactors.

    Science.gov (United States)

    Tang, Youneng; Ontiveros-Valencia, Aura; Feng, Liang; Zhou, Chen; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2013-03-01

    This work presents a multispecies biofilm model that describes the co-existence of nitrate- and sulfate-reducing bacteria in the H(2)-based membrane biofilm reactor (MBfR). The new model adapts the framework of a biofilm model for simultaneous nitrate and perchlorate removal by considering the unique metabolic and physiological characteristics of autotrophic sulfate-reducing bacteria that use H(2) as their electron donor. To evaluate the model, the simulated effluent H(2), UAP (substrate-utilization-associated products), and BAP (biomass-associated products) concentrations are compared to experimental results, and the simulated biomass distributions are compared to real-time quantitative polymerase chain reaction (qPCR) data in the experiments for parameter optimization. Model outputs and experimental results match for all major trends and explain when sulfate reduction does or does not occur in parallel with denitrification. The onset of sulfate reduction occurs only when the nitrate concentration at the fiber's outer surface is low enough so that the growth rate of the denitrifying bacteria is equal to that of the sulfate-reducing bacteria. An example shows how to use the model to design an MBfR that achieves satisfactory nitrate reduction, but suppresses sulfate reduction.

  12. Cellular Adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz

    Directory of Open Access Journals (Sweden)

    Antonio Gutiérrez Merma

    Full Text Available Abstract It is well known that the culture conditions of microorganisms may affect their surface properties, zeta potential and hydrophobicity via the modification of the cell wall functional groups or metabolic products. The R. opacus bacteria strain was separately adapted to the presence of apatite and quartz, after which a cellular adaptation procedure was developed by repeated sub-culturing with a successive increase in the mineral content. Zeta potential, surface tension, FTIR and microflotation studies were used to evaluate the behavior of the cells that were developed under defined culture conditions. The cellular adaptation induced a modification of the bacterial surface charge. The FTIR results showed a modification of its functional groups. The surface tension results suggested that longer growing time promoted a higher production of metabolites. The use of mineral-adapted cells promoted an improvement in the flotability of both minerals, but it was more significant for apatite flotation. Additionally, the mineral flotability remained unchanged when the cells developed under a longer culture time. Nevertheless, there was a reduction in the surface tension.

  13. Colonization-Induced Host-Gut Microbial Metabolic Interaction

    NARCIS (Netherlands)

    Claus, S.P.; Ellero, S.L.; Berger, B.; Krause, L.; Bruttin, A.; Molina, J.; Paris, A.; Want, E.J.; Waziers, de I.; Cloarec, O.; Richards, S.E.; Wang, Y.; Dumas, M.E.; Ross, A.; Rezzi, S.; Kochhar, S.; Bladeren, van P.J.; LindOn, J.C.; Holmes, E.; Nicholson, J.K.

    2011-01-01

    The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to

  14. Lymphedema Risk Reduction Practices

    Science.gov (United States)

    ... now! Position Paper: Lymphedema Risk Reduction Practices Category: Position Papers Tags: Risks Archives Treatment risk reduction garments surgery obesity infection blood pressure trauma morbid obesity body weight ...

  15. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... you eat. Food is made up of proteins, carbohydrates, and fats. Chemicals in your digestive system (enzymes) ... metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. ...

  16. Symmetry reduction for stochastic hybrid systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2009-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. We first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Then, we genera

  17. Symmetry Reduction For Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2008-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. To that end, we first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Th

  18. AMPK Activation Affects Glutamat